Linux Audio

Check our new training course

Loading...
v4.6
  1/*
  2 *  linux/mm/mmu_notifier.c
  3 *
  4 *  Copyright (C) 2008  Qumranet, Inc.
  5 *  Copyright (C) 2008  SGI
  6 *             Christoph Lameter <cl@linux.com>
  7 *
  8 *  This work is licensed under the terms of the GNU GPL, version 2. See
  9 *  the COPYING file in the top-level directory.
 10 */
 11
 12#include <linux/rculist.h>
 13#include <linux/mmu_notifier.h>
 14#include <linux/export.h>
 15#include <linux/mm.h>
 16#include <linux/err.h>
 17#include <linux/srcu.h>
 18#include <linux/rcupdate.h>
 19#include <linux/sched.h>
 20#include <linux/slab.h>
 21
 22/* global SRCU for all MMs */
 23static struct srcu_struct srcu;
 24
 25/*
 26 * This function allows mmu_notifier::release callback to delay a call to
 27 * a function that will free appropriate resources. The function must be
 28 * quick and must not block.
 29 */
 30void mmu_notifier_call_srcu(struct rcu_head *rcu,
 31			    void (*func)(struct rcu_head *rcu))
 32{
 33	call_srcu(&srcu, rcu, func);
 34}
 35EXPORT_SYMBOL_GPL(mmu_notifier_call_srcu);
 36
 37void mmu_notifier_synchronize(void)
 38{
 39	/* Wait for any running method to finish. */
 40	srcu_barrier(&srcu);
 41}
 42EXPORT_SYMBOL_GPL(mmu_notifier_synchronize);
 43
 44/*
 45 * This function can't run concurrently against mmu_notifier_register
 46 * because mm->mm_users > 0 during mmu_notifier_register and exit_mmap
 47 * runs with mm_users == 0. Other tasks may still invoke mmu notifiers
 48 * in parallel despite there being no task using this mm any more,
 49 * through the vmas outside of the exit_mmap context, such as with
 50 * vmtruncate. This serializes against mmu_notifier_unregister with
 51 * the mmu_notifier_mm->lock in addition to SRCU and it serializes
 52 * against the other mmu notifiers with SRCU. struct mmu_notifier_mm
 53 * can't go away from under us as exit_mmap holds an mm_count pin
 54 * itself.
 55 */
 56void __mmu_notifier_release(struct mm_struct *mm)
 57{
 58	struct mmu_notifier *mn;
 59	int id;
 60
 61	/*
 62	 * SRCU here will block mmu_notifier_unregister until
 63	 * ->release returns.
 64	 */
 65	id = srcu_read_lock(&srcu);
 66	hlist_for_each_entry_rcu(mn, &mm->mmu_notifier_mm->list, hlist)
 67		/*
 68		 * If ->release runs before mmu_notifier_unregister it must be
 69		 * handled, as it's the only way for the driver to flush all
 70		 * existing sptes and stop the driver from establishing any more
 71		 * sptes before all the pages in the mm are freed.
 72		 */
 73		if (mn->ops->release)
 74			mn->ops->release(mn, mm);
 75
 76	spin_lock(&mm->mmu_notifier_mm->lock);
 77	while (unlikely(!hlist_empty(&mm->mmu_notifier_mm->list))) {
 78		mn = hlist_entry(mm->mmu_notifier_mm->list.first,
 79				 struct mmu_notifier,
 80				 hlist);
 81		/*
 82		 * We arrived before mmu_notifier_unregister so
 83		 * mmu_notifier_unregister will do nothing other than to wait
 84		 * for ->release to finish and for mmu_notifier_unregister to
 85		 * return.
 86		 */
 87		hlist_del_init_rcu(&mn->hlist);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 88	}
 89	spin_unlock(&mm->mmu_notifier_mm->lock);
 90	srcu_read_unlock(&srcu, id);
 91
 92	/*
 93	 * synchronize_srcu here prevents mmu_notifier_release from returning to
 94	 * exit_mmap (which would proceed with freeing all pages in the mm)
 95	 * until the ->release method returns, if it was invoked by
 96	 * mmu_notifier_unregister.
 97	 *
 98	 * The mmu_notifier_mm can't go away from under us because one mm_count
 99	 * is held by exit_mmap.
100	 */
101	synchronize_srcu(&srcu);
102}
103
104/*
105 * If no young bitflag is supported by the hardware, ->clear_flush_young can
106 * unmap the address and return 1 or 0 depending if the mapping previously
107 * existed or not.
108 */
109int __mmu_notifier_clear_flush_young(struct mm_struct *mm,
110					unsigned long start,
111					unsigned long end)
112{
113	struct mmu_notifier *mn;
114	int young = 0, id;
 
115
116	id = srcu_read_lock(&srcu);
117	hlist_for_each_entry_rcu(mn, &mm->mmu_notifier_mm->list, hlist) {
118		if (mn->ops->clear_flush_young)
119			young |= mn->ops->clear_flush_young(mn, mm, start, end);
120	}
121	srcu_read_unlock(&srcu, id);
122
123	return young;
124}
125
126int __mmu_notifier_clear_young(struct mm_struct *mm,
127			       unsigned long start,
128			       unsigned long end)
129{
130	struct mmu_notifier *mn;
131	int young = 0, id;
132
133	id = srcu_read_lock(&srcu);
134	hlist_for_each_entry_rcu(mn, &mm->mmu_notifier_mm->list, hlist) {
135		if (mn->ops->clear_young)
136			young |= mn->ops->clear_young(mn, mm, start, end);
137	}
138	srcu_read_unlock(&srcu, id);
139
140	return young;
141}
142
143int __mmu_notifier_test_young(struct mm_struct *mm,
144			      unsigned long address)
145{
146	struct mmu_notifier *mn;
147	int young = 0, id;
 
148
149	id = srcu_read_lock(&srcu);
150	hlist_for_each_entry_rcu(mn, &mm->mmu_notifier_mm->list, hlist) {
151		if (mn->ops->test_young) {
152			young = mn->ops->test_young(mn, mm, address);
153			if (young)
154				break;
155		}
156	}
157	srcu_read_unlock(&srcu, id);
158
159	return young;
160}
161
162void __mmu_notifier_change_pte(struct mm_struct *mm, unsigned long address,
163			       pte_t pte)
164{
165	struct mmu_notifier *mn;
166	int id;
167
168	id = srcu_read_lock(&srcu);
169	hlist_for_each_entry_rcu(mn, &mm->mmu_notifier_mm->list, hlist) {
170		if (mn->ops->change_pte)
171			mn->ops->change_pte(mn, mm, address, pte);
 
 
 
 
 
 
172	}
173	srcu_read_unlock(&srcu, id);
174}
175
176void __mmu_notifier_invalidate_page(struct mm_struct *mm,
177					  unsigned long address)
178{
179	struct mmu_notifier *mn;
180	int id;
181
182	id = srcu_read_lock(&srcu);
183	hlist_for_each_entry_rcu(mn, &mm->mmu_notifier_mm->list, hlist) {
184		if (mn->ops->invalidate_page)
185			mn->ops->invalidate_page(mn, mm, address);
186	}
187	srcu_read_unlock(&srcu, id);
188}
189
190void __mmu_notifier_invalidate_range_start(struct mm_struct *mm,
191				  unsigned long start, unsigned long end)
192{
193	struct mmu_notifier *mn;
194	int id;
195
196	id = srcu_read_lock(&srcu);
197	hlist_for_each_entry_rcu(mn, &mm->mmu_notifier_mm->list, hlist) {
198		if (mn->ops->invalidate_range_start)
199			mn->ops->invalidate_range_start(mn, mm, start, end);
200	}
201	srcu_read_unlock(&srcu, id);
202}
203EXPORT_SYMBOL_GPL(__mmu_notifier_invalidate_range_start);
204
205void __mmu_notifier_invalidate_range_end(struct mm_struct *mm,
206				  unsigned long start, unsigned long end)
207{
208	struct mmu_notifier *mn;
209	int id;
210
211	id = srcu_read_lock(&srcu);
212	hlist_for_each_entry_rcu(mn, &mm->mmu_notifier_mm->list, hlist) {
213		/*
214		 * Call invalidate_range here too to avoid the need for the
215		 * subsystem of having to register an invalidate_range_end
216		 * call-back when there is invalidate_range already. Usually a
217		 * subsystem registers either invalidate_range_start()/end() or
218		 * invalidate_range(), so this will be no additional overhead
219		 * (besides the pointer check).
220		 */
221		if (mn->ops->invalidate_range)
222			mn->ops->invalidate_range(mn, mm, start, end);
223		if (mn->ops->invalidate_range_end)
224			mn->ops->invalidate_range_end(mn, mm, start, end);
225	}
226	srcu_read_unlock(&srcu, id);
227}
228EXPORT_SYMBOL_GPL(__mmu_notifier_invalidate_range_end);
229
230void __mmu_notifier_invalidate_range(struct mm_struct *mm,
231				  unsigned long start, unsigned long end)
232{
233	struct mmu_notifier *mn;
234	int id;
235
236	id = srcu_read_lock(&srcu);
237	hlist_for_each_entry_rcu(mn, &mm->mmu_notifier_mm->list, hlist) {
238		if (mn->ops->invalidate_range)
239			mn->ops->invalidate_range(mn, mm, start, end);
240	}
241	srcu_read_unlock(&srcu, id);
242}
243EXPORT_SYMBOL_GPL(__mmu_notifier_invalidate_range);
244
245static int do_mmu_notifier_register(struct mmu_notifier *mn,
246				    struct mm_struct *mm,
247				    int take_mmap_sem)
248{
249	struct mmu_notifier_mm *mmu_notifier_mm;
250	int ret;
251
252	BUG_ON(atomic_read(&mm->mm_users) <= 0);
253
254	/*
255	 * Verify that mmu_notifier_init() already run and the global srcu is
256	 * initialized.
257	 */
258	BUG_ON(!srcu.per_cpu_ref);
259
260	ret = -ENOMEM;
261	mmu_notifier_mm = kmalloc(sizeof(struct mmu_notifier_mm), GFP_KERNEL);
262	if (unlikely(!mmu_notifier_mm))
263		goto out;
264
265	if (take_mmap_sem)
266		down_write(&mm->mmap_sem);
267	ret = mm_take_all_locks(mm);
268	if (unlikely(ret))
269		goto out_clean;
270
271	if (!mm_has_notifiers(mm)) {
272		INIT_HLIST_HEAD(&mmu_notifier_mm->list);
273		spin_lock_init(&mmu_notifier_mm->lock);
274
275		mm->mmu_notifier_mm = mmu_notifier_mm;
276		mmu_notifier_mm = NULL;
277	}
278	atomic_inc(&mm->mm_count);
279
280	/*
281	 * Serialize the update against mmu_notifier_unregister. A
282	 * side note: mmu_notifier_release can't run concurrently with
283	 * us because we hold the mm_users pin (either implicitly as
284	 * current->mm or explicitly with get_task_mm() or similar).
285	 * We can't race against any other mmu notifier method either
286	 * thanks to mm_take_all_locks().
287	 */
288	spin_lock(&mm->mmu_notifier_mm->lock);
289	hlist_add_head(&mn->hlist, &mm->mmu_notifier_mm->list);
290	spin_unlock(&mm->mmu_notifier_mm->lock);
291
292	mm_drop_all_locks(mm);
293out_clean:
294	if (take_mmap_sem)
295		up_write(&mm->mmap_sem);
 
296	kfree(mmu_notifier_mm);
297out:
298	BUG_ON(atomic_read(&mm->mm_users) <= 0);
299	return ret;
300}
301
302/*
303 * Must not hold mmap_sem nor any other VM related lock when calling
304 * this registration function. Must also ensure mm_users can't go down
305 * to zero while this runs to avoid races with mmu_notifier_release,
306 * so mm has to be current->mm or the mm should be pinned safely such
307 * as with get_task_mm(). If the mm is not current->mm, the mm_users
308 * pin should be released by calling mmput after mmu_notifier_register
309 * returns. mmu_notifier_unregister must be always called to
310 * unregister the notifier. mm_count is automatically pinned to allow
311 * mmu_notifier_unregister to safely run at any time later, before or
312 * after exit_mmap. ->release will always be called before exit_mmap
313 * frees the pages.
314 */
315int mmu_notifier_register(struct mmu_notifier *mn, struct mm_struct *mm)
316{
317	return do_mmu_notifier_register(mn, mm, 1);
318}
319EXPORT_SYMBOL_GPL(mmu_notifier_register);
320
321/*
322 * Same as mmu_notifier_register but here the caller must hold the
323 * mmap_sem in write mode.
324 */
325int __mmu_notifier_register(struct mmu_notifier *mn, struct mm_struct *mm)
326{
327	return do_mmu_notifier_register(mn, mm, 0);
328}
329EXPORT_SYMBOL_GPL(__mmu_notifier_register);
330
331/* this is called after the last mmu_notifier_unregister() returned */
332void __mmu_notifier_mm_destroy(struct mm_struct *mm)
333{
334	BUG_ON(!hlist_empty(&mm->mmu_notifier_mm->list));
335	kfree(mm->mmu_notifier_mm);
336	mm->mmu_notifier_mm = LIST_POISON1; /* debug */
337}
338
339/*
340 * This releases the mm_count pin automatically and frees the mm
341 * structure if it was the last user of it. It serializes against
342 * running mmu notifiers with SRCU and against mmu_notifier_unregister
343 * with the unregister lock + SRCU. All sptes must be dropped before
344 * calling mmu_notifier_unregister. ->release or any other notifier
345 * method may be invoked concurrently with mmu_notifier_unregister,
346 * and only after mmu_notifier_unregister returned we're guaranteed
347 * that ->release or any other method can't run anymore.
348 */
349void mmu_notifier_unregister(struct mmu_notifier *mn, struct mm_struct *mm)
350{
351	BUG_ON(atomic_read(&mm->mm_count) <= 0);
352
 
353	if (!hlist_unhashed(&mn->hlist)) {
 
 
354		/*
355		 * SRCU here will force exit_mmap to wait for ->release to
356		 * finish before freeing the pages.
357		 */
358		int id;
359
360		id = srcu_read_lock(&srcu);
361		/*
362		 * exit_mmap will block in mmu_notifier_release to guarantee
363		 * that ->release is called before freeing the pages.
 
364		 */
365		if (mn->ops->release)
366			mn->ops->release(mn, mm);
367		srcu_read_unlock(&srcu, id);
368
369		spin_lock(&mm->mmu_notifier_mm->lock);
370		/*
371		 * Can not use list_del_rcu() since __mmu_notifier_release
372		 * can delete it before we hold the lock.
373		 */
374		hlist_del_init_rcu(&mn->hlist);
375		spin_unlock(&mm->mmu_notifier_mm->lock);
376	}
377
378	/*
379	 * Wait for any running method to finish, of course including
380	 * ->release if it was run by mmu_notifier_release instead of us.
381	 */
382	synchronize_srcu(&srcu);
383
384	BUG_ON(atomic_read(&mm->mm_count) <= 0);
385
386	mmdrop(mm);
387}
388EXPORT_SYMBOL_GPL(mmu_notifier_unregister);
389
390/*
391 * Same as mmu_notifier_unregister but no callback and no srcu synchronization.
392 */
393void mmu_notifier_unregister_no_release(struct mmu_notifier *mn,
394					struct mm_struct *mm)
395{
396	spin_lock(&mm->mmu_notifier_mm->lock);
397	/*
398	 * Can not use list_del_rcu() since __mmu_notifier_release
399	 * can delete it before we hold the lock.
400	 */
401	hlist_del_init_rcu(&mn->hlist);
402	spin_unlock(&mm->mmu_notifier_mm->lock);
403
404	BUG_ON(atomic_read(&mm->mm_count) <= 0);
405	mmdrop(mm);
406}
407EXPORT_SYMBOL_GPL(mmu_notifier_unregister_no_release);
408
409static int __init mmu_notifier_init(void)
410{
411	return init_srcu_struct(&srcu);
412}
413subsys_initcall(mmu_notifier_init);
v3.1
  1/*
  2 *  linux/mm/mmu_notifier.c
  3 *
  4 *  Copyright (C) 2008  Qumranet, Inc.
  5 *  Copyright (C) 2008  SGI
  6 *             Christoph Lameter <clameter@sgi.com>
  7 *
  8 *  This work is licensed under the terms of the GNU GPL, version 2. See
  9 *  the COPYING file in the top-level directory.
 10 */
 11
 12#include <linux/rculist.h>
 13#include <linux/mmu_notifier.h>
 14#include <linux/module.h>
 15#include <linux/mm.h>
 16#include <linux/err.h>
 
 17#include <linux/rcupdate.h>
 18#include <linux/sched.h>
 19#include <linux/slab.h>
 20
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 21/*
 22 * This function can't run concurrently against mmu_notifier_register
 23 * because mm->mm_users > 0 during mmu_notifier_register and exit_mmap
 24 * runs with mm_users == 0. Other tasks may still invoke mmu notifiers
 25 * in parallel despite there being no task using this mm any more,
 26 * through the vmas outside of the exit_mmap context, such as with
 27 * vmtruncate. This serializes against mmu_notifier_unregister with
 28 * the mmu_notifier_mm->lock in addition to RCU and it serializes
 29 * against the other mmu notifiers with RCU. struct mmu_notifier_mm
 30 * can't go away from under us as exit_mmap holds an mm_count pin
 31 * itself.
 32 */
 33void __mmu_notifier_release(struct mm_struct *mm)
 34{
 35	struct mmu_notifier *mn;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 36
 37	spin_lock(&mm->mmu_notifier_mm->lock);
 38	while (unlikely(!hlist_empty(&mm->mmu_notifier_mm->list))) {
 39		mn = hlist_entry(mm->mmu_notifier_mm->list.first,
 40				 struct mmu_notifier,
 41				 hlist);
 42		/*
 43		 * We arrived before mmu_notifier_unregister so
 44		 * mmu_notifier_unregister will do nothing other than
 45		 * to wait ->release to finish and
 46		 * mmu_notifier_unregister to return.
 47		 */
 48		hlist_del_init_rcu(&mn->hlist);
 49		/*
 50		 * RCU here will block mmu_notifier_unregister until
 51		 * ->release returns.
 52		 */
 53		rcu_read_lock();
 54		spin_unlock(&mm->mmu_notifier_mm->lock);
 55		/*
 56		 * if ->release runs before mmu_notifier_unregister it
 57		 * must be handled as it's the only way for the driver
 58		 * to flush all existing sptes and stop the driver
 59		 * from establishing any more sptes before all the
 60		 * pages in the mm are freed.
 61		 */
 62		if (mn->ops->release)
 63			mn->ops->release(mn, mm);
 64		rcu_read_unlock();
 65		spin_lock(&mm->mmu_notifier_mm->lock);
 66	}
 67	spin_unlock(&mm->mmu_notifier_mm->lock);
 
 68
 69	/*
 70	 * synchronize_rcu here prevents mmu_notifier_release to
 71	 * return to exit_mmap (which would proceed freeing all pages
 72	 * in the mm) until the ->release method returns, if it was
 73	 * invoked by mmu_notifier_unregister.
 74	 *
 75	 * The mmu_notifier_mm can't go away from under us because one
 76	 * mm_count is hold by exit_mmap.
 77	 */
 78	synchronize_rcu();
 79}
 80
 81/*
 82 * If no young bitflag is supported by the hardware, ->clear_flush_young can
 83 * unmap the address and return 1 or 0 depending if the mapping previously
 84 * existed or not.
 85 */
 86int __mmu_notifier_clear_flush_young(struct mm_struct *mm,
 87					unsigned long address)
 
 88{
 89	struct mmu_notifier *mn;
 90	struct hlist_node *n;
 91	int young = 0;
 92
 93	rcu_read_lock();
 94	hlist_for_each_entry_rcu(mn, n, &mm->mmu_notifier_mm->list, hlist) {
 95		if (mn->ops->clear_flush_young)
 96			young |= mn->ops->clear_flush_young(mn, mm, address);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 97	}
 98	rcu_read_unlock();
 99
100	return young;
101}
102
103int __mmu_notifier_test_young(struct mm_struct *mm,
104			      unsigned long address)
105{
106	struct mmu_notifier *mn;
107	struct hlist_node *n;
108	int young = 0;
109
110	rcu_read_lock();
111	hlist_for_each_entry_rcu(mn, n, &mm->mmu_notifier_mm->list, hlist) {
112		if (mn->ops->test_young) {
113			young = mn->ops->test_young(mn, mm, address);
114			if (young)
115				break;
116		}
117	}
118	rcu_read_unlock();
119
120	return young;
121}
122
123void __mmu_notifier_change_pte(struct mm_struct *mm, unsigned long address,
124			       pte_t pte)
125{
126	struct mmu_notifier *mn;
127	struct hlist_node *n;
128
129	rcu_read_lock();
130	hlist_for_each_entry_rcu(mn, n, &mm->mmu_notifier_mm->list, hlist) {
131		if (mn->ops->change_pte)
132			mn->ops->change_pte(mn, mm, address, pte);
133		/*
134		 * Some drivers don't have change_pte,
135		 * so we must call invalidate_page in that case.
136		 */
137		else if (mn->ops->invalidate_page)
138			mn->ops->invalidate_page(mn, mm, address);
139	}
140	rcu_read_unlock();
141}
142
143void __mmu_notifier_invalidate_page(struct mm_struct *mm,
144					  unsigned long address)
145{
146	struct mmu_notifier *mn;
147	struct hlist_node *n;
148
149	rcu_read_lock();
150	hlist_for_each_entry_rcu(mn, n, &mm->mmu_notifier_mm->list, hlist) {
151		if (mn->ops->invalidate_page)
152			mn->ops->invalidate_page(mn, mm, address);
153	}
154	rcu_read_unlock();
155}
156
157void __mmu_notifier_invalidate_range_start(struct mm_struct *mm,
158				  unsigned long start, unsigned long end)
159{
160	struct mmu_notifier *mn;
161	struct hlist_node *n;
162
163	rcu_read_lock();
164	hlist_for_each_entry_rcu(mn, n, &mm->mmu_notifier_mm->list, hlist) {
165		if (mn->ops->invalidate_range_start)
166			mn->ops->invalidate_range_start(mn, mm, start, end);
167	}
168	rcu_read_unlock();
169}
 
170
171void __mmu_notifier_invalidate_range_end(struct mm_struct *mm,
172				  unsigned long start, unsigned long end)
173{
174	struct mmu_notifier *mn;
175	struct hlist_node *n;
176
177	rcu_read_lock();
178	hlist_for_each_entry_rcu(mn, n, &mm->mmu_notifier_mm->list, hlist) {
 
 
 
 
 
 
 
 
 
 
179		if (mn->ops->invalidate_range_end)
180			mn->ops->invalidate_range_end(mn, mm, start, end);
181	}
182	rcu_read_unlock();
183}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
184
185static int do_mmu_notifier_register(struct mmu_notifier *mn,
186				    struct mm_struct *mm,
187				    int take_mmap_sem)
188{
189	struct mmu_notifier_mm *mmu_notifier_mm;
190	int ret;
191
192	BUG_ON(atomic_read(&mm->mm_users) <= 0);
193
 
 
 
 
 
 
194	ret = -ENOMEM;
195	mmu_notifier_mm = kmalloc(sizeof(struct mmu_notifier_mm), GFP_KERNEL);
196	if (unlikely(!mmu_notifier_mm))
197		goto out;
198
199	if (take_mmap_sem)
200		down_write(&mm->mmap_sem);
201	ret = mm_take_all_locks(mm);
202	if (unlikely(ret))
203		goto out_cleanup;
204
205	if (!mm_has_notifiers(mm)) {
206		INIT_HLIST_HEAD(&mmu_notifier_mm->list);
207		spin_lock_init(&mmu_notifier_mm->lock);
 
208		mm->mmu_notifier_mm = mmu_notifier_mm;
209		mmu_notifier_mm = NULL;
210	}
211	atomic_inc(&mm->mm_count);
212
213	/*
214	 * Serialize the update against mmu_notifier_unregister. A
215	 * side note: mmu_notifier_release can't run concurrently with
216	 * us because we hold the mm_users pin (either implicitly as
217	 * current->mm or explicitly with get_task_mm() or similar).
218	 * We can't race against any other mmu notifier method either
219	 * thanks to mm_take_all_locks().
220	 */
221	spin_lock(&mm->mmu_notifier_mm->lock);
222	hlist_add_head(&mn->hlist, &mm->mmu_notifier_mm->list);
223	spin_unlock(&mm->mmu_notifier_mm->lock);
224
225	mm_drop_all_locks(mm);
226out_cleanup:
227	if (take_mmap_sem)
228		up_write(&mm->mmap_sem);
229	/* kfree() does nothing if mmu_notifier_mm is NULL */
230	kfree(mmu_notifier_mm);
231out:
232	BUG_ON(atomic_read(&mm->mm_users) <= 0);
233	return ret;
234}
235
236/*
237 * Must not hold mmap_sem nor any other VM related lock when calling
238 * this registration function. Must also ensure mm_users can't go down
239 * to zero while this runs to avoid races with mmu_notifier_release,
240 * so mm has to be current->mm or the mm should be pinned safely such
241 * as with get_task_mm(). If the mm is not current->mm, the mm_users
242 * pin should be released by calling mmput after mmu_notifier_register
243 * returns. mmu_notifier_unregister must be always called to
244 * unregister the notifier. mm_count is automatically pinned to allow
245 * mmu_notifier_unregister to safely run at any time later, before or
246 * after exit_mmap. ->release will always be called before exit_mmap
247 * frees the pages.
248 */
249int mmu_notifier_register(struct mmu_notifier *mn, struct mm_struct *mm)
250{
251	return do_mmu_notifier_register(mn, mm, 1);
252}
253EXPORT_SYMBOL_GPL(mmu_notifier_register);
254
255/*
256 * Same as mmu_notifier_register but here the caller must hold the
257 * mmap_sem in write mode.
258 */
259int __mmu_notifier_register(struct mmu_notifier *mn, struct mm_struct *mm)
260{
261	return do_mmu_notifier_register(mn, mm, 0);
262}
263EXPORT_SYMBOL_GPL(__mmu_notifier_register);
264
265/* this is called after the last mmu_notifier_unregister() returned */
266void __mmu_notifier_mm_destroy(struct mm_struct *mm)
267{
268	BUG_ON(!hlist_empty(&mm->mmu_notifier_mm->list));
269	kfree(mm->mmu_notifier_mm);
270	mm->mmu_notifier_mm = LIST_POISON1; /* debug */
271}
272
273/*
274 * This releases the mm_count pin automatically and frees the mm
275 * structure if it was the last user of it. It serializes against
276 * running mmu notifiers with RCU and against mmu_notifier_unregister
277 * with the unregister lock + RCU. All sptes must be dropped before
278 * calling mmu_notifier_unregister. ->release or any other notifier
279 * method may be invoked concurrently with mmu_notifier_unregister,
280 * and only after mmu_notifier_unregister returned we're guaranteed
281 * that ->release or any other method can't run anymore.
282 */
283void mmu_notifier_unregister(struct mmu_notifier *mn, struct mm_struct *mm)
284{
285	BUG_ON(atomic_read(&mm->mm_count) <= 0);
286
287	spin_lock(&mm->mmu_notifier_mm->lock);
288	if (!hlist_unhashed(&mn->hlist)) {
289		hlist_del_rcu(&mn->hlist);
290
291		/*
292		 * RCU here will force exit_mmap to wait ->release to finish
293		 * before freeing the pages.
294		 */
295		rcu_read_lock();
296		spin_unlock(&mm->mmu_notifier_mm->lock);
 
297		/*
298		 * exit_mmap will block in mmu_notifier_release to
299		 * guarantee ->release is called before freeing the
300		 * pages.
301		 */
302		if (mn->ops->release)
303			mn->ops->release(mn, mm);
304		rcu_read_unlock();
305	} else
 
 
 
 
 
 
306		spin_unlock(&mm->mmu_notifier_mm->lock);
 
307
308	/*
309	 * Wait any running method to finish, of course including
310	 * ->release if it was run by mmu_notifier_relase instead of us.
311	 */
312	synchronize_rcu();
313
314	BUG_ON(atomic_read(&mm->mm_count) <= 0);
315
316	mmdrop(mm);
317}
318EXPORT_SYMBOL_GPL(mmu_notifier_unregister);