Linux Audio

Check our new training course

Loading...
v4.6
   1/*
   2 * Generic hugetlb support.
   3 * (C) Nadia Yvette Chambers, April 2004
   4 */
   5#include <linux/list.h>
   6#include <linux/init.h>
 
   7#include <linux/mm.h>
   8#include <linux/seq_file.h>
   9#include <linux/sysctl.h>
  10#include <linux/highmem.h>
  11#include <linux/mmu_notifier.h>
  12#include <linux/nodemask.h>
  13#include <linux/pagemap.h>
  14#include <linux/mempolicy.h>
  15#include <linux/compiler.h>
  16#include <linux/cpuset.h>
  17#include <linux/mutex.h>
  18#include <linux/bootmem.h>
  19#include <linux/sysfs.h>
  20#include <linux/slab.h>
  21#include <linux/rmap.h>
  22#include <linux/swap.h>
  23#include <linux/swapops.h>
  24#include <linux/page-isolation.h>
  25#include <linux/jhash.h>
  26
  27#include <asm/page.h>
  28#include <asm/pgtable.h>
  29#include <asm/tlb.h>
  30
  31#include <linux/io.h>
 
  32#include <linux/hugetlb.h>
  33#include <linux/hugetlb_cgroup.h>
  34#include <linux/node.h>
  35#include "internal.h"
  36
  37int hugepages_treat_as_movable;
 
 
  38
  39int hugetlb_max_hstate __read_mostly;
  40unsigned int default_hstate_idx;
  41struct hstate hstates[HUGE_MAX_HSTATE];
  42/*
  43 * Minimum page order among possible hugepage sizes, set to a proper value
  44 * at boot time.
  45 */
  46static unsigned int minimum_order __read_mostly = UINT_MAX;
  47
  48__initdata LIST_HEAD(huge_boot_pages);
  49
  50/* for command line parsing */
  51static struct hstate * __initdata parsed_hstate;
  52static unsigned long __initdata default_hstate_max_huge_pages;
  53static unsigned long __initdata default_hstate_size;
  54
  55/*
  56 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
  57 * free_huge_pages, and surplus_huge_pages.
  58 */
  59DEFINE_SPINLOCK(hugetlb_lock);
  60
  61/*
  62 * Serializes faults on the same logical page.  This is used to
  63 * prevent spurious OOMs when the hugepage pool is fully utilized.
  64 */
  65static int num_fault_mutexes;
  66struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
  67
  68/* Forward declaration */
  69static int hugetlb_acct_memory(struct hstate *h, long delta);
  70
  71static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
  72{
  73	bool free = (spool->count == 0) && (spool->used_hpages == 0);
  74
  75	spin_unlock(&spool->lock);
  76
  77	/* If no pages are used, and no other handles to the subpool
  78	 * remain, give up any reservations mased on minimum size and
  79	 * free the subpool */
  80	if (free) {
  81		if (spool->min_hpages != -1)
  82			hugetlb_acct_memory(spool->hstate,
  83						-spool->min_hpages);
  84		kfree(spool);
  85	}
  86}
  87
  88struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
  89						long min_hpages)
  90{
  91	struct hugepage_subpool *spool;
  92
  93	spool = kzalloc(sizeof(*spool), GFP_KERNEL);
  94	if (!spool)
  95		return NULL;
  96
  97	spin_lock_init(&spool->lock);
  98	spool->count = 1;
  99	spool->max_hpages = max_hpages;
 100	spool->hstate = h;
 101	spool->min_hpages = min_hpages;
 102
 103	if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
 104		kfree(spool);
 105		return NULL;
 106	}
 107	spool->rsv_hpages = min_hpages;
 108
 109	return spool;
 110}
 111
 112void hugepage_put_subpool(struct hugepage_subpool *spool)
 113{
 114	spin_lock(&spool->lock);
 115	BUG_ON(!spool->count);
 116	spool->count--;
 117	unlock_or_release_subpool(spool);
 118}
 119
 120/*
 121 * Subpool accounting for allocating and reserving pages.
 122 * Return -ENOMEM if there are not enough resources to satisfy the
 123 * the request.  Otherwise, return the number of pages by which the
 124 * global pools must be adjusted (upward).  The returned value may
 125 * only be different than the passed value (delta) in the case where
 126 * a subpool minimum size must be manitained.
 127 */
 128static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
 129				      long delta)
 130{
 131	long ret = delta;
 132
 133	if (!spool)
 134		return ret;
 135
 136	spin_lock(&spool->lock);
 137
 138	if (spool->max_hpages != -1) {		/* maximum size accounting */
 139		if ((spool->used_hpages + delta) <= spool->max_hpages)
 140			spool->used_hpages += delta;
 141		else {
 142			ret = -ENOMEM;
 143			goto unlock_ret;
 144		}
 145	}
 146
 147	if (spool->min_hpages != -1) {		/* minimum size accounting */
 148		if (delta > spool->rsv_hpages) {
 149			/*
 150			 * Asking for more reserves than those already taken on
 151			 * behalf of subpool.  Return difference.
 152			 */
 153			ret = delta - spool->rsv_hpages;
 154			spool->rsv_hpages = 0;
 155		} else {
 156			ret = 0;	/* reserves already accounted for */
 157			spool->rsv_hpages -= delta;
 158		}
 159	}
 160
 161unlock_ret:
 162	spin_unlock(&spool->lock);
 163	return ret;
 164}
 165
 166/*
 167 * Subpool accounting for freeing and unreserving pages.
 168 * Return the number of global page reservations that must be dropped.
 169 * The return value may only be different than the passed value (delta)
 170 * in the case where a subpool minimum size must be maintained.
 171 */
 172static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
 173				       long delta)
 174{
 175	long ret = delta;
 176
 177	if (!spool)
 178		return delta;
 179
 180	spin_lock(&spool->lock);
 181
 182	if (spool->max_hpages != -1)		/* maximum size accounting */
 183		spool->used_hpages -= delta;
 184
 185	if (spool->min_hpages != -1) {		/* minimum size accounting */
 186		if (spool->rsv_hpages + delta <= spool->min_hpages)
 187			ret = 0;
 188		else
 189			ret = spool->rsv_hpages + delta - spool->min_hpages;
 190
 191		spool->rsv_hpages += delta;
 192		if (spool->rsv_hpages > spool->min_hpages)
 193			spool->rsv_hpages = spool->min_hpages;
 194	}
 195
 196	/*
 197	 * If hugetlbfs_put_super couldn't free spool due to an outstanding
 198	 * quota reference, free it now.
 199	 */
 200	unlock_or_release_subpool(spool);
 201
 202	return ret;
 203}
 204
 205static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
 206{
 207	return HUGETLBFS_SB(inode->i_sb)->spool;
 208}
 209
 210static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
 211{
 212	return subpool_inode(file_inode(vma->vm_file));
 213}
 214
 215/*
 216 * Region tracking -- allows tracking of reservations and instantiated pages
 217 *                    across the pages in a mapping.
 218 *
 219 * The region data structures are embedded into a resv_map and protected
 220 * by a resv_map's lock.  The set of regions within the resv_map represent
 221 * reservations for huge pages, or huge pages that have already been
 222 * instantiated within the map.  The from and to elements are huge page
 223 * indicies into the associated mapping.  from indicates the starting index
 224 * of the region.  to represents the first index past the end of  the region.
 225 *
 226 * For example, a file region structure with from == 0 and to == 4 represents
 227 * four huge pages in a mapping.  It is important to note that the to element
 228 * represents the first element past the end of the region. This is used in
 229 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
 230 *
 231 * Interval notation of the form [from, to) will be used to indicate that
 232 * the endpoint from is inclusive and to is exclusive.
 233 */
 234struct file_region {
 235	struct list_head link;
 236	long from;
 237	long to;
 238};
 239
 240/*
 241 * Add the huge page range represented by [f, t) to the reserve
 242 * map.  In the normal case, existing regions will be expanded
 243 * to accommodate the specified range.  Sufficient regions should
 244 * exist for expansion due to the previous call to region_chg
 245 * with the same range.  However, it is possible that region_del
 246 * could have been called after region_chg and modifed the map
 247 * in such a way that no region exists to be expanded.  In this
 248 * case, pull a region descriptor from the cache associated with
 249 * the map and use that for the new range.
 250 *
 251 * Return the number of new huge pages added to the map.  This
 252 * number is greater than or equal to zero.
 253 */
 254static long region_add(struct resv_map *resv, long f, long t)
 255{
 256	struct list_head *head = &resv->regions;
 257	struct file_region *rg, *nrg, *trg;
 258	long add = 0;
 259
 260	spin_lock(&resv->lock);
 261	/* Locate the region we are either in or before. */
 262	list_for_each_entry(rg, head, link)
 263		if (f <= rg->to)
 264			break;
 265
 266	/*
 267	 * If no region exists which can be expanded to include the
 268	 * specified range, the list must have been modified by an
 269	 * interleving call to region_del().  Pull a region descriptor
 270	 * from the cache and use it for this range.
 271	 */
 272	if (&rg->link == head || t < rg->from) {
 273		VM_BUG_ON(resv->region_cache_count <= 0);
 274
 275		resv->region_cache_count--;
 276		nrg = list_first_entry(&resv->region_cache, struct file_region,
 277					link);
 278		list_del(&nrg->link);
 279
 280		nrg->from = f;
 281		nrg->to = t;
 282		list_add(&nrg->link, rg->link.prev);
 283
 284		add += t - f;
 285		goto out_locked;
 286	}
 287
 288	/* Round our left edge to the current segment if it encloses us. */
 289	if (f > rg->from)
 290		f = rg->from;
 291
 292	/* Check for and consume any regions we now overlap with. */
 293	nrg = rg;
 294	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
 295		if (&rg->link == head)
 296			break;
 297		if (rg->from > t)
 298			break;
 299
 300		/* If this area reaches higher then extend our area to
 301		 * include it completely.  If this is not the first area
 302		 * which we intend to reuse, free it. */
 303		if (rg->to > t)
 304			t = rg->to;
 305		if (rg != nrg) {
 306			/* Decrement return value by the deleted range.
 307			 * Another range will span this area so that by
 308			 * end of routine add will be >= zero
 309			 */
 310			add -= (rg->to - rg->from);
 311			list_del(&rg->link);
 312			kfree(rg);
 313		}
 314	}
 315
 316	add += (nrg->from - f);		/* Added to beginning of region */
 317	nrg->from = f;
 318	add += t - nrg->to;		/* Added to end of region */
 319	nrg->to = t;
 320
 321out_locked:
 322	resv->adds_in_progress--;
 323	spin_unlock(&resv->lock);
 324	VM_BUG_ON(add < 0);
 325	return add;
 326}
 327
 328/*
 329 * Examine the existing reserve map and determine how many
 330 * huge pages in the specified range [f, t) are NOT currently
 331 * represented.  This routine is called before a subsequent
 332 * call to region_add that will actually modify the reserve
 333 * map to add the specified range [f, t).  region_chg does
 334 * not change the number of huge pages represented by the
 335 * map.  However, if the existing regions in the map can not
 336 * be expanded to represent the new range, a new file_region
 337 * structure is added to the map as a placeholder.  This is
 338 * so that the subsequent region_add call will have all the
 339 * regions it needs and will not fail.
 340 *
 341 * Upon entry, region_chg will also examine the cache of region descriptors
 342 * associated with the map.  If there are not enough descriptors cached, one
 343 * will be allocated for the in progress add operation.
 344 *
 345 * Returns the number of huge pages that need to be added to the existing
 346 * reservation map for the range [f, t).  This number is greater or equal to
 347 * zero.  -ENOMEM is returned if a new file_region structure or cache entry
 348 * is needed and can not be allocated.
 349 */
 350static long region_chg(struct resv_map *resv, long f, long t)
 351{
 352	struct list_head *head = &resv->regions;
 353	struct file_region *rg, *nrg = NULL;
 354	long chg = 0;
 355
 356retry:
 357	spin_lock(&resv->lock);
 358retry_locked:
 359	resv->adds_in_progress++;
 360
 361	/*
 362	 * Check for sufficient descriptors in the cache to accommodate
 363	 * the number of in progress add operations.
 364	 */
 365	if (resv->adds_in_progress > resv->region_cache_count) {
 366		struct file_region *trg;
 367
 368		VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
 369		/* Must drop lock to allocate a new descriptor. */
 370		resv->adds_in_progress--;
 371		spin_unlock(&resv->lock);
 372
 373		trg = kmalloc(sizeof(*trg), GFP_KERNEL);
 374		if (!trg) {
 375			kfree(nrg);
 376			return -ENOMEM;
 377		}
 378
 379		spin_lock(&resv->lock);
 380		list_add(&trg->link, &resv->region_cache);
 381		resv->region_cache_count++;
 382		goto retry_locked;
 383	}
 384
 385	/* Locate the region we are before or in. */
 386	list_for_each_entry(rg, head, link)
 387		if (f <= rg->to)
 388			break;
 389
 390	/* If we are below the current region then a new region is required.
 391	 * Subtle, allocate a new region at the position but make it zero
 392	 * size such that we can guarantee to record the reservation. */
 393	if (&rg->link == head || t < rg->from) {
 394		if (!nrg) {
 395			resv->adds_in_progress--;
 396			spin_unlock(&resv->lock);
 397			nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
 398			if (!nrg)
 399				return -ENOMEM;
 400
 401			nrg->from = f;
 402			nrg->to   = f;
 403			INIT_LIST_HEAD(&nrg->link);
 404			goto retry;
 405		}
 406
 407		list_add(&nrg->link, rg->link.prev);
 408		chg = t - f;
 409		goto out_nrg;
 410	}
 411
 412	/* Round our left edge to the current segment if it encloses us. */
 413	if (f > rg->from)
 414		f = rg->from;
 415	chg = t - f;
 416
 417	/* Check for and consume any regions we now overlap with. */
 418	list_for_each_entry(rg, rg->link.prev, link) {
 419		if (&rg->link == head)
 420			break;
 421		if (rg->from > t)
 422			goto out;
 423
 424		/* We overlap with this area, if it extends further than
 425		 * us then we must extend ourselves.  Account for its
 426		 * existing reservation. */
 427		if (rg->to > t) {
 428			chg += rg->to - t;
 429			t = rg->to;
 430		}
 431		chg -= rg->to - rg->from;
 432	}
 433
 434out:
 435	spin_unlock(&resv->lock);
 436	/*  We already know we raced and no longer need the new region */
 437	kfree(nrg);
 438	return chg;
 439out_nrg:
 440	spin_unlock(&resv->lock);
 441	return chg;
 442}
 443
 444/*
 445 * Abort the in progress add operation.  The adds_in_progress field
 446 * of the resv_map keeps track of the operations in progress between
 447 * calls to region_chg and region_add.  Operations are sometimes
 448 * aborted after the call to region_chg.  In such cases, region_abort
 449 * is called to decrement the adds_in_progress counter.
 450 *
 451 * NOTE: The range arguments [f, t) are not needed or used in this
 452 * routine.  They are kept to make reading the calling code easier as
 453 * arguments will match the associated region_chg call.
 454 */
 455static void region_abort(struct resv_map *resv, long f, long t)
 456{
 457	spin_lock(&resv->lock);
 458	VM_BUG_ON(!resv->region_cache_count);
 459	resv->adds_in_progress--;
 460	spin_unlock(&resv->lock);
 461}
 462
 463/*
 464 * Delete the specified range [f, t) from the reserve map.  If the
 465 * t parameter is LONG_MAX, this indicates that ALL regions after f
 466 * should be deleted.  Locate the regions which intersect [f, t)
 467 * and either trim, delete or split the existing regions.
 468 *
 469 * Returns the number of huge pages deleted from the reserve map.
 470 * In the normal case, the return value is zero or more.  In the
 471 * case where a region must be split, a new region descriptor must
 472 * be allocated.  If the allocation fails, -ENOMEM will be returned.
 473 * NOTE: If the parameter t == LONG_MAX, then we will never split
 474 * a region and possibly return -ENOMEM.  Callers specifying
 475 * t == LONG_MAX do not need to check for -ENOMEM error.
 476 */
 477static long region_del(struct resv_map *resv, long f, long t)
 478{
 479	struct list_head *head = &resv->regions;
 480	struct file_region *rg, *trg;
 481	struct file_region *nrg = NULL;
 482	long del = 0;
 483
 484retry:
 485	spin_lock(&resv->lock);
 486	list_for_each_entry_safe(rg, trg, head, link) {
 487		/*
 488		 * Skip regions before the range to be deleted.  file_region
 489		 * ranges are normally of the form [from, to).  However, there
 490		 * may be a "placeholder" entry in the map which is of the form
 491		 * (from, to) with from == to.  Check for placeholder entries
 492		 * at the beginning of the range to be deleted.
 493		 */
 494		if (rg->to <= f && (rg->to != rg->from || rg->to != f))
 495			continue;
 496
 497		if (rg->from >= t)
 498			break;
 499
 500		if (f > rg->from && t < rg->to) { /* Must split region */
 501			/*
 502			 * Check for an entry in the cache before dropping
 503			 * lock and attempting allocation.
 504			 */
 505			if (!nrg &&
 506			    resv->region_cache_count > resv->adds_in_progress) {
 507				nrg = list_first_entry(&resv->region_cache,
 508							struct file_region,
 509							link);
 510				list_del(&nrg->link);
 511				resv->region_cache_count--;
 512			}
 513
 514			if (!nrg) {
 515				spin_unlock(&resv->lock);
 516				nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
 517				if (!nrg)
 518					return -ENOMEM;
 519				goto retry;
 520			}
 521
 522			del += t - f;
 523
 524			/* New entry for end of split region */
 525			nrg->from = t;
 526			nrg->to = rg->to;
 527			INIT_LIST_HEAD(&nrg->link);
 528
 529			/* Original entry is trimmed */
 530			rg->to = f;
 531
 532			list_add(&nrg->link, &rg->link);
 533			nrg = NULL;
 
 534			break;
 535		}
 536
 537		if (f <= rg->from && t >= rg->to) { /* Remove entire region */
 538			del += rg->to - rg->from;
 539			list_del(&rg->link);
 540			kfree(rg);
 541			continue;
 542		}
 543
 544		if (f <= rg->from) {	/* Trim beginning of region */
 545			del += t - rg->from;
 546			rg->from = t;
 547		} else {		/* Trim end of region */
 548			del += rg->to - f;
 549			rg->to = f;
 550		}
 551	}
 552
 553	spin_unlock(&resv->lock);
 554	kfree(nrg);
 555	return del;
 556}
 557
 558/*
 559 * A rare out of memory error was encountered which prevented removal of
 560 * the reserve map region for a page.  The huge page itself was free'ed
 561 * and removed from the page cache.  This routine will adjust the subpool
 562 * usage count, and the global reserve count if needed.  By incrementing
 563 * these counts, the reserve map entry which could not be deleted will
 564 * appear as a "reserved" entry instead of simply dangling with incorrect
 565 * counts.
 566 */
 567void hugetlb_fix_reserve_counts(struct inode *inode, bool restore_reserve)
 568{
 569	struct hugepage_subpool *spool = subpool_inode(inode);
 570	long rsv_adjust;
 571
 572	rsv_adjust = hugepage_subpool_get_pages(spool, 1);
 573	if (restore_reserve && rsv_adjust) {
 574		struct hstate *h = hstate_inode(inode);
 575
 576		hugetlb_acct_memory(h, 1);
 577	}
 
 578}
 579
 580/*
 581 * Count and return the number of huge pages in the reserve map
 582 * that intersect with the range [f, t).
 583 */
 584static long region_count(struct resv_map *resv, long f, long t)
 585{
 586	struct list_head *head = &resv->regions;
 587	struct file_region *rg;
 588	long chg = 0;
 589
 590	spin_lock(&resv->lock);
 591	/* Locate each segment we overlap with, and count that overlap. */
 592	list_for_each_entry(rg, head, link) {
 593		long seg_from;
 594		long seg_to;
 595
 596		if (rg->to <= f)
 597			continue;
 598		if (rg->from >= t)
 599			break;
 600
 601		seg_from = max(rg->from, f);
 602		seg_to = min(rg->to, t);
 603
 604		chg += seg_to - seg_from;
 605	}
 606	spin_unlock(&resv->lock);
 607
 608	return chg;
 609}
 610
 611/*
 612 * Convert the address within this vma to the page offset within
 613 * the mapping, in pagecache page units; huge pages here.
 614 */
 615static pgoff_t vma_hugecache_offset(struct hstate *h,
 616			struct vm_area_struct *vma, unsigned long address)
 617{
 618	return ((address - vma->vm_start) >> huge_page_shift(h)) +
 619			(vma->vm_pgoff >> huge_page_order(h));
 620}
 621
 622pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
 623				     unsigned long address)
 624{
 625	return vma_hugecache_offset(hstate_vma(vma), vma, address);
 626}
 627
 628/*
 629 * Return the size of the pages allocated when backing a VMA. In the majority
 630 * cases this will be same size as used by the page table entries.
 631 */
 632unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
 633{
 634	struct hstate *hstate;
 635
 636	if (!is_vm_hugetlb_page(vma))
 637		return PAGE_SIZE;
 638
 639	hstate = hstate_vma(vma);
 640
 641	return 1UL << huge_page_shift(hstate);
 642}
 643EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
 644
 645/*
 646 * Return the page size being used by the MMU to back a VMA. In the majority
 647 * of cases, the page size used by the kernel matches the MMU size. On
 648 * architectures where it differs, an architecture-specific version of this
 649 * function is required.
 650 */
 651#ifndef vma_mmu_pagesize
 652unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
 653{
 654	return vma_kernel_pagesize(vma);
 655}
 656#endif
 657
 658/*
 659 * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
 660 * bits of the reservation map pointer, which are always clear due to
 661 * alignment.
 662 */
 663#define HPAGE_RESV_OWNER    (1UL << 0)
 664#define HPAGE_RESV_UNMAPPED (1UL << 1)
 665#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
 666
 667/*
 668 * These helpers are used to track how many pages are reserved for
 669 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
 670 * is guaranteed to have their future faults succeed.
 671 *
 672 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
 673 * the reserve counters are updated with the hugetlb_lock held. It is safe
 674 * to reset the VMA at fork() time as it is not in use yet and there is no
 675 * chance of the global counters getting corrupted as a result of the values.
 676 *
 677 * The private mapping reservation is represented in a subtly different
 678 * manner to a shared mapping.  A shared mapping has a region map associated
 679 * with the underlying file, this region map represents the backing file
 680 * pages which have ever had a reservation assigned which this persists even
 681 * after the page is instantiated.  A private mapping has a region map
 682 * associated with the original mmap which is attached to all VMAs which
 683 * reference it, this region map represents those offsets which have consumed
 684 * reservation ie. where pages have been instantiated.
 685 */
 686static unsigned long get_vma_private_data(struct vm_area_struct *vma)
 687{
 688	return (unsigned long)vma->vm_private_data;
 689}
 690
 691static void set_vma_private_data(struct vm_area_struct *vma,
 692							unsigned long value)
 693{
 694	vma->vm_private_data = (void *)value;
 695}
 696
 697struct resv_map *resv_map_alloc(void)
 
 
 
 
 
 698{
 699	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
 700	struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
 701
 702	if (!resv_map || !rg) {
 703		kfree(resv_map);
 704		kfree(rg);
 705		return NULL;
 706	}
 707
 708	kref_init(&resv_map->refs);
 709	spin_lock_init(&resv_map->lock);
 710	INIT_LIST_HEAD(&resv_map->regions);
 711
 712	resv_map->adds_in_progress = 0;
 713
 714	INIT_LIST_HEAD(&resv_map->region_cache);
 715	list_add(&rg->link, &resv_map->region_cache);
 716	resv_map->region_cache_count = 1;
 717
 718	return resv_map;
 719}
 720
 721void resv_map_release(struct kref *ref)
 722{
 723	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
 724	struct list_head *head = &resv_map->region_cache;
 725	struct file_region *rg, *trg;
 726
 727	/* Clear out any active regions before we release the map. */
 728	region_del(resv_map, 0, LONG_MAX);
 729
 730	/* ... and any entries left in the cache */
 731	list_for_each_entry_safe(rg, trg, head, link) {
 732		list_del(&rg->link);
 733		kfree(rg);
 734	}
 735
 736	VM_BUG_ON(resv_map->adds_in_progress);
 737
 738	kfree(resv_map);
 739}
 740
 741static inline struct resv_map *inode_resv_map(struct inode *inode)
 742{
 743	return inode->i_mapping->private_data;
 744}
 745
 746static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
 747{
 748	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
 749	if (vma->vm_flags & VM_MAYSHARE) {
 750		struct address_space *mapping = vma->vm_file->f_mapping;
 751		struct inode *inode = mapping->host;
 752
 753		return inode_resv_map(inode);
 754
 755	} else {
 756		return (struct resv_map *)(get_vma_private_data(vma) &
 757							~HPAGE_RESV_MASK);
 758	}
 759}
 760
 761static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
 762{
 763	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
 764	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
 765
 766	set_vma_private_data(vma, (get_vma_private_data(vma) &
 767				HPAGE_RESV_MASK) | (unsigned long)map);
 768}
 769
 770static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
 771{
 772	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
 773	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
 774
 775	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
 776}
 777
 778static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
 779{
 780	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
 781
 782	return (get_vma_private_data(vma) & flag) != 0;
 783}
 784
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 785/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
 786void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
 787{
 788	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
 789	if (!(vma->vm_flags & VM_MAYSHARE))
 790		vma->vm_private_data = (void *)0;
 791}
 792
 793/* Returns true if the VMA has associated reserve pages */
 794static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
 795{
 796	if (vma->vm_flags & VM_NORESERVE) {
 797		/*
 798		 * This address is already reserved by other process(chg == 0),
 799		 * so, we should decrement reserved count. Without decrementing,
 800		 * reserve count remains after releasing inode, because this
 801		 * allocated page will go into page cache and is regarded as
 802		 * coming from reserved pool in releasing step.  Currently, we
 803		 * don't have any other solution to deal with this situation
 804		 * properly, so add work-around here.
 805		 */
 806		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
 807			return true;
 808		else
 809			return false;
 810	}
 811
 812	/* Shared mappings always use reserves */
 813	if (vma->vm_flags & VM_MAYSHARE) {
 814		/*
 815		 * We know VM_NORESERVE is not set.  Therefore, there SHOULD
 816		 * be a region map for all pages.  The only situation where
 817		 * there is no region map is if a hole was punched via
 818		 * fallocate.  In this case, there really are no reverves to
 819		 * use.  This situation is indicated if chg != 0.
 820		 */
 821		if (chg)
 822			return false;
 823		else
 824			return true;
 
 825	}
 
 826
 827	/*
 828	 * Only the process that called mmap() has reserves for
 829	 * private mappings.
 830	 */
 831	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
 832		return true;
 833
 834	return false;
 
 
 
 
 
 
 
 
 
 835}
 836
 837static void enqueue_huge_page(struct hstate *h, struct page *page)
 838{
 839	int nid = page_to_nid(page);
 840	list_move(&page->lru, &h->hugepage_freelists[nid]);
 841	h->free_huge_pages++;
 842	h->free_huge_pages_node[nid]++;
 843}
 844
 845static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
 846{
 847	struct page *page;
 848
 849	list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
 850		if (!is_migrate_isolate_page(page))
 851			break;
 852	/*
 853	 * if 'non-isolated free hugepage' not found on the list,
 854	 * the allocation fails.
 855	 */
 856	if (&h->hugepage_freelists[nid] == &page->lru)
 857		return NULL;
 858	list_move(&page->lru, &h->hugepage_activelist);
 
 859	set_page_refcounted(page);
 860	h->free_huge_pages--;
 861	h->free_huge_pages_node[nid]--;
 862	return page;
 863}
 864
 865/* Movability of hugepages depends on migration support. */
 866static inline gfp_t htlb_alloc_mask(struct hstate *h)
 867{
 868	if (hugepages_treat_as_movable || hugepage_migration_supported(h))
 869		return GFP_HIGHUSER_MOVABLE;
 870	else
 871		return GFP_HIGHUSER;
 872}
 873
 874static struct page *dequeue_huge_page_vma(struct hstate *h,
 875				struct vm_area_struct *vma,
 876				unsigned long address, int avoid_reserve,
 877				long chg)
 878{
 879	struct page *page = NULL;
 880	struct mempolicy *mpol;
 881	nodemask_t *nodemask;
 882	struct zonelist *zonelist;
 883	struct zone *zone;
 884	struct zoneref *z;
 885	unsigned int cpuset_mems_cookie;
 886
 
 
 
 887	/*
 888	 * A child process with MAP_PRIVATE mappings created by their parent
 889	 * have no page reserves. This check ensures that reservations are
 890	 * not "stolen". The child may still get SIGKILLed
 891	 */
 892	if (!vma_has_reserves(vma, chg) &&
 893			h->free_huge_pages - h->resv_huge_pages == 0)
 894		goto err;
 895
 896	/* If reserves cannot be used, ensure enough pages are in the pool */
 897	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
 898		goto err;
 899
 900retry_cpuset:
 901	cpuset_mems_cookie = read_mems_allowed_begin();
 902	zonelist = huge_zonelist(vma, address,
 903					htlb_alloc_mask(h), &mpol, &nodemask);
 904
 905	for_each_zone_zonelist_nodemask(zone, z, zonelist,
 906						MAX_NR_ZONES - 1, nodemask) {
 907		if (cpuset_zone_allowed(zone, htlb_alloc_mask(h))) {
 908			page = dequeue_huge_page_node(h, zone_to_nid(zone));
 909			if (page) {
 910				if (avoid_reserve)
 911					break;
 912				if (!vma_has_reserves(vma, chg))
 913					break;
 914
 915				SetPagePrivate(page);
 916				h->resv_huge_pages--;
 917				break;
 918			}
 919		}
 920	}
 921
 922	mpol_cond_put(mpol);
 923	if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
 924		goto retry_cpuset;
 925	return page;
 926
 927err:
 928	return NULL;
 929}
 930
 931/*
 932 * common helper functions for hstate_next_node_to_{alloc|free}.
 933 * We may have allocated or freed a huge page based on a different
 934 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
 935 * be outside of *nodes_allowed.  Ensure that we use an allowed
 936 * node for alloc or free.
 937 */
 938static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
 939{
 940	nid = next_node(nid, *nodes_allowed);
 941	if (nid == MAX_NUMNODES)
 942		nid = first_node(*nodes_allowed);
 943	VM_BUG_ON(nid >= MAX_NUMNODES);
 944
 945	return nid;
 946}
 947
 948static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
 949{
 950	if (!node_isset(nid, *nodes_allowed))
 951		nid = next_node_allowed(nid, nodes_allowed);
 952	return nid;
 953}
 954
 955/*
 956 * returns the previously saved node ["this node"] from which to
 957 * allocate a persistent huge page for the pool and advance the
 958 * next node from which to allocate, handling wrap at end of node
 959 * mask.
 960 */
 961static int hstate_next_node_to_alloc(struct hstate *h,
 962					nodemask_t *nodes_allowed)
 963{
 964	int nid;
 965
 966	VM_BUG_ON(!nodes_allowed);
 967
 968	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
 969	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
 970
 971	return nid;
 972}
 973
 974/*
 975 * helper for free_pool_huge_page() - return the previously saved
 976 * node ["this node"] from which to free a huge page.  Advance the
 977 * next node id whether or not we find a free huge page to free so
 978 * that the next attempt to free addresses the next node.
 979 */
 980static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
 981{
 982	int nid;
 983
 984	VM_BUG_ON(!nodes_allowed);
 985
 986	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
 987	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
 988
 989	return nid;
 990}
 991
 992#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
 993	for (nr_nodes = nodes_weight(*mask);				\
 994		nr_nodes > 0 &&						\
 995		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
 996		nr_nodes--)
 997
 998#define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
 999	for (nr_nodes = nodes_weight(*mask);				\
1000		nr_nodes > 0 &&						\
1001		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
1002		nr_nodes--)
1003
1004#if defined(CONFIG_X86_64) && ((defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA))
1005static void destroy_compound_gigantic_page(struct page *page,
1006					unsigned int order)
1007{
1008	int i;
1009	int nr_pages = 1 << order;
1010	struct page *p = page + 1;
1011
1012	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1013		clear_compound_head(p);
1014		set_page_refcounted(p);
1015	}
1016
1017	set_compound_order(page, 0);
1018	__ClearPageHead(page);
1019}
1020
1021static void free_gigantic_page(struct page *page, unsigned int order)
1022{
1023	free_contig_range(page_to_pfn(page), 1 << order);
1024}
1025
1026static int __alloc_gigantic_page(unsigned long start_pfn,
1027				unsigned long nr_pages)
1028{
1029	unsigned long end_pfn = start_pfn + nr_pages;
1030	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1031}
1032
1033static bool pfn_range_valid_gigantic(unsigned long start_pfn,
1034				unsigned long nr_pages)
1035{
1036	unsigned long i, end_pfn = start_pfn + nr_pages;
1037	struct page *page;
1038
1039	for (i = start_pfn; i < end_pfn; i++) {
1040		if (!pfn_valid(i))
1041			return false;
1042
1043		page = pfn_to_page(i);
1044
1045		if (PageReserved(page))
1046			return false;
1047
1048		if (page_count(page) > 0)
1049			return false;
1050
1051		if (PageHuge(page))
1052			return false;
1053	}
1054
1055	return true;
1056}
1057
1058static bool zone_spans_last_pfn(const struct zone *zone,
1059			unsigned long start_pfn, unsigned long nr_pages)
1060{
1061	unsigned long last_pfn = start_pfn + nr_pages - 1;
1062	return zone_spans_pfn(zone, last_pfn);
1063}
1064
1065static struct page *alloc_gigantic_page(int nid, unsigned int order)
1066{
1067	unsigned long nr_pages = 1 << order;
1068	unsigned long ret, pfn, flags;
1069	struct zone *z;
1070
1071	z = NODE_DATA(nid)->node_zones;
1072	for (; z - NODE_DATA(nid)->node_zones < MAX_NR_ZONES; z++) {
1073		spin_lock_irqsave(&z->lock, flags);
1074
1075		pfn = ALIGN(z->zone_start_pfn, nr_pages);
1076		while (zone_spans_last_pfn(z, pfn, nr_pages)) {
1077			if (pfn_range_valid_gigantic(pfn, nr_pages)) {
1078				/*
1079				 * We release the zone lock here because
1080				 * alloc_contig_range() will also lock the zone
1081				 * at some point. If there's an allocation
1082				 * spinning on this lock, it may win the race
1083				 * and cause alloc_contig_range() to fail...
1084				 */
1085				spin_unlock_irqrestore(&z->lock, flags);
1086				ret = __alloc_gigantic_page(pfn, nr_pages);
1087				if (!ret)
1088					return pfn_to_page(pfn);
1089				spin_lock_irqsave(&z->lock, flags);
1090			}
1091			pfn += nr_pages;
1092		}
1093
1094		spin_unlock_irqrestore(&z->lock, flags);
1095	}
1096
1097	return NULL;
1098}
1099
1100static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1101static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1102
1103static struct page *alloc_fresh_gigantic_page_node(struct hstate *h, int nid)
1104{
1105	struct page *page;
1106
1107	page = alloc_gigantic_page(nid, huge_page_order(h));
1108	if (page) {
1109		prep_compound_gigantic_page(page, huge_page_order(h));
1110		prep_new_huge_page(h, page, nid);
1111	}
1112
1113	return page;
1114}
1115
1116static int alloc_fresh_gigantic_page(struct hstate *h,
1117				nodemask_t *nodes_allowed)
1118{
1119	struct page *page = NULL;
1120	int nr_nodes, node;
1121
1122	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1123		page = alloc_fresh_gigantic_page_node(h, node);
1124		if (page)
1125			return 1;
1126	}
1127
1128	return 0;
1129}
1130
1131static inline bool gigantic_page_supported(void) { return true; }
1132#else
1133static inline bool gigantic_page_supported(void) { return false; }
1134static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1135static inline void destroy_compound_gigantic_page(struct page *page,
1136						unsigned int order) { }
1137static inline int alloc_fresh_gigantic_page(struct hstate *h,
1138					nodemask_t *nodes_allowed) { return 0; }
1139#endif
1140
1141static void update_and_free_page(struct hstate *h, struct page *page)
1142{
1143	int i;
1144
1145	if (hstate_is_gigantic(h) && !gigantic_page_supported())
1146		return;
1147
1148	h->nr_huge_pages--;
1149	h->nr_huge_pages_node[page_to_nid(page)]--;
1150	for (i = 0; i < pages_per_huge_page(h); i++) {
1151		page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1152				1 << PG_referenced | 1 << PG_dirty |
1153				1 << PG_active | 1 << PG_private |
1154				1 << PG_writeback);
1155	}
1156	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1157	set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1158	set_page_refcounted(page);
1159	if (hstate_is_gigantic(h)) {
1160		destroy_compound_gigantic_page(page, huge_page_order(h));
1161		free_gigantic_page(page, huge_page_order(h));
1162	} else {
1163		__free_pages(page, huge_page_order(h));
1164	}
1165}
1166
1167struct hstate *size_to_hstate(unsigned long size)
1168{
1169	struct hstate *h;
1170
1171	for_each_hstate(h) {
1172		if (huge_page_size(h) == size)
1173			return h;
1174	}
1175	return NULL;
1176}
1177
1178/*
1179 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1180 * to hstate->hugepage_activelist.)
1181 *
1182 * This function can be called for tail pages, but never returns true for them.
1183 */
1184bool page_huge_active(struct page *page)
1185{
1186	VM_BUG_ON_PAGE(!PageHuge(page), page);
1187	return PageHead(page) && PagePrivate(&page[1]);
1188}
1189
1190/* never called for tail page */
1191static void set_page_huge_active(struct page *page)
1192{
1193	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1194	SetPagePrivate(&page[1]);
1195}
1196
1197static void clear_page_huge_active(struct page *page)
1198{
1199	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1200	ClearPagePrivate(&page[1]);
1201}
1202
1203void free_huge_page(struct page *page)
1204{
1205	/*
1206	 * Can't pass hstate in here because it is called from the
1207	 * compound page destructor.
1208	 */
1209	struct hstate *h = page_hstate(page);
1210	int nid = page_to_nid(page);
1211	struct hugepage_subpool *spool =
1212		(struct hugepage_subpool *)page_private(page);
1213	bool restore_reserve;
1214
 
1215	set_page_private(page, 0);
1216	page->mapping = NULL;
1217	VM_BUG_ON_PAGE(page_count(page), page);
1218	VM_BUG_ON_PAGE(page_mapcount(page), page);
1219	restore_reserve = PagePrivate(page);
1220	ClearPagePrivate(page);
1221
1222	/*
1223	 * A return code of zero implies that the subpool will be under its
1224	 * minimum size if the reservation is not restored after page is free.
1225	 * Therefore, force restore_reserve operation.
1226	 */
1227	if (hugepage_subpool_put_pages(spool, 1) == 0)
1228		restore_reserve = true;
1229
1230	spin_lock(&hugetlb_lock);
1231	clear_page_huge_active(page);
1232	hugetlb_cgroup_uncharge_page(hstate_index(h),
1233				     pages_per_huge_page(h), page);
1234	if (restore_reserve)
1235		h->resv_huge_pages++;
1236
1237	if (h->surplus_huge_pages_node[nid]) {
1238		/* remove the page from active list */
1239		list_del(&page->lru);
1240		update_and_free_page(h, page);
1241		h->surplus_huge_pages--;
1242		h->surplus_huge_pages_node[nid]--;
1243	} else {
1244		arch_clear_hugepage_flags(page);
1245		enqueue_huge_page(h, page);
1246	}
1247	spin_unlock(&hugetlb_lock);
 
 
1248}
1249
1250static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1251{
1252	INIT_LIST_HEAD(&page->lru);
1253	set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1254	spin_lock(&hugetlb_lock);
1255	set_hugetlb_cgroup(page, NULL);
1256	h->nr_huge_pages++;
1257	h->nr_huge_pages_node[nid]++;
1258	spin_unlock(&hugetlb_lock);
1259	put_page(page); /* free it into the hugepage allocator */
1260}
1261
1262static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1263{
1264	int i;
1265	int nr_pages = 1 << order;
1266	struct page *p = page + 1;
1267
1268	/* we rely on prep_new_huge_page to set the destructor */
1269	set_compound_order(page, order);
1270	__ClearPageReserved(page);
1271	__SetPageHead(page);
1272	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1273		/*
1274		 * For gigantic hugepages allocated through bootmem at
1275		 * boot, it's safer to be consistent with the not-gigantic
1276		 * hugepages and clear the PG_reserved bit from all tail pages
1277		 * too.  Otherwse drivers using get_user_pages() to access tail
1278		 * pages may get the reference counting wrong if they see
1279		 * PG_reserved set on a tail page (despite the head page not
1280		 * having PG_reserved set).  Enforcing this consistency between
1281		 * head and tail pages allows drivers to optimize away a check
1282		 * on the head page when they need know if put_page() is needed
1283		 * after get_user_pages().
1284		 */
1285		__ClearPageReserved(p);
1286		set_page_count(p, 0);
1287		set_compound_head(p, page);
1288	}
1289	atomic_set(compound_mapcount_ptr(page), -1);
1290}
1291
1292/*
1293 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1294 * transparent huge pages.  See the PageTransHuge() documentation for more
1295 * details.
1296 */
1297int PageHuge(struct page *page)
1298{
 
 
1299	if (!PageCompound(page))
1300		return 0;
1301
1302	page = compound_head(page);
1303	return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
 
 
1304}
1305EXPORT_SYMBOL_GPL(PageHuge);
1306
1307/*
1308 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1309 * normal or transparent huge pages.
1310 */
1311int PageHeadHuge(struct page *page_head)
1312{
1313	if (!PageHead(page_head))
1314		return 0;
1315
1316	return get_compound_page_dtor(page_head) == free_huge_page;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1317}
1318
1319pgoff_t __basepage_index(struct page *page)
 
 
 
 
 
 
 
1320{
1321	struct page *page_head = compound_head(page);
1322	pgoff_t index = page_index(page_head);
1323	unsigned long compound_idx;
1324
1325	if (!PageHuge(page_head))
1326		return page_index(page);
1327
1328	if (compound_order(page_head) >= MAX_ORDER)
1329		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1330	else
1331		compound_idx = page - page_head;
1332
1333	return (index << compound_order(page_head)) + compound_idx;
 
 
 
 
1334}
1335
1336static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
 
 
 
 
 
 
 
1337{
1338	struct page *page;
1339
1340	page = __alloc_pages_node(nid,
1341		htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
1342						__GFP_REPEAT|__GFP_NOWARN,
1343		huge_page_order(h));
1344	if (page) {
1345		prep_new_huge_page(h, page, nid);
1346	}
1347
1348	return page;
 
 
 
1349}
1350
1351static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
1352{
1353	struct page *page;
1354	int nr_nodes, node;
 
1355	int ret = 0;
1356
1357	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1358		page = alloc_fresh_huge_page_node(h, node);
 
 
 
1359		if (page) {
1360			ret = 1;
1361			break;
1362		}
1363	}
 
1364
1365	if (ret)
1366		count_vm_event(HTLB_BUDDY_PGALLOC);
1367	else
1368		count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1369
1370	return ret;
1371}
1372
1373/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1374 * Free huge page from pool from next node to free.
1375 * Attempt to keep persistent huge pages more or less
1376 * balanced over allowed nodes.
1377 * Called with hugetlb_lock locked.
1378 */
1379static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1380							 bool acct_surplus)
1381{
1382	int nr_nodes, node;
 
1383	int ret = 0;
1384
1385	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
 
 
 
1386		/*
1387		 * If we're returning unused surplus pages, only examine
1388		 * nodes with surplus pages.
1389		 */
1390		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1391		    !list_empty(&h->hugepage_freelists[node])) {
1392			struct page *page =
1393				list_entry(h->hugepage_freelists[node].next,
1394					  struct page, lru);
1395			list_del(&page->lru);
1396			h->free_huge_pages--;
1397			h->free_huge_pages_node[node]--;
1398			if (acct_surplus) {
1399				h->surplus_huge_pages--;
1400				h->surplus_huge_pages_node[node]--;
1401			}
1402			update_and_free_page(h, page);
1403			ret = 1;
1404			break;
1405		}
1406	}
 
1407
1408	return ret;
1409}
1410
1411/*
1412 * Dissolve a given free hugepage into free buddy pages. This function does
1413 * nothing for in-use (including surplus) hugepages.
1414 */
1415static void dissolve_free_huge_page(struct page *page)
1416{
1417	spin_lock(&hugetlb_lock);
1418	if (PageHuge(page) && !page_count(page)) {
1419		struct hstate *h = page_hstate(page);
1420		int nid = page_to_nid(page);
1421		list_del(&page->lru);
1422		h->free_huge_pages--;
1423		h->free_huge_pages_node[nid]--;
1424		update_and_free_page(h, page);
1425	}
1426	spin_unlock(&hugetlb_lock);
1427}
1428
1429/*
1430 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1431 * make specified memory blocks removable from the system.
1432 * Note that start_pfn should aligned with (minimum) hugepage size.
1433 */
1434void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1435{
1436	unsigned long pfn;
1437
1438	if (!hugepages_supported())
1439		return;
1440
1441	VM_BUG_ON(!IS_ALIGNED(start_pfn, 1 << minimum_order));
1442	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order)
1443		dissolve_free_huge_page(pfn_to_page(pfn));
1444}
1445
1446/*
1447 * There are 3 ways this can get called:
1448 * 1. With vma+addr: we use the VMA's memory policy
1449 * 2. With !vma, but nid=NUMA_NO_NODE:  We try to allocate a huge
1450 *    page from any node, and let the buddy allocator itself figure
1451 *    it out.
1452 * 3. With !vma, but nid!=NUMA_NO_NODE.  We allocate a huge page
1453 *    strictly from 'nid'
1454 */
1455static struct page *__hugetlb_alloc_buddy_huge_page(struct hstate *h,
1456		struct vm_area_struct *vma, unsigned long addr, int nid)
1457{
1458	int order = huge_page_order(h);
1459	gfp_t gfp = htlb_alloc_mask(h)|__GFP_COMP|__GFP_REPEAT|__GFP_NOWARN;
1460	unsigned int cpuset_mems_cookie;
1461
1462	/*
1463	 * We need a VMA to get a memory policy.  If we do not
1464	 * have one, we use the 'nid' argument.
1465	 *
1466	 * The mempolicy stuff below has some non-inlined bits
1467	 * and calls ->vm_ops.  That makes it hard to optimize at
1468	 * compile-time, even when NUMA is off and it does
1469	 * nothing.  This helps the compiler optimize it out.
1470	 */
1471	if (!IS_ENABLED(CONFIG_NUMA) || !vma) {
1472		/*
1473		 * If a specific node is requested, make sure to
1474		 * get memory from there, but only when a node
1475		 * is explicitly specified.
1476		 */
1477		if (nid != NUMA_NO_NODE)
1478			gfp |= __GFP_THISNODE;
1479		/*
1480		 * Make sure to call something that can handle
1481		 * nid=NUMA_NO_NODE
1482		 */
1483		return alloc_pages_node(nid, gfp, order);
1484	}
1485
1486	/*
1487	 * OK, so we have a VMA.  Fetch the mempolicy and try to
1488	 * allocate a huge page with it.  We will only reach this
1489	 * when CONFIG_NUMA=y.
1490	 */
1491	do {
1492		struct page *page;
1493		struct mempolicy *mpol;
1494		struct zonelist *zl;
1495		nodemask_t *nodemask;
1496
1497		cpuset_mems_cookie = read_mems_allowed_begin();
1498		zl = huge_zonelist(vma, addr, gfp, &mpol, &nodemask);
1499		mpol_cond_put(mpol);
1500		page = __alloc_pages_nodemask(gfp, order, zl, nodemask);
1501		if (page)
1502			return page;
1503	} while (read_mems_allowed_retry(cpuset_mems_cookie));
1504
1505	return NULL;
1506}
1507
1508/*
1509 * There are two ways to allocate a huge page:
1510 * 1. When you have a VMA and an address (like a fault)
1511 * 2. When you have no VMA (like when setting /proc/.../nr_hugepages)
1512 *
1513 * 'vma' and 'addr' are only for (1).  'nid' is always NUMA_NO_NODE in
1514 * this case which signifies that the allocation should be done with
1515 * respect for the VMA's memory policy.
1516 *
1517 * For (2), we ignore 'vma' and 'addr' and use 'nid' exclusively. This
1518 * implies that memory policies will not be taken in to account.
1519 */
1520static struct page *__alloc_buddy_huge_page(struct hstate *h,
1521		struct vm_area_struct *vma, unsigned long addr, int nid)
1522{
1523	struct page *page;
1524	unsigned int r_nid;
1525
1526	if (hstate_is_gigantic(h))
1527		return NULL;
1528
1529	/*
1530	 * Make sure that anyone specifying 'nid' is not also specifying a VMA.
1531	 * This makes sure the caller is picking _one_ of the modes with which
1532	 * we can call this function, not both.
1533	 */
1534	if (vma || (addr != -1)) {
1535		VM_WARN_ON_ONCE(addr == -1);
1536		VM_WARN_ON_ONCE(nid != NUMA_NO_NODE);
1537	}
1538	/*
1539	 * Assume we will successfully allocate the surplus page to
1540	 * prevent racing processes from causing the surplus to exceed
1541	 * overcommit
1542	 *
1543	 * This however introduces a different race, where a process B
1544	 * tries to grow the static hugepage pool while alloc_pages() is
1545	 * called by process A. B will only examine the per-node
1546	 * counters in determining if surplus huge pages can be
1547	 * converted to normal huge pages in adjust_pool_surplus(). A
1548	 * won't be able to increment the per-node counter, until the
1549	 * lock is dropped by B, but B doesn't drop hugetlb_lock until
1550	 * no more huge pages can be converted from surplus to normal
1551	 * state (and doesn't try to convert again). Thus, we have a
1552	 * case where a surplus huge page exists, the pool is grown, and
1553	 * the surplus huge page still exists after, even though it
1554	 * should just have been converted to a normal huge page. This
1555	 * does not leak memory, though, as the hugepage will be freed
1556	 * once it is out of use. It also does not allow the counters to
1557	 * go out of whack in adjust_pool_surplus() as we don't modify
1558	 * the node values until we've gotten the hugepage and only the
1559	 * per-node value is checked there.
1560	 */
1561	spin_lock(&hugetlb_lock);
1562	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1563		spin_unlock(&hugetlb_lock);
1564		return NULL;
1565	} else {
1566		h->nr_huge_pages++;
1567		h->surplus_huge_pages++;
1568	}
1569	spin_unlock(&hugetlb_lock);
1570
1571	page = __hugetlb_alloc_buddy_huge_page(h, vma, addr, nid);
 
 
 
 
 
 
 
 
 
 
 
 
1572
1573	spin_lock(&hugetlb_lock);
1574	if (page) {
1575		INIT_LIST_HEAD(&page->lru);
1576		r_nid = page_to_nid(page);
1577		set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1578		set_hugetlb_cgroup(page, NULL);
1579		/*
1580		 * We incremented the global counters already
1581		 */
1582		h->nr_huge_pages_node[r_nid]++;
1583		h->surplus_huge_pages_node[r_nid]++;
1584		__count_vm_event(HTLB_BUDDY_PGALLOC);
1585	} else {
1586		h->nr_huge_pages--;
1587		h->surplus_huge_pages--;
1588		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1589	}
1590	spin_unlock(&hugetlb_lock);
1591
1592	return page;
1593}
1594
1595/*
1596 * Allocate a huge page from 'nid'.  Note, 'nid' may be
1597 * NUMA_NO_NODE, which means that it may be allocated
1598 * anywhere.
1599 */
1600static
1601struct page *__alloc_buddy_huge_page_no_mpol(struct hstate *h, int nid)
1602{
1603	unsigned long addr = -1;
1604
1605	return __alloc_buddy_huge_page(h, NULL, addr, nid);
1606}
1607
1608/*
1609 * Use the VMA's mpolicy to allocate a huge page from the buddy.
1610 */
1611static
1612struct page *__alloc_buddy_huge_page_with_mpol(struct hstate *h,
1613		struct vm_area_struct *vma, unsigned long addr)
1614{
1615	return __alloc_buddy_huge_page(h, vma, addr, NUMA_NO_NODE);
1616}
1617
1618/*
1619 * This allocation function is useful in the context where vma is irrelevant.
1620 * E.g. soft-offlining uses this function because it only cares physical
1621 * address of error page.
1622 */
1623struct page *alloc_huge_page_node(struct hstate *h, int nid)
1624{
1625	struct page *page = NULL;
1626
1627	spin_lock(&hugetlb_lock);
1628	if (h->free_huge_pages - h->resv_huge_pages > 0)
1629		page = dequeue_huge_page_node(h, nid);
1630	spin_unlock(&hugetlb_lock);
1631
1632	if (!page)
1633		page = __alloc_buddy_huge_page_no_mpol(h, nid);
1634
1635	return page;
1636}
1637
1638/*
1639 * Increase the hugetlb pool such that it can accommodate a reservation
1640 * of size 'delta'.
1641 */
1642static int gather_surplus_pages(struct hstate *h, int delta)
1643{
1644	struct list_head surplus_list;
1645	struct page *page, *tmp;
1646	int ret, i;
1647	int needed, allocated;
1648	bool alloc_ok = true;
1649
1650	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1651	if (needed <= 0) {
1652		h->resv_huge_pages += delta;
1653		return 0;
1654	}
1655
1656	allocated = 0;
1657	INIT_LIST_HEAD(&surplus_list);
1658
1659	ret = -ENOMEM;
1660retry:
1661	spin_unlock(&hugetlb_lock);
1662	for (i = 0; i < needed; i++) {
1663		page = __alloc_buddy_huge_page_no_mpol(h, NUMA_NO_NODE);
1664		if (!page) {
1665			alloc_ok = false;
1666			break;
1667		}
 
 
 
 
1668		list_add(&page->lru, &surplus_list);
1669	}
1670	allocated += i;
1671
1672	/*
1673	 * After retaking hugetlb_lock, we need to recalculate 'needed'
1674	 * because either resv_huge_pages or free_huge_pages may have changed.
1675	 */
1676	spin_lock(&hugetlb_lock);
1677	needed = (h->resv_huge_pages + delta) -
1678			(h->free_huge_pages + allocated);
1679	if (needed > 0) {
1680		if (alloc_ok)
1681			goto retry;
1682		/*
1683		 * We were not able to allocate enough pages to
1684		 * satisfy the entire reservation so we free what
1685		 * we've allocated so far.
1686		 */
1687		goto free;
1688	}
1689	/*
1690	 * The surplus_list now contains _at_least_ the number of extra pages
1691	 * needed to accommodate the reservation.  Add the appropriate number
1692	 * of pages to the hugetlb pool and free the extras back to the buddy
1693	 * allocator.  Commit the entire reservation here to prevent another
1694	 * process from stealing the pages as they are added to the pool but
1695	 * before they are reserved.
1696	 */
1697	needed += allocated;
1698	h->resv_huge_pages += delta;
1699	ret = 0;
1700
 
1701	/* Free the needed pages to the hugetlb pool */
1702	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1703		if ((--needed) < 0)
1704			break;
 
1705		/*
1706		 * This page is now managed by the hugetlb allocator and has
1707		 * no users -- drop the buddy allocator's reference.
1708		 */
1709		put_page_testzero(page);
1710		VM_BUG_ON_PAGE(page_count(page), page);
1711		enqueue_huge_page(h, page);
1712	}
1713free:
1714	spin_unlock(&hugetlb_lock);
1715
1716	/* Free unnecessary surplus pages to the buddy allocator */
1717	list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1718		put_page(page);
 
 
 
 
 
1719	spin_lock(&hugetlb_lock);
1720
1721	return ret;
1722}
1723
1724/*
1725 * When releasing a hugetlb pool reservation, any surplus pages that were
1726 * allocated to satisfy the reservation must be explicitly freed if they were
1727 * never used.
1728 * Called with hugetlb_lock held.
1729 */
1730static void return_unused_surplus_pages(struct hstate *h,
1731					unsigned long unused_resv_pages)
1732{
1733	unsigned long nr_pages;
1734
1735	/* Uncommit the reservation */
1736	h->resv_huge_pages -= unused_resv_pages;
1737
1738	/* Cannot return gigantic pages currently */
1739	if (hstate_is_gigantic(h))
1740		return;
1741
1742	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1743
1744	/*
1745	 * We want to release as many surplus pages as possible, spread
1746	 * evenly across all nodes with memory. Iterate across these nodes
1747	 * until we can no longer free unreserved surplus pages. This occurs
1748	 * when the nodes with surplus pages have no free pages.
1749	 * free_pool_huge_page() will balance the the freed pages across the
1750	 * on-line nodes with memory and will handle the hstate accounting.
1751	 */
1752	while (nr_pages--) {
1753		if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1754			break;
1755		cond_resched_lock(&hugetlb_lock);
1756	}
1757}
1758
1759
1760/*
1761 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
1762 * are used by the huge page allocation routines to manage reservations.
1763 *
1764 * vma_needs_reservation is called to determine if the huge page at addr
1765 * within the vma has an associated reservation.  If a reservation is
1766 * needed, the value 1 is returned.  The caller is then responsible for
1767 * managing the global reservation and subpool usage counts.  After
1768 * the huge page has been allocated, vma_commit_reservation is called
1769 * to add the page to the reservation map.  If the page allocation fails,
1770 * the reservation must be ended instead of committed.  vma_end_reservation
1771 * is called in such cases.
1772 *
1773 * In the normal case, vma_commit_reservation returns the same value
1774 * as the preceding vma_needs_reservation call.  The only time this
1775 * is not the case is if a reserve map was changed between calls.  It
1776 * is the responsibility of the caller to notice the difference and
1777 * take appropriate action.
1778 */
1779enum vma_resv_mode {
1780	VMA_NEEDS_RESV,
1781	VMA_COMMIT_RESV,
1782	VMA_END_RESV,
1783};
1784static long __vma_reservation_common(struct hstate *h,
1785				struct vm_area_struct *vma, unsigned long addr,
1786				enum vma_resv_mode mode)
1787{
1788	struct resv_map *resv;
1789	pgoff_t idx;
1790	long ret;
1791
1792	resv = vma_resv_map(vma);
1793	if (!resv)
 
 
 
 
1794		return 1;
1795
1796	idx = vma_hugecache_offset(h, vma, addr);
1797	switch (mode) {
1798	case VMA_NEEDS_RESV:
1799		ret = region_chg(resv, idx, idx + 1);
1800		break;
1801	case VMA_COMMIT_RESV:
1802		ret = region_add(resv, idx, idx + 1);
1803		break;
1804	case VMA_END_RESV:
1805		region_abort(resv, idx, idx + 1);
1806		ret = 0;
1807		break;
1808	default:
1809		BUG();
1810	}
1811
1812	if (vma->vm_flags & VM_MAYSHARE)
1813		return ret;
1814	else
1815		return ret < 0 ? ret : 0;
1816}
1817
1818static long vma_needs_reservation(struct hstate *h,
1819			struct vm_area_struct *vma, unsigned long addr)
1820{
1821	return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
1822}
1823
1824static long vma_commit_reservation(struct hstate *h,
1825			struct vm_area_struct *vma, unsigned long addr)
1826{
1827	return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
1828}
1829
1830static void vma_end_reservation(struct hstate *h,
1831			struct vm_area_struct *vma, unsigned long addr)
1832{
1833	(void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
 
 
 
1834}
1835
1836struct page *alloc_huge_page(struct vm_area_struct *vma,
1837				    unsigned long addr, int avoid_reserve)
1838{
1839	struct hugepage_subpool *spool = subpool_vma(vma);
1840	struct hstate *h = hstate_vma(vma);
1841	struct page *page;
1842	long map_chg, map_commit;
1843	long gbl_chg;
1844	int ret, idx;
1845	struct hugetlb_cgroup *h_cg;
1846
1847	idx = hstate_index(h);
1848	/*
1849	 * Examine the region/reserve map to determine if the process
1850	 * has a reservation for the page to be allocated.  A return
1851	 * code of zero indicates a reservation exists (no change).
1852	 */
1853	map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
1854	if (map_chg < 0)
1855		return ERR_PTR(-ENOMEM);
1856
1857	/*
1858	 * Processes that did not create the mapping will have no
1859	 * reserves as indicated by the region/reserve map. Check
1860	 * that the allocation will not exceed the subpool limit.
1861	 * Allocations for MAP_NORESERVE mappings also need to be
1862	 * checked against any subpool limit.
1863	 */
1864	if (map_chg || avoid_reserve) {
1865		gbl_chg = hugepage_subpool_get_pages(spool, 1);
1866		if (gbl_chg < 0) {
1867			vma_end_reservation(h, vma, addr);
1868			return ERR_PTR(-ENOSPC);
1869		}
1870
1871		/*
1872		 * Even though there was no reservation in the region/reserve
1873		 * map, there could be reservations associated with the
1874		 * subpool that can be used.  This would be indicated if the
1875		 * return value of hugepage_subpool_get_pages() is zero.
1876		 * However, if avoid_reserve is specified we still avoid even
1877		 * the subpool reservations.
1878		 */
1879		if (avoid_reserve)
1880			gbl_chg = 1;
1881	}
1882
1883	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1884	if (ret)
1885		goto out_subpool_put;
1886
1887	spin_lock(&hugetlb_lock);
1888	/*
1889	 * glb_chg is passed to indicate whether or not a page must be taken
1890	 * from the global free pool (global change).  gbl_chg == 0 indicates
1891	 * a reservation exists for the allocation.
1892	 */
1893	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
1894	if (!page) {
1895		spin_unlock(&hugetlb_lock);
1896		page = __alloc_buddy_huge_page_with_mpol(h, vma, addr);
1897		if (!page)
1898			goto out_uncharge_cgroup;
1899		if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
1900			SetPagePrivate(page);
1901			h->resv_huge_pages--;
1902		}
1903		spin_lock(&hugetlb_lock);
1904		list_move(&page->lru, &h->hugepage_activelist);
1905		/* Fall through */
1906	}
1907	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
1908	spin_unlock(&hugetlb_lock);
1909
1910	set_page_private(page, (unsigned long)spool);
1911
1912	map_commit = vma_commit_reservation(h, vma, addr);
1913	if (unlikely(map_chg > map_commit)) {
1914		/*
1915		 * The page was added to the reservation map between
1916		 * vma_needs_reservation and vma_commit_reservation.
1917		 * This indicates a race with hugetlb_reserve_pages.
1918		 * Adjust for the subpool count incremented above AND
1919		 * in hugetlb_reserve_pages for the same page.  Also,
1920		 * the reservation count added in hugetlb_reserve_pages
1921		 * no longer applies.
1922		 */
1923		long rsv_adjust;
1924
1925		rsv_adjust = hugepage_subpool_put_pages(spool, 1);
1926		hugetlb_acct_memory(h, -rsv_adjust);
1927	}
1928	return page;
1929
1930out_uncharge_cgroup:
1931	hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
1932out_subpool_put:
1933	if (map_chg || avoid_reserve)
1934		hugepage_subpool_put_pages(spool, 1);
1935	vma_end_reservation(h, vma, addr);
1936	return ERR_PTR(-ENOSPC);
1937}
1938
1939/*
1940 * alloc_huge_page()'s wrapper which simply returns the page if allocation
1941 * succeeds, otherwise NULL. This function is called from new_vma_page(),
1942 * where no ERR_VALUE is expected to be returned.
1943 */
1944struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
1945				unsigned long addr, int avoid_reserve)
1946{
1947	struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
1948	if (IS_ERR(page))
1949		page = NULL;
1950	return page;
1951}
1952
1953int __weak alloc_bootmem_huge_page(struct hstate *h)
1954{
1955	struct huge_bootmem_page *m;
1956	int nr_nodes, node;
1957
1958	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
1959		void *addr;
1960
1961		addr = memblock_virt_alloc_try_nid_nopanic(
1962				huge_page_size(h), huge_page_size(h),
1963				0, BOOTMEM_ALLOC_ACCESSIBLE, node);
 
 
1964		if (addr) {
1965			/*
1966			 * Use the beginning of the huge page to store the
1967			 * huge_bootmem_page struct (until gather_bootmem
1968			 * puts them into the mem_map).
1969			 */
1970			m = addr;
1971			goto found;
1972		}
 
1973	}
1974	return 0;
1975
1976found:
1977	BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
1978	/* Put them into a private list first because mem_map is not up yet */
1979	list_add(&m->list, &huge_boot_pages);
1980	m->hstate = h;
1981	return 1;
1982}
1983
1984static void __init prep_compound_huge_page(struct page *page,
1985		unsigned int order)
1986{
1987	if (unlikely(order > (MAX_ORDER - 1)))
1988		prep_compound_gigantic_page(page, order);
1989	else
1990		prep_compound_page(page, order);
1991}
1992
1993/* Put bootmem huge pages into the standard lists after mem_map is up */
1994static void __init gather_bootmem_prealloc(void)
1995{
1996	struct huge_bootmem_page *m;
1997
1998	list_for_each_entry(m, &huge_boot_pages, list) {
1999		struct hstate *h = m->hstate;
2000		struct page *page;
2001
2002#ifdef CONFIG_HIGHMEM
2003		page = pfn_to_page(m->phys >> PAGE_SHIFT);
2004		memblock_free_late(__pa(m),
2005				   sizeof(struct huge_bootmem_page));
2006#else
2007		page = virt_to_page(m);
2008#endif
 
2009		WARN_ON(page_count(page) != 1);
2010		prep_compound_huge_page(page, h->order);
2011		WARN_ON(PageReserved(page));
2012		prep_new_huge_page(h, page, page_to_nid(page));
2013		/*
2014		 * If we had gigantic hugepages allocated at boot time, we need
2015		 * to restore the 'stolen' pages to totalram_pages in order to
2016		 * fix confusing memory reports from free(1) and another
2017		 * side-effects, like CommitLimit going negative.
2018		 */
2019		if (hstate_is_gigantic(h))
2020			adjust_managed_page_count(page, 1 << h->order);
2021	}
2022}
2023
2024static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2025{
2026	unsigned long i;
2027
2028	for (i = 0; i < h->max_huge_pages; ++i) {
2029		if (hstate_is_gigantic(h)) {
2030			if (!alloc_bootmem_huge_page(h))
2031				break;
2032		} else if (!alloc_fresh_huge_page(h,
2033					 &node_states[N_MEMORY]))
2034			break;
2035	}
2036	h->max_huge_pages = i;
2037}
2038
2039static void __init hugetlb_init_hstates(void)
2040{
2041	struct hstate *h;
2042
2043	for_each_hstate(h) {
2044		if (minimum_order > huge_page_order(h))
2045			minimum_order = huge_page_order(h);
2046
2047		/* oversize hugepages were init'ed in early boot */
2048		if (!hstate_is_gigantic(h))
2049			hugetlb_hstate_alloc_pages(h);
2050	}
2051	VM_BUG_ON(minimum_order == UINT_MAX);
2052}
2053
2054static char * __init memfmt(char *buf, unsigned long n)
2055{
2056	if (n >= (1UL << 30))
2057		sprintf(buf, "%lu GB", n >> 30);
2058	else if (n >= (1UL << 20))
2059		sprintf(buf, "%lu MB", n >> 20);
2060	else
2061		sprintf(buf, "%lu KB", n >> 10);
2062	return buf;
2063}
2064
2065static void __init report_hugepages(void)
2066{
2067	struct hstate *h;
2068
2069	for_each_hstate(h) {
2070		char buf[32];
2071		pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
 
2072			memfmt(buf, huge_page_size(h)),
2073			h->free_huge_pages);
2074	}
2075}
2076
2077#ifdef CONFIG_HIGHMEM
2078static void try_to_free_low(struct hstate *h, unsigned long count,
2079						nodemask_t *nodes_allowed)
2080{
2081	int i;
2082
2083	if (hstate_is_gigantic(h))
2084		return;
2085
2086	for_each_node_mask(i, *nodes_allowed) {
2087		struct page *page, *next;
2088		struct list_head *freel = &h->hugepage_freelists[i];
2089		list_for_each_entry_safe(page, next, freel, lru) {
2090			if (count >= h->nr_huge_pages)
2091				return;
2092			if (PageHighMem(page))
2093				continue;
2094			list_del(&page->lru);
2095			update_and_free_page(h, page);
2096			h->free_huge_pages--;
2097			h->free_huge_pages_node[page_to_nid(page)]--;
2098		}
2099	}
2100}
2101#else
2102static inline void try_to_free_low(struct hstate *h, unsigned long count,
2103						nodemask_t *nodes_allowed)
2104{
2105}
2106#endif
2107
2108/*
2109 * Increment or decrement surplus_huge_pages.  Keep node-specific counters
2110 * balanced by operating on them in a round-robin fashion.
2111 * Returns 1 if an adjustment was made.
2112 */
2113static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2114				int delta)
2115{
2116	int nr_nodes, node;
 
2117
2118	VM_BUG_ON(delta != -1 && delta != 1);
2119
2120	if (delta < 0) {
2121		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2122			if (h->surplus_huge_pages_node[node])
2123				goto found;
 
 
 
 
 
 
 
 
 
 
 
 
 
2124		}
2125	} else {
2126		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2127			if (h->surplus_huge_pages_node[node] <
2128					h->nr_huge_pages_node[node])
2129				goto found;
 
 
 
 
 
2130		}
2131	}
2132	return 0;
2133
2134found:
2135	h->surplus_huge_pages += delta;
2136	h->surplus_huge_pages_node[node] += delta;
2137	return 1;
 
 
 
2138}
2139
2140#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2141static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
2142						nodemask_t *nodes_allowed)
2143{
2144	unsigned long min_count, ret;
2145
2146	if (hstate_is_gigantic(h) && !gigantic_page_supported())
2147		return h->max_huge_pages;
2148
2149	/*
2150	 * Increase the pool size
2151	 * First take pages out of surplus state.  Then make up the
2152	 * remaining difference by allocating fresh huge pages.
2153	 *
2154	 * We might race with __alloc_buddy_huge_page() here and be unable
2155	 * to convert a surplus huge page to a normal huge page. That is
2156	 * not critical, though, it just means the overall size of the
2157	 * pool might be one hugepage larger than it needs to be, but
2158	 * within all the constraints specified by the sysctls.
2159	 */
2160	spin_lock(&hugetlb_lock);
2161	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2162		if (!adjust_pool_surplus(h, nodes_allowed, -1))
2163			break;
2164	}
2165
2166	while (count > persistent_huge_pages(h)) {
2167		/*
2168		 * If this allocation races such that we no longer need the
2169		 * page, free_huge_page will handle it by freeing the page
2170		 * and reducing the surplus.
2171		 */
2172		spin_unlock(&hugetlb_lock);
2173		if (hstate_is_gigantic(h))
2174			ret = alloc_fresh_gigantic_page(h, nodes_allowed);
2175		else
2176			ret = alloc_fresh_huge_page(h, nodes_allowed);
2177		spin_lock(&hugetlb_lock);
2178		if (!ret)
2179			goto out;
2180
2181		/* Bail for signals. Probably ctrl-c from user */
2182		if (signal_pending(current))
2183			goto out;
2184	}
2185
2186	/*
2187	 * Decrease the pool size
2188	 * First return free pages to the buddy allocator (being careful
2189	 * to keep enough around to satisfy reservations).  Then place
2190	 * pages into surplus state as needed so the pool will shrink
2191	 * to the desired size as pages become free.
2192	 *
2193	 * By placing pages into the surplus state independent of the
2194	 * overcommit value, we are allowing the surplus pool size to
2195	 * exceed overcommit. There are few sane options here. Since
2196	 * __alloc_buddy_huge_page() is checking the global counter,
2197	 * though, we'll note that we're not allowed to exceed surplus
2198	 * and won't grow the pool anywhere else. Not until one of the
2199	 * sysctls are changed, or the surplus pages go out of use.
2200	 */
2201	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2202	min_count = max(count, min_count);
2203	try_to_free_low(h, min_count, nodes_allowed);
2204	while (min_count < persistent_huge_pages(h)) {
2205		if (!free_pool_huge_page(h, nodes_allowed, 0))
2206			break;
2207		cond_resched_lock(&hugetlb_lock);
2208	}
2209	while (count < persistent_huge_pages(h)) {
2210		if (!adjust_pool_surplus(h, nodes_allowed, 1))
2211			break;
2212	}
2213out:
2214	ret = persistent_huge_pages(h);
2215	spin_unlock(&hugetlb_lock);
2216	return ret;
2217}
2218
2219#define HSTATE_ATTR_RO(_name) \
2220	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2221
2222#define HSTATE_ATTR(_name) \
2223	static struct kobj_attribute _name##_attr = \
2224		__ATTR(_name, 0644, _name##_show, _name##_store)
2225
2226static struct kobject *hugepages_kobj;
2227static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2228
2229static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2230
2231static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2232{
2233	int i;
2234
2235	for (i = 0; i < HUGE_MAX_HSTATE; i++)
2236		if (hstate_kobjs[i] == kobj) {
2237			if (nidp)
2238				*nidp = NUMA_NO_NODE;
2239			return &hstates[i];
2240		}
2241
2242	return kobj_to_node_hstate(kobj, nidp);
2243}
2244
2245static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2246					struct kobj_attribute *attr, char *buf)
2247{
2248	struct hstate *h;
2249	unsigned long nr_huge_pages;
2250	int nid;
2251
2252	h = kobj_to_hstate(kobj, &nid);
2253	if (nid == NUMA_NO_NODE)
2254		nr_huge_pages = h->nr_huge_pages;
2255	else
2256		nr_huge_pages = h->nr_huge_pages_node[nid];
2257
2258	return sprintf(buf, "%lu\n", nr_huge_pages);
2259}
2260
2261static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2262					   struct hstate *h, int nid,
2263					   unsigned long count, size_t len)
2264{
2265	int err;
 
 
 
2266	NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
2267
2268	if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
 
 
 
 
 
2269		err = -EINVAL;
2270		goto out;
2271	}
2272
2273	if (nid == NUMA_NO_NODE) {
2274		/*
2275		 * global hstate attribute
2276		 */
2277		if (!(obey_mempolicy &&
2278				init_nodemask_of_mempolicy(nodes_allowed))) {
2279			NODEMASK_FREE(nodes_allowed);
2280			nodes_allowed = &node_states[N_MEMORY];
2281		}
2282	} else if (nodes_allowed) {
2283		/*
2284		 * per node hstate attribute: adjust count to global,
2285		 * but restrict alloc/free to the specified node.
2286		 */
2287		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2288		init_nodemask_of_node(nodes_allowed, nid);
2289	} else
2290		nodes_allowed = &node_states[N_MEMORY];
2291
2292	h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
2293
2294	if (nodes_allowed != &node_states[N_MEMORY])
2295		NODEMASK_FREE(nodes_allowed);
2296
2297	return len;
2298out:
2299	NODEMASK_FREE(nodes_allowed);
2300	return err;
2301}
2302
2303static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2304					 struct kobject *kobj, const char *buf,
2305					 size_t len)
2306{
2307	struct hstate *h;
2308	unsigned long count;
2309	int nid;
2310	int err;
2311
2312	err = kstrtoul(buf, 10, &count);
2313	if (err)
2314		return err;
2315
2316	h = kobj_to_hstate(kobj, &nid);
2317	return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2318}
2319
2320static ssize_t nr_hugepages_show(struct kobject *kobj,
2321				       struct kobj_attribute *attr, char *buf)
2322{
2323	return nr_hugepages_show_common(kobj, attr, buf);
2324}
2325
2326static ssize_t nr_hugepages_store(struct kobject *kobj,
2327	       struct kobj_attribute *attr, const char *buf, size_t len)
2328{
2329	return nr_hugepages_store_common(false, kobj, buf, len);
2330}
2331HSTATE_ATTR(nr_hugepages);
2332
2333#ifdef CONFIG_NUMA
2334
2335/*
2336 * hstate attribute for optionally mempolicy-based constraint on persistent
2337 * huge page alloc/free.
2338 */
2339static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2340				       struct kobj_attribute *attr, char *buf)
2341{
2342	return nr_hugepages_show_common(kobj, attr, buf);
2343}
2344
2345static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2346	       struct kobj_attribute *attr, const char *buf, size_t len)
2347{
2348	return nr_hugepages_store_common(true, kobj, buf, len);
2349}
2350HSTATE_ATTR(nr_hugepages_mempolicy);
2351#endif
2352
2353
2354static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2355					struct kobj_attribute *attr, char *buf)
2356{
2357	struct hstate *h = kobj_to_hstate(kobj, NULL);
2358	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2359}
2360
2361static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2362		struct kobj_attribute *attr, const char *buf, size_t count)
2363{
2364	int err;
2365	unsigned long input;
2366	struct hstate *h = kobj_to_hstate(kobj, NULL);
2367
2368	if (hstate_is_gigantic(h))
2369		return -EINVAL;
2370
2371	err = kstrtoul(buf, 10, &input);
2372	if (err)
2373		return err;
2374
2375	spin_lock(&hugetlb_lock);
2376	h->nr_overcommit_huge_pages = input;
2377	spin_unlock(&hugetlb_lock);
2378
2379	return count;
2380}
2381HSTATE_ATTR(nr_overcommit_hugepages);
2382
2383static ssize_t free_hugepages_show(struct kobject *kobj,
2384					struct kobj_attribute *attr, char *buf)
2385{
2386	struct hstate *h;
2387	unsigned long free_huge_pages;
2388	int nid;
2389
2390	h = kobj_to_hstate(kobj, &nid);
2391	if (nid == NUMA_NO_NODE)
2392		free_huge_pages = h->free_huge_pages;
2393	else
2394		free_huge_pages = h->free_huge_pages_node[nid];
2395
2396	return sprintf(buf, "%lu\n", free_huge_pages);
2397}
2398HSTATE_ATTR_RO(free_hugepages);
2399
2400static ssize_t resv_hugepages_show(struct kobject *kobj,
2401					struct kobj_attribute *attr, char *buf)
2402{
2403	struct hstate *h = kobj_to_hstate(kobj, NULL);
2404	return sprintf(buf, "%lu\n", h->resv_huge_pages);
2405}
2406HSTATE_ATTR_RO(resv_hugepages);
2407
2408static ssize_t surplus_hugepages_show(struct kobject *kobj,
2409					struct kobj_attribute *attr, char *buf)
2410{
2411	struct hstate *h;
2412	unsigned long surplus_huge_pages;
2413	int nid;
2414
2415	h = kobj_to_hstate(kobj, &nid);
2416	if (nid == NUMA_NO_NODE)
2417		surplus_huge_pages = h->surplus_huge_pages;
2418	else
2419		surplus_huge_pages = h->surplus_huge_pages_node[nid];
2420
2421	return sprintf(buf, "%lu\n", surplus_huge_pages);
2422}
2423HSTATE_ATTR_RO(surplus_hugepages);
2424
2425static struct attribute *hstate_attrs[] = {
2426	&nr_hugepages_attr.attr,
2427	&nr_overcommit_hugepages_attr.attr,
2428	&free_hugepages_attr.attr,
2429	&resv_hugepages_attr.attr,
2430	&surplus_hugepages_attr.attr,
2431#ifdef CONFIG_NUMA
2432	&nr_hugepages_mempolicy_attr.attr,
2433#endif
2434	NULL,
2435};
2436
2437static struct attribute_group hstate_attr_group = {
2438	.attrs = hstate_attrs,
2439};
2440
2441static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2442				    struct kobject **hstate_kobjs,
2443				    struct attribute_group *hstate_attr_group)
2444{
2445	int retval;
2446	int hi = hstate_index(h);
2447
2448	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2449	if (!hstate_kobjs[hi])
2450		return -ENOMEM;
2451
2452	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2453	if (retval)
2454		kobject_put(hstate_kobjs[hi]);
2455
2456	return retval;
2457}
2458
2459static void __init hugetlb_sysfs_init(void)
2460{
2461	struct hstate *h;
2462	int err;
2463
2464	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2465	if (!hugepages_kobj)
2466		return;
2467
2468	for_each_hstate(h) {
2469		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2470					 hstate_kobjs, &hstate_attr_group);
2471		if (err)
2472			pr_err("Hugetlb: Unable to add hstate %s", h->name);
 
2473	}
2474}
2475
2476#ifdef CONFIG_NUMA
2477
2478/*
2479 * node_hstate/s - associate per node hstate attributes, via their kobjects,
2480 * with node devices in node_devices[] using a parallel array.  The array
2481 * index of a node device or _hstate == node id.
2482 * This is here to avoid any static dependency of the node device driver, in
2483 * the base kernel, on the hugetlb module.
2484 */
2485struct node_hstate {
2486	struct kobject		*hugepages_kobj;
2487	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
2488};
2489static struct node_hstate node_hstates[MAX_NUMNODES];
2490
2491/*
2492 * A subset of global hstate attributes for node devices
2493 */
2494static struct attribute *per_node_hstate_attrs[] = {
2495	&nr_hugepages_attr.attr,
2496	&free_hugepages_attr.attr,
2497	&surplus_hugepages_attr.attr,
2498	NULL,
2499};
2500
2501static struct attribute_group per_node_hstate_attr_group = {
2502	.attrs = per_node_hstate_attrs,
2503};
2504
2505/*
2506 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2507 * Returns node id via non-NULL nidp.
2508 */
2509static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2510{
2511	int nid;
2512
2513	for (nid = 0; nid < nr_node_ids; nid++) {
2514		struct node_hstate *nhs = &node_hstates[nid];
2515		int i;
2516		for (i = 0; i < HUGE_MAX_HSTATE; i++)
2517			if (nhs->hstate_kobjs[i] == kobj) {
2518				if (nidp)
2519					*nidp = nid;
2520				return &hstates[i];
2521			}
2522	}
2523
2524	BUG();
2525	return NULL;
2526}
2527
2528/*
2529 * Unregister hstate attributes from a single node device.
2530 * No-op if no hstate attributes attached.
2531 */
2532static void hugetlb_unregister_node(struct node *node)
2533{
2534	struct hstate *h;
2535	struct node_hstate *nhs = &node_hstates[node->dev.id];
2536
2537	if (!nhs->hugepages_kobj)
2538		return;		/* no hstate attributes */
2539
2540	for_each_hstate(h) {
2541		int idx = hstate_index(h);
2542		if (nhs->hstate_kobjs[idx]) {
2543			kobject_put(nhs->hstate_kobjs[idx]);
2544			nhs->hstate_kobjs[idx] = NULL;
2545		}
2546	}
2547
2548	kobject_put(nhs->hugepages_kobj);
2549	nhs->hugepages_kobj = NULL;
2550}
2551
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2552
2553/*
2554 * Register hstate attributes for a single node device.
2555 * No-op if attributes already registered.
2556 */
2557static void hugetlb_register_node(struct node *node)
2558{
2559	struct hstate *h;
2560	struct node_hstate *nhs = &node_hstates[node->dev.id];
2561	int err;
2562
2563	if (nhs->hugepages_kobj)
2564		return;		/* already allocated */
2565
2566	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2567							&node->dev.kobj);
2568	if (!nhs->hugepages_kobj)
2569		return;
2570
2571	for_each_hstate(h) {
2572		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2573						nhs->hstate_kobjs,
2574						&per_node_hstate_attr_group);
2575		if (err) {
2576			pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2577				h->name, node->dev.id);
 
2578			hugetlb_unregister_node(node);
2579			break;
2580		}
2581	}
2582}
2583
2584/*
2585 * hugetlb init time:  register hstate attributes for all registered node
2586 * devices of nodes that have memory.  All on-line nodes should have
2587 * registered their associated device by this time.
2588 */
2589static void __init hugetlb_register_all_nodes(void)
2590{
2591	int nid;
2592
2593	for_each_node_state(nid, N_MEMORY) {
2594		struct node *node = node_devices[nid];
2595		if (node->dev.id == nid)
2596			hugetlb_register_node(node);
2597	}
2598
2599	/*
2600	 * Let the node device driver know we're here so it can
2601	 * [un]register hstate attributes on node hotplug.
2602	 */
2603	register_hugetlbfs_with_node(hugetlb_register_node,
2604				     hugetlb_unregister_node);
2605}
2606#else	/* !CONFIG_NUMA */
2607
2608static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2609{
2610	BUG();
2611	if (nidp)
2612		*nidp = -1;
2613	return NULL;
2614}
2615
 
 
2616static void hugetlb_register_all_nodes(void) { }
2617
2618#endif
2619
2620static int __init hugetlb_init(void)
2621{
2622	int i;
 
 
 
 
 
 
2623
2624	if (!hugepages_supported())
 
 
 
 
 
 
 
 
 
 
2625		return 0;
2626
2627	if (!size_to_hstate(default_hstate_size)) {
2628		default_hstate_size = HPAGE_SIZE;
2629		if (!size_to_hstate(default_hstate_size))
2630			hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2631	}
2632	default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2633	if (default_hstate_max_huge_pages) {
2634		if (!default_hstate.max_huge_pages)
2635			default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2636	}
2637
2638	hugetlb_init_hstates();
 
2639	gather_bootmem_prealloc();
 
2640	report_hugepages();
2641
2642	hugetlb_sysfs_init();
2643	hugetlb_register_all_nodes();
2644	hugetlb_cgroup_file_init();
2645
2646#ifdef CONFIG_SMP
2647	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2648#else
2649	num_fault_mutexes = 1;
2650#endif
2651	hugetlb_fault_mutex_table =
2652		kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
2653	BUG_ON(!hugetlb_fault_mutex_table);
2654
2655	for (i = 0; i < num_fault_mutexes; i++)
2656		mutex_init(&hugetlb_fault_mutex_table[i]);
2657	return 0;
2658}
2659subsys_initcall(hugetlb_init);
2660
2661/* Should be called on processing a hugepagesz=... option */
2662void __init hugetlb_add_hstate(unsigned int order)
2663{
2664	struct hstate *h;
2665	unsigned long i;
2666
2667	if (size_to_hstate(PAGE_SIZE << order)) {
2668		pr_warn("hugepagesz= specified twice, ignoring\n");
2669		return;
2670	}
2671	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2672	BUG_ON(order == 0);
2673	h = &hstates[hugetlb_max_hstate++];
2674	h->order = order;
2675	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2676	h->nr_huge_pages = 0;
2677	h->free_huge_pages = 0;
2678	for (i = 0; i < MAX_NUMNODES; ++i)
2679		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2680	INIT_LIST_HEAD(&h->hugepage_activelist);
2681	h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
2682	h->next_nid_to_free = first_node(node_states[N_MEMORY]);
2683	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2684					huge_page_size(h)/1024);
2685
2686	parsed_hstate = h;
2687}
2688
2689static int __init hugetlb_nrpages_setup(char *s)
2690{
2691	unsigned long *mhp;
2692	static unsigned long *last_mhp;
2693
2694	/*
2695	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2696	 * so this hugepages= parameter goes to the "default hstate".
2697	 */
2698	if (!hugetlb_max_hstate)
2699		mhp = &default_hstate_max_huge_pages;
2700	else
2701		mhp = &parsed_hstate->max_huge_pages;
2702
2703	if (mhp == last_mhp) {
2704		pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
 
2705		return 1;
2706	}
2707
2708	if (sscanf(s, "%lu", mhp) <= 0)
2709		*mhp = 0;
2710
2711	/*
2712	 * Global state is always initialized later in hugetlb_init.
2713	 * But we need to allocate >= MAX_ORDER hstates here early to still
2714	 * use the bootmem allocator.
2715	 */
2716	if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2717		hugetlb_hstate_alloc_pages(parsed_hstate);
2718
2719	last_mhp = mhp;
2720
2721	return 1;
2722}
2723__setup("hugepages=", hugetlb_nrpages_setup);
2724
2725static int __init hugetlb_default_setup(char *s)
2726{
2727	default_hstate_size = memparse(s, &s);
2728	return 1;
2729}
2730__setup("default_hugepagesz=", hugetlb_default_setup);
2731
2732static unsigned int cpuset_mems_nr(unsigned int *array)
2733{
2734	int node;
2735	unsigned int nr = 0;
2736
2737	for_each_node_mask(node, cpuset_current_mems_allowed)
2738		nr += array[node];
2739
2740	return nr;
2741}
2742
2743#ifdef CONFIG_SYSCTL
2744static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2745			 struct ctl_table *table, int write,
2746			 void __user *buffer, size_t *length, loff_t *ppos)
2747{
2748	struct hstate *h = &default_hstate;
2749	unsigned long tmp = h->max_huge_pages;
2750	int ret;
2751
2752	if (!hugepages_supported())
2753		return -EOPNOTSUPP;
 
 
2754
2755	table->data = &tmp;
2756	table->maxlen = sizeof(unsigned long);
2757	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2758	if (ret)
2759		goto out;
2760
2761	if (write)
2762		ret = __nr_hugepages_store_common(obey_mempolicy, h,
2763						  NUMA_NO_NODE, tmp, *length);
 
 
 
 
 
 
 
 
 
 
2764out:
2765	return ret;
2766}
2767
2768int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2769			  void __user *buffer, size_t *length, loff_t *ppos)
2770{
2771
2772	return hugetlb_sysctl_handler_common(false, table, write,
2773							buffer, length, ppos);
2774}
2775
2776#ifdef CONFIG_NUMA
2777int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2778			  void __user *buffer, size_t *length, loff_t *ppos)
2779{
2780	return hugetlb_sysctl_handler_common(true, table, write,
2781							buffer, length, ppos);
2782}
2783#endif /* CONFIG_NUMA */
2784
 
 
 
 
 
 
 
 
 
 
 
 
2785int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2786			void __user *buffer,
2787			size_t *length, loff_t *ppos)
2788{
2789	struct hstate *h = &default_hstate;
2790	unsigned long tmp;
2791	int ret;
2792
2793	if (!hugepages_supported())
2794		return -EOPNOTSUPP;
2795
2796	tmp = h->nr_overcommit_huge_pages;
2797
2798	if (write && hstate_is_gigantic(h))
2799		return -EINVAL;
2800
2801	table->data = &tmp;
2802	table->maxlen = sizeof(unsigned long);
2803	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2804	if (ret)
2805		goto out;
2806
2807	if (write) {
2808		spin_lock(&hugetlb_lock);
2809		h->nr_overcommit_huge_pages = tmp;
2810		spin_unlock(&hugetlb_lock);
2811	}
2812out:
2813	return ret;
2814}
2815
2816#endif /* CONFIG_SYSCTL */
2817
2818void hugetlb_report_meminfo(struct seq_file *m)
2819{
2820	struct hstate *h = &default_hstate;
2821	if (!hugepages_supported())
2822		return;
2823	seq_printf(m,
2824			"HugePages_Total:   %5lu\n"
2825			"HugePages_Free:    %5lu\n"
2826			"HugePages_Rsvd:    %5lu\n"
2827			"HugePages_Surp:    %5lu\n"
2828			"Hugepagesize:   %8lu kB\n",
2829			h->nr_huge_pages,
2830			h->free_huge_pages,
2831			h->resv_huge_pages,
2832			h->surplus_huge_pages,
2833			1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2834}
2835
2836int hugetlb_report_node_meminfo(int nid, char *buf)
2837{
2838	struct hstate *h = &default_hstate;
2839	if (!hugepages_supported())
2840		return 0;
2841	return sprintf(buf,
2842		"Node %d HugePages_Total: %5u\n"
2843		"Node %d HugePages_Free:  %5u\n"
2844		"Node %d HugePages_Surp:  %5u\n",
2845		nid, h->nr_huge_pages_node[nid],
2846		nid, h->free_huge_pages_node[nid],
2847		nid, h->surplus_huge_pages_node[nid]);
2848}
2849
2850void hugetlb_show_meminfo(void)
2851{
2852	struct hstate *h;
2853	int nid;
2854
2855	if (!hugepages_supported())
2856		return;
2857
2858	for_each_node_state(nid, N_MEMORY)
2859		for_each_hstate(h)
2860			pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
2861				nid,
2862				h->nr_huge_pages_node[nid],
2863				h->free_huge_pages_node[nid],
2864				h->surplus_huge_pages_node[nid],
2865				1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2866}
2867
2868void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
2869{
2870	seq_printf(m, "HugetlbPages:\t%8lu kB\n",
2871		   atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
2872}
2873
2874/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2875unsigned long hugetlb_total_pages(void)
2876{
2877	struct hstate *h;
2878	unsigned long nr_total_pages = 0;
2879
2880	for_each_hstate(h)
2881		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
2882	return nr_total_pages;
2883}
2884
2885static int hugetlb_acct_memory(struct hstate *h, long delta)
2886{
2887	int ret = -ENOMEM;
2888
2889	spin_lock(&hugetlb_lock);
2890	/*
2891	 * When cpuset is configured, it breaks the strict hugetlb page
2892	 * reservation as the accounting is done on a global variable. Such
2893	 * reservation is completely rubbish in the presence of cpuset because
2894	 * the reservation is not checked against page availability for the
2895	 * current cpuset. Application can still potentially OOM'ed by kernel
2896	 * with lack of free htlb page in cpuset that the task is in.
2897	 * Attempt to enforce strict accounting with cpuset is almost
2898	 * impossible (or too ugly) because cpuset is too fluid that
2899	 * task or memory node can be dynamically moved between cpusets.
2900	 *
2901	 * The change of semantics for shared hugetlb mapping with cpuset is
2902	 * undesirable. However, in order to preserve some of the semantics,
2903	 * we fall back to check against current free page availability as
2904	 * a best attempt and hopefully to minimize the impact of changing
2905	 * semantics that cpuset has.
2906	 */
2907	if (delta > 0) {
2908		if (gather_surplus_pages(h, delta) < 0)
2909			goto out;
2910
2911		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2912			return_unused_surplus_pages(h, delta);
2913			goto out;
2914		}
2915	}
2916
2917	ret = 0;
2918	if (delta < 0)
2919		return_unused_surplus_pages(h, (unsigned long) -delta);
2920
2921out:
2922	spin_unlock(&hugetlb_lock);
2923	return ret;
2924}
2925
2926static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2927{
2928	struct resv_map *resv = vma_resv_map(vma);
2929
2930	/*
2931	 * This new VMA should share its siblings reservation map if present.
2932	 * The VMA will only ever have a valid reservation map pointer where
2933	 * it is being copied for another still existing VMA.  As that VMA
2934	 * has a reference to the reservation map it cannot disappear until
2935	 * after this open call completes.  It is therefore safe to take a
2936	 * new reference here without additional locking.
2937	 */
2938	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
2939		kref_get(&resv->refs);
2940}
2941
2942static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2943{
2944	struct hstate *h = hstate_vma(vma);
2945	struct resv_map *resv = vma_resv_map(vma);
2946	struct hugepage_subpool *spool = subpool_vma(vma);
2947	unsigned long reserve, start, end;
2948	long gbl_reserve;
2949
2950	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
2951		return;
2952
2953	start = vma_hugecache_offset(h, vma, vma->vm_start);
2954	end = vma_hugecache_offset(h, vma, vma->vm_end);
2955
2956	reserve = (end - start) - region_count(resv, start, end);
2957
2958	kref_put(&resv->refs, resv_map_release);
2959
2960	if (reserve) {
2961		/*
2962		 * Decrement reserve counts.  The global reserve count may be
2963		 * adjusted if the subpool has a minimum size.
2964		 */
2965		gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
2966		hugetlb_acct_memory(h, -gbl_reserve);
2967	}
2968}
2969
2970/*
2971 * We cannot handle pagefaults against hugetlb pages at all.  They cause
2972 * handle_mm_fault() to try to instantiate regular-sized pages in the
2973 * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
2974 * this far.
2975 */
2976static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2977{
2978	BUG();
2979	return 0;
2980}
2981
2982const struct vm_operations_struct hugetlb_vm_ops = {
2983	.fault = hugetlb_vm_op_fault,
2984	.open = hugetlb_vm_op_open,
2985	.close = hugetlb_vm_op_close,
2986};
2987
2988static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2989				int writable)
2990{
2991	pte_t entry;
2992
2993	if (writable) {
2994		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
2995					 vma->vm_page_prot)));
2996	} else {
2997		entry = huge_pte_wrprotect(mk_huge_pte(page,
2998					   vma->vm_page_prot));
2999	}
3000	entry = pte_mkyoung(entry);
3001	entry = pte_mkhuge(entry);
3002	entry = arch_make_huge_pte(entry, vma, page, writable);
3003
3004	return entry;
3005}
3006
3007static void set_huge_ptep_writable(struct vm_area_struct *vma,
3008				   unsigned long address, pte_t *ptep)
3009{
3010	pte_t entry;
3011
3012	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3013	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3014		update_mmu_cache(vma, address, ptep);
3015}
3016
3017static int is_hugetlb_entry_migration(pte_t pte)
3018{
3019	swp_entry_t swp;
3020
3021	if (huge_pte_none(pte) || pte_present(pte))
3022		return 0;
3023	swp = pte_to_swp_entry(pte);
3024	if (non_swap_entry(swp) && is_migration_entry(swp))
3025		return 1;
3026	else
3027		return 0;
3028}
3029
3030static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3031{
3032	swp_entry_t swp;
3033
3034	if (huge_pte_none(pte) || pte_present(pte))
3035		return 0;
3036	swp = pte_to_swp_entry(pte);
3037	if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3038		return 1;
3039	else
3040		return 0;
3041}
3042
3043int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3044			    struct vm_area_struct *vma)
3045{
3046	pte_t *src_pte, *dst_pte, entry;
3047	struct page *ptepage;
3048	unsigned long addr;
3049	int cow;
3050	struct hstate *h = hstate_vma(vma);
3051	unsigned long sz = huge_page_size(h);
3052	unsigned long mmun_start;	/* For mmu_notifiers */
3053	unsigned long mmun_end;		/* For mmu_notifiers */
3054	int ret = 0;
3055
3056	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3057
3058	mmun_start = vma->vm_start;
3059	mmun_end = vma->vm_end;
3060	if (cow)
3061		mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
3062
3063	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3064		spinlock_t *src_ptl, *dst_ptl;
3065		src_pte = huge_pte_offset(src, addr);
3066		if (!src_pte)
3067			continue;
3068		dst_pte = huge_pte_alloc(dst, addr, sz);
3069		if (!dst_pte) {
3070			ret = -ENOMEM;
3071			break;
3072		}
3073
3074		/* If the pagetables are shared don't copy or take references */
3075		if (dst_pte == src_pte)
3076			continue;
3077
3078		dst_ptl = huge_pte_lock(h, dst, dst_pte);
3079		src_ptl = huge_pte_lockptr(h, src, src_pte);
3080		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3081		entry = huge_ptep_get(src_pte);
3082		if (huge_pte_none(entry)) { /* skip none entry */
3083			;
3084		} else if (unlikely(is_hugetlb_entry_migration(entry) ||
3085				    is_hugetlb_entry_hwpoisoned(entry))) {
3086			swp_entry_t swp_entry = pte_to_swp_entry(entry);
3087
3088			if (is_write_migration_entry(swp_entry) && cow) {
3089				/*
3090				 * COW mappings require pages in both
3091				 * parent and child to be set to read.
3092				 */
3093				make_migration_entry_read(&swp_entry);
3094				entry = swp_entry_to_pte(swp_entry);
3095				set_huge_pte_at(src, addr, src_pte, entry);
3096			}
3097			set_huge_pte_at(dst, addr, dst_pte, entry);
3098		} else {
3099			if (cow) {
3100				huge_ptep_set_wrprotect(src, addr, src_pte);
3101				mmu_notifier_invalidate_range(src, mmun_start,
3102								   mmun_end);
3103			}
3104			entry = huge_ptep_get(src_pte);
3105			ptepage = pte_page(entry);
3106			get_page(ptepage);
3107			page_dup_rmap(ptepage, true);
3108			set_huge_pte_at(dst, addr, dst_pte, entry);
3109			hugetlb_count_add(pages_per_huge_page(h), dst);
3110		}
3111		spin_unlock(src_ptl);
3112		spin_unlock(dst_ptl);
3113	}
 
3114
3115	if (cow)
3116		mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
 
3117
3118	return ret;
 
 
 
 
 
 
 
 
 
 
3119}
3120
3121void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3122			    unsigned long start, unsigned long end,
3123			    struct page *ref_page)
 
 
 
 
 
 
 
 
 
 
 
 
3124{
3125	int force_flush = 0;
3126	struct mm_struct *mm = vma->vm_mm;
3127	unsigned long address;
3128	pte_t *ptep;
3129	pte_t pte;
3130	spinlock_t *ptl;
3131	struct page *page;
 
3132	struct hstate *h = hstate_vma(vma);
3133	unsigned long sz = huge_page_size(h);
3134	const unsigned long mmun_start = start;	/* For mmu_notifiers */
3135	const unsigned long mmun_end   = end;	/* For mmu_notifiers */
 
 
 
 
 
3136
3137	WARN_ON(!is_vm_hugetlb_page(vma));
3138	BUG_ON(start & ~huge_page_mask(h));
3139	BUG_ON(end & ~huge_page_mask(h));
3140
3141	tlb_start_vma(tlb, vma);
3142	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3143	address = start;
3144again:
3145	for (; address < end; address += sz) {
3146		ptep = huge_pte_offset(mm, address);
3147		if (!ptep)
3148			continue;
3149
3150		ptl = huge_pte_lock(h, mm, ptep);
3151		if (huge_pmd_unshare(mm, &address, ptep))
3152			goto unlock;
3153
3154		pte = huge_ptep_get(ptep);
3155		if (huge_pte_none(pte))
3156			goto unlock;
3157
3158		/*
3159		 * Migrating hugepage or HWPoisoned hugepage is already
3160		 * unmapped and its refcount is dropped, so just clear pte here.
3161		 */
3162		if (unlikely(!pte_present(pte))) {
3163			huge_pte_clear(mm, address, ptep);
3164			goto unlock;
3165		}
3166
3167		page = pte_page(pte);
3168		/*
3169		 * If a reference page is supplied, it is because a specific
3170		 * page is being unmapped, not a range. Ensure the page we
3171		 * are about to unmap is the actual page of interest.
3172		 */
3173		if (ref_page) {
 
 
 
 
3174			if (page != ref_page)
3175				goto unlock;
3176
3177			/*
3178			 * Mark the VMA as having unmapped its page so that
3179			 * future faults in this VMA will fail rather than
3180			 * looking like data was lost
3181			 */
3182			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3183		}
3184
3185		pte = huge_ptep_get_and_clear(mm, address, ptep);
3186		tlb_remove_tlb_entry(tlb, ptep, address);
3187		if (huge_pte_dirty(pte))
3188			set_page_dirty(page);
3189
3190		hugetlb_count_sub(pages_per_huge_page(h), mm);
3191		page_remove_rmap(page, true);
3192		force_flush = !__tlb_remove_page(tlb, page);
3193		if (force_flush) {
3194			address += sz;
3195			spin_unlock(ptl);
3196			break;
3197		}
3198		/* Bail out after unmapping reference page if supplied */
3199		if (ref_page) {
3200			spin_unlock(ptl);
3201			break;
3202		}
3203unlock:
3204		spin_unlock(ptl);
3205	}
3206	/*
3207	 * mmu_gather ran out of room to batch pages, we break out of
3208	 * the PTE lock to avoid doing the potential expensive TLB invalidate
3209	 * and page-free while holding it.
3210	 */
3211	if (force_flush) {
3212		force_flush = 0;
3213		tlb_flush_mmu(tlb);
3214		if (address < end && !ref_page)
3215			goto again;
3216	}
3217	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3218	tlb_end_vma(tlb, vma);
3219}
3220
3221void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3222			  struct vm_area_struct *vma, unsigned long start,
3223			  unsigned long end, struct page *ref_page)
3224{
3225	__unmap_hugepage_range(tlb, vma, start, end, ref_page);
3226
3227	/*
3228	 * Clear this flag so that x86's huge_pmd_share page_table_shareable
3229	 * test will fail on a vma being torn down, and not grab a page table
3230	 * on its way out.  We're lucky that the flag has such an appropriate
3231	 * name, and can in fact be safely cleared here. We could clear it
3232	 * before the __unmap_hugepage_range above, but all that's necessary
3233	 * is to clear it before releasing the i_mmap_rwsem. This works
3234	 * because in the context this is called, the VMA is about to be
3235	 * destroyed and the i_mmap_rwsem is held.
3236	 */
3237	vma->vm_flags &= ~VM_MAYSHARE;
3238}
3239
3240void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
3241			  unsigned long end, struct page *ref_page)
3242{
3243	struct mm_struct *mm;
3244	struct mmu_gather tlb;
3245
3246	mm = vma->vm_mm;
3247
3248	tlb_gather_mmu(&tlb, mm, start, end);
3249	__unmap_hugepage_range(&tlb, vma, start, end, ref_page);
3250	tlb_finish_mmu(&tlb, start, end);
3251}
3252
3253/*
3254 * This is called when the original mapper is failing to COW a MAP_PRIVATE
3255 * mappping it owns the reserve page for. The intention is to unmap the page
3256 * from other VMAs and let the children be SIGKILLed if they are faulting the
3257 * same region.
3258 */
3259static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3260			      struct page *page, unsigned long address)
3261{
3262	struct hstate *h = hstate_vma(vma);
3263	struct vm_area_struct *iter_vma;
3264	struct address_space *mapping;
 
3265	pgoff_t pgoff;
3266
3267	/*
3268	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3269	 * from page cache lookup which is in HPAGE_SIZE units.
3270	 */
3271	address = address & huge_page_mask(h);
3272	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3273			vma->vm_pgoff;
3274	mapping = file_inode(vma->vm_file)->i_mapping;
3275
3276	/*
3277	 * Take the mapping lock for the duration of the table walk. As
3278	 * this mapping should be shared between all the VMAs,
3279	 * __unmap_hugepage_range() is called as the lock is already held
3280	 */
3281	i_mmap_lock_write(mapping);
3282	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
3283		/* Do not unmap the current VMA */
3284		if (iter_vma == vma)
3285			continue;
3286
3287		/*
3288		 * Shared VMAs have their own reserves and do not affect
3289		 * MAP_PRIVATE accounting but it is possible that a shared
3290		 * VMA is using the same page so check and skip such VMAs.
3291		 */
3292		if (iter_vma->vm_flags & VM_MAYSHARE)
3293			continue;
3294
3295		/*
3296		 * Unmap the page from other VMAs without their own reserves.
3297		 * They get marked to be SIGKILLed if they fault in these
3298		 * areas. This is because a future no-page fault on this VMA
3299		 * could insert a zeroed page instead of the data existing
3300		 * from the time of fork. This would look like data corruption
3301		 */
3302		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
3303			unmap_hugepage_range(iter_vma, address,
3304					     address + huge_page_size(h), page);
 
3305	}
3306	i_mmap_unlock_write(mapping);
 
 
3307}
3308
3309/*
3310 * Hugetlb_cow() should be called with page lock of the original hugepage held.
3311 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3312 * cannot race with other handlers or page migration.
3313 * Keep the pte_same checks anyway to make transition from the mutex easier.
3314 */
3315static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3316			unsigned long address, pte_t *ptep, pte_t pte,
3317			struct page *pagecache_page, spinlock_t *ptl)
3318{
3319	struct hstate *h = hstate_vma(vma);
3320	struct page *old_page, *new_page;
3321	int ret = 0, outside_reserve = 0;
3322	unsigned long mmun_start;	/* For mmu_notifiers */
3323	unsigned long mmun_end;		/* For mmu_notifiers */
3324
3325	old_page = pte_page(pte);
3326
3327retry_avoidcopy:
3328	/* If no-one else is actually using this page, avoid the copy
3329	 * and just make the page writable */
3330	if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
3331		page_move_anon_rmap(old_page, vma, address);
 
 
3332		set_huge_ptep_writable(vma, address, ptep);
3333		return 0;
3334	}
3335
3336	/*
3337	 * If the process that created a MAP_PRIVATE mapping is about to
3338	 * perform a COW due to a shared page count, attempt to satisfy
3339	 * the allocation without using the existing reserves. The pagecache
3340	 * page is used to determine if the reserve at this address was
3341	 * consumed or not. If reserves were used, a partial faulted mapping
3342	 * at the time of fork() could consume its reserves on COW instead
3343	 * of the full address range.
3344	 */
3345	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
 
3346			old_page != pagecache_page)
3347		outside_reserve = 1;
3348
3349	get_page(old_page);
3350
3351	/*
3352	 * Drop page table lock as buddy allocator may be called. It will
3353	 * be acquired again before returning to the caller, as expected.
3354	 */
3355	spin_unlock(ptl);
3356	new_page = alloc_huge_page(vma, address, outside_reserve);
3357
3358	if (IS_ERR(new_page)) {
 
 
3359		/*
3360		 * If a process owning a MAP_PRIVATE mapping fails to COW,
3361		 * it is due to references held by a child and an insufficient
3362		 * huge page pool. To guarantee the original mappers
3363		 * reliability, unmap the page from child processes. The child
3364		 * may get SIGKILLed if it later faults.
3365		 */
3366		if (outside_reserve) {
3367			put_page(old_page);
3368			BUG_ON(huge_pte_none(pte));
3369			unmap_ref_private(mm, vma, old_page, address);
3370			BUG_ON(huge_pte_none(pte));
3371			spin_lock(ptl);
3372			ptep = huge_pte_offset(mm, address & huge_page_mask(h));
3373			if (likely(ptep &&
3374				   pte_same(huge_ptep_get(ptep), pte)))
3375				goto retry_avoidcopy;
3376			/*
3377			 * race occurs while re-acquiring page table
3378			 * lock, and our job is done.
3379			 */
3380			return 0;
3381		}
3382
3383		ret = (PTR_ERR(new_page) == -ENOMEM) ?
3384			VM_FAULT_OOM : VM_FAULT_SIGBUS;
3385		goto out_release_old;
3386	}
3387
3388	/*
3389	 * When the original hugepage is shared one, it does not have
3390	 * anon_vma prepared.
3391	 */
3392	if (unlikely(anon_vma_prepare(vma))) {
3393		ret = VM_FAULT_OOM;
3394		goto out_release_all;
 
3395	}
3396
3397	copy_user_huge_page(new_page, old_page, address, vma,
3398			    pages_per_huge_page(h));
3399	__SetPageUptodate(new_page);
3400	set_page_huge_active(new_page);
3401
3402	mmun_start = address & huge_page_mask(h);
3403	mmun_end = mmun_start + huge_page_size(h);
3404	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3405
3406	/*
3407	 * Retake the page table lock to check for racing updates
3408	 * before the page tables are altered
3409	 */
3410	spin_lock(ptl);
3411	ptep = huge_pte_offset(mm, address & huge_page_mask(h));
3412	if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
3413		ClearPagePrivate(new_page);
3414
3415		/* Break COW */
 
 
 
3416		huge_ptep_clear_flush(vma, address, ptep);
3417		mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
3418		set_huge_pte_at(mm, address, ptep,
3419				make_huge_pte(vma, new_page, 1));
3420		page_remove_rmap(old_page, true);
3421		hugepage_add_new_anon_rmap(new_page, vma, address);
3422		/* Make the old page be freed below */
3423		new_page = old_page;
 
 
 
3424	}
3425	spin_unlock(ptl);
3426	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3427out_release_all:
3428	put_page(new_page);
3429out_release_old:
3430	put_page(old_page);
3431
3432	spin_lock(ptl); /* Caller expects lock to be held */
3433	return ret;
3434}
3435
3436/* Return the pagecache page at a given address within a VMA */
3437static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3438			struct vm_area_struct *vma, unsigned long address)
3439{
3440	struct address_space *mapping;
3441	pgoff_t idx;
3442
3443	mapping = vma->vm_file->f_mapping;
3444	idx = vma_hugecache_offset(h, vma, address);
3445
3446	return find_lock_page(mapping, idx);
3447}
3448
3449/*
3450 * Return whether there is a pagecache page to back given address within VMA.
3451 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3452 */
3453static bool hugetlbfs_pagecache_present(struct hstate *h,
3454			struct vm_area_struct *vma, unsigned long address)
3455{
3456	struct address_space *mapping;
3457	pgoff_t idx;
3458	struct page *page;
3459
3460	mapping = vma->vm_file->f_mapping;
3461	idx = vma_hugecache_offset(h, vma, address);
3462
3463	page = find_get_page(mapping, idx);
3464	if (page)
3465		put_page(page);
3466	return page != NULL;
3467}
3468
3469int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
3470			   pgoff_t idx)
3471{
3472	struct inode *inode = mapping->host;
3473	struct hstate *h = hstate_inode(inode);
3474	int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3475
3476	if (err)
3477		return err;
3478	ClearPagePrivate(page);
3479
3480	spin_lock(&inode->i_lock);
3481	inode->i_blocks += blocks_per_huge_page(h);
3482	spin_unlock(&inode->i_lock);
3483	return 0;
3484}
3485
3486static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
3487			   struct address_space *mapping, pgoff_t idx,
3488			   unsigned long address, pte_t *ptep, unsigned int flags)
3489{
3490	struct hstate *h = hstate_vma(vma);
3491	int ret = VM_FAULT_SIGBUS;
3492	int anon_rmap = 0;
3493	unsigned long size;
3494	struct page *page;
 
3495	pte_t new_pte;
3496	spinlock_t *ptl;
3497
3498	/*
3499	 * Currently, we are forced to kill the process in the event the
3500	 * original mapper has unmapped pages from the child due to a failed
3501	 * COW. Warn that such a situation has occurred as it may not be obvious
3502	 */
3503	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
3504		pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
3505			   current->pid);
 
3506		return ret;
3507	}
3508
 
 
 
3509	/*
3510	 * Use page lock to guard against racing truncation
3511	 * before we get page_table_lock.
3512	 */
3513retry:
3514	page = find_lock_page(mapping, idx);
3515	if (!page) {
3516		size = i_size_read(mapping->host) >> huge_page_shift(h);
3517		if (idx >= size)
3518			goto out;
3519		page = alloc_huge_page(vma, address, 0);
3520		if (IS_ERR(page)) {
3521			ret = PTR_ERR(page);
3522			if (ret == -ENOMEM)
3523				ret = VM_FAULT_OOM;
3524			else
3525				ret = VM_FAULT_SIGBUS;
3526			goto out;
3527		}
3528		clear_huge_page(page, address, pages_per_huge_page(h));
3529		__SetPageUptodate(page);
3530		set_page_huge_active(page);
3531
3532		if (vma->vm_flags & VM_MAYSHARE) {
3533			int err = huge_add_to_page_cache(page, mapping, idx);
 
 
 
3534			if (err) {
3535				put_page(page);
3536				if (err == -EEXIST)
3537					goto retry;
3538				goto out;
3539			}
 
 
 
 
 
3540		} else {
3541			lock_page(page);
3542			if (unlikely(anon_vma_prepare(vma))) {
3543				ret = VM_FAULT_OOM;
3544				goto backout_unlocked;
3545			}
3546			anon_rmap = 1;
3547		}
3548	} else {
3549		/*
3550		 * If memory error occurs between mmap() and fault, some process
3551		 * don't have hwpoisoned swap entry for errored virtual address.
3552		 * So we need to block hugepage fault by PG_hwpoison bit check.
3553		 */
3554		if (unlikely(PageHWPoison(page))) {
3555			ret = VM_FAULT_HWPOISON |
3556				VM_FAULT_SET_HINDEX(hstate_index(h));
3557			goto backout_unlocked;
3558		}
 
3559	}
3560
3561	/*
3562	 * If we are going to COW a private mapping later, we examine the
3563	 * pending reservations for this page now. This will ensure that
3564	 * any allocations necessary to record that reservation occur outside
3565	 * the spinlock.
3566	 */
3567	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3568		if (vma_needs_reservation(h, vma, address) < 0) {
3569			ret = VM_FAULT_OOM;
3570			goto backout_unlocked;
3571		}
3572		/* Just decrements count, does not deallocate */
3573		vma_end_reservation(h, vma, address);
3574	}
3575
3576	ptl = huge_pte_lockptr(h, mm, ptep);
3577	spin_lock(ptl);
3578	size = i_size_read(mapping->host) >> huge_page_shift(h);
3579	if (idx >= size)
3580		goto backout;
3581
3582	ret = 0;
3583	if (!huge_pte_none(huge_ptep_get(ptep)))
3584		goto backout;
3585
3586	if (anon_rmap) {
3587		ClearPagePrivate(page);
3588		hugepage_add_new_anon_rmap(page, vma, address);
3589	} else
3590		page_dup_rmap(page, true);
3591	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3592				&& (vma->vm_flags & VM_SHARED)));
3593	set_huge_pte_at(mm, address, ptep, new_pte);
3594
3595	hugetlb_count_add(pages_per_huge_page(h), mm);
3596	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3597		/* Optimization, do the COW without a second fault */
3598		ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page, ptl);
3599	}
3600
3601	spin_unlock(ptl);
3602	unlock_page(page);
3603out:
3604	return ret;
3605
3606backout:
3607	spin_unlock(ptl);
3608backout_unlocked:
3609	unlock_page(page);
3610	put_page(page);
3611	goto out;
3612}
3613
3614#ifdef CONFIG_SMP
3615u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3616			    struct vm_area_struct *vma,
3617			    struct address_space *mapping,
3618			    pgoff_t idx, unsigned long address)
3619{
3620	unsigned long key[2];
3621	u32 hash;
3622
3623	if (vma->vm_flags & VM_SHARED) {
3624		key[0] = (unsigned long) mapping;
3625		key[1] = idx;
3626	} else {
3627		key[0] = (unsigned long) mm;
3628		key[1] = address >> huge_page_shift(h);
3629	}
3630
3631	hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
3632
3633	return hash & (num_fault_mutexes - 1);
3634}
3635#else
3636/*
3637 * For uniprocesor systems we always use a single mutex, so just
3638 * return 0 and avoid the hashing overhead.
3639 */
3640u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3641			    struct vm_area_struct *vma,
3642			    struct address_space *mapping,
3643			    pgoff_t idx, unsigned long address)
3644{
3645	return 0;
3646}
3647#endif
3648
3649int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3650			unsigned long address, unsigned int flags)
3651{
3652	pte_t *ptep, entry;
3653	spinlock_t *ptl;
3654	int ret;
3655	u32 hash;
3656	pgoff_t idx;
3657	struct page *page = NULL;
3658	struct page *pagecache_page = NULL;
 
3659	struct hstate *h = hstate_vma(vma);
3660	struct address_space *mapping;
3661	int need_wait_lock = 0;
3662
3663	address &= huge_page_mask(h);
3664
3665	ptep = huge_pte_offset(mm, address);
3666	if (ptep) {
3667		entry = huge_ptep_get(ptep);
3668		if (unlikely(is_hugetlb_entry_migration(entry))) {
3669			migration_entry_wait_huge(vma, mm, ptep);
3670			return 0;
3671		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
3672			return VM_FAULT_HWPOISON_LARGE |
3673				VM_FAULT_SET_HINDEX(hstate_index(h));
3674	} else {
3675		ptep = huge_pte_alloc(mm, address, huge_page_size(h));
3676		if (!ptep)
3677			return VM_FAULT_OOM;
3678	}
3679
3680	mapping = vma->vm_file->f_mapping;
3681	idx = vma_hugecache_offset(h, vma, address);
 
3682
3683	/*
3684	 * Serialize hugepage allocation and instantiation, so that we don't
3685	 * get spurious allocation failures if two CPUs race to instantiate
3686	 * the same page in the page cache.
3687	 */
3688	hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, idx, address);
3689	mutex_lock(&hugetlb_fault_mutex_table[hash]);
3690
3691	entry = huge_ptep_get(ptep);
3692	if (huge_pte_none(entry)) {
3693		ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
3694		goto out_mutex;
3695	}
3696
3697	ret = 0;
3698
3699	/*
3700	 * entry could be a migration/hwpoison entry at this point, so this
3701	 * check prevents the kernel from going below assuming that we have
3702	 * a active hugepage in pagecache. This goto expects the 2nd page fault,
3703	 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
3704	 * handle it.
3705	 */
3706	if (!pte_present(entry))
3707		goto out_mutex;
3708
3709	/*
3710	 * If we are going to COW the mapping later, we examine the pending
3711	 * reservations for this page now. This will ensure that any
3712	 * allocations necessary to record that reservation occur outside the
3713	 * spinlock. For private mappings, we also lookup the pagecache
3714	 * page now as it is used to determine if a reservation has been
3715	 * consumed.
3716	 */
3717	if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
3718		if (vma_needs_reservation(h, vma, address) < 0) {
3719			ret = VM_FAULT_OOM;
3720			goto out_mutex;
3721		}
3722		/* Just decrements count, does not deallocate */
3723		vma_end_reservation(h, vma, address);
3724
3725		if (!(vma->vm_flags & VM_MAYSHARE))
3726			pagecache_page = hugetlbfs_pagecache_page(h,
3727								vma, address);
3728	}
3729
3730	ptl = huge_pte_lock(h, mm, ptep);
3731
3732	/* Check for a racing update before calling hugetlb_cow */
3733	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
3734		goto out_ptl;
3735
3736	/*
3737	 * hugetlb_cow() requires page locks of pte_page(entry) and
3738	 * pagecache_page, so here we need take the former one
3739	 * when page != pagecache_page or !pagecache_page.
 
 
3740	 */
3741	page = pte_page(entry);
3742	if (page != pagecache_page)
3743		if (!trylock_page(page)) {
3744			need_wait_lock = 1;
3745			goto out_ptl;
3746		}
 
 
3747
3748	get_page(page);
3749
3750	if (flags & FAULT_FLAG_WRITE) {
3751		if (!huge_pte_write(entry)) {
3752			ret = hugetlb_cow(mm, vma, address, ptep, entry,
3753					pagecache_page, ptl);
3754			goto out_put_page;
3755		}
3756		entry = huge_pte_mkdirty(entry);
3757	}
3758	entry = pte_mkyoung(entry);
3759	if (huge_ptep_set_access_flags(vma, address, ptep, entry,
3760						flags & FAULT_FLAG_WRITE))
3761		update_mmu_cache(vma, address, ptep);
3762out_put_page:
3763	if (page != pagecache_page)
3764		unlock_page(page);
3765	put_page(page);
3766out_ptl:
3767	spin_unlock(ptl);
3768
3769	if (pagecache_page) {
3770		unlock_page(pagecache_page);
3771		put_page(pagecache_page);
3772	}
 
 
 
3773out_mutex:
3774	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3775	/*
3776	 * Generally it's safe to hold refcount during waiting page lock. But
3777	 * here we just wait to defer the next page fault to avoid busy loop and
3778	 * the page is not used after unlocked before returning from the current
3779	 * page fault. So we are safe from accessing freed page, even if we wait
3780	 * here without taking refcount.
3781	 */
3782	if (need_wait_lock)
3783		wait_on_page_locked(page);
3784	return ret;
3785}
3786
3787long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
3788			 struct page **pages, struct vm_area_struct **vmas,
3789			 unsigned long *position, unsigned long *nr_pages,
3790			 long i, unsigned int flags)
 
 
 
 
 
 
 
 
 
3791{
3792	unsigned long pfn_offset;
3793	unsigned long vaddr = *position;
3794	unsigned long remainder = *nr_pages;
3795	struct hstate *h = hstate_vma(vma);
3796
 
3797	while (vaddr < vma->vm_end && remainder) {
3798		pte_t *pte;
3799		spinlock_t *ptl = NULL;
3800		int absent;
3801		struct page *page;
3802
3803		/*
3804		 * If we have a pending SIGKILL, don't keep faulting pages and
3805		 * potentially allocating memory.
3806		 */
3807		if (unlikely(fatal_signal_pending(current))) {
3808			remainder = 0;
3809			break;
3810		}
3811
3812		/*
3813		 * Some archs (sparc64, sh*) have multiple pte_ts to
3814		 * each hugepage.  We have to make sure we get the
3815		 * first, for the page indexing below to work.
3816		 *
3817		 * Note that page table lock is not held when pte is null.
3818		 */
3819		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
3820		if (pte)
3821			ptl = huge_pte_lock(h, mm, pte);
3822		absent = !pte || huge_pte_none(huge_ptep_get(pte));
3823
3824		/*
3825		 * When coredumping, it suits get_dump_page if we just return
3826		 * an error where there's an empty slot with no huge pagecache
3827		 * to back it.  This way, we avoid allocating a hugepage, and
3828		 * the sparse dumpfile avoids allocating disk blocks, but its
3829		 * huge holes still show up with zeroes where they need to be.
3830		 */
3831		if (absent && (flags & FOLL_DUMP) &&
3832		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
3833			if (pte)
3834				spin_unlock(ptl);
3835			remainder = 0;
3836			break;
3837		}
3838
3839		/*
3840		 * We need call hugetlb_fault for both hugepages under migration
3841		 * (in which case hugetlb_fault waits for the migration,) and
3842		 * hwpoisoned hugepages (in which case we need to prevent the
3843		 * caller from accessing to them.) In order to do this, we use
3844		 * here is_swap_pte instead of is_hugetlb_entry_migration and
3845		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
3846		 * both cases, and because we can't follow correct pages
3847		 * directly from any kind of swap entries.
3848		 */
3849		if (absent || is_swap_pte(huge_ptep_get(pte)) ||
3850		    ((flags & FOLL_WRITE) &&
3851		      !huge_pte_write(huge_ptep_get(pte)))) {
3852			int ret;
3853
3854			if (pte)
3855				spin_unlock(ptl);
3856			ret = hugetlb_fault(mm, vma, vaddr,
3857				(flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
 
3858			if (!(ret & VM_FAULT_ERROR))
3859				continue;
3860
3861			remainder = 0;
3862			break;
3863		}
3864
3865		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
3866		page = pte_page(huge_ptep_get(pte));
3867same_page:
3868		if (pages) {
3869			pages[i] = mem_map_offset(page, pfn_offset);
3870			get_page(pages[i]);
3871		}
3872
3873		if (vmas)
3874			vmas[i] = vma;
3875
3876		vaddr += PAGE_SIZE;
3877		++pfn_offset;
3878		--remainder;
3879		++i;
3880		if (vaddr < vma->vm_end && remainder &&
3881				pfn_offset < pages_per_huge_page(h)) {
3882			/*
3883			 * We use pfn_offset to avoid touching the pageframes
3884			 * of this compound page.
3885			 */
3886			goto same_page;
3887		}
3888		spin_unlock(ptl);
3889	}
3890	*nr_pages = remainder;
 
3891	*position = vaddr;
3892
3893	return i ? i : -EFAULT;
3894}
3895
3896unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
3897		unsigned long address, unsigned long end, pgprot_t newprot)
3898{
3899	struct mm_struct *mm = vma->vm_mm;
3900	unsigned long start = address;
3901	pte_t *ptep;
3902	pte_t pte;
3903	struct hstate *h = hstate_vma(vma);
3904	unsigned long pages = 0;
3905
3906	BUG_ON(address >= end);
3907	flush_cache_range(vma, address, end);
3908
3909	mmu_notifier_invalidate_range_start(mm, start, end);
3910	i_mmap_lock_write(vma->vm_file->f_mapping);
3911	for (; address < end; address += huge_page_size(h)) {
3912		spinlock_t *ptl;
3913		ptep = huge_pte_offset(mm, address);
3914		if (!ptep)
3915			continue;
3916		ptl = huge_pte_lock(h, mm, ptep);
3917		if (huge_pmd_unshare(mm, &address, ptep)) {
3918			pages++;
3919			spin_unlock(ptl);
3920			continue;
3921		}
3922		pte = huge_ptep_get(ptep);
3923		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
3924			spin_unlock(ptl);
3925			continue;
3926		}
3927		if (unlikely(is_hugetlb_entry_migration(pte))) {
3928			swp_entry_t entry = pte_to_swp_entry(pte);
3929
3930			if (is_write_migration_entry(entry)) {
3931				pte_t newpte;
3932
3933				make_migration_entry_read(&entry);
3934				newpte = swp_entry_to_pte(entry);
3935				set_huge_pte_at(mm, address, ptep, newpte);
3936				pages++;
3937			}
3938			spin_unlock(ptl);
3939			continue;
3940		}
3941		if (!huge_pte_none(pte)) {
3942			pte = huge_ptep_get_and_clear(mm, address, ptep);
3943			pte = pte_mkhuge(huge_pte_modify(pte, newprot));
3944			pte = arch_make_huge_pte(pte, vma, NULL, 0);
3945			set_huge_pte_at(mm, address, ptep, pte);
3946			pages++;
3947		}
3948		spin_unlock(ptl);
3949	}
3950	/*
3951	 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
3952	 * may have cleared our pud entry and done put_page on the page table:
3953	 * once we release i_mmap_rwsem, another task can do the final put_page
3954	 * and that page table be reused and filled with junk.
3955	 */
3956	flush_tlb_range(vma, start, end);
3957	mmu_notifier_invalidate_range(mm, start, end);
3958	i_mmap_unlock_write(vma->vm_file->f_mapping);
3959	mmu_notifier_invalidate_range_end(mm, start, end);
3960
3961	return pages << h->order;
3962}
3963
3964int hugetlb_reserve_pages(struct inode *inode,
3965					long from, long to,
3966					struct vm_area_struct *vma,
3967					vm_flags_t vm_flags)
3968{
3969	long ret, chg;
3970	struct hstate *h = hstate_inode(inode);
3971	struct hugepage_subpool *spool = subpool_inode(inode);
3972	struct resv_map *resv_map;
3973	long gbl_reserve;
3974
3975	/*
3976	 * Only apply hugepage reservation if asked. At fault time, an
3977	 * attempt will be made for VM_NORESERVE to allocate a page
3978	 * without using reserves
3979	 */
3980	if (vm_flags & VM_NORESERVE)
3981		return 0;
3982
3983	/*
3984	 * Shared mappings base their reservation on the number of pages that
3985	 * are already allocated on behalf of the file. Private mappings need
3986	 * to reserve the full area even if read-only as mprotect() may be
3987	 * called to make the mapping read-write. Assume !vma is a shm mapping
3988	 */
3989	if (!vma || vma->vm_flags & VM_MAYSHARE) {
3990		resv_map = inode_resv_map(inode);
3991
3992		chg = region_chg(resv_map, from, to);
3993
3994	} else {
3995		resv_map = resv_map_alloc();
3996		if (!resv_map)
3997			return -ENOMEM;
3998
3999		chg = to - from;
4000
4001		set_vma_resv_map(vma, resv_map);
4002		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
4003	}
4004
4005	if (chg < 0) {
4006		ret = chg;
4007		goto out_err;
4008	}
4009
4010	/*
4011	 * There must be enough pages in the subpool for the mapping. If
4012	 * the subpool has a minimum size, there may be some global
4013	 * reservations already in place (gbl_reserve).
4014	 */
4015	gbl_reserve = hugepage_subpool_get_pages(spool, chg);
4016	if (gbl_reserve < 0) {
4017		ret = -ENOSPC;
4018		goto out_err;
4019	}
4020
4021	/*
4022	 * Check enough hugepages are available for the reservation.
4023	 * Hand the pages back to the subpool if there are not
4024	 */
4025	ret = hugetlb_acct_memory(h, gbl_reserve);
4026	if (ret < 0) {
4027		/* put back original number of pages, chg */
4028		(void)hugepage_subpool_put_pages(spool, chg);
4029		goto out_err;
4030	}
4031
4032	/*
4033	 * Account for the reservations made. Shared mappings record regions
4034	 * that have reservations as they are shared by multiple VMAs.
4035	 * When the last VMA disappears, the region map says how much
4036	 * the reservation was and the page cache tells how much of
4037	 * the reservation was consumed. Private mappings are per-VMA and
4038	 * only the consumed reservations are tracked. When the VMA
4039	 * disappears, the original reservation is the VMA size and the
4040	 * consumed reservations are stored in the map. Hence, nothing
4041	 * else has to be done for private mappings here
4042	 */
4043	if (!vma || vma->vm_flags & VM_MAYSHARE) {
4044		long add = region_add(resv_map, from, to);
4045
4046		if (unlikely(chg > add)) {
4047			/*
4048			 * pages in this range were added to the reserve
4049			 * map between region_chg and region_add.  This
4050			 * indicates a race with alloc_huge_page.  Adjust
4051			 * the subpool and reserve counts modified above
4052			 * based on the difference.
4053			 */
4054			long rsv_adjust;
4055
4056			rsv_adjust = hugepage_subpool_put_pages(spool,
4057								chg - add);
4058			hugetlb_acct_memory(h, -rsv_adjust);
4059		}
4060	}
4061	return 0;
4062out_err:
4063	if (!vma || vma->vm_flags & VM_MAYSHARE)
4064		region_abort(resv_map, from, to);
4065	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4066		kref_put(&resv_map->refs, resv_map_release);
4067	return ret;
4068}
4069
4070long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
4071								long freed)
4072{
4073	struct hstate *h = hstate_inode(inode);
4074	struct resv_map *resv_map = inode_resv_map(inode);
4075	long chg = 0;
4076	struct hugepage_subpool *spool = subpool_inode(inode);
4077	long gbl_reserve;
4078
4079	if (resv_map) {
4080		chg = region_del(resv_map, start, end);
4081		/*
4082		 * region_del() can fail in the rare case where a region
4083		 * must be split and another region descriptor can not be
4084		 * allocated.  If end == LONG_MAX, it will not fail.
4085		 */
4086		if (chg < 0)
4087			return chg;
4088	}
4089
4090	spin_lock(&inode->i_lock);
4091	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
4092	spin_unlock(&inode->i_lock);
4093
4094	/*
4095	 * If the subpool has a minimum size, the number of global
4096	 * reservations to be released may be adjusted.
4097	 */
4098	gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
4099	hugetlb_acct_memory(h, -gbl_reserve);
4100
4101	return 0;
4102}
4103
4104#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4105static unsigned long page_table_shareable(struct vm_area_struct *svma,
4106				struct vm_area_struct *vma,
4107				unsigned long addr, pgoff_t idx)
4108{
4109	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
4110				svma->vm_start;
4111	unsigned long sbase = saddr & PUD_MASK;
4112	unsigned long s_end = sbase + PUD_SIZE;
4113
4114	/* Allow segments to share if only one is marked locked */
4115	unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
4116	unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
4117
4118	/*
4119	 * match the virtual addresses, permission and the alignment of the
4120	 * page table page.
4121	 */
4122	if (pmd_index(addr) != pmd_index(saddr) ||
4123	    vm_flags != svm_flags ||
4124	    sbase < svma->vm_start || svma->vm_end < s_end)
4125		return 0;
4126
4127	return saddr;
4128}
4129
4130static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
4131{
4132	unsigned long base = addr & PUD_MASK;
4133	unsigned long end = base + PUD_SIZE;
4134
4135	/*
4136	 * check on proper vm_flags and page table alignment
4137	 */
4138	if (vma->vm_flags & VM_MAYSHARE &&
4139	    vma->vm_start <= base && end <= vma->vm_end)
4140		return true;
4141	return false;
4142}
4143
4144/*
4145 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4146 * and returns the corresponding pte. While this is not necessary for the
4147 * !shared pmd case because we can allocate the pmd later as well, it makes the
4148 * code much cleaner. pmd allocation is essential for the shared case because
4149 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
4150 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4151 * bad pmd for sharing.
4152 */
4153pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4154{
4155	struct vm_area_struct *vma = find_vma(mm, addr);
4156	struct address_space *mapping = vma->vm_file->f_mapping;
4157	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
4158			vma->vm_pgoff;
4159	struct vm_area_struct *svma;
4160	unsigned long saddr;
4161	pte_t *spte = NULL;
4162	pte_t *pte;
4163	spinlock_t *ptl;
4164
4165	if (!vma_shareable(vma, addr))
4166		return (pte_t *)pmd_alloc(mm, pud, addr);
4167
4168	i_mmap_lock_write(mapping);
4169	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
4170		if (svma == vma)
4171			continue;
4172
4173		saddr = page_table_shareable(svma, vma, addr, idx);
4174		if (saddr) {
4175			spte = huge_pte_offset(svma->vm_mm, saddr);
4176			if (spte) {
4177				mm_inc_nr_pmds(mm);
4178				get_page(virt_to_page(spte));
4179				break;
4180			}
4181		}
4182	}
4183
4184	if (!spte)
4185		goto out;
4186
4187	ptl = huge_pte_lockptr(hstate_vma(vma), mm, spte);
4188	spin_lock(ptl);
4189	if (pud_none(*pud)) {
4190		pud_populate(mm, pud,
4191				(pmd_t *)((unsigned long)spte & PAGE_MASK));
4192	} else {
4193		put_page(virt_to_page(spte));
4194		mm_inc_nr_pmds(mm);
4195	}
4196	spin_unlock(ptl);
4197out:
4198	pte = (pte_t *)pmd_alloc(mm, pud, addr);
4199	i_mmap_unlock_write(mapping);
4200	return pte;
4201}
4202
4203/*
4204 * unmap huge page backed by shared pte.
4205 *
4206 * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
4207 * indicated by page_count > 1, unmap is achieved by clearing pud and
4208 * decrementing the ref count. If count == 1, the pte page is not shared.
4209 *
4210 * called with page table lock held.
4211 *
4212 * returns: 1 successfully unmapped a shared pte page
4213 *	    0 the underlying pte page is not shared, or it is the last user
4214 */
4215int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4216{
4217	pgd_t *pgd = pgd_offset(mm, *addr);
4218	pud_t *pud = pud_offset(pgd, *addr);
4219
4220	BUG_ON(page_count(virt_to_page(ptep)) == 0);
4221	if (page_count(virt_to_page(ptep)) == 1)
4222		return 0;
4223
4224	pud_clear(pud);
4225	put_page(virt_to_page(ptep));
4226	mm_dec_nr_pmds(mm);
4227	*addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
4228	return 1;
4229}
4230#define want_pmd_share()	(1)
4231#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4232pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4233{
4234	return NULL;
4235}
 
 
4236
4237int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4238{
 
4239	return 0;
4240}
4241#define want_pmd_share()	(0)
4242#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4243
4244#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4245pte_t *huge_pte_alloc(struct mm_struct *mm,
4246			unsigned long addr, unsigned long sz)
4247{
4248	pgd_t *pgd;
4249	pud_t *pud;
4250	pte_t *pte = NULL;
4251
4252	pgd = pgd_offset(mm, addr);
4253	pud = pud_alloc(mm, pgd, addr);
4254	if (pud) {
4255		if (sz == PUD_SIZE) {
4256			pte = (pte_t *)pud;
4257		} else {
4258			BUG_ON(sz != PMD_SIZE);
4259			if (want_pmd_share() && pud_none(*pud))
4260				pte = huge_pmd_share(mm, addr, pud);
4261			else
4262				pte = (pte_t *)pmd_alloc(mm, pud, addr);
4263		}
4264	}
4265	BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));
4266
4267	return pte;
4268}
4269
4270pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
4271{
4272	pgd_t *pgd;
4273	pud_t *pud;
4274	pmd_t *pmd = NULL;
4275
4276	pgd = pgd_offset(mm, addr);
4277	if (pgd_present(*pgd)) {
4278		pud = pud_offset(pgd, addr);
4279		if (pud_present(*pud)) {
4280			if (pud_huge(*pud))
4281				return (pte_t *)pud;
4282			pmd = pmd_offset(pud, addr);
4283		}
4284	}
4285	return (pte_t *) pmd;
4286}
4287
4288#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4289
4290/*
4291 * These functions are overwritable if your architecture needs its own
4292 * behavior.
4293 */
4294struct page * __weak
4295follow_huge_addr(struct mm_struct *mm, unsigned long address,
4296			      int write)
4297{
4298	return ERR_PTR(-EINVAL);
4299}
4300
4301struct page * __weak
4302follow_huge_pmd(struct mm_struct *mm, unsigned long address,
4303		pmd_t *pmd, int flags)
4304{
4305	struct page *page = NULL;
4306	spinlock_t *ptl;
4307retry:
4308	ptl = pmd_lockptr(mm, pmd);
4309	spin_lock(ptl);
4310	/*
4311	 * make sure that the address range covered by this pmd is not
4312	 * unmapped from other threads.
4313	 */
4314	if (!pmd_huge(*pmd))
4315		goto out;
4316	if (pmd_present(*pmd)) {
4317		page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
4318		if (flags & FOLL_GET)
4319			get_page(page);
4320	} else {
4321		if (is_hugetlb_entry_migration(huge_ptep_get((pte_t *)pmd))) {
4322			spin_unlock(ptl);
4323			__migration_entry_wait(mm, (pte_t *)pmd, ptl);
4324			goto retry;
4325		}
4326		/*
4327		 * hwpoisoned entry is treated as no_page_table in
4328		 * follow_page_mask().
4329		 */
4330	}
4331out:
4332	spin_unlock(ptl);
4333	return page;
4334}
4335
4336struct page * __weak
4337follow_huge_pud(struct mm_struct *mm, unsigned long address,
4338		pud_t *pud, int flags)
4339{
4340	if (flags & FOLL_GET)
4341		return NULL;
4342
4343	return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
4344}
4345
4346#ifdef CONFIG_MEMORY_FAILURE
4347
4348/*
4349 * This function is called from memory failure code.
4350 * Assume the caller holds page lock of the head page.
4351 */
4352int dequeue_hwpoisoned_huge_page(struct page *hpage)
4353{
4354	struct hstate *h = page_hstate(hpage);
4355	int nid = page_to_nid(hpage);
4356	int ret = -EBUSY;
4357
4358	spin_lock(&hugetlb_lock);
4359	/*
4360	 * Just checking !page_huge_active is not enough, because that could be
4361	 * an isolated/hwpoisoned hugepage (which have >0 refcount).
4362	 */
4363	if (!page_huge_active(hpage) && !page_count(hpage)) {
4364		/*
4365		 * Hwpoisoned hugepage isn't linked to activelist or freelist,
4366		 * but dangling hpage->lru can trigger list-debug warnings
4367		 * (this happens when we call unpoison_memory() on it),
4368		 * so let it point to itself with list_del_init().
4369		 */
4370		list_del_init(&hpage->lru);
4371		set_page_refcounted(hpage);
4372		h->free_huge_pages--;
4373		h->free_huge_pages_node[nid]--;
4374		ret = 0;
4375	}
4376	spin_unlock(&hugetlb_lock);
4377	return ret;
4378}
4379#endif
4380
4381bool isolate_huge_page(struct page *page, struct list_head *list)
4382{
4383	bool ret = true;
4384
4385	VM_BUG_ON_PAGE(!PageHead(page), page);
4386	spin_lock(&hugetlb_lock);
4387	if (!page_huge_active(page) || !get_page_unless_zero(page)) {
4388		ret = false;
4389		goto unlock;
4390	}
4391	clear_page_huge_active(page);
4392	list_move_tail(&page->lru, list);
4393unlock:
4394	spin_unlock(&hugetlb_lock);
4395	return ret;
4396}
4397
4398void putback_active_hugepage(struct page *page)
4399{
4400	VM_BUG_ON_PAGE(!PageHead(page), page);
4401	spin_lock(&hugetlb_lock);
4402	set_page_huge_active(page);
4403	list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
4404	spin_unlock(&hugetlb_lock);
4405	put_page(page);
4406}
v3.1
   1/*
   2 * Generic hugetlb support.
   3 * (C) William Irwin, April 2004
   4 */
   5#include <linux/list.h>
   6#include <linux/init.h>
   7#include <linux/module.h>
   8#include <linux/mm.h>
   9#include <linux/seq_file.h>
  10#include <linux/sysctl.h>
  11#include <linux/highmem.h>
  12#include <linux/mmu_notifier.h>
  13#include <linux/nodemask.h>
  14#include <linux/pagemap.h>
  15#include <linux/mempolicy.h>
 
  16#include <linux/cpuset.h>
  17#include <linux/mutex.h>
  18#include <linux/bootmem.h>
  19#include <linux/sysfs.h>
  20#include <linux/slab.h>
  21#include <linux/rmap.h>
  22#include <linux/swap.h>
  23#include <linux/swapops.h>
 
 
  24
  25#include <asm/page.h>
  26#include <asm/pgtable.h>
 
 
  27#include <linux/io.h>
  28
  29#include <linux/hugetlb.h>
 
  30#include <linux/node.h>
  31#include "internal.h"
  32
  33const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
  34static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
  35unsigned long hugepages_treat_as_movable;
  36
  37static int max_hstate;
  38unsigned int default_hstate_idx;
  39struct hstate hstates[HUGE_MAX_HSTATE];
 
 
 
 
 
  40
  41__initdata LIST_HEAD(huge_boot_pages);
  42
  43/* for command line parsing */
  44static struct hstate * __initdata parsed_hstate;
  45static unsigned long __initdata default_hstate_max_huge_pages;
  46static unsigned long __initdata default_hstate_size;
  47
  48#define for_each_hstate(h) \
  49	for ((h) = hstates; (h) < &hstates[max_hstate]; (h)++)
 
 
 
  50
  51/*
  52 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
 
  53 */
  54static DEFINE_SPINLOCK(hugetlb_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  55
  56/*
  57 * Region tracking -- allows tracking of reservations and instantiated pages
  58 *                    across the pages in a mapping.
  59 *
  60 * The region data structures are protected by a combination of the mmap_sem
  61 * and the hugetlb_instantion_mutex.  To access or modify a region the caller
  62 * must either hold the mmap_sem for write, or the mmap_sem for read and
  63 * the hugetlb_instantiation mutex:
 
 
  64 *
  65 *	down_write(&mm->mmap_sem);
  66 * or
  67 *	down_read(&mm->mmap_sem);
  68 *	mutex_lock(&hugetlb_instantiation_mutex);
 
 
 
  69 */
  70struct file_region {
  71	struct list_head link;
  72	long from;
  73	long to;
  74};
  75
  76static long region_add(struct list_head *head, long f, long t)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  77{
 
  78	struct file_region *rg, *nrg, *trg;
 
  79
 
  80	/* Locate the region we are either in or before. */
  81	list_for_each_entry(rg, head, link)
  82		if (f <= rg->to)
  83			break;
  84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  85	/* Round our left edge to the current segment if it encloses us. */
  86	if (f > rg->from)
  87		f = rg->from;
  88
  89	/* Check for and consume any regions we now overlap with. */
  90	nrg = rg;
  91	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
  92		if (&rg->link == head)
  93			break;
  94		if (rg->from > t)
  95			break;
  96
  97		/* If this area reaches higher then extend our area to
  98		 * include it completely.  If this is not the first area
  99		 * which we intend to reuse, free it. */
 100		if (rg->to > t)
 101			t = rg->to;
 102		if (rg != nrg) {
 
 
 
 
 
 103			list_del(&rg->link);
 104			kfree(rg);
 105		}
 106	}
 
 
 107	nrg->from = f;
 
 108	nrg->to = t;
 109	return 0;
 
 
 
 
 
 110}
 111
 112static long region_chg(struct list_head *head, long f, long t)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 113{
 114	struct file_region *rg, *nrg;
 
 115	long chg = 0;
 116
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 117	/* Locate the region we are before or in. */
 118	list_for_each_entry(rg, head, link)
 119		if (f <= rg->to)
 120			break;
 121
 122	/* If we are below the current region then a new region is required.
 123	 * Subtle, allocate a new region at the position but make it zero
 124	 * size such that we can guarantee to record the reservation. */
 125	if (&rg->link == head || t < rg->from) {
 126		nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
 127		if (!nrg)
 128			return -ENOMEM;
 129		nrg->from = f;
 130		nrg->to   = f;
 131		INIT_LIST_HEAD(&nrg->link);
 
 
 
 
 
 
 
 132		list_add(&nrg->link, rg->link.prev);
 133
 134		return t - f;
 135	}
 136
 137	/* Round our left edge to the current segment if it encloses us. */
 138	if (f > rg->from)
 139		f = rg->from;
 140	chg = t - f;
 141
 142	/* Check for and consume any regions we now overlap with. */
 143	list_for_each_entry(rg, rg->link.prev, link) {
 144		if (&rg->link == head)
 145			break;
 146		if (rg->from > t)
 147			return chg;
 148
 149		/* We overlap with this area, if it extends further than
 150		 * us then we must extend ourselves.  Account for its
 151		 * existing reservation. */
 152		if (rg->to > t) {
 153			chg += rg->to - t;
 154			t = rg->to;
 155		}
 156		chg -= rg->to - rg->from;
 157	}
 
 
 
 
 
 
 
 
 158	return chg;
 159}
 160
 161static long region_truncate(struct list_head *head, long end)
 
 
 
 
 
 
 
 
 
 
 
 162{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 163	struct file_region *rg, *trg;
 164	long chg = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 165
 166	/* Locate the region we are either in or before. */
 167	list_for_each_entry(rg, head, link)
 168		if (end <= rg->to)
 169			break;
 170	if (&rg->link == head)
 171		return 0;
 
 
 
 
 
 
 172
 173	/* If we are in the middle of a region then adjust it. */
 174	if (end > rg->from) {
 175		chg = rg->to - end;
 176		rg->to = end;
 177		rg = list_entry(rg->link.next, typeof(*rg), link);
 
 
 178	}
 179
 180	/* Drop any remaining regions. */
 181	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
 182		if (&rg->link == head)
 183			break;
 184		chg += rg->to - rg->from;
 185		list_del(&rg->link);
 186		kfree(rg);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 187	}
 188	return chg;
 189}
 190
 191static long region_count(struct list_head *head, long f, long t)
 
 
 
 
 192{
 
 193	struct file_region *rg;
 194	long chg = 0;
 195
 
 196	/* Locate each segment we overlap with, and count that overlap. */
 197	list_for_each_entry(rg, head, link) {
 198		int seg_from;
 199		int seg_to;
 200
 201		if (rg->to <= f)
 202			continue;
 203		if (rg->from >= t)
 204			break;
 205
 206		seg_from = max(rg->from, f);
 207		seg_to = min(rg->to, t);
 208
 209		chg += seg_to - seg_from;
 210	}
 
 211
 212	return chg;
 213}
 214
 215/*
 216 * Convert the address within this vma to the page offset within
 217 * the mapping, in pagecache page units; huge pages here.
 218 */
 219static pgoff_t vma_hugecache_offset(struct hstate *h,
 220			struct vm_area_struct *vma, unsigned long address)
 221{
 222	return ((address - vma->vm_start) >> huge_page_shift(h)) +
 223			(vma->vm_pgoff >> huge_page_order(h));
 224}
 225
 226pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
 227				     unsigned long address)
 228{
 229	return vma_hugecache_offset(hstate_vma(vma), vma, address);
 230}
 231
 232/*
 233 * Return the size of the pages allocated when backing a VMA. In the majority
 234 * cases this will be same size as used by the page table entries.
 235 */
 236unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
 237{
 238	struct hstate *hstate;
 239
 240	if (!is_vm_hugetlb_page(vma))
 241		return PAGE_SIZE;
 242
 243	hstate = hstate_vma(vma);
 244
 245	return 1UL << (hstate->order + PAGE_SHIFT);
 246}
 247EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
 248
 249/*
 250 * Return the page size being used by the MMU to back a VMA. In the majority
 251 * of cases, the page size used by the kernel matches the MMU size. On
 252 * architectures where it differs, an architecture-specific version of this
 253 * function is required.
 254 */
 255#ifndef vma_mmu_pagesize
 256unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
 257{
 258	return vma_kernel_pagesize(vma);
 259}
 260#endif
 261
 262/*
 263 * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
 264 * bits of the reservation map pointer, which are always clear due to
 265 * alignment.
 266 */
 267#define HPAGE_RESV_OWNER    (1UL << 0)
 268#define HPAGE_RESV_UNMAPPED (1UL << 1)
 269#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
 270
 271/*
 272 * These helpers are used to track how many pages are reserved for
 273 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
 274 * is guaranteed to have their future faults succeed.
 275 *
 276 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
 277 * the reserve counters are updated with the hugetlb_lock held. It is safe
 278 * to reset the VMA at fork() time as it is not in use yet and there is no
 279 * chance of the global counters getting corrupted as a result of the values.
 280 *
 281 * The private mapping reservation is represented in a subtly different
 282 * manner to a shared mapping.  A shared mapping has a region map associated
 283 * with the underlying file, this region map represents the backing file
 284 * pages which have ever had a reservation assigned which this persists even
 285 * after the page is instantiated.  A private mapping has a region map
 286 * associated with the original mmap which is attached to all VMAs which
 287 * reference it, this region map represents those offsets which have consumed
 288 * reservation ie. where pages have been instantiated.
 289 */
 290static unsigned long get_vma_private_data(struct vm_area_struct *vma)
 291{
 292	return (unsigned long)vma->vm_private_data;
 293}
 294
 295static void set_vma_private_data(struct vm_area_struct *vma,
 296							unsigned long value)
 297{
 298	vma->vm_private_data = (void *)value;
 299}
 300
 301struct resv_map {
 302	struct kref refs;
 303	struct list_head regions;
 304};
 305
 306static struct resv_map *resv_map_alloc(void)
 307{
 308	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
 309	if (!resv_map)
 
 
 
 
 310		return NULL;
 
 311
 312	kref_init(&resv_map->refs);
 
 313	INIT_LIST_HEAD(&resv_map->regions);
 314
 
 
 
 
 
 
 315	return resv_map;
 316}
 317
 318static void resv_map_release(struct kref *ref)
 319{
 320	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
 
 
 321
 322	/* Clear out any active regions before we release the map. */
 323	region_truncate(&resv_map->regions, 0);
 
 
 
 
 
 
 
 
 
 324	kfree(resv_map);
 325}
 326
 
 
 
 
 
 327static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
 328{
 329	VM_BUG_ON(!is_vm_hugetlb_page(vma));
 330	if (!(vma->vm_flags & VM_MAYSHARE))
 
 
 
 
 
 
 331		return (struct resv_map *)(get_vma_private_data(vma) &
 332							~HPAGE_RESV_MASK);
 333	return NULL;
 334}
 335
 336static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
 337{
 338	VM_BUG_ON(!is_vm_hugetlb_page(vma));
 339	VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
 340
 341	set_vma_private_data(vma, (get_vma_private_data(vma) &
 342				HPAGE_RESV_MASK) | (unsigned long)map);
 343}
 344
 345static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
 346{
 347	VM_BUG_ON(!is_vm_hugetlb_page(vma));
 348	VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
 349
 350	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
 351}
 352
 353static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
 354{
 355	VM_BUG_ON(!is_vm_hugetlb_page(vma));
 356
 357	return (get_vma_private_data(vma) & flag) != 0;
 358}
 359
 360/* Decrement the reserved pages in the hugepage pool by one */
 361static void decrement_hugepage_resv_vma(struct hstate *h,
 362			struct vm_area_struct *vma)
 363{
 364	if (vma->vm_flags & VM_NORESERVE)
 365		return;
 366
 367	if (vma->vm_flags & VM_MAYSHARE) {
 368		/* Shared mappings always use reserves */
 369		h->resv_huge_pages--;
 370	} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
 371		/*
 372		 * Only the process that called mmap() has reserves for
 373		 * private mappings.
 374		 */
 375		h->resv_huge_pages--;
 376	}
 377}
 378
 379/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
 380void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
 381{
 382	VM_BUG_ON(!is_vm_hugetlb_page(vma));
 383	if (!(vma->vm_flags & VM_MAYSHARE))
 384		vma->vm_private_data = (void *)0;
 385}
 386
 387/* Returns true if the VMA has associated reserve pages */
 388static int vma_has_reserves(struct vm_area_struct *vma)
 389{
 390	if (vma->vm_flags & VM_MAYSHARE)
 391		return 1;
 392	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
 393		return 1;
 394	return 0;
 395}
 
 
 
 
 
 
 
 
 
 396
 397static void copy_gigantic_page(struct page *dst, struct page *src)
 398{
 399	int i;
 400	struct hstate *h = page_hstate(src);
 401	struct page *dst_base = dst;
 402	struct page *src_base = src;
 403
 404	for (i = 0; i < pages_per_huge_page(h); ) {
 405		cond_resched();
 406		copy_highpage(dst, src);
 407
 408		i++;
 409		dst = mem_map_next(dst, dst_base, i);
 410		src = mem_map_next(src, src_base, i);
 411	}
 412}
 413
 414void copy_huge_page(struct page *dst, struct page *src)
 415{
 416	int i;
 417	struct hstate *h = page_hstate(src);
 
 
 418
 419	if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
 420		copy_gigantic_page(dst, src);
 421		return;
 422	}
 423
 424	might_sleep();
 425	for (i = 0; i < pages_per_huge_page(h); i++) {
 426		cond_resched();
 427		copy_highpage(dst + i, src + i);
 428	}
 429}
 430
 431static void enqueue_huge_page(struct hstate *h, struct page *page)
 432{
 433	int nid = page_to_nid(page);
 434	list_add(&page->lru, &h->hugepage_freelists[nid]);
 435	h->free_huge_pages++;
 436	h->free_huge_pages_node[nid]++;
 437}
 438
 439static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
 440{
 441	struct page *page;
 442
 443	if (list_empty(&h->hugepage_freelists[nid]))
 
 
 
 
 
 
 
 444		return NULL;
 445	page = list_entry(h->hugepage_freelists[nid].next, struct page, lru);
 446	list_del(&page->lru);
 447	set_page_refcounted(page);
 448	h->free_huge_pages--;
 449	h->free_huge_pages_node[nid]--;
 450	return page;
 451}
 452
 
 
 
 
 
 
 
 
 
 453static struct page *dequeue_huge_page_vma(struct hstate *h,
 454				struct vm_area_struct *vma,
 455				unsigned long address, int avoid_reserve)
 
 456{
 457	struct page *page = NULL;
 458	struct mempolicy *mpol;
 459	nodemask_t *nodemask;
 460	struct zonelist *zonelist;
 461	struct zone *zone;
 462	struct zoneref *z;
 
 463
 464	get_mems_allowed();
 465	zonelist = huge_zonelist(vma, address,
 466					htlb_alloc_mask, &mpol, &nodemask);
 467	/*
 468	 * A child process with MAP_PRIVATE mappings created by their parent
 469	 * have no page reserves. This check ensures that reservations are
 470	 * not "stolen". The child may still get SIGKILLed
 471	 */
 472	if (!vma_has_reserves(vma) &&
 473			h->free_huge_pages - h->resv_huge_pages == 0)
 474		goto err;
 475
 476	/* If reserves cannot be used, ensure enough pages are in the pool */
 477	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
 478		goto err;
 479
 
 
 
 
 
 480	for_each_zone_zonelist_nodemask(zone, z, zonelist,
 481						MAX_NR_ZONES - 1, nodemask) {
 482		if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask)) {
 483			page = dequeue_huge_page_node(h, zone_to_nid(zone));
 484			if (page) {
 485				if (!avoid_reserve)
 486					decrement_hugepage_resv_vma(h, vma);
 
 
 
 
 
 487				break;
 488			}
 489		}
 490	}
 
 
 
 
 
 
 491err:
 492	mpol_cond_put(mpol);
 493	put_mems_allowed();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 494	return page;
 495}
 496
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 497static void update_and_free_page(struct hstate *h, struct page *page)
 498{
 499	int i;
 500
 501	VM_BUG_ON(h->order >= MAX_ORDER);
 
 502
 503	h->nr_huge_pages--;
 504	h->nr_huge_pages_node[page_to_nid(page)]--;
 505	for (i = 0; i < pages_per_huge_page(h); i++) {
 506		page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
 507				1 << PG_referenced | 1 << PG_dirty |
 508				1 << PG_active | 1 << PG_reserved |
 509				1 << PG_private | 1 << PG_writeback);
 510	}
 511	set_compound_page_dtor(page, NULL);
 
 512	set_page_refcounted(page);
 513	arch_release_hugepage(page);
 514	__free_pages(page, huge_page_order(h));
 
 
 
 
 515}
 516
 517struct hstate *size_to_hstate(unsigned long size)
 518{
 519	struct hstate *h;
 520
 521	for_each_hstate(h) {
 522		if (huge_page_size(h) == size)
 523			return h;
 524	}
 525	return NULL;
 526}
 527
 528static void free_huge_page(struct page *page)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 529{
 530	/*
 531	 * Can't pass hstate in here because it is called from the
 532	 * compound page destructor.
 533	 */
 534	struct hstate *h = page_hstate(page);
 535	int nid = page_to_nid(page);
 536	struct address_space *mapping;
 
 
 537
 538	mapping = (struct address_space *) page_private(page);
 539	set_page_private(page, 0);
 540	page->mapping = NULL;
 541	BUG_ON(page_count(page));
 542	BUG_ON(page_mapcount(page));
 543	INIT_LIST_HEAD(&page->lru);
 
 
 
 
 
 
 
 
 
 544
 545	spin_lock(&hugetlb_lock);
 546	if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
 
 
 
 
 
 
 
 
 547		update_and_free_page(h, page);
 548		h->surplus_huge_pages--;
 549		h->surplus_huge_pages_node[nid]--;
 550	} else {
 
 551		enqueue_huge_page(h, page);
 552	}
 553	spin_unlock(&hugetlb_lock);
 554	if (mapping)
 555		hugetlb_put_quota(mapping, 1);
 556}
 557
 558static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
 559{
 560	set_compound_page_dtor(page, free_huge_page);
 
 561	spin_lock(&hugetlb_lock);
 
 562	h->nr_huge_pages++;
 563	h->nr_huge_pages_node[nid]++;
 564	spin_unlock(&hugetlb_lock);
 565	put_page(page); /* free it into the hugepage allocator */
 566}
 567
 568static void prep_compound_gigantic_page(struct page *page, unsigned long order)
 569{
 570	int i;
 571	int nr_pages = 1 << order;
 572	struct page *p = page + 1;
 573
 574	/* we rely on prep_new_huge_page to set the destructor */
 575	set_compound_order(page, order);
 
 576	__SetPageHead(page);
 577	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
 578		__SetPageTail(p);
 579		p->first_page = page;
 
 
 
 
 
 
 
 
 
 
 
 
 
 580	}
 
 581}
 582
 
 
 
 
 
 583int PageHuge(struct page *page)
 584{
 585	compound_page_dtor *dtor;
 586
 587	if (!PageCompound(page))
 588		return 0;
 589
 590	page = compound_head(page);
 591	dtor = get_compound_page_dtor(page);
 592
 593	return dtor == free_huge_page;
 594}
 595EXPORT_SYMBOL_GPL(PageHuge);
 596
 597static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
 
 
 
 
 598{
 599	struct page *page;
 
 600
 601	if (h->order >= MAX_ORDER)
 602		return NULL;
 603
 604	page = alloc_pages_exact_node(nid,
 605		htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
 606						__GFP_REPEAT|__GFP_NOWARN,
 607		huge_page_order(h));
 608	if (page) {
 609		if (arch_prepare_hugepage(page)) {
 610			__free_pages(page, huge_page_order(h));
 611			return NULL;
 612		}
 613		prep_new_huge_page(h, page, nid);
 614	}
 615
 616	return page;
 617}
 618
 619/*
 620 * common helper functions for hstate_next_node_to_{alloc|free}.
 621 * We may have allocated or freed a huge page based on a different
 622 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
 623 * be outside of *nodes_allowed.  Ensure that we use an allowed
 624 * node for alloc or free.
 625 */
 626static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
 627{
 628	nid = next_node(nid, *nodes_allowed);
 629	if (nid == MAX_NUMNODES)
 630		nid = first_node(*nodes_allowed);
 631	VM_BUG_ON(nid >= MAX_NUMNODES);
 
 
 632
 633	return nid;
 634}
 
 
 635
 636static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
 637{
 638	if (!node_isset(nid, *nodes_allowed))
 639		nid = next_node_allowed(nid, nodes_allowed);
 640	return nid;
 641}
 642
 643/*
 644 * returns the previously saved node ["this node"] from which to
 645 * allocate a persistent huge page for the pool and advance the
 646 * next node from which to allocate, handling wrap at end of node
 647 * mask.
 648 */
 649static int hstate_next_node_to_alloc(struct hstate *h,
 650					nodemask_t *nodes_allowed)
 651{
 652	int nid;
 653
 654	VM_BUG_ON(!nodes_allowed);
 
 
 
 
 
 
 655
 656	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
 657	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
 658
 659	return nid;
 660}
 661
 662static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
 663{
 664	struct page *page;
 665	int start_nid;
 666	int next_nid;
 667	int ret = 0;
 668
 669	start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
 670	next_nid = start_nid;
 671
 672	do {
 673		page = alloc_fresh_huge_page_node(h, next_nid);
 674		if (page) {
 675			ret = 1;
 676			break;
 677		}
 678		next_nid = hstate_next_node_to_alloc(h, nodes_allowed);
 679	} while (next_nid != start_nid);
 680
 681	if (ret)
 682		count_vm_event(HTLB_BUDDY_PGALLOC);
 683	else
 684		count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
 685
 686	return ret;
 687}
 688
 689/*
 690 * helper for free_pool_huge_page() - return the previously saved
 691 * node ["this node"] from which to free a huge page.  Advance the
 692 * next node id whether or not we find a free huge page to free so
 693 * that the next attempt to free addresses the next node.
 694 */
 695static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
 696{
 697	int nid;
 698
 699	VM_BUG_ON(!nodes_allowed);
 700
 701	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
 702	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
 703
 704	return nid;
 705}
 706
 707/*
 708 * Free huge page from pool from next node to free.
 709 * Attempt to keep persistent huge pages more or less
 710 * balanced over allowed nodes.
 711 * Called with hugetlb_lock locked.
 712 */
 713static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
 714							 bool acct_surplus)
 715{
 716	int start_nid;
 717	int next_nid;
 718	int ret = 0;
 719
 720	start_nid = hstate_next_node_to_free(h, nodes_allowed);
 721	next_nid = start_nid;
 722
 723	do {
 724		/*
 725		 * If we're returning unused surplus pages, only examine
 726		 * nodes with surplus pages.
 727		 */
 728		if ((!acct_surplus || h->surplus_huge_pages_node[next_nid]) &&
 729		    !list_empty(&h->hugepage_freelists[next_nid])) {
 730			struct page *page =
 731				list_entry(h->hugepage_freelists[next_nid].next,
 732					  struct page, lru);
 733			list_del(&page->lru);
 734			h->free_huge_pages--;
 735			h->free_huge_pages_node[next_nid]--;
 736			if (acct_surplus) {
 737				h->surplus_huge_pages--;
 738				h->surplus_huge_pages_node[next_nid]--;
 739			}
 740			update_and_free_page(h, page);
 741			ret = 1;
 742			break;
 743		}
 744		next_nid = hstate_next_node_to_free(h, nodes_allowed);
 745	} while (next_nid != start_nid);
 746
 747	return ret;
 748}
 749
 750static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 751{
 752	struct page *page;
 753	unsigned int r_nid;
 754
 755	if (h->order >= MAX_ORDER)
 756		return NULL;
 757
 758	/*
 
 
 
 
 
 
 
 
 
 759	 * Assume we will successfully allocate the surplus page to
 760	 * prevent racing processes from causing the surplus to exceed
 761	 * overcommit
 762	 *
 763	 * This however introduces a different race, where a process B
 764	 * tries to grow the static hugepage pool while alloc_pages() is
 765	 * called by process A. B will only examine the per-node
 766	 * counters in determining if surplus huge pages can be
 767	 * converted to normal huge pages in adjust_pool_surplus(). A
 768	 * won't be able to increment the per-node counter, until the
 769	 * lock is dropped by B, but B doesn't drop hugetlb_lock until
 770	 * no more huge pages can be converted from surplus to normal
 771	 * state (and doesn't try to convert again). Thus, we have a
 772	 * case where a surplus huge page exists, the pool is grown, and
 773	 * the surplus huge page still exists after, even though it
 774	 * should just have been converted to a normal huge page. This
 775	 * does not leak memory, though, as the hugepage will be freed
 776	 * once it is out of use. It also does not allow the counters to
 777	 * go out of whack in adjust_pool_surplus() as we don't modify
 778	 * the node values until we've gotten the hugepage and only the
 779	 * per-node value is checked there.
 780	 */
 781	spin_lock(&hugetlb_lock);
 782	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
 783		spin_unlock(&hugetlb_lock);
 784		return NULL;
 785	} else {
 786		h->nr_huge_pages++;
 787		h->surplus_huge_pages++;
 788	}
 789	spin_unlock(&hugetlb_lock);
 790
 791	if (nid == NUMA_NO_NODE)
 792		page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
 793				   __GFP_REPEAT|__GFP_NOWARN,
 794				   huge_page_order(h));
 795	else
 796		page = alloc_pages_exact_node(nid,
 797			htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
 798			__GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
 799
 800	if (page && arch_prepare_hugepage(page)) {
 801		__free_pages(page, huge_page_order(h));
 802		return NULL;
 803	}
 804
 805	spin_lock(&hugetlb_lock);
 806	if (page) {
 
 807		r_nid = page_to_nid(page);
 808		set_compound_page_dtor(page, free_huge_page);
 
 809		/*
 810		 * We incremented the global counters already
 811		 */
 812		h->nr_huge_pages_node[r_nid]++;
 813		h->surplus_huge_pages_node[r_nid]++;
 814		__count_vm_event(HTLB_BUDDY_PGALLOC);
 815	} else {
 816		h->nr_huge_pages--;
 817		h->surplus_huge_pages--;
 818		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
 819	}
 820	spin_unlock(&hugetlb_lock);
 821
 822	return page;
 823}
 824
 825/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 826 * This allocation function is useful in the context where vma is irrelevant.
 827 * E.g. soft-offlining uses this function because it only cares physical
 828 * address of error page.
 829 */
 830struct page *alloc_huge_page_node(struct hstate *h, int nid)
 831{
 832	struct page *page;
 833
 834	spin_lock(&hugetlb_lock);
 835	page = dequeue_huge_page_node(h, nid);
 
 836	spin_unlock(&hugetlb_lock);
 837
 838	if (!page)
 839		page = alloc_buddy_huge_page(h, nid);
 840
 841	return page;
 842}
 843
 844/*
 845 * Increase the hugetlb pool such that it can accommodate a reservation
 846 * of size 'delta'.
 847 */
 848static int gather_surplus_pages(struct hstate *h, int delta)
 849{
 850	struct list_head surplus_list;
 851	struct page *page, *tmp;
 852	int ret, i;
 853	int needed, allocated;
 
 854
 855	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
 856	if (needed <= 0) {
 857		h->resv_huge_pages += delta;
 858		return 0;
 859	}
 860
 861	allocated = 0;
 862	INIT_LIST_HEAD(&surplus_list);
 863
 864	ret = -ENOMEM;
 865retry:
 866	spin_unlock(&hugetlb_lock);
 867	for (i = 0; i < needed; i++) {
 868		page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
 869		if (!page)
 870			/*
 871			 * We were not able to allocate enough pages to
 872			 * satisfy the entire reservation so we free what
 873			 * we've allocated so far.
 874			 */
 875			goto free;
 876
 877		list_add(&page->lru, &surplus_list);
 878	}
 879	allocated += needed;
 880
 881	/*
 882	 * After retaking hugetlb_lock, we need to recalculate 'needed'
 883	 * because either resv_huge_pages or free_huge_pages may have changed.
 884	 */
 885	spin_lock(&hugetlb_lock);
 886	needed = (h->resv_huge_pages + delta) -
 887			(h->free_huge_pages + allocated);
 888	if (needed > 0)
 889		goto retry;
 890
 
 
 
 
 
 
 
 891	/*
 892	 * The surplus_list now contains _at_least_ the number of extra pages
 893	 * needed to accommodate the reservation.  Add the appropriate number
 894	 * of pages to the hugetlb pool and free the extras back to the buddy
 895	 * allocator.  Commit the entire reservation here to prevent another
 896	 * process from stealing the pages as they are added to the pool but
 897	 * before they are reserved.
 898	 */
 899	needed += allocated;
 900	h->resv_huge_pages += delta;
 901	ret = 0;
 902
 903	spin_unlock(&hugetlb_lock);
 904	/* Free the needed pages to the hugetlb pool */
 905	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
 906		if ((--needed) < 0)
 907			break;
 908		list_del(&page->lru);
 909		/*
 910		 * This page is now managed by the hugetlb allocator and has
 911		 * no users -- drop the buddy allocator's reference.
 912		 */
 913		put_page_testzero(page);
 914		VM_BUG_ON(page_count(page));
 915		enqueue_huge_page(h, page);
 916	}
 
 
 917
 918	/* Free unnecessary surplus pages to the buddy allocator */
 919free:
 920	if (!list_empty(&surplus_list)) {
 921		list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
 922			list_del(&page->lru);
 923			put_page(page);
 924		}
 925	}
 926	spin_lock(&hugetlb_lock);
 927
 928	return ret;
 929}
 930
 931/*
 932 * When releasing a hugetlb pool reservation, any surplus pages that were
 933 * allocated to satisfy the reservation must be explicitly freed if they were
 934 * never used.
 935 * Called with hugetlb_lock held.
 936 */
 937static void return_unused_surplus_pages(struct hstate *h,
 938					unsigned long unused_resv_pages)
 939{
 940	unsigned long nr_pages;
 941
 942	/* Uncommit the reservation */
 943	h->resv_huge_pages -= unused_resv_pages;
 944
 945	/* Cannot return gigantic pages currently */
 946	if (h->order >= MAX_ORDER)
 947		return;
 948
 949	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
 950
 951	/*
 952	 * We want to release as many surplus pages as possible, spread
 953	 * evenly across all nodes with memory. Iterate across these nodes
 954	 * until we can no longer free unreserved surplus pages. This occurs
 955	 * when the nodes with surplus pages have no free pages.
 956	 * free_pool_huge_page() will balance the the freed pages across the
 957	 * on-line nodes with memory and will handle the hstate accounting.
 958	 */
 959	while (nr_pages--) {
 960		if (!free_pool_huge_page(h, &node_states[N_HIGH_MEMORY], 1))
 961			break;
 
 962	}
 963}
 964
 
 965/*
 966 * Determine if the huge page at addr within the vma has an associated
 967 * reservation.  Where it does not we will need to logically increase
 968 * reservation and actually increase quota before an allocation can occur.
 969 * Where any new reservation would be required the reservation change is
 970 * prepared, but not committed.  Once the page has been quota'd allocated
 971 * an instantiated the change should be committed via vma_commit_reservation.
 972 * No action is required on failure.
 
 
 
 
 
 
 
 
 
 
 973 */
 974static long vma_needs_reservation(struct hstate *h,
 975			struct vm_area_struct *vma, unsigned long addr)
 
 
 
 
 
 
 976{
 977	struct address_space *mapping = vma->vm_file->f_mapping;
 978	struct inode *inode = mapping->host;
 
 979
 980	if (vma->vm_flags & VM_MAYSHARE) {
 981		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
 982		return region_chg(&inode->i_mapping->private_list,
 983							idx, idx + 1);
 984
 985	} else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
 986		return 1;
 987
 988	} else  {
 989		long err;
 990		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
 991		struct resv_map *reservations = vma_resv_map(vma);
 992
 993		err = region_chg(&reservations->regions, idx, idx + 1);
 994		if (err < 0)
 995			return err;
 996		return 0;
 
 
 
 
 
 997	}
 
 
 
 
 
 998}
 999static void vma_commit_reservation(struct hstate *h,
 
1000			struct vm_area_struct *vma, unsigned long addr)
1001{
1002	struct address_space *mapping = vma->vm_file->f_mapping;
1003	struct inode *inode = mapping->host;
1004
1005	if (vma->vm_flags & VM_MAYSHARE) {
1006		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1007		region_add(&inode->i_mapping->private_list, idx, idx + 1);
 
 
1008
1009	} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1010		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1011		struct resv_map *reservations = vma_resv_map(vma);
1012
1013		/* Mark this page used in the map. */
1014		region_add(&reservations->regions, idx, idx + 1);
1015	}
1016}
1017
1018static struct page *alloc_huge_page(struct vm_area_struct *vma,
1019				    unsigned long addr, int avoid_reserve)
1020{
 
1021	struct hstate *h = hstate_vma(vma);
1022	struct page *page;
1023	struct address_space *mapping = vma->vm_file->f_mapping;
1024	struct inode *inode = mapping->host;
1025	long chg;
 
 
 
 
 
 
 
 
 
 
 
1026
1027	/*
1028	 * Processes that did not create the mapping will have no reserves and
1029	 * will not have accounted against quota. Check that the quota can be
1030	 * made before satisfying the allocation
1031	 * MAP_NORESERVE mappings may also need pages and quota allocated
1032	 * if no reserve mapping overlaps.
1033	 */
1034	chg = vma_needs_reservation(h, vma, addr);
1035	if (chg < 0)
1036		return ERR_PTR(-VM_FAULT_OOM);
1037	if (chg)
1038		if (hugetlb_get_quota(inode->i_mapping, chg))
1039			return ERR_PTR(-VM_FAULT_SIGBUS);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1040
1041	spin_lock(&hugetlb_lock);
1042	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
1043	spin_unlock(&hugetlb_lock);
1044
 
 
 
1045	if (!page) {
1046		page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1047		if (!page) {
1048			hugetlb_put_quota(inode->i_mapping, chg);
1049			return ERR_PTR(-VM_FAULT_SIGBUS);
 
 
 
1050		}
 
 
 
1051	}
 
 
 
 
1052
1053	set_page_private(page, (unsigned long) mapping);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1054
1055	vma_commit_reservation(h, vma, addr);
 
 
 
 
 
 
 
1056
 
 
 
 
 
 
 
 
 
 
 
1057	return page;
1058}
1059
1060int __weak alloc_bootmem_huge_page(struct hstate *h)
1061{
1062	struct huge_bootmem_page *m;
1063	int nr_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
1064
1065	while (nr_nodes) {
1066		void *addr;
1067
1068		addr = __alloc_bootmem_node_nopanic(
1069				NODE_DATA(hstate_next_node_to_alloc(h,
1070						&node_states[N_HIGH_MEMORY])),
1071				huge_page_size(h), huge_page_size(h), 0);
1072
1073		if (addr) {
1074			/*
1075			 * Use the beginning of the huge page to store the
1076			 * huge_bootmem_page struct (until gather_bootmem
1077			 * puts them into the mem_map).
1078			 */
1079			m = addr;
1080			goto found;
1081		}
1082		nr_nodes--;
1083	}
1084	return 0;
1085
1086found:
1087	BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1088	/* Put them into a private list first because mem_map is not up yet */
1089	list_add(&m->list, &huge_boot_pages);
1090	m->hstate = h;
1091	return 1;
1092}
1093
1094static void prep_compound_huge_page(struct page *page, int order)
 
1095{
1096	if (unlikely(order > (MAX_ORDER - 1)))
1097		prep_compound_gigantic_page(page, order);
1098	else
1099		prep_compound_page(page, order);
1100}
1101
1102/* Put bootmem huge pages into the standard lists after mem_map is up */
1103static void __init gather_bootmem_prealloc(void)
1104{
1105	struct huge_bootmem_page *m;
1106
1107	list_for_each_entry(m, &huge_boot_pages, list) {
1108		struct hstate *h = m->hstate;
1109		struct page *page;
1110
1111#ifdef CONFIG_HIGHMEM
1112		page = pfn_to_page(m->phys >> PAGE_SHIFT);
1113		free_bootmem_late((unsigned long)m,
1114				  sizeof(struct huge_bootmem_page));
1115#else
1116		page = virt_to_page(m);
1117#endif
1118		__ClearPageReserved(page);
1119		WARN_ON(page_count(page) != 1);
1120		prep_compound_huge_page(page, h->order);
 
1121		prep_new_huge_page(h, page, page_to_nid(page));
1122		/*
1123		 * If we had gigantic hugepages allocated at boot time, we need
1124		 * to restore the 'stolen' pages to totalram_pages in order to
1125		 * fix confusing memory reports from free(1) and another
1126		 * side-effects, like CommitLimit going negative.
1127		 */
1128		if (h->order > (MAX_ORDER - 1))
1129			totalram_pages += 1 << h->order;
1130	}
1131}
1132
1133static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1134{
1135	unsigned long i;
1136
1137	for (i = 0; i < h->max_huge_pages; ++i) {
1138		if (h->order >= MAX_ORDER) {
1139			if (!alloc_bootmem_huge_page(h))
1140				break;
1141		} else if (!alloc_fresh_huge_page(h,
1142					 &node_states[N_HIGH_MEMORY]))
1143			break;
1144	}
1145	h->max_huge_pages = i;
1146}
1147
1148static void __init hugetlb_init_hstates(void)
1149{
1150	struct hstate *h;
1151
1152	for_each_hstate(h) {
 
 
 
1153		/* oversize hugepages were init'ed in early boot */
1154		if (h->order < MAX_ORDER)
1155			hugetlb_hstate_alloc_pages(h);
1156	}
 
1157}
1158
1159static char * __init memfmt(char *buf, unsigned long n)
1160{
1161	if (n >= (1UL << 30))
1162		sprintf(buf, "%lu GB", n >> 30);
1163	else if (n >= (1UL << 20))
1164		sprintf(buf, "%lu MB", n >> 20);
1165	else
1166		sprintf(buf, "%lu KB", n >> 10);
1167	return buf;
1168}
1169
1170static void __init report_hugepages(void)
1171{
1172	struct hstate *h;
1173
1174	for_each_hstate(h) {
1175		char buf[32];
1176		printk(KERN_INFO "HugeTLB registered %s page size, "
1177				 "pre-allocated %ld pages\n",
1178			memfmt(buf, huge_page_size(h)),
1179			h->free_huge_pages);
1180	}
1181}
1182
1183#ifdef CONFIG_HIGHMEM
1184static void try_to_free_low(struct hstate *h, unsigned long count,
1185						nodemask_t *nodes_allowed)
1186{
1187	int i;
1188
1189	if (h->order >= MAX_ORDER)
1190		return;
1191
1192	for_each_node_mask(i, *nodes_allowed) {
1193		struct page *page, *next;
1194		struct list_head *freel = &h->hugepage_freelists[i];
1195		list_for_each_entry_safe(page, next, freel, lru) {
1196			if (count >= h->nr_huge_pages)
1197				return;
1198			if (PageHighMem(page))
1199				continue;
1200			list_del(&page->lru);
1201			update_and_free_page(h, page);
1202			h->free_huge_pages--;
1203			h->free_huge_pages_node[page_to_nid(page)]--;
1204		}
1205	}
1206}
1207#else
1208static inline void try_to_free_low(struct hstate *h, unsigned long count,
1209						nodemask_t *nodes_allowed)
1210{
1211}
1212#endif
1213
1214/*
1215 * Increment or decrement surplus_huge_pages.  Keep node-specific counters
1216 * balanced by operating on them in a round-robin fashion.
1217 * Returns 1 if an adjustment was made.
1218 */
1219static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1220				int delta)
1221{
1222	int start_nid, next_nid;
1223	int ret = 0;
1224
1225	VM_BUG_ON(delta != -1 && delta != 1);
1226
1227	if (delta < 0)
1228		start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
1229	else
1230		start_nid = hstate_next_node_to_free(h, nodes_allowed);
1231	next_nid = start_nid;
1232
1233	do {
1234		int nid = next_nid;
1235		if (delta < 0)  {
1236			/*
1237			 * To shrink on this node, there must be a surplus page
1238			 */
1239			if (!h->surplus_huge_pages_node[nid]) {
1240				next_nid = hstate_next_node_to_alloc(h,
1241								nodes_allowed);
1242				continue;
1243			}
1244		}
1245		if (delta > 0) {
1246			/*
1247			 * Surplus cannot exceed the total number of pages
1248			 */
1249			if (h->surplus_huge_pages_node[nid] >=
1250						h->nr_huge_pages_node[nid]) {
1251				next_nid = hstate_next_node_to_free(h,
1252								nodes_allowed);
1253				continue;
1254			}
1255		}
 
 
1256
1257		h->surplus_huge_pages += delta;
1258		h->surplus_huge_pages_node[nid] += delta;
1259		ret = 1;
1260		break;
1261	} while (next_nid != start_nid);
1262
1263	return ret;
1264}
1265
1266#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1267static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1268						nodemask_t *nodes_allowed)
1269{
1270	unsigned long min_count, ret;
1271
1272	if (h->order >= MAX_ORDER)
1273		return h->max_huge_pages;
1274
1275	/*
1276	 * Increase the pool size
1277	 * First take pages out of surplus state.  Then make up the
1278	 * remaining difference by allocating fresh huge pages.
1279	 *
1280	 * We might race with alloc_buddy_huge_page() here and be unable
1281	 * to convert a surplus huge page to a normal huge page. That is
1282	 * not critical, though, it just means the overall size of the
1283	 * pool might be one hugepage larger than it needs to be, but
1284	 * within all the constraints specified by the sysctls.
1285	 */
1286	spin_lock(&hugetlb_lock);
1287	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1288		if (!adjust_pool_surplus(h, nodes_allowed, -1))
1289			break;
1290	}
1291
1292	while (count > persistent_huge_pages(h)) {
1293		/*
1294		 * If this allocation races such that we no longer need the
1295		 * page, free_huge_page will handle it by freeing the page
1296		 * and reducing the surplus.
1297		 */
1298		spin_unlock(&hugetlb_lock);
1299		ret = alloc_fresh_huge_page(h, nodes_allowed);
 
 
 
1300		spin_lock(&hugetlb_lock);
1301		if (!ret)
1302			goto out;
1303
1304		/* Bail for signals. Probably ctrl-c from user */
1305		if (signal_pending(current))
1306			goto out;
1307	}
1308
1309	/*
1310	 * Decrease the pool size
1311	 * First return free pages to the buddy allocator (being careful
1312	 * to keep enough around to satisfy reservations).  Then place
1313	 * pages into surplus state as needed so the pool will shrink
1314	 * to the desired size as pages become free.
1315	 *
1316	 * By placing pages into the surplus state independent of the
1317	 * overcommit value, we are allowing the surplus pool size to
1318	 * exceed overcommit. There are few sane options here. Since
1319	 * alloc_buddy_huge_page() is checking the global counter,
1320	 * though, we'll note that we're not allowed to exceed surplus
1321	 * and won't grow the pool anywhere else. Not until one of the
1322	 * sysctls are changed, or the surplus pages go out of use.
1323	 */
1324	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1325	min_count = max(count, min_count);
1326	try_to_free_low(h, min_count, nodes_allowed);
1327	while (min_count < persistent_huge_pages(h)) {
1328		if (!free_pool_huge_page(h, nodes_allowed, 0))
1329			break;
 
1330	}
1331	while (count < persistent_huge_pages(h)) {
1332		if (!adjust_pool_surplus(h, nodes_allowed, 1))
1333			break;
1334	}
1335out:
1336	ret = persistent_huge_pages(h);
1337	spin_unlock(&hugetlb_lock);
1338	return ret;
1339}
1340
1341#define HSTATE_ATTR_RO(_name) \
1342	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1343
1344#define HSTATE_ATTR(_name) \
1345	static struct kobj_attribute _name##_attr = \
1346		__ATTR(_name, 0644, _name##_show, _name##_store)
1347
1348static struct kobject *hugepages_kobj;
1349static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1350
1351static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1352
1353static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1354{
1355	int i;
1356
1357	for (i = 0; i < HUGE_MAX_HSTATE; i++)
1358		if (hstate_kobjs[i] == kobj) {
1359			if (nidp)
1360				*nidp = NUMA_NO_NODE;
1361			return &hstates[i];
1362		}
1363
1364	return kobj_to_node_hstate(kobj, nidp);
1365}
1366
1367static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1368					struct kobj_attribute *attr, char *buf)
1369{
1370	struct hstate *h;
1371	unsigned long nr_huge_pages;
1372	int nid;
1373
1374	h = kobj_to_hstate(kobj, &nid);
1375	if (nid == NUMA_NO_NODE)
1376		nr_huge_pages = h->nr_huge_pages;
1377	else
1378		nr_huge_pages = h->nr_huge_pages_node[nid];
1379
1380	return sprintf(buf, "%lu\n", nr_huge_pages);
1381}
1382
1383static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1384			struct kobject *kobj, struct kobj_attribute *attr,
1385			const char *buf, size_t len)
1386{
1387	int err;
1388	int nid;
1389	unsigned long count;
1390	struct hstate *h;
1391	NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1392
1393	err = strict_strtoul(buf, 10, &count);
1394	if (err)
1395		goto out;
1396
1397	h = kobj_to_hstate(kobj, &nid);
1398	if (h->order >= MAX_ORDER) {
1399		err = -EINVAL;
1400		goto out;
1401	}
1402
1403	if (nid == NUMA_NO_NODE) {
1404		/*
1405		 * global hstate attribute
1406		 */
1407		if (!(obey_mempolicy &&
1408				init_nodemask_of_mempolicy(nodes_allowed))) {
1409			NODEMASK_FREE(nodes_allowed);
1410			nodes_allowed = &node_states[N_HIGH_MEMORY];
1411		}
1412	} else if (nodes_allowed) {
1413		/*
1414		 * per node hstate attribute: adjust count to global,
1415		 * but restrict alloc/free to the specified node.
1416		 */
1417		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1418		init_nodemask_of_node(nodes_allowed, nid);
1419	} else
1420		nodes_allowed = &node_states[N_HIGH_MEMORY];
1421
1422	h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1423
1424	if (nodes_allowed != &node_states[N_HIGH_MEMORY])
1425		NODEMASK_FREE(nodes_allowed);
1426
1427	return len;
1428out:
1429	NODEMASK_FREE(nodes_allowed);
1430	return err;
1431}
1432
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1433static ssize_t nr_hugepages_show(struct kobject *kobj,
1434				       struct kobj_attribute *attr, char *buf)
1435{
1436	return nr_hugepages_show_common(kobj, attr, buf);
1437}
1438
1439static ssize_t nr_hugepages_store(struct kobject *kobj,
1440	       struct kobj_attribute *attr, const char *buf, size_t len)
1441{
1442	return nr_hugepages_store_common(false, kobj, attr, buf, len);
1443}
1444HSTATE_ATTR(nr_hugepages);
1445
1446#ifdef CONFIG_NUMA
1447
1448/*
1449 * hstate attribute for optionally mempolicy-based constraint on persistent
1450 * huge page alloc/free.
1451 */
1452static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1453				       struct kobj_attribute *attr, char *buf)
1454{
1455	return nr_hugepages_show_common(kobj, attr, buf);
1456}
1457
1458static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1459	       struct kobj_attribute *attr, const char *buf, size_t len)
1460{
1461	return nr_hugepages_store_common(true, kobj, attr, buf, len);
1462}
1463HSTATE_ATTR(nr_hugepages_mempolicy);
1464#endif
1465
1466
1467static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1468					struct kobj_attribute *attr, char *buf)
1469{
1470	struct hstate *h = kobj_to_hstate(kobj, NULL);
1471	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1472}
1473
1474static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1475		struct kobj_attribute *attr, const char *buf, size_t count)
1476{
1477	int err;
1478	unsigned long input;
1479	struct hstate *h = kobj_to_hstate(kobj, NULL);
1480
1481	if (h->order >= MAX_ORDER)
1482		return -EINVAL;
1483
1484	err = strict_strtoul(buf, 10, &input);
1485	if (err)
1486		return err;
1487
1488	spin_lock(&hugetlb_lock);
1489	h->nr_overcommit_huge_pages = input;
1490	spin_unlock(&hugetlb_lock);
1491
1492	return count;
1493}
1494HSTATE_ATTR(nr_overcommit_hugepages);
1495
1496static ssize_t free_hugepages_show(struct kobject *kobj,
1497					struct kobj_attribute *attr, char *buf)
1498{
1499	struct hstate *h;
1500	unsigned long free_huge_pages;
1501	int nid;
1502
1503	h = kobj_to_hstate(kobj, &nid);
1504	if (nid == NUMA_NO_NODE)
1505		free_huge_pages = h->free_huge_pages;
1506	else
1507		free_huge_pages = h->free_huge_pages_node[nid];
1508
1509	return sprintf(buf, "%lu\n", free_huge_pages);
1510}
1511HSTATE_ATTR_RO(free_hugepages);
1512
1513static ssize_t resv_hugepages_show(struct kobject *kobj,
1514					struct kobj_attribute *attr, char *buf)
1515{
1516	struct hstate *h = kobj_to_hstate(kobj, NULL);
1517	return sprintf(buf, "%lu\n", h->resv_huge_pages);
1518}
1519HSTATE_ATTR_RO(resv_hugepages);
1520
1521static ssize_t surplus_hugepages_show(struct kobject *kobj,
1522					struct kobj_attribute *attr, char *buf)
1523{
1524	struct hstate *h;
1525	unsigned long surplus_huge_pages;
1526	int nid;
1527
1528	h = kobj_to_hstate(kobj, &nid);
1529	if (nid == NUMA_NO_NODE)
1530		surplus_huge_pages = h->surplus_huge_pages;
1531	else
1532		surplus_huge_pages = h->surplus_huge_pages_node[nid];
1533
1534	return sprintf(buf, "%lu\n", surplus_huge_pages);
1535}
1536HSTATE_ATTR_RO(surplus_hugepages);
1537
1538static struct attribute *hstate_attrs[] = {
1539	&nr_hugepages_attr.attr,
1540	&nr_overcommit_hugepages_attr.attr,
1541	&free_hugepages_attr.attr,
1542	&resv_hugepages_attr.attr,
1543	&surplus_hugepages_attr.attr,
1544#ifdef CONFIG_NUMA
1545	&nr_hugepages_mempolicy_attr.attr,
1546#endif
1547	NULL,
1548};
1549
1550static struct attribute_group hstate_attr_group = {
1551	.attrs = hstate_attrs,
1552};
1553
1554static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
1555				    struct kobject **hstate_kobjs,
1556				    struct attribute_group *hstate_attr_group)
1557{
1558	int retval;
1559	int hi = h - hstates;
1560
1561	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1562	if (!hstate_kobjs[hi])
1563		return -ENOMEM;
1564
1565	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
1566	if (retval)
1567		kobject_put(hstate_kobjs[hi]);
1568
1569	return retval;
1570}
1571
1572static void __init hugetlb_sysfs_init(void)
1573{
1574	struct hstate *h;
1575	int err;
1576
1577	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1578	if (!hugepages_kobj)
1579		return;
1580
1581	for_each_hstate(h) {
1582		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
1583					 hstate_kobjs, &hstate_attr_group);
1584		if (err)
1585			printk(KERN_ERR "Hugetlb: Unable to add hstate %s",
1586								h->name);
1587	}
1588}
1589
1590#ifdef CONFIG_NUMA
1591
1592/*
1593 * node_hstate/s - associate per node hstate attributes, via their kobjects,
1594 * with node sysdevs in node_devices[] using a parallel array.  The array
1595 * index of a node sysdev or _hstate == node id.
1596 * This is here to avoid any static dependency of the node sysdev driver, in
1597 * the base kernel, on the hugetlb module.
1598 */
1599struct node_hstate {
1600	struct kobject		*hugepages_kobj;
1601	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
1602};
1603struct node_hstate node_hstates[MAX_NUMNODES];
1604
1605/*
1606 * A subset of global hstate attributes for node sysdevs
1607 */
1608static struct attribute *per_node_hstate_attrs[] = {
1609	&nr_hugepages_attr.attr,
1610	&free_hugepages_attr.attr,
1611	&surplus_hugepages_attr.attr,
1612	NULL,
1613};
1614
1615static struct attribute_group per_node_hstate_attr_group = {
1616	.attrs = per_node_hstate_attrs,
1617};
1618
1619/*
1620 * kobj_to_node_hstate - lookup global hstate for node sysdev hstate attr kobj.
1621 * Returns node id via non-NULL nidp.
1622 */
1623static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1624{
1625	int nid;
1626
1627	for (nid = 0; nid < nr_node_ids; nid++) {
1628		struct node_hstate *nhs = &node_hstates[nid];
1629		int i;
1630		for (i = 0; i < HUGE_MAX_HSTATE; i++)
1631			if (nhs->hstate_kobjs[i] == kobj) {
1632				if (nidp)
1633					*nidp = nid;
1634				return &hstates[i];
1635			}
1636	}
1637
1638	BUG();
1639	return NULL;
1640}
1641
1642/*
1643 * Unregister hstate attributes from a single node sysdev.
1644 * No-op if no hstate attributes attached.
1645 */
1646void hugetlb_unregister_node(struct node *node)
1647{
1648	struct hstate *h;
1649	struct node_hstate *nhs = &node_hstates[node->sysdev.id];
1650
1651	if (!nhs->hugepages_kobj)
1652		return;		/* no hstate attributes */
1653
1654	for_each_hstate(h)
1655		if (nhs->hstate_kobjs[h - hstates]) {
1656			kobject_put(nhs->hstate_kobjs[h - hstates]);
1657			nhs->hstate_kobjs[h - hstates] = NULL;
 
1658		}
 
1659
1660	kobject_put(nhs->hugepages_kobj);
1661	nhs->hugepages_kobj = NULL;
1662}
1663
1664/*
1665 * hugetlb module exit:  unregister hstate attributes from node sysdevs
1666 * that have them.
1667 */
1668static void hugetlb_unregister_all_nodes(void)
1669{
1670	int nid;
1671
1672	/*
1673	 * disable node sysdev registrations.
1674	 */
1675	register_hugetlbfs_with_node(NULL, NULL);
1676
1677	/*
1678	 * remove hstate attributes from any nodes that have them.
1679	 */
1680	for (nid = 0; nid < nr_node_ids; nid++)
1681		hugetlb_unregister_node(&node_devices[nid]);
1682}
1683
1684/*
1685 * Register hstate attributes for a single node sysdev.
1686 * No-op if attributes already registered.
1687 */
1688void hugetlb_register_node(struct node *node)
1689{
1690	struct hstate *h;
1691	struct node_hstate *nhs = &node_hstates[node->sysdev.id];
1692	int err;
1693
1694	if (nhs->hugepages_kobj)
1695		return;		/* already allocated */
1696
1697	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
1698							&node->sysdev.kobj);
1699	if (!nhs->hugepages_kobj)
1700		return;
1701
1702	for_each_hstate(h) {
1703		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
1704						nhs->hstate_kobjs,
1705						&per_node_hstate_attr_group);
1706		if (err) {
1707			printk(KERN_ERR "Hugetlb: Unable to add hstate %s"
1708					" for node %d\n",
1709						h->name, node->sysdev.id);
1710			hugetlb_unregister_node(node);
1711			break;
1712		}
1713	}
1714}
1715
1716/*
1717 * hugetlb init time:  register hstate attributes for all registered node
1718 * sysdevs of nodes that have memory.  All on-line nodes should have
1719 * registered their associated sysdev by this time.
1720 */
1721static void hugetlb_register_all_nodes(void)
1722{
1723	int nid;
1724
1725	for_each_node_state(nid, N_HIGH_MEMORY) {
1726		struct node *node = &node_devices[nid];
1727		if (node->sysdev.id == nid)
1728			hugetlb_register_node(node);
1729	}
1730
1731	/*
1732	 * Let the node sysdev driver know we're here so it can
1733	 * [un]register hstate attributes on node hotplug.
1734	 */
1735	register_hugetlbfs_with_node(hugetlb_register_node,
1736				     hugetlb_unregister_node);
1737}
1738#else	/* !CONFIG_NUMA */
1739
1740static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1741{
1742	BUG();
1743	if (nidp)
1744		*nidp = -1;
1745	return NULL;
1746}
1747
1748static void hugetlb_unregister_all_nodes(void) { }
1749
1750static void hugetlb_register_all_nodes(void) { }
1751
1752#endif
1753
1754static void __exit hugetlb_exit(void)
1755{
1756	struct hstate *h;
1757
1758	hugetlb_unregister_all_nodes();
1759
1760	for_each_hstate(h) {
1761		kobject_put(hstate_kobjs[h - hstates]);
1762	}
1763
1764	kobject_put(hugepages_kobj);
1765}
1766module_exit(hugetlb_exit);
1767
1768static int __init hugetlb_init(void)
1769{
1770	/* Some platform decide whether they support huge pages at boot
1771	 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1772	 * there is no such support
1773	 */
1774	if (HPAGE_SHIFT == 0)
1775		return 0;
1776
1777	if (!size_to_hstate(default_hstate_size)) {
1778		default_hstate_size = HPAGE_SIZE;
1779		if (!size_to_hstate(default_hstate_size))
1780			hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1781	}
1782	default_hstate_idx = size_to_hstate(default_hstate_size) - hstates;
1783	if (default_hstate_max_huge_pages)
1784		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
 
 
1785
1786	hugetlb_init_hstates();
1787
1788	gather_bootmem_prealloc();
1789
1790	report_hugepages();
1791
1792	hugetlb_sysfs_init();
 
 
1793
1794	hugetlb_register_all_nodes();
 
 
 
 
 
 
 
1795
 
 
1796	return 0;
1797}
1798module_init(hugetlb_init);
1799
1800/* Should be called on processing a hugepagesz=... option */
1801void __init hugetlb_add_hstate(unsigned order)
1802{
1803	struct hstate *h;
1804	unsigned long i;
1805
1806	if (size_to_hstate(PAGE_SIZE << order)) {
1807		printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n");
1808		return;
1809	}
1810	BUG_ON(max_hstate >= HUGE_MAX_HSTATE);
1811	BUG_ON(order == 0);
1812	h = &hstates[max_hstate++];
1813	h->order = order;
1814	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1815	h->nr_huge_pages = 0;
1816	h->free_huge_pages = 0;
1817	for (i = 0; i < MAX_NUMNODES; ++i)
1818		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
1819	h->next_nid_to_alloc = first_node(node_states[N_HIGH_MEMORY]);
1820	h->next_nid_to_free = first_node(node_states[N_HIGH_MEMORY]);
 
1821	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
1822					huge_page_size(h)/1024);
1823
1824	parsed_hstate = h;
1825}
1826
1827static int __init hugetlb_nrpages_setup(char *s)
1828{
1829	unsigned long *mhp;
1830	static unsigned long *last_mhp;
1831
1832	/*
1833	 * !max_hstate means we haven't parsed a hugepagesz= parameter yet,
1834	 * so this hugepages= parameter goes to the "default hstate".
1835	 */
1836	if (!max_hstate)
1837		mhp = &default_hstate_max_huge_pages;
1838	else
1839		mhp = &parsed_hstate->max_huge_pages;
1840
1841	if (mhp == last_mhp) {
1842		printk(KERN_WARNING "hugepages= specified twice without "
1843			"interleaving hugepagesz=, ignoring\n");
1844		return 1;
1845	}
1846
1847	if (sscanf(s, "%lu", mhp) <= 0)
1848		*mhp = 0;
1849
1850	/*
1851	 * Global state is always initialized later in hugetlb_init.
1852	 * But we need to allocate >= MAX_ORDER hstates here early to still
1853	 * use the bootmem allocator.
1854	 */
1855	if (max_hstate && parsed_hstate->order >= MAX_ORDER)
1856		hugetlb_hstate_alloc_pages(parsed_hstate);
1857
1858	last_mhp = mhp;
1859
1860	return 1;
1861}
1862__setup("hugepages=", hugetlb_nrpages_setup);
1863
1864static int __init hugetlb_default_setup(char *s)
1865{
1866	default_hstate_size = memparse(s, &s);
1867	return 1;
1868}
1869__setup("default_hugepagesz=", hugetlb_default_setup);
1870
1871static unsigned int cpuset_mems_nr(unsigned int *array)
1872{
1873	int node;
1874	unsigned int nr = 0;
1875
1876	for_each_node_mask(node, cpuset_current_mems_allowed)
1877		nr += array[node];
1878
1879	return nr;
1880}
1881
1882#ifdef CONFIG_SYSCTL
1883static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
1884			 struct ctl_table *table, int write,
1885			 void __user *buffer, size_t *length, loff_t *ppos)
1886{
1887	struct hstate *h = &default_hstate;
1888	unsigned long tmp;
1889	int ret;
1890
1891	tmp = h->max_huge_pages;
1892
1893	if (write && h->order >= MAX_ORDER)
1894		return -EINVAL;
1895
1896	table->data = &tmp;
1897	table->maxlen = sizeof(unsigned long);
1898	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
1899	if (ret)
1900		goto out;
1901
1902	if (write) {
1903		NODEMASK_ALLOC(nodemask_t, nodes_allowed,
1904						GFP_KERNEL | __GFP_NORETRY);
1905		if (!(obey_mempolicy &&
1906			       init_nodemask_of_mempolicy(nodes_allowed))) {
1907			NODEMASK_FREE(nodes_allowed);
1908			nodes_allowed = &node_states[N_HIGH_MEMORY];
1909		}
1910		h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);
1911
1912		if (nodes_allowed != &node_states[N_HIGH_MEMORY])
1913			NODEMASK_FREE(nodes_allowed);
1914	}
1915out:
1916	return ret;
1917}
1918
1919int hugetlb_sysctl_handler(struct ctl_table *table, int write,
1920			  void __user *buffer, size_t *length, loff_t *ppos)
1921{
1922
1923	return hugetlb_sysctl_handler_common(false, table, write,
1924							buffer, length, ppos);
1925}
1926
1927#ifdef CONFIG_NUMA
1928int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
1929			  void __user *buffer, size_t *length, loff_t *ppos)
1930{
1931	return hugetlb_sysctl_handler_common(true, table, write,
1932							buffer, length, ppos);
1933}
1934#endif /* CONFIG_NUMA */
1935
1936int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
1937			void __user *buffer,
1938			size_t *length, loff_t *ppos)
1939{
1940	proc_dointvec(table, write, buffer, length, ppos);
1941	if (hugepages_treat_as_movable)
1942		htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
1943	else
1944		htlb_alloc_mask = GFP_HIGHUSER;
1945	return 0;
1946}
1947
1948int hugetlb_overcommit_handler(struct ctl_table *table, int write,
1949			void __user *buffer,
1950			size_t *length, loff_t *ppos)
1951{
1952	struct hstate *h = &default_hstate;
1953	unsigned long tmp;
1954	int ret;
1955
 
 
 
1956	tmp = h->nr_overcommit_huge_pages;
1957
1958	if (write && h->order >= MAX_ORDER)
1959		return -EINVAL;
1960
1961	table->data = &tmp;
1962	table->maxlen = sizeof(unsigned long);
1963	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
1964	if (ret)
1965		goto out;
1966
1967	if (write) {
1968		spin_lock(&hugetlb_lock);
1969		h->nr_overcommit_huge_pages = tmp;
1970		spin_unlock(&hugetlb_lock);
1971	}
1972out:
1973	return ret;
1974}
1975
1976#endif /* CONFIG_SYSCTL */
1977
1978void hugetlb_report_meminfo(struct seq_file *m)
1979{
1980	struct hstate *h = &default_hstate;
 
 
1981	seq_printf(m,
1982			"HugePages_Total:   %5lu\n"
1983			"HugePages_Free:    %5lu\n"
1984			"HugePages_Rsvd:    %5lu\n"
1985			"HugePages_Surp:    %5lu\n"
1986			"Hugepagesize:   %8lu kB\n",
1987			h->nr_huge_pages,
1988			h->free_huge_pages,
1989			h->resv_huge_pages,
1990			h->surplus_huge_pages,
1991			1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
1992}
1993
1994int hugetlb_report_node_meminfo(int nid, char *buf)
1995{
1996	struct hstate *h = &default_hstate;
 
 
1997	return sprintf(buf,
1998		"Node %d HugePages_Total: %5u\n"
1999		"Node %d HugePages_Free:  %5u\n"
2000		"Node %d HugePages_Surp:  %5u\n",
2001		nid, h->nr_huge_pages_node[nid],
2002		nid, h->free_huge_pages_node[nid],
2003		nid, h->surplus_huge_pages_node[nid]);
2004}
2005
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2006/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2007unsigned long hugetlb_total_pages(void)
2008{
2009	struct hstate *h = &default_hstate;
2010	return h->nr_huge_pages * pages_per_huge_page(h);
 
 
 
 
2011}
2012
2013static int hugetlb_acct_memory(struct hstate *h, long delta)
2014{
2015	int ret = -ENOMEM;
2016
2017	spin_lock(&hugetlb_lock);
2018	/*
2019	 * When cpuset is configured, it breaks the strict hugetlb page
2020	 * reservation as the accounting is done on a global variable. Such
2021	 * reservation is completely rubbish in the presence of cpuset because
2022	 * the reservation is not checked against page availability for the
2023	 * current cpuset. Application can still potentially OOM'ed by kernel
2024	 * with lack of free htlb page in cpuset that the task is in.
2025	 * Attempt to enforce strict accounting with cpuset is almost
2026	 * impossible (or too ugly) because cpuset is too fluid that
2027	 * task or memory node can be dynamically moved between cpusets.
2028	 *
2029	 * The change of semantics for shared hugetlb mapping with cpuset is
2030	 * undesirable. However, in order to preserve some of the semantics,
2031	 * we fall back to check against current free page availability as
2032	 * a best attempt and hopefully to minimize the impact of changing
2033	 * semantics that cpuset has.
2034	 */
2035	if (delta > 0) {
2036		if (gather_surplus_pages(h, delta) < 0)
2037			goto out;
2038
2039		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2040			return_unused_surplus_pages(h, delta);
2041			goto out;
2042		}
2043	}
2044
2045	ret = 0;
2046	if (delta < 0)
2047		return_unused_surplus_pages(h, (unsigned long) -delta);
2048
2049out:
2050	spin_unlock(&hugetlb_lock);
2051	return ret;
2052}
2053
2054static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2055{
2056	struct resv_map *reservations = vma_resv_map(vma);
2057
2058	/*
2059	 * This new VMA should share its siblings reservation map if present.
2060	 * The VMA will only ever have a valid reservation map pointer where
2061	 * it is being copied for another still existing VMA.  As that VMA
2062	 * has a reference to the reservation map it cannot disappear until
2063	 * after this open call completes.  It is therefore safe to take a
2064	 * new reference here without additional locking.
2065	 */
2066	if (reservations)
2067		kref_get(&reservations->refs);
2068}
2069
2070static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2071{
2072	struct hstate *h = hstate_vma(vma);
2073	struct resv_map *reservations = vma_resv_map(vma);
2074	unsigned long reserve;
2075	unsigned long start;
2076	unsigned long end;
2077
2078	if (reservations) {
2079		start = vma_hugecache_offset(h, vma, vma->vm_start);
2080		end = vma_hugecache_offset(h, vma, vma->vm_end);
2081
2082		reserve = (end - start) -
2083			region_count(&reservations->regions, start, end);
2084
2085		kref_put(&reservations->refs, resv_map_release);
2086
2087		if (reserve) {
2088			hugetlb_acct_memory(h, -reserve);
2089			hugetlb_put_quota(vma->vm_file->f_mapping, reserve);
2090		}
 
 
 
 
2091	}
2092}
2093
2094/*
2095 * We cannot handle pagefaults against hugetlb pages at all.  They cause
2096 * handle_mm_fault() to try to instantiate regular-sized pages in the
2097 * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
2098 * this far.
2099 */
2100static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2101{
2102	BUG();
2103	return 0;
2104}
2105
2106const struct vm_operations_struct hugetlb_vm_ops = {
2107	.fault = hugetlb_vm_op_fault,
2108	.open = hugetlb_vm_op_open,
2109	.close = hugetlb_vm_op_close,
2110};
2111
2112static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2113				int writable)
2114{
2115	pte_t entry;
2116
2117	if (writable) {
2118		entry =
2119		    pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
2120	} else {
2121		entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
 
2122	}
2123	entry = pte_mkyoung(entry);
2124	entry = pte_mkhuge(entry);
 
2125
2126	return entry;
2127}
2128
2129static void set_huge_ptep_writable(struct vm_area_struct *vma,
2130				   unsigned long address, pte_t *ptep)
2131{
2132	pte_t entry;
2133
2134	entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
2135	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
2136		update_mmu_cache(vma, address, ptep);
2137}
2138
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2139
2140int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2141			    struct vm_area_struct *vma)
2142{
2143	pte_t *src_pte, *dst_pte, entry;
2144	struct page *ptepage;
2145	unsigned long addr;
2146	int cow;
2147	struct hstate *h = hstate_vma(vma);
2148	unsigned long sz = huge_page_size(h);
 
 
 
2149
2150	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
2151
 
 
 
 
 
2152	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
 
2153		src_pte = huge_pte_offset(src, addr);
2154		if (!src_pte)
2155			continue;
2156		dst_pte = huge_pte_alloc(dst, addr, sz);
2157		if (!dst_pte)
2158			goto nomem;
 
 
2159
2160		/* If the pagetables are shared don't copy or take references */
2161		if (dst_pte == src_pte)
2162			continue;
2163
2164		spin_lock(&dst->page_table_lock);
2165		spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
2166		if (!huge_pte_none(huge_ptep_get(src_pte))) {
2167			if (cow)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2168				huge_ptep_set_wrprotect(src, addr, src_pte);
 
 
 
2169			entry = huge_ptep_get(src_pte);
2170			ptepage = pte_page(entry);
2171			get_page(ptepage);
2172			page_dup_rmap(ptepage);
2173			set_huge_pte_at(dst, addr, dst_pte, entry);
 
2174		}
2175		spin_unlock(&src->page_table_lock);
2176		spin_unlock(&dst->page_table_lock);
2177	}
2178	return 0;
2179
2180nomem:
2181	return -ENOMEM;
2182}
2183
2184static int is_hugetlb_entry_migration(pte_t pte)
2185{
2186	swp_entry_t swp;
2187
2188	if (huge_pte_none(pte) || pte_present(pte))
2189		return 0;
2190	swp = pte_to_swp_entry(pte);
2191	if (non_swap_entry(swp) && is_migration_entry(swp))
2192		return 1;
2193	else
2194		return 0;
2195}
2196
2197static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2198{
2199	swp_entry_t swp;
2200
2201	if (huge_pte_none(pte) || pte_present(pte))
2202		return 0;
2203	swp = pte_to_swp_entry(pte);
2204	if (non_swap_entry(swp) && is_hwpoison_entry(swp))
2205		return 1;
2206	else
2207		return 0;
2208}
2209
2210void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2211			    unsigned long end, struct page *ref_page)
2212{
 
2213	struct mm_struct *mm = vma->vm_mm;
2214	unsigned long address;
2215	pte_t *ptep;
2216	pte_t pte;
 
2217	struct page *page;
2218	struct page *tmp;
2219	struct hstate *h = hstate_vma(vma);
2220	unsigned long sz = huge_page_size(h);
2221
2222	/*
2223	 * A page gathering list, protected by per file i_mmap_mutex. The
2224	 * lock is used to avoid list corruption from multiple unmapping
2225	 * of the same page since we are using page->lru.
2226	 */
2227	LIST_HEAD(page_list);
2228
2229	WARN_ON(!is_vm_hugetlb_page(vma));
2230	BUG_ON(start & ~huge_page_mask(h));
2231	BUG_ON(end & ~huge_page_mask(h));
2232
2233	mmu_notifier_invalidate_range_start(mm, start, end);
2234	spin_lock(&mm->page_table_lock);
2235	for (address = start; address < end; address += sz) {
 
 
2236		ptep = huge_pte_offset(mm, address);
2237		if (!ptep)
2238			continue;
2239
 
2240		if (huge_pmd_unshare(mm, &address, ptep))
2241			continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
2242
 
2243		/*
2244		 * If a reference page is supplied, it is because a specific
2245		 * page is being unmapped, not a range. Ensure the page we
2246		 * are about to unmap is the actual page of interest.
2247		 */
2248		if (ref_page) {
2249			pte = huge_ptep_get(ptep);
2250			if (huge_pte_none(pte))
2251				continue;
2252			page = pte_page(pte);
2253			if (page != ref_page)
2254				continue;
2255
2256			/*
2257			 * Mark the VMA as having unmapped its page so that
2258			 * future faults in this VMA will fail rather than
2259			 * looking like data was lost
2260			 */
2261			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2262		}
2263
2264		pte = huge_ptep_get_and_clear(mm, address, ptep);
2265		if (huge_pte_none(pte))
2266			continue;
 
2267
2268		/*
2269		 * HWPoisoned hugepage is already unmapped and dropped reference
2270		 */
2271		if (unlikely(is_hugetlb_entry_hwpoisoned(pte)))
2272			continue;
2273
2274		page = pte_page(pte);
2275		if (pte_dirty(pte))
2276			set_page_dirty(page);
2277		list_add(&page->lru, &page_list);
 
 
 
 
 
2278	}
2279	spin_unlock(&mm->page_table_lock);
2280	flush_tlb_range(vma, start, end);
2281	mmu_notifier_invalidate_range_end(mm, start, end);
2282	list_for_each_entry_safe(page, tmp, &page_list, lru) {
2283		page_remove_rmap(page);
2284		list_del(&page->lru);
2285		put_page(page);
 
 
 
2286	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2287}
2288
2289void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2290			  unsigned long end, struct page *ref_page)
2291{
2292	mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
2293	__unmap_hugepage_range(vma, start, end, ref_page);
2294	mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
 
 
 
 
 
2295}
2296
2297/*
2298 * This is called when the original mapper is failing to COW a MAP_PRIVATE
2299 * mappping it owns the reserve page for. The intention is to unmap the page
2300 * from other VMAs and let the children be SIGKILLed if they are faulting the
2301 * same region.
2302 */
2303static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2304				struct page *page, unsigned long address)
2305{
2306	struct hstate *h = hstate_vma(vma);
2307	struct vm_area_struct *iter_vma;
2308	struct address_space *mapping;
2309	struct prio_tree_iter iter;
2310	pgoff_t pgoff;
2311
2312	/*
2313	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2314	 * from page cache lookup which is in HPAGE_SIZE units.
2315	 */
2316	address = address & huge_page_mask(h);
2317	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT)
2318		+ (vma->vm_pgoff >> PAGE_SHIFT);
2319	mapping = (struct address_space *)page_private(page);
2320
2321	/*
2322	 * Take the mapping lock for the duration of the table walk. As
2323	 * this mapping should be shared between all the VMAs,
2324	 * __unmap_hugepage_range() is called as the lock is already held
2325	 */
2326	mutex_lock(&mapping->i_mmap_mutex);
2327	vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
2328		/* Do not unmap the current VMA */
2329		if (iter_vma == vma)
2330			continue;
2331
2332		/*
 
 
 
 
 
 
 
 
2333		 * Unmap the page from other VMAs without their own reserves.
2334		 * They get marked to be SIGKILLed if they fault in these
2335		 * areas. This is because a future no-page fault on this VMA
2336		 * could insert a zeroed page instead of the data existing
2337		 * from the time of fork. This would look like data corruption
2338		 */
2339		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2340			__unmap_hugepage_range(iter_vma,
2341				address, address + huge_page_size(h),
2342				page);
2343	}
2344	mutex_unlock(&mapping->i_mmap_mutex);
2345
2346	return 1;
2347}
2348
2349/*
2350 * Hugetlb_cow() should be called with page lock of the original hugepage held.
 
 
 
2351 */
2352static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2353			unsigned long address, pte_t *ptep, pte_t pte,
2354			struct page *pagecache_page)
2355{
2356	struct hstate *h = hstate_vma(vma);
2357	struct page *old_page, *new_page;
2358	int avoidcopy;
2359	int outside_reserve = 0;
 
2360
2361	old_page = pte_page(pte);
2362
2363retry_avoidcopy:
2364	/* If no-one else is actually using this page, avoid the copy
2365	 * and just make the page writable */
2366	avoidcopy = (page_mapcount(old_page) == 1);
2367	if (avoidcopy) {
2368		if (PageAnon(old_page))
2369			page_move_anon_rmap(old_page, vma, address);
2370		set_huge_ptep_writable(vma, address, ptep);
2371		return 0;
2372	}
2373
2374	/*
2375	 * If the process that created a MAP_PRIVATE mapping is about to
2376	 * perform a COW due to a shared page count, attempt to satisfy
2377	 * the allocation without using the existing reserves. The pagecache
2378	 * page is used to determine if the reserve at this address was
2379	 * consumed or not. If reserves were used, a partial faulted mapping
2380	 * at the time of fork() could consume its reserves on COW instead
2381	 * of the full address range.
2382	 */
2383	if (!(vma->vm_flags & VM_MAYSHARE) &&
2384			is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2385			old_page != pagecache_page)
2386		outside_reserve = 1;
2387
2388	page_cache_get(old_page);
2389
2390	/* Drop page_table_lock as buddy allocator may be called */
2391	spin_unlock(&mm->page_table_lock);
 
 
 
2392	new_page = alloc_huge_page(vma, address, outside_reserve);
2393
2394	if (IS_ERR(new_page)) {
2395		page_cache_release(old_page);
2396
2397		/*
2398		 * If a process owning a MAP_PRIVATE mapping fails to COW,
2399		 * it is due to references held by a child and an insufficient
2400		 * huge page pool. To guarantee the original mappers
2401		 * reliability, unmap the page from child processes. The child
2402		 * may get SIGKILLed if it later faults.
2403		 */
2404		if (outside_reserve) {
 
 
 
2405			BUG_ON(huge_pte_none(pte));
2406			if (unmap_ref_private(mm, vma, old_page, address)) {
2407				BUG_ON(page_count(old_page) != 1);
2408				BUG_ON(huge_pte_none(pte));
2409				spin_lock(&mm->page_table_lock);
2410				goto retry_avoidcopy;
2411			}
2412			WARN_ON_ONCE(1);
 
 
 
2413		}
2414
2415		/* Caller expects lock to be held */
2416		spin_lock(&mm->page_table_lock);
2417		return -PTR_ERR(new_page);
2418	}
2419
2420	/*
2421	 * When the original hugepage is shared one, it does not have
2422	 * anon_vma prepared.
2423	 */
2424	if (unlikely(anon_vma_prepare(vma))) {
2425		/* Caller expects lock to be held */
2426		spin_lock(&mm->page_table_lock);
2427		return VM_FAULT_OOM;
2428	}
2429
2430	copy_user_huge_page(new_page, old_page, address, vma,
2431			    pages_per_huge_page(h));
2432	__SetPageUptodate(new_page);
 
 
 
 
 
2433
2434	/*
2435	 * Retake the page_table_lock to check for racing updates
2436	 * before the page tables are altered
2437	 */
2438	spin_lock(&mm->page_table_lock);
2439	ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2440	if (likely(pte_same(huge_ptep_get(ptep), pte))) {
 
 
2441		/* Break COW */
2442		mmu_notifier_invalidate_range_start(mm,
2443			address & huge_page_mask(h),
2444			(address & huge_page_mask(h)) + huge_page_size(h));
2445		huge_ptep_clear_flush(vma, address, ptep);
 
2446		set_huge_pte_at(mm, address, ptep,
2447				make_huge_pte(vma, new_page, 1));
2448		page_remove_rmap(old_page);
2449		hugepage_add_new_anon_rmap(new_page, vma, address);
2450		/* Make the old page be freed below */
2451		new_page = old_page;
2452		mmu_notifier_invalidate_range_end(mm,
2453			address & huge_page_mask(h),
2454			(address & huge_page_mask(h)) + huge_page_size(h));
2455	}
2456	page_cache_release(new_page);
2457	page_cache_release(old_page);
2458	return 0;
 
 
 
 
 
 
2459}
2460
2461/* Return the pagecache page at a given address within a VMA */
2462static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2463			struct vm_area_struct *vma, unsigned long address)
2464{
2465	struct address_space *mapping;
2466	pgoff_t idx;
2467
2468	mapping = vma->vm_file->f_mapping;
2469	idx = vma_hugecache_offset(h, vma, address);
2470
2471	return find_lock_page(mapping, idx);
2472}
2473
2474/*
2475 * Return whether there is a pagecache page to back given address within VMA.
2476 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2477 */
2478static bool hugetlbfs_pagecache_present(struct hstate *h,
2479			struct vm_area_struct *vma, unsigned long address)
2480{
2481	struct address_space *mapping;
2482	pgoff_t idx;
2483	struct page *page;
2484
2485	mapping = vma->vm_file->f_mapping;
2486	idx = vma_hugecache_offset(h, vma, address);
2487
2488	page = find_get_page(mapping, idx);
2489	if (page)
2490		put_page(page);
2491	return page != NULL;
2492}
2493
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2494static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2495			unsigned long address, pte_t *ptep, unsigned int flags)
 
2496{
2497	struct hstate *h = hstate_vma(vma);
2498	int ret = VM_FAULT_SIGBUS;
2499	pgoff_t idx;
2500	unsigned long size;
2501	struct page *page;
2502	struct address_space *mapping;
2503	pte_t new_pte;
 
2504
2505	/*
2506	 * Currently, we are forced to kill the process in the event the
2507	 * original mapper has unmapped pages from the child due to a failed
2508	 * COW. Warn that such a situation has occurred as it may not be obvious
2509	 */
2510	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2511		printk(KERN_WARNING
2512			"PID %d killed due to inadequate hugepage pool\n",
2513			current->pid);
2514		return ret;
2515	}
2516
2517	mapping = vma->vm_file->f_mapping;
2518	idx = vma_hugecache_offset(h, vma, address);
2519
2520	/*
2521	 * Use page lock to guard against racing truncation
2522	 * before we get page_table_lock.
2523	 */
2524retry:
2525	page = find_lock_page(mapping, idx);
2526	if (!page) {
2527		size = i_size_read(mapping->host) >> huge_page_shift(h);
2528		if (idx >= size)
2529			goto out;
2530		page = alloc_huge_page(vma, address, 0);
2531		if (IS_ERR(page)) {
2532			ret = -PTR_ERR(page);
 
 
 
 
2533			goto out;
2534		}
2535		clear_huge_page(page, address, pages_per_huge_page(h));
2536		__SetPageUptodate(page);
 
2537
2538		if (vma->vm_flags & VM_MAYSHARE) {
2539			int err;
2540			struct inode *inode = mapping->host;
2541
2542			err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2543			if (err) {
2544				put_page(page);
2545				if (err == -EEXIST)
2546					goto retry;
2547				goto out;
2548			}
2549
2550			spin_lock(&inode->i_lock);
2551			inode->i_blocks += blocks_per_huge_page(h);
2552			spin_unlock(&inode->i_lock);
2553			page_dup_rmap(page);
2554		} else {
2555			lock_page(page);
2556			if (unlikely(anon_vma_prepare(vma))) {
2557				ret = VM_FAULT_OOM;
2558				goto backout_unlocked;
2559			}
2560			hugepage_add_new_anon_rmap(page, vma, address);
2561		}
2562	} else {
2563		/*
2564		 * If memory error occurs between mmap() and fault, some process
2565		 * don't have hwpoisoned swap entry for errored virtual address.
2566		 * So we need to block hugepage fault by PG_hwpoison bit check.
2567		 */
2568		if (unlikely(PageHWPoison(page))) {
2569			ret = VM_FAULT_HWPOISON |
2570			      VM_FAULT_SET_HINDEX(h - hstates);
2571			goto backout_unlocked;
2572		}
2573		page_dup_rmap(page);
2574	}
2575
2576	/*
2577	 * If we are going to COW a private mapping later, we examine the
2578	 * pending reservations for this page now. This will ensure that
2579	 * any allocations necessary to record that reservation occur outside
2580	 * the spinlock.
2581	 */
2582	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2583		if (vma_needs_reservation(h, vma, address) < 0) {
2584			ret = VM_FAULT_OOM;
2585			goto backout_unlocked;
2586		}
 
 
 
2587
2588	spin_lock(&mm->page_table_lock);
 
2589	size = i_size_read(mapping->host) >> huge_page_shift(h);
2590	if (idx >= size)
2591		goto backout;
2592
2593	ret = 0;
2594	if (!huge_pte_none(huge_ptep_get(ptep)))
2595		goto backout;
2596
 
 
 
 
 
2597	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2598				&& (vma->vm_flags & VM_SHARED)));
2599	set_huge_pte_at(mm, address, ptep, new_pte);
2600
 
2601	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2602		/* Optimization, do the COW without a second fault */
2603		ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
2604	}
2605
2606	spin_unlock(&mm->page_table_lock);
2607	unlock_page(page);
2608out:
2609	return ret;
2610
2611backout:
2612	spin_unlock(&mm->page_table_lock);
2613backout_unlocked:
2614	unlock_page(page);
2615	put_page(page);
2616	goto out;
2617}
2618
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2619int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2620			unsigned long address, unsigned int flags)
2621{
2622	pte_t *ptep;
2623	pte_t entry;
2624	int ret;
 
 
2625	struct page *page = NULL;
2626	struct page *pagecache_page = NULL;
2627	static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2628	struct hstate *h = hstate_vma(vma);
 
 
 
 
2629
2630	ptep = huge_pte_offset(mm, address);
2631	if (ptep) {
2632		entry = huge_ptep_get(ptep);
2633		if (unlikely(is_hugetlb_entry_migration(entry))) {
2634			migration_entry_wait(mm, (pmd_t *)ptep, address);
2635			return 0;
2636		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
2637			return VM_FAULT_HWPOISON_LARGE |
2638			       VM_FAULT_SET_HINDEX(h - hstates);
 
 
 
 
2639	}
2640
2641	ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2642	if (!ptep)
2643		return VM_FAULT_OOM;
2644
2645	/*
2646	 * Serialize hugepage allocation and instantiation, so that we don't
2647	 * get spurious allocation failures if two CPUs race to instantiate
2648	 * the same page in the page cache.
2649	 */
2650	mutex_lock(&hugetlb_instantiation_mutex);
 
 
2651	entry = huge_ptep_get(ptep);
2652	if (huge_pte_none(entry)) {
2653		ret = hugetlb_no_page(mm, vma, address, ptep, flags);
2654		goto out_mutex;
2655	}
2656
2657	ret = 0;
2658
2659	/*
 
 
 
 
 
 
 
 
 
 
2660	 * If we are going to COW the mapping later, we examine the pending
2661	 * reservations for this page now. This will ensure that any
2662	 * allocations necessary to record that reservation occur outside the
2663	 * spinlock. For private mappings, we also lookup the pagecache
2664	 * page now as it is used to determine if a reservation has been
2665	 * consumed.
2666	 */
2667	if ((flags & FAULT_FLAG_WRITE) && !pte_write(entry)) {
2668		if (vma_needs_reservation(h, vma, address) < 0) {
2669			ret = VM_FAULT_OOM;
2670			goto out_mutex;
2671		}
 
 
2672
2673		if (!(vma->vm_flags & VM_MAYSHARE))
2674			pagecache_page = hugetlbfs_pagecache_page(h,
2675								vma, address);
2676	}
2677
 
 
 
 
 
 
2678	/*
2679	 * hugetlb_cow() requires page locks of pte_page(entry) and
2680	 * pagecache_page, so here we need take the former one
2681	 * when page != pagecache_page or !pagecache_page.
2682	 * Note that locking order is always pagecache_page -> page,
2683	 * so no worry about deadlock.
2684	 */
2685	page = pte_page(entry);
2686	if (page != pagecache_page)
2687		lock_page(page);
2688
2689	spin_lock(&mm->page_table_lock);
2690	/* Check for a racing update before calling hugetlb_cow */
2691	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
2692		goto out_page_table_lock;
2693
 
2694
2695	if (flags & FAULT_FLAG_WRITE) {
2696		if (!pte_write(entry)) {
2697			ret = hugetlb_cow(mm, vma, address, ptep, entry,
2698							pagecache_page);
2699			goto out_page_table_lock;
2700		}
2701		entry = pte_mkdirty(entry);
2702	}
2703	entry = pte_mkyoung(entry);
2704	if (huge_ptep_set_access_flags(vma, address, ptep, entry,
2705						flags & FAULT_FLAG_WRITE))
2706		update_mmu_cache(vma, address, ptep);
2707
2708out_page_table_lock:
2709	spin_unlock(&mm->page_table_lock);
 
 
 
2710
2711	if (pagecache_page) {
2712		unlock_page(pagecache_page);
2713		put_page(pagecache_page);
2714	}
2715	if (page != pagecache_page)
2716		unlock_page(page);
2717
2718out_mutex:
2719	mutex_unlock(&hugetlb_instantiation_mutex);
2720
 
 
 
 
 
 
 
 
2721	return ret;
2722}
2723
2724/* Can be overriden by architectures */
2725__attribute__((weak)) struct page *
2726follow_huge_pud(struct mm_struct *mm, unsigned long address,
2727	       pud_t *pud, int write)
2728{
2729	BUG();
2730	return NULL;
2731}
2732
2733int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
2734			struct page **pages, struct vm_area_struct **vmas,
2735			unsigned long *position, int *length, int i,
2736			unsigned int flags)
2737{
2738	unsigned long pfn_offset;
2739	unsigned long vaddr = *position;
2740	int remainder = *length;
2741	struct hstate *h = hstate_vma(vma);
2742
2743	spin_lock(&mm->page_table_lock);
2744	while (vaddr < vma->vm_end && remainder) {
2745		pte_t *pte;
 
2746		int absent;
2747		struct page *page;
2748
2749		/*
 
 
 
 
 
 
 
 
 
2750		 * Some archs (sparc64, sh*) have multiple pte_ts to
2751		 * each hugepage.  We have to make sure we get the
2752		 * first, for the page indexing below to work.
 
 
2753		 */
2754		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
 
 
2755		absent = !pte || huge_pte_none(huge_ptep_get(pte));
2756
2757		/*
2758		 * When coredumping, it suits get_dump_page if we just return
2759		 * an error where there's an empty slot with no huge pagecache
2760		 * to back it.  This way, we avoid allocating a hugepage, and
2761		 * the sparse dumpfile avoids allocating disk blocks, but its
2762		 * huge holes still show up with zeroes where they need to be.
2763		 */
2764		if (absent && (flags & FOLL_DUMP) &&
2765		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
 
 
2766			remainder = 0;
2767			break;
2768		}
2769
2770		if (absent ||
2771		    ((flags & FOLL_WRITE) && !pte_write(huge_ptep_get(pte)))) {
 
 
 
 
 
 
 
 
 
 
 
2772			int ret;
2773
2774			spin_unlock(&mm->page_table_lock);
 
2775			ret = hugetlb_fault(mm, vma, vaddr,
2776				(flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
2777			spin_lock(&mm->page_table_lock);
2778			if (!(ret & VM_FAULT_ERROR))
2779				continue;
2780
2781			remainder = 0;
2782			break;
2783		}
2784
2785		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
2786		page = pte_page(huge_ptep_get(pte));
2787same_page:
2788		if (pages) {
2789			pages[i] = mem_map_offset(page, pfn_offset);
2790			get_page(pages[i]);
2791		}
2792
2793		if (vmas)
2794			vmas[i] = vma;
2795
2796		vaddr += PAGE_SIZE;
2797		++pfn_offset;
2798		--remainder;
2799		++i;
2800		if (vaddr < vma->vm_end && remainder &&
2801				pfn_offset < pages_per_huge_page(h)) {
2802			/*
2803			 * We use pfn_offset to avoid touching the pageframes
2804			 * of this compound page.
2805			 */
2806			goto same_page;
2807		}
 
2808	}
2809	spin_unlock(&mm->page_table_lock);
2810	*length = remainder;
2811	*position = vaddr;
2812
2813	return i ? i : -EFAULT;
2814}
2815
2816void hugetlb_change_protection(struct vm_area_struct *vma,
2817		unsigned long address, unsigned long end, pgprot_t newprot)
2818{
2819	struct mm_struct *mm = vma->vm_mm;
2820	unsigned long start = address;
2821	pte_t *ptep;
2822	pte_t pte;
2823	struct hstate *h = hstate_vma(vma);
 
2824
2825	BUG_ON(address >= end);
2826	flush_cache_range(vma, address, end);
2827
2828	mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
2829	spin_lock(&mm->page_table_lock);
2830	for (; address < end; address += huge_page_size(h)) {
 
2831		ptep = huge_pte_offset(mm, address);
2832		if (!ptep)
2833			continue;
2834		if (huge_pmd_unshare(mm, &address, ptep))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2835			continue;
2836		if (!huge_pte_none(huge_ptep_get(ptep))) {
 
2837			pte = huge_ptep_get_and_clear(mm, address, ptep);
2838			pte = pte_mkhuge(pte_modify(pte, newprot));
 
2839			set_huge_pte_at(mm, address, ptep, pte);
 
2840		}
 
2841	}
2842	spin_unlock(&mm->page_table_lock);
2843	mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
 
 
 
 
 
 
 
 
2844
2845	flush_tlb_range(vma, start, end);
2846}
2847
2848int hugetlb_reserve_pages(struct inode *inode,
2849					long from, long to,
2850					struct vm_area_struct *vma,
2851					vm_flags_t vm_flags)
2852{
2853	long ret, chg;
2854	struct hstate *h = hstate_inode(inode);
 
 
 
2855
2856	/*
2857	 * Only apply hugepage reservation if asked. At fault time, an
2858	 * attempt will be made for VM_NORESERVE to allocate a page
2859	 * and filesystem quota without using reserves
2860	 */
2861	if (vm_flags & VM_NORESERVE)
2862		return 0;
2863
2864	/*
2865	 * Shared mappings base their reservation on the number of pages that
2866	 * are already allocated on behalf of the file. Private mappings need
2867	 * to reserve the full area even if read-only as mprotect() may be
2868	 * called to make the mapping read-write. Assume !vma is a shm mapping
2869	 */
2870	if (!vma || vma->vm_flags & VM_MAYSHARE)
2871		chg = region_chg(&inode->i_mapping->private_list, from, to);
2872	else {
2873		struct resv_map *resv_map = resv_map_alloc();
 
 
 
2874		if (!resv_map)
2875			return -ENOMEM;
2876
2877		chg = to - from;
2878
2879		set_vma_resv_map(vma, resv_map);
2880		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
2881	}
2882
2883	if (chg < 0)
2884		return chg;
 
 
2885
2886	/* There must be enough filesystem quota for the mapping */
2887	if (hugetlb_get_quota(inode->i_mapping, chg))
2888		return -ENOSPC;
 
 
 
 
 
 
 
2889
2890	/*
2891	 * Check enough hugepages are available for the reservation.
2892	 * Hand back the quota if there are not
2893	 */
2894	ret = hugetlb_acct_memory(h, chg);
2895	if (ret < 0) {
2896		hugetlb_put_quota(inode->i_mapping, chg);
2897		return ret;
 
2898	}
2899
2900	/*
2901	 * Account for the reservations made. Shared mappings record regions
2902	 * that have reservations as they are shared by multiple VMAs.
2903	 * When the last VMA disappears, the region map says how much
2904	 * the reservation was and the page cache tells how much of
2905	 * the reservation was consumed. Private mappings are per-VMA and
2906	 * only the consumed reservations are tracked. When the VMA
2907	 * disappears, the original reservation is the VMA size and the
2908	 * consumed reservations are stored in the map. Hence, nothing
2909	 * else has to be done for private mappings here
2910	 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2911	if (!vma || vma->vm_flags & VM_MAYSHARE)
2912		region_add(&inode->i_mapping->private_list, from, to);
2913	return 0;
 
 
2914}
2915
2916void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
 
2917{
2918	struct hstate *h = hstate_inode(inode);
2919	long chg = region_truncate(&inode->i_mapping->private_list, offset);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2920
2921	spin_lock(&inode->i_lock);
2922	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
2923	spin_unlock(&inode->i_lock);
2924
2925	hugetlb_put_quota(inode->i_mapping, (chg - freed));
2926	hugetlb_acct_memory(h, -(chg - freed));
 
 
 
 
 
 
2927}
2928
2929#ifdef CONFIG_MEMORY_FAILURE
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2930
2931/* Should be called in hugetlb_lock */
2932static int is_hugepage_on_freelist(struct page *hpage)
 
 
 
 
 
 
 
2933{
2934	struct page *page;
2935	struct page *tmp;
2936	struct hstate *h = page_hstate(hpage);
2937	int nid = page_to_nid(hpage);
2938
2939	list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
2940		if (page == hpage)
2941			return 1;
2942	return 0;
2943}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2944
2945/*
2946 * This function is called from memory failure code.
2947 * Assume the caller holds page lock of the head page.
2948 */
2949int dequeue_hwpoisoned_huge_page(struct page *hpage)
2950{
2951	struct hstate *h = page_hstate(hpage);
2952	int nid = page_to_nid(hpage);
2953	int ret = -EBUSY;
2954
2955	spin_lock(&hugetlb_lock);
2956	if (is_hugepage_on_freelist(hpage)) {
2957		list_del(&hpage->lru);
 
 
 
 
 
 
 
 
 
 
2958		set_page_refcounted(hpage);
2959		h->free_huge_pages--;
2960		h->free_huge_pages_node[nid]--;
2961		ret = 0;
2962	}
2963	spin_unlock(&hugetlb_lock);
2964	return ret;
2965}
2966#endif