Linux Audio

Check our new training course

Loading...
v4.6
   1/*
   2 * 2002-10-18  written by Jim Houston jim.houston@ccur.com
   3 *	Copyright (C) 2002 by Concurrent Computer Corporation
   4 *	Distributed under the GNU GPL license version 2.
   5 *
   6 * Modified by George Anzinger to reuse immediately and to use
   7 * find bit instructions.  Also removed _irq on spinlocks.
   8 *
   9 * Modified by Nadia Derbey to make it RCU safe.
  10 *
  11 * Small id to pointer translation service.
  12 *
  13 * It uses a radix tree like structure as a sparse array indexed
  14 * by the id to obtain the pointer.  The bitmap makes allocating
  15 * a new id quick.
  16 *
  17 * You call it to allocate an id (an int) an associate with that id a
  18 * pointer or what ever, we treat it as a (void *).  You can pass this
  19 * id to a user for him to pass back at a later time.  You then pass
  20 * that id to this code and it returns your pointer.
 
 
 
 
 
 
  21 */
  22
  23#ifndef TEST                        // to test in user space...
  24#include <linux/slab.h>
  25#include <linux/init.h>
  26#include <linux/export.h>
  27#endif
  28#include <linux/err.h>
  29#include <linux/string.h>
  30#include <linux/idr.h>
  31#include <linux/spinlock.h>
  32#include <linux/percpu.h>
  33
  34#define MAX_IDR_SHIFT		(sizeof(int) * 8 - 1)
  35#define MAX_IDR_BIT		(1U << MAX_IDR_SHIFT)
  36
  37/* Leave the possibility of an incomplete final layer */
  38#define MAX_IDR_LEVEL ((MAX_IDR_SHIFT + IDR_BITS - 1) / IDR_BITS)
  39
  40/* Number of id_layer structs to leave in free list */
  41#define MAX_IDR_FREE (MAX_IDR_LEVEL * 2)
  42
  43static struct kmem_cache *idr_layer_cache;
  44static DEFINE_PER_CPU(struct idr_layer *, idr_preload_head);
  45static DEFINE_PER_CPU(int, idr_preload_cnt);
  46static DEFINE_SPINLOCK(simple_ida_lock);
  47
  48/* the maximum ID which can be allocated given idr->layers */
  49static int idr_max(int layers)
  50{
  51	int bits = min_t(int, layers * IDR_BITS, MAX_IDR_SHIFT);
  52
  53	return (1 << bits) - 1;
  54}
  55
  56/*
  57 * Prefix mask for an idr_layer at @layer.  For layer 0, the prefix mask is
  58 * all bits except for the lower IDR_BITS.  For layer 1, 2 * IDR_BITS, and
  59 * so on.
  60 */
  61static int idr_layer_prefix_mask(int layer)
  62{
  63	return ~idr_max(layer + 1);
  64}
  65
  66static struct idr_layer *get_from_free_list(struct idr *idp)
  67{
  68	struct idr_layer *p;
  69	unsigned long flags;
  70
  71	spin_lock_irqsave(&idp->lock, flags);
  72	if ((p = idp->id_free)) {
  73		idp->id_free = p->ary[0];
  74		idp->id_free_cnt--;
  75		p->ary[0] = NULL;
  76	}
  77	spin_unlock_irqrestore(&idp->lock, flags);
  78	return(p);
  79}
  80
  81/**
  82 * idr_layer_alloc - allocate a new idr_layer
  83 * @gfp_mask: allocation mask
  84 * @layer_idr: optional idr to allocate from
  85 *
  86 * If @layer_idr is %NULL, directly allocate one using @gfp_mask or fetch
  87 * one from the per-cpu preload buffer.  If @layer_idr is not %NULL, fetch
  88 * an idr_layer from @idr->id_free.
  89 *
  90 * @layer_idr is to maintain backward compatibility with the old alloc
  91 * interface - idr_pre_get() and idr_get_new*() - and will be removed
  92 * together with per-pool preload buffer.
  93 */
  94static struct idr_layer *idr_layer_alloc(gfp_t gfp_mask, struct idr *layer_idr)
  95{
  96	struct idr_layer *new;
  97
  98	/* this is the old path, bypass to get_from_free_list() */
  99	if (layer_idr)
 100		return get_from_free_list(layer_idr);
 101
 102	/*
 103	 * Try to allocate directly from kmem_cache.  We want to try this
 104	 * before preload buffer; otherwise, non-preloading idr_alloc()
 105	 * users will end up taking advantage of preloading ones.  As the
 106	 * following is allowed to fail for preloaded cases, suppress
 107	 * warning this time.
 108	 */
 109	new = kmem_cache_zalloc(idr_layer_cache, gfp_mask | __GFP_NOWARN);
 110	if (new)
 111		return new;
 112
 113	/*
 114	 * Try to fetch one from the per-cpu preload buffer if in process
 115	 * context.  See idr_preload() for details.
 116	 */
 117	if (!in_interrupt()) {
 118		preempt_disable();
 119		new = __this_cpu_read(idr_preload_head);
 120		if (new) {
 121			__this_cpu_write(idr_preload_head, new->ary[0]);
 122			__this_cpu_dec(idr_preload_cnt);
 123			new->ary[0] = NULL;
 124		}
 125		preempt_enable();
 126		if (new)
 127			return new;
 128	}
 129
 130	/*
 131	 * Both failed.  Try kmem_cache again w/o adding __GFP_NOWARN so
 132	 * that memory allocation failure warning is printed as intended.
 133	 */
 134	return kmem_cache_zalloc(idr_layer_cache, gfp_mask);
 135}
 136
 137static void idr_layer_rcu_free(struct rcu_head *head)
 138{
 139	struct idr_layer *layer;
 140
 141	layer = container_of(head, struct idr_layer, rcu_head);
 142	kmem_cache_free(idr_layer_cache, layer);
 143}
 144
 145static inline void free_layer(struct idr *idr, struct idr_layer *p)
 146{
 147	if (idr->hint == p)
 148		RCU_INIT_POINTER(idr->hint, NULL);
 149	call_rcu(&p->rcu_head, idr_layer_rcu_free);
 150}
 151
 152/* only called when idp->lock is held */
 153static void __move_to_free_list(struct idr *idp, struct idr_layer *p)
 154{
 155	p->ary[0] = idp->id_free;
 156	idp->id_free = p;
 157	idp->id_free_cnt++;
 158}
 159
 160static void move_to_free_list(struct idr *idp, struct idr_layer *p)
 161{
 162	unsigned long flags;
 163
 164	/*
 165	 * Depends on the return element being zeroed.
 166	 */
 167	spin_lock_irqsave(&idp->lock, flags);
 168	__move_to_free_list(idp, p);
 169	spin_unlock_irqrestore(&idp->lock, flags);
 170}
 171
 172static void idr_mark_full(struct idr_layer **pa, int id)
 173{
 174	struct idr_layer *p = pa[0];
 175	int l = 0;
 176
 177	__set_bit(id & IDR_MASK, p->bitmap);
 178	/*
 179	 * If this layer is full mark the bit in the layer above to
 180	 * show that this part of the radix tree is full.  This may
 181	 * complete the layer above and require walking up the radix
 182	 * tree.
 183	 */
 184	while (bitmap_full(p->bitmap, IDR_SIZE)) {
 185		if (!(p = pa[++l]))
 186			break;
 187		id = id >> IDR_BITS;
 188		__set_bit((id & IDR_MASK), p->bitmap);
 189	}
 190}
 191
 192static int __idr_pre_get(struct idr *idp, gfp_t gfp_mask)
 
 
 
 
 
 
 
 
 
 
 
 
 
 193{
 194	while (idp->id_free_cnt < MAX_IDR_FREE) {
 195		struct idr_layer *new;
 196		new = kmem_cache_zalloc(idr_layer_cache, gfp_mask);
 197		if (new == NULL)
 198			return (0);
 199		move_to_free_list(idp, new);
 200	}
 201	return 1;
 202}
 
 203
 204/**
 205 * sub_alloc - try to allocate an id without growing the tree depth
 206 * @idp: idr handle
 207 * @starting_id: id to start search at
 208 * @pa: idr_layer[MAX_IDR_LEVEL] used as backtrack buffer
 209 * @gfp_mask: allocation mask for idr_layer_alloc()
 210 * @layer_idr: optional idr passed to idr_layer_alloc()
 211 *
 212 * Allocate an id in range [@starting_id, INT_MAX] from @idp without
 213 * growing its depth.  Returns
 214 *
 215 *  the allocated id >= 0 if successful,
 216 *  -EAGAIN if the tree needs to grow for allocation to succeed,
 217 *  -ENOSPC if the id space is exhausted,
 218 *  -ENOMEM if more idr_layers need to be allocated.
 219 */
 220static int sub_alloc(struct idr *idp, int *starting_id, struct idr_layer **pa,
 221		     gfp_t gfp_mask, struct idr *layer_idr)
 222{
 223	int n, m, sh;
 224	struct idr_layer *p, *new;
 225	int l, id, oid;
 
 226
 227	id = *starting_id;
 228 restart:
 229	p = idp->top;
 230	l = idp->layers;
 231	pa[l--] = NULL;
 232	while (1) {
 233		/*
 234		 * We run around this while until we reach the leaf node...
 235		 */
 236		n = (id >> (IDR_BITS*l)) & IDR_MASK;
 237		m = find_next_zero_bit(p->bitmap, IDR_SIZE, n);
 
 238		if (m == IDR_SIZE) {
 239			/* no space available go back to previous layer. */
 240			l++;
 241			oid = id;
 242			id = (id | ((1 << (IDR_BITS * l)) - 1)) + 1;
 243
 244			/* if already at the top layer, we need to grow */
 245			if (id > idr_max(idp->layers)) {
 246				*starting_id = id;
 247				return -EAGAIN;
 248			}
 249			p = pa[l];
 250			BUG_ON(!p);
 251
 252			/* If we need to go up one layer, continue the
 253			 * loop; otherwise, restart from the top.
 254			 */
 255			sh = IDR_BITS * (l + 1);
 256			if (oid >> sh == id >> sh)
 257				continue;
 258			else
 259				goto restart;
 260		}
 261		if (m != n) {
 262			sh = IDR_BITS*l;
 263			id = ((id >> sh) ^ n ^ m) << sh;
 264		}
 265		if ((id >= MAX_IDR_BIT) || (id < 0))
 266			return -ENOSPC;
 267		if (l == 0)
 268			break;
 269		/*
 270		 * Create the layer below if it is missing.
 271		 */
 272		if (!p->ary[m]) {
 273			new = idr_layer_alloc(gfp_mask, layer_idr);
 274			if (!new)
 275				return -ENOMEM;
 276			new->layer = l-1;
 277			new->prefix = id & idr_layer_prefix_mask(new->layer);
 278			rcu_assign_pointer(p->ary[m], new);
 279			p->count++;
 280		}
 281		pa[l--] = p;
 282		p = p->ary[m];
 283	}
 284
 285	pa[l] = p;
 286	return id;
 287}
 288
 289static int idr_get_empty_slot(struct idr *idp, int starting_id,
 290			      struct idr_layer **pa, gfp_t gfp_mask,
 291			      struct idr *layer_idr)
 292{
 293	struct idr_layer *p, *new;
 294	int layers, v, id;
 295	unsigned long flags;
 296
 297	id = starting_id;
 298build_up:
 299	p = idp->top;
 300	layers = idp->layers;
 301	if (unlikely(!p)) {
 302		if (!(p = idr_layer_alloc(gfp_mask, layer_idr)))
 303			return -ENOMEM;
 304		p->layer = 0;
 305		layers = 1;
 306	}
 307	/*
 308	 * Add a new layer to the top of the tree if the requested
 309	 * id is larger than the currently allocated space.
 310	 */
 311	while (id > idr_max(layers)) {
 312		layers++;
 313		if (!p->count) {
 314			/* special case: if the tree is currently empty,
 315			 * then we grow the tree by moving the top node
 316			 * upwards.
 317			 */
 318			p->layer++;
 319			WARN_ON_ONCE(p->prefix);
 320			continue;
 321		}
 322		if (!(new = idr_layer_alloc(gfp_mask, layer_idr))) {
 323			/*
 324			 * The allocation failed.  If we built part of
 325			 * the structure tear it down.
 326			 */
 327			spin_lock_irqsave(&idp->lock, flags);
 328			for (new = p; p && p != idp->top; new = p) {
 329				p = p->ary[0];
 330				new->ary[0] = NULL;
 331				new->count = 0;
 332				bitmap_clear(new->bitmap, 0, IDR_SIZE);
 333				__move_to_free_list(idp, new);
 334			}
 335			spin_unlock_irqrestore(&idp->lock, flags);
 336			return -ENOMEM;
 337		}
 338		new->ary[0] = p;
 339		new->count = 1;
 340		new->layer = layers-1;
 341		new->prefix = id & idr_layer_prefix_mask(new->layer);
 342		if (bitmap_full(p->bitmap, IDR_SIZE))
 343			__set_bit(0, new->bitmap);
 344		p = new;
 345	}
 346	rcu_assign_pointer(idp->top, p);
 347	idp->layers = layers;
 348	v = sub_alloc(idp, &id, pa, gfp_mask, layer_idr);
 349	if (v == -EAGAIN)
 350		goto build_up;
 351	return(v);
 352}
 353
 354/*
 355 * @id and @pa are from a successful allocation from idr_get_empty_slot().
 356 * Install the user pointer @ptr and mark the slot full.
 357 */
 358static void idr_fill_slot(struct idr *idr, void *ptr, int id,
 359			  struct idr_layer **pa)
 360{
 361	/* update hint used for lookup, cleared from free_layer() */
 362	rcu_assign_pointer(idr->hint, pa[0]);
 363
 364	rcu_assign_pointer(pa[0]->ary[id & IDR_MASK], (struct idr_layer *)ptr);
 365	pa[0]->count++;
 366	idr_mark_full(pa, id);
 367}
 
 
 
 
 
 
 
 368
 
 
 369
 370/**
 371 * idr_preload - preload for idr_alloc()
 372 * @gfp_mask: allocation mask to use for preloading
 373 *
 374 * Preload per-cpu layer buffer for idr_alloc().  Can only be used from
 375 * process context and each idr_preload() invocation should be matched with
 376 * idr_preload_end().  Note that preemption is disabled while preloaded.
 377 *
 378 * The first idr_alloc() in the preloaded section can be treated as if it
 379 * were invoked with @gfp_mask used for preloading.  This allows using more
 380 * permissive allocation masks for idrs protected by spinlocks.
 381 *
 382 * For example, if idr_alloc() below fails, the failure can be treated as
 383 * if idr_alloc() were called with GFP_KERNEL rather than GFP_NOWAIT.
 384 *
 385 *	idr_preload(GFP_KERNEL);
 386 *	spin_lock(lock);
 
 387 *
 388 *	id = idr_alloc(idr, ptr, start, end, GFP_NOWAIT);
 389 *
 390 *	spin_unlock(lock);
 391 *	idr_preload_end();
 392 *	if (id < 0)
 393 *		error;
 394 */
 395void idr_preload(gfp_t gfp_mask)
 396{
 397	/*
 398	 * Consuming preload buffer from non-process context breaks preload
 399	 * allocation guarantee.  Disallow usage from those contexts.
 400	 */
 401	WARN_ON_ONCE(in_interrupt());
 402	might_sleep_if(gfpflags_allow_blocking(gfp_mask));
 403
 404	preempt_disable();
 405
 
 406	/*
 407	 * idr_alloc() is likely to succeed w/o full idr_layer buffer and
 408	 * return value from idr_alloc() needs to be checked for failure
 409	 * anyway.  Silently give up if allocation fails.  The caller can
 410	 * treat failures from idr_alloc() as if idr_alloc() were called
 411	 * with @gfp_mask which should be enough.
 412	 */
 413	while (__this_cpu_read(idr_preload_cnt) < MAX_IDR_FREE) {
 414		struct idr_layer *new;
 415
 416		preempt_enable();
 417		new = kmem_cache_zalloc(idr_layer_cache, gfp_mask);
 418		preempt_disable();
 419		if (!new)
 420			break;
 421
 422		/* link the new one to per-cpu preload list */
 423		new->ary[0] = __this_cpu_read(idr_preload_head);
 424		__this_cpu_write(idr_preload_head, new);
 425		__this_cpu_inc(idr_preload_cnt);
 426	}
 427}
 428EXPORT_SYMBOL(idr_preload);
 429
 430/**
 431 * idr_alloc - allocate new idr entry
 432 * @idr: the (initialized) idr
 433 * @ptr: pointer to be associated with the new id
 434 * @start: the minimum id (inclusive)
 435 * @end: the maximum id (exclusive, <= 0 for max)
 436 * @gfp_mask: memory allocation flags
 437 *
 438 * Allocate an id in [start, end) and associate it with @ptr.  If no ID is
 439 * available in the specified range, returns -ENOSPC.  On memory allocation
 440 * failure, returns -ENOMEM.
 441 *
 442 * Note that @end is treated as max when <= 0.  This is to always allow
 443 * using @start + N as @end as long as N is inside integer range.
 444 *
 445 * The user is responsible for exclusively synchronizing all operations
 446 * which may modify @idr.  However, read-only accesses such as idr_find()
 447 * or iteration can be performed under RCU read lock provided the user
 448 * destroys @ptr in RCU-safe way after removal from idr.
 449 */
 450int idr_alloc(struct idr *idr, void *ptr, int start, int end, gfp_t gfp_mask)
 451{
 452	int max = end > 0 ? end - 1 : INT_MAX;	/* inclusive upper limit */
 453	struct idr_layer *pa[MAX_IDR_LEVEL + 1];
 454	int id;
 455
 456	might_sleep_if(gfpflags_allow_blocking(gfp_mask));
 457
 458	/* sanity checks */
 459	if (WARN_ON_ONCE(start < 0))
 460		return -EINVAL;
 461	if (unlikely(max < start))
 462		return -ENOSPC;
 463
 464	/* allocate id */
 465	id = idr_get_empty_slot(idr, start, pa, gfp_mask, NULL);
 466	if (unlikely(id < 0))
 467		return id;
 468	if (unlikely(id > max))
 469		return -ENOSPC;
 470
 471	idr_fill_slot(idr, ptr, id, pa);
 472	return id;
 473}
 474EXPORT_SYMBOL_GPL(idr_alloc);
 475
 476/**
 477 * idr_alloc_cyclic - allocate new idr entry in a cyclical fashion
 478 * @idr: the (initialized) idr
 479 * @ptr: pointer to be associated with the new id
 480 * @start: the minimum id (inclusive)
 481 * @end: the maximum id (exclusive, <= 0 for max)
 482 * @gfp_mask: memory allocation flags
 483 *
 484 * Essentially the same as idr_alloc, but prefers to allocate progressively
 485 * higher ids if it can. If the "cur" counter wraps, then it will start again
 486 * at the "start" end of the range and allocate one that has already been used.
 487 */
 488int idr_alloc_cyclic(struct idr *idr, void *ptr, int start, int end,
 489			gfp_t gfp_mask)
 490{
 491	int id;
 492
 493	id = idr_alloc(idr, ptr, max(start, idr->cur), end, gfp_mask);
 494	if (id == -ENOSPC)
 495		id = idr_alloc(idr, ptr, start, end, gfp_mask);
 496
 497	if (likely(id >= 0))
 498		idr->cur = id + 1;
 499	return id;
 
 
 500}
 501EXPORT_SYMBOL(idr_alloc_cyclic);
 502
 503static void idr_remove_warning(int id)
 504{
 505	WARN(1, "idr_remove called for id=%d which is not allocated.\n", id);
 
 
 506}
 507
 508static void sub_remove(struct idr *idp, int shift, int id)
 509{
 510	struct idr_layer *p = idp->top;
 511	struct idr_layer **pa[MAX_IDR_LEVEL + 1];
 512	struct idr_layer ***paa = &pa[0];
 513	struct idr_layer *to_free;
 514	int n;
 515
 516	*paa = NULL;
 517	*++paa = &idp->top;
 518
 519	while ((shift > 0) && p) {
 520		n = (id >> shift) & IDR_MASK;
 521		__clear_bit(n, p->bitmap);
 522		*++paa = &p->ary[n];
 523		p = p->ary[n];
 524		shift -= IDR_BITS;
 525	}
 526	n = id & IDR_MASK;
 527	if (likely(p != NULL && test_bit(n, p->bitmap))) {
 528		__clear_bit(n, p->bitmap);
 529		RCU_INIT_POINTER(p->ary[n], NULL);
 530		to_free = NULL;
 531		while(*paa && ! --((**paa)->count)){
 532			if (to_free)
 533				free_layer(idp, to_free);
 534			to_free = **paa;
 535			**paa-- = NULL;
 536		}
 537		if (!*paa)
 538			idp->layers = 0;
 539		if (to_free)
 540			free_layer(idp, to_free);
 541	} else
 542		idr_remove_warning(id);
 543}
 544
 545/**
 546 * idr_remove - remove the given id and free its slot
 547 * @idp: idr handle
 548 * @id: unique key
 549 */
 550void idr_remove(struct idr *idp, int id)
 551{
 552	struct idr_layer *p;
 553	struct idr_layer *to_free;
 554
 555	if (id < 0)
 556		return;
 557
 558	if (id > idr_max(idp->layers)) {
 559		idr_remove_warning(id);
 560		return;
 561	}
 562
 563	sub_remove(idp, (idp->layers - 1) * IDR_BITS, id);
 564	if (idp->top && idp->top->count == 1 && (idp->layers > 1) &&
 565	    idp->top->ary[0]) {
 566		/*
 567		 * Single child at leftmost slot: we can shrink the tree.
 568		 * This level is not needed anymore since when layers are
 569		 * inserted, they are inserted at the top of the existing
 570		 * tree.
 571		 */
 572		to_free = idp->top;
 573		p = idp->top->ary[0];
 574		rcu_assign_pointer(idp->top, p);
 575		--idp->layers;
 576		to_free->count = 0;
 577		bitmap_clear(to_free->bitmap, 0, IDR_SIZE);
 578		free_layer(idp, to_free);
 
 
 
 
 
 
 
 
 579	}
 
 580}
 581EXPORT_SYMBOL(idr_remove);
 582
 583static void __idr_remove_all(struct idr *idp)
 
 
 
 
 
 
 
 
 
 
 
 
 
 584{
 585	int n, id, max;
 586	int bt_mask;
 587	struct idr_layer *p;
 588	struct idr_layer *pa[MAX_IDR_LEVEL + 1];
 589	struct idr_layer **paa = &pa[0];
 590
 591	n = idp->layers * IDR_BITS;
 592	*paa = idp->top;
 593	RCU_INIT_POINTER(idp->top, NULL);
 594	max = idr_max(idp->layers);
 595
 596	id = 0;
 597	while (id >= 0 && id <= max) {
 598		p = *paa;
 599		while (n > IDR_BITS && p) {
 600			n -= IDR_BITS;
 
 601			p = p->ary[(id >> n) & IDR_MASK];
 602			*++paa = p;
 603		}
 604
 605		bt_mask = id;
 606		id += 1 << n;
 607		/* Get the highest bit that the above add changed from 0->1. */
 608		while (n < fls(id ^ bt_mask)) {
 609			if (*paa)
 610				free_layer(idp, *paa);
 611			n += IDR_BITS;
 612			--paa;
 613		}
 614	}
 615	idp->layers = 0;
 616}
 
 617
 618/**
 619 * idr_destroy - release all cached layers within an idr tree
 620 * @idp: idr handle
 621 *
 622 * Free all id mappings and all idp_layers.  After this function, @idp is
 623 * completely unused and can be freed / recycled.  The caller is
 624 * responsible for ensuring that no one else accesses @idp during or after
 625 * idr_destroy().
 626 *
 627 * A typical clean-up sequence for objects stored in an idr tree will use
 628 * idr_for_each() to free all objects, if necessary, then idr_destroy() to
 629 * free up the id mappings and cached idr_layers.
 630 */
 631void idr_destroy(struct idr *idp)
 632{
 633	__idr_remove_all(idp);
 634
 635	while (idp->id_free_cnt) {
 636		struct idr_layer *p = get_from_free_list(idp);
 637		kmem_cache_free(idr_layer_cache, p);
 638	}
 639}
 640EXPORT_SYMBOL(idr_destroy);
 641
 642void *idr_find_slowpath(struct idr *idp, int id)
 
 
 
 
 
 
 
 
 
 
 
 
 643{
 644	int n;
 645	struct idr_layer *p;
 646
 647	if (id < 0)
 648		return NULL;
 649
 650	p = rcu_dereference_raw(idp->top);
 651	if (!p)
 652		return NULL;
 653	n = (p->layer+1) * IDR_BITS;
 654
 655	if (id > idr_max(p->layer + 1))
 
 
 
 656		return NULL;
 657	BUG_ON(n == 0);
 658
 659	while (n > 0 && p) {
 660		n -= IDR_BITS;
 661		BUG_ON(n != p->layer*IDR_BITS);
 662		p = rcu_dereference_raw(p->ary[(id >> n) & IDR_MASK]);
 663	}
 664	return((void *)p);
 665}
 666EXPORT_SYMBOL(idr_find_slowpath);
 667
 668/**
 669 * idr_for_each - iterate through all stored pointers
 670 * @idp: idr handle
 671 * @fn: function to be called for each pointer
 672 * @data: data passed back to callback function
 673 *
 674 * Iterate over the pointers registered with the given idr.  The
 675 * callback function will be called for each pointer currently
 676 * registered, passing the id, the pointer and the data pointer passed
 677 * to this function.  It is not safe to modify the idr tree while in
 678 * the callback, so functions such as idr_get_new and idr_remove are
 679 * not allowed.
 680 *
 681 * We check the return of @fn each time. If it returns anything other
 682 * than %0, we break out and return that value.
 683 *
 684 * The caller must serialize idr_for_each() vs idr_get_new() and idr_remove().
 685 */
 686int idr_for_each(struct idr *idp,
 687		 int (*fn)(int id, void *p, void *data), void *data)
 688{
 689	int n, id, max, error = 0;
 690	struct idr_layer *p;
 691	struct idr_layer *pa[MAX_IDR_LEVEL + 1];
 692	struct idr_layer **paa = &pa[0];
 693
 694	n = idp->layers * IDR_BITS;
 695	*paa = rcu_dereference_raw(idp->top);
 696	max = idr_max(idp->layers);
 697
 698	id = 0;
 699	while (id >= 0 && id <= max) {
 700		p = *paa;
 701		while (n > 0 && p) {
 702			n -= IDR_BITS;
 
 703			p = rcu_dereference_raw(p->ary[(id >> n) & IDR_MASK]);
 704			*++paa = p;
 705		}
 706
 707		if (p) {
 708			error = fn(id, (void *)p, data);
 709			if (error)
 710				break;
 711		}
 712
 713		id += 1 << n;
 714		while (n < fls(id)) {
 715			n += IDR_BITS;
 716			--paa;
 717		}
 718	}
 719
 720	return error;
 721}
 722EXPORT_SYMBOL(idr_for_each);
 723
 724/**
 725 * idr_get_next - lookup next object of id to given id.
 726 * @idp: idr handle
 727 * @nextidp:  pointer to lookup key
 728 *
 729 * Returns pointer to registered object with id, which is next number to
 730 * given id. After being looked up, *@nextidp will be updated for the next
 731 * iteration.
 732 *
 733 * This function can be called under rcu_read_lock(), given that the leaf
 734 * pointers lifetimes are correctly managed.
 735 */
 
 736void *idr_get_next(struct idr *idp, int *nextidp)
 737{
 738	struct idr_layer *p, *pa[MAX_IDR_LEVEL + 1];
 739	struct idr_layer **paa = &pa[0];
 740	int id = *nextidp;
 741	int n, max;
 742
 743	/* find first ent */
 744	p = *paa = rcu_dereference_raw(idp->top);
 
 
 745	if (!p)
 746		return NULL;
 747	n = (p->layer + 1) * IDR_BITS;
 748	max = idr_max(p->layer + 1);
 749
 750	while (id >= 0 && id <= max) {
 751		p = *paa;
 752		while (n > 0 && p) {
 753			n -= IDR_BITS;
 
 754			p = rcu_dereference_raw(p->ary[(id >> n) & IDR_MASK]);
 755			*++paa = p;
 756		}
 757
 758		if (p) {
 759			*nextidp = id;
 760			return p;
 761		}
 762
 763		/*
 764		 * Proceed to the next layer at the current level.  Unlike
 765		 * idr_for_each(), @id isn't guaranteed to be aligned to
 766		 * layer boundary at this point and adding 1 << n may
 767		 * incorrectly skip IDs.  Make sure we jump to the
 768		 * beginning of the next layer using round_up().
 769		 */
 770		id = round_up(id + 1, 1 << n);
 771		while (n < fls(id)) {
 772			n += IDR_BITS;
 773			--paa;
 774		}
 775	}
 776	return NULL;
 777}
 778EXPORT_SYMBOL(idr_get_next);
 779
 780
 781/**
 782 * idr_replace - replace pointer for given id
 783 * @idp: idr handle
 784 * @ptr: pointer you want associated with the id
 785 * @id: lookup key
 786 *
 787 * Replace the pointer registered with an id and return the old value.
 788 * A %-ENOENT return indicates that @id was not found.
 789 * A %-EINVAL return indicates that @id was not within valid constraints.
 790 *
 791 * The caller must serialize with writers.
 792 */
 793void *idr_replace(struct idr *idp, void *ptr, int id)
 794{
 795	int n;
 796	struct idr_layer *p, *old_p;
 797
 798	if (id < 0)
 799		return ERR_PTR(-EINVAL);
 800
 801	p = idp->top;
 802	if (!p)
 803		return ERR_PTR(-ENOENT);
 804
 805	if (id > idr_max(p->layer + 1))
 806		return ERR_PTR(-ENOENT);
 807
 808	n = p->layer * IDR_BITS;
 
 
 
 
 
 809	while ((n > 0) && p) {
 810		p = p->ary[(id >> n) & IDR_MASK];
 811		n -= IDR_BITS;
 812	}
 813
 814	n = id & IDR_MASK;
 815	if (unlikely(p == NULL || !test_bit(n, p->bitmap)))
 816		return ERR_PTR(-ENOENT);
 817
 818	old_p = p->ary[n];
 819	rcu_assign_pointer(p->ary[n], ptr);
 820
 821	return old_p;
 822}
 823EXPORT_SYMBOL(idr_replace);
 824
 825void __init idr_init_cache(void)
 826{
 827	idr_layer_cache = kmem_cache_create("idr_layer_cache",
 828				sizeof(struct idr_layer), 0, SLAB_PANIC, NULL);
 829}
 830
 831/**
 832 * idr_init - initialize idr handle
 833 * @idp:	idr handle
 834 *
 835 * This function is use to set up the handle (@idp) that you will pass
 836 * to the rest of the functions.
 837 */
 838void idr_init(struct idr *idp)
 839{
 840	memset(idp, 0, sizeof(struct idr));
 841	spin_lock_init(&idp->lock);
 842}
 843EXPORT_SYMBOL(idr_init);
 844
 845static int idr_has_entry(int id, void *p, void *data)
 846{
 847	return 1;
 848}
 849
 850bool idr_is_empty(struct idr *idp)
 851{
 852	return !idr_for_each(idp, idr_has_entry, NULL);
 853}
 854EXPORT_SYMBOL(idr_is_empty);
 855
 856/**
 857 * DOC: IDA description
 858 * IDA - IDR based ID allocator
 859 *
 860 * This is id allocator without id -> pointer translation.  Memory
 861 * usage is much lower than full blown idr because each id only
 862 * occupies a bit.  ida uses a custom leaf node which contains
 863 * IDA_BITMAP_BITS slots.
 864 *
 865 * 2007-04-25  written by Tejun Heo <htejun@gmail.com>
 866 */
 867
 868static void free_bitmap(struct ida *ida, struct ida_bitmap *bitmap)
 869{
 870	unsigned long flags;
 871
 872	if (!ida->free_bitmap) {
 873		spin_lock_irqsave(&ida->idr.lock, flags);
 874		if (!ida->free_bitmap) {
 875			ida->free_bitmap = bitmap;
 876			bitmap = NULL;
 877		}
 878		spin_unlock_irqrestore(&ida->idr.lock, flags);
 879	}
 880
 881	kfree(bitmap);
 882}
 883
 884/**
 885 * ida_pre_get - reserve resources for ida allocation
 886 * @ida:	ida handle
 887 * @gfp_mask:	memory allocation flag
 888 *
 889 * This function should be called prior to locking and calling the
 890 * following function.  It preallocates enough memory to satisfy the
 891 * worst possible allocation.
 892 *
 893 * If the system is REALLY out of memory this function returns %0,
 894 * otherwise %1.
 895 */
 896int ida_pre_get(struct ida *ida, gfp_t gfp_mask)
 897{
 898	/* allocate idr_layers */
 899	if (!__idr_pre_get(&ida->idr, gfp_mask))
 900		return 0;
 901
 902	/* allocate free_bitmap */
 903	if (!ida->free_bitmap) {
 904		struct ida_bitmap *bitmap;
 905
 906		bitmap = kmalloc(sizeof(struct ida_bitmap), gfp_mask);
 907		if (!bitmap)
 908			return 0;
 909
 910		free_bitmap(ida, bitmap);
 911	}
 912
 913	return 1;
 914}
 915EXPORT_SYMBOL(ida_pre_get);
 916
 917/**
 918 * ida_get_new_above - allocate new ID above or equal to a start id
 919 * @ida:	ida handle
 920 * @starting_id: id to start search at
 921 * @p_id:	pointer to the allocated handle
 922 *
 923 * Allocate new ID above or equal to @starting_id.  It should be called
 924 * with any required locks.
 925 *
 926 * If memory is required, it will return %-EAGAIN, you should unlock
 927 * and go back to the ida_pre_get() call.  If the ida is full, it will
 928 * return %-ENOSPC.
 929 *
 930 * @p_id returns a value in the range @starting_id ... %0x7fffffff.
 931 */
 932int ida_get_new_above(struct ida *ida, int starting_id, int *p_id)
 933{
 934	struct idr_layer *pa[MAX_IDR_LEVEL + 1];
 935	struct ida_bitmap *bitmap;
 936	unsigned long flags;
 937	int idr_id = starting_id / IDA_BITMAP_BITS;
 938	int offset = starting_id % IDA_BITMAP_BITS;
 939	int t, id;
 940
 941 restart:
 942	/* get vacant slot */
 943	t = idr_get_empty_slot(&ida->idr, idr_id, pa, 0, &ida->idr);
 944	if (t < 0)
 945		return t == -ENOMEM ? -EAGAIN : t;
 946
 947	if (t * IDA_BITMAP_BITS >= MAX_IDR_BIT)
 948		return -ENOSPC;
 949
 950	if (t != idr_id)
 951		offset = 0;
 952	idr_id = t;
 953
 954	/* if bitmap isn't there, create a new one */
 955	bitmap = (void *)pa[0]->ary[idr_id & IDR_MASK];
 956	if (!bitmap) {
 957		spin_lock_irqsave(&ida->idr.lock, flags);
 958		bitmap = ida->free_bitmap;
 959		ida->free_bitmap = NULL;
 960		spin_unlock_irqrestore(&ida->idr.lock, flags);
 961
 962		if (!bitmap)
 963			return -EAGAIN;
 964
 965		memset(bitmap, 0, sizeof(struct ida_bitmap));
 966		rcu_assign_pointer(pa[0]->ary[idr_id & IDR_MASK],
 967				(void *)bitmap);
 968		pa[0]->count++;
 969	}
 970
 971	/* lookup for empty slot */
 972	t = find_next_zero_bit(bitmap->bitmap, IDA_BITMAP_BITS, offset);
 973	if (t == IDA_BITMAP_BITS) {
 974		/* no empty slot after offset, continue to the next chunk */
 975		idr_id++;
 976		offset = 0;
 977		goto restart;
 978	}
 979
 980	id = idr_id * IDA_BITMAP_BITS + t;
 981	if (id >= MAX_IDR_BIT)
 982		return -ENOSPC;
 983
 984	__set_bit(t, bitmap->bitmap);
 985	if (++bitmap->nr_busy == IDA_BITMAP_BITS)
 986		idr_mark_full(pa, idr_id);
 987
 988	*p_id = id;
 989
 990	/* Each leaf node can handle nearly a thousand slots and the
 991	 * whole idea of ida is to have small memory foot print.
 992	 * Throw away extra resources one by one after each successful
 993	 * allocation.
 994	 */
 995	if (ida->idr.id_free_cnt || ida->free_bitmap) {
 996		struct idr_layer *p = get_from_free_list(&ida->idr);
 997		if (p)
 998			kmem_cache_free(idr_layer_cache, p);
 999	}
1000
1001	return 0;
1002}
1003EXPORT_SYMBOL(ida_get_new_above);
1004
1005/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1006 * ida_remove - remove the given ID
1007 * @ida:	ida handle
1008 * @id:		ID to free
1009 */
1010void ida_remove(struct ida *ida, int id)
1011{
1012	struct idr_layer *p = ida->idr.top;
1013	int shift = (ida->idr.layers - 1) * IDR_BITS;
1014	int idr_id = id / IDA_BITMAP_BITS;
1015	int offset = id % IDA_BITMAP_BITS;
1016	int n;
1017	struct ida_bitmap *bitmap;
1018
1019	if (idr_id > idr_max(ida->idr.layers))
1020		goto err;
1021
1022	/* clear full bits while looking up the leaf idr_layer */
1023	while ((shift > 0) && p) {
1024		n = (idr_id >> shift) & IDR_MASK;
1025		__clear_bit(n, p->bitmap);
1026		p = p->ary[n];
1027		shift -= IDR_BITS;
1028	}
1029
1030	if (p == NULL)
1031		goto err;
1032
1033	n = idr_id & IDR_MASK;
1034	__clear_bit(n, p->bitmap);
1035
1036	bitmap = (void *)p->ary[n];
1037	if (!bitmap || !test_bit(offset, bitmap->bitmap))
1038		goto err;
1039
1040	/* update bitmap and remove it if empty */
1041	__clear_bit(offset, bitmap->bitmap);
1042	if (--bitmap->nr_busy == 0) {
1043		__set_bit(n, p->bitmap);	/* to please idr_remove() */
1044		idr_remove(&ida->idr, idr_id);
1045		free_bitmap(ida, bitmap);
1046	}
1047
1048	return;
1049
1050 err:
1051	WARN(1, "ida_remove called for id=%d which is not allocated.\n", id);
 
1052}
1053EXPORT_SYMBOL(ida_remove);
1054
1055/**
1056 * ida_destroy - release all cached layers within an ida tree
1057 * @ida:		ida handle
1058 */
1059void ida_destroy(struct ida *ida)
1060{
1061	idr_destroy(&ida->idr);
1062	kfree(ida->free_bitmap);
1063}
1064EXPORT_SYMBOL(ida_destroy);
1065
1066/**
1067 * ida_simple_get - get a new id.
1068 * @ida: the (initialized) ida.
1069 * @start: the minimum id (inclusive, < 0x8000000)
1070 * @end: the maximum id (exclusive, < 0x8000000 or 0)
1071 * @gfp_mask: memory allocation flags
1072 *
1073 * Allocates an id in the range start <= id < end, or returns -ENOSPC.
1074 * On memory allocation failure, returns -ENOMEM.
1075 *
1076 * Use ida_simple_remove() to get rid of an id.
1077 */
1078int ida_simple_get(struct ida *ida, unsigned int start, unsigned int end,
1079		   gfp_t gfp_mask)
1080{
1081	int ret, id;
1082	unsigned int max;
1083	unsigned long flags;
1084
1085	BUG_ON((int)start < 0);
1086	BUG_ON((int)end < 0);
1087
1088	if (end == 0)
1089		max = 0x80000000;
1090	else {
1091		BUG_ON(end < start);
1092		max = end - 1;
1093	}
1094
1095again:
1096	if (!ida_pre_get(ida, gfp_mask))
1097		return -ENOMEM;
1098
1099	spin_lock_irqsave(&simple_ida_lock, flags);
1100	ret = ida_get_new_above(ida, start, &id);
1101	if (!ret) {
1102		if (id > max) {
1103			ida_remove(ida, id);
1104			ret = -ENOSPC;
1105		} else {
1106			ret = id;
1107		}
1108	}
1109	spin_unlock_irqrestore(&simple_ida_lock, flags);
1110
1111	if (unlikely(ret == -EAGAIN))
1112		goto again;
1113
1114	return ret;
1115}
1116EXPORT_SYMBOL(ida_simple_get);
1117
1118/**
1119 * ida_simple_remove - remove an allocated id.
1120 * @ida: the (initialized) ida.
1121 * @id: the id returned by ida_simple_get.
1122 */
1123void ida_simple_remove(struct ida *ida, unsigned int id)
1124{
1125	unsigned long flags;
1126
1127	BUG_ON((int)id < 0);
1128	spin_lock_irqsave(&simple_ida_lock, flags);
1129	ida_remove(ida, id);
1130	spin_unlock_irqrestore(&simple_ida_lock, flags);
1131}
1132EXPORT_SYMBOL(ida_simple_remove);
1133
1134/**
1135 * ida_init - initialize ida handle
1136 * @ida:	ida handle
1137 *
1138 * This function is use to set up the handle (@ida) that you will pass
1139 * to the rest of the functions.
1140 */
1141void ida_init(struct ida *ida)
1142{
1143	memset(ida, 0, sizeof(struct ida));
1144	idr_init(&ida->idr);
1145
1146}
1147EXPORT_SYMBOL(ida_init);
v3.1
   1/*
   2 * 2002-10-18  written by Jim Houston jim.houston@ccur.com
   3 *	Copyright (C) 2002 by Concurrent Computer Corporation
   4 *	Distributed under the GNU GPL license version 2.
   5 *
   6 * Modified by George Anzinger to reuse immediately and to use
   7 * find bit instructions.  Also removed _irq on spinlocks.
   8 *
   9 * Modified by Nadia Derbey to make it RCU safe.
  10 *
  11 * Small id to pointer translation service.
  12 *
  13 * It uses a radix tree like structure as a sparse array indexed
  14 * by the id to obtain the pointer.  The bitmap makes allocating
  15 * a new id quick.
  16 *
  17 * You call it to allocate an id (an int) an associate with that id a
  18 * pointer or what ever, we treat it as a (void *).  You can pass this
  19 * id to a user for him to pass back at a later time.  You then pass
  20 * that id to this code and it returns your pointer.
  21
  22 * You can release ids at any time. When all ids are released, most of
  23 * the memory is returned (we keep IDR_FREE_MAX) in a local pool so we
  24 * don't need to go to the memory "store" during an id allocate, just
  25 * so you don't need to be too concerned about locking and conflicts
  26 * with the slab allocator.
  27 */
  28
  29#ifndef TEST                        // to test in user space...
  30#include <linux/slab.h>
  31#include <linux/init.h>
  32#include <linux/module.h>
  33#endif
  34#include <linux/err.h>
  35#include <linux/string.h>
  36#include <linux/idr.h>
  37#include <linux/spinlock.h>
 
 
 
 
 
 
 
 
 
 
  38
  39static struct kmem_cache *idr_layer_cache;
 
 
  40static DEFINE_SPINLOCK(simple_ida_lock);
  41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  42static struct idr_layer *get_from_free_list(struct idr *idp)
  43{
  44	struct idr_layer *p;
  45	unsigned long flags;
  46
  47	spin_lock_irqsave(&idp->lock, flags);
  48	if ((p = idp->id_free)) {
  49		idp->id_free = p->ary[0];
  50		idp->id_free_cnt--;
  51		p->ary[0] = NULL;
  52	}
  53	spin_unlock_irqrestore(&idp->lock, flags);
  54	return(p);
  55}
  56
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  57static void idr_layer_rcu_free(struct rcu_head *head)
  58{
  59	struct idr_layer *layer;
  60
  61	layer = container_of(head, struct idr_layer, rcu_head);
  62	kmem_cache_free(idr_layer_cache, layer);
  63}
  64
  65static inline void free_layer(struct idr_layer *p)
  66{
 
 
  67	call_rcu(&p->rcu_head, idr_layer_rcu_free);
  68}
  69
  70/* only called when idp->lock is held */
  71static void __move_to_free_list(struct idr *idp, struct idr_layer *p)
  72{
  73	p->ary[0] = idp->id_free;
  74	idp->id_free = p;
  75	idp->id_free_cnt++;
  76}
  77
  78static void move_to_free_list(struct idr *idp, struct idr_layer *p)
  79{
  80	unsigned long flags;
  81
  82	/*
  83	 * Depends on the return element being zeroed.
  84	 */
  85	spin_lock_irqsave(&idp->lock, flags);
  86	__move_to_free_list(idp, p);
  87	spin_unlock_irqrestore(&idp->lock, flags);
  88}
  89
  90static void idr_mark_full(struct idr_layer **pa, int id)
  91{
  92	struct idr_layer *p = pa[0];
  93	int l = 0;
  94
  95	__set_bit(id & IDR_MASK, &p->bitmap);
  96	/*
  97	 * If this layer is full mark the bit in the layer above to
  98	 * show that this part of the radix tree is full.  This may
  99	 * complete the layer above and require walking up the radix
 100	 * tree.
 101	 */
 102	while (p->bitmap == IDR_FULL) {
 103		if (!(p = pa[++l]))
 104			break;
 105		id = id >> IDR_BITS;
 106		__set_bit((id & IDR_MASK), &p->bitmap);
 107	}
 108}
 109
 110/**
 111 * idr_pre_get - reserve resources for idr allocation
 112 * @idp:	idr handle
 113 * @gfp_mask:	memory allocation flags
 114 *
 115 * This function should be called prior to calling the idr_get_new* functions.
 116 * It preallocates enough memory to satisfy the worst possible allocation. The
 117 * caller should pass in GFP_KERNEL if possible.  This of course requires that
 118 * no spinning locks be held.
 119 *
 120 * If the system is REALLY out of memory this function returns %0,
 121 * otherwise %1.
 122 */
 123int idr_pre_get(struct idr *idp, gfp_t gfp_mask)
 124{
 125	while (idp->id_free_cnt < IDR_FREE_MAX) {
 126		struct idr_layer *new;
 127		new = kmem_cache_zalloc(idr_layer_cache, gfp_mask);
 128		if (new == NULL)
 129			return (0);
 130		move_to_free_list(idp, new);
 131	}
 132	return 1;
 133}
 134EXPORT_SYMBOL(idr_pre_get);
 135
 136static int sub_alloc(struct idr *idp, int *starting_id, struct idr_layer **pa)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 137{
 138	int n, m, sh;
 139	struct idr_layer *p, *new;
 140	int l, id, oid;
 141	unsigned long bm;
 142
 143	id = *starting_id;
 144 restart:
 145	p = idp->top;
 146	l = idp->layers;
 147	pa[l--] = NULL;
 148	while (1) {
 149		/*
 150		 * We run around this while until we reach the leaf node...
 151		 */
 152		n = (id >> (IDR_BITS*l)) & IDR_MASK;
 153		bm = ~p->bitmap;
 154		m = find_next_bit(&bm, IDR_SIZE, n);
 155		if (m == IDR_SIZE) {
 156			/* no space available go back to previous layer. */
 157			l++;
 158			oid = id;
 159			id = (id | ((1 << (IDR_BITS * l)) - 1)) + 1;
 160
 161			/* if already at the top layer, we need to grow */
 162			if (id >= 1 << (idp->layers * IDR_BITS)) {
 163				*starting_id = id;
 164				return IDR_NEED_TO_GROW;
 165			}
 166			p = pa[l];
 167			BUG_ON(!p);
 168
 169			/* If we need to go up one layer, continue the
 170			 * loop; otherwise, restart from the top.
 171			 */
 172			sh = IDR_BITS * (l + 1);
 173			if (oid >> sh == id >> sh)
 174				continue;
 175			else
 176				goto restart;
 177		}
 178		if (m != n) {
 179			sh = IDR_BITS*l;
 180			id = ((id >> sh) ^ n ^ m) << sh;
 181		}
 182		if ((id >= MAX_ID_BIT) || (id < 0))
 183			return IDR_NOMORE_SPACE;
 184		if (l == 0)
 185			break;
 186		/*
 187		 * Create the layer below if it is missing.
 188		 */
 189		if (!p->ary[m]) {
 190			new = get_from_free_list(idp);
 191			if (!new)
 192				return -1;
 193			new->layer = l-1;
 
 194			rcu_assign_pointer(p->ary[m], new);
 195			p->count++;
 196		}
 197		pa[l--] = p;
 198		p = p->ary[m];
 199	}
 200
 201	pa[l] = p;
 202	return id;
 203}
 204
 205static int idr_get_empty_slot(struct idr *idp, int starting_id,
 206			      struct idr_layer **pa)
 
 207{
 208	struct idr_layer *p, *new;
 209	int layers, v, id;
 210	unsigned long flags;
 211
 212	id = starting_id;
 213build_up:
 214	p = idp->top;
 215	layers = idp->layers;
 216	if (unlikely(!p)) {
 217		if (!(p = get_from_free_list(idp)))
 218			return -1;
 219		p->layer = 0;
 220		layers = 1;
 221	}
 222	/*
 223	 * Add a new layer to the top of the tree if the requested
 224	 * id is larger than the currently allocated space.
 225	 */
 226	while ((layers < (MAX_LEVEL - 1)) && (id >= (1 << (layers*IDR_BITS)))) {
 227		layers++;
 228		if (!p->count) {
 229			/* special case: if the tree is currently empty,
 230			 * then we grow the tree by moving the top node
 231			 * upwards.
 232			 */
 233			p->layer++;
 
 234			continue;
 235		}
 236		if (!(new = get_from_free_list(idp))) {
 237			/*
 238			 * The allocation failed.  If we built part of
 239			 * the structure tear it down.
 240			 */
 241			spin_lock_irqsave(&idp->lock, flags);
 242			for (new = p; p && p != idp->top; new = p) {
 243				p = p->ary[0];
 244				new->ary[0] = NULL;
 245				new->bitmap = new->count = 0;
 
 246				__move_to_free_list(idp, new);
 247			}
 248			spin_unlock_irqrestore(&idp->lock, flags);
 249			return -1;
 250		}
 251		new->ary[0] = p;
 252		new->count = 1;
 253		new->layer = layers-1;
 254		if (p->bitmap == IDR_FULL)
 255			__set_bit(0, &new->bitmap);
 
 256		p = new;
 257	}
 258	rcu_assign_pointer(idp->top, p);
 259	idp->layers = layers;
 260	v = sub_alloc(idp, &id, pa);
 261	if (v == IDR_NEED_TO_GROW)
 262		goto build_up;
 263	return(v);
 264}
 265
 266static int idr_get_new_above_int(struct idr *idp, void *ptr, int starting_id)
 
 
 
 
 
 267{
 268	struct idr_layer *pa[MAX_LEVEL];
 269	int id;
 270
 271	id = idr_get_empty_slot(idp, starting_id, pa);
 272	if (id >= 0) {
 273		/*
 274		 * Successfully found an empty slot.  Install the user
 275		 * pointer and mark the slot full.
 276		 */
 277		rcu_assign_pointer(pa[0]->ary[id & IDR_MASK],
 278				(struct idr_layer *)ptr);
 279		pa[0]->count++;
 280		idr_mark_full(pa, id);
 281	}
 282
 283	return id;
 284}
 285
 286/**
 287 * idr_get_new_above - allocate new idr entry above or equal to a start id
 288 * @idp: idr handle
 289 * @ptr: pointer you want associated with the id
 290 * @starting_id: id to start search at
 291 * @id: pointer to the allocated handle
 
 
 
 
 
 292 *
 293 * This is the allocate id function.  It should be called with any
 294 * required locks.
 295 *
 296 * If allocation from IDR's private freelist fails, idr_get_new_above() will
 297 * return %-EAGAIN.  The caller should retry the idr_pre_get() call to refill
 298 * IDR's preallocation and then retry the idr_get_new_above() call.
 299 *
 300 * If the idr is full idr_get_new_above() will return %-ENOSPC.
 301 *
 302 * @id returns a value in the range @starting_id ... %0x7fffffff
 
 
 
 303 */
 304int idr_get_new_above(struct idr *idp, void *ptr, int starting_id, int *id)
 305{
 306	int rv;
 
 
 
 
 
 
 
 307
 308	rv = idr_get_new_above_int(idp, ptr, starting_id);
 309	/*
 310	 * This is a cheap hack until the IDR code can be fixed to
 311	 * return proper error values.
 
 
 
 312	 */
 313	if (rv < 0)
 314		return _idr_rc_to_errno(rv);
 315	*id = rv;
 316	return 0;
 
 
 
 
 
 
 
 
 
 
 317}
 318EXPORT_SYMBOL(idr_get_new_above);
 319
 320/**
 321 * idr_get_new - allocate new idr entry
 322 * @idp: idr handle
 323 * @ptr: pointer you want associated with the id
 324 * @id: pointer to the allocated handle
 
 
 325 *
 326 * If allocation from IDR's private freelist fails, idr_get_new_above() will
 327 * return %-EAGAIN.  The caller should retry the idr_pre_get() call to refill
 328 * IDR's preallocation and then retry the idr_get_new_above() call.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 329 *
 330 * If the idr is full idr_get_new_above() will return %-ENOSPC.
 331 *
 332 * @id returns a value in the range %0 ... %0x7fffffff
 333 */
 334int idr_get_new(struct idr *idp, void *ptr, int *id)
 
 335{
 336	int rv;
 337
 338	rv = idr_get_new_above_int(idp, ptr, 0);
 339	/*
 340	 * This is a cheap hack until the IDR code can be fixed to
 341	 * return proper error values.
 342	 */
 343	if (rv < 0)
 344		return _idr_rc_to_errno(rv);
 345	*id = rv;
 346	return 0;
 347}
 348EXPORT_SYMBOL(idr_get_new);
 349
 350static void idr_remove_warning(int id)
 351{
 352	printk(KERN_WARNING
 353		"idr_remove called for id=%d which is not allocated.\n", id);
 354	dump_stack();
 355}
 356
 357static void sub_remove(struct idr *idp, int shift, int id)
 358{
 359	struct idr_layer *p = idp->top;
 360	struct idr_layer **pa[MAX_LEVEL];
 361	struct idr_layer ***paa = &pa[0];
 362	struct idr_layer *to_free;
 363	int n;
 364
 365	*paa = NULL;
 366	*++paa = &idp->top;
 367
 368	while ((shift > 0) && p) {
 369		n = (id >> shift) & IDR_MASK;
 370		__clear_bit(n, &p->bitmap);
 371		*++paa = &p->ary[n];
 372		p = p->ary[n];
 373		shift -= IDR_BITS;
 374	}
 375	n = id & IDR_MASK;
 376	if (likely(p != NULL && test_bit(n, &p->bitmap))){
 377		__clear_bit(n, &p->bitmap);
 378		rcu_assign_pointer(p->ary[n], NULL);
 379		to_free = NULL;
 380		while(*paa && ! --((**paa)->count)){
 381			if (to_free)
 382				free_layer(to_free);
 383			to_free = **paa;
 384			**paa-- = NULL;
 385		}
 386		if (!*paa)
 387			idp->layers = 0;
 388		if (to_free)
 389			free_layer(to_free);
 390	} else
 391		idr_remove_warning(id);
 392}
 393
 394/**
 395 * idr_remove - remove the given id and free its slot
 396 * @idp: idr handle
 397 * @id: unique key
 398 */
 399void idr_remove(struct idr *idp, int id)
 400{
 401	struct idr_layer *p;
 402	struct idr_layer *to_free;
 403
 404	/* Mask off upper bits we don't use for the search. */
 405	id &= MAX_ID_MASK;
 
 
 
 
 
 406
 407	sub_remove(idp, (idp->layers - 1) * IDR_BITS, id);
 408	if (idp->top && idp->top->count == 1 && (idp->layers > 1) &&
 409	    idp->top->ary[0]) {
 410		/*
 411		 * Single child at leftmost slot: we can shrink the tree.
 412		 * This level is not needed anymore since when layers are
 413		 * inserted, they are inserted at the top of the existing
 414		 * tree.
 415		 */
 416		to_free = idp->top;
 417		p = idp->top->ary[0];
 418		rcu_assign_pointer(idp->top, p);
 419		--idp->layers;
 420		to_free->bitmap = to_free->count = 0;
 421		free_layer(to_free);
 422	}
 423	while (idp->id_free_cnt >= IDR_FREE_MAX) {
 424		p = get_from_free_list(idp);
 425		/*
 426		 * Note: we don't call the rcu callback here, since the only
 427		 * layers that fall into the freelist are those that have been
 428		 * preallocated.
 429		 */
 430		kmem_cache_free(idr_layer_cache, p);
 431	}
 432	return;
 433}
 434EXPORT_SYMBOL(idr_remove);
 435
 436/**
 437 * idr_remove_all - remove all ids from the given idr tree
 438 * @idp: idr handle
 439 *
 440 * idr_destroy() only frees up unused, cached idp_layers, but this
 441 * function will remove all id mappings and leave all idp_layers
 442 * unused.
 443 *
 444 * A typical clean-up sequence for objects stored in an idr tree will
 445 * use idr_for_each() to free all objects, if necessay, then
 446 * idr_remove_all() to remove all ids, and idr_destroy() to free
 447 * up the cached idr_layers.
 448 */
 449void idr_remove_all(struct idr *idp)
 450{
 451	int n, id, max;
 452	int bt_mask;
 453	struct idr_layer *p;
 454	struct idr_layer *pa[MAX_LEVEL];
 455	struct idr_layer **paa = &pa[0];
 456
 457	n = idp->layers * IDR_BITS;
 458	p = idp->top;
 459	rcu_assign_pointer(idp->top, NULL);
 460	max = 1 << n;
 461
 462	id = 0;
 463	while (id < max) {
 
 464		while (n > IDR_BITS && p) {
 465			n -= IDR_BITS;
 466			*paa++ = p;
 467			p = p->ary[(id >> n) & IDR_MASK];
 
 468		}
 469
 470		bt_mask = id;
 471		id += 1 << n;
 472		/* Get the highest bit that the above add changed from 0->1. */
 473		while (n < fls(id ^ bt_mask)) {
 474			if (p)
 475				free_layer(p);
 476			n += IDR_BITS;
 477			p = *--paa;
 478		}
 479	}
 480	idp->layers = 0;
 481}
 482EXPORT_SYMBOL(idr_remove_all);
 483
 484/**
 485 * idr_destroy - release all cached layers within an idr tree
 486 * @idp: idr handle
 
 
 
 
 
 
 
 
 
 487 */
 488void idr_destroy(struct idr *idp)
 489{
 
 
 490	while (idp->id_free_cnt) {
 491		struct idr_layer *p = get_from_free_list(idp);
 492		kmem_cache_free(idr_layer_cache, p);
 493	}
 494}
 495EXPORT_SYMBOL(idr_destroy);
 496
 497/**
 498 * idr_find - return pointer for given id
 499 * @idp: idr handle
 500 * @id: lookup key
 501 *
 502 * Return the pointer given the id it has been registered with.  A %NULL
 503 * return indicates that @id is not valid or you passed %NULL in
 504 * idr_get_new().
 505 *
 506 * This function can be called under rcu_read_lock(), given that the leaf
 507 * pointers lifetimes are correctly managed.
 508 */
 509void *idr_find(struct idr *idp, int id)
 510{
 511	int n;
 512	struct idr_layer *p;
 513
 
 
 
 514	p = rcu_dereference_raw(idp->top);
 515	if (!p)
 516		return NULL;
 517	n = (p->layer+1) * IDR_BITS;
 518
 519	/* Mask off upper bits we don't use for the search. */
 520	id &= MAX_ID_MASK;
 521
 522	if (id >= (1 << n))
 523		return NULL;
 524	BUG_ON(n == 0);
 525
 526	while (n > 0 && p) {
 527		n -= IDR_BITS;
 528		BUG_ON(n != p->layer*IDR_BITS);
 529		p = rcu_dereference_raw(p->ary[(id >> n) & IDR_MASK]);
 530	}
 531	return((void *)p);
 532}
 533EXPORT_SYMBOL(idr_find);
 534
 535/**
 536 * idr_for_each - iterate through all stored pointers
 537 * @idp: idr handle
 538 * @fn: function to be called for each pointer
 539 * @data: data passed back to callback function
 540 *
 541 * Iterate over the pointers registered with the given idr.  The
 542 * callback function will be called for each pointer currently
 543 * registered, passing the id, the pointer and the data pointer passed
 544 * to this function.  It is not safe to modify the idr tree while in
 545 * the callback, so functions such as idr_get_new and idr_remove are
 546 * not allowed.
 547 *
 548 * We check the return of @fn each time. If it returns anything other
 549 * than %0, we break out and return that value.
 550 *
 551 * The caller must serialize idr_for_each() vs idr_get_new() and idr_remove().
 552 */
 553int idr_for_each(struct idr *idp,
 554		 int (*fn)(int id, void *p, void *data), void *data)
 555{
 556	int n, id, max, error = 0;
 557	struct idr_layer *p;
 558	struct idr_layer *pa[MAX_LEVEL];
 559	struct idr_layer **paa = &pa[0];
 560
 561	n = idp->layers * IDR_BITS;
 562	p = rcu_dereference_raw(idp->top);
 563	max = 1 << n;
 564
 565	id = 0;
 566	while (id < max) {
 
 567		while (n > 0 && p) {
 568			n -= IDR_BITS;
 569			*paa++ = p;
 570			p = rcu_dereference_raw(p->ary[(id >> n) & IDR_MASK]);
 
 571		}
 572
 573		if (p) {
 574			error = fn(id, (void *)p, data);
 575			if (error)
 576				break;
 577		}
 578
 579		id += 1 << n;
 580		while (n < fls(id)) {
 581			n += IDR_BITS;
 582			p = *--paa;
 583		}
 584	}
 585
 586	return error;
 587}
 588EXPORT_SYMBOL(idr_for_each);
 589
 590/**
 591 * idr_get_next - lookup next object of id to given id.
 592 * @idp: idr handle
 593 * @nextidp:  pointer to lookup key
 594 *
 595 * Returns pointer to registered object with id, which is next number to
 596 * given id. After being looked up, *@nextidp will be updated for the next
 597 * iteration.
 
 
 
 598 */
 599
 600void *idr_get_next(struct idr *idp, int *nextidp)
 601{
 602	struct idr_layer *p, *pa[MAX_LEVEL];
 603	struct idr_layer **paa = &pa[0];
 604	int id = *nextidp;
 605	int n, max;
 606
 607	/* find first ent */
 608	n = idp->layers * IDR_BITS;
 609	max = 1 << n;
 610	p = rcu_dereference_raw(idp->top);
 611	if (!p)
 612		return NULL;
 
 
 613
 614	while (id < max) {
 
 615		while (n > 0 && p) {
 616			n -= IDR_BITS;
 617			*paa++ = p;
 618			p = rcu_dereference_raw(p->ary[(id >> n) & IDR_MASK]);
 
 619		}
 620
 621		if (p) {
 622			*nextidp = id;
 623			return p;
 624		}
 625
 626		id += 1 << n;
 
 
 
 
 
 
 
 627		while (n < fls(id)) {
 628			n += IDR_BITS;
 629			p = *--paa;
 630		}
 631	}
 632	return NULL;
 633}
 634EXPORT_SYMBOL(idr_get_next);
 635
 636
 637/**
 638 * idr_replace - replace pointer for given id
 639 * @idp: idr handle
 640 * @ptr: pointer you want associated with the id
 641 * @id: lookup key
 642 *
 643 * Replace the pointer registered with an id and return the old value.
 644 * A %-ENOENT return indicates that @id was not found.
 645 * A %-EINVAL return indicates that @id was not within valid constraints.
 646 *
 647 * The caller must serialize with writers.
 648 */
 649void *idr_replace(struct idr *idp, void *ptr, int id)
 650{
 651	int n;
 652	struct idr_layer *p, *old_p;
 653
 
 
 
 654	p = idp->top;
 655	if (!p)
 656		return ERR_PTR(-EINVAL);
 657
 658	n = (p->layer+1) * IDR_BITS;
 
 659
 660	id &= MAX_ID_MASK;
 661
 662	if (id >= (1 << n))
 663		return ERR_PTR(-EINVAL);
 664
 665	n -= IDR_BITS;
 666	while ((n > 0) && p) {
 667		p = p->ary[(id >> n) & IDR_MASK];
 668		n -= IDR_BITS;
 669	}
 670
 671	n = id & IDR_MASK;
 672	if (unlikely(p == NULL || !test_bit(n, &p->bitmap)))
 673		return ERR_PTR(-ENOENT);
 674
 675	old_p = p->ary[n];
 676	rcu_assign_pointer(p->ary[n], ptr);
 677
 678	return old_p;
 679}
 680EXPORT_SYMBOL(idr_replace);
 681
 682void __init idr_init_cache(void)
 683{
 684	idr_layer_cache = kmem_cache_create("idr_layer_cache",
 685				sizeof(struct idr_layer), 0, SLAB_PANIC, NULL);
 686}
 687
 688/**
 689 * idr_init - initialize idr handle
 690 * @idp:	idr handle
 691 *
 692 * This function is use to set up the handle (@idp) that you will pass
 693 * to the rest of the functions.
 694 */
 695void idr_init(struct idr *idp)
 696{
 697	memset(idp, 0, sizeof(struct idr));
 698	spin_lock_init(&idp->lock);
 699}
 700EXPORT_SYMBOL(idr_init);
 701
 
 
 
 
 
 
 
 
 
 
 702
 703/**
 704 * DOC: IDA description
 705 * IDA - IDR based ID allocator
 706 *
 707 * This is id allocator without id -> pointer translation.  Memory
 708 * usage is much lower than full blown idr because each id only
 709 * occupies a bit.  ida uses a custom leaf node which contains
 710 * IDA_BITMAP_BITS slots.
 711 *
 712 * 2007-04-25  written by Tejun Heo <htejun@gmail.com>
 713 */
 714
 715static void free_bitmap(struct ida *ida, struct ida_bitmap *bitmap)
 716{
 717	unsigned long flags;
 718
 719	if (!ida->free_bitmap) {
 720		spin_lock_irqsave(&ida->idr.lock, flags);
 721		if (!ida->free_bitmap) {
 722			ida->free_bitmap = bitmap;
 723			bitmap = NULL;
 724		}
 725		spin_unlock_irqrestore(&ida->idr.lock, flags);
 726	}
 727
 728	kfree(bitmap);
 729}
 730
 731/**
 732 * ida_pre_get - reserve resources for ida allocation
 733 * @ida:	ida handle
 734 * @gfp_mask:	memory allocation flag
 735 *
 736 * This function should be called prior to locking and calling the
 737 * following function.  It preallocates enough memory to satisfy the
 738 * worst possible allocation.
 739 *
 740 * If the system is REALLY out of memory this function returns %0,
 741 * otherwise %1.
 742 */
 743int ida_pre_get(struct ida *ida, gfp_t gfp_mask)
 744{
 745	/* allocate idr_layers */
 746	if (!idr_pre_get(&ida->idr, gfp_mask))
 747		return 0;
 748
 749	/* allocate free_bitmap */
 750	if (!ida->free_bitmap) {
 751		struct ida_bitmap *bitmap;
 752
 753		bitmap = kmalloc(sizeof(struct ida_bitmap), gfp_mask);
 754		if (!bitmap)
 755			return 0;
 756
 757		free_bitmap(ida, bitmap);
 758	}
 759
 760	return 1;
 761}
 762EXPORT_SYMBOL(ida_pre_get);
 763
 764/**
 765 * ida_get_new_above - allocate new ID above or equal to a start id
 766 * @ida:	ida handle
 767 * @starting_id: id to start search at
 768 * @p_id:	pointer to the allocated handle
 769 *
 770 * Allocate new ID above or equal to @ida.  It should be called with
 771 * any required locks.
 772 *
 773 * If memory is required, it will return %-EAGAIN, you should unlock
 774 * and go back to the ida_pre_get() call.  If the ida is full, it will
 775 * return %-ENOSPC.
 776 *
 777 * @p_id returns a value in the range @starting_id ... %0x7fffffff.
 778 */
 779int ida_get_new_above(struct ida *ida, int starting_id, int *p_id)
 780{
 781	struct idr_layer *pa[MAX_LEVEL];
 782	struct ida_bitmap *bitmap;
 783	unsigned long flags;
 784	int idr_id = starting_id / IDA_BITMAP_BITS;
 785	int offset = starting_id % IDA_BITMAP_BITS;
 786	int t, id;
 787
 788 restart:
 789	/* get vacant slot */
 790	t = idr_get_empty_slot(&ida->idr, idr_id, pa);
 791	if (t < 0)
 792		return _idr_rc_to_errno(t);
 793
 794	if (t * IDA_BITMAP_BITS >= MAX_ID_BIT)
 795		return -ENOSPC;
 796
 797	if (t != idr_id)
 798		offset = 0;
 799	idr_id = t;
 800
 801	/* if bitmap isn't there, create a new one */
 802	bitmap = (void *)pa[0]->ary[idr_id & IDR_MASK];
 803	if (!bitmap) {
 804		spin_lock_irqsave(&ida->idr.lock, flags);
 805		bitmap = ida->free_bitmap;
 806		ida->free_bitmap = NULL;
 807		spin_unlock_irqrestore(&ida->idr.lock, flags);
 808
 809		if (!bitmap)
 810			return -EAGAIN;
 811
 812		memset(bitmap, 0, sizeof(struct ida_bitmap));
 813		rcu_assign_pointer(pa[0]->ary[idr_id & IDR_MASK],
 814				(void *)bitmap);
 815		pa[0]->count++;
 816	}
 817
 818	/* lookup for empty slot */
 819	t = find_next_zero_bit(bitmap->bitmap, IDA_BITMAP_BITS, offset);
 820	if (t == IDA_BITMAP_BITS) {
 821		/* no empty slot after offset, continue to the next chunk */
 822		idr_id++;
 823		offset = 0;
 824		goto restart;
 825	}
 826
 827	id = idr_id * IDA_BITMAP_BITS + t;
 828	if (id >= MAX_ID_BIT)
 829		return -ENOSPC;
 830
 831	__set_bit(t, bitmap->bitmap);
 832	if (++bitmap->nr_busy == IDA_BITMAP_BITS)
 833		idr_mark_full(pa, idr_id);
 834
 835	*p_id = id;
 836
 837	/* Each leaf node can handle nearly a thousand slots and the
 838	 * whole idea of ida is to have small memory foot print.
 839	 * Throw away extra resources one by one after each successful
 840	 * allocation.
 841	 */
 842	if (ida->idr.id_free_cnt || ida->free_bitmap) {
 843		struct idr_layer *p = get_from_free_list(&ida->idr);
 844		if (p)
 845			kmem_cache_free(idr_layer_cache, p);
 846	}
 847
 848	return 0;
 849}
 850EXPORT_SYMBOL(ida_get_new_above);
 851
 852/**
 853 * ida_get_new - allocate new ID
 854 * @ida:	idr handle
 855 * @p_id:	pointer to the allocated handle
 856 *
 857 * Allocate new ID.  It should be called with any required locks.
 858 *
 859 * If memory is required, it will return %-EAGAIN, you should unlock
 860 * and go back to the idr_pre_get() call.  If the idr is full, it will
 861 * return %-ENOSPC.
 862 *
 863 * @id returns a value in the range %0 ... %0x7fffffff.
 864 */
 865int ida_get_new(struct ida *ida, int *p_id)
 866{
 867	return ida_get_new_above(ida, 0, p_id);
 868}
 869EXPORT_SYMBOL(ida_get_new);
 870
 871/**
 872 * ida_remove - remove the given ID
 873 * @ida:	ida handle
 874 * @id:		ID to free
 875 */
 876void ida_remove(struct ida *ida, int id)
 877{
 878	struct idr_layer *p = ida->idr.top;
 879	int shift = (ida->idr.layers - 1) * IDR_BITS;
 880	int idr_id = id / IDA_BITMAP_BITS;
 881	int offset = id % IDA_BITMAP_BITS;
 882	int n;
 883	struct ida_bitmap *bitmap;
 884
 
 
 
 885	/* clear full bits while looking up the leaf idr_layer */
 886	while ((shift > 0) && p) {
 887		n = (idr_id >> shift) & IDR_MASK;
 888		__clear_bit(n, &p->bitmap);
 889		p = p->ary[n];
 890		shift -= IDR_BITS;
 891	}
 892
 893	if (p == NULL)
 894		goto err;
 895
 896	n = idr_id & IDR_MASK;
 897	__clear_bit(n, &p->bitmap);
 898
 899	bitmap = (void *)p->ary[n];
 900	if (!test_bit(offset, bitmap->bitmap))
 901		goto err;
 902
 903	/* update bitmap and remove it if empty */
 904	__clear_bit(offset, bitmap->bitmap);
 905	if (--bitmap->nr_busy == 0) {
 906		__set_bit(n, &p->bitmap);	/* to please idr_remove() */
 907		idr_remove(&ida->idr, idr_id);
 908		free_bitmap(ida, bitmap);
 909	}
 910
 911	return;
 912
 913 err:
 914	printk(KERN_WARNING
 915	       "ida_remove called for id=%d which is not allocated.\n", id);
 916}
 917EXPORT_SYMBOL(ida_remove);
 918
 919/**
 920 * ida_destroy - release all cached layers within an ida tree
 921 * @ida:		ida handle
 922 */
 923void ida_destroy(struct ida *ida)
 924{
 925	idr_destroy(&ida->idr);
 926	kfree(ida->free_bitmap);
 927}
 928EXPORT_SYMBOL(ida_destroy);
 929
 930/**
 931 * ida_simple_get - get a new id.
 932 * @ida: the (initialized) ida.
 933 * @start: the minimum id (inclusive, < 0x8000000)
 934 * @end: the maximum id (exclusive, < 0x8000000 or 0)
 935 * @gfp_mask: memory allocation flags
 936 *
 937 * Allocates an id in the range start <= id < end, or returns -ENOSPC.
 938 * On memory allocation failure, returns -ENOMEM.
 939 *
 940 * Use ida_simple_remove() to get rid of an id.
 941 */
 942int ida_simple_get(struct ida *ida, unsigned int start, unsigned int end,
 943		   gfp_t gfp_mask)
 944{
 945	int ret, id;
 946	unsigned int max;
 
 947
 948	BUG_ON((int)start < 0);
 949	BUG_ON((int)end < 0);
 950
 951	if (end == 0)
 952		max = 0x80000000;
 953	else {
 954		BUG_ON(end < start);
 955		max = end - 1;
 956	}
 957
 958again:
 959	if (!ida_pre_get(ida, gfp_mask))
 960		return -ENOMEM;
 961
 962	spin_lock(&simple_ida_lock);
 963	ret = ida_get_new_above(ida, start, &id);
 964	if (!ret) {
 965		if (id > max) {
 966			ida_remove(ida, id);
 967			ret = -ENOSPC;
 968		} else {
 969			ret = id;
 970		}
 971	}
 972	spin_unlock(&simple_ida_lock);
 973
 974	if (unlikely(ret == -EAGAIN))
 975		goto again;
 976
 977	return ret;
 978}
 979EXPORT_SYMBOL(ida_simple_get);
 980
 981/**
 982 * ida_simple_remove - remove an allocated id.
 983 * @ida: the (initialized) ida.
 984 * @id: the id returned by ida_simple_get.
 985 */
 986void ida_simple_remove(struct ida *ida, unsigned int id)
 987{
 
 
 988	BUG_ON((int)id < 0);
 989	spin_lock(&simple_ida_lock);
 990	ida_remove(ida, id);
 991	spin_unlock(&simple_ida_lock);
 992}
 993EXPORT_SYMBOL(ida_simple_remove);
 994
 995/**
 996 * ida_init - initialize ida handle
 997 * @ida:	ida handle
 998 *
 999 * This function is use to set up the handle (@ida) that you will pass
1000 * to the rest of the functions.
1001 */
1002void ida_init(struct ida *ida)
1003{
1004	memset(ida, 0, sizeof(struct ida));
1005	idr_init(&ida->idr);
1006
1007}
1008EXPORT_SYMBOL(ida_init);