Linux Audio

Check our new training course

Loading...
v4.6
   1/*
   2 * Resizable virtual memory filesystem for Linux.
   3 *
   4 * Copyright (C) 2000 Linus Torvalds.
   5 *		 2000 Transmeta Corp.
   6 *		 2000-2001 Christoph Rohland
   7 *		 2000-2001 SAP AG
   8 *		 2002 Red Hat Inc.
   9 * Copyright (C) 2002-2011 Hugh Dickins.
  10 * Copyright (C) 2011 Google Inc.
  11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
  12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
  13 *
  14 * Extended attribute support for tmpfs:
  15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
  16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
  17 *
  18 * tiny-shmem:
  19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
  20 *
  21 * This file is released under the GPL.
  22 */
  23
  24#include <linux/fs.h>
  25#include <linux/init.h>
  26#include <linux/vfs.h>
  27#include <linux/mount.h>
  28#include <linux/ramfs.h>
  29#include <linux/pagemap.h>
  30#include <linux/file.h>
  31#include <linux/mm.h>
  32#include <linux/export.h>
  33#include <linux/swap.h>
  34#include <linux/uio.h>
  35
  36static struct vfsmount *shm_mnt;
  37
  38#ifdef CONFIG_SHMEM
  39/*
  40 * This virtual memory filesystem is heavily based on the ramfs. It
  41 * extends ramfs by the ability to use swap and honor resource limits
  42 * which makes it a completely usable filesystem.
  43 */
  44
  45#include <linux/xattr.h>
  46#include <linux/exportfs.h>
  47#include <linux/posix_acl.h>
  48#include <linux/posix_acl_xattr.h>
  49#include <linux/mman.h>
  50#include <linux/string.h>
  51#include <linux/slab.h>
  52#include <linux/backing-dev.h>
  53#include <linux/shmem_fs.h>
  54#include <linux/writeback.h>
  55#include <linux/blkdev.h>
  56#include <linux/pagevec.h>
  57#include <linux/percpu_counter.h>
  58#include <linux/falloc.h>
  59#include <linux/splice.h>
  60#include <linux/security.h>
  61#include <linux/swapops.h>
  62#include <linux/mempolicy.h>
  63#include <linux/namei.h>
  64#include <linux/ctype.h>
  65#include <linux/migrate.h>
  66#include <linux/highmem.h>
  67#include <linux/seq_file.h>
  68#include <linux/magic.h>
  69#include <linux/syscalls.h>
  70#include <linux/fcntl.h>
  71#include <uapi/linux/memfd.h>
  72
  73#include <asm/uaccess.h>
  74#include <asm/pgtable.h>
  75
  76#include "internal.h"
  77
  78#define BLOCKS_PER_PAGE  (PAGE_SIZE/512)
  79#define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
  80
  81/* Pretend that each entry is of this size in directory's i_size */
  82#define BOGO_DIRENT_SIZE 20
  83
  84/* Symlink up to this size is kmalloc'ed instead of using a swappable page */
  85#define SHORT_SYMLINK_LEN 128
  86
  87/*
  88 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
  89 * inode->i_private (with i_mutex making sure that it has only one user at
  90 * a time): we would prefer not to enlarge the shmem inode just for that.
  91 */
  92struct shmem_falloc {
  93	wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
  94	pgoff_t start;		/* start of range currently being fallocated */
  95	pgoff_t next;		/* the next page offset to be fallocated */
  96	pgoff_t nr_falloced;	/* how many new pages have been fallocated */
  97	pgoff_t nr_unswapped;	/* how often writepage refused to swap out */
  98};
  99
 100/* Flag allocation requirements to shmem_getpage */
 101enum sgp_type {
 102	SGP_READ,	/* don't exceed i_size, don't allocate page */
 103	SGP_CACHE,	/* don't exceed i_size, may allocate page */
 104	SGP_DIRTY,	/* like SGP_CACHE, but set new page dirty */
 105	SGP_WRITE,	/* may exceed i_size, may allocate !Uptodate page */
 106	SGP_FALLOC,	/* like SGP_WRITE, but make existing page Uptodate */
 107};
 108
 109#ifdef CONFIG_TMPFS
 110static unsigned long shmem_default_max_blocks(void)
 111{
 112	return totalram_pages / 2;
 113}
 114
 115static unsigned long shmem_default_max_inodes(void)
 116{
 117	return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
 118}
 119#endif
 120
 121static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
 122static int shmem_replace_page(struct page **pagep, gfp_t gfp,
 123				struct shmem_inode_info *info, pgoff_t index);
 124static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
 125	struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type);
 126
 127static inline int shmem_getpage(struct inode *inode, pgoff_t index,
 128	struct page **pagep, enum sgp_type sgp, int *fault_type)
 129{
 130	return shmem_getpage_gfp(inode, index, pagep, sgp,
 131			mapping_gfp_mask(inode->i_mapping), fault_type);
 132}
 133
 134static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
 135{
 136	return sb->s_fs_info;
 137}
 138
 139/*
 140 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
 141 * for shared memory and for shared anonymous (/dev/zero) mappings
 142 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
 143 * consistent with the pre-accounting of private mappings ...
 144 */
 145static inline int shmem_acct_size(unsigned long flags, loff_t size)
 146{
 147	return (flags & VM_NORESERVE) ?
 148		0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
 149}
 150
 151static inline void shmem_unacct_size(unsigned long flags, loff_t size)
 152{
 153	if (!(flags & VM_NORESERVE))
 154		vm_unacct_memory(VM_ACCT(size));
 155}
 156
 157static inline int shmem_reacct_size(unsigned long flags,
 158		loff_t oldsize, loff_t newsize)
 159{
 160	if (!(flags & VM_NORESERVE)) {
 161		if (VM_ACCT(newsize) > VM_ACCT(oldsize))
 162			return security_vm_enough_memory_mm(current->mm,
 163					VM_ACCT(newsize) - VM_ACCT(oldsize));
 164		else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
 165			vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
 166	}
 167	return 0;
 168}
 169
 170/*
 171 * ... whereas tmpfs objects are accounted incrementally as
 172 * pages are allocated, in order to allow huge sparse files.
 173 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
 174 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
 175 */
 176static inline int shmem_acct_block(unsigned long flags)
 177{
 178	return (flags & VM_NORESERVE) ?
 179		security_vm_enough_memory_mm(current->mm, VM_ACCT(PAGE_SIZE)) : 0;
 180}
 181
 182static inline void shmem_unacct_blocks(unsigned long flags, long pages)
 183{
 184	if (flags & VM_NORESERVE)
 185		vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
 186}
 187
 188static const struct super_operations shmem_ops;
 189static const struct address_space_operations shmem_aops;
 190static const struct file_operations shmem_file_operations;
 191static const struct inode_operations shmem_inode_operations;
 192static const struct inode_operations shmem_dir_inode_operations;
 193static const struct inode_operations shmem_special_inode_operations;
 194static const struct vm_operations_struct shmem_vm_ops;
 195
 
 
 
 
 
 196static LIST_HEAD(shmem_swaplist);
 197static DEFINE_MUTEX(shmem_swaplist_mutex);
 198
 199static int shmem_reserve_inode(struct super_block *sb)
 200{
 201	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
 202	if (sbinfo->max_inodes) {
 203		spin_lock(&sbinfo->stat_lock);
 204		if (!sbinfo->free_inodes) {
 205			spin_unlock(&sbinfo->stat_lock);
 206			return -ENOSPC;
 207		}
 208		sbinfo->free_inodes--;
 209		spin_unlock(&sbinfo->stat_lock);
 210	}
 211	return 0;
 212}
 213
 214static void shmem_free_inode(struct super_block *sb)
 215{
 216	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
 217	if (sbinfo->max_inodes) {
 218		spin_lock(&sbinfo->stat_lock);
 219		sbinfo->free_inodes++;
 220		spin_unlock(&sbinfo->stat_lock);
 221	}
 222}
 223
 224/**
 225 * shmem_recalc_inode - recalculate the block usage of an inode
 226 * @inode: inode to recalc
 227 *
 228 * We have to calculate the free blocks since the mm can drop
 229 * undirtied hole pages behind our back.
 230 *
 231 * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
 232 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
 233 *
 234 * It has to be called with the spinlock held.
 235 */
 236static void shmem_recalc_inode(struct inode *inode)
 237{
 238	struct shmem_inode_info *info = SHMEM_I(inode);
 239	long freed;
 240
 241	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
 242	if (freed > 0) {
 243		struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
 244		if (sbinfo->max_blocks)
 245			percpu_counter_add(&sbinfo->used_blocks, -freed);
 246		info->alloced -= freed;
 247		inode->i_blocks -= freed * BLOCKS_PER_PAGE;
 248		shmem_unacct_blocks(info->flags, freed);
 249	}
 250}
 251
 252/*
 253 * Replace item expected in radix tree by a new item, while holding tree lock.
 254 */
 255static int shmem_radix_tree_replace(struct address_space *mapping,
 256			pgoff_t index, void *expected, void *replacement)
 257{
 258	void **pslot;
 259	void *item;
 260
 261	VM_BUG_ON(!expected);
 262	VM_BUG_ON(!replacement);
 263	pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
 264	if (!pslot)
 265		return -ENOENT;
 266	item = radix_tree_deref_slot_protected(pslot, &mapping->tree_lock);
 267	if (item != expected)
 268		return -ENOENT;
 269	radix_tree_replace_slot(pslot, replacement);
 
 
 
 270	return 0;
 271}
 272
 273/*
 274 * Sometimes, before we decide whether to proceed or to fail, we must check
 275 * that an entry was not already brought back from swap by a racing thread.
 276 *
 277 * Checking page is not enough: by the time a SwapCache page is locked, it
 278 * might be reused, and again be SwapCache, using the same swap as before.
 279 */
 280static bool shmem_confirm_swap(struct address_space *mapping,
 281			       pgoff_t index, swp_entry_t swap)
 282{
 283	void *item;
 284
 285	rcu_read_lock();
 286	item = radix_tree_lookup(&mapping->page_tree, index);
 287	rcu_read_unlock();
 288	return item == swp_to_radix_entry(swap);
 289}
 290
 291/*
 292 * Like add_to_page_cache_locked, but error if expected item has gone.
 293 */
 294static int shmem_add_to_page_cache(struct page *page,
 295				   struct address_space *mapping,
 296				   pgoff_t index, void *expected)
 297{
 298	int error;
 299
 300	VM_BUG_ON_PAGE(!PageLocked(page), page);
 301	VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
 302
 303	get_page(page);
 304	page->mapping = mapping;
 305	page->index = index;
 306
 307	spin_lock_irq(&mapping->tree_lock);
 308	if (!expected)
 309		error = radix_tree_insert(&mapping->page_tree, index, page);
 310	else
 311		error = shmem_radix_tree_replace(mapping, index, expected,
 312								 page);
 313	if (!error) {
 314		mapping->nrpages++;
 315		__inc_zone_page_state(page, NR_FILE_PAGES);
 316		__inc_zone_page_state(page, NR_SHMEM);
 317		spin_unlock_irq(&mapping->tree_lock);
 318	} else {
 319		page->mapping = NULL;
 320		spin_unlock_irq(&mapping->tree_lock);
 321		put_page(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 322	}
 
 
 323	return error;
 324}
 325
 326/*
 327 * Like delete_from_page_cache, but substitutes swap for page.
 328 */
 329static void shmem_delete_from_page_cache(struct page *page, void *radswap)
 330{
 331	struct address_space *mapping = page->mapping;
 332	int error;
 333
 334	spin_lock_irq(&mapping->tree_lock);
 335	error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
 336	page->mapping = NULL;
 337	mapping->nrpages--;
 338	__dec_zone_page_state(page, NR_FILE_PAGES);
 339	__dec_zone_page_state(page, NR_SHMEM);
 340	spin_unlock_irq(&mapping->tree_lock);
 341	put_page(page);
 342	BUG_ON(error);
 343}
 344
 345/*
 346 * Remove swap entry from radix tree, free the swap and its page cache.
 347 */
 348static int shmem_free_swap(struct address_space *mapping,
 349			   pgoff_t index, void *radswap)
 350{
 351	void *old;
 352
 353	spin_lock_irq(&mapping->tree_lock);
 354	old = radix_tree_delete_item(&mapping->page_tree, index, radswap);
 355	spin_unlock_irq(&mapping->tree_lock);
 356	if (old != radswap)
 357		return -ENOENT;
 358	free_swap_and_cache(radix_to_swp_entry(radswap));
 359	return 0;
 360}
 361
 362/*
 363 * Determine (in bytes) how many of the shmem object's pages mapped by the
 364 * given offsets are swapped out.
 365 *
 366 * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
 367 * as long as the inode doesn't go away and racy results are not a problem.
 368 */
 369unsigned long shmem_partial_swap_usage(struct address_space *mapping,
 370						pgoff_t start, pgoff_t end)
 371{
 372	struct radix_tree_iter iter;
 373	void **slot;
 374	struct page *page;
 375	unsigned long swapped = 0;
 376
 377	rcu_read_lock();
 378
 379	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
 380		if (iter.index >= end)
 381			break;
 382
 383		page = radix_tree_deref_slot(slot);
 384
 385		if (radix_tree_deref_retry(page)) {
 386			slot = radix_tree_iter_retry(&iter);
 387			continue;
 
 
 
 
 
 
 
 
 
 388		}
 
 
 389
 390		if (radix_tree_exceptional_entry(page))
 391			swapped++;
 392
 393		if (need_resched()) {
 394			cond_resched_rcu();
 395			slot = radix_tree_iter_next(&iter);
 396		}
 
 
 397	}
 398
 
 399	rcu_read_unlock();
 400
 401	return swapped << PAGE_SHIFT;
 402}
 403
 404/*
 405 * Determine (in bytes) how many of the shmem object's pages mapped by the
 406 * given vma is swapped out.
 407 *
 408 * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
 409 * as long as the inode doesn't go away and racy results are not a problem.
 410 */
 411unsigned long shmem_swap_usage(struct vm_area_struct *vma)
 
 412{
 413	struct inode *inode = file_inode(vma->vm_file);
 414	struct shmem_inode_info *info = SHMEM_I(inode);
 415	struct address_space *mapping = inode->i_mapping;
 416	unsigned long swapped;
 417
 418	/* Be careful as we don't hold info->lock */
 419	swapped = READ_ONCE(info->swapped);
 420
 421	/*
 422	 * The easier cases are when the shmem object has nothing in swap, or
 423	 * the vma maps it whole. Then we can simply use the stats that we
 424	 * already track.
 425	 */
 426	if (!swapped)
 427		return 0;
 428
 429	if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
 430		return swapped << PAGE_SHIFT;
 431
 432	/* Here comes the more involved part */
 433	return shmem_partial_swap_usage(mapping,
 434			linear_page_index(vma, vma->vm_start),
 435			linear_page_index(vma, vma->vm_end));
 
 
 436}
 437
 438/*
 439 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
 440 */
 441void shmem_unlock_mapping(struct address_space *mapping)
 442{
 443	struct pagevec pvec;
 444	pgoff_t indices[PAGEVEC_SIZE];
 445	pgoff_t index = 0;
 446
 447	pagevec_init(&pvec, 0);
 448	/*
 449	 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
 450	 */
 451	while (!mapping_unevictable(mapping)) {
 452		/*
 453		 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
 454		 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
 455		 */
 456		pvec.nr = find_get_entries(mapping, index,
 457					   PAGEVEC_SIZE, pvec.pages, indices);
 458		if (!pvec.nr)
 459			break;
 460		index = indices[pvec.nr - 1] + 1;
 461		pagevec_remove_exceptionals(&pvec);
 462		check_move_unevictable_pages(pvec.pages, pvec.nr);
 463		pagevec_release(&pvec);
 464		cond_resched();
 465	}
 
 
 466}
 467
 468/*
 469 * Remove range of pages and swap entries from radix tree, and free them.
 470 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
 471 */
 472static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
 473								 bool unfalloc)
 474{
 475	struct address_space *mapping = inode->i_mapping;
 476	struct shmem_inode_info *info = SHMEM_I(inode);
 477	pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
 478	pgoff_t end = (lend + 1) >> PAGE_SHIFT;
 479	unsigned int partial_start = lstart & (PAGE_SIZE - 1);
 480	unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
 481	struct pagevec pvec;
 482	pgoff_t indices[PAGEVEC_SIZE];
 483	long nr_swaps_freed = 0;
 484	pgoff_t index;
 485	int i;
 486
 487	if (lend == -1)
 488		end = -1;	/* unsigned, so actually very big */
 489
 490	pagevec_init(&pvec, 0);
 491	index = start;
 492	while (index < end) {
 493		pvec.nr = find_get_entries(mapping, index,
 494			min(end - index, (pgoff_t)PAGEVEC_SIZE),
 495			pvec.pages, indices);
 496		if (!pvec.nr)
 497			break;
 
 498		for (i = 0; i < pagevec_count(&pvec); i++) {
 499			struct page *page = pvec.pages[i];
 500
 501			index = indices[i];
 502			if (index >= end)
 503				break;
 504
 505			if (radix_tree_exceptional_entry(page)) {
 506				if (unfalloc)
 507					continue;
 508				nr_swaps_freed += !shmem_free_swap(mapping,
 509								index, page);
 510				continue;
 511			}
 512
 513			if (!trylock_page(page))
 514				continue;
 515			if (!unfalloc || !PageUptodate(page)) {
 516				if (page->mapping == mapping) {
 517					VM_BUG_ON_PAGE(PageWriteback(page), page);
 518					truncate_inode_page(mapping, page);
 519				}
 520			}
 521			unlock_page(page);
 522		}
 523		pagevec_remove_exceptionals(&pvec);
 524		pagevec_release(&pvec);
 525		cond_resched();
 526		index++;
 527	}
 528
 529	if (partial_start) {
 530		struct page *page = NULL;
 531		shmem_getpage(inode, start - 1, &page, SGP_READ, NULL);
 532		if (page) {
 533			unsigned int top = PAGE_SIZE;
 534			if (start > end) {
 535				top = partial_end;
 536				partial_end = 0;
 537			}
 538			zero_user_segment(page, partial_start, top);
 539			set_page_dirty(page);
 540			unlock_page(page);
 541			put_page(page);
 542		}
 543	}
 544	if (partial_end) {
 545		struct page *page = NULL;
 546		shmem_getpage(inode, end, &page, SGP_READ, NULL);
 547		if (page) {
 548			zero_user_segment(page, 0, partial_end);
 549			set_page_dirty(page);
 550			unlock_page(page);
 551			put_page(page);
 552		}
 553	}
 554	if (start >= end)
 555		return;
 556
 557	index = start;
 558	while (index < end) {
 559		cond_resched();
 560
 561		pvec.nr = find_get_entries(mapping, index,
 562				min(end - index, (pgoff_t)PAGEVEC_SIZE),
 563				pvec.pages, indices);
 564		if (!pvec.nr) {
 565			/* If all gone or hole-punch or unfalloc, we're done */
 566			if (index == start || end != -1)
 567				break;
 568			/* But if truncating, restart to make sure all gone */
 569			index = start;
 570			continue;
 571		}
 
 
 
 
 
 572		for (i = 0; i < pagevec_count(&pvec); i++) {
 573			struct page *page = pvec.pages[i];
 574
 575			index = indices[i];
 576			if (index >= end)
 577				break;
 578
 579			if (radix_tree_exceptional_entry(page)) {
 580				if (unfalloc)
 581					continue;
 582				if (shmem_free_swap(mapping, index, page)) {
 583					/* Swap was replaced by page: retry */
 584					index--;
 585					break;
 586				}
 587				nr_swaps_freed++;
 588				continue;
 589			}
 590
 591			lock_page(page);
 592			if (!unfalloc || !PageUptodate(page)) {
 593				if (page->mapping == mapping) {
 594					VM_BUG_ON_PAGE(PageWriteback(page), page);
 595					truncate_inode_page(mapping, page);
 596				} else {
 597					/* Page was replaced by swap: retry */
 598					unlock_page(page);
 599					index--;
 600					break;
 601				}
 602			}
 603			unlock_page(page);
 604		}
 605		pagevec_remove_exceptionals(&pvec);
 606		pagevec_release(&pvec);
 607		index++;
 608	}
 609
 610	spin_lock(&info->lock);
 611	info->swapped -= nr_swaps_freed;
 612	shmem_recalc_inode(inode);
 613	spin_unlock(&info->lock);
 614}
 615
 616void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
 617{
 618	shmem_undo_range(inode, lstart, lend, false);
 619	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
 620}
 621EXPORT_SYMBOL_GPL(shmem_truncate_range);
 622
 623static int shmem_getattr(struct vfsmount *mnt, struct dentry *dentry,
 624			 struct kstat *stat)
 625{
 626	struct inode *inode = dentry->d_inode;
 627	struct shmem_inode_info *info = SHMEM_I(inode);
 628
 629	if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
 630		spin_lock(&info->lock);
 631		shmem_recalc_inode(inode);
 632		spin_unlock(&info->lock);
 633	}
 634	generic_fillattr(inode, stat);
 635	return 0;
 636}
 637
 638static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
 639{
 640	struct inode *inode = d_inode(dentry);
 641	struct shmem_inode_info *info = SHMEM_I(inode);
 642	int error;
 643
 644	error = inode_change_ok(inode, attr);
 645	if (error)
 646		return error;
 647
 648	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
 649		loff_t oldsize = inode->i_size;
 650		loff_t newsize = attr->ia_size;
 651
 652		/* protected by i_mutex */
 653		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
 654		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
 655			return -EPERM;
 656
 657		if (newsize != oldsize) {
 658			error = shmem_reacct_size(SHMEM_I(inode)->flags,
 659					oldsize, newsize);
 660			if (error)
 661				return error;
 662			i_size_write(inode, newsize);
 663			inode->i_ctime = inode->i_mtime = CURRENT_TIME;
 664		}
 665		if (newsize <= oldsize) {
 666			loff_t holebegin = round_up(newsize, PAGE_SIZE);
 667			if (oldsize > holebegin)
 668				unmap_mapping_range(inode->i_mapping,
 669							holebegin, 0, 1);
 670			if (info->alloced)
 671				shmem_truncate_range(inode,
 672							newsize, (loff_t)-1);
 673			/* unmap again to remove racily COWed private pages */
 674			if (oldsize > holebegin)
 675				unmap_mapping_range(inode->i_mapping,
 676							holebegin, 0, 1);
 677		}
 678	}
 679
 680	setattr_copy(inode, attr);
 
 681	if (attr->ia_valid & ATTR_MODE)
 682		error = posix_acl_chmod(inode, inode->i_mode);
 
 683	return error;
 684}
 685
 686static void shmem_evict_inode(struct inode *inode)
 687{
 688	struct shmem_inode_info *info = SHMEM_I(inode);
 
 689
 690	if (inode->i_mapping->a_ops == &shmem_aops) {
 691		shmem_unacct_size(info->flags, inode->i_size);
 692		inode->i_size = 0;
 693		shmem_truncate_range(inode, 0, (loff_t)-1);
 694		if (!list_empty(&info->swaplist)) {
 695			mutex_lock(&shmem_swaplist_mutex);
 696			list_del_init(&info->swaplist);
 697			mutex_unlock(&shmem_swaplist_mutex);
 698		}
 699	}
 
 700
 701	simple_xattrs_free(&info->xattrs);
 702	WARN_ON(inode->i_blocks);
 
 
 
 703	shmem_free_inode(inode->i_sb);
 704	clear_inode(inode);
 705}
 706
 707/*
 708 * If swap found in inode, free it and move page from swapcache to filecache.
 709 */
 710static int shmem_unuse_inode(struct shmem_inode_info *info,
 711			     swp_entry_t swap, struct page **pagep)
 712{
 713	struct address_space *mapping = info->vfs_inode.i_mapping;
 714	void *radswap;
 715	pgoff_t index;
 716	gfp_t gfp;
 717	int error = 0;
 718
 719	radswap = swp_to_radix_entry(swap);
 720	index = radix_tree_locate_item(&mapping->page_tree, radswap);
 721	if (index == -1)
 722		return -EAGAIN;	/* tell shmem_unuse we found nothing */
 723
 724	/*
 725	 * Move _head_ to start search for next from here.
 726	 * But be careful: shmem_evict_inode checks list_empty without taking
 727	 * mutex, and there's an instant in list_move_tail when info->swaplist
 728	 * would appear empty, if it were the only one on shmem_swaplist.
 729	 */
 730	if (shmem_swaplist.next != &info->swaplist)
 731		list_move_tail(&shmem_swaplist, &info->swaplist);
 732
 733	gfp = mapping_gfp_mask(mapping);
 734	if (shmem_should_replace_page(*pagep, gfp)) {
 735		mutex_unlock(&shmem_swaplist_mutex);
 736		error = shmem_replace_page(pagep, gfp, info, index);
 737		mutex_lock(&shmem_swaplist_mutex);
 738		/*
 739		 * We needed to drop mutex to make that restrictive page
 740		 * allocation, but the inode might have been freed while we
 741		 * dropped it: although a racing shmem_evict_inode() cannot
 742		 * complete without emptying the radix_tree, our page lock
 743		 * on this swapcache page is not enough to prevent that -
 744		 * free_swap_and_cache() of our swap entry will only
 745		 * trylock_page(), removing swap from radix_tree whatever.
 746		 *
 747		 * We must not proceed to shmem_add_to_page_cache() if the
 748		 * inode has been freed, but of course we cannot rely on
 749		 * inode or mapping or info to check that.  However, we can
 750		 * safely check if our swap entry is still in use (and here
 751		 * it can't have got reused for another page): if it's still
 752		 * in use, then the inode cannot have been freed yet, and we
 753		 * can safely proceed (if it's no longer in use, that tells
 754		 * nothing about the inode, but we don't need to unuse swap).
 755		 */
 756		if (!page_swapcount(*pagep))
 757			error = -ENOENT;
 758	}
 759
 760	/*
 761	 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
 762	 * but also to hold up shmem_evict_inode(): so inode cannot be freed
 763	 * beneath us (pagelock doesn't help until the page is in pagecache).
 764	 */
 765	if (!error)
 766		error = shmem_add_to_page_cache(*pagep, mapping, index,
 767						radswap);
 
 768	if (error != -ENOMEM) {
 769		/*
 770		 * Truncation and eviction use free_swap_and_cache(), which
 771		 * only does trylock page: if we raced, best clean up here.
 772		 */
 773		delete_from_swap_cache(*pagep);
 774		set_page_dirty(*pagep);
 775		if (!error) {
 776			spin_lock(&info->lock);
 777			info->swapped--;
 778			spin_unlock(&info->lock);
 779			swap_free(swap);
 780		}
 
 781	}
 782	return error;
 783}
 784
 785/*
 786 * Search through swapped inodes to find and replace swap by page.
 787 */
 788int shmem_unuse(swp_entry_t swap, struct page *page)
 789{
 790	struct list_head *this, *next;
 791	struct shmem_inode_info *info;
 792	struct mem_cgroup *memcg;
 793	int error = 0;
 794
 795	/*
 796	 * There's a faint possibility that swap page was replaced before
 797	 * caller locked it: caller will come back later with the right page.
 798	 */
 799	if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
 800		goto out;
 801
 802	/*
 803	 * Charge page using GFP_KERNEL while we can wait, before taking
 804	 * the shmem_swaplist_mutex which might hold up shmem_writepage().
 805	 * Charged back to the user (not to caller) when swap account is used.
 806	 */
 807	error = mem_cgroup_try_charge(page, current->mm, GFP_KERNEL, &memcg,
 808			false);
 809	if (error)
 810		goto out;
 811	/* No radix_tree_preload: swap entry keeps a place for page in tree */
 812	error = -EAGAIN;
 813
 814	mutex_lock(&shmem_swaplist_mutex);
 815	list_for_each_safe(this, next, &shmem_swaplist) {
 816		info = list_entry(this, struct shmem_inode_info, swaplist);
 817		if (info->swapped)
 818			error = shmem_unuse_inode(info, swap, &page);
 819		else
 820			list_del_init(&info->swaplist);
 821		cond_resched();
 822		if (error != -EAGAIN)
 823			break;
 824		/* found nothing in this: move on to search the next */
 825	}
 826	mutex_unlock(&shmem_swaplist_mutex);
 827
 828	if (error) {
 829		if (error != -ENOMEM)
 830			error = 0;
 831		mem_cgroup_cancel_charge(page, memcg, false);
 832	} else
 833		mem_cgroup_commit_charge(page, memcg, true, false);
 834out:
 835	unlock_page(page);
 836	put_page(page);
 837	return error;
 838}
 839
 840/*
 841 * Move the page from the page cache to the swap cache.
 842 */
 843static int shmem_writepage(struct page *page, struct writeback_control *wbc)
 844{
 845	struct shmem_inode_info *info;
 846	struct address_space *mapping;
 847	struct inode *inode;
 848	swp_entry_t swap;
 849	pgoff_t index;
 850
 851	BUG_ON(!PageLocked(page));
 852	mapping = page->mapping;
 853	index = page->index;
 854	inode = mapping->host;
 855	info = SHMEM_I(inode);
 856	if (info->flags & VM_LOCKED)
 857		goto redirty;
 858	if (!total_swap_pages)
 859		goto redirty;
 860
 861	/*
 862	 * Our capabilities prevent regular writeback or sync from ever calling
 863	 * shmem_writepage; but a stacking filesystem might use ->writepage of
 864	 * its underlying filesystem, in which case tmpfs should write out to
 865	 * swap only in response to memory pressure, and not for the writeback
 866	 * threads or sync.
 867	 */
 868	if (!wbc->for_reclaim) {
 869		WARN_ON_ONCE(1);	/* Still happens? Tell us about it! */
 870		goto redirty;
 871	}
 872
 873	/*
 874	 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
 875	 * value into swapfile.c, the only way we can correctly account for a
 876	 * fallocated page arriving here is now to initialize it and write it.
 877	 *
 878	 * That's okay for a page already fallocated earlier, but if we have
 879	 * not yet completed the fallocation, then (a) we want to keep track
 880	 * of this page in case we have to undo it, and (b) it may not be a
 881	 * good idea to continue anyway, once we're pushing into swap.  So
 882	 * reactivate the page, and let shmem_fallocate() quit when too many.
 883	 */
 884	if (!PageUptodate(page)) {
 885		if (inode->i_private) {
 886			struct shmem_falloc *shmem_falloc;
 887			spin_lock(&inode->i_lock);
 888			shmem_falloc = inode->i_private;
 889			if (shmem_falloc &&
 890			    !shmem_falloc->waitq &&
 891			    index >= shmem_falloc->start &&
 892			    index < shmem_falloc->next)
 893				shmem_falloc->nr_unswapped++;
 894			else
 895				shmem_falloc = NULL;
 896			spin_unlock(&inode->i_lock);
 897			if (shmem_falloc)
 898				goto redirty;
 899		}
 900		clear_highpage(page);
 901		flush_dcache_page(page);
 902		SetPageUptodate(page);
 903	}
 904
 905	swap = get_swap_page();
 906	if (!swap.val)
 907		goto redirty;
 908
 909	if (mem_cgroup_try_charge_swap(page, swap))
 910		goto free_swap;
 911
 912	/*
 913	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
 914	 * if it's not already there.  Do it now before the page is
 915	 * moved to swap cache, when its pagelock no longer protects
 916	 * the inode from eviction.  But don't unlock the mutex until
 917	 * we've incremented swapped, because shmem_unuse_inode() will
 918	 * prune a !swapped inode from the swaplist under this mutex.
 919	 */
 920	mutex_lock(&shmem_swaplist_mutex);
 921	if (list_empty(&info->swaplist))
 922		list_add_tail(&info->swaplist, &shmem_swaplist);
 923
 924	if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
 
 
 
 925		spin_lock(&info->lock);
 926		shmem_recalc_inode(inode);
 927		info->swapped++;
 
 928		spin_unlock(&info->lock);
 929
 930		swap_shmem_alloc(swap);
 931		shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
 932
 933		mutex_unlock(&shmem_swaplist_mutex);
 934		BUG_ON(page_mapped(page));
 935		swap_writepage(page, wbc);
 936		return 0;
 937	}
 938
 939	mutex_unlock(&shmem_swaplist_mutex);
 940free_swap:
 941	swapcache_free(swap);
 942redirty:
 943	set_page_dirty(page);
 944	if (wbc->for_reclaim)
 945		return AOP_WRITEPAGE_ACTIVATE;	/* Return with page locked */
 946	unlock_page(page);
 947	return 0;
 948}
 949
 950#ifdef CONFIG_NUMA
 951#ifdef CONFIG_TMPFS
 952static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
 953{
 954	char buffer[64];
 955
 956	if (!mpol || mpol->mode == MPOL_DEFAULT)
 957		return;		/* show nothing */
 958
 959	mpol_to_str(buffer, sizeof(buffer), mpol);
 960
 961	seq_printf(seq, ",mpol=%s", buffer);
 962}
 963
 964static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
 965{
 966	struct mempolicy *mpol = NULL;
 967	if (sbinfo->mpol) {
 968		spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
 969		mpol = sbinfo->mpol;
 970		mpol_get(mpol);
 971		spin_unlock(&sbinfo->stat_lock);
 972	}
 973	return mpol;
 974}
 975#endif /* CONFIG_TMPFS */
 976
 977static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
 978			struct shmem_inode_info *info, pgoff_t index)
 979{
 
 980	struct vm_area_struct pvma;
 981	struct page *page;
 
 
 982
 983	/* Create a pseudo vma that just contains the policy */
 984	pvma.vm_start = 0;
 985	/* Bias interleave by inode number to distribute better across nodes */
 986	pvma.vm_pgoff = index + info->vfs_inode.i_ino;
 987	pvma.vm_ops = NULL;
 988	pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
 989
 990	page = swapin_readahead(swap, gfp, &pvma, 0);
 991
 992	/* Drop reference taken by mpol_shared_policy_lookup() */
 993	mpol_cond_put(pvma.vm_policy);
 994
 995	return page;
 996}
 997
 998static struct page *shmem_alloc_page(gfp_t gfp,
 999			struct shmem_inode_info *info, pgoff_t index)
1000{
1001	struct vm_area_struct pvma;
1002	struct page *page;
1003
1004	/* Create a pseudo vma that just contains the policy */
1005	pvma.vm_start = 0;
1006	/* Bias interleave by inode number to distribute better across nodes */
1007	pvma.vm_pgoff = index + info->vfs_inode.i_ino;
1008	pvma.vm_ops = NULL;
1009	pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1010
1011	page = alloc_page_vma(gfp, &pvma, 0);
1012
1013	/* Drop reference taken by mpol_shared_policy_lookup() */
1014	mpol_cond_put(pvma.vm_policy);
1015
1016	return page;
1017}
1018#else /* !CONFIG_NUMA */
1019#ifdef CONFIG_TMPFS
1020static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1021{
1022}
1023#endif /* CONFIG_TMPFS */
1024
1025static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1026			struct shmem_inode_info *info, pgoff_t index)
1027{
1028	return swapin_readahead(swap, gfp, NULL, 0);
1029}
1030
1031static inline struct page *shmem_alloc_page(gfp_t gfp,
1032			struct shmem_inode_info *info, pgoff_t index)
1033{
1034	return alloc_page(gfp);
1035}
1036#endif /* CONFIG_NUMA */
1037
1038#if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
1039static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1040{
1041	return NULL;
1042}
1043#endif
1044
1045/*
1046 * When a page is moved from swapcache to shmem filecache (either by the
1047 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1048 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1049 * ignorance of the mapping it belongs to.  If that mapping has special
1050 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1051 * we may need to copy to a suitable page before moving to filecache.
1052 *
1053 * In a future release, this may well be extended to respect cpuset and
1054 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1055 * but for now it is a simple matter of zone.
1056 */
1057static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1058{
1059	return page_zonenum(page) > gfp_zone(gfp);
1060}
1061
1062static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1063				struct shmem_inode_info *info, pgoff_t index)
1064{
1065	struct page *oldpage, *newpage;
1066	struct address_space *swap_mapping;
1067	pgoff_t swap_index;
1068	int error;
1069
1070	oldpage = *pagep;
1071	swap_index = page_private(oldpage);
1072	swap_mapping = page_mapping(oldpage);
1073
1074	/*
1075	 * We have arrived here because our zones are constrained, so don't
1076	 * limit chance of success by further cpuset and node constraints.
1077	 */
1078	gfp &= ~GFP_CONSTRAINT_MASK;
1079	newpage = shmem_alloc_page(gfp, info, index);
1080	if (!newpage)
1081		return -ENOMEM;
1082
1083	get_page(newpage);
1084	copy_highpage(newpage, oldpage);
1085	flush_dcache_page(newpage);
1086
1087	__SetPageLocked(newpage);
1088	SetPageUptodate(newpage);
1089	SetPageSwapBacked(newpage);
1090	set_page_private(newpage, swap_index);
1091	SetPageSwapCache(newpage);
1092
1093	/*
1094	 * Our caller will very soon move newpage out of swapcache, but it's
1095	 * a nice clean interface for us to replace oldpage by newpage there.
1096	 */
1097	spin_lock_irq(&swap_mapping->tree_lock);
1098	error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1099								   newpage);
1100	if (!error) {
1101		__inc_zone_page_state(newpage, NR_FILE_PAGES);
1102		__dec_zone_page_state(oldpage, NR_FILE_PAGES);
1103	}
1104	spin_unlock_irq(&swap_mapping->tree_lock);
1105
1106	if (unlikely(error)) {
1107		/*
1108		 * Is this possible?  I think not, now that our callers check
1109		 * both PageSwapCache and page_private after getting page lock;
1110		 * but be defensive.  Reverse old to newpage for clear and free.
1111		 */
1112		oldpage = newpage;
1113	} else {
1114		mem_cgroup_migrate(oldpage, newpage);
1115		lru_cache_add_anon(newpage);
1116		*pagep = newpage;
1117	}
1118
1119	ClearPageSwapCache(oldpage);
1120	set_page_private(oldpage, 0);
1121
1122	unlock_page(oldpage);
1123	put_page(oldpage);
1124	put_page(oldpage);
1125	return error;
1126}
1127
1128/*
1129 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1130 *
1131 * If we allocate a new one we do not mark it dirty. That's up to the
1132 * vm. If we swap it in we mark it dirty since we also free the swap
1133 * entry since a page cannot live in both the swap and page cache
1134 */
1135static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1136	struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type)
1137{
1138	struct address_space *mapping = inode->i_mapping;
1139	struct shmem_inode_info *info;
1140	struct shmem_sb_info *sbinfo;
1141	struct mem_cgroup *memcg;
1142	struct page *page;
1143	swp_entry_t swap;
1144	int error;
1145	int once = 0;
1146	int alloced = 0;
1147
1148	if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1149		return -EFBIG;
1150repeat:
1151	swap.val = 0;
1152	page = find_lock_entry(mapping, index);
1153	if (radix_tree_exceptional_entry(page)) {
1154		swap = radix_to_swp_entry(page);
1155		page = NULL;
1156	}
1157
1158	if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1159	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1160		error = -EINVAL;
1161		goto unlock;
1162	}
1163
1164	if (page && sgp == SGP_WRITE)
1165		mark_page_accessed(page);
1166
1167	/* fallocated page? */
1168	if (page && !PageUptodate(page)) {
1169		if (sgp != SGP_READ)
1170			goto clear;
1171		unlock_page(page);
1172		put_page(page);
1173		page = NULL;
1174	}
1175	if (page || (sgp == SGP_READ && !swap.val)) {
 
 
 
 
 
 
1176		*pagep = page;
1177		return 0;
1178	}
1179
1180	/*
1181	 * Fast cache lookup did not find it:
1182	 * bring it back from swap or allocate.
1183	 */
1184	info = SHMEM_I(inode);
1185	sbinfo = SHMEM_SB(inode->i_sb);
1186
1187	if (swap.val) {
1188		/* Look it up and read it in.. */
1189		page = lookup_swap_cache(swap);
1190		if (!page) {
1191			/* here we actually do the io */
1192			if (fault_type)
1193				*fault_type |= VM_FAULT_MAJOR;
1194			page = shmem_swapin(swap, gfp, info, index);
1195			if (!page) {
1196				error = -ENOMEM;
1197				goto failed;
1198			}
1199		}
1200
1201		/* We have to do this with page locked to prevent races */
1202		lock_page(page);
1203		if (!PageSwapCache(page) || page_private(page) != swap.val ||
1204		    !shmem_confirm_swap(mapping, index, swap)) {
1205			error = -EEXIST;	/* try again */
1206			goto unlock;
1207		}
1208		if (!PageUptodate(page)) {
1209			error = -EIO;
1210			goto failed;
1211		}
1212		wait_on_page_writeback(page);
1213
1214		if (shmem_should_replace_page(page, gfp)) {
1215			error = shmem_replace_page(&page, gfp, info, index);
1216			if (error)
1217				goto failed;
 
 
 
1218		}
1219
1220		error = mem_cgroup_try_charge(page, current->mm, gfp, &memcg,
1221				false);
1222		if (!error) {
1223			error = shmem_add_to_page_cache(page, mapping, index,
1224						swp_to_radix_entry(swap));
1225			/*
1226			 * We already confirmed swap under page lock, and make
1227			 * no memory allocation here, so usually no possibility
1228			 * of error; but free_swap_and_cache() only trylocks a
1229			 * page, so it is just possible that the entry has been
1230			 * truncated or holepunched since swap was confirmed.
1231			 * shmem_undo_range() will have done some of the
1232			 * unaccounting, now delete_from_swap_cache() will do
1233			 * the rest.
1234			 * Reset swap.val? No, leave it so "failed" goes back to
1235			 * "repeat": reading a hole and writing should succeed.
1236			 */
1237			if (error) {
1238				mem_cgroup_cancel_charge(page, memcg, false);
1239				delete_from_swap_cache(page);
1240			}
1241		}
1242		if (error)
1243			goto failed;
1244
1245		mem_cgroup_commit_charge(page, memcg, true, false);
1246
1247		spin_lock(&info->lock);
1248		info->swapped--;
1249		shmem_recalc_inode(inode);
1250		spin_unlock(&info->lock);
1251
1252		if (sgp == SGP_WRITE)
1253			mark_page_accessed(page);
1254
1255		delete_from_swap_cache(page);
1256		set_page_dirty(page);
1257		swap_free(swap);
1258
1259	} else {
1260		if (shmem_acct_block(info->flags)) {
1261			error = -ENOSPC;
1262			goto failed;
1263		}
1264		if (sbinfo->max_blocks) {
1265			if (percpu_counter_compare(&sbinfo->used_blocks,
1266						sbinfo->max_blocks) >= 0) {
1267				error = -ENOSPC;
1268				goto unacct;
1269			}
1270			percpu_counter_inc(&sbinfo->used_blocks);
1271		}
1272
1273		page = shmem_alloc_page(gfp, info, index);
1274		if (!page) {
1275			error = -ENOMEM;
1276			goto decused;
1277		}
1278
1279		__SetPageSwapBacked(page);
1280		__SetPageLocked(page);
1281		if (sgp == SGP_WRITE)
1282			__SetPageReferenced(page);
1283
1284		error = mem_cgroup_try_charge(page, current->mm, gfp, &memcg,
1285				false);
1286		if (error)
1287			goto decused;
1288		error = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK);
1289		if (!error) {
1290			error = shmem_add_to_page_cache(page, mapping, index,
1291							NULL);
1292			radix_tree_preload_end();
1293		}
1294		if (error) {
1295			mem_cgroup_cancel_charge(page, memcg, false);
1296			goto decused;
1297		}
1298		mem_cgroup_commit_charge(page, memcg, false, false);
1299		lru_cache_add_anon(page);
1300
1301		spin_lock(&info->lock);
1302		info->alloced++;
1303		inode->i_blocks += BLOCKS_PER_PAGE;
1304		shmem_recalc_inode(inode);
1305		spin_unlock(&info->lock);
1306		alloced = true;
1307
1308		/*
1309		 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1310		 */
1311		if (sgp == SGP_FALLOC)
1312			sgp = SGP_WRITE;
1313clear:
1314		/*
1315		 * Let SGP_WRITE caller clear ends if write does not fill page;
1316		 * but SGP_FALLOC on a page fallocated earlier must initialize
1317		 * it now, lest undo on failure cancel our earlier guarantee.
1318		 */
1319		if (sgp != SGP_WRITE) {
1320			clear_highpage(page);
1321			flush_dcache_page(page);
1322			SetPageUptodate(page);
1323		}
1324		if (sgp == SGP_DIRTY)
1325			set_page_dirty(page);
1326	}
1327
1328	/* Perhaps the file has been truncated since we checked */
1329	if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1330	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1331		if (alloced) {
1332			ClearPageDirty(page);
1333			delete_from_page_cache(page);
1334			spin_lock(&info->lock);
1335			shmem_recalc_inode(inode);
1336			spin_unlock(&info->lock);
1337		}
1338		error = -EINVAL;
1339		goto unlock;
1340	}
1341	*pagep = page;
1342	return 0;
1343
1344	/*
1345	 * Error recovery.
1346	 */
 
 
 
 
 
 
 
1347decused:
1348	if (sbinfo->max_blocks)
1349		percpu_counter_add(&sbinfo->used_blocks, -1);
1350unacct:
1351	shmem_unacct_blocks(info->flags, 1);
1352failed:
1353	if (swap.val && !shmem_confirm_swap(mapping, index, swap))
1354		error = -EEXIST;
1355unlock:
 
 
 
 
 
1356	if (page) {
1357		unlock_page(page);
1358		put_page(page);
1359	}
1360	if (error == -ENOSPC && !once++) {
1361		info = SHMEM_I(inode);
1362		spin_lock(&info->lock);
1363		shmem_recalc_inode(inode);
1364		spin_unlock(&info->lock);
1365		goto repeat;
1366	}
1367	if (error == -EEXIST)	/* from above or from radix_tree_insert */
1368		goto repeat;
1369	return error;
1370}
1371
1372static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1373{
1374	struct inode *inode = file_inode(vma->vm_file);
1375	int error;
1376	int ret = VM_FAULT_LOCKED;
1377
1378	/*
1379	 * Trinity finds that probing a hole which tmpfs is punching can
1380	 * prevent the hole-punch from ever completing: which in turn
1381	 * locks writers out with its hold on i_mutex.  So refrain from
1382	 * faulting pages into the hole while it's being punched.  Although
1383	 * shmem_undo_range() does remove the additions, it may be unable to
1384	 * keep up, as each new page needs its own unmap_mapping_range() call,
1385	 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1386	 *
1387	 * It does not matter if we sometimes reach this check just before the
1388	 * hole-punch begins, so that one fault then races with the punch:
1389	 * we just need to make racing faults a rare case.
1390	 *
1391	 * The implementation below would be much simpler if we just used a
1392	 * standard mutex or completion: but we cannot take i_mutex in fault,
1393	 * and bloating every shmem inode for this unlikely case would be sad.
1394	 */
1395	if (unlikely(inode->i_private)) {
1396		struct shmem_falloc *shmem_falloc;
1397
1398		spin_lock(&inode->i_lock);
1399		shmem_falloc = inode->i_private;
1400		if (shmem_falloc &&
1401		    shmem_falloc->waitq &&
1402		    vmf->pgoff >= shmem_falloc->start &&
1403		    vmf->pgoff < shmem_falloc->next) {
1404			wait_queue_head_t *shmem_falloc_waitq;
1405			DEFINE_WAIT(shmem_fault_wait);
1406
1407			ret = VM_FAULT_NOPAGE;
1408			if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1409			   !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
1410				/* It's polite to up mmap_sem if we can */
1411				up_read(&vma->vm_mm->mmap_sem);
1412				ret = VM_FAULT_RETRY;
1413			}
1414
1415			shmem_falloc_waitq = shmem_falloc->waitq;
1416			prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
1417					TASK_UNINTERRUPTIBLE);
1418			spin_unlock(&inode->i_lock);
1419			schedule();
1420
1421			/*
1422			 * shmem_falloc_waitq points into the shmem_fallocate()
1423			 * stack of the hole-punching task: shmem_falloc_waitq
1424			 * is usually invalid by the time we reach here, but
1425			 * finish_wait() does not dereference it in that case;
1426			 * though i_lock needed lest racing with wake_up_all().
1427			 */
1428			spin_lock(&inode->i_lock);
1429			finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
1430			spin_unlock(&inode->i_lock);
1431			return ret;
1432		}
1433		spin_unlock(&inode->i_lock);
1434	}
1435
1436	error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1437	if (error)
1438		return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1439
1440	if (ret & VM_FAULT_MAJOR) {
1441		count_vm_event(PGMAJFAULT);
1442		mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1443	}
1444	return ret;
1445}
1446
1447#ifdef CONFIG_NUMA
1448static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1449{
1450	struct inode *inode = file_inode(vma->vm_file);
1451	return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1452}
1453
1454static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1455					  unsigned long addr)
1456{
1457	struct inode *inode = file_inode(vma->vm_file);
1458	pgoff_t index;
1459
1460	index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1461	return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1462}
1463#endif
1464
1465int shmem_lock(struct file *file, int lock, struct user_struct *user)
1466{
1467	struct inode *inode = file_inode(file);
1468	struct shmem_inode_info *info = SHMEM_I(inode);
1469	int retval = -ENOMEM;
1470
1471	spin_lock(&info->lock);
1472	if (lock && !(info->flags & VM_LOCKED)) {
1473		if (!user_shm_lock(inode->i_size, user))
1474			goto out_nomem;
1475		info->flags |= VM_LOCKED;
1476		mapping_set_unevictable(file->f_mapping);
1477	}
1478	if (!lock && (info->flags & VM_LOCKED) && user) {
1479		user_shm_unlock(inode->i_size, user);
1480		info->flags &= ~VM_LOCKED;
1481		mapping_clear_unevictable(file->f_mapping);
 
1482	}
1483	retval = 0;
1484
1485out_nomem:
1486	spin_unlock(&info->lock);
1487	return retval;
1488}
1489
1490static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1491{
1492	file_accessed(file);
1493	vma->vm_ops = &shmem_vm_ops;
 
1494	return 0;
1495}
1496
1497static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1498				     umode_t mode, dev_t dev, unsigned long flags)
1499{
1500	struct inode *inode;
1501	struct shmem_inode_info *info;
1502	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1503
1504	if (shmem_reserve_inode(sb))
1505		return NULL;
1506
1507	inode = new_inode(sb);
1508	if (inode) {
1509		inode->i_ino = get_next_ino();
1510		inode_init_owner(inode, dir, mode);
1511		inode->i_blocks = 0;
 
1512		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1513		inode->i_generation = get_seconds();
1514		info = SHMEM_I(inode);
1515		memset(info, 0, (char *)inode - (char *)info);
1516		spin_lock_init(&info->lock);
1517		info->seals = F_SEAL_SEAL;
1518		info->flags = flags & VM_NORESERVE;
1519		INIT_LIST_HEAD(&info->swaplist);
1520		simple_xattrs_init(&info->xattrs);
1521		cache_no_acl(inode);
1522
1523		switch (mode & S_IFMT) {
1524		default:
1525			inode->i_op = &shmem_special_inode_operations;
1526			init_special_inode(inode, mode, dev);
1527			break;
1528		case S_IFREG:
1529			inode->i_mapping->a_ops = &shmem_aops;
1530			inode->i_op = &shmem_inode_operations;
1531			inode->i_fop = &shmem_file_operations;
1532			mpol_shared_policy_init(&info->policy,
1533						 shmem_get_sbmpol(sbinfo));
1534			break;
1535		case S_IFDIR:
1536			inc_nlink(inode);
1537			/* Some things misbehave if size == 0 on a directory */
1538			inode->i_size = 2 * BOGO_DIRENT_SIZE;
1539			inode->i_op = &shmem_dir_inode_operations;
1540			inode->i_fop = &simple_dir_operations;
1541			break;
1542		case S_IFLNK:
1543			/*
1544			 * Must not load anything in the rbtree,
1545			 * mpol_free_shared_policy will not be called.
1546			 */
1547			mpol_shared_policy_init(&info->policy, NULL);
1548			break;
1549		}
1550	} else
1551		shmem_free_inode(sb);
1552	return inode;
1553}
1554
1555bool shmem_mapping(struct address_space *mapping)
1556{
1557	if (!mapping->host)
1558		return false;
1559
1560	return mapping->host->i_sb->s_op == &shmem_ops;
1561}
1562
1563#ifdef CONFIG_TMPFS
1564static const struct inode_operations shmem_symlink_inode_operations;
1565static const struct inode_operations shmem_short_symlink_operations;
1566
1567#ifdef CONFIG_TMPFS_XATTR
1568static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
1569#else
1570#define shmem_initxattrs NULL
1571#endif
1572
1573static int
1574shmem_write_begin(struct file *file, struct address_space *mapping,
1575			loff_t pos, unsigned len, unsigned flags,
1576			struct page **pagep, void **fsdata)
1577{
1578	struct inode *inode = mapping->host;
1579	struct shmem_inode_info *info = SHMEM_I(inode);
1580	pgoff_t index = pos >> PAGE_SHIFT;
1581
1582	/* i_mutex is held by caller */
1583	if (unlikely(info->seals)) {
1584		if (info->seals & F_SEAL_WRITE)
1585			return -EPERM;
1586		if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
1587			return -EPERM;
1588	}
1589
1590	return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1591}
1592
1593static int
1594shmem_write_end(struct file *file, struct address_space *mapping,
1595			loff_t pos, unsigned len, unsigned copied,
1596			struct page *page, void *fsdata)
1597{
1598	struct inode *inode = mapping->host;
1599
1600	if (pos + copied > inode->i_size)
1601		i_size_write(inode, pos + copied);
1602
1603	if (!PageUptodate(page)) {
1604		if (copied < PAGE_SIZE) {
1605			unsigned from = pos & (PAGE_SIZE - 1);
1606			zero_user_segments(page, 0, from,
1607					from + copied, PAGE_SIZE);
1608		}
1609		SetPageUptodate(page);
1610	}
1611	set_page_dirty(page);
1612	unlock_page(page);
1613	put_page(page);
1614
1615	return copied;
1616}
1617
1618static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
1619{
1620	struct file *file = iocb->ki_filp;
1621	struct inode *inode = file_inode(file);
1622	struct address_space *mapping = inode->i_mapping;
1623	pgoff_t index;
1624	unsigned long offset;
1625	enum sgp_type sgp = SGP_READ;
1626	int error = 0;
1627	ssize_t retval = 0;
1628	loff_t *ppos = &iocb->ki_pos;
1629
1630	/*
1631	 * Might this read be for a stacking filesystem?  Then when reading
1632	 * holes of a sparse file, we actually need to allocate those pages,
1633	 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1634	 */
1635	if (!iter_is_iovec(to))
1636		sgp = SGP_DIRTY;
1637
1638	index = *ppos >> PAGE_SHIFT;
1639	offset = *ppos & ~PAGE_MASK;
1640
1641	for (;;) {
1642		struct page *page = NULL;
1643		pgoff_t end_index;
1644		unsigned long nr, ret;
1645		loff_t i_size = i_size_read(inode);
1646
1647		end_index = i_size >> PAGE_SHIFT;
1648		if (index > end_index)
1649			break;
1650		if (index == end_index) {
1651			nr = i_size & ~PAGE_MASK;
1652			if (nr <= offset)
1653				break;
1654		}
1655
1656		error = shmem_getpage(inode, index, &page, sgp, NULL);
1657		if (error) {
1658			if (error == -EINVAL)
1659				error = 0;
1660			break;
1661		}
1662		if (page)
1663			unlock_page(page);
1664
1665		/*
1666		 * We must evaluate after, since reads (unlike writes)
1667		 * are called without i_mutex protection against truncate
1668		 */
1669		nr = PAGE_SIZE;
1670		i_size = i_size_read(inode);
1671		end_index = i_size >> PAGE_SHIFT;
1672		if (index == end_index) {
1673			nr = i_size & ~PAGE_MASK;
1674			if (nr <= offset) {
1675				if (page)
1676					put_page(page);
1677				break;
1678			}
1679		}
1680		nr -= offset;
1681
1682		if (page) {
1683			/*
1684			 * If users can be writing to this page using arbitrary
1685			 * virtual addresses, take care about potential aliasing
1686			 * before reading the page on the kernel side.
1687			 */
1688			if (mapping_writably_mapped(mapping))
1689				flush_dcache_page(page);
1690			/*
1691			 * Mark the page accessed if we read the beginning.
1692			 */
1693			if (!offset)
1694				mark_page_accessed(page);
1695		} else {
1696			page = ZERO_PAGE(0);
1697			get_page(page);
1698		}
1699
1700		/*
1701		 * Ok, we have the page, and it's up-to-date, so
1702		 * now we can copy it to user space...
 
 
 
 
 
 
1703		 */
1704		ret = copy_page_to_iter(page, offset, nr, to);
1705		retval += ret;
1706		offset += ret;
1707		index += offset >> PAGE_SHIFT;
1708		offset &= ~PAGE_MASK;
1709
1710		put_page(page);
1711		if (!iov_iter_count(to))
1712			break;
1713		if (ret < nr) {
1714			error = -EFAULT;
1715			break;
1716		}
1717		cond_resched();
1718	}
1719
1720	*ppos = ((loff_t) index << PAGE_SHIFT) + offset;
1721	file_accessed(file);
1722	return retval ? retval : error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1723}
1724
1725static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
1726				struct pipe_inode_info *pipe, size_t len,
1727				unsigned int flags)
1728{
1729	struct address_space *mapping = in->f_mapping;
1730	struct inode *inode = mapping->host;
1731	unsigned int loff, nr_pages, req_pages;
1732	struct page *pages[PIPE_DEF_BUFFERS];
1733	struct partial_page partial[PIPE_DEF_BUFFERS];
1734	struct page *page;
1735	pgoff_t index, end_index;
1736	loff_t isize, left;
1737	int error, page_nr;
1738	struct splice_pipe_desc spd = {
1739		.pages = pages,
1740		.partial = partial,
1741		.nr_pages_max = PIPE_DEF_BUFFERS,
1742		.flags = flags,
1743		.ops = &page_cache_pipe_buf_ops,
1744		.spd_release = spd_release_page,
1745	};
1746
1747	isize = i_size_read(inode);
1748	if (unlikely(*ppos >= isize))
1749		return 0;
1750
1751	left = isize - *ppos;
1752	if (unlikely(left < len))
1753		len = left;
1754
1755	if (splice_grow_spd(pipe, &spd))
1756		return -ENOMEM;
1757
1758	index = *ppos >> PAGE_SHIFT;
1759	loff = *ppos & ~PAGE_MASK;
1760	req_pages = (len + loff + PAGE_SIZE - 1) >> PAGE_SHIFT;
1761	nr_pages = min(req_pages, spd.nr_pages_max);
1762
1763	spd.nr_pages = find_get_pages_contig(mapping, index,
1764						nr_pages, spd.pages);
1765	index += spd.nr_pages;
1766	error = 0;
1767
1768	while (spd.nr_pages < nr_pages) {
1769		error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL);
1770		if (error)
1771			break;
1772		unlock_page(page);
1773		spd.pages[spd.nr_pages++] = page;
1774		index++;
1775	}
1776
1777	index = *ppos >> PAGE_SHIFT;
1778	nr_pages = spd.nr_pages;
1779	spd.nr_pages = 0;
1780
1781	for (page_nr = 0; page_nr < nr_pages; page_nr++) {
1782		unsigned int this_len;
1783
1784		if (!len)
1785			break;
1786
1787		this_len = min_t(unsigned long, len, PAGE_SIZE - loff);
1788		page = spd.pages[page_nr];
1789
1790		if (!PageUptodate(page) || page->mapping != mapping) {
1791			error = shmem_getpage(inode, index, &page,
1792							SGP_CACHE, NULL);
1793			if (error)
1794				break;
1795			unlock_page(page);
1796			put_page(spd.pages[page_nr]);
1797			spd.pages[page_nr] = page;
1798		}
1799
1800		isize = i_size_read(inode);
1801		end_index = (isize - 1) >> PAGE_SHIFT;
1802		if (unlikely(!isize || index > end_index))
1803			break;
1804
1805		if (end_index == index) {
1806			unsigned int plen;
1807
1808			plen = ((isize - 1) & ~PAGE_MASK) + 1;
1809			if (plen <= loff)
1810				break;
1811
1812			this_len = min(this_len, plen - loff);
1813			len = this_len;
1814		}
1815
1816		spd.partial[page_nr].offset = loff;
1817		spd.partial[page_nr].len = this_len;
1818		len -= this_len;
1819		loff = 0;
1820		spd.nr_pages++;
1821		index++;
1822	}
1823
1824	while (page_nr < nr_pages)
1825		put_page(spd.pages[page_nr++]);
1826
1827	if (spd.nr_pages)
1828		error = splice_to_pipe(pipe, &spd);
1829
1830	splice_shrink_spd(&spd);
1831
1832	if (error > 0) {
1833		*ppos += error;
1834		file_accessed(in);
1835	}
1836	return error;
1837}
1838
1839/*
1840 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
1841 */
1842static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
1843				    pgoff_t index, pgoff_t end, int whence)
1844{
1845	struct page *page;
1846	struct pagevec pvec;
1847	pgoff_t indices[PAGEVEC_SIZE];
1848	bool done = false;
1849	int i;
1850
1851	pagevec_init(&pvec, 0);
1852	pvec.nr = 1;		/* start small: we may be there already */
1853	while (!done) {
1854		pvec.nr = find_get_entries(mapping, index,
1855					pvec.nr, pvec.pages, indices);
1856		if (!pvec.nr) {
1857			if (whence == SEEK_DATA)
1858				index = end;
1859			break;
1860		}
1861		for (i = 0; i < pvec.nr; i++, index++) {
1862			if (index < indices[i]) {
1863				if (whence == SEEK_HOLE) {
1864					done = true;
1865					break;
1866				}
1867				index = indices[i];
1868			}
1869			page = pvec.pages[i];
1870			if (page && !radix_tree_exceptional_entry(page)) {
1871				if (!PageUptodate(page))
1872					page = NULL;
1873			}
1874			if (index >= end ||
1875			    (page && whence == SEEK_DATA) ||
1876			    (!page && whence == SEEK_HOLE)) {
1877				done = true;
1878				break;
1879			}
1880		}
1881		pagevec_remove_exceptionals(&pvec);
1882		pagevec_release(&pvec);
1883		pvec.nr = PAGEVEC_SIZE;
1884		cond_resched();
1885	}
1886	return index;
1887}
1888
1889static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
1890{
1891	struct address_space *mapping = file->f_mapping;
1892	struct inode *inode = mapping->host;
1893	pgoff_t start, end;
1894	loff_t new_offset;
1895
1896	if (whence != SEEK_DATA && whence != SEEK_HOLE)
1897		return generic_file_llseek_size(file, offset, whence,
1898					MAX_LFS_FILESIZE, i_size_read(inode));
1899	inode_lock(inode);
1900	/* We're holding i_mutex so we can access i_size directly */
1901
1902	if (offset < 0)
1903		offset = -EINVAL;
1904	else if (offset >= inode->i_size)
1905		offset = -ENXIO;
1906	else {
1907		start = offset >> PAGE_SHIFT;
1908		end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1909		new_offset = shmem_seek_hole_data(mapping, start, end, whence);
1910		new_offset <<= PAGE_SHIFT;
1911		if (new_offset > offset) {
1912			if (new_offset < inode->i_size)
1913				offset = new_offset;
1914			else if (whence == SEEK_DATA)
1915				offset = -ENXIO;
1916			else
1917				offset = inode->i_size;
1918		}
1919	}
1920
1921	if (offset >= 0)
1922		offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
1923	inode_unlock(inode);
1924	return offset;
1925}
1926
1927/*
1928 * We need a tag: a new tag would expand every radix_tree_node by 8 bytes,
1929 * so reuse a tag which we firmly believe is never set or cleared on shmem.
1930 */
1931#define SHMEM_TAG_PINNED        PAGECACHE_TAG_TOWRITE
1932#define LAST_SCAN               4       /* about 150ms max */
1933
1934static void shmem_tag_pins(struct address_space *mapping)
1935{
1936	struct radix_tree_iter iter;
1937	void **slot;
1938	pgoff_t start;
1939	struct page *page;
1940
1941	lru_add_drain();
1942	start = 0;
1943	rcu_read_lock();
1944
1945	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1946		page = radix_tree_deref_slot(slot);
1947		if (!page || radix_tree_exception(page)) {
1948			if (radix_tree_deref_retry(page)) {
1949				slot = radix_tree_iter_retry(&iter);
1950				continue;
1951			}
1952		} else if (page_count(page) - page_mapcount(page) > 1) {
1953			spin_lock_irq(&mapping->tree_lock);
1954			radix_tree_tag_set(&mapping->page_tree, iter.index,
1955					   SHMEM_TAG_PINNED);
1956			spin_unlock_irq(&mapping->tree_lock);
1957		}
1958
1959		if (need_resched()) {
1960			cond_resched_rcu();
1961			slot = radix_tree_iter_next(&iter);
1962		}
1963	}
1964	rcu_read_unlock();
1965}
1966
1967/*
1968 * Setting SEAL_WRITE requires us to verify there's no pending writer. However,
1969 * via get_user_pages(), drivers might have some pending I/O without any active
1970 * user-space mappings (eg., direct-IO, AIO). Therefore, we look at all pages
1971 * and see whether it has an elevated ref-count. If so, we tag them and wait for
1972 * them to be dropped.
1973 * The caller must guarantee that no new user will acquire writable references
1974 * to those pages to avoid races.
1975 */
1976static int shmem_wait_for_pins(struct address_space *mapping)
1977{
1978	struct radix_tree_iter iter;
1979	void **slot;
1980	pgoff_t start;
1981	struct page *page;
1982	int error, scan;
1983
1984	shmem_tag_pins(mapping);
1985
1986	error = 0;
1987	for (scan = 0; scan <= LAST_SCAN; scan++) {
1988		if (!radix_tree_tagged(&mapping->page_tree, SHMEM_TAG_PINNED))
1989			break;
1990
1991		if (!scan)
1992			lru_add_drain_all();
1993		else if (schedule_timeout_killable((HZ << scan) / 200))
1994			scan = LAST_SCAN;
1995
1996		start = 0;
1997		rcu_read_lock();
1998		radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter,
1999					   start, SHMEM_TAG_PINNED) {
2000
2001			page = radix_tree_deref_slot(slot);
2002			if (radix_tree_exception(page)) {
2003				if (radix_tree_deref_retry(page)) {
2004					slot = radix_tree_iter_retry(&iter);
2005					continue;
2006				}
2007
2008				page = NULL;
2009			}
2010
2011			if (page &&
2012			    page_count(page) - page_mapcount(page) != 1) {
2013				if (scan < LAST_SCAN)
2014					goto continue_resched;
2015
2016				/*
2017				 * On the last scan, we clean up all those tags
2018				 * we inserted; but make a note that we still
2019				 * found pages pinned.
2020				 */
2021				error = -EBUSY;
2022			}
2023
2024			spin_lock_irq(&mapping->tree_lock);
2025			radix_tree_tag_clear(&mapping->page_tree,
2026					     iter.index, SHMEM_TAG_PINNED);
2027			spin_unlock_irq(&mapping->tree_lock);
2028continue_resched:
2029			if (need_resched()) {
2030				cond_resched_rcu();
2031				slot = radix_tree_iter_next(&iter);
2032			}
2033		}
2034		rcu_read_unlock();
2035	}
2036
2037	return error;
2038}
2039
2040#define F_ALL_SEALS (F_SEAL_SEAL | \
2041		     F_SEAL_SHRINK | \
2042		     F_SEAL_GROW | \
2043		     F_SEAL_WRITE)
2044
2045int shmem_add_seals(struct file *file, unsigned int seals)
2046{
2047	struct inode *inode = file_inode(file);
2048	struct shmem_inode_info *info = SHMEM_I(inode);
2049	int error;
2050
2051	/*
2052	 * SEALING
2053	 * Sealing allows multiple parties to share a shmem-file but restrict
2054	 * access to a specific subset of file operations. Seals can only be
2055	 * added, but never removed. This way, mutually untrusted parties can
2056	 * share common memory regions with a well-defined policy. A malicious
2057	 * peer can thus never perform unwanted operations on a shared object.
2058	 *
2059	 * Seals are only supported on special shmem-files and always affect
2060	 * the whole underlying inode. Once a seal is set, it may prevent some
2061	 * kinds of access to the file. Currently, the following seals are
2062	 * defined:
2063	 *   SEAL_SEAL: Prevent further seals from being set on this file
2064	 *   SEAL_SHRINK: Prevent the file from shrinking
2065	 *   SEAL_GROW: Prevent the file from growing
2066	 *   SEAL_WRITE: Prevent write access to the file
2067	 *
2068	 * As we don't require any trust relationship between two parties, we
2069	 * must prevent seals from being removed. Therefore, sealing a file
2070	 * only adds a given set of seals to the file, it never touches
2071	 * existing seals. Furthermore, the "setting seals"-operation can be
2072	 * sealed itself, which basically prevents any further seal from being
2073	 * added.
2074	 *
2075	 * Semantics of sealing are only defined on volatile files. Only
2076	 * anonymous shmem files support sealing. More importantly, seals are
2077	 * never written to disk. Therefore, there's no plan to support it on
2078	 * other file types.
2079	 */
2080
2081	if (file->f_op != &shmem_file_operations)
2082		return -EINVAL;
2083	if (!(file->f_mode & FMODE_WRITE))
2084		return -EPERM;
2085	if (seals & ~(unsigned int)F_ALL_SEALS)
2086		return -EINVAL;
2087
2088	inode_lock(inode);
2089
2090	if (info->seals & F_SEAL_SEAL) {
2091		error = -EPERM;
2092		goto unlock;
2093	}
2094
2095	if ((seals & F_SEAL_WRITE) && !(info->seals & F_SEAL_WRITE)) {
2096		error = mapping_deny_writable(file->f_mapping);
2097		if (error)
2098			goto unlock;
2099
2100		error = shmem_wait_for_pins(file->f_mapping);
2101		if (error) {
2102			mapping_allow_writable(file->f_mapping);
2103			goto unlock;
2104		}
2105	}
2106
2107	info->seals |= seals;
2108	error = 0;
2109
2110unlock:
2111	inode_unlock(inode);
2112	return error;
2113}
2114EXPORT_SYMBOL_GPL(shmem_add_seals);
2115
2116int shmem_get_seals(struct file *file)
2117{
2118	if (file->f_op != &shmem_file_operations)
2119		return -EINVAL;
2120
2121	return SHMEM_I(file_inode(file))->seals;
2122}
2123EXPORT_SYMBOL_GPL(shmem_get_seals);
2124
2125long shmem_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
2126{
2127	long error;
2128
2129	switch (cmd) {
2130	case F_ADD_SEALS:
2131		/* disallow upper 32bit */
2132		if (arg > UINT_MAX)
2133			return -EINVAL;
2134
2135		error = shmem_add_seals(file, arg);
2136		break;
2137	case F_GET_SEALS:
2138		error = shmem_get_seals(file);
2139		break;
2140	default:
2141		error = -EINVAL;
2142		break;
2143	}
2144
2145	return error;
2146}
2147
2148static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2149							 loff_t len)
2150{
2151	struct inode *inode = file_inode(file);
2152	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2153	struct shmem_inode_info *info = SHMEM_I(inode);
2154	struct shmem_falloc shmem_falloc;
2155	pgoff_t start, index, end;
2156	int error;
2157
2158	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2159		return -EOPNOTSUPP;
2160
2161	inode_lock(inode);
2162
2163	if (mode & FALLOC_FL_PUNCH_HOLE) {
2164		struct address_space *mapping = file->f_mapping;
2165		loff_t unmap_start = round_up(offset, PAGE_SIZE);
2166		loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2167		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2168
2169		/* protected by i_mutex */
2170		if (info->seals & F_SEAL_WRITE) {
2171			error = -EPERM;
2172			goto out;
2173		}
2174
2175		shmem_falloc.waitq = &shmem_falloc_waitq;
2176		shmem_falloc.start = unmap_start >> PAGE_SHIFT;
2177		shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2178		spin_lock(&inode->i_lock);
2179		inode->i_private = &shmem_falloc;
2180		spin_unlock(&inode->i_lock);
2181
2182		if ((u64)unmap_end > (u64)unmap_start)
2183			unmap_mapping_range(mapping, unmap_start,
2184					    1 + unmap_end - unmap_start, 0);
2185		shmem_truncate_range(inode, offset, offset + len - 1);
2186		/* No need to unmap again: hole-punching leaves COWed pages */
2187
2188		spin_lock(&inode->i_lock);
2189		inode->i_private = NULL;
2190		wake_up_all(&shmem_falloc_waitq);
2191		spin_unlock(&inode->i_lock);
2192		error = 0;
2193		goto out;
2194	}
2195
2196	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2197	error = inode_newsize_ok(inode, offset + len);
2198	if (error)
2199		goto out;
2200
2201	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2202		error = -EPERM;
2203		goto out;
2204	}
2205
2206	start = offset >> PAGE_SHIFT;
2207	end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2208	/* Try to avoid a swapstorm if len is impossible to satisfy */
2209	if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2210		error = -ENOSPC;
2211		goto out;
2212	}
2213
2214	shmem_falloc.waitq = NULL;
2215	shmem_falloc.start = start;
2216	shmem_falloc.next  = start;
2217	shmem_falloc.nr_falloced = 0;
2218	shmem_falloc.nr_unswapped = 0;
2219	spin_lock(&inode->i_lock);
2220	inode->i_private = &shmem_falloc;
2221	spin_unlock(&inode->i_lock);
2222
2223	for (index = start; index < end; index++) {
2224		struct page *page;
2225
2226		/*
2227		 * Good, the fallocate(2) manpage permits EINTR: we may have
2228		 * been interrupted because we are using up too much memory.
2229		 */
2230		if (signal_pending(current))
2231			error = -EINTR;
2232		else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2233			error = -ENOMEM;
2234		else
2235			error = shmem_getpage(inode, index, &page, SGP_FALLOC,
2236									NULL);
2237		if (error) {
2238			/* Remove the !PageUptodate pages we added */
2239			shmem_undo_range(inode,
2240				(loff_t)start << PAGE_SHIFT,
2241				(loff_t)index << PAGE_SHIFT, true);
2242			goto undone;
2243		}
2244
2245		/*
2246		 * Inform shmem_writepage() how far we have reached.
2247		 * No need for lock or barrier: we have the page lock.
2248		 */
2249		shmem_falloc.next++;
2250		if (!PageUptodate(page))
2251			shmem_falloc.nr_falloced++;
2252
2253		/*
2254		 * If !PageUptodate, leave it that way so that freeable pages
2255		 * can be recognized if we need to rollback on error later.
2256		 * But set_page_dirty so that memory pressure will swap rather
2257		 * than free the pages we are allocating (and SGP_CACHE pages
2258		 * might still be clean: we now need to mark those dirty too).
2259		 */
2260		set_page_dirty(page);
2261		unlock_page(page);
2262		put_page(page);
2263		cond_resched();
2264	}
2265
2266	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2267		i_size_write(inode, offset + len);
2268	inode->i_ctime = CURRENT_TIME;
2269undone:
2270	spin_lock(&inode->i_lock);
2271	inode->i_private = NULL;
2272	spin_unlock(&inode->i_lock);
2273out:
2274	inode_unlock(inode);
2275	return error;
2276}
2277
2278static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2279{
2280	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2281
2282	buf->f_type = TMPFS_MAGIC;
2283	buf->f_bsize = PAGE_SIZE;
2284	buf->f_namelen = NAME_MAX;
2285	if (sbinfo->max_blocks) {
2286		buf->f_blocks = sbinfo->max_blocks;
2287		buf->f_bavail =
2288		buf->f_bfree  = sbinfo->max_blocks -
2289				percpu_counter_sum(&sbinfo->used_blocks);
2290	}
2291	if (sbinfo->max_inodes) {
2292		buf->f_files = sbinfo->max_inodes;
2293		buf->f_ffree = sbinfo->free_inodes;
2294	}
2295	/* else leave those fields 0 like simple_statfs */
2296	return 0;
2297}
2298
2299/*
2300 * File creation. Allocate an inode, and we're done..
2301 */
2302static int
2303shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2304{
2305	struct inode *inode;
2306	int error = -ENOSPC;
2307
2308	inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2309	if (inode) {
2310		error = simple_acl_create(dir, inode);
2311		if (error)
2312			goto out_iput;
2313		error = security_inode_init_security(inode, dir,
2314						     &dentry->d_name,
2315						     shmem_initxattrs, NULL);
2316		if (error && error != -EOPNOTSUPP)
2317			goto out_iput;
2318
 
 
 
 
 
 
 
 
 
 
2319		error = 0;
 
2320		dir->i_size += BOGO_DIRENT_SIZE;
2321		dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2322		d_instantiate(dentry, inode);
2323		dget(dentry); /* Extra count - pin the dentry in core */
2324	}
2325	return error;
2326out_iput:
2327	iput(inode);
2328	return error;
2329}
2330
2331static int
2332shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2333{
2334	struct inode *inode;
2335	int error = -ENOSPC;
2336
2337	inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2338	if (inode) {
2339		error = security_inode_init_security(inode, dir,
2340						     NULL,
2341						     shmem_initxattrs, NULL);
2342		if (error && error != -EOPNOTSUPP)
2343			goto out_iput;
2344		error = simple_acl_create(dir, inode);
2345		if (error)
2346			goto out_iput;
2347		d_tmpfile(dentry, inode);
2348	}
2349	return error;
2350out_iput:
2351	iput(inode);
2352	return error;
2353}
2354
2355static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2356{
2357	int error;
2358
2359	if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2360		return error;
2361	inc_nlink(dir);
2362	return 0;
2363}
2364
2365static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2366		bool excl)
2367{
2368	return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2369}
2370
2371/*
2372 * Link a file..
2373 */
2374static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2375{
2376	struct inode *inode = d_inode(old_dentry);
2377	int ret;
2378
2379	/*
2380	 * No ordinary (disk based) filesystem counts links as inodes;
2381	 * but each new link needs a new dentry, pinning lowmem, and
2382	 * tmpfs dentries cannot be pruned until they are unlinked.
2383	 */
2384	ret = shmem_reserve_inode(inode->i_sb);
2385	if (ret)
2386		goto out;
2387
2388	dir->i_size += BOGO_DIRENT_SIZE;
2389	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2390	inc_nlink(inode);
2391	ihold(inode);	/* New dentry reference */
2392	dget(dentry);		/* Extra pinning count for the created dentry */
2393	d_instantiate(dentry, inode);
2394out:
2395	return ret;
2396}
2397
2398static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2399{
2400	struct inode *inode = d_inode(dentry);
2401
2402	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2403		shmem_free_inode(inode->i_sb);
2404
2405	dir->i_size -= BOGO_DIRENT_SIZE;
2406	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2407	drop_nlink(inode);
2408	dput(dentry);	/* Undo the count from "create" - this does all the work */
2409	return 0;
2410}
2411
2412static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2413{
2414	if (!simple_empty(dentry))
2415		return -ENOTEMPTY;
2416
2417	drop_nlink(d_inode(dentry));
2418	drop_nlink(dir);
2419	return shmem_unlink(dir, dentry);
2420}
2421
2422static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2423{
2424	bool old_is_dir = d_is_dir(old_dentry);
2425	bool new_is_dir = d_is_dir(new_dentry);
2426
2427	if (old_dir != new_dir && old_is_dir != new_is_dir) {
2428		if (old_is_dir) {
2429			drop_nlink(old_dir);
2430			inc_nlink(new_dir);
2431		} else {
2432			drop_nlink(new_dir);
2433			inc_nlink(old_dir);
2434		}
2435	}
2436	old_dir->i_ctime = old_dir->i_mtime =
2437	new_dir->i_ctime = new_dir->i_mtime =
2438	d_inode(old_dentry)->i_ctime =
2439	d_inode(new_dentry)->i_ctime = CURRENT_TIME;
2440
2441	return 0;
2442}
2443
2444static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
2445{
2446	struct dentry *whiteout;
2447	int error;
2448
2449	whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
2450	if (!whiteout)
2451		return -ENOMEM;
2452
2453	error = shmem_mknod(old_dir, whiteout,
2454			    S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
2455	dput(whiteout);
2456	if (error)
2457		return error;
2458
2459	/*
2460	 * Cheat and hash the whiteout while the old dentry is still in
2461	 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
2462	 *
2463	 * d_lookup() will consistently find one of them at this point,
2464	 * not sure which one, but that isn't even important.
2465	 */
2466	d_rehash(whiteout);
2467	return 0;
2468}
2469
2470/*
2471 * The VFS layer already does all the dentry stuff for rename,
2472 * we just have to decrement the usage count for the target if
2473 * it exists so that the VFS layer correctly free's it when it
2474 * gets overwritten.
2475 */
2476static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
2477{
2478	struct inode *inode = d_inode(old_dentry);
2479	int they_are_dirs = S_ISDIR(inode->i_mode);
2480
2481	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
2482		return -EINVAL;
2483
2484	if (flags & RENAME_EXCHANGE)
2485		return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
2486
2487	if (!simple_empty(new_dentry))
2488		return -ENOTEMPTY;
2489
2490	if (flags & RENAME_WHITEOUT) {
2491		int error;
2492
2493		error = shmem_whiteout(old_dir, old_dentry);
2494		if (error)
2495			return error;
2496	}
2497
2498	if (d_really_is_positive(new_dentry)) {
2499		(void) shmem_unlink(new_dir, new_dentry);
2500		if (they_are_dirs) {
2501			drop_nlink(d_inode(new_dentry));
2502			drop_nlink(old_dir);
2503		}
2504	} else if (they_are_dirs) {
2505		drop_nlink(old_dir);
2506		inc_nlink(new_dir);
2507	}
2508
2509	old_dir->i_size -= BOGO_DIRENT_SIZE;
2510	new_dir->i_size += BOGO_DIRENT_SIZE;
2511	old_dir->i_ctime = old_dir->i_mtime =
2512	new_dir->i_ctime = new_dir->i_mtime =
2513	inode->i_ctime = CURRENT_TIME;
2514	return 0;
2515}
2516
2517static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
2518{
2519	int error;
2520	int len;
2521	struct inode *inode;
2522	struct page *page;
 
2523	struct shmem_inode_info *info;
2524
2525	len = strlen(symname) + 1;
2526	if (len > PAGE_SIZE)
2527		return -ENAMETOOLONG;
2528
2529	inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
2530	if (!inode)
2531		return -ENOSPC;
2532
2533	error = security_inode_init_security(inode, dir, &dentry->d_name,
2534					     shmem_initxattrs, NULL);
2535	if (error) {
2536		if (error != -EOPNOTSUPP) {
2537			iput(inode);
2538			return error;
2539		}
2540		error = 0;
2541	}
2542
2543	info = SHMEM_I(inode);
2544	inode->i_size = len-1;
2545	if (len <= SHORT_SYMLINK_LEN) {
2546		inode->i_link = kmemdup(symname, len, GFP_KERNEL);
2547		if (!inode->i_link) {
2548			iput(inode);
2549			return -ENOMEM;
2550		}
2551		inode->i_op = &shmem_short_symlink_operations;
2552	} else {
2553		inode_nohighmem(inode);
2554		error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
2555		if (error) {
2556			iput(inode);
2557			return error;
2558		}
2559		inode->i_mapping->a_ops = &shmem_aops;
2560		inode->i_op = &shmem_symlink_inode_operations;
2561		memcpy(page_address(page), symname, len);
2562		SetPageUptodate(page);
 
2563		set_page_dirty(page);
2564		unlock_page(page);
2565		put_page(page);
2566	}
2567	dir->i_size += BOGO_DIRENT_SIZE;
2568	dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2569	d_instantiate(dentry, inode);
2570	dget(dentry);
2571	return 0;
2572}
2573
2574static void shmem_put_link(void *arg)
2575{
2576	mark_page_accessed(arg);
2577	put_page(arg);
2578}
2579
2580static const char *shmem_get_link(struct dentry *dentry,
2581				  struct inode *inode,
2582				  struct delayed_call *done)
2583{
2584	struct page *page = NULL;
2585	int error;
2586	if (!dentry) {
2587		page = find_get_page(inode->i_mapping, 0);
2588		if (!page)
2589			return ERR_PTR(-ECHILD);
2590		if (!PageUptodate(page)) {
2591			put_page(page);
2592			return ERR_PTR(-ECHILD);
2593		}
2594	} else {
2595		error = shmem_getpage(inode, 0, &page, SGP_READ, NULL);
2596		if (error)
2597			return ERR_PTR(error);
2598		unlock_page(page);
 
 
 
 
 
 
 
 
 
 
2599	}
2600	set_delayed_call(done, shmem_put_link, page);
2601	return page_address(page);
2602}
2603
2604#ifdef CONFIG_TMPFS_XATTR
2605/*
2606 * Superblocks without xattr inode operations may get some security.* xattr
2607 * support from the LSM "for free". As soon as we have any other xattrs
2608 * like ACLs, we also need to implement the security.* handlers at
2609 * filesystem level, though.
2610 */
2611
2612/*
2613 * Callback for security_inode_init_security() for acquiring xattrs.
2614 */
2615static int shmem_initxattrs(struct inode *inode,
2616			    const struct xattr *xattr_array,
2617			    void *fs_info)
2618{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2619	struct shmem_inode_info *info = SHMEM_I(inode);
2620	const struct xattr *xattr;
2621	struct simple_xattr *new_xattr;
2622	size_t len;
 
2623
2624	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
2625		new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
 
 
 
 
 
 
2626		if (!new_xattr)
2627			return -ENOMEM;
2628
2629		len = strlen(xattr->name) + 1;
2630		new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
2631					  GFP_KERNEL);
2632		if (!new_xattr->name) {
2633			kfree(new_xattr);
2634			return -ENOMEM;
2635		}
2636
2637		memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
2638		       XATTR_SECURITY_PREFIX_LEN);
2639		memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
2640		       xattr->name, len);
2641
2642		simple_xattr_list_add(&info->xattrs, new_xattr);
 
 
 
 
 
 
 
 
 
 
 
 
2643	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2644
2645	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2646}
2647
2648static int shmem_xattr_handler_get(const struct xattr_handler *handler,
2649				   struct dentry *dentry, const char *name,
2650				   void *buffer, size_t size)
2651{
2652	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
 
 
 
 
 
 
 
 
2653
2654	name = xattr_full_name(handler, name);
2655	return simple_xattr_get(&info->xattrs, name, buffer, size);
 
 
 
2656}
2657
2658static int shmem_xattr_handler_set(const struct xattr_handler *handler,
2659				   struct dentry *dentry, const char *name,
2660				   const void *value, size_t size, int flags)
2661{
2662	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2663
2664	name = xattr_full_name(handler, name);
2665	return simple_xattr_set(&info->xattrs, name, value, size, flags);
2666}
2667
2668static const struct xattr_handler shmem_security_xattr_handler = {
2669	.prefix = XATTR_SECURITY_PREFIX,
2670	.get = shmem_xattr_handler_get,
2671	.set = shmem_xattr_handler_set,
2672};
2673
2674static const struct xattr_handler shmem_trusted_xattr_handler = {
2675	.prefix = XATTR_TRUSTED_PREFIX,
2676	.get = shmem_xattr_handler_get,
2677	.set = shmem_xattr_handler_set,
2678};
 
 
2679
2680static const struct xattr_handler *shmem_xattr_handlers[] = {
2681#ifdef CONFIG_TMPFS_POSIX_ACL
2682	&posix_acl_access_xattr_handler,
2683	&posix_acl_default_xattr_handler,
2684#endif
2685	&shmem_security_xattr_handler,
2686	&shmem_trusted_xattr_handler,
2687	NULL
2688};
 
 
2689
2690static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
2691{
2692	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
2693	return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2694}
2695#endif /* CONFIG_TMPFS_XATTR */
2696
2697static const struct inode_operations shmem_short_symlink_operations = {
2698	.readlink	= generic_readlink,
2699	.get_link	= simple_get_link,
2700#ifdef CONFIG_TMPFS_XATTR
2701	.setxattr	= generic_setxattr,
2702	.getxattr	= generic_getxattr,
2703	.listxattr	= shmem_listxattr,
2704	.removexattr	= generic_removexattr,
2705#endif
2706};
2707
2708static const struct inode_operations shmem_symlink_inode_operations = {
2709	.readlink	= generic_readlink,
2710	.get_link	= shmem_get_link,
 
2711#ifdef CONFIG_TMPFS_XATTR
2712	.setxattr	= generic_setxattr,
2713	.getxattr	= generic_getxattr,
2714	.listxattr	= shmem_listxattr,
2715	.removexattr	= generic_removexattr,
2716#endif
2717};
2718
2719static struct dentry *shmem_get_parent(struct dentry *child)
2720{
2721	return ERR_PTR(-ESTALE);
2722}
2723
2724static int shmem_match(struct inode *ino, void *vfh)
2725{
2726	__u32 *fh = vfh;
2727	__u64 inum = fh[2];
2728	inum = (inum << 32) | fh[1];
2729	return ino->i_ino == inum && fh[0] == ino->i_generation;
2730}
2731
2732static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2733		struct fid *fid, int fh_len, int fh_type)
2734{
2735	struct inode *inode;
2736	struct dentry *dentry = NULL;
2737	u64 inum;
 
2738
2739	if (fh_len < 3)
2740		return NULL;
2741
2742	inum = fid->raw[2];
2743	inum = (inum << 32) | fid->raw[1];
2744
2745	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2746			shmem_match, fid->raw);
2747	if (inode) {
2748		dentry = d_find_alias(inode);
2749		iput(inode);
2750	}
2751
2752	return dentry;
2753}
2754
2755static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
2756				struct inode *parent)
2757{
 
 
2758	if (*len < 3) {
2759		*len = 3;
2760		return FILEID_INVALID;
2761	}
2762
2763	if (inode_unhashed(inode)) {
2764		/* Unfortunately insert_inode_hash is not idempotent,
2765		 * so as we hash inodes here rather than at creation
2766		 * time, we need a lock to ensure we only try
2767		 * to do it once
2768		 */
2769		static DEFINE_SPINLOCK(lock);
2770		spin_lock(&lock);
2771		if (inode_unhashed(inode))
2772			__insert_inode_hash(inode,
2773					    inode->i_ino + inode->i_generation);
2774		spin_unlock(&lock);
2775	}
2776
2777	fh[0] = inode->i_generation;
2778	fh[1] = inode->i_ino;
2779	fh[2] = ((__u64)inode->i_ino) >> 32;
2780
2781	*len = 3;
2782	return 1;
2783}
2784
2785static const struct export_operations shmem_export_ops = {
2786	.get_parent     = shmem_get_parent,
2787	.encode_fh      = shmem_encode_fh,
2788	.fh_to_dentry	= shmem_fh_to_dentry,
2789};
2790
2791static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2792			       bool remount)
2793{
2794	char *this_char, *value, *rest;
2795	struct mempolicy *mpol = NULL;
2796	uid_t uid;
2797	gid_t gid;
2798
2799	while (options != NULL) {
2800		this_char = options;
2801		for (;;) {
2802			/*
2803			 * NUL-terminate this option: unfortunately,
2804			 * mount options form a comma-separated list,
2805			 * but mpol's nodelist may also contain commas.
2806			 */
2807			options = strchr(options, ',');
2808			if (options == NULL)
2809				break;
2810			options++;
2811			if (!isdigit(*options)) {
2812				options[-1] = '\0';
2813				break;
2814			}
2815		}
2816		if (!*this_char)
2817			continue;
2818		if ((value = strchr(this_char,'=')) != NULL) {
2819			*value++ = 0;
2820		} else {
2821			pr_err("tmpfs: No value for mount option '%s'\n",
2822			       this_char);
2823			goto error;
 
2824		}
2825
2826		if (!strcmp(this_char,"size")) {
2827			unsigned long long size;
2828			size = memparse(value,&rest);
2829			if (*rest == '%') {
2830				size <<= PAGE_SHIFT;
2831				size *= totalram_pages;
2832				do_div(size, 100);
2833				rest++;
2834			}
2835			if (*rest)
2836				goto bad_val;
2837			sbinfo->max_blocks =
2838				DIV_ROUND_UP(size, PAGE_SIZE);
2839		} else if (!strcmp(this_char,"nr_blocks")) {
2840			sbinfo->max_blocks = memparse(value, &rest);
2841			if (*rest)
2842				goto bad_val;
2843		} else if (!strcmp(this_char,"nr_inodes")) {
2844			sbinfo->max_inodes = memparse(value, &rest);
2845			if (*rest)
2846				goto bad_val;
2847		} else if (!strcmp(this_char,"mode")) {
2848			if (remount)
2849				continue;
2850			sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2851			if (*rest)
2852				goto bad_val;
2853		} else if (!strcmp(this_char,"uid")) {
2854			if (remount)
2855				continue;
2856			uid = simple_strtoul(value, &rest, 0);
2857			if (*rest)
2858				goto bad_val;
2859			sbinfo->uid = make_kuid(current_user_ns(), uid);
2860			if (!uid_valid(sbinfo->uid))
2861				goto bad_val;
2862		} else if (!strcmp(this_char,"gid")) {
2863			if (remount)
2864				continue;
2865			gid = simple_strtoul(value, &rest, 0);
2866			if (*rest)
2867				goto bad_val;
2868			sbinfo->gid = make_kgid(current_user_ns(), gid);
2869			if (!gid_valid(sbinfo->gid))
2870				goto bad_val;
2871		} else if (!strcmp(this_char,"mpol")) {
2872			mpol_put(mpol);
2873			mpol = NULL;
2874			if (mpol_parse_str(value, &mpol))
2875				goto bad_val;
2876		} else {
2877			pr_err("tmpfs: Bad mount option %s\n", this_char);
2878			goto error;
 
2879		}
2880	}
2881	sbinfo->mpol = mpol;
2882	return 0;
2883
2884bad_val:
2885	pr_err("tmpfs: Bad value '%s' for mount option '%s'\n",
2886	       value, this_char);
2887error:
2888	mpol_put(mpol);
2889	return 1;
2890
2891}
2892
2893static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2894{
2895	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2896	struct shmem_sb_info config = *sbinfo;
2897	unsigned long inodes;
2898	int error = -EINVAL;
2899
2900	config.mpol = NULL;
2901	if (shmem_parse_options(data, &config, true))
2902		return error;
2903
2904	spin_lock(&sbinfo->stat_lock);
2905	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2906	if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
2907		goto out;
2908	if (config.max_inodes < inodes)
2909		goto out;
2910	/*
2911	 * Those tests disallow limited->unlimited while any are in use;
2912	 * but we must separately disallow unlimited->limited, because
2913	 * in that case we have no record of how much is already in use.
2914	 */
2915	if (config.max_blocks && !sbinfo->max_blocks)
2916		goto out;
2917	if (config.max_inodes && !sbinfo->max_inodes)
2918		goto out;
2919
2920	error = 0;
2921	sbinfo->max_blocks  = config.max_blocks;
2922	sbinfo->max_inodes  = config.max_inodes;
2923	sbinfo->free_inodes = config.max_inodes - inodes;
2924
2925	/*
2926	 * Preserve previous mempolicy unless mpol remount option was specified.
2927	 */
2928	if (config.mpol) {
2929		mpol_put(sbinfo->mpol);
2930		sbinfo->mpol = config.mpol;	/* transfers initial ref */
2931	}
2932out:
2933	spin_unlock(&sbinfo->stat_lock);
2934	return error;
2935}
2936
2937static int shmem_show_options(struct seq_file *seq, struct dentry *root)
2938{
2939	struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
2940
2941	if (sbinfo->max_blocks != shmem_default_max_blocks())
2942		seq_printf(seq, ",size=%luk",
2943			sbinfo->max_blocks << (PAGE_SHIFT - 10));
2944	if (sbinfo->max_inodes != shmem_default_max_inodes())
2945		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2946	if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2947		seq_printf(seq, ",mode=%03ho", sbinfo->mode);
2948	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
2949		seq_printf(seq, ",uid=%u",
2950				from_kuid_munged(&init_user_ns, sbinfo->uid));
2951	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
2952		seq_printf(seq, ",gid=%u",
2953				from_kgid_munged(&init_user_ns, sbinfo->gid));
2954	shmem_show_mpol(seq, sbinfo->mpol);
2955	return 0;
2956}
2957
2958#define MFD_NAME_PREFIX "memfd:"
2959#define MFD_NAME_PREFIX_LEN (sizeof(MFD_NAME_PREFIX) - 1)
2960#define MFD_NAME_MAX_LEN (NAME_MAX - MFD_NAME_PREFIX_LEN)
2961
2962#define MFD_ALL_FLAGS (MFD_CLOEXEC | MFD_ALLOW_SEALING)
2963
2964SYSCALL_DEFINE2(memfd_create,
2965		const char __user *, uname,
2966		unsigned int, flags)
2967{
2968	struct shmem_inode_info *info;
2969	struct file *file;
2970	int fd, error;
2971	char *name;
2972	long len;
2973
2974	if (flags & ~(unsigned int)MFD_ALL_FLAGS)
2975		return -EINVAL;
2976
2977	/* length includes terminating zero */
2978	len = strnlen_user(uname, MFD_NAME_MAX_LEN + 1);
2979	if (len <= 0)
2980		return -EFAULT;
2981	if (len > MFD_NAME_MAX_LEN + 1)
2982		return -EINVAL;
2983
2984	name = kmalloc(len + MFD_NAME_PREFIX_LEN, GFP_TEMPORARY);
2985	if (!name)
2986		return -ENOMEM;
2987
2988	strcpy(name, MFD_NAME_PREFIX);
2989	if (copy_from_user(&name[MFD_NAME_PREFIX_LEN], uname, len)) {
2990		error = -EFAULT;
2991		goto err_name;
2992	}
2993
2994	/* terminating-zero may have changed after strnlen_user() returned */
2995	if (name[len + MFD_NAME_PREFIX_LEN - 1]) {
2996		error = -EFAULT;
2997		goto err_name;
2998	}
2999
3000	fd = get_unused_fd_flags((flags & MFD_CLOEXEC) ? O_CLOEXEC : 0);
3001	if (fd < 0) {
3002		error = fd;
3003		goto err_name;
3004	}
3005
3006	file = shmem_file_setup(name, 0, VM_NORESERVE);
3007	if (IS_ERR(file)) {
3008		error = PTR_ERR(file);
3009		goto err_fd;
3010	}
3011	info = SHMEM_I(file_inode(file));
3012	file->f_mode |= FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE;
3013	file->f_flags |= O_RDWR | O_LARGEFILE;
3014	if (flags & MFD_ALLOW_SEALING)
3015		info->seals &= ~F_SEAL_SEAL;
3016
3017	fd_install(fd, file);
3018	kfree(name);
3019	return fd;
3020
3021err_fd:
3022	put_unused_fd(fd);
3023err_name:
3024	kfree(name);
3025	return error;
3026}
3027
3028#endif /* CONFIG_TMPFS */
3029
3030static void shmem_put_super(struct super_block *sb)
3031{
3032	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3033
3034	percpu_counter_destroy(&sbinfo->used_blocks);
3035	mpol_put(sbinfo->mpol);
3036	kfree(sbinfo);
3037	sb->s_fs_info = NULL;
3038}
3039
3040int shmem_fill_super(struct super_block *sb, void *data, int silent)
3041{
3042	struct inode *inode;
 
3043	struct shmem_sb_info *sbinfo;
3044	int err = -ENOMEM;
3045
3046	/* Round up to L1_CACHE_BYTES to resist false sharing */
3047	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3048				L1_CACHE_BYTES), GFP_KERNEL);
3049	if (!sbinfo)
3050		return -ENOMEM;
3051
3052	sbinfo->mode = S_IRWXUGO | S_ISVTX;
3053	sbinfo->uid = current_fsuid();
3054	sbinfo->gid = current_fsgid();
3055	sb->s_fs_info = sbinfo;
3056
3057#ifdef CONFIG_TMPFS
3058	/*
3059	 * Per default we only allow half of the physical ram per
3060	 * tmpfs instance, limiting inodes to one per page of lowmem;
3061	 * but the internal instance is left unlimited.
3062	 */
3063	if (!(sb->s_flags & MS_KERNMOUNT)) {
3064		sbinfo->max_blocks = shmem_default_max_blocks();
3065		sbinfo->max_inodes = shmem_default_max_inodes();
3066		if (shmem_parse_options(data, sbinfo, false)) {
3067			err = -EINVAL;
3068			goto failed;
3069		}
3070	} else {
3071		sb->s_flags |= MS_NOUSER;
3072	}
3073	sb->s_export_op = &shmem_export_ops;
3074	sb->s_flags |= MS_NOSEC;
3075#else
3076	sb->s_flags |= MS_NOUSER;
3077#endif
3078
3079	spin_lock_init(&sbinfo->stat_lock);
3080	if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3081		goto failed;
3082	sbinfo->free_inodes = sbinfo->max_inodes;
3083
3084	sb->s_maxbytes = MAX_LFS_FILESIZE;
3085	sb->s_blocksize = PAGE_SIZE;
3086	sb->s_blocksize_bits = PAGE_SHIFT;
3087	sb->s_magic = TMPFS_MAGIC;
3088	sb->s_op = &shmem_ops;
3089	sb->s_time_gran = 1;
3090#ifdef CONFIG_TMPFS_XATTR
3091	sb->s_xattr = shmem_xattr_handlers;
3092#endif
3093#ifdef CONFIG_TMPFS_POSIX_ACL
3094	sb->s_flags |= MS_POSIXACL;
3095#endif
3096
3097	inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3098	if (!inode)
3099		goto failed;
3100	inode->i_uid = sbinfo->uid;
3101	inode->i_gid = sbinfo->gid;
3102	sb->s_root = d_make_root(inode);
3103	if (!sb->s_root)
3104		goto failed;
 
3105	return 0;
3106
 
 
3107failed:
3108	shmem_put_super(sb);
3109	return err;
3110}
3111
3112static struct kmem_cache *shmem_inode_cachep;
3113
3114static struct inode *shmem_alloc_inode(struct super_block *sb)
3115{
3116	struct shmem_inode_info *info;
3117	info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3118	if (!info)
3119		return NULL;
3120	return &info->vfs_inode;
3121}
3122
3123static void shmem_destroy_callback(struct rcu_head *head)
3124{
3125	struct inode *inode = container_of(head, struct inode, i_rcu);
3126	kfree(inode->i_link);
3127	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3128}
3129
3130static void shmem_destroy_inode(struct inode *inode)
3131{
3132	if (S_ISREG(inode->i_mode))
3133		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3134	call_rcu(&inode->i_rcu, shmem_destroy_callback);
3135}
3136
3137static void shmem_init_inode(void *foo)
3138{
3139	struct shmem_inode_info *info = foo;
3140	inode_init_once(&info->vfs_inode);
3141}
3142
3143static int shmem_init_inodecache(void)
3144{
3145	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3146				sizeof(struct shmem_inode_info),
3147				0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3148	return 0;
3149}
3150
3151static void shmem_destroy_inodecache(void)
3152{
3153	kmem_cache_destroy(shmem_inode_cachep);
3154}
3155
3156static const struct address_space_operations shmem_aops = {
3157	.writepage	= shmem_writepage,
3158	.set_page_dirty	= __set_page_dirty_no_writeback,
3159#ifdef CONFIG_TMPFS
3160	.write_begin	= shmem_write_begin,
3161	.write_end	= shmem_write_end,
3162#endif
3163#ifdef CONFIG_MIGRATION
3164	.migratepage	= migrate_page,
3165#endif
3166	.error_remove_page = generic_error_remove_page,
3167};
3168
3169static const struct file_operations shmem_file_operations = {
3170	.mmap		= shmem_mmap,
3171#ifdef CONFIG_TMPFS
3172	.llseek		= shmem_file_llseek,
3173	.read_iter	= shmem_file_read_iter,
3174	.write_iter	= generic_file_write_iter,
 
 
3175	.fsync		= noop_fsync,
3176	.splice_read	= shmem_file_splice_read,
3177	.splice_write	= iter_file_splice_write,
3178	.fallocate	= shmem_fallocate,
3179#endif
3180};
3181
3182static const struct inode_operations shmem_inode_operations = {
3183	.getattr	= shmem_getattr,
3184	.setattr	= shmem_setattr,
 
3185#ifdef CONFIG_TMPFS_XATTR
3186	.setxattr	= generic_setxattr,
3187	.getxattr	= generic_getxattr,
3188	.listxattr	= shmem_listxattr,
3189	.removexattr	= generic_removexattr,
3190	.set_acl	= simple_set_acl,
3191#endif
3192};
3193
3194static const struct inode_operations shmem_dir_inode_operations = {
3195#ifdef CONFIG_TMPFS
3196	.create		= shmem_create,
3197	.lookup		= simple_lookup,
3198	.link		= shmem_link,
3199	.unlink		= shmem_unlink,
3200	.symlink	= shmem_symlink,
3201	.mkdir		= shmem_mkdir,
3202	.rmdir		= shmem_rmdir,
3203	.mknod		= shmem_mknod,
3204	.rename2	= shmem_rename2,
3205	.tmpfile	= shmem_tmpfile,
3206#endif
3207#ifdef CONFIG_TMPFS_XATTR
3208	.setxattr	= generic_setxattr,
3209	.getxattr	= generic_getxattr,
3210	.listxattr	= shmem_listxattr,
3211	.removexattr	= generic_removexattr,
3212#endif
3213#ifdef CONFIG_TMPFS_POSIX_ACL
3214	.setattr	= shmem_setattr,
3215	.set_acl	= simple_set_acl,
3216#endif
3217};
3218
3219static const struct inode_operations shmem_special_inode_operations = {
3220#ifdef CONFIG_TMPFS_XATTR
3221	.setxattr	= generic_setxattr,
3222	.getxattr	= generic_getxattr,
3223	.listxattr	= shmem_listxattr,
3224	.removexattr	= generic_removexattr,
3225#endif
3226#ifdef CONFIG_TMPFS_POSIX_ACL
3227	.setattr	= shmem_setattr,
3228	.set_acl	= simple_set_acl,
3229#endif
3230};
3231
3232static const struct super_operations shmem_ops = {
3233	.alloc_inode	= shmem_alloc_inode,
3234	.destroy_inode	= shmem_destroy_inode,
3235#ifdef CONFIG_TMPFS
3236	.statfs		= shmem_statfs,
3237	.remount_fs	= shmem_remount_fs,
3238	.show_options	= shmem_show_options,
3239#endif
3240	.evict_inode	= shmem_evict_inode,
3241	.drop_inode	= generic_delete_inode,
3242	.put_super	= shmem_put_super,
3243};
3244
3245static const struct vm_operations_struct shmem_vm_ops = {
3246	.fault		= shmem_fault,
3247	.map_pages	= filemap_map_pages,
3248#ifdef CONFIG_NUMA
3249	.set_policy     = shmem_set_policy,
3250	.get_policy     = shmem_get_policy,
3251#endif
3252};
3253
3254static struct dentry *shmem_mount(struct file_system_type *fs_type,
3255	int flags, const char *dev_name, void *data)
3256{
3257	return mount_nodev(fs_type, flags, data, shmem_fill_super);
3258}
3259
3260static struct file_system_type shmem_fs_type = {
3261	.owner		= THIS_MODULE,
3262	.name		= "tmpfs",
3263	.mount		= shmem_mount,
3264	.kill_sb	= kill_litter_super,
3265	.fs_flags	= FS_USERNS_MOUNT,
3266};
3267
3268int __init shmem_init(void)
3269{
3270	int error;
3271
3272	/* If rootfs called this, don't re-init */
3273	if (shmem_inode_cachep)
3274		return 0;
3275
3276	error = shmem_init_inodecache();
3277	if (error)
3278		goto out3;
3279
3280	error = register_filesystem(&shmem_fs_type);
3281	if (error) {
3282		pr_err("Could not register tmpfs\n");
3283		goto out2;
3284	}
3285
3286	shm_mnt = kern_mount(&shmem_fs_type);
 
3287	if (IS_ERR(shm_mnt)) {
3288		error = PTR_ERR(shm_mnt);
3289		pr_err("Could not kern_mount tmpfs\n");
3290		goto out1;
3291	}
3292	return 0;
3293
3294out1:
3295	unregister_filesystem(&shmem_fs_type);
3296out2:
3297	shmem_destroy_inodecache();
3298out3:
 
 
3299	shm_mnt = ERR_PTR(error);
3300	return error;
3301}
3302
3303#else /* !CONFIG_SHMEM */
3304
3305/*
3306 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
3307 *
3308 * This is intended for small system where the benefits of the full
3309 * shmem code (swap-backed and resource-limited) are outweighed by
3310 * their complexity. On systems without swap this code should be
3311 * effectively equivalent, but much lighter weight.
3312 */
3313
 
 
3314static struct file_system_type shmem_fs_type = {
3315	.name		= "tmpfs",
3316	.mount		= ramfs_mount,
3317	.kill_sb	= kill_litter_super,
3318	.fs_flags	= FS_USERNS_MOUNT,
3319};
3320
3321int __init shmem_init(void)
3322{
3323	BUG_ON(register_filesystem(&shmem_fs_type) != 0);
3324
3325	shm_mnt = kern_mount(&shmem_fs_type);
3326	BUG_ON(IS_ERR(shm_mnt));
3327
3328	return 0;
3329}
3330
3331int shmem_unuse(swp_entry_t swap, struct page *page)
3332{
3333	return 0;
3334}
3335
3336int shmem_lock(struct file *file, int lock, struct user_struct *user)
3337{
3338	return 0;
3339}
3340
3341void shmem_unlock_mapping(struct address_space *mapping)
3342{
3343}
3344
3345void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
3346{
3347	truncate_inode_pages_range(inode->i_mapping, lstart, lend);
3348}
3349EXPORT_SYMBOL_GPL(shmem_truncate_range);
3350
3351#define shmem_vm_ops				generic_file_vm_ops
3352#define shmem_file_operations			ramfs_file_operations
3353#define shmem_get_inode(sb, dir, mode, dev, flags)	ramfs_get_inode(sb, dir, mode, dev)
3354#define shmem_acct_size(flags, size)		0
3355#define shmem_unacct_size(flags, size)		do {} while (0)
3356
3357#endif /* CONFIG_SHMEM */
3358
3359/* common code */
3360
3361static struct dentry_operations anon_ops = {
3362	.d_dname = simple_dname
3363};
3364
3365static struct file *__shmem_file_setup(const char *name, loff_t size,
3366				       unsigned long flags, unsigned int i_flags)
 
3367{
3368	struct file *res;
 
3369	struct inode *inode;
3370	struct path path;
3371	struct super_block *sb;
3372	struct qstr this;
3373
3374	if (IS_ERR(shm_mnt))
3375		return ERR_CAST(shm_mnt);
3376
3377	if (size < 0 || size > MAX_LFS_FILESIZE)
3378		return ERR_PTR(-EINVAL);
3379
3380	if (shmem_acct_size(flags, size))
3381		return ERR_PTR(-ENOMEM);
3382
3383	res = ERR_PTR(-ENOMEM);
3384	this.name = name;
3385	this.len = strlen(name);
3386	this.hash = 0; /* will go */
3387	sb = shm_mnt->mnt_sb;
3388	path.mnt = mntget(shm_mnt);
3389	path.dentry = d_alloc_pseudo(sb, &this);
3390	if (!path.dentry)
3391		goto put_memory;
3392	d_set_d_op(path.dentry, &anon_ops);
3393
3394	res = ERR_PTR(-ENOSPC);
3395	inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
3396	if (!inode)
3397		goto put_memory;
3398
3399	inode->i_flags |= i_flags;
3400	d_instantiate(path.dentry, inode);
3401	inode->i_size = size;
3402	clear_nlink(inode);	/* It is unlinked */
3403	res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
3404	if (IS_ERR(res))
3405		goto put_path;
 
 
3406
3407	res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
 
3408		  &shmem_file_operations);
3409	if (IS_ERR(res))
3410		goto put_path;
3411
3412	return res;
3413
 
 
3414put_memory:
3415	shmem_unacct_size(flags, size);
3416put_path:
3417	path_put(&path);
3418	return res;
3419}
3420
3421/**
3422 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
3423 * 	kernel internal.  There will be NO LSM permission checks against the
3424 * 	underlying inode.  So users of this interface must do LSM checks at a
3425 *	higher layer.  The users are the big_key and shm implementations.  LSM
3426 *	checks are provided at the key or shm level rather than the inode.
3427 * @name: name for dentry (to be seen in /proc/<pid>/maps
3428 * @size: size to be set for the file
3429 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3430 */
3431struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
3432{
3433	return __shmem_file_setup(name, size, flags, S_PRIVATE);
3434}
3435
3436/**
3437 * shmem_file_setup - get an unlinked file living in tmpfs
3438 * @name: name for dentry (to be seen in /proc/<pid>/maps
3439 * @size: size to be set for the file
3440 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3441 */
3442struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
3443{
3444	return __shmem_file_setup(name, size, flags, 0);
3445}
3446EXPORT_SYMBOL_GPL(shmem_file_setup);
3447
3448/**
3449 * shmem_zero_setup - setup a shared anonymous mapping
3450 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
3451 */
3452int shmem_zero_setup(struct vm_area_struct *vma)
3453{
3454	struct file *file;
3455	loff_t size = vma->vm_end - vma->vm_start;
3456
3457	/*
3458	 * Cloning a new file under mmap_sem leads to a lock ordering conflict
3459	 * between XFS directory reading and selinux: since this file is only
3460	 * accessible to the user through its mapping, use S_PRIVATE flag to
3461	 * bypass file security, in the same way as shmem_kernel_file_setup().
3462	 */
3463	file = __shmem_file_setup("dev/zero", size, vma->vm_flags, S_PRIVATE);
3464	if (IS_ERR(file))
3465		return PTR_ERR(file);
3466
3467	if (vma->vm_file)
3468		fput(vma->vm_file);
3469	vma->vm_file = file;
3470	vma->vm_ops = &shmem_vm_ops;
 
3471	return 0;
3472}
3473
3474/**
3475 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
3476 * @mapping:	the page's address_space
3477 * @index:	the page index
3478 * @gfp:	the page allocator flags to use if allocating
3479 *
3480 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
3481 * with any new page allocations done using the specified allocation flags.
3482 * But read_cache_page_gfp() uses the ->readpage() method: which does not
3483 * suit tmpfs, since it may have pages in swapcache, and needs to find those
3484 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
3485 *
3486 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
3487 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
3488 */
3489struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
3490					 pgoff_t index, gfp_t gfp)
3491{
3492#ifdef CONFIG_SHMEM
3493	struct inode *inode = mapping->host;
3494	struct page *page;
3495	int error;
3496
3497	BUG_ON(mapping->a_ops != &shmem_aops);
3498	error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL);
3499	if (error)
3500		page = ERR_PTR(error);
3501	else
3502		unlock_page(page);
3503	return page;
3504#else
3505	/*
3506	 * The tiny !SHMEM case uses ramfs without swap
3507	 */
3508	return read_cache_page_gfp(mapping, index, gfp);
3509#endif
3510}
3511EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
v3.1
   1/*
   2 * Resizable virtual memory filesystem for Linux.
   3 *
   4 * Copyright (C) 2000 Linus Torvalds.
   5 *		 2000 Transmeta Corp.
   6 *		 2000-2001 Christoph Rohland
   7 *		 2000-2001 SAP AG
   8 *		 2002 Red Hat Inc.
   9 * Copyright (C) 2002-2011 Hugh Dickins.
  10 * Copyright (C) 2011 Google Inc.
  11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
  12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
  13 *
  14 * Extended attribute support for tmpfs:
  15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
  16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
  17 *
  18 * tiny-shmem:
  19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
  20 *
  21 * This file is released under the GPL.
  22 */
  23
  24#include <linux/fs.h>
  25#include <linux/init.h>
  26#include <linux/vfs.h>
  27#include <linux/mount.h>
 
  28#include <linux/pagemap.h>
  29#include <linux/file.h>
  30#include <linux/mm.h>
  31#include <linux/module.h>
  32#include <linux/swap.h>
 
  33
  34static struct vfsmount *shm_mnt;
  35
  36#ifdef CONFIG_SHMEM
  37/*
  38 * This virtual memory filesystem is heavily based on the ramfs. It
  39 * extends ramfs by the ability to use swap and honor resource limits
  40 * which makes it a completely usable filesystem.
  41 */
  42
  43#include <linux/xattr.h>
  44#include <linux/exportfs.h>
  45#include <linux/posix_acl.h>
  46#include <linux/generic_acl.h>
  47#include <linux/mman.h>
  48#include <linux/string.h>
  49#include <linux/slab.h>
  50#include <linux/backing-dev.h>
  51#include <linux/shmem_fs.h>
  52#include <linux/writeback.h>
  53#include <linux/blkdev.h>
  54#include <linux/pagevec.h>
  55#include <linux/percpu_counter.h>
 
  56#include <linux/splice.h>
  57#include <linux/security.h>
  58#include <linux/swapops.h>
  59#include <linux/mempolicy.h>
  60#include <linux/namei.h>
  61#include <linux/ctype.h>
  62#include <linux/migrate.h>
  63#include <linux/highmem.h>
  64#include <linux/seq_file.h>
  65#include <linux/magic.h>
 
 
 
  66
  67#include <asm/uaccess.h>
  68#include <asm/pgtable.h>
  69
  70#define BLOCKS_PER_PAGE  (PAGE_CACHE_SIZE/512)
  71#define VM_ACCT(size)    (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
 
 
  72
  73/* Pretend that each entry is of this size in directory's i_size */
  74#define BOGO_DIRENT_SIZE 20
  75
  76/* Symlink up to this size is kmalloc'ed instead of using a swappable page */
  77#define SHORT_SYMLINK_LEN 128
  78
  79struct shmem_xattr {
  80	struct list_head list;	/* anchored by shmem_inode_info->xattr_list */
  81	char *name;		/* xattr name */
  82	size_t size;
  83	char value[0];
 
 
 
 
 
 
  84};
  85
  86/* Flag allocation requirements to shmem_getpage */
  87enum sgp_type {
  88	SGP_READ,	/* don't exceed i_size, don't allocate page */
  89	SGP_CACHE,	/* don't exceed i_size, may allocate page */
  90	SGP_DIRTY,	/* like SGP_CACHE, but set new page dirty */
  91	SGP_WRITE,	/* may exceed i_size, may allocate page */
 
  92};
  93
  94#ifdef CONFIG_TMPFS
  95static unsigned long shmem_default_max_blocks(void)
  96{
  97	return totalram_pages / 2;
  98}
  99
 100static unsigned long shmem_default_max_inodes(void)
 101{
 102	return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
 103}
 104#endif
 105
 
 
 
 106static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
 107	struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type);
 108
 109static inline int shmem_getpage(struct inode *inode, pgoff_t index,
 110	struct page **pagep, enum sgp_type sgp, int *fault_type)
 111{
 112	return shmem_getpage_gfp(inode, index, pagep, sgp,
 113			mapping_gfp_mask(inode->i_mapping), fault_type);
 114}
 115
 116static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
 117{
 118	return sb->s_fs_info;
 119}
 120
 121/*
 122 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
 123 * for shared memory and for shared anonymous (/dev/zero) mappings
 124 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
 125 * consistent with the pre-accounting of private mappings ...
 126 */
 127static inline int shmem_acct_size(unsigned long flags, loff_t size)
 128{
 129	return (flags & VM_NORESERVE) ?
 130		0 : security_vm_enough_memory_kern(VM_ACCT(size));
 131}
 132
 133static inline void shmem_unacct_size(unsigned long flags, loff_t size)
 134{
 135	if (!(flags & VM_NORESERVE))
 136		vm_unacct_memory(VM_ACCT(size));
 137}
 138
 
 
 
 
 
 
 
 
 
 
 
 
 
 139/*
 140 * ... whereas tmpfs objects are accounted incrementally as
 141 * pages are allocated, in order to allow huge sparse files.
 142 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
 143 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
 144 */
 145static inline int shmem_acct_block(unsigned long flags)
 146{
 147	return (flags & VM_NORESERVE) ?
 148		security_vm_enough_memory_kern(VM_ACCT(PAGE_CACHE_SIZE)) : 0;
 149}
 150
 151static inline void shmem_unacct_blocks(unsigned long flags, long pages)
 152{
 153	if (flags & VM_NORESERVE)
 154		vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
 155}
 156
 157static const struct super_operations shmem_ops;
 158static const struct address_space_operations shmem_aops;
 159static const struct file_operations shmem_file_operations;
 160static const struct inode_operations shmem_inode_operations;
 161static const struct inode_operations shmem_dir_inode_operations;
 162static const struct inode_operations shmem_special_inode_operations;
 163static const struct vm_operations_struct shmem_vm_ops;
 164
 165static struct backing_dev_info shmem_backing_dev_info  __read_mostly = {
 166	.ra_pages	= 0,	/* No readahead */
 167	.capabilities	= BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
 168};
 169
 170static LIST_HEAD(shmem_swaplist);
 171static DEFINE_MUTEX(shmem_swaplist_mutex);
 172
 173static int shmem_reserve_inode(struct super_block *sb)
 174{
 175	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
 176	if (sbinfo->max_inodes) {
 177		spin_lock(&sbinfo->stat_lock);
 178		if (!sbinfo->free_inodes) {
 179			spin_unlock(&sbinfo->stat_lock);
 180			return -ENOSPC;
 181		}
 182		sbinfo->free_inodes--;
 183		spin_unlock(&sbinfo->stat_lock);
 184	}
 185	return 0;
 186}
 187
 188static void shmem_free_inode(struct super_block *sb)
 189{
 190	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
 191	if (sbinfo->max_inodes) {
 192		spin_lock(&sbinfo->stat_lock);
 193		sbinfo->free_inodes++;
 194		spin_unlock(&sbinfo->stat_lock);
 195	}
 196}
 197
 198/**
 199 * shmem_recalc_inode - recalculate the block usage of an inode
 200 * @inode: inode to recalc
 201 *
 202 * We have to calculate the free blocks since the mm can drop
 203 * undirtied hole pages behind our back.
 204 *
 205 * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
 206 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
 207 *
 208 * It has to be called with the spinlock held.
 209 */
 210static void shmem_recalc_inode(struct inode *inode)
 211{
 212	struct shmem_inode_info *info = SHMEM_I(inode);
 213	long freed;
 214
 215	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
 216	if (freed > 0) {
 217		struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
 218		if (sbinfo->max_blocks)
 219			percpu_counter_add(&sbinfo->used_blocks, -freed);
 220		info->alloced -= freed;
 221		inode->i_blocks -= freed * BLOCKS_PER_PAGE;
 222		shmem_unacct_blocks(info->flags, freed);
 223	}
 224}
 225
 226/*
 227 * Replace item expected in radix tree by a new item, while holding tree lock.
 228 */
 229static int shmem_radix_tree_replace(struct address_space *mapping,
 230			pgoff_t index, void *expected, void *replacement)
 231{
 232	void **pslot;
 233	void *item = NULL;
 234
 235	VM_BUG_ON(!expected);
 
 236	pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
 237	if (pslot)
 238		item = radix_tree_deref_slot_protected(pslot,
 239							&mapping->tree_lock);
 240	if (item != expected)
 241		return -ENOENT;
 242	if (replacement)
 243		radix_tree_replace_slot(pslot, replacement);
 244	else
 245		radix_tree_delete(&mapping->page_tree, index);
 246	return 0;
 247}
 248
 249/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 250 * Like add_to_page_cache_locked, but error if expected item has gone.
 251 */
 252static int shmem_add_to_page_cache(struct page *page,
 253				   struct address_space *mapping,
 254				   pgoff_t index, gfp_t gfp, void *expected)
 255{
 256	int error = 0;
 
 
 
 257
 258	VM_BUG_ON(!PageLocked(page));
 259	VM_BUG_ON(!PageSwapBacked(page));
 
 260
 
 261	if (!expected)
 262		error = radix_tree_preload(gfp & GFP_RECLAIM_MASK);
 
 
 
 263	if (!error) {
 264		page_cache_get(page);
 265		page->mapping = mapping;
 266		page->index = index;
 267
 268		spin_lock_irq(&mapping->tree_lock);
 269		if (!expected)
 270			error = radix_tree_insert(&mapping->page_tree,
 271							index, page);
 272		else
 273			error = shmem_radix_tree_replace(mapping, index,
 274							expected, page);
 275		if (!error) {
 276			mapping->nrpages++;
 277			__inc_zone_page_state(page, NR_FILE_PAGES);
 278			__inc_zone_page_state(page, NR_SHMEM);
 279			spin_unlock_irq(&mapping->tree_lock);
 280		} else {
 281			page->mapping = NULL;
 282			spin_unlock_irq(&mapping->tree_lock);
 283			page_cache_release(page);
 284		}
 285		if (!expected)
 286			radix_tree_preload_end();
 287	}
 288	if (error)
 289		mem_cgroup_uncharge_cache_page(page);
 290	return error;
 291}
 292
 293/*
 294 * Like delete_from_page_cache, but substitutes swap for page.
 295 */
 296static void shmem_delete_from_page_cache(struct page *page, void *radswap)
 297{
 298	struct address_space *mapping = page->mapping;
 299	int error;
 300
 301	spin_lock_irq(&mapping->tree_lock);
 302	error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
 303	page->mapping = NULL;
 304	mapping->nrpages--;
 305	__dec_zone_page_state(page, NR_FILE_PAGES);
 306	__dec_zone_page_state(page, NR_SHMEM);
 307	spin_unlock_irq(&mapping->tree_lock);
 308	page_cache_release(page);
 309	BUG_ON(error);
 310}
 311
 312/*
 313 * Like find_get_pages, but collecting swap entries as well as pages.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 314 */
 315static unsigned shmem_find_get_pages_and_swap(struct address_space *mapping,
 316					pgoff_t start, unsigned int nr_pages,
 317					struct page **pages, pgoff_t *indices)
 318{
 319	unsigned int i;
 320	unsigned int ret;
 321	unsigned int nr_found;
 322
 323	rcu_read_lock();
 324restart:
 325	nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
 326				(void ***)pages, indices, start, nr_pages);
 327	ret = 0;
 328	for (i = 0; i < nr_found; i++) {
 329		struct page *page;
 330repeat:
 331		page = radix_tree_deref_slot((void **)pages[i]);
 332		if (unlikely(!page))
 333			continue;
 334		if (radix_tree_exception(page)) {
 335			if (radix_tree_deref_retry(page))
 336				goto restart;
 337			/*
 338			 * Otherwise, we must be storing a swap entry
 339			 * here as an exceptional entry: so return it
 340			 * without attempting to raise page count.
 341			 */
 342			goto export;
 343		}
 344		if (!page_cache_get_speculative(page))
 345			goto repeat;
 346
 347		/* Has the page moved? */
 348		if (unlikely(page != *((void **)pages[i]))) {
 349			page_cache_release(page);
 350			goto repeat;
 351		}
 352export:
 353		indices[ret] = indices[i];
 354		pages[ret] = page;
 355		ret++;
 356	}
 357	if (unlikely(!ret && nr_found))
 358		goto restart;
 359	rcu_read_unlock();
 360	return ret;
 
 361}
 362
 363/*
 364 * Remove swap entry from radix tree, free the swap and its page cache.
 
 
 
 
 365 */
 366static int shmem_free_swap(struct address_space *mapping,
 367			   pgoff_t index, void *radswap)
 368{
 369	int error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 370
 371	spin_lock_irq(&mapping->tree_lock);
 372	error = shmem_radix_tree_replace(mapping, index, radswap, NULL);
 373	spin_unlock_irq(&mapping->tree_lock);
 374	if (!error)
 375		free_swap_and_cache(radix_to_swp_entry(radswap));
 376	return error;
 377}
 378
 379/*
 380 * Pagevec may contain swap entries, so shuffle up pages before releasing.
 381 */
 382static void shmem_pagevec_release(struct pagevec *pvec)
 383{
 384	int i, j;
 
 
 385
 386	for (i = 0, j = 0; i < pagevec_count(pvec); i++) {
 387		struct page *page = pvec->pages[i];
 388		if (!radix_tree_exceptional_entry(page))
 389			pvec->pages[j++] = page;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 390	}
 391	pvec->nr = j;
 392	pagevec_release(pvec);
 393}
 394
 395/*
 396 * Remove range of pages and swap entries from radix tree, and free them.
 
 397 */
 398void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
 
 399{
 400	struct address_space *mapping = inode->i_mapping;
 401	struct shmem_inode_info *info = SHMEM_I(inode);
 402	pgoff_t start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
 403	unsigned partial = lstart & (PAGE_CACHE_SIZE - 1);
 404	pgoff_t end = (lend >> PAGE_CACHE_SHIFT);
 
 405	struct pagevec pvec;
 406	pgoff_t indices[PAGEVEC_SIZE];
 407	long nr_swaps_freed = 0;
 408	pgoff_t index;
 409	int i;
 410
 411	BUG_ON((lend & (PAGE_CACHE_SIZE - 1)) != (PAGE_CACHE_SIZE - 1));
 
 412
 413	pagevec_init(&pvec, 0);
 414	index = start;
 415	while (index <= end) {
 416		pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
 417			min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1,
 418							pvec.pages, indices);
 419		if (!pvec.nr)
 420			break;
 421		mem_cgroup_uncharge_start();
 422		for (i = 0; i < pagevec_count(&pvec); i++) {
 423			struct page *page = pvec.pages[i];
 424
 425			index = indices[i];
 426			if (index > end)
 427				break;
 428
 429			if (radix_tree_exceptional_entry(page)) {
 
 
 430				nr_swaps_freed += !shmem_free_swap(mapping,
 431								index, page);
 432				continue;
 433			}
 434
 435			if (!trylock_page(page))
 436				continue;
 437			if (page->mapping == mapping) {
 438				VM_BUG_ON(PageWriteback(page));
 439				truncate_inode_page(mapping, page);
 
 
 440			}
 441			unlock_page(page);
 442		}
 443		shmem_pagevec_release(&pvec);
 444		mem_cgroup_uncharge_end();
 445		cond_resched();
 446		index++;
 447	}
 448
 449	if (partial) {
 450		struct page *page = NULL;
 451		shmem_getpage(inode, start - 1, &page, SGP_READ, NULL);
 452		if (page) {
 453			zero_user_segment(page, partial, PAGE_CACHE_SIZE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 454			set_page_dirty(page);
 455			unlock_page(page);
 456			page_cache_release(page);
 457		}
 458	}
 
 
 459
 460	index = start;
 461	for ( ; ; ) {
 462		cond_resched();
 463		pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
 464			min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1,
 465							pvec.pages, indices);
 
 466		if (!pvec.nr) {
 467			if (index == start)
 
 468				break;
 
 469			index = start;
 470			continue;
 471		}
 472		if (index == start && indices[0] > end) {
 473			shmem_pagevec_release(&pvec);
 474			break;
 475		}
 476		mem_cgroup_uncharge_start();
 477		for (i = 0; i < pagevec_count(&pvec); i++) {
 478			struct page *page = pvec.pages[i];
 479
 480			index = indices[i];
 481			if (index > end)
 482				break;
 483
 484			if (radix_tree_exceptional_entry(page)) {
 485				nr_swaps_freed += !shmem_free_swap(mapping,
 486								index, page);
 
 
 
 
 
 
 487				continue;
 488			}
 489
 490			lock_page(page);
 491			if (page->mapping == mapping) {
 492				VM_BUG_ON(PageWriteback(page));
 493				truncate_inode_page(mapping, page);
 
 
 
 
 
 
 
 494			}
 495			unlock_page(page);
 496		}
 497		shmem_pagevec_release(&pvec);
 498		mem_cgroup_uncharge_end();
 499		index++;
 500	}
 501
 502	spin_lock(&info->lock);
 503	info->swapped -= nr_swaps_freed;
 504	shmem_recalc_inode(inode);
 505	spin_unlock(&info->lock);
 
 506
 
 
 
 507	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
 508}
 509EXPORT_SYMBOL_GPL(shmem_truncate_range);
 510
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 511static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
 512{
 513	struct inode *inode = dentry->d_inode;
 
 514	int error;
 515
 516	error = inode_change_ok(inode, attr);
 517	if (error)
 518		return error;
 519
 520	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
 521		loff_t oldsize = inode->i_size;
 522		loff_t newsize = attr->ia_size;
 523
 
 
 
 
 
 524		if (newsize != oldsize) {
 
 
 
 
 525			i_size_write(inode, newsize);
 526			inode->i_ctime = inode->i_mtime = CURRENT_TIME;
 527		}
 528		if (newsize < oldsize) {
 529			loff_t holebegin = round_up(newsize, PAGE_SIZE);
 530			unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
 531			shmem_truncate_range(inode, newsize, (loff_t)-1);
 
 
 
 
 532			/* unmap again to remove racily COWed private pages */
 533			unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
 
 
 534		}
 535	}
 536
 537	setattr_copy(inode, attr);
 538#ifdef CONFIG_TMPFS_POSIX_ACL
 539	if (attr->ia_valid & ATTR_MODE)
 540		error = generic_acl_chmod(inode);
 541#endif
 542	return error;
 543}
 544
 545static void shmem_evict_inode(struct inode *inode)
 546{
 547	struct shmem_inode_info *info = SHMEM_I(inode);
 548	struct shmem_xattr *xattr, *nxattr;
 549
 550	if (inode->i_mapping->a_ops == &shmem_aops) {
 551		shmem_unacct_size(info->flags, inode->i_size);
 552		inode->i_size = 0;
 553		shmem_truncate_range(inode, 0, (loff_t)-1);
 554		if (!list_empty(&info->swaplist)) {
 555			mutex_lock(&shmem_swaplist_mutex);
 556			list_del_init(&info->swaplist);
 557			mutex_unlock(&shmem_swaplist_mutex);
 558		}
 559	} else
 560		kfree(info->symlink);
 561
 562	list_for_each_entry_safe(xattr, nxattr, &info->xattr_list, list) {
 563		kfree(xattr->name);
 564		kfree(xattr);
 565	}
 566	BUG_ON(inode->i_blocks);
 567	shmem_free_inode(inode->i_sb);
 568	end_writeback(inode);
 569}
 570
 571/*
 572 * If swap found in inode, free it and move page from swapcache to filecache.
 573 */
 574static int shmem_unuse_inode(struct shmem_inode_info *info,
 575			     swp_entry_t swap, struct page *page)
 576{
 577	struct address_space *mapping = info->vfs_inode.i_mapping;
 578	void *radswap;
 579	pgoff_t index;
 580	int error;
 
 581
 582	radswap = swp_to_radix_entry(swap);
 583	index = radix_tree_locate_item(&mapping->page_tree, radswap);
 584	if (index == -1)
 585		return 0;
 586
 587	/*
 588	 * Move _head_ to start search for next from here.
 589	 * But be careful: shmem_evict_inode checks list_empty without taking
 590	 * mutex, and there's an instant in list_move_tail when info->swaplist
 591	 * would appear empty, if it were the only one on shmem_swaplist.
 592	 */
 593	if (shmem_swaplist.next != &info->swaplist)
 594		list_move_tail(&shmem_swaplist, &info->swaplist);
 595
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 596	/*
 597	 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
 598	 * but also to hold up shmem_evict_inode(): so inode cannot be freed
 599	 * beneath us (pagelock doesn't help until the page is in pagecache).
 600	 */
 601	error = shmem_add_to_page_cache(page, mapping, index,
 602						GFP_NOWAIT, radswap);
 603	/* which does mem_cgroup_uncharge_cache_page on error */
 604
 605	if (error != -ENOMEM) {
 606		/*
 607		 * Truncation and eviction use free_swap_and_cache(), which
 608		 * only does trylock page: if we raced, best clean up here.
 609		 */
 610		delete_from_swap_cache(page);
 611		set_page_dirty(page);
 612		if (!error) {
 613			spin_lock(&info->lock);
 614			info->swapped--;
 615			spin_unlock(&info->lock);
 616			swap_free(swap);
 617		}
 618		error = 1;	/* not an error, but entry was found */
 619	}
 620	return error;
 621}
 622
 623/*
 624 * Search through swapped inodes to find and replace swap by page.
 625 */
 626int shmem_unuse(swp_entry_t swap, struct page *page)
 627{
 628	struct list_head *this, *next;
 629	struct shmem_inode_info *info;
 630	int found = 0;
 631	int error;
 
 
 
 
 
 
 
 632
 633	/*
 634	 * Charge page using GFP_KERNEL while we can wait, before taking
 635	 * the shmem_swaplist_mutex which might hold up shmem_writepage().
 636	 * Charged back to the user (not to caller) when swap account is used.
 637	 */
 638	error = mem_cgroup_cache_charge(page, current->mm, GFP_KERNEL);
 
 639	if (error)
 640		goto out;
 641	/* No radix_tree_preload: swap entry keeps a place for page in tree */
 
 642
 643	mutex_lock(&shmem_swaplist_mutex);
 644	list_for_each_safe(this, next, &shmem_swaplist) {
 645		info = list_entry(this, struct shmem_inode_info, swaplist);
 646		if (info->swapped)
 647			found = shmem_unuse_inode(info, swap, page);
 648		else
 649			list_del_init(&info->swaplist);
 650		cond_resched();
 651		if (found)
 652			break;
 
 653	}
 654	mutex_unlock(&shmem_swaplist_mutex);
 655
 656	if (!found)
 657		mem_cgroup_uncharge_cache_page(page);
 658	if (found < 0)
 659		error = found;
 
 
 660out:
 661	unlock_page(page);
 662	page_cache_release(page);
 663	return error;
 664}
 665
 666/*
 667 * Move the page from the page cache to the swap cache.
 668 */
 669static int shmem_writepage(struct page *page, struct writeback_control *wbc)
 670{
 671	struct shmem_inode_info *info;
 672	struct address_space *mapping;
 673	struct inode *inode;
 674	swp_entry_t swap;
 675	pgoff_t index;
 676
 677	BUG_ON(!PageLocked(page));
 678	mapping = page->mapping;
 679	index = page->index;
 680	inode = mapping->host;
 681	info = SHMEM_I(inode);
 682	if (info->flags & VM_LOCKED)
 683		goto redirty;
 684	if (!total_swap_pages)
 685		goto redirty;
 686
 687	/*
 688	 * shmem_backing_dev_info's capabilities prevent regular writeback or
 689	 * sync from ever calling shmem_writepage; but a stacking filesystem
 690	 * might use ->writepage of its underlying filesystem, in which case
 691	 * tmpfs should write out to swap only in response to memory pressure,
 692	 * and not for the writeback threads or sync.
 693	 */
 694	if (!wbc->for_reclaim) {
 695		WARN_ON_ONCE(1);	/* Still happens? Tell us about it! */
 696		goto redirty;
 697	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 698	swap = get_swap_page();
 699	if (!swap.val)
 700		goto redirty;
 701
 
 
 
 702	/*
 703	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
 704	 * if it's not already there.  Do it now before the page is
 705	 * moved to swap cache, when its pagelock no longer protects
 706	 * the inode from eviction.  But don't unlock the mutex until
 707	 * we've incremented swapped, because shmem_unuse_inode() will
 708	 * prune a !swapped inode from the swaplist under this mutex.
 709	 */
 710	mutex_lock(&shmem_swaplist_mutex);
 711	if (list_empty(&info->swaplist))
 712		list_add_tail(&info->swaplist, &shmem_swaplist);
 713
 714	if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
 715		swap_shmem_alloc(swap);
 716		shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
 717
 718		spin_lock(&info->lock);
 
 719		info->swapped++;
 720		shmem_recalc_inode(inode);
 721		spin_unlock(&info->lock);
 722
 
 
 
 723		mutex_unlock(&shmem_swaplist_mutex);
 724		BUG_ON(page_mapped(page));
 725		swap_writepage(page, wbc);
 726		return 0;
 727	}
 728
 729	mutex_unlock(&shmem_swaplist_mutex);
 730	swapcache_free(swap, NULL);
 
 731redirty:
 732	set_page_dirty(page);
 733	if (wbc->for_reclaim)
 734		return AOP_WRITEPAGE_ACTIVATE;	/* Return with page locked */
 735	unlock_page(page);
 736	return 0;
 737}
 738
 739#ifdef CONFIG_NUMA
 740#ifdef CONFIG_TMPFS
 741static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
 742{
 743	char buffer[64];
 744
 745	if (!mpol || mpol->mode == MPOL_DEFAULT)
 746		return;		/* show nothing */
 747
 748	mpol_to_str(buffer, sizeof(buffer), mpol, 1);
 749
 750	seq_printf(seq, ",mpol=%s", buffer);
 751}
 752
 753static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
 754{
 755	struct mempolicy *mpol = NULL;
 756	if (sbinfo->mpol) {
 757		spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
 758		mpol = sbinfo->mpol;
 759		mpol_get(mpol);
 760		spin_unlock(&sbinfo->stat_lock);
 761	}
 762	return mpol;
 763}
 764#endif /* CONFIG_TMPFS */
 765
 766static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
 767			struct shmem_inode_info *info, pgoff_t index)
 768{
 769	struct mempolicy mpol, *spol;
 770	struct vm_area_struct pvma;
 771
 772	spol = mpol_cond_copy(&mpol,
 773			mpol_shared_policy_lookup(&info->policy, index));
 774
 775	/* Create a pseudo vma that just contains the policy */
 776	pvma.vm_start = 0;
 777	pvma.vm_pgoff = index;
 
 778	pvma.vm_ops = NULL;
 779	pvma.vm_policy = spol;
 780	return swapin_readahead(swap, gfp, &pvma, 0);
 
 
 
 
 
 
 781}
 782
 783static struct page *shmem_alloc_page(gfp_t gfp,
 784			struct shmem_inode_info *info, pgoff_t index)
 785{
 786	struct vm_area_struct pvma;
 
 787
 788	/* Create a pseudo vma that just contains the policy */
 789	pvma.vm_start = 0;
 790	pvma.vm_pgoff = index;
 
 791	pvma.vm_ops = NULL;
 792	pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
 793
 794	/*
 795	 * alloc_page_vma() will drop the shared policy reference
 796	 */
 797	return alloc_page_vma(gfp, &pvma, 0);
 
 
 798}
 799#else /* !CONFIG_NUMA */
 800#ifdef CONFIG_TMPFS
 801static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
 802{
 803}
 804#endif /* CONFIG_TMPFS */
 805
 806static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
 807			struct shmem_inode_info *info, pgoff_t index)
 808{
 809	return swapin_readahead(swap, gfp, NULL, 0);
 810}
 811
 812static inline struct page *shmem_alloc_page(gfp_t gfp,
 813			struct shmem_inode_info *info, pgoff_t index)
 814{
 815	return alloc_page(gfp);
 816}
 817#endif /* CONFIG_NUMA */
 818
 819#if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
 820static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
 821{
 822	return NULL;
 823}
 824#endif
 825
 826/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 827 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
 828 *
 829 * If we allocate a new one we do not mark it dirty. That's up to the
 830 * vm. If we swap it in we mark it dirty since we also free the swap
 831 * entry since a page cannot live in both the swap and page cache
 832 */
 833static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
 834	struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type)
 835{
 836	struct address_space *mapping = inode->i_mapping;
 837	struct shmem_inode_info *info;
 838	struct shmem_sb_info *sbinfo;
 
 839	struct page *page;
 840	swp_entry_t swap;
 841	int error;
 842	int once = 0;
 
 843
 844	if (index > (MAX_LFS_FILESIZE >> PAGE_CACHE_SHIFT))
 845		return -EFBIG;
 846repeat:
 847	swap.val = 0;
 848	page = find_lock_page(mapping, index);
 849	if (radix_tree_exceptional_entry(page)) {
 850		swap = radix_to_swp_entry(page);
 851		page = NULL;
 852	}
 853
 854	if (sgp != SGP_WRITE &&
 855	    ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
 856		error = -EINVAL;
 857		goto failed;
 858	}
 859
 
 
 
 
 
 
 
 
 
 
 
 860	if (page || (sgp == SGP_READ && !swap.val)) {
 861		/*
 862		 * Once we can get the page lock, it must be uptodate:
 863		 * if there were an error in reading back from swap,
 864		 * the page would not be inserted into the filecache.
 865		 */
 866		BUG_ON(page && !PageUptodate(page));
 867		*pagep = page;
 868		return 0;
 869	}
 870
 871	/*
 872	 * Fast cache lookup did not find it:
 873	 * bring it back from swap or allocate.
 874	 */
 875	info = SHMEM_I(inode);
 876	sbinfo = SHMEM_SB(inode->i_sb);
 877
 878	if (swap.val) {
 879		/* Look it up and read it in.. */
 880		page = lookup_swap_cache(swap);
 881		if (!page) {
 882			/* here we actually do the io */
 883			if (fault_type)
 884				*fault_type |= VM_FAULT_MAJOR;
 885			page = shmem_swapin(swap, gfp, info, index);
 886			if (!page) {
 887				error = -ENOMEM;
 888				goto failed;
 889			}
 890		}
 891
 892		/* We have to do this with page locked to prevent races */
 893		lock_page(page);
 
 
 
 
 
 894		if (!PageUptodate(page)) {
 895			error = -EIO;
 896			goto failed;
 897		}
 898		wait_on_page_writeback(page);
 899
 900		/* Someone may have already done it for us */
 901		if (page->mapping) {
 902			if (page->mapping == mapping &&
 903			    page->index == index)
 904				goto done;
 905			error = -EEXIST;
 906			goto failed;
 907		}
 908
 909		error = mem_cgroup_cache_charge(page, current->mm,
 910						gfp & GFP_RECLAIM_MASK);
 911		if (!error)
 912			error = shmem_add_to_page_cache(page, mapping, index,
 913						gfp, swp_to_radix_entry(swap));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 914		if (error)
 915			goto failed;
 916
 
 
 917		spin_lock(&info->lock);
 918		info->swapped--;
 919		shmem_recalc_inode(inode);
 920		spin_unlock(&info->lock);
 921
 
 
 
 922		delete_from_swap_cache(page);
 923		set_page_dirty(page);
 924		swap_free(swap);
 925
 926	} else {
 927		if (shmem_acct_block(info->flags)) {
 928			error = -ENOSPC;
 929			goto failed;
 930		}
 931		if (sbinfo->max_blocks) {
 932			if (percpu_counter_compare(&sbinfo->used_blocks,
 933						sbinfo->max_blocks) >= 0) {
 934				error = -ENOSPC;
 935				goto unacct;
 936			}
 937			percpu_counter_inc(&sbinfo->used_blocks);
 938		}
 939
 940		page = shmem_alloc_page(gfp, info, index);
 941		if (!page) {
 942			error = -ENOMEM;
 943			goto decused;
 944		}
 945
 946		SetPageSwapBacked(page);
 947		__set_page_locked(page);
 948		error = mem_cgroup_cache_charge(page, current->mm,
 949						gfp & GFP_RECLAIM_MASK);
 950		if (!error)
 
 
 
 
 
 
 951			error = shmem_add_to_page_cache(page, mapping, index,
 952						gfp, NULL);
 953		if (error)
 
 
 
 954			goto decused;
 
 
 955		lru_cache_add_anon(page);
 956
 957		spin_lock(&info->lock);
 958		info->alloced++;
 959		inode->i_blocks += BLOCKS_PER_PAGE;
 960		shmem_recalc_inode(inode);
 961		spin_unlock(&info->lock);
 
 962
 963		clear_highpage(page);
 964		flush_dcache_page(page);
 965		SetPageUptodate(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 966		if (sgp == SGP_DIRTY)
 967			set_page_dirty(page);
 968	}
 969done:
 970	/* Perhaps the file has been truncated since we checked */
 971	if (sgp != SGP_WRITE &&
 972	    ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
 
 
 
 
 
 
 
 973		error = -EINVAL;
 974		goto trunc;
 975	}
 976	*pagep = page;
 977	return 0;
 978
 979	/*
 980	 * Error recovery.
 981	 */
 982trunc:
 983	ClearPageDirty(page);
 984	delete_from_page_cache(page);
 985	spin_lock(&info->lock);
 986	info->alloced--;
 987	inode->i_blocks -= BLOCKS_PER_PAGE;
 988	spin_unlock(&info->lock);
 989decused:
 990	if (sbinfo->max_blocks)
 991		percpu_counter_add(&sbinfo->used_blocks, -1);
 992unacct:
 993	shmem_unacct_blocks(info->flags, 1);
 994failed:
 995	if (swap.val && error != -EINVAL) {
 996		struct page *test = find_get_page(mapping, index);
 997		if (test && !radix_tree_exceptional_entry(test))
 998			page_cache_release(test);
 999		/* Have another try if the entry has changed */
1000		if (test != swp_to_radix_entry(swap))
1001			error = -EEXIST;
1002	}
1003	if (page) {
1004		unlock_page(page);
1005		page_cache_release(page);
1006	}
1007	if (error == -ENOSPC && !once++) {
1008		info = SHMEM_I(inode);
1009		spin_lock(&info->lock);
1010		shmem_recalc_inode(inode);
1011		spin_unlock(&info->lock);
1012		goto repeat;
1013	}
1014	if (error == -EEXIST)
1015		goto repeat;
1016	return error;
1017}
1018
1019static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1020{
1021	struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1022	int error;
1023	int ret = VM_FAULT_LOCKED;
1024
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1025	error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1026	if (error)
1027		return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1028
1029	if (ret & VM_FAULT_MAJOR) {
1030		count_vm_event(PGMAJFAULT);
1031		mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1032	}
1033	return ret;
1034}
1035
1036#ifdef CONFIG_NUMA
1037static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1038{
1039	struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1040	return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1041}
1042
1043static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1044					  unsigned long addr)
1045{
1046	struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1047	pgoff_t index;
1048
1049	index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1050	return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1051}
1052#endif
1053
1054int shmem_lock(struct file *file, int lock, struct user_struct *user)
1055{
1056	struct inode *inode = file->f_path.dentry->d_inode;
1057	struct shmem_inode_info *info = SHMEM_I(inode);
1058	int retval = -ENOMEM;
1059
1060	spin_lock(&info->lock);
1061	if (lock && !(info->flags & VM_LOCKED)) {
1062		if (!user_shm_lock(inode->i_size, user))
1063			goto out_nomem;
1064		info->flags |= VM_LOCKED;
1065		mapping_set_unevictable(file->f_mapping);
1066	}
1067	if (!lock && (info->flags & VM_LOCKED) && user) {
1068		user_shm_unlock(inode->i_size, user);
1069		info->flags &= ~VM_LOCKED;
1070		mapping_clear_unevictable(file->f_mapping);
1071		scan_mapping_unevictable_pages(file->f_mapping);
1072	}
1073	retval = 0;
1074
1075out_nomem:
1076	spin_unlock(&info->lock);
1077	return retval;
1078}
1079
1080static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1081{
1082	file_accessed(file);
1083	vma->vm_ops = &shmem_vm_ops;
1084	vma->vm_flags |= VM_CAN_NONLINEAR;
1085	return 0;
1086}
1087
1088static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1089				     int mode, dev_t dev, unsigned long flags)
1090{
1091	struct inode *inode;
1092	struct shmem_inode_info *info;
1093	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1094
1095	if (shmem_reserve_inode(sb))
1096		return NULL;
1097
1098	inode = new_inode(sb);
1099	if (inode) {
1100		inode->i_ino = get_next_ino();
1101		inode_init_owner(inode, dir, mode);
1102		inode->i_blocks = 0;
1103		inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1104		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1105		inode->i_generation = get_seconds();
1106		info = SHMEM_I(inode);
1107		memset(info, 0, (char *)inode - (char *)info);
1108		spin_lock_init(&info->lock);
 
1109		info->flags = flags & VM_NORESERVE;
1110		INIT_LIST_HEAD(&info->swaplist);
1111		INIT_LIST_HEAD(&info->xattr_list);
1112		cache_no_acl(inode);
1113
1114		switch (mode & S_IFMT) {
1115		default:
1116			inode->i_op = &shmem_special_inode_operations;
1117			init_special_inode(inode, mode, dev);
1118			break;
1119		case S_IFREG:
1120			inode->i_mapping->a_ops = &shmem_aops;
1121			inode->i_op = &shmem_inode_operations;
1122			inode->i_fop = &shmem_file_operations;
1123			mpol_shared_policy_init(&info->policy,
1124						 shmem_get_sbmpol(sbinfo));
1125			break;
1126		case S_IFDIR:
1127			inc_nlink(inode);
1128			/* Some things misbehave if size == 0 on a directory */
1129			inode->i_size = 2 * BOGO_DIRENT_SIZE;
1130			inode->i_op = &shmem_dir_inode_operations;
1131			inode->i_fop = &simple_dir_operations;
1132			break;
1133		case S_IFLNK:
1134			/*
1135			 * Must not load anything in the rbtree,
1136			 * mpol_free_shared_policy will not be called.
1137			 */
1138			mpol_shared_policy_init(&info->policy, NULL);
1139			break;
1140		}
1141	} else
1142		shmem_free_inode(sb);
1143	return inode;
1144}
1145
 
 
 
 
 
 
 
 
1146#ifdef CONFIG_TMPFS
1147static const struct inode_operations shmem_symlink_inode_operations;
1148static const struct inode_operations shmem_short_symlink_operations;
1149
 
 
 
 
 
 
1150static int
1151shmem_write_begin(struct file *file, struct address_space *mapping,
1152			loff_t pos, unsigned len, unsigned flags,
1153			struct page **pagep, void **fsdata)
1154{
1155	struct inode *inode = mapping->host;
1156	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
 
 
 
 
 
 
 
 
 
 
1157	return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1158}
1159
1160static int
1161shmem_write_end(struct file *file, struct address_space *mapping,
1162			loff_t pos, unsigned len, unsigned copied,
1163			struct page *page, void *fsdata)
1164{
1165	struct inode *inode = mapping->host;
1166
1167	if (pos + copied > inode->i_size)
1168		i_size_write(inode, pos + copied);
1169
 
 
 
 
 
 
 
 
1170	set_page_dirty(page);
1171	unlock_page(page);
1172	page_cache_release(page);
1173
1174	return copied;
1175}
1176
1177static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1178{
1179	struct inode *inode = filp->f_path.dentry->d_inode;
 
1180	struct address_space *mapping = inode->i_mapping;
1181	pgoff_t index;
1182	unsigned long offset;
1183	enum sgp_type sgp = SGP_READ;
 
 
 
1184
1185	/*
1186	 * Might this read be for a stacking filesystem?  Then when reading
1187	 * holes of a sparse file, we actually need to allocate those pages,
1188	 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1189	 */
1190	if (segment_eq(get_fs(), KERNEL_DS))
1191		sgp = SGP_DIRTY;
1192
1193	index = *ppos >> PAGE_CACHE_SHIFT;
1194	offset = *ppos & ~PAGE_CACHE_MASK;
1195
1196	for (;;) {
1197		struct page *page = NULL;
1198		pgoff_t end_index;
1199		unsigned long nr, ret;
1200		loff_t i_size = i_size_read(inode);
1201
1202		end_index = i_size >> PAGE_CACHE_SHIFT;
1203		if (index > end_index)
1204			break;
1205		if (index == end_index) {
1206			nr = i_size & ~PAGE_CACHE_MASK;
1207			if (nr <= offset)
1208				break;
1209		}
1210
1211		desc->error = shmem_getpage(inode, index, &page, sgp, NULL);
1212		if (desc->error) {
1213			if (desc->error == -EINVAL)
1214				desc->error = 0;
1215			break;
1216		}
1217		if (page)
1218			unlock_page(page);
1219
1220		/*
1221		 * We must evaluate after, since reads (unlike writes)
1222		 * are called without i_mutex protection against truncate
1223		 */
1224		nr = PAGE_CACHE_SIZE;
1225		i_size = i_size_read(inode);
1226		end_index = i_size >> PAGE_CACHE_SHIFT;
1227		if (index == end_index) {
1228			nr = i_size & ~PAGE_CACHE_MASK;
1229			if (nr <= offset) {
1230				if (page)
1231					page_cache_release(page);
1232				break;
1233			}
1234		}
1235		nr -= offset;
1236
1237		if (page) {
1238			/*
1239			 * If users can be writing to this page using arbitrary
1240			 * virtual addresses, take care about potential aliasing
1241			 * before reading the page on the kernel side.
1242			 */
1243			if (mapping_writably_mapped(mapping))
1244				flush_dcache_page(page);
1245			/*
1246			 * Mark the page accessed if we read the beginning.
1247			 */
1248			if (!offset)
1249				mark_page_accessed(page);
1250		} else {
1251			page = ZERO_PAGE(0);
1252			page_cache_get(page);
1253		}
1254
1255		/*
1256		 * Ok, we have the page, and it's up-to-date, so
1257		 * now we can copy it to user space...
1258		 *
1259		 * The actor routine returns how many bytes were actually used..
1260		 * NOTE! This may not be the same as how much of a user buffer
1261		 * we filled up (we may be padding etc), so we can only update
1262		 * "pos" here (the actor routine has to update the user buffer
1263		 * pointers and the remaining count).
1264		 */
1265		ret = actor(desc, page, offset, nr);
 
1266		offset += ret;
1267		index += offset >> PAGE_CACHE_SHIFT;
1268		offset &= ~PAGE_CACHE_MASK;
1269
1270		page_cache_release(page);
1271		if (ret != nr || !desc->count)
 
 
 
1272			break;
1273
1274		cond_resched();
1275	}
1276
1277	*ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1278	file_accessed(filp);
1279}
1280
1281static ssize_t shmem_file_aio_read(struct kiocb *iocb,
1282		const struct iovec *iov, unsigned long nr_segs, loff_t pos)
1283{
1284	struct file *filp = iocb->ki_filp;
1285	ssize_t retval;
1286	unsigned long seg;
1287	size_t count;
1288	loff_t *ppos = &iocb->ki_pos;
1289
1290	retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1291	if (retval)
1292		return retval;
1293
1294	for (seg = 0; seg < nr_segs; seg++) {
1295		read_descriptor_t desc;
1296
1297		desc.written = 0;
1298		desc.arg.buf = iov[seg].iov_base;
1299		desc.count = iov[seg].iov_len;
1300		if (desc.count == 0)
1301			continue;
1302		desc.error = 0;
1303		do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1304		retval += desc.written;
1305		if (desc.error) {
1306			retval = retval ?: desc.error;
1307			break;
1308		}
1309		if (desc.count > 0)
1310			break;
1311	}
1312	return retval;
1313}
1314
1315static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
1316				struct pipe_inode_info *pipe, size_t len,
1317				unsigned int flags)
1318{
1319	struct address_space *mapping = in->f_mapping;
1320	struct inode *inode = mapping->host;
1321	unsigned int loff, nr_pages, req_pages;
1322	struct page *pages[PIPE_DEF_BUFFERS];
1323	struct partial_page partial[PIPE_DEF_BUFFERS];
1324	struct page *page;
1325	pgoff_t index, end_index;
1326	loff_t isize, left;
1327	int error, page_nr;
1328	struct splice_pipe_desc spd = {
1329		.pages = pages,
1330		.partial = partial,
 
1331		.flags = flags,
1332		.ops = &page_cache_pipe_buf_ops,
1333		.spd_release = spd_release_page,
1334	};
1335
1336	isize = i_size_read(inode);
1337	if (unlikely(*ppos >= isize))
1338		return 0;
1339
1340	left = isize - *ppos;
1341	if (unlikely(left < len))
1342		len = left;
1343
1344	if (splice_grow_spd(pipe, &spd))
1345		return -ENOMEM;
1346
1347	index = *ppos >> PAGE_CACHE_SHIFT;
1348	loff = *ppos & ~PAGE_CACHE_MASK;
1349	req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1350	nr_pages = min(req_pages, pipe->buffers);
1351
1352	spd.nr_pages = find_get_pages_contig(mapping, index,
1353						nr_pages, spd.pages);
1354	index += spd.nr_pages;
1355	error = 0;
1356
1357	while (spd.nr_pages < nr_pages) {
1358		error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL);
1359		if (error)
1360			break;
1361		unlock_page(page);
1362		spd.pages[spd.nr_pages++] = page;
1363		index++;
1364	}
1365
1366	index = *ppos >> PAGE_CACHE_SHIFT;
1367	nr_pages = spd.nr_pages;
1368	spd.nr_pages = 0;
1369
1370	for (page_nr = 0; page_nr < nr_pages; page_nr++) {
1371		unsigned int this_len;
1372
1373		if (!len)
1374			break;
1375
1376		this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
1377		page = spd.pages[page_nr];
1378
1379		if (!PageUptodate(page) || page->mapping != mapping) {
1380			error = shmem_getpage(inode, index, &page,
1381							SGP_CACHE, NULL);
1382			if (error)
1383				break;
1384			unlock_page(page);
1385			page_cache_release(spd.pages[page_nr]);
1386			spd.pages[page_nr] = page;
1387		}
1388
1389		isize = i_size_read(inode);
1390		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1391		if (unlikely(!isize || index > end_index))
1392			break;
1393
1394		if (end_index == index) {
1395			unsigned int plen;
1396
1397			plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1398			if (plen <= loff)
1399				break;
1400
1401			this_len = min(this_len, plen - loff);
1402			len = this_len;
1403		}
1404
1405		spd.partial[page_nr].offset = loff;
1406		spd.partial[page_nr].len = this_len;
1407		len -= this_len;
1408		loff = 0;
1409		spd.nr_pages++;
1410		index++;
1411	}
1412
1413	while (page_nr < nr_pages)
1414		page_cache_release(spd.pages[page_nr++]);
1415
1416	if (spd.nr_pages)
1417		error = splice_to_pipe(pipe, &spd);
1418
1419	splice_shrink_spd(pipe, &spd);
1420
1421	if (error > 0) {
1422		*ppos += error;
1423		file_accessed(in);
1424	}
1425	return error;
1426}
1427
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1428static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1429{
1430	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1431
1432	buf->f_type = TMPFS_MAGIC;
1433	buf->f_bsize = PAGE_CACHE_SIZE;
1434	buf->f_namelen = NAME_MAX;
1435	if (sbinfo->max_blocks) {
1436		buf->f_blocks = sbinfo->max_blocks;
1437		buf->f_bavail =
1438		buf->f_bfree  = sbinfo->max_blocks -
1439				percpu_counter_sum(&sbinfo->used_blocks);
1440	}
1441	if (sbinfo->max_inodes) {
1442		buf->f_files = sbinfo->max_inodes;
1443		buf->f_ffree = sbinfo->free_inodes;
1444	}
1445	/* else leave those fields 0 like simple_statfs */
1446	return 0;
1447}
1448
1449/*
1450 * File creation. Allocate an inode, and we're done..
1451 */
1452static int
1453shmem_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
1454{
1455	struct inode *inode;
1456	int error = -ENOSPC;
1457
1458	inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1459	if (inode) {
 
 
 
1460		error = security_inode_init_security(inode, dir,
1461						     &dentry->d_name, NULL,
1462						     NULL, NULL);
1463		if (error) {
1464			if (error != -EOPNOTSUPP) {
1465				iput(inode);
1466				return error;
1467			}
1468		}
1469#ifdef CONFIG_TMPFS_POSIX_ACL
1470		error = generic_acl_init(inode, dir);
1471		if (error) {
1472			iput(inode);
1473			return error;
1474		}
1475#else
1476		error = 0;
1477#endif
1478		dir->i_size += BOGO_DIRENT_SIZE;
1479		dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1480		d_instantiate(dentry, inode);
1481		dget(dentry); /* Extra count - pin the dentry in core */
1482	}
1483	return error;
 
 
 
1484}
1485
1486static int shmem_mkdir(struct inode *dir, struct dentry *dentry, int mode)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1487{
1488	int error;
1489
1490	if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1491		return error;
1492	inc_nlink(dir);
1493	return 0;
1494}
1495
1496static int shmem_create(struct inode *dir, struct dentry *dentry, int mode,
1497		struct nameidata *nd)
1498{
1499	return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1500}
1501
1502/*
1503 * Link a file..
1504 */
1505static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1506{
1507	struct inode *inode = old_dentry->d_inode;
1508	int ret;
1509
1510	/*
1511	 * No ordinary (disk based) filesystem counts links as inodes;
1512	 * but each new link needs a new dentry, pinning lowmem, and
1513	 * tmpfs dentries cannot be pruned until they are unlinked.
1514	 */
1515	ret = shmem_reserve_inode(inode->i_sb);
1516	if (ret)
1517		goto out;
1518
1519	dir->i_size += BOGO_DIRENT_SIZE;
1520	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1521	inc_nlink(inode);
1522	ihold(inode);	/* New dentry reference */
1523	dget(dentry);		/* Extra pinning count for the created dentry */
1524	d_instantiate(dentry, inode);
1525out:
1526	return ret;
1527}
1528
1529static int shmem_unlink(struct inode *dir, struct dentry *dentry)
1530{
1531	struct inode *inode = dentry->d_inode;
1532
1533	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
1534		shmem_free_inode(inode->i_sb);
1535
1536	dir->i_size -= BOGO_DIRENT_SIZE;
1537	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1538	drop_nlink(inode);
1539	dput(dentry);	/* Undo the count from "create" - this does all the work */
1540	return 0;
1541}
1542
1543static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
1544{
1545	if (!simple_empty(dentry))
1546		return -ENOTEMPTY;
1547
1548	drop_nlink(dentry->d_inode);
1549	drop_nlink(dir);
1550	return shmem_unlink(dir, dentry);
1551}
1552
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1553/*
1554 * The VFS layer already does all the dentry stuff for rename,
1555 * we just have to decrement the usage count for the target if
1556 * it exists so that the VFS layer correctly free's it when it
1557 * gets overwritten.
1558 */
1559static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
1560{
1561	struct inode *inode = old_dentry->d_inode;
1562	int they_are_dirs = S_ISDIR(inode->i_mode);
1563
 
 
 
 
 
 
1564	if (!simple_empty(new_dentry))
1565		return -ENOTEMPTY;
1566
1567	if (new_dentry->d_inode) {
 
 
 
 
 
 
 
 
1568		(void) shmem_unlink(new_dir, new_dentry);
1569		if (they_are_dirs)
 
1570			drop_nlink(old_dir);
 
1571	} else if (they_are_dirs) {
1572		drop_nlink(old_dir);
1573		inc_nlink(new_dir);
1574	}
1575
1576	old_dir->i_size -= BOGO_DIRENT_SIZE;
1577	new_dir->i_size += BOGO_DIRENT_SIZE;
1578	old_dir->i_ctime = old_dir->i_mtime =
1579	new_dir->i_ctime = new_dir->i_mtime =
1580	inode->i_ctime = CURRENT_TIME;
1581	return 0;
1582}
1583
1584static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1585{
1586	int error;
1587	int len;
1588	struct inode *inode;
1589	struct page *page;
1590	char *kaddr;
1591	struct shmem_inode_info *info;
1592
1593	len = strlen(symname) + 1;
1594	if (len > PAGE_CACHE_SIZE)
1595		return -ENAMETOOLONG;
1596
1597	inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
1598	if (!inode)
1599		return -ENOSPC;
1600
1601	error = security_inode_init_security(inode, dir, &dentry->d_name, NULL,
1602					     NULL, NULL);
1603	if (error) {
1604		if (error != -EOPNOTSUPP) {
1605			iput(inode);
1606			return error;
1607		}
1608		error = 0;
1609	}
1610
1611	info = SHMEM_I(inode);
1612	inode->i_size = len-1;
1613	if (len <= SHORT_SYMLINK_LEN) {
1614		info->symlink = kmemdup(symname, len, GFP_KERNEL);
1615		if (!info->symlink) {
1616			iput(inode);
1617			return -ENOMEM;
1618		}
1619		inode->i_op = &shmem_short_symlink_operations;
1620	} else {
 
1621		error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
1622		if (error) {
1623			iput(inode);
1624			return error;
1625		}
1626		inode->i_mapping->a_ops = &shmem_aops;
1627		inode->i_op = &shmem_symlink_inode_operations;
1628		kaddr = kmap_atomic(page, KM_USER0);
1629		memcpy(kaddr, symname, len);
1630		kunmap_atomic(kaddr, KM_USER0);
1631		set_page_dirty(page);
1632		unlock_page(page);
1633		page_cache_release(page);
1634	}
1635	dir->i_size += BOGO_DIRENT_SIZE;
1636	dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1637	d_instantiate(dentry, inode);
1638	dget(dentry);
1639	return 0;
1640}
1641
1642static void *shmem_follow_short_symlink(struct dentry *dentry, struct nameidata *nd)
1643{
1644	nd_set_link(nd, SHMEM_I(dentry->d_inode)->symlink);
1645	return NULL;
1646}
1647
1648static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
 
 
1649{
1650	struct page *page = NULL;
1651	int error = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
1652	nd_set_link(nd, error ? ERR_PTR(error) : kmap(page));
1653	if (page)
 
 
 
 
 
 
 
 
 
 
1654		unlock_page(page);
1655	return page;
1656}
1657
1658static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
1659{
1660	if (!IS_ERR(nd_get_link(nd))) {
1661		struct page *page = cookie;
1662		kunmap(page);
1663		mark_page_accessed(page);
1664		page_cache_release(page);
1665	}
 
 
1666}
1667
1668#ifdef CONFIG_TMPFS_XATTR
1669/*
1670 * Superblocks without xattr inode operations may get some security.* xattr
1671 * support from the LSM "for free". As soon as we have any other xattrs
1672 * like ACLs, we also need to implement the security.* handlers at
1673 * filesystem level, though.
1674 */
1675
1676static int shmem_xattr_get(struct dentry *dentry, const char *name,
1677			   void *buffer, size_t size)
 
 
 
 
1678{
1679	struct shmem_inode_info *info;
1680	struct shmem_xattr *xattr;
1681	int ret = -ENODATA;
1682
1683	info = SHMEM_I(dentry->d_inode);
1684
1685	spin_lock(&info->lock);
1686	list_for_each_entry(xattr, &info->xattr_list, list) {
1687		if (strcmp(name, xattr->name))
1688			continue;
1689
1690		ret = xattr->size;
1691		if (buffer) {
1692			if (size < xattr->size)
1693				ret = -ERANGE;
1694			else
1695				memcpy(buffer, xattr->value, xattr->size);
1696		}
1697		break;
1698	}
1699	spin_unlock(&info->lock);
1700	return ret;
1701}
1702
1703static int shmem_xattr_set(struct dentry *dentry, const char *name,
1704			   const void *value, size_t size, int flags)
1705{
1706	struct inode *inode = dentry->d_inode;
1707	struct shmem_inode_info *info = SHMEM_I(inode);
1708	struct shmem_xattr *xattr;
1709	struct shmem_xattr *new_xattr = NULL;
1710	size_t len;
1711	int err = 0;
1712
1713	/* value == NULL means remove */
1714	if (value) {
1715		/* wrap around? */
1716		len = sizeof(*new_xattr) + size;
1717		if (len <= sizeof(*new_xattr))
1718			return -ENOMEM;
1719
1720		new_xattr = kmalloc(len, GFP_KERNEL);
1721		if (!new_xattr)
1722			return -ENOMEM;
1723
1724		new_xattr->name = kstrdup(name, GFP_KERNEL);
 
 
1725		if (!new_xattr->name) {
1726			kfree(new_xattr);
1727			return -ENOMEM;
1728		}
1729
1730		new_xattr->size = size;
1731		memcpy(new_xattr->value, value, size);
1732	}
 
1733
1734	spin_lock(&info->lock);
1735	list_for_each_entry(xattr, &info->xattr_list, list) {
1736		if (!strcmp(name, xattr->name)) {
1737			if (flags & XATTR_CREATE) {
1738				xattr = new_xattr;
1739				err = -EEXIST;
1740			} else if (new_xattr) {
1741				list_replace(&xattr->list, &new_xattr->list);
1742			} else {
1743				list_del(&xattr->list);
1744			}
1745			goto out;
1746		}
1747	}
1748	if (flags & XATTR_REPLACE) {
1749		xattr = new_xattr;
1750		err = -ENODATA;
1751	} else {
1752		list_add(&new_xattr->list, &info->xattr_list);
1753		xattr = NULL;
1754	}
1755out:
1756	spin_unlock(&info->lock);
1757	if (xattr)
1758		kfree(xattr->name);
1759	kfree(xattr);
1760	return err;
1761}
1762
1763static const struct xattr_handler *shmem_xattr_handlers[] = {
1764#ifdef CONFIG_TMPFS_POSIX_ACL
1765	&generic_acl_access_handler,
1766	&generic_acl_default_handler,
1767#endif
1768	NULL
1769};
1770
1771static int shmem_xattr_validate(const char *name)
1772{
1773	struct { const char *prefix; size_t len; } arr[] = {
1774		{ XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN },
1775		{ XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN }
1776	};
1777	int i;
1778
1779	for (i = 0; i < ARRAY_SIZE(arr); i++) {
1780		size_t preflen = arr[i].len;
1781		if (strncmp(name, arr[i].prefix, preflen) == 0) {
1782			if (!name[preflen])
1783				return -EINVAL;
1784			return 0;
1785		}
1786	}
1787	return -EOPNOTSUPP;
1788}
1789
1790static ssize_t shmem_getxattr(struct dentry *dentry, const char *name,
1791			      void *buffer, size_t size)
 
1792{
1793	int err;
1794
1795	/*
1796	 * If this is a request for a synthetic attribute in the system.*
1797	 * namespace use the generic infrastructure to resolve a handler
1798	 * for it via sb->s_xattr.
1799	 */
1800	if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
1801		return generic_getxattr(dentry, name, buffer, size);
1802
1803	err = shmem_xattr_validate(name);
1804	if (err)
1805		return err;
1806
1807	return shmem_xattr_get(dentry, name, buffer, size);
1808}
1809
1810static int shmem_setxattr(struct dentry *dentry, const char *name,
1811			  const void *value, size_t size, int flags)
 
1812{
1813	int err;
1814
1815	/*
1816	 * If this is a request for a synthetic attribute in the system.*
1817	 * namespace use the generic infrastructure to resolve a handler
1818	 * for it via sb->s_xattr.
1819	 */
1820	if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
1821		return generic_setxattr(dentry, name, value, size, flags);
1822
1823	err = shmem_xattr_validate(name);
1824	if (err)
1825		return err;
1826
1827	if (size == 0)
1828		value = "";  /* empty EA, do not remove */
1829
1830	return shmem_xattr_set(dentry, name, value, size, flags);
1831
 
 
1832}
1833
1834static int shmem_removexattr(struct dentry *dentry, const char *name)
1835{
1836	int err;
 
 
1837
1838	/*
1839	 * If this is a request for a synthetic attribute in the system.*
1840	 * namespace use the generic infrastructure to resolve a handler
1841	 * for it via sb->s_xattr.
1842	 */
1843	if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
1844		return generic_removexattr(dentry, name);
1845
1846	err = shmem_xattr_validate(name);
1847	if (err)
1848		return err;
1849
1850	return shmem_xattr_set(dentry, name, NULL, 0, XATTR_REPLACE);
1851}
1852
1853static bool xattr_is_trusted(const char *name)
1854{
1855	return !strncmp(name, XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN);
1856}
1857
1858static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
1859{
1860	bool trusted = capable(CAP_SYS_ADMIN);
1861	struct shmem_xattr *xattr;
1862	struct shmem_inode_info *info;
1863	size_t used = 0;
1864
1865	info = SHMEM_I(dentry->d_inode);
1866
1867	spin_lock(&info->lock);
1868	list_for_each_entry(xattr, &info->xattr_list, list) {
1869		size_t len;
1870
1871		/* skip "trusted." attributes for unprivileged callers */
1872		if (!trusted && xattr_is_trusted(xattr->name))
1873			continue;
1874
1875		len = strlen(xattr->name) + 1;
1876		used += len;
1877		if (buffer) {
1878			if (size < used) {
1879				used = -ERANGE;
1880				break;
1881			}
1882			memcpy(buffer, xattr->name, len);
1883			buffer += len;
1884		}
1885	}
1886	spin_unlock(&info->lock);
1887
1888	return used;
1889}
1890#endif /* CONFIG_TMPFS_XATTR */
1891
1892static const struct inode_operations shmem_short_symlink_operations = {
1893	.readlink	= generic_readlink,
1894	.follow_link	= shmem_follow_short_symlink,
1895#ifdef CONFIG_TMPFS_XATTR
1896	.setxattr	= shmem_setxattr,
1897	.getxattr	= shmem_getxattr,
1898	.listxattr	= shmem_listxattr,
1899	.removexattr	= shmem_removexattr,
1900#endif
1901};
1902
1903static const struct inode_operations shmem_symlink_inode_operations = {
1904	.readlink	= generic_readlink,
1905	.follow_link	= shmem_follow_link,
1906	.put_link	= shmem_put_link,
1907#ifdef CONFIG_TMPFS_XATTR
1908	.setxattr	= shmem_setxattr,
1909	.getxattr	= shmem_getxattr,
1910	.listxattr	= shmem_listxattr,
1911	.removexattr	= shmem_removexattr,
1912#endif
1913};
1914
1915static struct dentry *shmem_get_parent(struct dentry *child)
1916{
1917	return ERR_PTR(-ESTALE);
1918}
1919
1920static int shmem_match(struct inode *ino, void *vfh)
1921{
1922	__u32 *fh = vfh;
1923	__u64 inum = fh[2];
1924	inum = (inum << 32) | fh[1];
1925	return ino->i_ino == inum && fh[0] == ino->i_generation;
1926}
1927
1928static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
1929		struct fid *fid, int fh_len, int fh_type)
1930{
1931	struct inode *inode;
1932	struct dentry *dentry = NULL;
1933	u64 inum = fid->raw[2];
1934	inum = (inum << 32) | fid->raw[1];
1935
1936	if (fh_len < 3)
1937		return NULL;
1938
 
 
 
1939	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
1940			shmem_match, fid->raw);
1941	if (inode) {
1942		dentry = d_find_alias(inode);
1943		iput(inode);
1944	}
1945
1946	return dentry;
1947}
1948
1949static int shmem_encode_fh(struct dentry *dentry, __u32 *fh, int *len,
1950				int connectable)
1951{
1952	struct inode *inode = dentry->d_inode;
1953
1954	if (*len < 3) {
1955		*len = 3;
1956		return 255;
1957	}
1958
1959	if (inode_unhashed(inode)) {
1960		/* Unfortunately insert_inode_hash is not idempotent,
1961		 * so as we hash inodes here rather than at creation
1962		 * time, we need a lock to ensure we only try
1963		 * to do it once
1964		 */
1965		static DEFINE_SPINLOCK(lock);
1966		spin_lock(&lock);
1967		if (inode_unhashed(inode))
1968			__insert_inode_hash(inode,
1969					    inode->i_ino + inode->i_generation);
1970		spin_unlock(&lock);
1971	}
1972
1973	fh[0] = inode->i_generation;
1974	fh[1] = inode->i_ino;
1975	fh[2] = ((__u64)inode->i_ino) >> 32;
1976
1977	*len = 3;
1978	return 1;
1979}
1980
1981static const struct export_operations shmem_export_ops = {
1982	.get_parent     = shmem_get_parent,
1983	.encode_fh      = shmem_encode_fh,
1984	.fh_to_dentry	= shmem_fh_to_dentry,
1985};
1986
1987static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
1988			       bool remount)
1989{
1990	char *this_char, *value, *rest;
 
 
 
1991
1992	while (options != NULL) {
1993		this_char = options;
1994		for (;;) {
1995			/*
1996			 * NUL-terminate this option: unfortunately,
1997			 * mount options form a comma-separated list,
1998			 * but mpol's nodelist may also contain commas.
1999			 */
2000			options = strchr(options, ',');
2001			if (options == NULL)
2002				break;
2003			options++;
2004			if (!isdigit(*options)) {
2005				options[-1] = '\0';
2006				break;
2007			}
2008		}
2009		if (!*this_char)
2010			continue;
2011		if ((value = strchr(this_char,'=')) != NULL) {
2012			*value++ = 0;
2013		} else {
2014			printk(KERN_ERR
2015			    "tmpfs: No value for mount option '%s'\n",
2016			    this_char);
2017			return 1;
2018		}
2019
2020		if (!strcmp(this_char,"size")) {
2021			unsigned long long size;
2022			size = memparse(value,&rest);
2023			if (*rest == '%') {
2024				size <<= PAGE_SHIFT;
2025				size *= totalram_pages;
2026				do_div(size, 100);
2027				rest++;
2028			}
2029			if (*rest)
2030				goto bad_val;
2031			sbinfo->max_blocks =
2032				DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2033		} else if (!strcmp(this_char,"nr_blocks")) {
2034			sbinfo->max_blocks = memparse(value, &rest);
2035			if (*rest)
2036				goto bad_val;
2037		} else if (!strcmp(this_char,"nr_inodes")) {
2038			sbinfo->max_inodes = memparse(value, &rest);
2039			if (*rest)
2040				goto bad_val;
2041		} else if (!strcmp(this_char,"mode")) {
2042			if (remount)
2043				continue;
2044			sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2045			if (*rest)
2046				goto bad_val;
2047		} else if (!strcmp(this_char,"uid")) {
2048			if (remount)
2049				continue;
2050			sbinfo->uid = simple_strtoul(value, &rest, 0);
2051			if (*rest)
2052				goto bad_val;
 
 
 
2053		} else if (!strcmp(this_char,"gid")) {
2054			if (remount)
2055				continue;
2056			sbinfo->gid = simple_strtoul(value, &rest, 0);
2057			if (*rest)
2058				goto bad_val;
 
 
 
2059		} else if (!strcmp(this_char,"mpol")) {
2060			if (mpol_parse_str(value, &sbinfo->mpol, 1))
 
 
2061				goto bad_val;
2062		} else {
2063			printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2064			       this_char);
2065			return 1;
2066		}
2067	}
 
2068	return 0;
2069
2070bad_val:
2071	printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2072	       value, this_char);
 
 
2073	return 1;
2074
2075}
2076
2077static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2078{
2079	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2080	struct shmem_sb_info config = *sbinfo;
2081	unsigned long inodes;
2082	int error = -EINVAL;
2083
 
2084	if (shmem_parse_options(data, &config, true))
2085		return error;
2086
2087	spin_lock(&sbinfo->stat_lock);
2088	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2089	if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
2090		goto out;
2091	if (config.max_inodes < inodes)
2092		goto out;
2093	/*
2094	 * Those tests disallow limited->unlimited while any are in use;
2095	 * but we must separately disallow unlimited->limited, because
2096	 * in that case we have no record of how much is already in use.
2097	 */
2098	if (config.max_blocks && !sbinfo->max_blocks)
2099		goto out;
2100	if (config.max_inodes && !sbinfo->max_inodes)
2101		goto out;
2102
2103	error = 0;
2104	sbinfo->max_blocks  = config.max_blocks;
2105	sbinfo->max_inodes  = config.max_inodes;
2106	sbinfo->free_inodes = config.max_inodes - inodes;
2107
2108	mpol_put(sbinfo->mpol);
2109	sbinfo->mpol        = config.mpol;	/* transfers initial ref */
 
 
 
 
 
2110out:
2111	spin_unlock(&sbinfo->stat_lock);
2112	return error;
2113}
2114
2115static int shmem_show_options(struct seq_file *seq, struct vfsmount *vfs)
2116{
2117	struct shmem_sb_info *sbinfo = SHMEM_SB(vfs->mnt_sb);
2118
2119	if (sbinfo->max_blocks != shmem_default_max_blocks())
2120		seq_printf(seq, ",size=%luk",
2121			sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2122	if (sbinfo->max_inodes != shmem_default_max_inodes())
2123		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2124	if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2125		seq_printf(seq, ",mode=%03o", sbinfo->mode);
2126	if (sbinfo->uid != 0)
2127		seq_printf(seq, ",uid=%u", sbinfo->uid);
2128	if (sbinfo->gid != 0)
2129		seq_printf(seq, ",gid=%u", sbinfo->gid);
 
 
2130	shmem_show_mpol(seq, sbinfo->mpol);
2131	return 0;
2132}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2133#endif /* CONFIG_TMPFS */
2134
2135static void shmem_put_super(struct super_block *sb)
2136{
2137	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2138
2139	percpu_counter_destroy(&sbinfo->used_blocks);
 
2140	kfree(sbinfo);
2141	sb->s_fs_info = NULL;
2142}
2143
2144int shmem_fill_super(struct super_block *sb, void *data, int silent)
2145{
2146	struct inode *inode;
2147	struct dentry *root;
2148	struct shmem_sb_info *sbinfo;
2149	int err = -ENOMEM;
2150
2151	/* Round up to L1_CACHE_BYTES to resist false sharing */
2152	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
2153				L1_CACHE_BYTES), GFP_KERNEL);
2154	if (!sbinfo)
2155		return -ENOMEM;
2156
2157	sbinfo->mode = S_IRWXUGO | S_ISVTX;
2158	sbinfo->uid = current_fsuid();
2159	sbinfo->gid = current_fsgid();
2160	sb->s_fs_info = sbinfo;
2161
2162#ifdef CONFIG_TMPFS
2163	/*
2164	 * Per default we only allow half of the physical ram per
2165	 * tmpfs instance, limiting inodes to one per page of lowmem;
2166	 * but the internal instance is left unlimited.
2167	 */
2168	if (!(sb->s_flags & MS_NOUSER)) {
2169		sbinfo->max_blocks = shmem_default_max_blocks();
2170		sbinfo->max_inodes = shmem_default_max_inodes();
2171		if (shmem_parse_options(data, sbinfo, false)) {
2172			err = -EINVAL;
2173			goto failed;
2174		}
 
 
2175	}
2176	sb->s_export_op = &shmem_export_ops;
 
2177#else
2178	sb->s_flags |= MS_NOUSER;
2179#endif
2180
2181	spin_lock_init(&sbinfo->stat_lock);
2182	if (percpu_counter_init(&sbinfo->used_blocks, 0))
2183		goto failed;
2184	sbinfo->free_inodes = sbinfo->max_inodes;
2185
2186	sb->s_maxbytes = MAX_LFS_FILESIZE;
2187	sb->s_blocksize = PAGE_CACHE_SIZE;
2188	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2189	sb->s_magic = TMPFS_MAGIC;
2190	sb->s_op = &shmem_ops;
2191	sb->s_time_gran = 1;
2192#ifdef CONFIG_TMPFS_XATTR
2193	sb->s_xattr = shmem_xattr_handlers;
2194#endif
2195#ifdef CONFIG_TMPFS_POSIX_ACL
2196	sb->s_flags |= MS_POSIXACL;
2197#endif
2198
2199	inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
2200	if (!inode)
2201		goto failed;
2202	inode->i_uid = sbinfo->uid;
2203	inode->i_gid = sbinfo->gid;
2204	root = d_alloc_root(inode);
2205	if (!root)
2206		goto failed_iput;
2207	sb->s_root = root;
2208	return 0;
2209
2210failed_iput:
2211	iput(inode);
2212failed:
2213	shmem_put_super(sb);
2214	return err;
2215}
2216
2217static struct kmem_cache *shmem_inode_cachep;
2218
2219static struct inode *shmem_alloc_inode(struct super_block *sb)
2220{
2221	struct shmem_inode_info *info;
2222	info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2223	if (!info)
2224		return NULL;
2225	return &info->vfs_inode;
2226}
2227
2228static void shmem_destroy_callback(struct rcu_head *head)
2229{
2230	struct inode *inode = container_of(head, struct inode, i_rcu);
2231	INIT_LIST_HEAD(&inode->i_dentry);
2232	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2233}
2234
2235static void shmem_destroy_inode(struct inode *inode)
2236{
2237	if ((inode->i_mode & S_IFMT) == S_IFREG)
2238		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2239	call_rcu(&inode->i_rcu, shmem_destroy_callback);
2240}
2241
2242static void shmem_init_inode(void *foo)
2243{
2244	struct shmem_inode_info *info = foo;
2245	inode_init_once(&info->vfs_inode);
2246}
2247
2248static int shmem_init_inodecache(void)
2249{
2250	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2251				sizeof(struct shmem_inode_info),
2252				0, SLAB_PANIC, shmem_init_inode);
2253	return 0;
2254}
2255
2256static void shmem_destroy_inodecache(void)
2257{
2258	kmem_cache_destroy(shmem_inode_cachep);
2259}
2260
2261static const struct address_space_operations shmem_aops = {
2262	.writepage	= shmem_writepage,
2263	.set_page_dirty	= __set_page_dirty_no_writeback,
2264#ifdef CONFIG_TMPFS
2265	.write_begin	= shmem_write_begin,
2266	.write_end	= shmem_write_end,
2267#endif
 
2268	.migratepage	= migrate_page,
 
2269	.error_remove_page = generic_error_remove_page,
2270};
2271
2272static const struct file_operations shmem_file_operations = {
2273	.mmap		= shmem_mmap,
2274#ifdef CONFIG_TMPFS
2275	.llseek		= generic_file_llseek,
2276	.read		= do_sync_read,
2277	.write		= do_sync_write,
2278	.aio_read	= shmem_file_aio_read,
2279	.aio_write	= generic_file_aio_write,
2280	.fsync		= noop_fsync,
2281	.splice_read	= shmem_file_splice_read,
2282	.splice_write	= generic_file_splice_write,
 
2283#endif
2284};
2285
2286static const struct inode_operations shmem_inode_operations = {
 
2287	.setattr	= shmem_setattr,
2288	.truncate_range	= shmem_truncate_range,
2289#ifdef CONFIG_TMPFS_XATTR
2290	.setxattr	= shmem_setxattr,
2291	.getxattr	= shmem_getxattr,
2292	.listxattr	= shmem_listxattr,
2293	.removexattr	= shmem_removexattr,
 
2294#endif
2295};
2296
2297static const struct inode_operations shmem_dir_inode_operations = {
2298#ifdef CONFIG_TMPFS
2299	.create		= shmem_create,
2300	.lookup		= simple_lookup,
2301	.link		= shmem_link,
2302	.unlink		= shmem_unlink,
2303	.symlink	= shmem_symlink,
2304	.mkdir		= shmem_mkdir,
2305	.rmdir		= shmem_rmdir,
2306	.mknod		= shmem_mknod,
2307	.rename		= shmem_rename,
 
2308#endif
2309#ifdef CONFIG_TMPFS_XATTR
2310	.setxattr	= shmem_setxattr,
2311	.getxattr	= shmem_getxattr,
2312	.listxattr	= shmem_listxattr,
2313	.removexattr	= shmem_removexattr,
2314#endif
2315#ifdef CONFIG_TMPFS_POSIX_ACL
2316	.setattr	= shmem_setattr,
 
2317#endif
2318};
2319
2320static const struct inode_operations shmem_special_inode_operations = {
2321#ifdef CONFIG_TMPFS_XATTR
2322	.setxattr	= shmem_setxattr,
2323	.getxattr	= shmem_getxattr,
2324	.listxattr	= shmem_listxattr,
2325	.removexattr	= shmem_removexattr,
2326#endif
2327#ifdef CONFIG_TMPFS_POSIX_ACL
2328	.setattr	= shmem_setattr,
 
2329#endif
2330};
2331
2332static const struct super_operations shmem_ops = {
2333	.alloc_inode	= shmem_alloc_inode,
2334	.destroy_inode	= shmem_destroy_inode,
2335#ifdef CONFIG_TMPFS
2336	.statfs		= shmem_statfs,
2337	.remount_fs	= shmem_remount_fs,
2338	.show_options	= shmem_show_options,
2339#endif
2340	.evict_inode	= shmem_evict_inode,
2341	.drop_inode	= generic_delete_inode,
2342	.put_super	= shmem_put_super,
2343};
2344
2345static const struct vm_operations_struct shmem_vm_ops = {
2346	.fault		= shmem_fault,
 
2347#ifdef CONFIG_NUMA
2348	.set_policy     = shmem_set_policy,
2349	.get_policy     = shmem_get_policy,
2350#endif
2351};
2352
2353static struct dentry *shmem_mount(struct file_system_type *fs_type,
2354	int flags, const char *dev_name, void *data)
2355{
2356	return mount_nodev(fs_type, flags, data, shmem_fill_super);
2357}
2358
2359static struct file_system_type shmem_fs_type = {
2360	.owner		= THIS_MODULE,
2361	.name		= "tmpfs",
2362	.mount		= shmem_mount,
2363	.kill_sb	= kill_litter_super,
 
2364};
2365
2366int __init shmem_init(void)
2367{
2368	int error;
2369
2370	error = bdi_init(&shmem_backing_dev_info);
2371	if (error)
2372		goto out4;
2373
2374	error = shmem_init_inodecache();
2375	if (error)
2376		goto out3;
2377
2378	error = register_filesystem(&shmem_fs_type);
2379	if (error) {
2380		printk(KERN_ERR "Could not register tmpfs\n");
2381		goto out2;
2382	}
2383
2384	shm_mnt = vfs_kern_mount(&shmem_fs_type, MS_NOUSER,
2385				 shmem_fs_type.name, NULL);
2386	if (IS_ERR(shm_mnt)) {
2387		error = PTR_ERR(shm_mnt);
2388		printk(KERN_ERR "Could not kern_mount tmpfs\n");
2389		goto out1;
2390	}
2391	return 0;
2392
2393out1:
2394	unregister_filesystem(&shmem_fs_type);
2395out2:
2396	shmem_destroy_inodecache();
2397out3:
2398	bdi_destroy(&shmem_backing_dev_info);
2399out4:
2400	shm_mnt = ERR_PTR(error);
2401	return error;
2402}
2403
2404#else /* !CONFIG_SHMEM */
2405
2406/*
2407 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
2408 *
2409 * This is intended for small system where the benefits of the full
2410 * shmem code (swap-backed and resource-limited) are outweighed by
2411 * their complexity. On systems without swap this code should be
2412 * effectively equivalent, but much lighter weight.
2413 */
2414
2415#include <linux/ramfs.h>
2416
2417static struct file_system_type shmem_fs_type = {
2418	.name		= "tmpfs",
2419	.mount		= ramfs_mount,
2420	.kill_sb	= kill_litter_super,
 
2421};
2422
2423int __init shmem_init(void)
2424{
2425	BUG_ON(register_filesystem(&shmem_fs_type) != 0);
2426
2427	shm_mnt = kern_mount(&shmem_fs_type);
2428	BUG_ON(IS_ERR(shm_mnt));
2429
2430	return 0;
2431}
2432
2433int shmem_unuse(swp_entry_t swap, struct page *page)
2434{
2435	return 0;
2436}
2437
2438int shmem_lock(struct file *file, int lock, struct user_struct *user)
2439{
2440	return 0;
2441}
2442
 
 
 
 
2443void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
2444{
2445	truncate_inode_pages_range(inode->i_mapping, lstart, lend);
2446}
2447EXPORT_SYMBOL_GPL(shmem_truncate_range);
2448
2449#define shmem_vm_ops				generic_file_vm_ops
2450#define shmem_file_operations			ramfs_file_operations
2451#define shmem_get_inode(sb, dir, mode, dev, flags)	ramfs_get_inode(sb, dir, mode, dev)
2452#define shmem_acct_size(flags, size)		0
2453#define shmem_unacct_size(flags, size)		do {} while (0)
2454
2455#endif /* CONFIG_SHMEM */
2456
2457/* common code */
2458
2459/**
2460 * shmem_file_setup - get an unlinked file living in tmpfs
2461 * @name: name for dentry (to be seen in /proc/<pid>/maps
2462 * @size: size to be set for the file
2463 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2464 */
2465struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
2466{
2467	int error;
2468	struct file *file;
2469	struct inode *inode;
2470	struct path path;
2471	struct dentry *root;
2472	struct qstr this;
2473
2474	if (IS_ERR(shm_mnt))
2475		return (void *)shm_mnt;
2476
2477	if (size < 0 || size > MAX_LFS_FILESIZE)
2478		return ERR_PTR(-EINVAL);
2479
2480	if (shmem_acct_size(flags, size))
2481		return ERR_PTR(-ENOMEM);
2482
2483	error = -ENOMEM;
2484	this.name = name;
2485	this.len = strlen(name);
2486	this.hash = 0; /* will go */
2487	root = shm_mnt->mnt_root;
2488	path.dentry = d_alloc(root, &this);
 
2489	if (!path.dentry)
2490		goto put_memory;
2491	path.mnt = mntget(shm_mnt);
2492
2493	error = -ENOSPC;
2494	inode = shmem_get_inode(root->d_sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
2495	if (!inode)
2496		goto put_dentry;
2497
 
2498	d_instantiate(path.dentry, inode);
2499	inode->i_size = size;
2500	inode->i_nlink = 0;	/* It is unlinked */
2501#ifndef CONFIG_MMU
2502	error = ramfs_nommu_expand_for_mapping(inode, size);
2503	if (error)
2504		goto put_dentry;
2505#endif
2506
2507	error = -ENFILE;
2508	file = alloc_file(&path, FMODE_WRITE | FMODE_READ,
2509		  &shmem_file_operations);
2510	if (!file)
2511		goto put_dentry;
2512
2513	return file;
2514
2515put_dentry:
2516	path_put(&path);
2517put_memory:
2518	shmem_unacct_size(flags, size);
2519	return ERR_PTR(error);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2520}
2521EXPORT_SYMBOL_GPL(shmem_file_setup);
2522
2523/**
2524 * shmem_zero_setup - setup a shared anonymous mapping
2525 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2526 */
2527int shmem_zero_setup(struct vm_area_struct *vma)
2528{
2529	struct file *file;
2530	loff_t size = vma->vm_end - vma->vm_start;
2531
2532	file = shmem_file_setup("dev/zero", size, vma->vm_flags);
 
 
 
 
 
 
2533	if (IS_ERR(file))
2534		return PTR_ERR(file);
2535
2536	if (vma->vm_file)
2537		fput(vma->vm_file);
2538	vma->vm_file = file;
2539	vma->vm_ops = &shmem_vm_ops;
2540	vma->vm_flags |= VM_CAN_NONLINEAR;
2541	return 0;
2542}
2543
2544/**
2545 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
2546 * @mapping:	the page's address_space
2547 * @index:	the page index
2548 * @gfp:	the page allocator flags to use if allocating
2549 *
2550 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
2551 * with any new page allocations done using the specified allocation flags.
2552 * But read_cache_page_gfp() uses the ->readpage() method: which does not
2553 * suit tmpfs, since it may have pages in swapcache, and needs to find those
2554 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
2555 *
2556 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
2557 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
2558 */
2559struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
2560					 pgoff_t index, gfp_t gfp)
2561{
2562#ifdef CONFIG_SHMEM
2563	struct inode *inode = mapping->host;
2564	struct page *page;
2565	int error;
2566
2567	BUG_ON(mapping->a_ops != &shmem_aops);
2568	error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL);
2569	if (error)
2570		page = ERR_PTR(error);
2571	else
2572		unlock_page(page);
2573	return page;
2574#else
2575	/*
2576	 * The tiny !SHMEM case uses ramfs without swap
2577	 */
2578	return read_cache_page_gfp(mapping, index, gfp);
2579#endif
2580}
2581EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);