Linux Audio

Check our new training course

Loading...
v4.6
   1/*
   2 *  linux/mm/swapfile.c
   3 *
   4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   5 *  Swap reorganised 29.12.95, Stephen Tweedie
   6 */
   7
   8#include <linux/mm.h>
   9#include <linux/hugetlb.h>
  10#include <linux/mman.h>
  11#include <linux/slab.h>
  12#include <linux/kernel_stat.h>
  13#include <linux/swap.h>
  14#include <linux/vmalloc.h>
  15#include <linux/pagemap.h>
  16#include <linux/namei.h>
  17#include <linux/shmem_fs.h>
  18#include <linux/blkdev.h>
  19#include <linux/random.h>
  20#include <linux/writeback.h>
  21#include <linux/proc_fs.h>
  22#include <linux/seq_file.h>
  23#include <linux/init.h>
 
  24#include <linux/ksm.h>
  25#include <linux/rmap.h>
  26#include <linux/security.h>
  27#include <linux/backing-dev.h>
  28#include <linux/mutex.h>
  29#include <linux/capability.h>
  30#include <linux/syscalls.h>
  31#include <linux/memcontrol.h>
  32#include <linux/poll.h>
  33#include <linux/oom.h>
  34#include <linux/frontswap.h>
  35#include <linux/swapfile.h>
  36#include <linux/export.h>
  37
  38#include <asm/pgtable.h>
  39#include <asm/tlbflush.h>
  40#include <linux/swapops.h>
  41#include <linux/swap_cgroup.h>
  42
  43static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
  44				 unsigned char);
  45static void free_swap_count_continuations(struct swap_info_struct *);
  46static sector_t map_swap_entry(swp_entry_t, struct block_device**);
  47
  48DEFINE_SPINLOCK(swap_lock);
  49static unsigned int nr_swapfiles;
  50atomic_long_t nr_swap_pages;
  51/*
  52 * Some modules use swappable objects and may try to swap them out under
  53 * memory pressure (via the shrinker). Before doing so, they may wish to
  54 * check to see if any swap space is available.
  55 */
  56EXPORT_SYMBOL_GPL(nr_swap_pages);
  57/* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
  58long total_swap_pages;
  59static int least_priority;
  60
  61static const char Bad_file[] = "Bad swap file entry ";
  62static const char Unused_file[] = "Unused swap file entry ";
  63static const char Bad_offset[] = "Bad swap offset entry ";
  64static const char Unused_offset[] = "Unused swap offset entry ";
  65
  66/*
  67 * all active swap_info_structs
  68 * protected with swap_lock, and ordered by priority.
  69 */
  70PLIST_HEAD(swap_active_head);
  71
  72/*
  73 * all available (active, not full) swap_info_structs
  74 * protected with swap_avail_lock, ordered by priority.
  75 * This is used by get_swap_page() instead of swap_active_head
  76 * because swap_active_head includes all swap_info_structs,
  77 * but get_swap_page() doesn't need to look at full ones.
  78 * This uses its own lock instead of swap_lock because when a
  79 * swap_info_struct changes between not-full/full, it needs to
  80 * add/remove itself to/from this list, but the swap_info_struct->lock
  81 * is held and the locking order requires swap_lock to be taken
  82 * before any swap_info_struct->lock.
  83 */
  84static PLIST_HEAD(swap_avail_head);
  85static DEFINE_SPINLOCK(swap_avail_lock);
  86
  87struct swap_info_struct *swap_info[MAX_SWAPFILES];
  88
  89static DEFINE_MUTEX(swapon_mutex);
  90
  91static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
  92/* Activity counter to indicate that a swapon or swapoff has occurred */
  93static atomic_t proc_poll_event = ATOMIC_INIT(0);
  94
  95static inline unsigned char swap_count(unsigned char ent)
  96{
  97	return ent & ~SWAP_HAS_CACHE;	/* may include SWAP_HAS_CONT flag */
  98}
  99
 100/* returns 1 if swap entry is freed */
 101static int
 102__try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
 103{
 104	swp_entry_t entry = swp_entry(si->type, offset);
 105	struct page *page;
 106	int ret = 0;
 107
 108	page = find_get_page(swap_address_space(entry), entry.val);
 109	if (!page)
 110		return 0;
 111	/*
 112	 * This function is called from scan_swap_map() and it's called
 113	 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
 114	 * We have to use trylock for avoiding deadlock. This is a special
 115	 * case and you should use try_to_free_swap() with explicit lock_page()
 116	 * in usual operations.
 117	 */
 118	if (trylock_page(page)) {
 119		ret = try_to_free_swap(page);
 120		unlock_page(page);
 121	}
 122	put_page(page);
 123	return ret;
 124}
 125
 126/*
 127 * swapon tell device that all the old swap contents can be discarded,
 128 * to allow the swap device to optimize its wear-levelling.
 129 */
 130static int discard_swap(struct swap_info_struct *si)
 131{
 132	struct swap_extent *se;
 133	sector_t start_block;
 134	sector_t nr_blocks;
 135	int err = 0;
 136
 137	/* Do not discard the swap header page! */
 138	se = &si->first_swap_extent;
 139	start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
 140	nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
 141	if (nr_blocks) {
 142		err = blkdev_issue_discard(si->bdev, start_block,
 143				nr_blocks, GFP_KERNEL, 0);
 144		if (err)
 145			return err;
 146		cond_resched();
 147	}
 148
 149	list_for_each_entry(se, &si->first_swap_extent.list, list) {
 150		start_block = se->start_block << (PAGE_SHIFT - 9);
 151		nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
 152
 153		err = blkdev_issue_discard(si->bdev, start_block,
 154				nr_blocks, GFP_KERNEL, 0);
 155		if (err)
 156			break;
 157
 158		cond_resched();
 159	}
 160	return err;		/* That will often be -EOPNOTSUPP */
 161}
 162
 163/*
 164 * swap allocation tell device that a cluster of swap can now be discarded,
 165 * to allow the swap device to optimize its wear-levelling.
 166 */
 167static void discard_swap_cluster(struct swap_info_struct *si,
 168				 pgoff_t start_page, pgoff_t nr_pages)
 169{
 170	struct swap_extent *se = si->curr_swap_extent;
 171	int found_extent = 0;
 172
 173	while (nr_pages) {
 
 
 174		if (se->start_page <= start_page &&
 175		    start_page < se->start_page + se->nr_pages) {
 176			pgoff_t offset = start_page - se->start_page;
 177			sector_t start_block = se->start_block + offset;
 178			sector_t nr_blocks = se->nr_pages - offset;
 179
 180			if (nr_blocks > nr_pages)
 181				nr_blocks = nr_pages;
 182			start_page += nr_blocks;
 183			nr_pages -= nr_blocks;
 184
 185			if (!found_extent++)
 186				si->curr_swap_extent = se;
 187
 188			start_block <<= PAGE_SHIFT - 9;
 189			nr_blocks <<= PAGE_SHIFT - 9;
 190			if (blkdev_issue_discard(si->bdev, start_block,
 191				    nr_blocks, GFP_NOIO, 0))
 192				break;
 193		}
 194
 195		se = list_next_entry(se, list);
 196	}
 197}
 198
 199#define SWAPFILE_CLUSTER	256
 200#define LATENCY_LIMIT		256
 201
 202static inline void cluster_set_flag(struct swap_cluster_info *info,
 203	unsigned int flag)
 204{
 205	info->flags = flag;
 206}
 207
 208static inline unsigned int cluster_count(struct swap_cluster_info *info)
 209{
 210	return info->data;
 211}
 212
 213static inline void cluster_set_count(struct swap_cluster_info *info,
 214				     unsigned int c)
 215{
 216	info->data = c;
 217}
 218
 219static inline void cluster_set_count_flag(struct swap_cluster_info *info,
 220					 unsigned int c, unsigned int f)
 221{
 222	info->flags = f;
 223	info->data = c;
 224}
 225
 226static inline unsigned int cluster_next(struct swap_cluster_info *info)
 227{
 228	return info->data;
 229}
 230
 231static inline void cluster_set_next(struct swap_cluster_info *info,
 232				    unsigned int n)
 233{
 234	info->data = n;
 235}
 236
 237static inline void cluster_set_next_flag(struct swap_cluster_info *info,
 238					 unsigned int n, unsigned int f)
 239{
 240	info->flags = f;
 241	info->data = n;
 242}
 243
 244static inline bool cluster_is_free(struct swap_cluster_info *info)
 245{
 246	return info->flags & CLUSTER_FLAG_FREE;
 247}
 248
 249static inline bool cluster_is_null(struct swap_cluster_info *info)
 250{
 251	return info->flags & CLUSTER_FLAG_NEXT_NULL;
 252}
 253
 254static inline void cluster_set_null(struct swap_cluster_info *info)
 255{
 256	info->flags = CLUSTER_FLAG_NEXT_NULL;
 257	info->data = 0;
 258}
 259
 260/* Add a cluster to discard list and schedule it to do discard */
 261static void swap_cluster_schedule_discard(struct swap_info_struct *si,
 262		unsigned int idx)
 263{
 264	/*
 265	 * If scan_swap_map() can't find a free cluster, it will check
 266	 * si->swap_map directly. To make sure the discarding cluster isn't
 267	 * taken by scan_swap_map(), mark the swap entries bad (occupied). It
 268	 * will be cleared after discard
 269	 */
 270	memset(si->swap_map + idx * SWAPFILE_CLUSTER,
 271			SWAP_MAP_BAD, SWAPFILE_CLUSTER);
 272
 273	if (cluster_is_null(&si->discard_cluster_head)) {
 274		cluster_set_next_flag(&si->discard_cluster_head,
 275						idx, 0);
 276		cluster_set_next_flag(&si->discard_cluster_tail,
 277						idx, 0);
 278	} else {
 279		unsigned int tail = cluster_next(&si->discard_cluster_tail);
 280		cluster_set_next(&si->cluster_info[tail], idx);
 281		cluster_set_next_flag(&si->discard_cluster_tail,
 282						idx, 0);
 283	}
 284
 285	schedule_work(&si->discard_work);
 286}
 287
 288/*
 289 * Doing discard actually. After a cluster discard is finished, the cluster
 290 * will be added to free cluster list. caller should hold si->lock.
 291*/
 292static void swap_do_scheduled_discard(struct swap_info_struct *si)
 293{
 294	struct swap_cluster_info *info;
 295	unsigned int idx;
 296
 297	info = si->cluster_info;
 298
 299	while (!cluster_is_null(&si->discard_cluster_head)) {
 300		idx = cluster_next(&si->discard_cluster_head);
 301
 302		cluster_set_next_flag(&si->discard_cluster_head,
 303						cluster_next(&info[idx]), 0);
 304		if (cluster_next(&si->discard_cluster_tail) == idx) {
 305			cluster_set_null(&si->discard_cluster_head);
 306			cluster_set_null(&si->discard_cluster_tail);
 307		}
 308		spin_unlock(&si->lock);
 309
 310		discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
 311				SWAPFILE_CLUSTER);
 312
 313		spin_lock(&si->lock);
 314		cluster_set_flag(&info[idx], CLUSTER_FLAG_FREE);
 315		if (cluster_is_null(&si->free_cluster_head)) {
 316			cluster_set_next_flag(&si->free_cluster_head,
 317						idx, 0);
 318			cluster_set_next_flag(&si->free_cluster_tail,
 319						idx, 0);
 320		} else {
 321			unsigned int tail;
 322
 323			tail = cluster_next(&si->free_cluster_tail);
 324			cluster_set_next(&info[tail], idx);
 325			cluster_set_next_flag(&si->free_cluster_tail,
 326						idx, 0);
 327		}
 328		memset(si->swap_map + idx * SWAPFILE_CLUSTER,
 329				0, SWAPFILE_CLUSTER);
 330	}
 331}
 332
 333static void swap_discard_work(struct work_struct *work)
 334{
 335	struct swap_info_struct *si;
 336
 337	si = container_of(work, struct swap_info_struct, discard_work);
 338
 339	spin_lock(&si->lock);
 340	swap_do_scheduled_discard(si);
 341	spin_unlock(&si->lock);
 342}
 343
 344/*
 345 * The cluster corresponding to page_nr will be used. The cluster will be
 346 * removed from free cluster list and its usage counter will be increased.
 347 */
 348static void inc_cluster_info_page(struct swap_info_struct *p,
 349	struct swap_cluster_info *cluster_info, unsigned long page_nr)
 350{
 351	unsigned long idx = page_nr / SWAPFILE_CLUSTER;
 352
 353	if (!cluster_info)
 354		return;
 355	if (cluster_is_free(&cluster_info[idx])) {
 356		VM_BUG_ON(cluster_next(&p->free_cluster_head) != idx);
 357		cluster_set_next_flag(&p->free_cluster_head,
 358			cluster_next(&cluster_info[idx]), 0);
 359		if (cluster_next(&p->free_cluster_tail) == idx) {
 360			cluster_set_null(&p->free_cluster_tail);
 361			cluster_set_null(&p->free_cluster_head);
 362		}
 363		cluster_set_count_flag(&cluster_info[idx], 0, 0);
 364	}
 365
 366	VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
 367	cluster_set_count(&cluster_info[idx],
 368		cluster_count(&cluster_info[idx]) + 1);
 369}
 370
 371/*
 372 * The cluster corresponding to page_nr decreases one usage. If the usage
 373 * counter becomes 0, which means no page in the cluster is in using, we can
 374 * optionally discard the cluster and add it to free cluster list.
 375 */
 376static void dec_cluster_info_page(struct swap_info_struct *p,
 377	struct swap_cluster_info *cluster_info, unsigned long page_nr)
 378{
 379	unsigned long idx = page_nr / SWAPFILE_CLUSTER;
 380
 381	if (!cluster_info)
 382		return;
 383
 384	VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
 385	cluster_set_count(&cluster_info[idx],
 386		cluster_count(&cluster_info[idx]) - 1);
 387
 388	if (cluster_count(&cluster_info[idx]) == 0) {
 389		/*
 390		 * If the swap is discardable, prepare discard the cluster
 391		 * instead of free it immediately. The cluster will be freed
 392		 * after discard.
 393		 */
 394		if ((p->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
 395				 (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
 396			swap_cluster_schedule_discard(p, idx);
 397			return;
 398		}
 399
 400		cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
 401		if (cluster_is_null(&p->free_cluster_head)) {
 402			cluster_set_next_flag(&p->free_cluster_head, idx, 0);
 403			cluster_set_next_flag(&p->free_cluster_tail, idx, 0);
 404		} else {
 405			unsigned int tail = cluster_next(&p->free_cluster_tail);
 406			cluster_set_next(&cluster_info[tail], idx);
 407			cluster_set_next_flag(&p->free_cluster_tail, idx, 0);
 408		}
 409	}
 410}
 411
 412/*
 413 * It's possible scan_swap_map() uses a free cluster in the middle of free
 414 * cluster list. Avoiding such abuse to avoid list corruption.
 415 */
 416static bool
 417scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
 418	unsigned long offset)
 419{
 420	struct percpu_cluster *percpu_cluster;
 421	bool conflict;
 422
 423	offset /= SWAPFILE_CLUSTER;
 424	conflict = !cluster_is_null(&si->free_cluster_head) &&
 425		offset != cluster_next(&si->free_cluster_head) &&
 426		cluster_is_free(&si->cluster_info[offset]);
 427
 428	if (!conflict)
 429		return false;
 430
 431	percpu_cluster = this_cpu_ptr(si->percpu_cluster);
 432	cluster_set_null(&percpu_cluster->index);
 433	return true;
 434}
 435
 436/*
 437 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
 438 * might involve allocating a new cluster for current CPU too.
 439 */
 440static void scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
 441	unsigned long *offset, unsigned long *scan_base)
 442{
 443	struct percpu_cluster *cluster;
 444	bool found_free;
 445	unsigned long tmp;
 446
 447new_cluster:
 448	cluster = this_cpu_ptr(si->percpu_cluster);
 449	if (cluster_is_null(&cluster->index)) {
 450		if (!cluster_is_null(&si->free_cluster_head)) {
 451			cluster->index = si->free_cluster_head;
 452			cluster->next = cluster_next(&cluster->index) *
 453					SWAPFILE_CLUSTER;
 454		} else if (!cluster_is_null(&si->discard_cluster_head)) {
 455			/*
 456			 * we don't have free cluster but have some clusters in
 457			 * discarding, do discard now and reclaim them
 458			 */
 459			swap_do_scheduled_discard(si);
 460			*scan_base = *offset = si->cluster_next;
 461			goto new_cluster;
 462		} else
 463			return;
 464	}
 465
 466	found_free = false;
 467
 468	/*
 469	 * Other CPUs can use our cluster if they can't find a free cluster,
 470	 * check if there is still free entry in the cluster
 471	 */
 472	tmp = cluster->next;
 473	while (tmp < si->max && tmp < (cluster_next(&cluster->index) + 1) *
 474	       SWAPFILE_CLUSTER) {
 475		if (!si->swap_map[tmp]) {
 476			found_free = true;
 477			break;
 478		}
 479		tmp++;
 480	}
 481	if (!found_free) {
 482		cluster_set_null(&cluster->index);
 483		goto new_cluster;
 484	}
 485	cluster->next = tmp + 1;
 486	*offset = tmp;
 487	*scan_base = tmp;
 488}
 489
 490static unsigned long scan_swap_map(struct swap_info_struct *si,
 491				   unsigned char usage)
 492{
 493	unsigned long offset;
 494	unsigned long scan_base;
 495	unsigned long last_in_cluster = 0;
 496	int latency_ration = LATENCY_LIMIT;
 
 497
 498	/*
 499	 * We try to cluster swap pages by allocating them sequentially
 500	 * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
 501	 * way, however, we resort to first-free allocation, starting
 502	 * a new cluster.  This prevents us from scattering swap pages
 503	 * all over the entire swap partition, so that we reduce
 504	 * overall disk seek times between swap pages.  -- sct
 505	 * But we do now try to find an empty cluster.  -Andrea
 506	 * And we let swap pages go all over an SSD partition.  Hugh
 507	 */
 508
 509	si->flags += SWP_SCANNING;
 510	scan_base = offset = si->cluster_next;
 511
 512	/* SSD algorithm */
 513	if (si->cluster_info) {
 514		scan_swap_map_try_ssd_cluster(si, &offset, &scan_base);
 515		goto checks;
 516	}
 517
 518	if (unlikely(!si->cluster_nr--)) {
 519		if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
 520			si->cluster_nr = SWAPFILE_CLUSTER - 1;
 521			goto checks;
 522		}
 523
 524		spin_unlock(&si->lock);
 
 
 
 
 
 
 
 
 
 
 
 
 525
 526		/*
 527		 * If seek is expensive, start searching for new cluster from
 528		 * start of partition, to minimize the span of allocated swap.
 529		 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
 530		 * case, just handled by scan_swap_map_try_ssd_cluster() above.
 
 
 531		 */
 532		scan_base = offset = si->lowest_bit;
 
 533		last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
 534
 535		/* Locate the first empty (unaligned) cluster */
 536		for (; last_in_cluster <= si->highest_bit; offset++) {
 537			if (si->swap_map[offset])
 538				last_in_cluster = offset + SWAPFILE_CLUSTER;
 539			else if (offset == last_in_cluster) {
 540				spin_lock(&si->lock);
 541				offset -= SWAPFILE_CLUSTER - 1;
 542				si->cluster_next = offset;
 543				si->cluster_nr = SWAPFILE_CLUSTER - 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 544				goto checks;
 545			}
 546			if (unlikely(--latency_ration < 0)) {
 547				cond_resched();
 548				latency_ration = LATENCY_LIMIT;
 549			}
 550		}
 551
 552		offset = scan_base;
 553		spin_lock(&si->lock);
 554		si->cluster_nr = SWAPFILE_CLUSTER - 1;
 
 555	}
 556
 557checks:
 558	if (si->cluster_info) {
 559		while (scan_swap_map_ssd_cluster_conflict(si, offset))
 560			scan_swap_map_try_ssd_cluster(si, &offset, &scan_base);
 561	}
 562	if (!(si->flags & SWP_WRITEOK))
 563		goto no_page;
 564	if (!si->highest_bit)
 565		goto no_page;
 566	if (offset > si->highest_bit)
 567		scan_base = offset = si->lowest_bit;
 568
 569	/* reuse swap entry of cache-only swap if not busy. */
 570	if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
 571		int swap_was_freed;
 572		spin_unlock(&si->lock);
 573		swap_was_freed = __try_to_reclaim_swap(si, offset);
 574		spin_lock(&si->lock);
 575		/* entry was freed successfully, try to use this again */
 576		if (swap_was_freed)
 577			goto checks;
 578		goto scan; /* check next one */
 579	}
 580
 581	if (si->swap_map[offset])
 582		goto scan;
 583
 584	if (offset == si->lowest_bit)
 585		si->lowest_bit++;
 586	if (offset == si->highest_bit)
 587		si->highest_bit--;
 588	si->inuse_pages++;
 589	if (si->inuse_pages == si->pages) {
 590		si->lowest_bit = si->max;
 591		si->highest_bit = 0;
 592		spin_lock(&swap_avail_lock);
 593		plist_del(&si->avail_list, &swap_avail_head);
 594		spin_unlock(&swap_avail_lock);
 595	}
 596	si->swap_map[offset] = usage;
 597	inc_cluster_info_page(si, si->cluster_info, offset);
 598	si->cluster_next = offset + 1;
 599	si->flags -= SWP_SCANNING;
 600
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 601	return offset;
 602
 603scan:
 604	spin_unlock(&si->lock);
 605	while (++offset <= si->highest_bit) {
 606		if (!si->swap_map[offset]) {
 607			spin_lock(&si->lock);
 608			goto checks;
 609		}
 610		if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
 611			spin_lock(&si->lock);
 612			goto checks;
 613		}
 614		if (unlikely(--latency_ration < 0)) {
 615			cond_resched();
 616			latency_ration = LATENCY_LIMIT;
 617		}
 618	}
 619	offset = si->lowest_bit;
 620	while (offset < scan_base) {
 621		if (!si->swap_map[offset]) {
 622			spin_lock(&si->lock);
 623			goto checks;
 624		}
 625		if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
 626			spin_lock(&si->lock);
 627			goto checks;
 628		}
 629		if (unlikely(--latency_ration < 0)) {
 630			cond_resched();
 631			latency_ration = LATENCY_LIMIT;
 632		}
 633		offset++;
 634	}
 635	spin_lock(&si->lock);
 636
 637no_page:
 638	si->flags -= SWP_SCANNING;
 639	return 0;
 640}
 641
 642swp_entry_t get_swap_page(void)
 643{
 644	struct swap_info_struct *si, *next;
 645	pgoff_t offset;
 
 
 646
 647	if (atomic_long_read(&nr_swap_pages) <= 0)
 
 648		goto noswap;
 649	atomic_long_dec(&nr_swap_pages);
 650
 651	spin_lock(&swap_avail_lock);
 652
 653start_over:
 654	plist_for_each_entry_safe(si, next, &swap_avail_head, avail_list) {
 655		/* requeue si to after same-priority siblings */
 656		plist_requeue(&si->avail_list, &swap_avail_head);
 657		spin_unlock(&swap_avail_lock);
 658		spin_lock(&si->lock);
 659		if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
 660			spin_lock(&swap_avail_lock);
 661			if (plist_node_empty(&si->avail_list)) {
 662				spin_unlock(&si->lock);
 663				goto nextsi;
 664			}
 665			WARN(!si->highest_bit,
 666			     "swap_info %d in list but !highest_bit\n",
 667			     si->type);
 668			WARN(!(si->flags & SWP_WRITEOK),
 669			     "swap_info %d in list but !SWP_WRITEOK\n",
 670			     si->type);
 671			plist_del(&si->avail_list, &swap_avail_head);
 672			spin_unlock(&si->lock);
 673			goto nextsi;
 674		}
 675
 
 
 
 
 
 
 676		/* This is called for allocating swap entry for cache */
 677		offset = scan_swap_map(si, SWAP_HAS_CACHE);
 678		spin_unlock(&si->lock);
 679		if (offset)
 680			return swp_entry(si->type, offset);
 681		pr_debug("scan_swap_map of si %d failed to find offset\n",
 682		       si->type);
 683		spin_lock(&swap_avail_lock);
 684nextsi:
 685		/*
 686		 * if we got here, it's likely that si was almost full before,
 687		 * and since scan_swap_map() can drop the si->lock, multiple
 688		 * callers probably all tried to get a page from the same si
 689		 * and it filled up before we could get one; or, the si filled
 690		 * up between us dropping swap_avail_lock and taking si->lock.
 691		 * Since we dropped the swap_avail_lock, the swap_avail_head
 692		 * list may have been modified; so if next is still in the
 693		 * swap_avail_head list then try it, otherwise start over.
 694		 */
 695		if (plist_node_empty(&next->avail_list))
 696			goto start_over;
 697	}
 698
 699	spin_unlock(&swap_avail_lock);
 700
 701	atomic_long_inc(&nr_swap_pages);
 702noswap:
 
 703	return (swp_entry_t) {0};
 704}
 705
 706/* The only caller of this function is now suspend routine */
 707swp_entry_t get_swap_page_of_type(int type)
 708{
 709	struct swap_info_struct *si;
 710	pgoff_t offset;
 711
 
 712	si = swap_info[type];
 713	spin_lock(&si->lock);
 714	if (si && (si->flags & SWP_WRITEOK)) {
 715		atomic_long_dec(&nr_swap_pages);
 716		/* This is called for allocating swap entry, not cache */
 717		offset = scan_swap_map(si, 1);
 718		if (offset) {
 719			spin_unlock(&si->lock);
 720			return swp_entry(type, offset);
 721		}
 722		atomic_long_inc(&nr_swap_pages);
 723	}
 724	spin_unlock(&si->lock);
 725	return (swp_entry_t) {0};
 726}
 727
 728static struct swap_info_struct *swap_info_get(swp_entry_t entry)
 729{
 730	struct swap_info_struct *p;
 731	unsigned long offset, type;
 732
 733	if (!entry.val)
 734		goto out;
 735	type = swp_type(entry);
 736	if (type >= nr_swapfiles)
 737		goto bad_nofile;
 738	p = swap_info[type];
 739	if (!(p->flags & SWP_USED))
 740		goto bad_device;
 741	offset = swp_offset(entry);
 742	if (offset >= p->max)
 743		goto bad_offset;
 744	if (!p->swap_map[offset])
 745		goto bad_free;
 746	spin_lock(&p->lock);
 747	return p;
 748
 749bad_free:
 750	pr_err("swap_free: %s%08lx\n", Unused_offset, entry.val);
 751	goto out;
 752bad_offset:
 753	pr_err("swap_free: %s%08lx\n", Bad_offset, entry.val);
 754	goto out;
 755bad_device:
 756	pr_err("swap_free: %s%08lx\n", Unused_file, entry.val);
 757	goto out;
 758bad_nofile:
 759	pr_err("swap_free: %s%08lx\n", Bad_file, entry.val);
 760out:
 761	return NULL;
 762}
 763
 764static unsigned char swap_entry_free(struct swap_info_struct *p,
 765				     swp_entry_t entry, unsigned char usage)
 766{
 767	unsigned long offset = swp_offset(entry);
 768	unsigned char count;
 769	unsigned char has_cache;
 770
 771	count = p->swap_map[offset];
 772	has_cache = count & SWAP_HAS_CACHE;
 773	count &= ~SWAP_HAS_CACHE;
 774
 775	if (usage == SWAP_HAS_CACHE) {
 776		VM_BUG_ON(!has_cache);
 777		has_cache = 0;
 778	} else if (count == SWAP_MAP_SHMEM) {
 779		/*
 780		 * Or we could insist on shmem.c using a special
 781		 * swap_shmem_free() and free_shmem_swap_and_cache()...
 782		 */
 783		count = 0;
 784	} else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
 785		if (count == COUNT_CONTINUED) {
 786			if (swap_count_continued(p, offset, count))
 787				count = SWAP_MAP_MAX | COUNT_CONTINUED;
 788			else
 789				count = SWAP_MAP_MAX;
 790		} else
 791			count--;
 792	}
 793
 
 
 
 794	usage = count | has_cache;
 795	p->swap_map[offset] = usage;
 796
 797	/* free if no reference */
 798	if (!usage) {
 799		mem_cgroup_uncharge_swap(entry);
 800		dec_cluster_info_page(p, p->cluster_info, offset);
 801		if (offset < p->lowest_bit)
 802			p->lowest_bit = offset;
 803		if (offset > p->highest_bit) {
 804			bool was_full = !p->highest_bit;
 805			p->highest_bit = offset;
 806			if (was_full && (p->flags & SWP_WRITEOK)) {
 807				spin_lock(&swap_avail_lock);
 808				WARN_ON(!plist_node_empty(&p->avail_list));
 809				if (plist_node_empty(&p->avail_list))
 810					plist_add(&p->avail_list,
 811						  &swap_avail_head);
 812				spin_unlock(&swap_avail_lock);
 813			}
 814		}
 815		atomic_long_inc(&nr_swap_pages);
 816		p->inuse_pages--;
 817		frontswap_invalidate_page(p->type, offset);
 818		if (p->flags & SWP_BLKDEV) {
 819			struct gendisk *disk = p->bdev->bd_disk;
 820			if (disk->fops->swap_slot_free_notify)
 821				disk->fops->swap_slot_free_notify(p->bdev,
 822								  offset);
 823		}
 824	}
 825
 826	return usage;
 827}
 828
 829/*
 830 * Caller has made sure that the swap device corresponding to entry
 831 * is still around or has not been recycled.
 832 */
 833void swap_free(swp_entry_t entry)
 834{
 835	struct swap_info_struct *p;
 836
 837	p = swap_info_get(entry);
 838	if (p) {
 839		swap_entry_free(p, entry, 1);
 840		spin_unlock(&p->lock);
 841	}
 842}
 843
 844/*
 845 * Called after dropping swapcache to decrease refcnt to swap entries.
 846 */
 847void swapcache_free(swp_entry_t entry)
 848{
 849	struct swap_info_struct *p;
 
 850
 851	p = swap_info_get(entry);
 852	if (p) {
 853		swap_entry_free(p, entry, SWAP_HAS_CACHE);
 854		spin_unlock(&p->lock);
 
 
 855	}
 856}
 857
 858/*
 859 * How many references to page are currently swapped out?
 860 * This does not give an exact answer when swap count is continued,
 861 * but does include the high COUNT_CONTINUED flag to allow for that.
 862 */
 863int page_swapcount(struct page *page)
 864{
 865	int count = 0;
 866	struct swap_info_struct *p;
 867	swp_entry_t entry;
 868
 869	entry.val = page_private(page);
 870	p = swap_info_get(entry);
 871	if (p) {
 872		count = swap_count(p->swap_map[swp_offset(entry)]);
 873		spin_unlock(&p->lock);
 874	}
 875	return count;
 876}
 877
 878/*
 879 * How many references to @entry are currently swapped out?
 880 * This considers COUNT_CONTINUED so it returns exact answer.
 881 */
 882int swp_swapcount(swp_entry_t entry)
 883{
 884	int count, tmp_count, n;
 885	struct swap_info_struct *p;
 886	struct page *page;
 887	pgoff_t offset;
 888	unsigned char *map;
 889
 890	p = swap_info_get(entry);
 891	if (!p)
 892		return 0;
 893
 894	count = swap_count(p->swap_map[swp_offset(entry)]);
 895	if (!(count & COUNT_CONTINUED))
 896		goto out;
 897
 898	count &= ~COUNT_CONTINUED;
 899	n = SWAP_MAP_MAX + 1;
 900
 901	offset = swp_offset(entry);
 902	page = vmalloc_to_page(p->swap_map + offset);
 903	offset &= ~PAGE_MASK;
 904	VM_BUG_ON(page_private(page) != SWP_CONTINUED);
 905
 906	do {
 907		page = list_next_entry(page, lru);
 908		map = kmap_atomic(page);
 909		tmp_count = map[offset];
 910		kunmap_atomic(map);
 911
 912		count += (tmp_count & ~COUNT_CONTINUED) * n;
 913		n *= (SWAP_CONT_MAX + 1);
 914	} while (tmp_count & COUNT_CONTINUED);
 915out:
 916	spin_unlock(&p->lock);
 917	return count;
 918}
 919
 920/*
 921 * We can write to an anon page without COW if there are no other references
 922 * to it.  And as a side-effect, free up its swap: because the old content
 923 * on disk will never be read, and seeking back there to write new content
 924 * later would only waste time away from clustering.
 925 *
 926 * NOTE: total_mapcount should not be relied upon by the caller if
 927 * reuse_swap_page() returns false, but it may be always overwritten
 928 * (see the other implementation for CONFIG_SWAP=n).
 929 */
 930bool reuse_swap_page(struct page *page, int *total_mapcount)
 931{
 932	int count;
 933
 934	VM_BUG_ON_PAGE(!PageLocked(page), page);
 935	if (unlikely(PageKsm(page)))
 936		return false;
 937	count = page_trans_huge_mapcount(page, total_mapcount);
 938	if (count <= 1 && PageSwapCache(page)) {
 939		count += page_swapcount(page);
 940		if (count == 1 && !PageWriteback(page)) {
 941			delete_from_swap_cache(page);
 942			SetPageDirty(page);
 943		}
 944	}
 945	return count <= 1;
 946}
 947
 948/*
 949 * If swap is getting full, or if there are no more mappings of this page,
 950 * then try_to_free_swap is called to free its swap space.
 951 */
 952int try_to_free_swap(struct page *page)
 953{
 954	VM_BUG_ON_PAGE(!PageLocked(page), page);
 955
 956	if (!PageSwapCache(page))
 957		return 0;
 958	if (PageWriteback(page))
 959		return 0;
 960	if (page_swapcount(page))
 961		return 0;
 962
 963	/*
 964	 * Once hibernation has begun to create its image of memory,
 965	 * there's a danger that one of the calls to try_to_free_swap()
 966	 * - most probably a call from __try_to_reclaim_swap() while
 967	 * hibernation is allocating its own swap pages for the image,
 968	 * but conceivably even a call from memory reclaim - will free
 969	 * the swap from a page which has already been recorded in the
 970	 * image as a clean swapcache page, and then reuse its swap for
 971	 * another page of the image.  On waking from hibernation, the
 972	 * original page might be freed under memory pressure, then
 973	 * later read back in from swap, now with the wrong data.
 974	 *
 975	 * Hibernation suspends storage while it is writing the image
 976	 * to disk so check that here.
 977	 */
 978	if (pm_suspended_storage())
 979		return 0;
 980
 981	delete_from_swap_cache(page);
 982	SetPageDirty(page);
 983	return 1;
 984}
 985
 986/*
 987 * Free the swap entry like above, but also try to
 988 * free the page cache entry if it is the last user.
 989 */
 990int free_swap_and_cache(swp_entry_t entry)
 991{
 992	struct swap_info_struct *p;
 993	struct page *page = NULL;
 994
 995	if (non_swap_entry(entry))
 996		return 1;
 997
 998	p = swap_info_get(entry);
 999	if (p) {
1000		if (swap_entry_free(p, entry, 1) == SWAP_HAS_CACHE) {
1001			page = find_get_page(swap_address_space(entry),
1002						entry.val);
1003			if (page && !trylock_page(page)) {
1004				put_page(page);
1005				page = NULL;
1006			}
1007		}
1008		spin_unlock(&p->lock);
1009	}
1010	if (page) {
1011		/*
1012		 * Not mapped elsewhere, or swap space full? Free it!
1013		 * Also recheck PageSwapCache now page is locked (above).
1014		 */
1015		if (PageSwapCache(page) && !PageWriteback(page) &&
1016		    (!page_mapped(page) || mem_cgroup_swap_full(page))) {
1017			delete_from_swap_cache(page);
1018			SetPageDirty(page);
1019		}
1020		unlock_page(page);
1021		put_page(page);
1022	}
1023	return p != NULL;
1024}
1025
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1026#ifdef CONFIG_HIBERNATION
1027/*
1028 * Find the swap type that corresponds to given device (if any).
1029 *
1030 * @offset - number of the PAGE_SIZE-sized block of the device, starting
1031 * from 0, in which the swap header is expected to be located.
1032 *
1033 * This is needed for the suspend to disk (aka swsusp).
1034 */
1035int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
1036{
1037	struct block_device *bdev = NULL;
1038	int type;
1039
1040	if (device)
1041		bdev = bdget(device);
1042
1043	spin_lock(&swap_lock);
1044	for (type = 0; type < nr_swapfiles; type++) {
1045		struct swap_info_struct *sis = swap_info[type];
1046
1047		if (!(sis->flags & SWP_WRITEOK))
1048			continue;
1049
1050		if (!bdev) {
1051			if (bdev_p)
1052				*bdev_p = bdgrab(sis->bdev);
1053
1054			spin_unlock(&swap_lock);
1055			return type;
1056		}
1057		if (bdev == sis->bdev) {
1058			struct swap_extent *se = &sis->first_swap_extent;
1059
1060			if (se->start_block == offset) {
1061				if (bdev_p)
1062					*bdev_p = bdgrab(sis->bdev);
1063
1064				spin_unlock(&swap_lock);
1065				bdput(bdev);
1066				return type;
1067			}
1068		}
1069	}
1070	spin_unlock(&swap_lock);
1071	if (bdev)
1072		bdput(bdev);
1073
1074	return -ENODEV;
1075}
1076
1077/*
1078 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1079 * corresponding to given index in swap_info (swap type).
1080 */
1081sector_t swapdev_block(int type, pgoff_t offset)
1082{
1083	struct block_device *bdev;
1084
1085	if ((unsigned int)type >= nr_swapfiles)
1086		return 0;
1087	if (!(swap_info[type]->flags & SWP_WRITEOK))
1088		return 0;
1089	return map_swap_entry(swp_entry(type, offset), &bdev);
1090}
1091
1092/*
1093 * Return either the total number of swap pages of given type, or the number
1094 * of free pages of that type (depending on @free)
1095 *
1096 * This is needed for software suspend
1097 */
1098unsigned int count_swap_pages(int type, int free)
1099{
1100	unsigned int n = 0;
1101
1102	spin_lock(&swap_lock);
1103	if ((unsigned int)type < nr_swapfiles) {
1104		struct swap_info_struct *sis = swap_info[type];
1105
1106		spin_lock(&sis->lock);
1107		if (sis->flags & SWP_WRITEOK) {
1108			n = sis->pages;
1109			if (free)
1110				n -= sis->inuse_pages;
1111		}
1112		spin_unlock(&sis->lock);
1113	}
1114	spin_unlock(&swap_lock);
1115	return n;
1116}
1117#endif /* CONFIG_HIBERNATION */
1118
1119static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1120{
1121	return pte_same(pte_swp_clear_soft_dirty(pte), swp_pte);
1122}
1123
1124/*
1125 * No need to decide whether this PTE shares the swap entry with others,
1126 * just let do_wp_page work it out if a write is requested later - to
1127 * force COW, vm_page_prot omits write permission from any private vma.
1128 */
1129static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1130		unsigned long addr, swp_entry_t entry, struct page *page)
1131{
1132	struct page *swapcache;
1133	struct mem_cgroup *memcg;
1134	spinlock_t *ptl;
1135	pte_t *pte;
1136	int ret = 1;
1137
1138	swapcache = page;
1139	page = ksm_might_need_to_copy(page, vma, addr);
1140	if (unlikely(!page))
1141		return -ENOMEM;
1142
1143	if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
1144				&memcg, false)) {
1145		ret = -ENOMEM;
1146		goto out_nolock;
1147	}
1148
1149	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1150	if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
1151		mem_cgroup_cancel_charge(page, memcg, false);
 
1152		ret = 0;
1153		goto out;
1154	}
1155
1156	dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1157	inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1158	get_page(page);
1159	set_pte_at(vma->vm_mm, addr, pte,
1160		   pte_mkold(mk_pte(page, vma->vm_page_prot)));
1161	if (page == swapcache) {
1162		page_add_anon_rmap(page, vma, addr, false);
1163		mem_cgroup_commit_charge(page, memcg, true, false);
1164	} else { /* ksm created a completely new copy */
1165		page_add_new_anon_rmap(page, vma, addr, false);
1166		mem_cgroup_commit_charge(page, memcg, false, false);
1167		lru_cache_add_active_or_unevictable(page, vma);
1168	}
1169	swap_free(entry);
1170	/*
1171	 * Move the page to the active list so it is not
1172	 * immediately swapped out again after swapon.
1173	 */
1174	activate_page(page);
1175out:
1176	pte_unmap_unlock(pte, ptl);
1177out_nolock:
1178	if (page != swapcache) {
1179		unlock_page(page);
1180		put_page(page);
1181	}
1182	return ret;
1183}
1184
1185static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1186				unsigned long addr, unsigned long end,
1187				swp_entry_t entry, struct page *page)
1188{
1189	pte_t swp_pte = swp_entry_to_pte(entry);
1190	pte_t *pte;
1191	int ret = 0;
1192
1193	/*
1194	 * We don't actually need pte lock while scanning for swp_pte: since
1195	 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
1196	 * page table while we're scanning; though it could get zapped, and on
1197	 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
1198	 * of unmatched parts which look like swp_pte, so unuse_pte must
1199	 * recheck under pte lock.  Scanning without pte lock lets it be
1200	 * preemptable whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
1201	 */
1202	pte = pte_offset_map(pmd, addr);
1203	do {
1204		/*
1205		 * swapoff spends a _lot_ of time in this loop!
1206		 * Test inline before going to call unuse_pte.
1207		 */
1208		if (unlikely(pte_same_as_swp(*pte, swp_pte))) {
1209			pte_unmap(pte);
1210			ret = unuse_pte(vma, pmd, addr, entry, page);
1211			if (ret)
1212				goto out;
1213			pte = pte_offset_map(pmd, addr);
1214		}
1215	} while (pte++, addr += PAGE_SIZE, addr != end);
1216	pte_unmap(pte - 1);
1217out:
1218	return ret;
1219}
1220
1221static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1222				unsigned long addr, unsigned long end,
1223				swp_entry_t entry, struct page *page)
1224{
1225	pmd_t *pmd;
1226	unsigned long next;
1227	int ret;
1228
1229	pmd = pmd_offset(pud, addr);
1230	do {
1231		next = pmd_addr_end(addr, end);
1232		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
 
 
1233			continue;
1234		ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
1235		if (ret)
1236			return ret;
1237	} while (pmd++, addr = next, addr != end);
1238	return 0;
1239}
1240
1241static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
1242				unsigned long addr, unsigned long end,
1243				swp_entry_t entry, struct page *page)
1244{
1245	pud_t *pud;
1246	unsigned long next;
1247	int ret;
1248
1249	pud = pud_offset(pgd, addr);
1250	do {
1251		next = pud_addr_end(addr, end);
1252		if (pud_none_or_clear_bad(pud))
1253			continue;
1254		ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
1255		if (ret)
1256			return ret;
1257	} while (pud++, addr = next, addr != end);
1258	return 0;
1259}
1260
1261static int unuse_vma(struct vm_area_struct *vma,
1262				swp_entry_t entry, struct page *page)
1263{
1264	pgd_t *pgd;
1265	unsigned long addr, end, next;
1266	int ret;
1267
1268	if (page_anon_vma(page)) {
1269		addr = page_address_in_vma(page, vma);
1270		if (addr == -EFAULT)
1271			return 0;
1272		else
1273			end = addr + PAGE_SIZE;
1274	} else {
1275		addr = vma->vm_start;
1276		end = vma->vm_end;
1277	}
1278
1279	pgd = pgd_offset(vma->vm_mm, addr);
1280	do {
1281		next = pgd_addr_end(addr, end);
1282		if (pgd_none_or_clear_bad(pgd))
1283			continue;
1284		ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
1285		if (ret)
1286			return ret;
1287	} while (pgd++, addr = next, addr != end);
1288	return 0;
1289}
1290
1291static int unuse_mm(struct mm_struct *mm,
1292				swp_entry_t entry, struct page *page)
1293{
1294	struct vm_area_struct *vma;
1295	int ret = 0;
1296
1297	if (!down_read_trylock(&mm->mmap_sem)) {
1298		/*
1299		 * Activate page so shrink_inactive_list is unlikely to unmap
1300		 * its ptes while lock is dropped, so swapoff can make progress.
1301		 */
1302		activate_page(page);
1303		unlock_page(page);
1304		down_read(&mm->mmap_sem);
1305		lock_page(page);
1306	}
1307	for (vma = mm->mmap; vma; vma = vma->vm_next) {
1308		if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
1309			break;
1310	}
1311	up_read(&mm->mmap_sem);
1312	return (ret < 0)? ret: 0;
1313}
1314
1315/*
1316 * Scan swap_map (or frontswap_map if frontswap parameter is true)
1317 * from current position to next entry still in use.
1318 * Recycle to start on reaching the end, returning 0 when empty.
1319 */
1320static unsigned int find_next_to_unuse(struct swap_info_struct *si,
1321					unsigned int prev, bool frontswap)
1322{
1323	unsigned int max = si->max;
1324	unsigned int i = prev;
1325	unsigned char count;
1326
1327	/*
1328	 * No need for swap_lock here: we're just looking
1329	 * for whether an entry is in use, not modifying it; false
1330	 * hits are okay, and sys_swapoff() has already prevented new
1331	 * allocations from this area (while holding swap_lock).
1332	 */
1333	for (;;) {
1334		if (++i >= max) {
1335			if (!prev) {
1336				i = 0;
1337				break;
1338			}
1339			/*
1340			 * No entries in use at top of swap_map,
1341			 * loop back to start and recheck there.
1342			 */
1343			max = prev + 1;
1344			prev = 0;
1345			i = 1;
1346		}
1347		if (frontswap) {
1348			if (frontswap_test(si, i))
1349				break;
1350			else
1351				continue;
1352		}
1353		count = READ_ONCE(si->swap_map[i]);
1354		if (count && swap_count(count) != SWAP_MAP_BAD)
1355			break;
1356	}
1357	return i;
1358}
1359
1360/*
1361 * We completely avoid races by reading each swap page in advance,
1362 * and then search for the process using it.  All the necessary
1363 * page table adjustments can then be made atomically.
1364 *
1365 * if the boolean frontswap is true, only unuse pages_to_unuse pages;
1366 * pages_to_unuse==0 means all pages; ignored if frontswap is false
1367 */
1368int try_to_unuse(unsigned int type, bool frontswap,
1369		 unsigned long pages_to_unuse)
1370{
1371	struct swap_info_struct *si = swap_info[type];
1372	struct mm_struct *start_mm;
1373	volatile unsigned char *swap_map; /* swap_map is accessed without
1374					   * locking. Mark it as volatile
1375					   * to prevent compiler doing
1376					   * something odd.
1377					   */
1378	unsigned char swcount;
1379	struct page *page;
1380	swp_entry_t entry;
1381	unsigned int i = 0;
1382	int retval = 0;
1383
1384	/*
1385	 * When searching mms for an entry, a good strategy is to
1386	 * start at the first mm we freed the previous entry from
1387	 * (though actually we don't notice whether we or coincidence
1388	 * freed the entry).  Initialize this start_mm with a hold.
1389	 *
1390	 * A simpler strategy would be to start at the last mm we
1391	 * freed the previous entry from; but that would take less
1392	 * advantage of mmlist ordering, which clusters forked mms
1393	 * together, child after parent.  If we race with dup_mmap(), we
1394	 * prefer to resolve parent before child, lest we miss entries
1395	 * duplicated after we scanned child: using last mm would invert
1396	 * that.
1397	 */
1398	start_mm = &init_mm;
1399	atomic_inc(&init_mm.mm_users);
1400
1401	/*
1402	 * Keep on scanning until all entries have gone.  Usually,
1403	 * one pass through swap_map is enough, but not necessarily:
1404	 * there are races when an instance of an entry might be missed.
1405	 */
1406	while ((i = find_next_to_unuse(si, i, frontswap)) != 0) {
1407		if (signal_pending(current)) {
1408			retval = -EINTR;
1409			break;
1410		}
1411
1412		/*
1413		 * Get a page for the entry, using the existing swap
1414		 * cache page if there is one.  Otherwise, get a clean
1415		 * page and read the swap into it.
1416		 */
1417		swap_map = &si->swap_map[i];
1418		entry = swp_entry(type, i);
1419		page = read_swap_cache_async(entry,
1420					GFP_HIGHUSER_MOVABLE, NULL, 0);
1421		if (!page) {
1422			/*
1423			 * Either swap_duplicate() failed because entry
1424			 * has been freed independently, and will not be
1425			 * reused since sys_swapoff() already disabled
1426			 * allocation from here, or alloc_page() failed.
1427			 */
1428			swcount = *swap_map;
1429			/*
1430			 * We don't hold lock here, so the swap entry could be
1431			 * SWAP_MAP_BAD (when the cluster is discarding).
1432			 * Instead of fail out, We can just skip the swap
1433			 * entry because swapoff will wait for discarding
1434			 * finish anyway.
1435			 */
1436			if (!swcount || swcount == SWAP_MAP_BAD)
1437				continue;
1438			retval = -ENOMEM;
1439			break;
1440		}
1441
1442		/*
1443		 * Don't hold on to start_mm if it looks like exiting.
1444		 */
1445		if (atomic_read(&start_mm->mm_users) == 1) {
1446			mmput(start_mm);
1447			start_mm = &init_mm;
1448			atomic_inc(&init_mm.mm_users);
1449		}
1450
1451		/*
1452		 * Wait for and lock page.  When do_swap_page races with
1453		 * try_to_unuse, do_swap_page can handle the fault much
1454		 * faster than try_to_unuse can locate the entry.  This
1455		 * apparently redundant "wait_on_page_locked" lets try_to_unuse
1456		 * defer to do_swap_page in such a case - in some tests,
1457		 * do_swap_page and try_to_unuse repeatedly compete.
1458		 */
1459		wait_on_page_locked(page);
1460		wait_on_page_writeback(page);
1461		lock_page(page);
1462		wait_on_page_writeback(page);
1463
1464		/*
1465		 * Remove all references to entry.
1466		 */
1467		swcount = *swap_map;
1468		if (swap_count(swcount) == SWAP_MAP_SHMEM) {
1469			retval = shmem_unuse(entry, page);
1470			/* page has already been unlocked and released */
1471			if (retval < 0)
1472				break;
1473			continue;
1474		}
1475		if (swap_count(swcount) && start_mm != &init_mm)
1476			retval = unuse_mm(start_mm, entry, page);
1477
1478		if (swap_count(*swap_map)) {
1479			int set_start_mm = (*swap_map >= swcount);
1480			struct list_head *p = &start_mm->mmlist;
1481			struct mm_struct *new_start_mm = start_mm;
1482			struct mm_struct *prev_mm = start_mm;
1483			struct mm_struct *mm;
1484
1485			atomic_inc(&new_start_mm->mm_users);
1486			atomic_inc(&prev_mm->mm_users);
1487			spin_lock(&mmlist_lock);
1488			while (swap_count(*swap_map) && !retval &&
1489					(p = p->next) != &start_mm->mmlist) {
1490				mm = list_entry(p, struct mm_struct, mmlist);
1491				if (!atomic_inc_not_zero(&mm->mm_users))
1492					continue;
1493				spin_unlock(&mmlist_lock);
1494				mmput(prev_mm);
1495				prev_mm = mm;
1496
1497				cond_resched();
1498
1499				swcount = *swap_map;
1500				if (!swap_count(swcount)) /* any usage ? */
1501					;
1502				else if (mm == &init_mm)
1503					set_start_mm = 1;
1504				else
1505					retval = unuse_mm(mm, entry, page);
1506
1507				if (set_start_mm && *swap_map < swcount) {
1508					mmput(new_start_mm);
1509					atomic_inc(&mm->mm_users);
1510					new_start_mm = mm;
1511					set_start_mm = 0;
1512				}
1513				spin_lock(&mmlist_lock);
1514			}
1515			spin_unlock(&mmlist_lock);
1516			mmput(prev_mm);
1517			mmput(start_mm);
1518			start_mm = new_start_mm;
1519		}
1520		if (retval) {
1521			unlock_page(page);
1522			put_page(page);
1523			break;
1524		}
1525
1526		/*
1527		 * If a reference remains (rare), we would like to leave
1528		 * the page in the swap cache; but try_to_unmap could
1529		 * then re-duplicate the entry once we drop page lock,
1530		 * so we might loop indefinitely; also, that page could
1531		 * not be swapped out to other storage meanwhile.  So:
1532		 * delete from cache even if there's another reference,
1533		 * after ensuring that the data has been saved to disk -
1534		 * since if the reference remains (rarer), it will be
1535		 * read from disk into another page.  Splitting into two
1536		 * pages would be incorrect if swap supported "shared
1537		 * private" pages, but they are handled by tmpfs files.
1538		 *
1539		 * Given how unuse_vma() targets one particular offset
1540		 * in an anon_vma, once the anon_vma has been determined,
1541		 * this splitting happens to be just what is needed to
1542		 * handle where KSM pages have been swapped out: re-reading
1543		 * is unnecessarily slow, but we can fix that later on.
1544		 */
1545		if (swap_count(*swap_map) &&
1546		     PageDirty(page) && PageSwapCache(page)) {
1547			struct writeback_control wbc = {
1548				.sync_mode = WB_SYNC_NONE,
1549			};
1550
1551			swap_writepage(page, &wbc);
1552			lock_page(page);
1553			wait_on_page_writeback(page);
1554		}
1555
1556		/*
1557		 * It is conceivable that a racing task removed this page from
1558		 * swap cache just before we acquired the page lock at the top,
1559		 * or while we dropped it in unuse_mm().  The page might even
1560		 * be back in swap cache on another swap area: that we must not
1561		 * delete, since it may not have been written out to swap yet.
1562		 */
1563		if (PageSwapCache(page) &&
1564		    likely(page_private(page) == entry.val))
1565			delete_from_swap_cache(page);
1566
1567		/*
1568		 * So we could skip searching mms once swap count went
1569		 * to 1, we did not mark any present ptes as dirty: must
1570		 * mark page dirty so shrink_page_list will preserve it.
1571		 */
1572		SetPageDirty(page);
1573		unlock_page(page);
1574		put_page(page);
1575
1576		/*
1577		 * Make sure that we aren't completely killing
1578		 * interactive performance.
1579		 */
1580		cond_resched();
1581		if (frontswap && pages_to_unuse > 0) {
1582			if (!--pages_to_unuse)
1583				break;
1584		}
1585	}
1586
1587	mmput(start_mm);
1588	return retval;
1589}
1590
1591/*
1592 * After a successful try_to_unuse, if no swap is now in use, we know
1593 * we can empty the mmlist.  swap_lock must be held on entry and exit.
1594 * Note that mmlist_lock nests inside swap_lock, and an mm must be
1595 * added to the mmlist just after page_duplicate - before would be racy.
1596 */
1597static void drain_mmlist(void)
1598{
1599	struct list_head *p, *next;
1600	unsigned int type;
1601
1602	for (type = 0; type < nr_swapfiles; type++)
1603		if (swap_info[type]->inuse_pages)
1604			return;
1605	spin_lock(&mmlist_lock);
1606	list_for_each_safe(p, next, &init_mm.mmlist)
1607		list_del_init(p);
1608	spin_unlock(&mmlist_lock);
1609}
1610
1611/*
1612 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
1613 * corresponds to page offset for the specified swap entry.
1614 * Note that the type of this function is sector_t, but it returns page offset
1615 * into the bdev, not sector offset.
1616 */
1617static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
1618{
1619	struct swap_info_struct *sis;
1620	struct swap_extent *start_se;
1621	struct swap_extent *se;
1622	pgoff_t offset;
1623
1624	sis = swap_info[swp_type(entry)];
1625	*bdev = sis->bdev;
1626
1627	offset = swp_offset(entry);
1628	start_se = sis->curr_swap_extent;
1629	se = start_se;
1630
1631	for ( ; ; ) {
 
 
1632		if (se->start_page <= offset &&
1633				offset < (se->start_page + se->nr_pages)) {
1634			return se->start_block + (offset - se->start_page);
1635		}
1636		se = list_next_entry(se, list);
 
1637		sis->curr_swap_extent = se;
1638		BUG_ON(se == start_se);		/* It *must* be present */
1639	}
1640}
1641
1642/*
1643 * Returns the page offset into bdev for the specified page's swap entry.
1644 */
1645sector_t map_swap_page(struct page *page, struct block_device **bdev)
1646{
1647	swp_entry_t entry;
1648	entry.val = page_private(page);
1649	return map_swap_entry(entry, bdev);
1650}
1651
1652/*
1653 * Free all of a swapdev's extent information
1654 */
1655static void destroy_swap_extents(struct swap_info_struct *sis)
1656{
1657	while (!list_empty(&sis->first_swap_extent.list)) {
1658		struct swap_extent *se;
1659
1660		se = list_first_entry(&sis->first_swap_extent.list,
1661				struct swap_extent, list);
1662		list_del(&se->list);
1663		kfree(se);
1664	}
1665
1666	if (sis->flags & SWP_FILE) {
1667		struct file *swap_file = sis->swap_file;
1668		struct address_space *mapping = swap_file->f_mapping;
1669
1670		sis->flags &= ~SWP_FILE;
1671		mapping->a_ops->swap_deactivate(swap_file);
1672	}
1673}
1674
1675/*
1676 * Add a block range (and the corresponding page range) into this swapdev's
1677 * extent list.  The extent list is kept sorted in page order.
1678 *
1679 * This function rather assumes that it is called in ascending page order.
1680 */
1681int
1682add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
1683		unsigned long nr_pages, sector_t start_block)
1684{
1685	struct swap_extent *se;
1686	struct swap_extent *new_se;
1687	struct list_head *lh;
1688
1689	if (start_page == 0) {
1690		se = &sis->first_swap_extent;
1691		sis->curr_swap_extent = se;
1692		se->start_page = 0;
1693		se->nr_pages = nr_pages;
1694		se->start_block = start_block;
1695		return 1;
1696	} else {
1697		lh = sis->first_swap_extent.list.prev;	/* Highest extent */
1698		se = list_entry(lh, struct swap_extent, list);
1699		BUG_ON(se->start_page + se->nr_pages != start_page);
1700		if (se->start_block + se->nr_pages == start_block) {
1701			/* Merge it */
1702			se->nr_pages += nr_pages;
1703			return 0;
1704		}
1705	}
1706
1707	/*
1708	 * No merge.  Insert a new extent, preserving ordering.
1709	 */
1710	new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1711	if (new_se == NULL)
1712		return -ENOMEM;
1713	new_se->start_page = start_page;
1714	new_se->nr_pages = nr_pages;
1715	new_se->start_block = start_block;
1716
1717	list_add_tail(&new_se->list, &sis->first_swap_extent.list);
1718	return 1;
1719}
1720
1721/*
1722 * A `swap extent' is a simple thing which maps a contiguous range of pages
1723 * onto a contiguous range of disk blocks.  An ordered list of swap extents
1724 * is built at swapon time and is then used at swap_writepage/swap_readpage
1725 * time for locating where on disk a page belongs.
1726 *
1727 * If the swapfile is an S_ISBLK block device, a single extent is installed.
1728 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1729 * swap files identically.
1730 *
1731 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1732 * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
1733 * swapfiles are handled *identically* after swapon time.
1734 *
1735 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1736 * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
1737 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1738 * requirements, they are simply tossed out - we will never use those blocks
1739 * for swapping.
1740 *
1741 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon.  This
1742 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1743 * which will scribble on the fs.
1744 *
1745 * The amount of disk space which a single swap extent represents varies.
1746 * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
1747 * extents in the list.  To avoid much list walking, we cache the previous
1748 * search location in `curr_swap_extent', and start new searches from there.
1749 * This is extremely effective.  The average number of iterations in
1750 * map_swap_page() has been measured at about 0.3 per page.  - akpm.
1751 */
1752static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1753{
1754	struct file *swap_file = sis->swap_file;
1755	struct address_space *mapping = swap_file->f_mapping;
1756	struct inode *inode = mapping->host;
 
 
 
 
 
 
1757	int ret;
1758
 
1759	if (S_ISBLK(inode->i_mode)) {
1760		ret = add_swap_extent(sis, 0, sis->max, 0);
1761		*span = sis->pages;
1762		return ret;
1763	}
1764
1765	if (mapping->a_ops->swap_activate) {
1766		ret = mapping->a_ops->swap_activate(sis, swap_file, span);
1767		if (!ret) {
1768			sis->flags |= SWP_FILE;
1769			ret = add_swap_extent(sis, 0, sis->max, 0);
1770			*span = sis->pages;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1771		}
1772		return ret;
1773	}
1774
1775	return generic_swapfile_activate(sis, swap_file, span);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1776}
1777
1778static void _enable_swap_info(struct swap_info_struct *p, int prio,
1779				unsigned char *swap_map,
1780				struct swap_cluster_info *cluster_info)
1781{
 
 
 
1782	if (prio >= 0)
1783		p->prio = prio;
1784	else
1785		p->prio = --least_priority;
1786	/*
1787	 * the plist prio is negated because plist ordering is
1788	 * low-to-high, while swap ordering is high-to-low
1789	 */
1790	p->list.prio = -p->prio;
1791	p->avail_list.prio = -p->prio;
1792	p->swap_map = swap_map;
1793	p->cluster_info = cluster_info;
1794	p->flags |= SWP_WRITEOK;
1795	atomic_long_add(p->pages, &nr_swap_pages);
1796	total_swap_pages += p->pages;
1797
1798	assert_spin_locked(&swap_lock);
1799	/*
1800	 * both lists are plists, and thus priority ordered.
1801	 * swap_active_head needs to be priority ordered for swapoff(),
1802	 * which on removal of any swap_info_struct with an auto-assigned
1803	 * (i.e. negative) priority increments the auto-assigned priority
1804	 * of any lower-priority swap_info_structs.
1805	 * swap_avail_head needs to be priority ordered for get_swap_page(),
1806	 * which allocates swap pages from the highest available priority
1807	 * swap_info_struct.
1808	 */
1809	plist_add(&p->list, &swap_active_head);
1810	spin_lock(&swap_avail_lock);
1811	plist_add(&p->avail_list, &swap_avail_head);
1812	spin_unlock(&swap_avail_lock);
1813}
1814
1815static void enable_swap_info(struct swap_info_struct *p, int prio,
1816				unsigned char *swap_map,
1817				struct swap_cluster_info *cluster_info,
1818				unsigned long *frontswap_map)
1819{
1820	frontswap_init(p->type, frontswap_map);
1821	spin_lock(&swap_lock);
1822	spin_lock(&p->lock);
1823	 _enable_swap_info(p, prio, swap_map, cluster_info);
1824	spin_unlock(&p->lock);
1825	spin_unlock(&swap_lock);
1826}
1827
1828static void reinsert_swap_info(struct swap_info_struct *p)
1829{
1830	spin_lock(&swap_lock);
1831	spin_lock(&p->lock);
1832	_enable_swap_info(p, p->prio, p->swap_map, p->cluster_info);
1833	spin_unlock(&p->lock);
1834	spin_unlock(&swap_lock);
1835}
1836
1837SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
1838{
1839	struct swap_info_struct *p = NULL;
1840	unsigned char *swap_map;
1841	struct swap_cluster_info *cluster_info;
1842	unsigned long *frontswap_map;
1843	struct file *swap_file, *victim;
1844	struct address_space *mapping;
1845	struct inode *inode;
1846	struct filename *pathname;
1847	int err, found = 0;
1848	unsigned int old_block_size;
 
1849
1850	if (!capable(CAP_SYS_ADMIN))
1851		return -EPERM;
1852
1853	BUG_ON(!current->mm);
1854
1855	pathname = getname(specialfile);
 
1856	if (IS_ERR(pathname))
1857		return PTR_ERR(pathname);
1858
1859	victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
 
1860	err = PTR_ERR(victim);
1861	if (IS_ERR(victim))
1862		goto out;
1863
1864	mapping = victim->f_mapping;
 
1865	spin_lock(&swap_lock);
1866	plist_for_each_entry(p, &swap_active_head, list) {
 
1867		if (p->flags & SWP_WRITEOK) {
1868			if (p->swap_file->f_mapping == mapping) {
1869				found = 1;
1870				break;
1871			}
1872		}
 
1873	}
1874	if (!found) {
1875		err = -EINVAL;
1876		spin_unlock(&swap_lock);
1877		goto out_dput;
1878	}
1879	if (!security_vm_enough_memory_mm(current->mm, p->pages))
1880		vm_unacct_memory(p->pages);
1881	else {
1882		err = -ENOMEM;
1883		spin_unlock(&swap_lock);
1884		goto out_dput;
1885	}
1886	spin_lock(&swap_avail_lock);
1887	plist_del(&p->avail_list, &swap_avail_head);
1888	spin_unlock(&swap_avail_lock);
1889	spin_lock(&p->lock);
 
 
 
 
1890	if (p->prio < 0) {
1891		struct swap_info_struct *si = p;
1892
1893		plist_for_each_entry_continue(si, &swap_active_head, list) {
1894			si->prio++;
1895			si->list.prio--;
1896			si->avail_list.prio--;
1897		}
1898		least_priority++;
1899	}
1900	plist_del(&p->list, &swap_active_head);
1901	atomic_long_sub(p->pages, &nr_swap_pages);
1902	total_swap_pages -= p->pages;
1903	p->flags &= ~SWP_WRITEOK;
1904	spin_unlock(&p->lock);
1905	spin_unlock(&swap_lock);
1906
1907	set_current_oom_origin();
1908	err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
1909	clear_current_oom_origin();
1910
1911	if (err) {
 
 
 
 
 
 
1912		/* re-insert swap space back into swap_list */
1913		reinsert_swap_info(p);
1914		goto out_dput;
1915	}
1916
1917	flush_work(&p->discard_work);
1918
1919	destroy_swap_extents(p);
1920	if (p->flags & SWP_CONTINUED)
1921		free_swap_count_continuations(p);
1922
1923	mutex_lock(&swapon_mutex);
1924	spin_lock(&swap_lock);
1925	spin_lock(&p->lock);
1926	drain_mmlist();
1927
1928	/* wait for anyone still in scan_swap_map */
1929	p->highest_bit = 0;		/* cuts scans short */
1930	while (p->flags >= SWP_SCANNING) {
1931		spin_unlock(&p->lock);
1932		spin_unlock(&swap_lock);
1933		schedule_timeout_uninterruptible(1);
1934		spin_lock(&swap_lock);
1935		spin_lock(&p->lock);
1936	}
1937
1938	swap_file = p->swap_file;
1939	old_block_size = p->old_block_size;
1940	p->swap_file = NULL;
1941	p->max = 0;
1942	swap_map = p->swap_map;
1943	p->swap_map = NULL;
1944	cluster_info = p->cluster_info;
1945	p->cluster_info = NULL;
1946	frontswap_map = frontswap_map_get(p);
1947	spin_unlock(&p->lock);
1948	spin_unlock(&swap_lock);
1949	frontswap_invalidate_area(p->type);
1950	frontswap_map_set(p, NULL);
1951	mutex_unlock(&swapon_mutex);
1952	free_percpu(p->percpu_cluster);
1953	p->percpu_cluster = NULL;
1954	vfree(swap_map);
1955	vfree(cluster_info);
1956	vfree(frontswap_map);
1957	/* Destroy swap account information */
1958	swap_cgroup_swapoff(p->type);
1959
1960	inode = mapping->host;
1961	if (S_ISBLK(inode->i_mode)) {
1962		struct block_device *bdev = I_BDEV(inode);
1963		set_blocksize(bdev, old_block_size);
1964		blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
1965	} else {
1966		inode_lock(inode);
1967		inode->i_flags &= ~S_SWAPFILE;
1968		inode_unlock(inode);
1969	}
1970	filp_close(swap_file, NULL);
1971
1972	/*
1973	 * Clear the SWP_USED flag after all resources are freed so that swapon
1974	 * can reuse this swap_info in alloc_swap_info() safely.  It is ok to
1975	 * not hold p->lock after we cleared its SWP_WRITEOK.
1976	 */
1977	spin_lock(&swap_lock);
1978	p->flags = 0;
1979	spin_unlock(&swap_lock);
1980
1981	err = 0;
1982	atomic_inc(&proc_poll_event);
1983	wake_up_interruptible(&proc_poll_wait);
1984
1985out_dput:
1986	filp_close(victim, NULL);
1987out:
1988	putname(pathname);
1989	return err;
1990}
1991
1992#ifdef CONFIG_PROC_FS
1993static unsigned swaps_poll(struct file *file, poll_table *wait)
1994{
1995	struct seq_file *seq = file->private_data;
1996
1997	poll_wait(file, &proc_poll_wait, wait);
1998
1999	if (seq->poll_event != atomic_read(&proc_poll_event)) {
2000		seq->poll_event = atomic_read(&proc_poll_event);
2001		return POLLIN | POLLRDNORM | POLLERR | POLLPRI;
2002	}
2003
2004	return POLLIN | POLLRDNORM;
2005}
2006
2007/* iterator */
2008static void *swap_start(struct seq_file *swap, loff_t *pos)
2009{
2010	struct swap_info_struct *si;
2011	int type;
2012	loff_t l = *pos;
2013
2014	mutex_lock(&swapon_mutex);
2015
2016	if (!l)
2017		return SEQ_START_TOKEN;
2018
2019	for (type = 0; type < nr_swapfiles; type++) {
2020		smp_rmb();	/* read nr_swapfiles before swap_info[type] */
2021		si = swap_info[type];
2022		if (!(si->flags & SWP_USED) || !si->swap_map)
2023			continue;
2024		if (!--l)
2025			return si;
2026	}
2027
2028	return NULL;
2029}
2030
2031static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2032{
2033	struct swap_info_struct *si = v;
2034	int type;
2035
2036	if (v == SEQ_START_TOKEN)
2037		type = 0;
2038	else
2039		type = si->type + 1;
2040
2041	for (; type < nr_swapfiles; type++) {
2042		smp_rmb();	/* read nr_swapfiles before swap_info[type] */
2043		si = swap_info[type];
2044		if (!(si->flags & SWP_USED) || !si->swap_map)
2045			continue;
2046		++*pos;
2047		return si;
2048	}
2049
2050	return NULL;
2051}
2052
2053static void swap_stop(struct seq_file *swap, void *v)
2054{
2055	mutex_unlock(&swapon_mutex);
2056}
2057
2058static int swap_show(struct seq_file *swap, void *v)
2059{
2060	struct swap_info_struct *si = v;
2061	struct file *file;
2062	int len;
2063
2064	if (si == SEQ_START_TOKEN) {
2065		seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
2066		return 0;
2067	}
2068
2069	file = si->swap_file;
2070	len = seq_file_path(swap, file, " \t\n\\");
2071	seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
2072			len < 40 ? 40 - len : 1, " ",
2073			S_ISBLK(file_inode(file)->i_mode) ?
2074				"partition" : "file\t",
2075			si->pages << (PAGE_SHIFT - 10),
2076			si->inuse_pages << (PAGE_SHIFT - 10),
2077			si->prio);
2078	return 0;
2079}
2080
2081static const struct seq_operations swaps_op = {
2082	.start =	swap_start,
2083	.next =		swap_next,
2084	.stop =		swap_stop,
2085	.show =		swap_show
2086};
2087
2088static int swaps_open(struct inode *inode, struct file *file)
2089{
2090	struct seq_file *seq;
2091	int ret;
2092
2093	ret = seq_open(file, &swaps_op);
2094	if (ret)
2095		return ret;
2096
2097	seq = file->private_data;
2098	seq->poll_event = atomic_read(&proc_poll_event);
2099	return 0;
2100}
2101
2102static const struct file_operations proc_swaps_operations = {
2103	.open		= swaps_open,
2104	.read		= seq_read,
2105	.llseek		= seq_lseek,
2106	.release	= seq_release,
2107	.poll		= swaps_poll,
2108};
2109
2110static int __init procswaps_init(void)
2111{
2112	proc_create("swaps", 0, NULL, &proc_swaps_operations);
2113	return 0;
2114}
2115__initcall(procswaps_init);
2116#endif /* CONFIG_PROC_FS */
2117
2118#ifdef MAX_SWAPFILES_CHECK
2119static int __init max_swapfiles_check(void)
2120{
2121	MAX_SWAPFILES_CHECK();
2122	return 0;
2123}
2124late_initcall(max_swapfiles_check);
2125#endif
2126
2127static struct swap_info_struct *alloc_swap_info(void)
2128{
2129	struct swap_info_struct *p;
2130	unsigned int type;
2131
2132	p = kzalloc(sizeof(*p), GFP_KERNEL);
2133	if (!p)
2134		return ERR_PTR(-ENOMEM);
2135
2136	spin_lock(&swap_lock);
2137	for (type = 0; type < nr_swapfiles; type++) {
2138		if (!(swap_info[type]->flags & SWP_USED))
2139			break;
2140	}
2141	if (type >= MAX_SWAPFILES) {
2142		spin_unlock(&swap_lock);
2143		kfree(p);
2144		return ERR_PTR(-EPERM);
2145	}
2146	if (type >= nr_swapfiles) {
2147		p->type = type;
2148		swap_info[type] = p;
2149		/*
2150		 * Write swap_info[type] before nr_swapfiles, in case a
2151		 * racing procfs swap_start() or swap_next() is reading them.
2152		 * (We never shrink nr_swapfiles, we never free this entry.)
2153		 */
2154		smp_wmb();
2155		nr_swapfiles++;
2156	} else {
2157		kfree(p);
2158		p = swap_info[type];
2159		/*
2160		 * Do not memset this entry: a racing procfs swap_next()
2161		 * would be relying on p->type to remain valid.
2162		 */
2163	}
2164	INIT_LIST_HEAD(&p->first_swap_extent.list);
2165	plist_node_init(&p->list, 0);
2166	plist_node_init(&p->avail_list, 0);
2167	p->flags = SWP_USED;
 
2168	spin_unlock(&swap_lock);
2169	spin_lock_init(&p->lock);
2170
2171	return p;
2172}
2173
2174static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2175{
2176	int error;
2177
2178	if (S_ISBLK(inode->i_mode)) {
2179		p->bdev = bdgrab(I_BDEV(inode));
2180		error = blkdev_get(p->bdev,
2181				   FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
 
2182		if (error < 0) {
2183			p->bdev = NULL;
2184			return error;
2185		}
2186		p->old_block_size = block_size(p->bdev);
2187		error = set_blocksize(p->bdev, PAGE_SIZE);
2188		if (error < 0)
2189			return error;
2190		p->flags |= SWP_BLKDEV;
2191	} else if (S_ISREG(inode->i_mode)) {
2192		p->bdev = inode->i_sb->s_bdev;
2193		inode_lock(inode);
2194		if (IS_SWAPFILE(inode))
2195			return -EBUSY;
2196	} else
2197		return -EINVAL;
2198
2199	return 0;
2200}
2201
2202static unsigned long read_swap_header(struct swap_info_struct *p,
2203					union swap_header *swap_header,
2204					struct inode *inode)
2205{
2206	int i;
2207	unsigned long maxpages;
2208	unsigned long swapfilepages;
2209	unsigned long last_page;
2210
2211	if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2212		pr_err("Unable to find swap-space signature\n");
2213		return 0;
2214	}
2215
2216	/* swap partition endianess hack... */
2217	if (swab32(swap_header->info.version) == 1) {
2218		swab32s(&swap_header->info.version);
2219		swab32s(&swap_header->info.last_page);
2220		swab32s(&swap_header->info.nr_badpages);
2221		for (i = 0; i < swap_header->info.nr_badpages; i++)
2222			swab32s(&swap_header->info.badpages[i]);
2223	}
2224	/* Check the swap header's sub-version */
2225	if (swap_header->info.version != 1) {
2226		pr_warn("Unable to handle swap header version %d\n",
2227			swap_header->info.version);
 
2228		return 0;
2229	}
2230
2231	p->lowest_bit  = 1;
2232	p->cluster_next = 1;
2233	p->cluster_nr = 0;
2234
2235	/*
2236	 * Find out how many pages are allowed for a single swap
2237	 * device. There are two limiting factors: 1) the number
2238	 * of bits for the swap offset in the swp_entry_t type, and
2239	 * 2) the number of bits in the swap pte as defined by the
2240	 * different architectures. In order to find the
 
2241	 * largest possible bit mask, a swap entry with swap type 0
2242	 * and swap offset ~0UL is created, encoded to a swap pte,
2243	 * decoded to a swp_entry_t again, and finally the swap
2244	 * offset is extracted. This will mask all the bits from
2245	 * the initial ~0UL mask that can't be encoded in either
2246	 * the swp_entry_t or the architecture definition of a
2247	 * swap pte.
2248	 */
2249	maxpages = swp_offset(pte_to_swp_entry(
2250			swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2251	last_page = swap_header->info.last_page;
2252	if (last_page > maxpages) {
2253		pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2254			maxpages << (PAGE_SHIFT - 10),
2255			last_page << (PAGE_SHIFT - 10));
2256	}
2257	if (maxpages > last_page) {
2258		maxpages = last_page + 1;
2259		/* p->max is an unsigned int: don't overflow it */
2260		if ((unsigned int)maxpages == 0)
2261			maxpages = UINT_MAX;
2262	}
2263	p->highest_bit = maxpages - 1;
2264
2265	if (!maxpages)
2266		return 0;
2267	swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2268	if (swapfilepages && maxpages > swapfilepages) {
2269		pr_warn("Swap area shorter than signature indicates\n");
 
2270		return 0;
2271	}
2272	if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
2273		return 0;
2274	if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2275		return 0;
2276
2277	return maxpages;
2278}
2279
2280static int setup_swap_map_and_extents(struct swap_info_struct *p,
2281					union swap_header *swap_header,
2282					unsigned char *swap_map,
2283					struct swap_cluster_info *cluster_info,
2284					unsigned long maxpages,
2285					sector_t *span)
2286{
2287	int i;
2288	unsigned int nr_good_pages;
2289	int nr_extents;
2290	unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2291	unsigned long idx = p->cluster_next / SWAPFILE_CLUSTER;
2292
2293	nr_good_pages = maxpages - 1;	/* omit header page */
2294
2295	cluster_set_null(&p->free_cluster_head);
2296	cluster_set_null(&p->free_cluster_tail);
2297	cluster_set_null(&p->discard_cluster_head);
2298	cluster_set_null(&p->discard_cluster_tail);
2299
2300	for (i = 0; i < swap_header->info.nr_badpages; i++) {
2301		unsigned int page_nr = swap_header->info.badpages[i];
2302		if (page_nr == 0 || page_nr > swap_header->info.last_page)
2303			return -EINVAL;
2304		if (page_nr < maxpages) {
2305			swap_map[page_nr] = SWAP_MAP_BAD;
2306			nr_good_pages--;
2307			/*
2308			 * Haven't marked the cluster free yet, no list
2309			 * operation involved
2310			 */
2311			inc_cluster_info_page(p, cluster_info, page_nr);
2312		}
2313	}
2314
2315	/* Haven't marked the cluster free yet, no list operation involved */
2316	for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
2317		inc_cluster_info_page(p, cluster_info, i);
2318
2319	if (nr_good_pages) {
2320		swap_map[0] = SWAP_MAP_BAD;
2321		/*
2322		 * Not mark the cluster free yet, no list
2323		 * operation involved
2324		 */
2325		inc_cluster_info_page(p, cluster_info, 0);
2326		p->max = maxpages;
2327		p->pages = nr_good_pages;
2328		nr_extents = setup_swap_extents(p, span);
2329		if (nr_extents < 0)
2330			return nr_extents;
2331		nr_good_pages = p->pages;
2332	}
2333	if (!nr_good_pages) {
2334		pr_warn("Empty swap-file\n");
2335		return -EINVAL;
2336	}
2337
2338	if (!cluster_info)
2339		return nr_extents;
2340
2341	for (i = 0; i < nr_clusters; i++) {
2342		if (!cluster_count(&cluster_info[idx])) {
2343			cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
2344			if (cluster_is_null(&p->free_cluster_head)) {
2345				cluster_set_next_flag(&p->free_cluster_head,
2346								idx, 0);
2347				cluster_set_next_flag(&p->free_cluster_tail,
2348								idx, 0);
2349			} else {
2350				unsigned int tail;
2351
2352				tail = cluster_next(&p->free_cluster_tail);
2353				cluster_set_next(&cluster_info[tail], idx);
2354				cluster_set_next_flag(&p->free_cluster_tail,
2355								idx, 0);
2356			}
2357		}
2358		idx++;
2359		if (idx == nr_clusters)
2360			idx = 0;
2361	}
2362	return nr_extents;
2363}
2364
2365/*
2366 * Helper to sys_swapon determining if a given swap
2367 * backing device queue supports DISCARD operations.
2368 */
2369static bool swap_discardable(struct swap_info_struct *si)
2370{
2371	struct request_queue *q = bdev_get_queue(si->bdev);
2372
2373	if (!q || !blk_queue_discard(q))
2374		return false;
2375
2376	return true;
2377}
2378
2379SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
2380{
2381	struct swap_info_struct *p;
2382	struct filename *name;
2383	struct file *swap_file = NULL;
2384	struct address_space *mapping;
 
2385	int prio;
2386	int error;
2387	union swap_header *swap_header;
2388	int nr_extents;
2389	sector_t span;
2390	unsigned long maxpages;
2391	unsigned char *swap_map = NULL;
2392	struct swap_cluster_info *cluster_info = NULL;
2393	unsigned long *frontswap_map = NULL;
2394	struct page *page = NULL;
2395	struct inode *inode = NULL;
2396
2397	if (swap_flags & ~SWAP_FLAGS_VALID)
2398		return -EINVAL;
2399
2400	if (!capable(CAP_SYS_ADMIN))
2401		return -EPERM;
2402
2403	p = alloc_swap_info();
2404	if (IS_ERR(p))
2405		return PTR_ERR(p);
2406
2407	INIT_WORK(&p->discard_work, swap_discard_work);
2408
2409	name = getname(specialfile);
2410	if (IS_ERR(name)) {
2411		error = PTR_ERR(name);
2412		name = NULL;
2413		goto bad_swap;
2414	}
2415	swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
2416	if (IS_ERR(swap_file)) {
2417		error = PTR_ERR(swap_file);
2418		swap_file = NULL;
2419		goto bad_swap;
2420	}
2421
2422	p->swap_file = swap_file;
2423	mapping = swap_file->f_mapping;
2424	inode = mapping->host;
2425
2426	/* If S_ISREG(inode->i_mode) will do inode_lock(inode); */
 
 
 
 
 
 
 
 
 
 
 
 
2427	error = claim_swapfile(p, inode);
2428	if (unlikely(error))
2429		goto bad_swap;
2430
2431	/*
2432	 * Read the swap header.
2433	 */
2434	if (!mapping->a_ops->readpage) {
2435		error = -EINVAL;
2436		goto bad_swap;
2437	}
2438	page = read_mapping_page(mapping, 0, swap_file);
2439	if (IS_ERR(page)) {
2440		error = PTR_ERR(page);
2441		goto bad_swap;
2442	}
2443	swap_header = kmap(page);
2444
2445	maxpages = read_swap_header(p, swap_header, inode);
2446	if (unlikely(!maxpages)) {
2447		error = -EINVAL;
2448		goto bad_swap;
2449	}
2450
2451	/* OK, set up the swap map and apply the bad block list */
2452	swap_map = vzalloc(maxpages);
2453	if (!swap_map) {
2454		error = -ENOMEM;
2455		goto bad_swap;
2456	}
2457	if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
2458		int cpu;
2459
2460		p->flags |= SWP_SOLIDSTATE;
2461		/*
2462		 * select a random position to start with to help wear leveling
2463		 * SSD
2464		 */
2465		p->cluster_next = 1 + (prandom_u32() % p->highest_bit);
2466
2467		cluster_info = vzalloc(DIV_ROUND_UP(maxpages,
2468			SWAPFILE_CLUSTER) * sizeof(*cluster_info));
2469		if (!cluster_info) {
2470			error = -ENOMEM;
2471			goto bad_swap;
2472		}
2473		p->percpu_cluster = alloc_percpu(struct percpu_cluster);
2474		if (!p->percpu_cluster) {
2475			error = -ENOMEM;
2476			goto bad_swap;
2477		}
2478		for_each_possible_cpu(cpu) {
2479			struct percpu_cluster *cluster;
2480			cluster = per_cpu_ptr(p->percpu_cluster, cpu);
2481			cluster_set_null(&cluster->index);
2482		}
2483	}
2484
2485	error = swap_cgroup_swapon(p->type, maxpages);
2486	if (error)
2487		goto bad_swap;
2488
2489	nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
2490		cluster_info, maxpages, &span);
2491	if (unlikely(nr_extents < 0)) {
2492		error = nr_extents;
2493		goto bad_swap;
2494	}
2495	/* frontswap enabled? set up bit-per-page map for frontswap */
2496	if (frontswap_enabled)
2497		frontswap_map = vzalloc(BITS_TO_LONGS(maxpages) * sizeof(long));
2498
2499	if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
2500		/*
2501		 * When discard is enabled for swap with no particular
2502		 * policy flagged, we set all swap discard flags here in
2503		 * order to sustain backward compatibility with older
2504		 * swapon(8) releases.
2505		 */
2506		p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
2507			     SWP_PAGE_DISCARD);
2508
2509		/*
2510		 * By flagging sys_swapon, a sysadmin can tell us to
2511		 * either do single-time area discards only, or to just
2512		 * perform discards for released swap page-clusters.
2513		 * Now it's time to adjust the p->flags accordingly.
2514		 */
2515		if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
2516			p->flags &= ~SWP_PAGE_DISCARD;
2517		else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
2518			p->flags &= ~SWP_AREA_DISCARD;
2519
2520		/* issue a swapon-time discard if it's still required */
2521		if (p->flags & SWP_AREA_DISCARD) {
2522			int err = discard_swap(p);
2523			if (unlikely(err))
2524				pr_err("swapon: discard_swap(%p): %d\n",
2525					p, err);
2526		}
 
 
2527	}
2528
2529	mutex_lock(&swapon_mutex);
2530	prio = -1;
2531	if (swap_flags & SWAP_FLAG_PREFER)
2532		prio =
2533		  (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
2534	enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
2535
2536	pr_info("Adding %uk swap on %s.  Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
2537		p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
 
2538		nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
2539		(p->flags & SWP_SOLIDSTATE) ? "SS" : "",
2540		(p->flags & SWP_DISCARDABLE) ? "D" : "",
2541		(p->flags & SWP_AREA_DISCARD) ? "s" : "",
2542		(p->flags & SWP_PAGE_DISCARD) ? "c" : "",
2543		(frontswap_map) ? "FS" : "");
2544
2545	mutex_unlock(&swapon_mutex);
2546	atomic_inc(&proc_poll_event);
2547	wake_up_interruptible(&proc_poll_wait);
2548
2549	if (S_ISREG(inode->i_mode))
2550		inode->i_flags |= S_SWAPFILE;
2551	error = 0;
2552	goto out;
2553bad_swap:
2554	free_percpu(p->percpu_cluster);
2555	p->percpu_cluster = NULL;
2556	if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
2557		set_blocksize(p->bdev, p->old_block_size);
2558		blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2559	}
2560	destroy_swap_extents(p);
2561	swap_cgroup_swapoff(p->type);
2562	spin_lock(&swap_lock);
2563	p->swap_file = NULL;
2564	p->flags = 0;
2565	spin_unlock(&swap_lock);
2566	vfree(swap_map);
2567	vfree(cluster_info);
2568	if (swap_file) {
2569		if (inode && S_ISREG(inode->i_mode)) {
2570			inode_unlock(inode);
2571			inode = NULL;
2572		}
2573		filp_close(swap_file, NULL);
2574	}
2575out:
2576	if (page && !IS_ERR(page)) {
2577		kunmap(page);
2578		put_page(page);
2579	}
2580	if (name)
2581		putname(name);
2582	if (inode && S_ISREG(inode->i_mode))
2583		inode_unlock(inode);
2584	return error;
2585}
2586
2587void si_swapinfo(struct sysinfo *val)
2588{
2589	unsigned int type;
2590	unsigned long nr_to_be_unused = 0;
2591
2592	spin_lock(&swap_lock);
2593	for (type = 0; type < nr_swapfiles; type++) {
2594		struct swap_info_struct *si = swap_info[type];
2595
2596		if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
2597			nr_to_be_unused += si->inuse_pages;
2598	}
2599	val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
2600	val->totalswap = total_swap_pages + nr_to_be_unused;
2601	spin_unlock(&swap_lock);
2602}
2603
2604/*
2605 * Verify that a swap entry is valid and increment its swap map count.
2606 *
2607 * Returns error code in following case.
2608 * - success -> 0
2609 * - swp_entry is invalid -> EINVAL
2610 * - swp_entry is migration entry -> EINVAL
2611 * - swap-cache reference is requested but there is already one. -> EEXIST
2612 * - swap-cache reference is requested but the entry is not used. -> ENOENT
2613 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
2614 */
2615static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
2616{
2617	struct swap_info_struct *p;
2618	unsigned long offset, type;
2619	unsigned char count;
2620	unsigned char has_cache;
2621	int err = -EINVAL;
2622
2623	if (non_swap_entry(entry))
2624		goto out;
2625
2626	type = swp_type(entry);
2627	if (type >= nr_swapfiles)
2628		goto bad_file;
2629	p = swap_info[type];
2630	offset = swp_offset(entry);
2631
2632	spin_lock(&p->lock);
2633	if (unlikely(offset >= p->max))
2634		goto unlock_out;
2635
2636	count = p->swap_map[offset];
2637
2638	/*
2639	 * swapin_readahead() doesn't check if a swap entry is valid, so the
2640	 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
2641	 */
2642	if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
2643		err = -ENOENT;
2644		goto unlock_out;
2645	}
2646
2647	has_cache = count & SWAP_HAS_CACHE;
2648	count &= ~SWAP_HAS_CACHE;
2649	err = 0;
2650
2651	if (usage == SWAP_HAS_CACHE) {
2652
2653		/* set SWAP_HAS_CACHE if there is no cache and entry is used */
2654		if (!has_cache && count)
2655			has_cache = SWAP_HAS_CACHE;
2656		else if (has_cache)		/* someone else added cache */
2657			err = -EEXIST;
2658		else				/* no users remaining */
2659			err = -ENOENT;
2660
2661	} else if (count || has_cache) {
2662
2663		if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
2664			count += usage;
2665		else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
2666			err = -EINVAL;
2667		else if (swap_count_continued(p, offset, count))
2668			count = COUNT_CONTINUED;
2669		else
2670			err = -ENOMEM;
2671	} else
2672		err = -ENOENT;			/* unused swap entry */
2673
2674	p->swap_map[offset] = count | has_cache;
2675
2676unlock_out:
2677	spin_unlock(&p->lock);
2678out:
2679	return err;
2680
2681bad_file:
2682	pr_err("swap_dup: %s%08lx\n", Bad_file, entry.val);
2683	goto out;
2684}
2685
2686/*
2687 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
2688 * (in which case its reference count is never incremented).
2689 */
2690void swap_shmem_alloc(swp_entry_t entry)
2691{
2692	__swap_duplicate(entry, SWAP_MAP_SHMEM);
2693}
2694
2695/*
2696 * Increase reference count of swap entry by 1.
2697 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
2698 * but could not be atomically allocated.  Returns 0, just as if it succeeded,
2699 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
2700 * might occur if a page table entry has got corrupted.
2701 */
2702int swap_duplicate(swp_entry_t entry)
2703{
2704	int err = 0;
2705
2706	while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
2707		err = add_swap_count_continuation(entry, GFP_ATOMIC);
2708	return err;
2709}
2710
2711/*
2712 * @entry: swap entry for which we allocate swap cache.
2713 *
2714 * Called when allocating swap cache for existing swap entry,
2715 * This can return error codes. Returns 0 at success.
2716 * -EBUSY means there is a swap cache.
2717 * Note: return code is different from swap_duplicate().
2718 */
2719int swapcache_prepare(swp_entry_t entry)
2720{
2721	return __swap_duplicate(entry, SWAP_HAS_CACHE);
2722}
2723
2724struct swap_info_struct *page_swap_info(struct page *page)
2725{
2726	swp_entry_t swap = { .val = page_private(page) };
2727	BUG_ON(!PageSwapCache(page));
2728	return swap_info[swp_type(swap)];
2729}
2730
2731/*
2732 * out-of-line __page_file_ methods to avoid include hell.
 
2733 */
2734struct address_space *__page_file_mapping(struct page *page)
2735{
2736	VM_BUG_ON_PAGE(!PageSwapCache(page), page);
2737	return page_swap_info(page)->swap_file->f_mapping;
2738}
2739EXPORT_SYMBOL_GPL(__page_file_mapping);
 
2740
2741pgoff_t __page_file_index(struct page *page)
2742{
2743	swp_entry_t swap = { .val = page_private(page) };
2744	VM_BUG_ON_PAGE(!PageSwapCache(page), page);
2745	return swp_offset(swap);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2746}
2747EXPORT_SYMBOL_GPL(__page_file_index);
2748
2749/*
2750 * add_swap_count_continuation - called when a swap count is duplicated
2751 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
2752 * page of the original vmalloc'ed swap_map, to hold the continuation count
2753 * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
2754 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
2755 *
2756 * These continuation pages are seldom referenced: the common paths all work
2757 * on the original swap_map, only referring to a continuation page when the
2758 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
2759 *
2760 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
2761 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
2762 * can be called after dropping locks.
2763 */
2764int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
2765{
2766	struct swap_info_struct *si;
2767	struct page *head;
2768	struct page *page;
2769	struct page *list_page;
2770	pgoff_t offset;
2771	unsigned char count;
2772
2773	/*
2774	 * When debugging, it's easier to use __GFP_ZERO here; but it's better
2775	 * for latency not to zero a page while GFP_ATOMIC and holding locks.
2776	 */
2777	page = alloc_page(gfp_mask | __GFP_HIGHMEM);
2778
2779	si = swap_info_get(entry);
2780	if (!si) {
2781		/*
2782		 * An acceptable race has occurred since the failing
2783		 * __swap_duplicate(): the swap entry has been freed,
2784		 * perhaps even the whole swap_map cleared for swapoff.
2785		 */
2786		goto outer;
2787	}
2788
2789	offset = swp_offset(entry);
2790	count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
2791
2792	if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
2793		/*
2794		 * The higher the swap count, the more likely it is that tasks
2795		 * will race to add swap count continuation: we need to avoid
2796		 * over-provisioning.
2797		 */
2798		goto out;
2799	}
2800
2801	if (!page) {
2802		spin_unlock(&si->lock);
2803		return -ENOMEM;
2804	}
2805
2806	/*
2807	 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
2808	 * no architecture is using highmem pages for kernel page tables: so it
2809	 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
2810	 */
2811	head = vmalloc_to_page(si->swap_map + offset);
2812	offset &= ~PAGE_MASK;
2813
2814	/*
2815	 * Page allocation does not initialize the page's lru field,
2816	 * but it does always reset its private field.
2817	 */
2818	if (!page_private(head)) {
2819		BUG_ON(count & COUNT_CONTINUED);
2820		INIT_LIST_HEAD(&head->lru);
2821		set_page_private(head, SWP_CONTINUED);
2822		si->flags |= SWP_CONTINUED;
2823	}
2824
2825	list_for_each_entry(list_page, &head->lru, lru) {
2826		unsigned char *map;
2827
2828		/*
2829		 * If the previous map said no continuation, but we've found
2830		 * a continuation page, free our allocation and use this one.
2831		 */
2832		if (!(count & COUNT_CONTINUED))
2833			goto out;
2834
2835		map = kmap_atomic(list_page) + offset;
2836		count = *map;
2837		kunmap_atomic(map);
2838
2839		/*
2840		 * If this continuation count now has some space in it,
2841		 * free our allocation and use this one.
2842		 */
2843		if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
2844			goto out;
2845	}
2846
2847	list_add_tail(&page->lru, &head->lru);
2848	page = NULL;			/* now it's attached, don't free it */
2849out:
2850	spin_unlock(&si->lock);
2851outer:
2852	if (page)
2853		__free_page(page);
2854	return 0;
2855}
2856
2857/*
2858 * swap_count_continued - when the original swap_map count is incremented
2859 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
2860 * into, carry if so, or else fail until a new continuation page is allocated;
2861 * when the original swap_map count is decremented from 0 with continuation,
2862 * borrow from the continuation and report whether it still holds more.
2863 * Called while __swap_duplicate() or swap_entry_free() holds swap_lock.
2864 */
2865static bool swap_count_continued(struct swap_info_struct *si,
2866				 pgoff_t offset, unsigned char count)
2867{
2868	struct page *head;
2869	struct page *page;
2870	unsigned char *map;
2871
2872	head = vmalloc_to_page(si->swap_map + offset);
2873	if (page_private(head) != SWP_CONTINUED) {
2874		BUG_ON(count & COUNT_CONTINUED);
2875		return false;		/* need to add count continuation */
2876	}
2877
2878	offset &= ~PAGE_MASK;
2879	page = list_entry(head->lru.next, struct page, lru);
2880	map = kmap_atomic(page) + offset;
2881
2882	if (count == SWAP_MAP_MAX)	/* initial increment from swap_map */
2883		goto init_map;		/* jump over SWAP_CONT_MAX checks */
2884
2885	if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
2886		/*
2887		 * Think of how you add 1 to 999
2888		 */
2889		while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
2890			kunmap_atomic(map);
2891			page = list_entry(page->lru.next, struct page, lru);
2892			BUG_ON(page == head);
2893			map = kmap_atomic(page) + offset;
2894		}
2895		if (*map == SWAP_CONT_MAX) {
2896			kunmap_atomic(map);
2897			page = list_entry(page->lru.next, struct page, lru);
2898			if (page == head)
2899				return false;	/* add count continuation */
2900			map = kmap_atomic(page) + offset;
2901init_map:		*map = 0;		/* we didn't zero the page */
2902		}
2903		*map += 1;
2904		kunmap_atomic(map);
2905		page = list_entry(page->lru.prev, struct page, lru);
2906		while (page != head) {
2907			map = kmap_atomic(page) + offset;
2908			*map = COUNT_CONTINUED;
2909			kunmap_atomic(map);
2910			page = list_entry(page->lru.prev, struct page, lru);
2911		}
2912		return true;			/* incremented */
2913
2914	} else {				/* decrementing */
2915		/*
2916		 * Think of how you subtract 1 from 1000
2917		 */
2918		BUG_ON(count != COUNT_CONTINUED);
2919		while (*map == COUNT_CONTINUED) {
2920			kunmap_atomic(map);
2921			page = list_entry(page->lru.next, struct page, lru);
2922			BUG_ON(page == head);
2923			map = kmap_atomic(page) + offset;
2924		}
2925		BUG_ON(*map == 0);
2926		*map -= 1;
2927		if (*map == 0)
2928			count = 0;
2929		kunmap_atomic(map);
2930		page = list_entry(page->lru.prev, struct page, lru);
2931		while (page != head) {
2932			map = kmap_atomic(page) + offset;
2933			*map = SWAP_CONT_MAX | count;
2934			count = COUNT_CONTINUED;
2935			kunmap_atomic(map);
2936			page = list_entry(page->lru.prev, struct page, lru);
2937		}
2938		return count == COUNT_CONTINUED;
2939	}
2940}
2941
2942/*
2943 * free_swap_count_continuations - swapoff free all the continuation pages
2944 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
2945 */
2946static void free_swap_count_continuations(struct swap_info_struct *si)
2947{
2948	pgoff_t offset;
2949
2950	for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
2951		struct page *head;
2952		head = vmalloc_to_page(si->swap_map + offset);
2953		if (page_private(head)) {
2954			struct page *page, *next;
2955
2956			list_for_each_entry_safe(page, next, &head->lru, lru) {
2957				list_del(&page->lru);
 
2958				__free_page(page);
2959			}
2960		}
2961	}
2962}
v3.1
   1/*
   2 *  linux/mm/swapfile.c
   3 *
   4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   5 *  Swap reorganised 29.12.95, Stephen Tweedie
   6 */
   7
   8#include <linux/mm.h>
   9#include <linux/hugetlb.h>
  10#include <linux/mman.h>
  11#include <linux/slab.h>
  12#include <linux/kernel_stat.h>
  13#include <linux/swap.h>
  14#include <linux/vmalloc.h>
  15#include <linux/pagemap.h>
  16#include <linux/namei.h>
  17#include <linux/shmem_fs.h>
  18#include <linux/blkdev.h>
  19#include <linux/random.h>
  20#include <linux/writeback.h>
  21#include <linux/proc_fs.h>
  22#include <linux/seq_file.h>
  23#include <linux/init.h>
  24#include <linux/module.h>
  25#include <linux/ksm.h>
  26#include <linux/rmap.h>
  27#include <linux/security.h>
  28#include <linux/backing-dev.h>
  29#include <linux/mutex.h>
  30#include <linux/capability.h>
  31#include <linux/syscalls.h>
  32#include <linux/memcontrol.h>
  33#include <linux/poll.h>
  34#include <linux/oom.h>
 
 
 
  35
  36#include <asm/pgtable.h>
  37#include <asm/tlbflush.h>
  38#include <linux/swapops.h>
  39#include <linux/page_cgroup.h>
  40
  41static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
  42				 unsigned char);
  43static void free_swap_count_continuations(struct swap_info_struct *);
  44static sector_t map_swap_entry(swp_entry_t, struct block_device**);
  45
  46static DEFINE_SPINLOCK(swap_lock);
  47static unsigned int nr_swapfiles;
  48long nr_swap_pages;
 
 
 
 
 
 
 
  49long total_swap_pages;
  50static int least_priority;
  51
  52static const char Bad_file[] = "Bad swap file entry ";
  53static const char Unused_file[] = "Unused swap file entry ";
  54static const char Bad_offset[] = "Bad swap offset entry ";
  55static const char Unused_offset[] = "Unused swap offset entry ";
  56
  57static struct swap_list_t swap_list = {-1, -1};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  58
  59static struct swap_info_struct *swap_info[MAX_SWAPFILES];
  60
  61static DEFINE_MUTEX(swapon_mutex);
  62
  63static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
  64/* Activity counter to indicate that a swapon or swapoff has occurred */
  65static atomic_t proc_poll_event = ATOMIC_INIT(0);
  66
  67static inline unsigned char swap_count(unsigned char ent)
  68{
  69	return ent & ~SWAP_HAS_CACHE;	/* may include SWAP_HAS_CONT flag */
  70}
  71
  72/* returns 1 if swap entry is freed */
  73static int
  74__try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
  75{
  76	swp_entry_t entry = swp_entry(si->type, offset);
  77	struct page *page;
  78	int ret = 0;
  79
  80	page = find_get_page(&swapper_space, entry.val);
  81	if (!page)
  82		return 0;
  83	/*
  84	 * This function is called from scan_swap_map() and it's called
  85	 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
  86	 * We have to use trylock for avoiding deadlock. This is a special
  87	 * case and you should use try_to_free_swap() with explicit lock_page()
  88	 * in usual operations.
  89	 */
  90	if (trylock_page(page)) {
  91		ret = try_to_free_swap(page);
  92		unlock_page(page);
  93	}
  94	page_cache_release(page);
  95	return ret;
  96}
  97
  98/*
  99 * swapon tell device that all the old swap contents can be discarded,
 100 * to allow the swap device to optimize its wear-levelling.
 101 */
 102static int discard_swap(struct swap_info_struct *si)
 103{
 104	struct swap_extent *se;
 105	sector_t start_block;
 106	sector_t nr_blocks;
 107	int err = 0;
 108
 109	/* Do not discard the swap header page! */
 110	se = &si->first_swap_extent;
 111	start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
 112	nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
 113	if (nr_blocks) {
 114		err = blkdev_issue_discard(si->bdev, start_block,
 115				nr_blocks, GFP_KERNEL, 0);
 116		if (err)
 117			return err;
 118		cond_resched();
 119	}
 120
 121	list_for_each_entry(se, &si->first_swap_extent.list, list) {
 122		start_block = se->start_block << (PAGE_SHIFT - 9);
 123		nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
 124
 125		err = blkdev_issue_discard(si->bdev, start_block,
 126				nr_blocks, GFP_KERNEL, 0);
 127		if (err)
 128			break;
 129
 130		cond_resched();
 131	}
 132	return err;		/* That will often be -EOPNOTSUPP */
 133}
 134
 135/*
 136 * swap allocation tell device that a cluster of swap can now be discarded,
 137 * to allow the swap device to optimize its wear-levelling.
 138 */
 139static void discard_swap_cluster(struct swap_info_struct *si,
 140				 pgoff_t start_page, pgoff_t nr_pages)
 141{
 142	struct swap_extent *se = si->curr_swap_extent;
 143	int found_extent = 0;
 144
 145	while (nr_pages) {
 146		struct list_head *lh;
 147
 148		if (se->start_page <= start_page &&
 149		    start_page < se->start_page + se->nr_pages) {
 150			pgoff_t offset = start_page - se->start_page;
 151			sector_t start_block = se->start_block + offset;
 152			sector_t nr_blocks = se->nr_pages - offset;
 153
 154			if (nr_blocks > nr_pages)
 155				nr_blocks = nr_pages;
 156			start_page += nr_blocks;
 157			nr_pages -= nr_blocks;
 158
 159			if (!found_extent++)
 160				si->curr_swap_extent = se;
 161
 162			start_block <<= PAGE_SHIFT - 9;
 163			nr_blocks <<= PAGE_SHIFT - 9;
 164			if (blkdev_issue_discard(si->bdev, start_block,
 165				    nr_blocks, GFP_NOIO, 0))
 166				break;
 167		}
 168
 169		lh = se->list.next;
 170		se = list_entry(lh, struct swap_extent, list);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 171	}
 172}
 173
 174static int wait_for_discard(void *word)
 
 
 
 
 
 
 175{
 176	schedule();
 177	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 178}
 179
 180#define SWAPFILE_CLUSTER	256
 181#define LATENCY_LIMIT		256
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 182
 183static unsigned long scan_swap_map(struct swap_info_struct *si,
 184				   unsigned char usage)
 185{
 186	unsigned long offset;
 187	unsigned long scan_base;
 188	unsigned long last_in_cluster = 0;
 189	int latency_ration = LATENCY_LIMIT;
 190	int found_free_cluster = 0;
 191
 192	/*
 193	 * We try to cluster swap pages by allocating them sequentially
 194	 * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
 195	 * way, however, we resort to first-free allocation, starting
 196	 * a new cluster.  This prevents us from scattering swap pages
 197	 * all over the entire swap partition, so that we reduce
 198	 * overall disk seek times between swap pages.  -- sct
 199	 * But we do now try to find an empty cluster.  -Andrea
 200	 * And we let swap pages go all over an SSD partition.  Hugh
 201	 */
 202
 203	si->flags += SWP_SCANNING;
 204	scan_base = offset = si->cluster_next;
 205
 
 
 
 
 
 
 206	if (unlikely(!si->cluster_nr--)) {
 207		if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
 208			si->cluster_nr = SWAPFILE_CLUSTER - 1;
 209			goto checks;
 210		}
 211		if (si->flags & SWP_DISCARDABLE) {
 212			/*
 213			 * Start range check on racing allocations, in case
 214			 * they overlap the cluster we eventually decide on
 215			 * (we scan without swap_lock to allow preemption).
 216			 * It's hardly conceivable that cluster_nr could be
 217			 * wrapped during our scan, but don't depend on it.
 218			 */
 219			if (si->lowest_alloc)
 220				goto checks;
 221			si->lowest_alloc = si->max;
 222			si->highest_alloc = 0;
 223		}
 224		spin_unlock(&swap_lock);
 225
 226		/*
 227		 * If seek is expensive, start searching for new cluster from
 228		 * start of partition, to minimize the span of allocated swap.
 229		 * But if seek is cheap, search from our current position, so
 230		 * that swap is allocated from all over the partition: if the
 231		 * Flash Translation Layer only remaps within limited zones,
 232		 * we don't want to wear out the first zone too quickly.
 233		 */
 234		if (!(si->flags & SWP_SOLIDSTATE))
 235			scan_base = offset = si->lowest_bit;
 236		last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
 237
 238		/* Locate the first empty (unaligned) cluster */
 239		for (; last_in_cluster <= si->highest_bit; offset++) {
 240			if (si->swap_map[offset])
 241				last_in_cluster = offset + SWAPFILE_CLUSTER;
 242			else if (offset == last_in_cluster) {
 243				spin_lock(&swap_lock);
 244				offset -= SWAPFILE_CLUSTER - 1;
 245				si->cluster_next = offset;
 246				si->cluster_nr = SWAPFILE_CLUSTER - 1;
 247				found_free_cluster = 1;
 248				goto checks;
 249			}
 250			if (unlikely(--latency_ration < 0)) {
 251				cond_resched();
 252				latency_ration = LATENCY_LIMIT;
 253			}
 254		}
 255
 256		offset = si->lowest_bit;
 257		last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
 258
 259		/* Locate the first empty (unaligned) cluster */
 260		for (; last_in_cluster < scan_base; offset++) {
 261			if (si->swap_map[offset])
 262				last_in_cluster = offset + SWAPFILE_CLUSTER;
 263			else if (offset == last_in_cluster) {
 264				spin_lock(&swap_lock);
 265				offset -= SWAPFILE_CLUSTER - 1;
 266				si->cluster_next = offset;
 267				si->cluster_nr = SWAPFILE_CLUSTER - 1;
 268				found_free_cluster = 1;
 269				goto checks;
 270			}
 271			if (unlikely(--latency_ration < 0)) {
 272				cond_resched();
 273				latency_ration = LATENCY_LIMIT;
 274			}
 275		}
 276
 277		offset = scan_base;
 278		spin_lock(&swap_lock);
 279		si->cluster_nr = SWAPFILE_CLUSTER - 1;
 280		si->lowest_alloc = 0;
 281	}
 282
 283checks:
 
 
 
 
 284	if (!(si->flags & SWP_WRITEOK))
 285		goto no_page;
 286	if (!si->highest_bit)
 287		goto no_page;
 288	if (offset > si->highest_bit)
 289		scan_base = offset = si->lowest_bit;
 290
 291	/* reuse swap entry of cache-only swap if not busy. */
 292	if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
 293		int swap_was_freed;
 294		spin_unlock(&swap_lock);
 295		swap_was_freed = __try_to_reclaim_swap(si, offset);
 296		spin_lock(&swap_lock);
 297		/* entry was freed successfully, try to use this again */
 298		if (swap_was_freed)
 299			goto checks;
 300		goto scan; /* check next one */
 301	}
 302
 303	if (si->swap_map[offset])
 304		goto scan;
 305
 306	if (offset == si->lowest_bit)
 307		si->lowest_bit++;
 308	if (offset == si->highest_bit)
 309		si->highest_bit--;
 310	si->inuse_pages++;
 311	if (si->inuse_pages == si->pages) {
 312		si->lowest_bit = si->max;
 313		si->highest_bit = 0;
 
 
 
 314	}
 315	si->swap_map[offset] = usage;
 
 316	si->cluster_next = offset + 1;
 317	si->flags -= SWP_SCANNING;
 318
 319	if (si->lowest_alloc) {
 320		/*
 321		 * Only set when SWP_DISCARDABLE, and there's a scan
 322		 * for a free cluster in progress or just completed.
 323		 */
 324		if (found_free_cluster) {
 325			/*
 326			 * To optimize wear-levelling, discard the
 327			 * old data of the cluster, taking care not to
 328			 * discard any of its pages that have already
 329			 * been allocated by racing tasks (offset has
 330			 * already stepped over any at the beginning).
 331			 */
 332			if (offset < si->highest_alloc &&
 333			    si->lowest_alloc <= last_in_cluster)
 334				last_in_cluster = si->lowest_alloc - 1;
 335			si->flags |= SWP_DISCARDING;
 336			spin_unlock(&swap_lock);
 337
 338			if (offset < last_in_cluster)
 339				discard_swap_cluster(si, offset,
 340					last_in_cluster - offset + 1);
 341
 342			spin_lock(&swap_lock);
 343			si->lowest_alloc = 0;
 344			si->flags &= ~SWP_DISCARDING;
 345
 346			smp_mb();	/* wake_up_bit advises this */
 347			wake_up_bit(&si->flags, ilog2(SWP_DISCARDING));
 348
 349		} else if (si->flags & SWP_DISCARDING) {
 350			/*
 351			 * Delay using pages allocated by racing tasks
 352			 * until the whole discard has been issued. We
 353			 * could defer that delay until swap_writepage,
 354			 * but it's easier to keep this self-contained.
 355			 */
 356			spin_unlock(&swap_lock);
 357			wait_on_bit(&si->flags, ilog2(SWP_DISCARDING),
 358				wait_for_discard, TASK_UNINTERRUPTIBLE);
 359			spin_lock(&swap_lock);
 360		} else {
 361			/*
 362			 * Note pages allocated by racing tasks while
 363			 * scan for a free cluster is in progress, so
 364			 * that its final discard can exclude them.
 365			 */
 366			if (offset < si->lowest_alloc)
 367				si->lowest_alloc = offset;
 368			if (offset > si->highest_alloc)
 369				si->highest_alloc = offset;
 370		}
 371	}
 372	return offset;
 373
 374scan:
 375	spin_unlock(&swap_lock);
 376	while (++offset <= si->highest_bit) {
 377		if (!si->swap_map[offset]) {
 378			spin_lock(&swap_lock);
 379			goto checks;
 380		}
 381		if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
 382			spin_lock(&swap_lock);
 383			goto checks;
 384		}
 385		if (unlikely(--latency_ration < 0)) {
 386			cond_resched();
 387			latency_ration = LATENCY_LIMIT;
 388		}
 389	}
 390	offset = si->lowest_bit;
 391	while (++offset < scan_base) {
 392		if (!si->swap_map[offset]) {
 393			spin_lock(&swap_lock);
 394			goto checks;
 395		}
 396		if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
 397			spin_lock(&swap_lock);
 398			goto checks;
 399		}
 400		if (unlikely(--latency_ration < 0)) {
 401			cond_resched();
 402			latency_ration = LATENCY_LIMIT;
 403		}
 
 404	}
 405	spin_lock(&swap_lock);
 406
 407no_page:
 408	si->flags -= SWP_SCANNING;
 409	return 0;
 410}
 411
 412swp_entry_t get_swap_page(void)
 413{
 414	struct swap_info_struct *si;
 415	pgoff_t offset;
 416	int type, next;
 417	int wrapped = 0;
 418
 419	spin_lock(&swap_lock);
 420	if (nr_swap_pages <= 0)
 421		goto noswap;
 422	nr_swap_pages--;
 
 
 423
 424	for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) {
 425		si = swap_info[type];
 426		next = si->next;
 427		if (next < 0 ||
 428		    (!wrapped && si->prio != swap_info[next]->prio)) {
 429			next = swap_list.head;
 430			wrapped++;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 431		}
 432
 433		if (!si->highest_bit)
 434			continue;
 435		if (!(si->flags & SWP_WRITEOK))
 436			continue;
 437
 438		swap_list.next = next;
 439		/* This is called for allocating swap entry for cache */
 440		offset = scan_swap_map(si, SWAP_HAS_CACHE);
 441		if (offset) {
 442			spin_unlock(&swap_lock);
 443			return swp_entry(type, offset);
 444		}
 445		next = swap_list.next;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 446	}
 447
 448	nr_swap_pages++;
 
 
 449noswap:
 450	spin_unlock(&swap_lock);
 451	return (swp_entry_t) {0};
 452}
 453
 454/* The only caller of this function is now susupend routine */
 455swp_entry_t get_swap_page_of_type(int type)
 456{
 457	struct swap_info_struct *si;
 458	pgoff_t offset;
 459
 460	spin_lock(&swap_lock);
 461	si = swap_info[type];
 
 462	if (si && (si->flags & SWP_WRITEOK)) {
 463		nr_swap_pages--;
 464		/* This is called for allocating swap entry, not cache */
 465		offset = scan_swap_map(si, 1);
 466		if (offset) {
 467			spin_unlock(&swap_lock);
 468			return swp_entry(type, offset);
 469		}
 470		nr_swap_pages++;
 471	}
 472	spin_unlock(&swap_lock);
 473	return (swp_entry_t) {0};
 474}
 475
 476static struct swap_info_struct *swap_info_get(swp_entry_t entry)
 477{
 478	struct swap_info_struct *p;
 479	unsigned long offset, type;
 480
 481	if (!entry.val)
 482		goto out;
 483	type = swp_type(entry);
 484	if (type >= nr_swapfiles)
 485		goto bad_nofile;
 486	p = swap_info[type];
 487	if (!(p->flags & SWP_USED))
 488		goto bad_device;
 489	offset = swp_offset(entry);
 490	if (offset >= p->max)
 491		goto bad_offset;
 492	if (!p->swap_map[offset])
 493		goto bad_free;
 494	spin_lock(&swap_lock);
 495	return p;
 496
 497bad_free:
 498	printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val);
 499	goto out;
 500bad_offset:
 501	printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val);
 502	goto out;
 503bad_device:
 504	printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val);
 505	goto out;
 506bad_nofile:
 507	printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val);
 508out:
 509	return NULL;
 510}
 511
 512static unsigned char swap_entry_free(struct swap_info_struct *p,
 513				     swp_entry_t entry, unsigned char usage)
 514{
 515	unsigned long offset = swp_offset(entry);
 516	unsigned char count;
 517	unsigned char has_cache;
 518
 519	count = p->swap_map[offset];
 520	has_cache = count & SWAP_HAS_CACHE;
 521	count &= ~SWAP_HAS_CACHE;
 522
 523	if (usage == SWAP_HAS_CACHE) {
 524		VM_BUG_ON(!has_cache);
 525		has_cache = 0;
 526	} else if (count == SWAP_MAP_SHMEM) {
 527		/*
 528		 * Or we could insist on shmem.c using a special
 529		 * swap_shmem_free() and free_shmem_swap_and_cache()...
 530		 */
 531		count = 0;
 532	} else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
 533		if (count == COUNT_CONTINUED) {
 534			if (swap_count_continued(p, offset, count))
 535				count = SWAP_MAP_MAX | COUNT_CONTINUED;
 536			else
 537				count = SWAP_MAP_MAX;
 538		} else
 539			count--;
 540	}
 541
 542	if (!count)
 543		mem_cgroup_uncharge_swap(entry);
 544
 545	usage = count | has_cache;
 546	p->swap_map[offset] = usage;
 547
 548	/* free if no reference */
 549	if (!usage) {
 550		struct gendisk *disk = p->bdev->bd_disk;
 
 551		if (offset < p->lowest_bit)
 552			p->lowest_bit = offset;
 553		if (offset > p->highest_bit)
 
 554			p->highest_bit = offset;
 555		if (swap_list.next >= 0 &&
 556		    p->prio > swap_info[swap_list.next]->prio)
 557			swap_list.next = p->type;
 558		nr_swap_pages++;
 
 
 
 
 
 
 559		p->inuse_pages--;
 560		if ((p->flags & SWP_BLKDEV) &&
 561				disk->fops->swap_slot_free_notify)
 562			disk->fops->swap_slot_free_notify(p->bdev, offset);
 
 
 
 
 563	}
 564
 565	return usage;
 566}
 567
 568/*
 569 * Caller has made sure that the swapdevice corresponding to entry
 570 * is still around or has not been recycled.
 571 */
 572void swap_free(swp_entry_t entry)
 573{
 574	struct swap_info_struct *p;
 575
 576	p = swap_info_get(entry);
 577	if (p) {
 578		swap_entry_free(p, entry, 1);
 579		spin_unlock(&swap_lock);
 580	}
 581}
 582
 583/*
 584 * Called after dropping swapcache to decrease refcnt to swap entries.
 585 */
 586void swapcache_free(swp_entry_t entry, struct page *page)
 587{
 588	struct swap_info_struct *p;
 589	unsigned char count;
 590
 591	p = swap_info_get(entry);
 592	if (p) {
 593		count = swap_entry_free(p, entry, SWAP_HAS_CACHE);
 594		if (page)
 595			mem_cgroup_uncharge_swapcache(page, entry, count != 0);
 596		spin_unlock(&swap_lock);
 597	}
 598}
 599
 600/*
 601 * How many references to page are currently swapped out?
 602 * This does not give an exact answer when swap count is continued,
 603 * but does include the high COUNT_CONTINUED flag to allow for that.
 604 */
 605static inline int page_swapcount(struct page *page)
 606{
 607	int count = 0;
 608	struct swap_info_struct *p;
 609	swp_entry_t entry;
 610
 611	entry.val = page_private(page);
 612	p = swap_info_get(entry);
 613	if (p) {
 614		count = swap_count(p->swap_map[swp_offset(entry)]);
 615		spin_unlock(&swap_lock);
 616	}
 617	return count;
 618}
 619
 620/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 621 * We can write to an anon page without COW if there are no other references
 622 * to it.  And as a side-effect, free up its swap: because the old content
 623 * on disk will never be read, and seeking back there to write new content
 624 * later would only waste time away from clustering.
 
 
 
 
 625 */
 626int reuse_swap_page(struct page *page)
 627{
 628	int count;
 629
 630	VM_BUG_ON(!PageLocked(page));
 631	if (unlikely(PageKsm(page)))
 632		return 0;
 633	count = page_mapcount(page);
 634	if (count <= 1 && PageSwapCache(page)) {
 635		count += page_swapcount(page);
 636		if (count == 1 && !PageWriteback(page)) {
 637			delete_from_swap_cache(page);
 638			SetPageDirty(page);
 639		}
 640	}
 641	return count <= 1;
 642}
 643
 644/*
 645 * If swap is getting full, or if there are no more mappings of this page,
 646 * then try_to_free_swap is called to free its swap space.
 647 */
 648int try_to_free_swap(struct page *page)
 649{
 650	VM_BUG_ON(!PageLocked(page));
 651
 652	if (!PageSwapCache(page))
 653		return 0;
 654	if (PageWriteback(page))
 655		return 0;
 656	if (page_swapcount(page))
 657		return 0;
 658
 659	/*
 660	 * Once hibernation has begun to create its image of memory,
 661	 * there's a danger that one of the calls to try_to_free_swap()
 662	 * - most probably a call from __try_to_reclaim_swap() while
 663	 * hibernation is allocating its own swap pages for the image,
 664	 * but conceivably even a call from memory reclaim - will free
 665	 * the swap from a page which has already been recorded in the
 666	 * image as a clean swapcache page, and then reuse its swap for
 667	 * another page of the image.  On waking from hibernation, the
 668	 * original page might be freed under memory pressure, then
 669	 * later read back in from swap, now with the wrong data.
 670	 *
 671	 * Hibernation clears bits from gfp_allowed_mask to prevent
 672	 * memory reclaim from writing to disk, so check that here.
 673	 */
 674	if (!(gfp_allowed_mask & __GFP_IO))
 675		return 0;
 676
 677	delete_from_swap_cache(page);
 678	SetPageDirty(page);
 679	return 1;
 680}
 681
 682/*
 683 * Free the swap entry like above, but also try to
 684 * free the page cache entry if it is the last user.
 685 */
 686int free_swap_and_cache(swp_entry_t entry)
 687{
 688	struct swap_info_struct *p;
 689	struct page *page = NULL;
 690
 691	if (non_swap_entry(entry))
 692		return 1;
 693
 694	p = swap_info_get(entry);
 695	if (p) {
 696		if (swap_entry_free(p, entry, 1) == SWAP_HAS_CACHE) {
 697			page = find_get_page(&swapper_space, entry.val);
 
 698			if (page && !trylock_page(page)) {
 699				page_cache_release(page);
 700				page = NULL;
 701			}
 702		}
 703		spin_unlock(&swap_lock);
 704	}
 705	if (page) {
 706		/*
 707		 * Not mapped elsewhere, or swap space full? Free it!
 708		 * Also recheck PageSwapCache now page is locked (above).
 709		 */
 710		if (PageSwapCache(page) && !PageWriteback(page) &&
 711				(!page_mapped(page) || vm_swap_full())) {
 712			delete_from_swap_cache(page);
 713			SetPageDirty(page);
 714		}
 715		unlock_page(page);
 716		page_cache_release(page);
 717	}
 718	return p != NULL;
 719}
 720
 721#ifdef CONFIG_CGROUP_MEM_RES_CTLR
 722/**
 723 * mem_cgroup_count_swap_user - count the user of a swap entry
 724 * @ent: the swap entry to be checked
 725 * @pagep: the pointer for the swap cache page of the entry to be stored
 726 *
 727 * Returns the number of the user of the swap entry. The number is valid only
 728 * for swaps of anonymous pages.
 729 * If the entry is found on swap cache, the page is stored to pagep with
 730 * refcount of it being incremented.
 731 */
 732int mem_cgroup_count_swap_user(swp_entry_t ent, struct page **pagep)
 733{
 734	struct page *page;
 735	struct swap_info_struct *p;
 736	int count = 0;
 737
 738	page = find_get_page(&swapper_space, ent.val);
 739	if (page)
 740		count += page_mapcount(page);
 741	p = swap_info_get(ent);
 742	if (p) {
 743		count += swap_count(p->swap_map[swp_offset(ent)]);
 744		spin_unlock(&swap_lock);
 745	}
 746
 747	*pagep = page;
 748	return count;
 749}
 750#endif
 751
 752#ifdef CONFIG_HIBERNATION
 753/*
 754 * Find the swap type that corresponds to given device (if any).
 755 *
 756 * @offset - number of the PAGE_SIZE-sized block of the device, starting
 757 * from 0, in which the swap header is expected to be located.
 758 *
 759 * This is needed for the suspend to disk (aka swsusp).
 760 */
 761int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
 762{
 763	struct block_device *bdev = NULL;
 764	int type;
 765
 766	if (device)
 767		bdev = bdget(device);
 768
 769	spin_lock(&swap_lock);
 770	for (type = 0; type < nr_swapfiles; type++) {
 771		struct swap_info_struct *sis = swap_info[type];
 772
 773		if (!(sis->flags & SWP_WRITEOK))
 774			continue;
 775
 776		if (!bdev) {
 777			if (bdev_p)
 778				*bdev_p = bdgrab(sis->bdev);
 779
 780			spin_unlock(&swap_lock);
 781			return type;
 782		}
 783		if (bdev == sis->bdev) {
 784			struct swap_extent *se = &sis->first_swap_extent;
 785
 786			if (se->start_block == offset) {
 787				if (bdev_p)
 788					*bdev_p = bdgrab(sis->bdev);
 789
 790				spin_unlock(&swap_lock);
 791				bdput(bdev);
 792				return type;
 793			}
 794		}
 795	}
 796	spin_unlock(&swap_lock);
 797	if (bdev)
 798		bdput(bdev);
 799
 800	return -ENODEV;
 801}
 802
 803/*
 804 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
 805 * corresponding to given index in swap_info (swap type).
 806 */
 807sector_t swapdev_block(int type, pgoff_t offset)
 808{
 809	struct block_device *bdev;
 810
 811	if ((unsigned int)type >= nr_swapfiles)
 812		return 0;
 813	if (!(swap_info[type]->flags & SWP_WRITEOK))
 814		return 0;
 815	return map_swap_entry(swp_entry(type, offset), &bdev);
 816}
 817
 818/*
 819 * Return either the total number of swap pages of given type, or the number
 820 * of free pages of that type (depending on @free)
 821 *
 822 * This is needed for software suspend
 823 */
 824unsigned int count_swap_pages(int type, int free)
 825{
 826	unsigned int n = 0;
 827
 828	spin_lock(&swap_lock);
 829	if ((unsigned int)type < nr_swapfiles) {
 830		struct swap_info_struct *sis = swap_info[type];
 831
 
 832		if (sis->flags & SWP_WRITEOK) {
 833			n = sis->pages;
 834			if (free)
 835				n -= sis->inuse_pages;
 836		}
 
 837	}
 838	spin_unlock(&swap_lock);
 839	return n;
 840}
 841#endif /* CONFIG_HIBERNATION */
 842
 
 
 
 
 
 843/*
 844 * No need to decide whether this PTE shares the swap entry with others,
 845 * just let do_wp_page work it out if a write is requested later - to
 846 * force COW, vm_page_prot omits write permission from any private vma.
 847 */
 848static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
 849		unsigned long addr, swp_entry_t entry, struct page *page)
 850{
 851	struct mem_cgroup *ptr;
 
 852	spinlock_t *ptl;
 853	pte_t *pte;
 854	int ret = 1;
 855
 856	if (mem_cgroup_try_charge_swapin(vma->vm_mm, page, GFP_KERNEL, &ptr)) {
 
 
 
 
 
 
 857		ret = -ENOMEM;
 858		goto out_nolock;
 859	}
 860
 861	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
 862	if (unlikely(!pte_same(*pte, swp_entry_to_pte(entry)))) {
 863		if (ret > 0)
 864			mem_cgroup_cancel_charge_swapin(ptr);
 865		ret = 0;
 866		goto out;
 867	}
 868
 869	dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
 870	inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
 871	get_page(page);
 872	set_pte_at(vma->vm_mm, addr, pte,
 873		   pte_mkold(mk_pte(page, vma->vm_page_prot)));
 874	page_add_anon_rmap(page, vma, addr);
 875	mem_cgroup_commit_charge_swapin(page, ptr);
 
 
 
 
 
 
 876	swap_free(entry);
 877	/*
 878	 * Move the page to the active list so it is not
 879	 * immediately swapped out again after swapon.
 880	 */
 881	activate_page(page);
 882out:
 883	pte_unmap_unlock(pte, ptl);
 884out_nolock:
 
 
 
 
 885	return ret;
 886}
 887
 888static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
 889				unsigned long addr, unsigned long end,
 890				swp_entry_t entry, struct page *page)
 891{
 892	pte_t swp_pte = swp_entry_to_pte(entry);
 893	pte_t *pte;
 894	int ret = 0;
 895
 896	/*
 897	 * We don't actually need pte lock while scanning for swp_pte: since
 898	 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
 899	 * page table while we're scanning; though it could get zapped, and on
 900	 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
 901	 * of unmatched parts which look like swp_pte, so unuse_pte must
 902	 * recheck under pte lock.  Scanning without pte lock lets it be
 903	 * preemptible whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
 904	 */
 905	pte = pte_offset_map(pmd, addr);
 906	do {
 907		/*
 908		 * swapoff spends a _lot_ of time in this loop!
 909		 * Test inline before going to call unuse_pte.
 910		 */
 911		if (unlikely(pte_same(*pte, swp_pte))) {
 912			pte_unmap(pte);
 913			ret = unuse_pte(vma, pmd, addr, entry, page);
 914			if (ret)
 915				goto out;
 916			pte = pte_offset_map(pmd, addr);
 917		}
 918	} while (pte++, addr += PAGE_SIZE, addr != end);
 919	pte_unmap(pte - 1);
 920out:
 921	return ret;
 922}
 923
 924static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
 925				unsigned long addr, unsigned long end,
 926				swp_entry_t entry, struct page *page)
 927{
 928	pmd_t *pmd;
 929	unsigned long next;
 930	int ret;
 931
 932	pmd = pmd_offset(pud, addr);
 933	do {
 934		next = pmd_addr_end(addr, end);
 935		if (unlikely(pmd_trans_huge(*pmd)))
 936			continue;
 937		if (pmd_none_or_clear_bad(pmd))
 938			continue;
 939		ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
 940		if (ret)
 941			return ret;
 942	} while (pmd++, addr = next, addr != end);
 943	return 0;
 944}
 945
 946static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
 947				unsigned long addr, unsigned long end,
 948				swp_entry_t entry, struct page *page)
 949{
 950	pud_t *pud;
 951	unsigned long next;
 952	int ret;
 953
 954	pud = pud_offset(pgd, addr);
 955	do {
 956		next = pud_addr_end(addr, end);
 957		if (pud_none_or_clear_bad(pud))
 958			continue;
 959		ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
 960		if (ret)
 961			return ret;
 962	} while (pud++, addr = next, addr != end);
 963	return 0;
 964}
 965
 966static int unuse_vma(struct vm_area_struct *vma,
 967				swp_entry_t entry, struct page *page)
 968{
 969	pgd_t *pgd;
 970	unsigned long addr, end, next;
 971	int ret;
 972
 973	if (page_anon_vma(page)) {
 974		addr = page_address_in_vma(page, vma);
 975		if (addr == -EFAULT)
 976			return 0;
 977		else
 978			end = addr + PAGE_SIZE;
 979	} else {
 980		addr = vma->vm_start;
 981		end = vma->vm_end;
 982	}
 983
 984	pgd = pgd_offset(vma->vm_mm, addr);
 985	do {
 986		next = pgd_addr_end(addr, end);
 987		if (pgd_none_or_clear_bad(pgd))
 988			continue;
 989		ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
 990		if (ret)
 991			return ret;
 992	} while (pgd++, addr = next, addr != end);
 993	return 0;
 994}
 995
 996static int unuse_mm(struct mm_struct *mm,
 997				swp_entry_t entry, struct page *page)
 998{
 999	struct vm_area_struct *vma;
1000	int ret = 0;
1001
1002	if (!down_read_trylock(&mm->mmap_sem)) {
1003		/*
1004		 * Activate page so shrink_inactive_list is unlikely to unmap
1005		 * its ptes while lock is dropped, so swapoff can make progress.
1006		 */
1007		activate_page(page);
1008		unlock_page(page);
1009		down_read(&mm->mmap_sem);
1010		lock_page(page);
1011	}
1012	for (vma = mm->mmap; vma; vma = vma->vm_next) {
1013		if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
1014			break;
1015	}
1016	up_read(&mm->mmap_sem);
1017	return (ret < 0)? ret: 0;
1018}
1019
1020/*
1021 * Scan swap_map from current position to next entry still in use.
 
1022 * Recycle to start on reaching the end, returning 0 when empty.
1023 */
1024static unsigned int find_next_to_unuse(struct swap_info_struct *si,
1025					unsigned int prev)
1026{
1027	unsigned int max = si->max;
1028	unsigned int i = prev;
1029	unsigned char count;
1030
1031	/*
1032	 * No need for swap_lock here: we're just looking
1033	 * for whether an entry is in use, not modifying it; false
1034	 * hits are okay, and sys_swapoff() has already prevented new
1035	 * allocations from this area (while holding swap_lock).
1036	 */
1037	for (;;) {
1038		if (++i >= max) {
1039			if (!prev) {
1040				i = 0;
1041				break;
1042			}
1043			/*
1044			 * No entries in use at top of swap_map,
1045			 * loop back to start and recheck there.
1046			 */
1047			max = prev + 1;
1048			prev = 0;
1049			i = 1;
1050		}
1051		count = si->swap_map[i];
 
 
 
 
 
 
1052		if (count && swap_count(count) != SWAP_MAP_BAD)
1053			break;
1054	}
1055	return i;
1056}
1057
1058/*
1059 * We completely avoid races by reading each swap page in advance,
1060 * and then search for the process using it.  All the necessary
1061 * page table adjustments can then be made atomically.
 
 
 
1062 */
1063static int try_to_unuse(unsigned int type)
 
1064{
1065	struct swap_info_struct *si = swap_info[type];
1066	struct mm_struct *start_mm;
1067	unsigned char *swap_map;
 
 
 
 
1068	unsigned char swcount;
1069	struct page *page;
1070	swp_entry_t entry;
1071	unsigned int i = 0;
1072	int retval = 0;
1073
1074	/*
1075	 * When searching mms for an entry, a good strategy is to
1076	 * start at the first mm we freed the previous entry from
1077	 * (though actually we don't notice whether we or coincidence
1078	 * freed the entry).  Initialize this start_mm with a hold.
1079	 *
1080	 * A simpler strategy would be to start at the last mm we
1081	 * freed the previous entry from; but that would take less
1082	 * advantage of mmlist ordering, which clusters forked mms
1083	 * together, child after parent.  If we race with dup_mmap(), we
1084	 * prefer to resolve parent before child, lest we miss entries
1085	 * duplicated after we scanned child: using last mm would invert
1086	 * that.
1087	 */
1088	start_mm = &init_mm;
1089	atomic_inc(&init_mm.mm_users);
1090
1091	/*
1092	 * Keep on scanning until all entries have gone.  Usually,
1093	 * one pass through swap_map is enough, but not necessarily:
1094	 * there are races when an instance of an entry might be missed.
1095	 */
1096	while ((i = find_next_to_unuse(si, i)) != 0) {
1097		if (signal_pending(current)) {
1098			retval = -EINTR;
1099			break;
1100		}
1101
1102		/*
1103		 * Get a page for the entry, using the existing swap
1104		 * cache page if there is one.  Otherwise, get a clean
1105		 * page and read the swap into it.
1106		 */
1107		swap_map = &si->swap_map[i];
1108		entry = swp_entry(type, i);
1109		page = read_swap_cache_async(entry,
1110					GFP_HIGHUSER_MOVABLE, NULL, 0);
1111		if (!page) {
1112			/*
1113			 * Either swap_duplicate() failed because entry
1114			 * has been freed independently, and will not be
1115			 * reused since sys_swapoff() already disabled
1116			 * allocation from here, or alloc_page() failed.
1117			 */
1118			if (!*swap_map)
 
 
 
 
 
 
 
 
1119				continue;
1120			retval = -ENOMEM;
1121			break;
1122		}
1123
1124		/*
1125		 * Don't hold on to start_mm if it looks like exiting.
1126		 */
1127		if (atomic_read(&start_mm->mm_users) == 1) {
1128			mmput(start_mm);
1129			start_mm = &init_mm;
1130			atomic_inc(&init_mm.mm_users);
1131		}
1132
1133		/*
1134		 * Wait for and lock page.  When do_swap_page races with
1135		 * try_to_unuse, do_swap_page can handle the fault much
1136		 * faster than try_to_unuse can locate the entry.  This
1137		 * apparently redundant "wait_on_page_locked" lets try_to_unuse
1138		 * defer to do_swap_page in such a case - in some tests,
1139		 * do_swap_page and try_to_unuse repeatedly compete.
1140		 */
1141		wait_on_page_locked(page);
1142		wait_on_page_writeback(page);
1143		lock_page(page);
1144		wait_on_page_writeback(page);
1145
1146		/*
1147		 * Remove all references to entry.
1148		 */
1149		swcount = *swap_map;
1150		if (swap_count(swcount) == SWAP_MAP_SHMEM) {
1151			retval = shmem_unuse(entry, page);
1152			/* page has already been unlocked and released */
1153			if (retval < 0)
1154				break;
1155			continue;
1156		}
1157		if (swap_count(swcount) && start_mm != &init_mm)
1158			retval = unuse_mm(start_mm, entry, page);
1159
1160		if (swap_count(*swap_map)) {
1161			int set_start_mm = (*swap_map >= swcount);
1162			struct list_head *p = &start_mm->mmlist;
1163			struct mm_struct *new_start_mm = start_mm;
1164			struct mm_struct *prev_mm = start_mm;
1165			struct mm_struct *mm;
1166
1167			atomic_inc(&new_start_mm->mm_users);
1168			atomic_inc(&prev_mm->mm_users);
1169			spin_lock(&mmlist_lock);
1170			while (swap_count(*swap_map) && !retval &&
1171					(p = p->next) != &start_mm->mmlist) {
1172				mm = list_entry(p, struct mm_struct, mmlist);
1173				if (!atomic_inc_not_zero(&mm->mm_users))
1174					continue;
1175				spin_unlock(&mmlist_lock);
1176				mmput(prev_mm);
1177				prev_mm = mm;
1178
1179				cond_resched();
1180
1181				swcount = *swap_map;
1182				if (!swap_count(swcount)) /* any usage ? */
1183					;
1184				else if (mm == &init_mm)
1185					set_start_mm = 1;
1186				else
1187					retval = unuse_mm(mm, entry, page);
1188
1189				if (set_start_mm && *swap_map < swcount) {
1190					mmput(new_start_mm);
1191					atomic_inc(&mm->mm_users);
1192					new_start_mm = mm;
1193					set_start_mm = 0;
1194				}
1195				spin_lock(&mmlist_lock);
1196			}
1197			spin_unlock(&mmlist_lock);
1198			mmput(prev_mm);
1199			mmput(start_mm);
1200			start_mm = new_start_mm;
1201		}
1202		if (retval) {
1203			unlock_page(page);
1204			page_cache_release(page);
1205			break;
1206		}
1207
1208		/*
1209		 * If a reference remains (rare), we would like to leave
1210		 * the page in the swap cache; but try_to_unmap could
1211		 * then re-duplicate the entry once we drop page lock,
1212		 * so we might loop indefinitely; also, that page could
1213		 * not be swapped out to other storage meanwhile.  So:
1214		 * delete from cache even if there's another reference,
1215		 * after ensuring that the data has been saved to disk -
1216		 * since if the reference remains (rarer), it will be
1217		 * read from disk into another page.  Splitting into two
1218		 * pages would be incorrect if swap supported "shared
1219		 * private" pages, but they are handled by tmpfs files.
1220		 *
1221		 * Given how unuse_vma() targets one particular offset
1222		 * in an anon_vma, once the anon_vma has been determined,
1223		 * this splitting happens to be just what is needed to
1224		 * handle where KSM pages have been swapped out: re-reading
1225		 * is unnecessarily slow, but we can fix that later on.
1226		 */
1227		if (swap_count(*swap_map) &&
1228		     PageDirty(page) && PageSwapCache(page)) {
1229			struct writeback_control wbc = {
1230				.sync_mode = WB_SYNC_NONE,
1231			};
1232
1233			swap_writepage(page, &wbc);
1234			lock_page(page);
1235			wait_on_page_writeback(page);
1236		}
1237
1238		/*
1239		 * It is conceivable that a racing task removed this page from
1240		 * swap cache just before we acquired the page lock at the top,
1241		 * or while we dropped it in unuse_mm().  The page might even
1242		 * be back in swap cache on another swap area: that we must not
1243		 * delete, since it may not have been written out to swap yet.
1244		 */
1245		if (PageSwapCache(page) &&
1246		    likely(page_private(page) == entry.val))
1247			delete_from_swap_cache(page);
1248
1249		/*
1250		 * So we could skip searching mms once swap count went
1251		 * to 1, we did not mark any present ptes as dirty: must
1252		 * mark page dirty so shrink_page_list will preserve it.
1253		 */
1254		SetPageDirty(page);
1255		unlock_page(page);
1256		page_cache_release(page);
1257
1258		/*
1259		 * Make sure that we aren't completely killing
1260		 * interactive performance.
1261		 */
1262		cond_resched();
 
 
 
 
1263	}
1264
1265	mmput(start_mm);
1266	return retval;
1267}
1268
1269/*
1270 * After a successful try_to_unuse, if no swap is now in use, we know
1271 * we can empty the mmlist.  swap_lock must be held on entry and exit.
1272 * Note that mmlist_lock nests inside swap_lock, and an mm must be
1273 * added to the mmlist just after page_duplicate - before would be racy.
1274 */
1275static void drain_mmlist(void)
1276{
1277	struct list_head *p, *next;
1278	unsigned int type;
1279
1280	for (type = 0; type < nr_swapfiles; type++)
1281		if (swap_info[type]->inuse_pages)
1282			return;
1283	spin_lock(&mmlist_lock);
1284	list_for_each_safe(p, next, &init_mm.mmlist)
1285		list_del_init(p);
1286	spin_unlock(&mmlist_lock);
1287}
1288
1289/*
1290 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
1291 * corresponds to page offset for the specified swap entry.
1292 * Note that the type of this function is sector_t, but it returns page offset
1293 * into the bdev, not sector offset.
1294 */
1295static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
1296{
1297	struct swap_info_struct *sis;
1298	struct swap_extent *start_se;
1299	struct swap_extent *se;
1300	pgoff_t offset;
1301
1302	sis = swap_info[swp_type(entry)];
1303	*bdev = sis->bdev;
1304
1305	offset = swp_offset(entry);
1306	start_se = sis->curr_swap_extent;
1307	se = start_se;
1308
1309	for ( ; ; ) {
1310		struct list_head *lh;
1311
1312		if (se->start_page <= offset &&
1313				offset < (se->start_page + se->nr_pages)) {
1314			return se->start_block + (offset - se->start_page);
1315		}
1316		lh = se->list.next;
1317		se = list_entry(lh, struct swap_extent, list);
1318		sis->curr_swap_extent = se;
1319		BUG_ON(se == start_se);		/* It *must* be present */
1320	}
1321}
1322
1323/*
1324 * Returns the page offset into bdev for the specified page's swap entry.
1325 */
1326sector_t map_swap_page(struct page *page, struct block_device **bdev)
1327{
1328	swp_entry_t entry;
1329	entry.val = page_private(page);
1330	return map_swap_entry(entry, bdev);
1331}
1332
1333/*
1334 * Free all of a swapdev's extent information
1335 */
1336static void destroy_swap_extents(struct swap_info_struct *sis)
1337{
1338	while (!list_empty(&sis->first_swap_extent.list)) {
1339		struct swap_extent *se;
1340
1341		se = list_entry(sis->first_swap_extent.list.next,
1342				struct swap_extent, list);
1343		list_del(&se->list);
1344		kfree(se);
1345	}
 
 
 
 
 
 
 
 
1346}
1347
1348/*
1349 * Add a block range (and the corresponding page range) into this swapdev's
1350 * extent list.  The extent list is kept sorted in page order.
1351 *
1352 * This function rather assumes that it is called in ascending page order.
1353 */
1354static int
1355add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
1356		unsigned long nr_pages, sector_t start_block)
1357{
1358	struct swap_extent *se;
1359	struct swap_extent *new_se;
1360	struct list_head *lh;
1361
1362	if (start_page == 0) {
1363		se = &sis->first_swap_extent;
1364		sis->curr_swap_extent = se;
1365		se->start_page = 0;
1366		se->nr_pages = nr_pages;
1367		se->start_block = start_block;
1368		return 1;
1369	} else {
1370		lh = sis->first_swap_extent.list.prev;	/* Highest extent */
1371		se = list_entry(lh, struct swap_extent, list);
1372		BUG_ON(se->start_page + se->nr_pages != start_page);
1373		if (se->start_block + se->nr_pages == start_block) {
1374			/* Merge it */
1375			se->nr_pages += nr_pages;
1376			return 0;
1377		}
1378	}
1379
1380	/*
1381	 * No merge.  Insert a new extent, preserving ordering.
1382	 */
1383	new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1384	if (new_se == NULL)
1385		return -ENOMEM;
1386	new_se->start_page = start_page;
1387	new_se->nr_pages = nr_pages;
1388	new_se->start_block = start_block;
1389
1390	list_add_tail(&new_se->list, &sis->first_swap_extent.list);
1391	return 1;
1392}
1393
1394/*
1395 * A `swap extent' is a simple thing which maps a contiguous range of pages
1396 * onto a contiguous range of disk blocks.  An ordered list of swap extents
1397 * is built at swapon time and is then used at swap_writepage/swap_readpage
1398 * time for locating where on disk a page belongs.
1399 *
1400 * If the swapfile is an S_ISBLK block device, a single extent is installed.
1401 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1402 * swap files identically.
1403 *
1404 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1405 * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
1406 * swapfiles are handled *identically* after swapon time.
1407 *
1408 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1409 * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
1410 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1411 * requirements, they are simply tossed out - we will never use those blocks
1412 * for swapping.
1413 *
1414 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon.  This
1415 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1416 * which will scribble on the fs.
1417 *
1418 * The amount of disk space which a single swap extent represents varies.
1419 * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
1420 * extents in the list.  To avoid much list walking, we cache the previous
1421 * search location in `curr_swap_extent', and start new searches from there.
1422 * This is extremely effective.  The average number of iterations in
1423 * map_swap_page() has been measured at about 0.3 per page.  - akpm.
1424 */
1425static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1426{
1427	struct inode *inode;
1428	unsigned blocks_per_page;
1429	unsigned long page_no;
1430	unsigned blkbits;
1431	sector_t probe_block;
1432	sector_t last_block;
1433	sector_t lowest_block = -1;
1434	sector_t highest_block = 0;
1435	int nr_extents = 0;
1436	int ret;
1437
1438	inode = sis->swap_file->f_mapping->host;
1439	if (S_ISBLK(inode->i_mode)) {
1440		ret = add_swap_extent(sis, 0, sis->max, 0);
1441		*span = sis->pages;
1442		goto out;
1443	}
1444
1445	blkbits = inode->i_blkbits;
1446	blocks_per_page = PAGE_SIZE >> blkbits;
1447
1448	/*
1449	 * Map all the blocks into the extent list.  This code doesn't try
1450	 * to be very smart.
1451	 */
1452	probe_block = 0;
1453	page_no = 0;
1454	last_block = i_size_read(inode) >> blkbits;
1455	while ((probe_block + blocks_per_page) <= last_block &&
1456			page_no < sis->max) {
1457		unsigned block_in_page;
1458		sector_t first_block;
1459
1460		first_block = bmap(inode, probe_block);
1461		if (first_block == 0)
1462			goto bad_bmap;
1463
1464		/*
1465		 * It must be PAGE_SIZE aligned on-disk
1466		 */
1467		if (first_block & (blocks_per_page - 1)) {
1468			probe_block++;
1469			goto reprobe;
1470		}
1471
1472		for (block_in_page = 1; block_in_page < blocks_per_page;
1473					block_in_page++) {
1474			sector_t block;
1475
1476			block = bmap(inode, probe_block + block_in_page);
1477			if (block == 0)
1478				goto bad_bmap;
1479			if (block != first_block + block_in_page) {
1480				/* Discontiguity */
1481				probe_block++;
1482				goto reprobe;
1483			}
1484		}
1485
1486		first_block >>= (PAGE_SHIFT - blkbits);
1487		if (page_no) {	/* exclude the header page */
1488			if (first_block < lowest_block)
1489				lowest_block = first_block;
1490			if (first_block > highest_block)
1491				highest_block = first_block;
1492		}
 
 
1493
1494		/*
1495		 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
1496		 */
1497		ret = add_swap_extent(sis, page_no, 1, first_block);
1498		if (ret < 0)
1499			goto out;
1500		nr_extents += ret;
1501		page_no++;
1502		probe_block += blocks_per_page;
1503reprobe:
1504		continue;
1505	}
1506	ret = nr_extents;
1507	*span = 1 + highest_block - lowest_block;
1508	if (page_no == 0)
1509		page_no = 1;	/* force Empty message */
1510	sis->max = page_no;
1511	sis->pages = page_no - 1;
1512	sis->highest_bit = page_no - 1;
1513out:
1514	return ret;
1515bad_bmap:
1516	printk(KERN_ERR "swapon: swapfile has holes\n");
1517	ret = -EINVAL;
1518	goto out;
1519}
1520
1521static void enable_swap_info(struct swap_info_struct *p, int prio,
1522				unsigned char *swap_map)
 
1523{
1524	int i, prev;
1525
1526	spin_lock(&swap_lock);
1527	if (prio >= 0)
1528		p->prio = prio;
1529	else
1530		p->prio = --least_priority;
 
 
 
 
 
 
1531	p->swap_map = swap_map;
 
1532	p->flags |= SWP_WRITEOK;
1533	nr_swap_pages += p->pages;
1534	total_swap_pages += p->pages;
1535
1536	/* insert swap space into swap_list: */
1537	prev = -1;
1538	for (i = swap_list.head; i >= 0; i = swap_info[i]->next) {
1539		if (p->prio >= swap_info[i]->prio)
1540			break;
1541		prev = i;
1542	}
1543	p->next = i;
1544	if (prev < 0)
1545		swap_list.head = swap_list.next = p->type;
1546	else
1547		swap_info[prev]->next = p->type;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1548	spin_unlock(&swap_lock);
1549}
1550
1551SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
1552{
1553	struct swap_info_struct *p = NULL;
1554	unsigned char *swap_map;
 
 
1555	struct file *swap_file, *victim;
1556	struct address_space *mapping;
1557	struct inode *inode;
1558	char *pathname;
1559	int oom_score_adj;
1560	int i, type, prev;
1561	int err;
1562
1563	if (!capable(CAP_SYS_ADMIN))
1564		return -EPERM;
1565
 
 
1566	pathname = getname(specialfile);
1567	err = PTR_ERR(pathname);
1568	if (IS_ERR(pathname))
1569		goto out;
1570
1571	victim = filp_open(pathname, O_RDWR|O_LARGEFILE, 0);
1572	putname(pathname);
1573	err = PTR_ERR(victim);
1574	if (IS_ERR(victim))
1575		goto out;
1576
1577	mapping = victim->f_mapping;
1578	prev = -1;
1579	spin_lock(&swap_lock);
1580	for (type = swap_list.head; type >= 0; type = swap_info[type]->next) {
1581		p = swap_info[type];
1582		if (p->flags & SWP_WRITEOK) {
1583			if (p->swap_file->f_mapping == mapping)
 
1584				break;
 
1585		}
1586		prev = type;
1587	}
1588	if (type < 0) {
1589		err = -EINVAL;
1590		spin_unlock(&swap_lock);
1591		goto out_dput;
1592	}
1593	if (!security_vm_enough_memory(p->pages))
1594		vm_unacct_memory(p->pages);
1595	else {
1596		err = -ENOMEM;
1597		spin_unlock(&swap_lock);
1598		goto out_dput;
1599	}
1600	if (prev < 0)
1601		swap_list.head = p->next;
1602	else
1603		swap_info[prev]->next = p->next;
1604	if (type == swap_list.next) {
1605		/* just pick something that's safe... */
1606		swap_list.next = swap_list.head;
1607	}
1608	if (p->prio < 0) {
1609		for (i = p->next; i >= 0; i = swap_info[i]->next)
1610			swap_info[i]->prio = p->prio--;
 
 
 
 
 
1611		least_priority++;
1612	}
1613	nr_swap_pages -= p->pages;
 
1614	total_swap_pages -= p->pages;
1615	p->flags &= ~SWP_WRITEOK;
 
1616	spin_unlock(&swap_lock);
1617
1618	oom_score_adj = test_set_oom_score_adj(OOM_SCORE_ADJ_MAX);
1619	err = try_to_unuse(type);
1620	test_set_oom_score_adj(oom_score_adj);
1621
1622	if (err) {
1623		/*
1624		 * reading p->prio and p->swap_map outside the lock is
1625		 * safe here because only sys_swapon and sys_swapoff
1626		 * change them, and there can be no other sys_swapon or
1627		 * sys_swapoff for this swap_info_struct at this point.
1628		 */
1629		/* re-insert swap space back into swap_list */
1630		enable_swap_info(p, p->prio, p->swap_map);
1631		goto out_dput;
1632	}
1633
 
 
1634	destroy_swap_extents(p);
1635	if (p->flags & SWP_CONTINUED)
1636		free_swap_count_continuations(p);
1637
1638	mutex_lock(&swapon_mutex);
1639	spin_lock(&swap_lock);
 
1640	drain_mmlist();
1641
1642	/* wait for anyone still in scan_swap_map */
1643	p->highest_bit = 0;		/* cuts scans short */
1644	while (p->flags >= SWP_SCANNING) {
 
1645		spin_unlock(&swap_lock);
1646		schedule_timeout_uninterruptible(1);
1647		spin_lock(&swap_lock);
 
1648	}
1649
1650	swap_file = p->swap_file;
 
1651	p->swap_file = NULL;
1652	p->max = 0;
1653	swap_map = p->swap_map;
1654	p->swap_map = NULL;
1655	p->flags = 0;
 
 
 
1656	spin_unlock(&swap_lock);
 
 
1657	mutex_unlock(&swapon_mutex);
 
 
1658	vfree(swap_map);
1659	/* Destroy swap account informatin */
1660	swap_cgroup_swapoff(type);
 
 
1661
1662	inode = mapping->host;
1663	if (S_ISBLK(inode->i_mode)) {
1664		struct block_device *bdev = I_BDEV(inode);
1665		set_blocksize(bdev, p->old_block_size);
1666		blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
1667	} else {
1668		mutex_lock(&inode->i_mutex);
1669		inode->i_flags &= ~S_SWAPFILE;
1670		mutex_unlock(&inode->i_mutex);
1671	}
1672	filp_close(swap_file, NULL);
 
 
 
 
 
 
 
 
 
 
1673	err = 0;
1674	atomic_inc(&proc_poll_event);
1675	wake_up_interruptible(&proc_poll_wait);
1676
1677out_dput:
1678	filp_close(victim, NULL);
1679out:
 
1680	return err;
1681}
1682
1683#ifdef CONFIG_PROC_FS
1684static unsigned swaps_poll(struct file *file, poll_table *wait)
1685{
1686	struct seq_file *seq = file->private_data;
1687
1688	poll_wait(file, &proc_poll_wait, wait);
1689
1690	if (seq->poll_event != atomic_read(&proc_poll_event)) {
1691		seq->poll_event = atomic_read(&proc_poll_event);
1692		return POLLIN | POLLRDNORM | POLLERR | POLLPRI;
1693	}
1694
1695	return POLLIN | POLLRDNORM;
1696}
1697
1698/* iterator */
1699static void *swap_start(struct seq_file *swap, loff_t *pos)
1700{
1701	struct swap_info_struct *si;
1702	int type;
1703	loff_t l = *pos;
1704
1705	mutex_lock(&swapon_mutex);
1706
1707	if (!l)
1708		return SEQ_START_TOKEN;
1709
1710	for (type = 0; type < nr_swapfiles; type++) {
1711		smp_rmb();	/* read nr_swapfiles before swap_info[type] */
1712		si = swap_info[type];
1713		if (!(si->flags & SWP_USED) || !si->swap_map)
1714			continue;
1715		if (!--l)
1716			return si;
1717	}
1718
1719	return NULL;
1720}
1721
1722static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
1723{
1724	struct swap_info_struct *si = v;
1725	int type;
1726
1727	if (v == SEQ_START_TOKEN)
1728		type = 0;
1729	else
1730		type = si->type + 1;
1731
1732	for (; type < nr_swapfiles; type++) {
1733		smp_rmb();	/* read nr_swapfiles before swap_info[type] */
1734		si = swap_info[type];
1735		if (!(si->flags & SWP_USED) || !si->swap_map)
1736			continue;
1737		++*pos;
1738		return si;
1739	}
1740
1741	return NULL;
1742}
1743
1744static void swap_stop(struct seq_file *swap, void *v)
1745{
1746	mutex_unlock(&swapon_mutex);
1747}
1748
1749static int swap_show(struct seq_file *swap, void *v)
1750{
1751	struct swap_info_struct *si = v;
1752	struct file *file;
1753	int len;
1754
1755	if (si == SEQ_START_TOKEN) {
1756		seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
1757		return 0;
1758	}
1759
1760	file = si->swap_file;
1761	len = seq_path(swap, &file->f_path, " \t\n\\");
1762	seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
1763			len < 40 ? 40 - len : 1, " ",
1764			S_ISBLK(file->f_path.dentry->d_inode->i_mode) ?
1765				"partition" : "file\t",
1766			si->pages << (PAGE_SHIFT - 10),
1767			si->inuse_pages << (PAGE_SHIFT - 10),
1768			si->prio);
1769	return 0;
1770}
1771
1772static const struct seq_operations swaps_op = {
1773	.start =	swap_start,
1774	.next =		swap_next,
1775	.stop =		swap_stop,
1776	.show =		swap_show
1777};
1778
1779static int swaps_open(struct inode *inode, struct file *file)
1780{
1781	struct seq_file *seq;
1782	int ret;
1783
1784	ret = seq_open(file, &swaps_op);
1785	if (ret)
1786		return ret;
1787
1788	seq = file->private_data;
1789	seq->poll_event = atomic_read(&proc_poll_event);
1790	return 0;
1791}
1792
1793static const struct file_operations proc_swaps_operations = {
1794	.open		= swaps_open,
1795	.read		= seq_read,
1796	.llseek		= seq_lseek,
1797	.release	= seq_release,
1798	.poll		= swaps_poll,
1799};
1800
1801static int __init procswaps_init(void)
1802{
1803	proc_create("swaps", 0, NULL, &proc_swaps_operations);
1804	return 0;
1805}
1806__initcall(procswaps_init);
1807#endif /* CONFIG_PROC_FS */
1808
1809#ifdef MAX_SWAPFILES_CHECK
1810static int __init max_swapfiles_check(void)
1811{
1812	MAX_SWAPFILES_CHECK();
1813	return 0;
1814}
1815late_initcall(max_swapfiles_check);
1816#endif
1817
1818static struct swap_info_struct *alloc_swap_info(void)
1819{
1820	struct swap_info_struct *p;
1821	unsigned int type;
1822
1823	p = kzalloc(sizeof(*p), GFP_KERNEL);
1824	if (!p)
1825		return ERR_PTR(-ENOMEM);
1826
1827	spin_lock(&swap_lock);
1828	for (type = 0; type < nr_swapfiles; type++) {
1829		if (!(swap_info[type]->flags & SWP_USED))
1830			break;
1831	}
1832	if (type >= MAX_SWAPFILES) {
1833		spin_unlock(&swap_lock);
1834		kfree(p);
1835		return ERR_PTR(-EPERM);
1836	}
1837	if (type >= nr_swapfiles) {
1838		p->type = type;
1839		swap_info[type] = p;
1840		/*
1841		 * Write swap_info[type] before nr_swapfiles, in case a
1842		 * racing procfs swap_start() or swap_next() is reading them.
1843		 * (We never shrink nr_swapfiles, we never free this entry.)
1844		 */
1845		smp_wmb();
1846		nr_swapfiles++;
1847	} else {
1848		kfree(p);
1849		p = swap_info[type];
1850		/*
1851		 * Do not memset this entry: a racing procfs swap_next()
1852		 * would be relying on p->type to remain valid.
1853		 */
1854	}
1855	INIT_LIST_HEAD(&p->first_swap_extent.list);
 
 
1856	p->flags = SWP_USED;
1857	p->next = -1;
1858	spin_unlock(&swap_lock);
 
1859
1860	return p;
1861}
1862
1863static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
1864{
1865	int error;
1866
1867	if (S_ISBLK(inode->i_mode)) {
1868		p->bdev = bdgrab(I_BDEV(inode));
1869		error = blkdev_get(p->bdev,
1870				   FMODE_READ | FMODE_WRITE | FMODE_EXCL,
1871				   sys_swapon);
1872		if (error < 0) {
1873			p->bdev = NULL;
1874			return -EINVAL;
1875		}
1876		p->old_block_size = block_size(p->bdev);
1877		error = set_blocksize(p->bdev, PAGE_SIZE);
1878		if (error < 0)
1879			return error;
1880		p->flags |= SWP_BLKDEV;
1881	} else if (S_ISREG(inode->i_mode)) {
1882		p->bdev = inode->i_sb->s_bdev;
1883		mutex_lock(&inode->i_mutex);
1884		if (IS_SWAPFILE(inode))
1885			return -EBUSY;
1886	} else
1887		return -EINVAL;
1888
1889	return 0;
1890}
1891
1892static unsigned long read_swap_header(struct swap_info_struct *p,
1893					union swap_header *swap_header,
1894					struct inode *inode)
1895{
1896	int i;
1897	unsigned long maxpages;
1898	unsigned long swapfilepages;
 
1899
1900	if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
1901		printk(KERN_ERR "Unable to find swap-space signature\n");
1902		return 0;
1903	}
1904
1905	/* swap partition endianess hack... */
1906	if (swab32(swap_header->info.version) == 1) {
1907		swab32s(&swap_header->info.version);
1908		swab32s(&swap_header->info.last_page);
1909		swab32s(&swap_header->info.nr_badpages);
1910		for (i = 0; i < swap_header->info.nr_badpages; i++)
1911			swab32s(&swap_header->info.badpages[i]);
1912	}
1913	/* Check the swap header's sub-version */
1914	if (swap_header->info.version != 1) {
1915		printk(KERN_WARNING
1916		       "Unable to handle swap header version %d\n",
1917		       swap_header->info.version);
1918		return 0;
1919	}
1920
1921	p->lowest_bit  = 1;
1922	p->cluster_next = 1;
1923	p->cluster_nr = 0;
1924
1925	/*
1926	 * Find out how many pages are allowed for a single swap
1927	 * device. There are three limiting factors: 1) the number
1928	 * of bits for the swap offset in the swp_entry_t type, and
1929	 * 2) the number of bits in the swap pte as defined by the
1930	 * the different architectures, and 3) the number of free bits
1931	 * in an exceptional radix_tree entry. In order to find the
1932	 * largest possible bit mask, a swap entry with swap type 0
1933	 * and swap offset ~0UL is created, encoded to a swap pte,
1934	 * decoded to a swp_entry_t again, and finally the swap
1935	 * offset is extracted. This will mask all the bits from
1936	 * the initial ~0UL mask that can't be encoded in either
1937	 * the swp_entry_t or the architecture definition of a
1938	 * swap pte.  Then the same is done for a radix_tree entry.
1939	 */
1940	maxpages = swp_offset(pte_to_swp_entry(
1941			swp_entry_to_pte(swp_entry(0, ~0UL))));
1942	maxpages = swp_offset(radix_to_swp_entry(
1943			swp_to_radix_entry(swp_entry(0, maxpages)))) + 1;
1944
1945	if (maxpages > swap_header->info.last_page) {
1946		maxpages = swap_header->info.last_page + 1;
 
 
 
1947		/* p->max is an unsigned int: don't overflow it */
1948		if ((unsigned int)maxpages == 0)
1949			maxpages = UINT_MAX;
1950	}
1951	p->highest_bit = maxpages - 1;
1952
1953	if (!maxpages)
1954		return 0;
1955	swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
1956	if (swapfilepages && maxpages > swapfilepages) {
1957		printk(KERN_WARNING
1958		       "Swap area shorter than signature indicates\n");
1959		return 0;
1960	}
1961	if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
1962		return 0;
1963	if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
1964		return 0;
1965
1966	return maxpages;
1967}
1968
1969static int setup_swap_map_and_extents(struct swap_info_struct *p,
1970					union swap_header *swap_header,
1971					unsigned char *swap_map,
 
1972					unsigned long maxpages,
1973					sector_t *span)
1974{
1975	int i;
1976	unsigned int nr_good_pages;
1977	int nr_extents;
 
 
1978
1979	nr_good_pages = maxpages - 1;	/* omit header page */
1980
 
 
 
 
 
1981	for (i = 0; i < swap_header->info.nr_badpages; i++) {
1982		unsigned int page_nr = swap_header->info.badpages[i];
1983		if (page_nr == 0 || page_nr > swap_header->info.last_page)
1984			return -EINVAL;
1985		if (page_nr < maxpages) {
1986			swap_map[page_nr] = SWAP_MAP_BAD;
1987			nr_good_pages--;
 
 
 
 
 
1988		}
1989	}
1990
 
 
 
 
1991	if (nr_good_pages) {
1992		swap_map[0] = SWAP_MAP_BAD;
 
 
 
 
 
1993		p->max = maxpages;
1994		p->pages = nr_good_pages;
1995		nr_extents = setup_swap_extents(p, span);
1996		if (nr_extents < 0)
1997			return nr_extents;
1998		nr_good_pages = p->pages;
1999	}
2000	if (!nr_good_pages) {
2001		printk(KERN_WARNING "Empty swap-file\n");
2002		return -EINVAL;
2003	}
2004
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2005	return nr_extents;
2006}
2007
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2008SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
2009{
2010	struct swap_info_struct *p;
2011	char *name;
2012	struct file *swap_file = NULL;
2013	struct address_space *mapping;
2014	int i;
2015	int prio;
2016	int error;
2017	union swap_header *swap_header;
2018	int nr_extents;
2019	sector_t span;
2020	unsigned long maxpages;
2021	unsigned char *swap_map = NULL;
 
 
2022	struct page *page = NULL;
2023	struct inode *inode = NULL;
2024
 
 
 
2025	if (!capable(CAP_SYS_ADMIN))
2026		return -EPERM;
2027
2028	p = alloc_swap_info();
2029	if (IS_ERR(p))
2030		return PTR_ERR(p);
2031
 
 
2032	name = getname(specialfile);
2033	if (IS_ERR(name)) {
2034		error = PTR_ERR(name);
2035		name = NULL;
2036		goto bad_swap;
2037	}
2038	swap_file = filp_open(name, O_RDWR|O_LARGEFILE, 0);
2039	if (IS_ERR(swap_file)) {
2040		error = PTR_ERR(swap_file);
2041		swap_file = NULL;
2042		goto bad_swap;
2043	}
2044
2045	p->swap_file = swap_file;
2046	mapping = swap_file->f_mapping;
 
2047
2048	for (i = 0; i < nr_swapfiles; i++) {
2049		struct swap_info_struct *q = swap_info[i];
2050
2051		if (q == p || !q->swap_file)
2052			continue;
2053		if (mapping == q->swap_file->f_mapping) {
2054			error = -EBUSY;
2055			goto bad_swap;
2056		}
2057	}
2058
2059	inode = mapping->host;
2060	/* If S_ISREG(inode->i_mode) will do mutex_lock(&inode->i_mutex); */
2061	error = claim_swapfile(p, inode);
2062	if (unlikely(error))
2063		goto bad_swap;
2064
2065	/*
2066	 * Read the swap header.
2067	 */
2068	if (!mapping->a_ops->readpage) {
2069		error = -EINVAL;
2070		goto bad_swap;
2071	}
2072	page = read_mapping_page(mapping, 0, swap_file);
2073	if (IS_ERR(page)) {
2074		error = PTR_ERR(page);
2075		goto bad_swap;
2076	}
2077	swap_header = kmap(page);
2078
2079	maxpages = read_swap_header(p, swap_header, inode);
2080	if (unlikely(!maxpages)) {
2081		error = -EINVAL;
2082		goto bad_swap;
2083	}
2084
2085	/* OK, set up the swap map and apply the bad block list */
2086	swap_map = vzalloc(maxpages);
2087	if (!swap_map) {
2088		error = -ENOMEM;
2089		goto bad_swap;
2090	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2091
2092	error = swap_cgroup_swapon(p->type, maxpages);
2093	if (error)
2094		goto bad_swap;
2095
2096	nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
2097		maxpages, &span);
2098	if (unlikely(nr_extents < 0)) {
2099		error = nr_extents;
2100		goto bad_swap;
2101	}
2102
2103	if (p->bdev) {
2104		if (blk_queue_nonrot(bdev_get_queue(p->bdev))) {
2105			p->flags |= SWP_SOLIDSTATE;
2106			p->cluster_next = 1 + (random32() % p->highest_bit);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2107		}
2108		if (discard_swap(p) == 0 && (swap_flags & SWAP_FLAG_DISCARD))
2109			p->flags |= SWP_DISCARDABLE;
2110	}
2111
2112	mutex_lock(&swapon_mutex);
2113	prio = -1;
2114	if (swap_flags & SWAP_FLAG_PREFER)
2115		prio =
2116		  (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
2117	enable_swap_info(p, prio, swap_map);
2118
2119	printk(KERN_INFO "Adding %uk swap on %s.  "
2120			"Priority:%d extents:%d across:%lluk %s%s\n",
2121		p->pages<<(PAGE_SHIFT-10), name, p->prio,
2122		nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
2123		(p->flags & SWP_SOLIDSTATE) ? "SS" : "",
2124		(p->flags & SWP_DISCARDABLE) ? "D" : "");
 
 
 
2125
2126	mutex_unlock(&swapon_mutex);
2127	atomic_inc(&proc_poll_event);
2128	wake_up_interruptible(&proc_poll_wait);
2129
2130	if (S_ISREG(inode->i_mode))
2131		inode->i_flags |= S_SWAPFILE;
2132	error = 0;
2133	goto out;
2134bad_swap:
 
 
2135	if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
2136		set_blocksize(p->bdev, p->old_block_size);
2137		blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2138	}
2139	destroy_swap_extents(p);
2140	swap_cgroup_swapoff(p->type);
2141	spin_lock(&swap_lock);
2142	p->swap_file = NULL;
2143	p->flags = 0;
2144	spin_unlock(&swap_lock);
2145	vfree(swap_map);
 
2146	if (swap_file) {
2147		if (inode && S_ISREG(inode->i_mode)) {
2148			mutex_unlock(&inode->i_mutex);
2149			inode = NULL;
2150		}
2151		filp_close(swap_file, NULL);
2152	}
2153out:
2154	if (page && !IS_ERR(page)) {
2155		kunmap(page);
2156		page_cache_release(page);
2157	}
2158	if (name)
2159		putname(name);
2160	if (inode && S_ISREG(inode->i_mode))
2161		mutex_unlock(&inode->i_mutex);
2162	return error;
2163}
2164
2165void si_swapinfo(struct sysinfo *val)
2166{
2167	unsigned int type;
2168	unsigned long nr_to_be_unused = 0;
2169
2170	spin_lock(&swap_lock);
2171	for (type = 0; type < nr_swapfiles; type++) {
2172		struct swap_info_struct *si = swap_info[type];
2173
2174		if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
2175			nr_to_be_unused += si->inuse_pages;
2176	}
2177	val->freeswap = nr_swap_pages + nr_to_be_unused;
2178	val->totalswap = total_swap_pages + nr_to_be_unused;
2179	spin_unlock(&swap_lock);
2180}
2181
2182/*
2183 * Verify that a swap entry is valid and increment its swap map count.
2184 *
2185 * Returns error code in following case.
2186 * - success -> 0
2187 * - swp_entry is invalid -> EINVAL
2188 * - swp_entry is migration entry -> EINVAL
2189 * - swap-cache reference is requested but there is already one. -> EEXIST
2190 * - swap-cache reference is requested but the entry is not used. -> ENOENT
2191 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
2192 */
2193static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
2194{
2195	struct swap_info_struct *p;
2196	unsigned long offset, type;
2197	unsigned char count;
2198	unsigned char has_cache;
2199	int err = -EINVAL;
2200
2201	if (non_swap_entry(entry))
2202		goto out;
2203
2204	type = swp_type(entry);
2205	if (type >= nr_swapfiles)
2206		goto bad_file;
2207	p = swap_info[type];
2208	offset = swp_offset(entry);
2209
2210	spin_lock(&swap_lock);
2211	if (unlikely(offset >= p->max))
2212		goto unlock_out;
2213
2214	count = p->swap_map[offset];
 
 
 
 
 
 
 
 
 
 
2215	has_cache = count & SWAP_HAS_CACHE;
2216	count &= ~SWAP_HAS_CACHE;
2217	err = 0;
2218
2219	if (usage == SWAP_HAS_CACHE) {
2220
2221		/* set SWAP_HAS_CACHE if there is no cache and entry is used */
2222		if (!has_cache && count)
2223			has_cache = SWAP_HAS_CACHE;
2224		else if (has_cache)		/* someone else added cache */
2225			err = -EEXIST;
2226		else				/* no users remaining */
2227			err = -ENOENT;
2228
2229	} else if (count || has_cache) {
2230
2231		if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
2232			count += usage;
2233		else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
2234			err = -EINVAL;
2235		else if (swap_count_continued(p, offset, count))
2236			count = COUNT_CONTINUED;
2237		else
2238			err = -ENOMEM;
2239	} else
2240		err = -ENOENT;			/* unused swap entry */
2241
2242	p->swap_map[offset] = count | has_cache;
2243
2244unlock_out:
2245	spin_unlock(&swap_lock);
2246out:
2247	return err;
2248
2249bad_file:
2250	printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val);
2251	goto out;
2252}
2253
2254/*
2255 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
2256 * (in which case its reference count is never incremented).
2257 */
2258void swap_shmem_alloc(swp_entry_t entry)
2259{
2260	__swap_duplicate(entry, SWAP_MAP_SHMEM);
2261}
2262
2263/*
2264 * Increase reference count of swap entry by 1.
2265 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
2266 * but could not be atomically allocated.  Returns 0, just as if it succeeded,
2267 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
2268 * might occur if a page table entry has got corrupted.
2269 */
2270int swap_duplicate(swp_entry_t entry)
2271{
2272	int err = 0;
2273
2274	while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
2275		err = add_swap_count_continuation(entry, GFP_ATOMIC);
2276	return err;
2277}
2278
2279/*
2280 * @entry: swap entry for which we allocate swap cache.
2281 *
2282 * Called when allocating swap cache for existing swap entry,
2283 * This can return error codes. Returns 0 at success.
2284 * -EBUSY means there is a swap cache.
2285 * Note: return code is different from swap_duplicate().
2286 */
2287int swapcache_prepare(swp_entry_t entry)
2288{
2289	return __swap_duplicate(entry, SWAP_HAS_CACHE);
2290}
2291
 
 
 
 
 
 
 
2292/*
2293 * swap_lock prevents swap_map being freed. Don't grab an extra
2294 * reference on the swaphandle, it doesn't matter if it becomes unused.
2295 */
2296int valid_swaphandles(swp_entry_t entry, unsigned long *offset)
2297{
2298	struct swap_info_struct *si;
2299	int our_page_cluster = page_cluster;
2300	pgoff_t target, toff;
2301	pgoff_t base, end;
2302	int nr_pages = 0;
2303
2304	if (!our_page_cluster)	/* no readahead */
2305		return 0;
2306
2307	si = swap_info[swp_type(entry)];
2308	target = swp_offset(entry);
2309	base = (target >> our_page_cluster) << our_page_cluster;
2310	end = base + (1 << our_page_cluster);
2311	if (!base)		/* first page is swap header */
2312		base++;
2313
2314	spin_lock(&swap_lock);
2315	if (end > si->max)	/* don't go beyond end of map */
2316		end = si->max;
2317
2318	/* Count contiguous allocated slots above our target */
2319	for (toff = target; ++toff < end; nr_pages++) {
2320		/* Don't read in free or bad pages */
2321		if (!si->swap_map[toff])
2322			break;
2323		if (swap_count(si->swap_map[toff]) == SWAP_MAP_BAD)
2324			break;
2325	}
2326	/* Count contiguous allocated slots below our target */
2327	for (toff = target; --toff >= base; nr_pages++) {
2328		/* Don't read in free or bad pages */
2329		if (!si->swap_map[toff])
2330			break;
2331		if (swap_count(si->swap_map[toff]) == SWAP_MAP_BAD)
2332			break;
2333	}
2334	spin_unlock(&swap_lock);
2335
2336	/*
2337	 * Indicate starting offset, and return number of pages to get:
2338	 * if only 1, say 0, since there's then no readahead to be done.
2339	 */
2340	*offset = ++toff;
2341	return nr_pages? ++nr_pages: 0;
2342}
 
2343
2344/*
2345 * add_swap_count_continuation - called when a swap count is duplicated
2346 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
2347 * page of the original vmalloc'ed swap_map, to hold the continuation count
2348 * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
2349 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
2350 *
2351 * These continuation pages are seldom referenced: the common paths all work
2352 * on the original swap_map, only referring to a continuation page when the
2353 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
2354 *
2355 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
2356 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
2357 * can be called after dropping locks.
2358 */
2359int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
2360{
2361	struct swap_info_struct *si;
2362	struct page *head;
2363	struct page *page;
2364	struct page *list_page;
2365	pgoff_t offset;
2366	unsigned char count;
2367
2368	/*
2369	 * When debugging, it's easier to use __GFP_ZERO here; but it's better
2370	 * for latency not to zero a page while GFP_ATOMIC and holding locks.
2371	 */
2372	page = alloc_page(gfp_mask | __GFP_HIGHMEM);
2373
2374	si = swap_info_get(entry);
2375	if (!si) {
2376		/*
2377		 * An acceptable race has occurred since the failing
2378		 * __swap_duplicate(): the swap entry has been freed,
2379		 * perhaps even the whole swap_map cleared for swapoff.
2380		 */
2381		goto outer;
2382	}
2383
2384	offset = swp_offset(entry);
2385	count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
2386
2387	if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
2388		/*
2389		 * The higher the swap count, the more likely it is that tasks
2390		 * will race to add swap count continuation: we need to avoid
2391		 * over-provisioning.
2392		 */
2393		goto out;
2394	}
2395
2396	if (!page) {
2397		spin_unlock(&swap_lock);
2398		return -ENOMEM;
2399	}
2400
2401	/*
2402	 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
2403	 * no architecture is using highmem pages for kernel pagetables: so it
2404	 * will not corrupt the GFP_ATOMIC caller's atomic pagetable kmaps.
2405	 */
2406	head = vmalloc_to_page(si->swap_map + offset);
2407	offset &= ~PAGE_MASK;
2408
2409	/*
2410	 * Page allocation does not initialize the page's lru field,
2411	 * but it does always reset its private field.
2412	 */
2413	if (!page_private(head)) {
2414		BUG_ON(count & COUNT_CONTINUED);
2415		INIT_LIST_HEAD(&head->lru);
2416		set_page_private(head, SWP_CONTINUED);
2417		si->flags |= SWP_CONTINUED;
2418	}
2419
2420	list_for_each_entry(list_page, &head->lru, lru) {
2421		unsigned char *map;
2422
2423		/*
2424		 * If the previous map said no continuation, but we've found
2425		 * a continuation page, free our allocation and use this one.
2426		 */
2427		if (!(count & COUNT_CONTINUED))
2428			goto out;
2429
2430		map = kmap_atomic(list_page, KM_USER0) + offset;
2431		count = *map;
2432		kunmap_atomic(map, KM_USER0);
2433
2434		/*
2435		 * If this continuation count now has some space in it,
2436		 * free our allocation and use this one.
2437		 */
2438		if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
2439			goto out;
2440	}
2441
2442	list_add_tail(&page->lru, &head->lru);
2443	page = NULL;			/* now it's attached, don't free it */
2444out:
2445	spin_unlock(&swap_lock);
2446outer:
2447	if (page)
2448		__free_page(page);
2449	return 0;
2450}
2451
2452/*
2453 * swap_count_continued - when the original swap_map count is incremented
2454 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
2455 * into, carry if so, or else fail until a new continuation page is allocated;
2456 * when the original swap_map count is decremented from 0 with continuation,
2457 * borrow from the continuation and report whether it still holds more.
2458 * Called while __swap_duplicate() or swap_entry_free() holds swap_lock.
2459 */
2460static bool swap_count_continued(struct swap_info_struct *si,
2461				 pgoff_t offset, unsigned char count)
2462{
2463	struct page *head;
2464	struct page *page;
2465	unsigned char *map;
2466
2467	head = vmalloc_to_page(si->swap_map + offset);
2468	if (page_private(head) != SWP_CONTINUED) {
2469		BUG_ON(count & COUNT_CONTINUED);
2470		return false;		/* need to add count continuation */
2471	}
2472
2473	offset &= ~PAGE_MASK;
2474	page = list_entry(head->lru.next, struct page, lru);
2475	map = kmap_atomic(page, KM_USER0) + offset;
2476
2477	if (count == SWAP_MAP_MAX)	/* initial increment from swap_map */
2478		goto init_map;		/* jump over SWAP_CONT_MAX checks */
2479
2480	if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
2481		/*
2482		 * Think of how you add 1 to 999
2483		 */
2484		while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
2485			kunmap_atomic(map, KM_USER0);
2486			page = list_entry(page->lru.next, struct page, lru);
2487			BUG_ON(page == head);
2488			map = kmap_atomic(page, KM_USER0) + offset;
2489		}
2490		if (*map == SWAP_CONT_MAX) {
2491			kunmap_atomic(map, KM_USER0);
2492			page = list_entry(page->lru.next, struct page, lru);
2493			if (page == head)
2494				return false;	/* add count continuation */
2495			map = kmap_atomic(page, KM_USER0) + offset;
2496init_map:		*map = 0;		/* we didn't zero the page */
2497		}
2498		*map += 1;
2499		kunmap_atomic(map, KM_USER0);
2500		page = list_entry(page->lru.prev, struct page, lru);
2501		while (page != head) {
2502			map = kmap_atomic(page, KM_USER0) + offset;
2503			*map = COUNT_CONTINUED;
2504			kunmap_atomic(map, KM_USER0);
2505			page = list_entry(page->lru.prev, struct page, lru);
2506		}
2507		return true;			/* incremented */
2508
2509	} else {				/* decrementing */
2510		/*
2511		 * Think of how you subtract 1 from 1000
2512		 */
2513		BUG_ON(count != COUNT_CONTINUED);
2514		while (*map == COUNT_CONTINUED) {
2515			kunmap_atomic(map, KM_USER0);
2516			page = list_entry(page->lru.next, struct page, lru);
2517			BUG_ON(page == head);
2518			map = kmap_atomic(page, KM_USER0) + offset;
2519		}
2520		BUG_ON(*map == 0);
2521		*map -= 1;
2522		if (*map == 0)
2523			count = 0;
2524		kunmap_atomic(map, KM_USER0);
2525		page = list_entry(page->lru.prev, struct page, lru);
2526		while (page != head) {
2527			map = kmap_atomic(page, KM_USER0) + offset;
2528			*map = SWAP_CONT_MAX | count;
2529			count = COUNT_CONTINUED;
2530			kunmap_atomic(map, KM_USER0);
2531			page = list_entry(page->lru.prev, struct page, lru);
2532		}
2533		return count == COUNT_CONTINUED;
2534	}
2535}
2536
2537/*
2538 * free_swap_count_continuations - swapoff free all the continuation pages
2539 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
2540 */
2541static void free_swap_count_continuations(struct swap_info_struct *si)
2542{
2543	pgoff_t offset;
2544
2545	for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
2546		struct page *head;
2547		head = vmalloc_to_page(si->swap_map + offset);
2548		if (page_private(head)) {
2549			struct list_head *this, *next;
2550			list_for_each_safe(this, next, &head->lru) {
2551				struct page *page;
2552				page = list_entry(this, struct page, lru);
2553				list_del(this);
2554				__free_page(page);
2555			}
2556		}
2557	}
2558}