Linux Audio

Check our new training course

Loading...
v4.6
   1/*
   2 * linux/kernel/time/clocksource.c
   3 *
   4 * This file contains the functions which manage clocksource drivers.
   5 *
   6 * Copyright (C) 2004, 2005 IBM, John Stultz (johnstul@us.ibm.com)
   7 *
   8 * This program is free software; you can redistribute it and/or modify
   9 * it under the terms of the GNU General Public License as published by
  10 * the Free Software Foundation; either version 2 of the License, or
  11 * (at your option) any later version.
  12 *
  13 * This program is distributed in the hope that it will be useful,
  14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  16 * GNU General Public License for more details.
  17 *
  18 * You should have received a copy of the GNU General Public License
  19 * along with this program; if not, write to the Free Software
  20 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  21 *
  22 * TODO WishList:
  23 *   o Allow clocksource drivers to be unregistered
  24 */
  25
  26#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  27
  28#include <linux/device.h>
  29#include <linux/clocksource.h>
 
  30#include <linux/init.h>
  31#include <linux/module.h>
  32#include <linux/sched.h> /* for spin_unlock_irq() using preempt_count() m68k */
  33#include <linux/tick.h>
  34#include <linux/kthread.h>
  35
  36#include "tick-internal.h"
  37#include "timekeeping_internal.h"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  38
  39/**
  40 * clocks_calc_mult_shift - calculate mult/shift factors for scaled math of clocks
  41 * @mult:	pointer to mult variable
  42 * @shift:	pointer to shift variable
  43 * @from:	frequency to convert from
  44 * @to:		frequency to convert to
  45 * @maxsec:	guaranteed runtime conversion range in seconds
  46 *
  47 * The function evaluates the shift/mult pair for the scaled math
  48 * operations of clocksources and clockevents.
  49 *
  50 * @to and @from are frequency values in HZ. For clock sources @to is
  51 * NSEC_PER_SEC == 1GHz and @from is the counter frequency. For clock
  52 * event @to is the counter frequency and @from is NSEC_PER_SEC.
  53 *
  54 * The @maxsec conversion range argument controls the time frame in
  55 * seconds which must be covered by the runtime conversion with the
  56 * calculated mult and shift factors. This guarantees that no 64bit
  57 * overflow happens when the input value of the conversion is
  58 * multiplied with the calculated mult factor. Larger ranges may
  59 * reduce the conversion accuracy by chosing smaller mult and shift
  60 * factors.
  61 */
  62void
  63clocks_calc_mult_shift(u32 *mult, u32 *shift, u32 from, u32 to, u32 maxsec)
  64{
  65	u64 tmp;
  66	u32 sft, sftacc= 32;
  67
  68	/*
  69	 * Calculate the shift factor which is limiting the conversion
  70	 * range:
  71	 */
  72	tmp = ((u64)maxsec * from) >> 32;
  73	while (tmp) {
  74		tmp >>=1;
  75		sftacc--;
  76	}
  77
  78	/*
  79	 * Find the conversion shift/mult pair which has the best
  80	 * accuracy and fits the maxsec conversion range:
  81	 */
  82	for (sft = 32; sft > 0; sft--) {
  83		tmp = (u64) to << sft;
  84		tmp += from / 2;
  85		do_div(tmp, from);
  86		if ((tmp >> sftacc) == 0)
  87			break;
  88	}
  89	*mult = tmp;
  90	*shift = sft;
  91}
  92
  93/*[Clocksource internal variables]---------
  94 * curr_clocksource:
  95 *	currently selected clocksource.
  96 * clocksource_list:
  97 *	linked list with the registered clocksources
  98 * clocksource_mutex:
  99 *	protects manipulations to curr_clocksource and the clocksource_list
 100 * override_name:
 101 *	Name of the user-specified clocksource.
 102 */
 103static struct clocksource *curr_clocksource;
 104static LIST_HEAD(clocksource_list);
 105static DEFINE_MUTEX(clocksource_mutex);
 106static char override_name[CS_NAME_LEN];
 107static int finished_booting;
 108
 109#ifdef CONFIG_CLOCKSOURCE_WATCHDOG
 110static void clocksource_watchdog_work(struct work_struct *work);
 111static void clocksource_select(void);
 112
 113static LIST_HEAD(watchdog_list);
 114static struct clocksource *watchdog;
 115static struct timer_list watchdog_timer;
 116static DECLARE_WORK(watchdog_work, clocksource_watchdog_work);
 117static DEFINE_SPINLOCK(watchdog_lock);
 118static int watchdog_running;
 119static atomic_t watchdog_reset_pending;
 120
 121static int clocksource_watchdog_kthread(void *data);
 122static void __clocksource_change_rating(struct clocksource *cs, int rating);
 123
 124/*
 125 * Interval: 0.5sec Threshold: 0.0625s
 126 */
 127#define WATCHDOG_INTERVAL (HZ >> 1)
 128#define WATCHDOG_THRESHOLD (NSEC_PER_SEC >> 4)
 129
 130static void clocksource_watchdog_work(struct work_struct *work)
 131{
 132	/*
 133	 * If kthread_run fails the next watchdog scan over the
 134	 * watchdog_list will find the unstable clock again.
 135	 */
 136	kthread_run(clocksource_watchdog_kthread, NULL, "kwatchdog");
 137}
 138
 139static void __clocksource_unstable(struct clocksource *cs)
 140{
 141	cs->flags &= ~(CLOCK_SOURCE_VALID_FOR_HRES | CLOCK_SOURCE_WATCHDOG);
 142	cs->flags |= CLOCK_SOURCE_UNSTABLE;
 143	if (finished_booting)
 144		schedule_work(&watchdog_work);
 145}
 146
 
 
 
 
 
 
 
 147/**
 148 * clocksource_mark_unstable - mark clocksource unstable via watchdog
 149 * @cs:		clocksource to be marked unstable
 150 *
 151 * This function is called instead of clocksource_change_rating from
 152 * cpu hotplug code to avoid a deadlock between the clocksource mutex
 153 * and the cpu hotplug mutex. It defers the update of the clocksource
 154 * to the watchdog thread.
 155 */
 156void clocksource_mark_unstable(struct clocksource *cs)
 157{
 158	unsigned long flags;
 159
 160	spin_lock_irqsave(&watchdog_lock, flags);
 161	if (!(cs->flags & CLOCK_SOURCE_UNSTABLE)) {
 162		if (list_empty(&cs->wd_list))
 163			list_add(&cs->wd_list, &watchdog_list);
 164		__clocksource_unstable(cs);
 165	}
 166	spin_unlock_irqrestore(&watchdog_lock, flags);
 167}
 168
 169static void clocksource_watchdog(unsigned long data)
 170{
 171	struct clocksource *cs;
 172	cycle_t csnow, wdnow, cslast, wdlast, delta;
 173	int64_t wd_nsec, cs_nsec;
 174	int next_cpu, reset_pending;
 175
 176	spin_lock(&watchdog_lock);
 177	if (!watchdog_running)
 178		goto out;
 179
 180	reset_pending = atomic_read(&watchdog_reset_pending);
 181
 182	list_for_each_entry(cs, &watchdog_list, wd_list) {
 183
 184		/* Clocksource already marked unstable? */
 185		if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
 186			if (finished_booting)
 187				schedule_work(&watchdog_work);
 188			continue;
 189		}
 190
 191		local_irq_disable();
 192		csnow = cs->read(cs);
 193		wdnow = watchdog->read(watchdog);
 194		local_irq_enable();
 195
 196		/* Clocksource initialized ? */
 197		if (!(cs->flags & CLOCK_SOURCE_WATCHDOG) ||
 198		    atomic_read(&watchdog_reset_pending)) {
 199			cs->flags |= CLOCK_SOURCE_WATCHDOG;
 200			cs->wd_last = wdnow;
 201			cs->cs_last = csnow;
 202			continue;
 203		}
 204
 205		delta = clocksource_delta(wdnow, cs->wd_last, watchdog->mask);
 206		wd_nsec = clocksource_cyc2ns(delta, watchdog->mult,
 207					     watchdog->shift);
 208
 209		delta = clocksource_delta(csnow, cs->cs_last, cs->mask);
 210		cs_nsec = clocksource_cyc2ns(delta, cs->mult, cs->shift);
 211		wdlast = cs->wd_last; /* save these in case we print them */
 212		cslast = cs->cs_last;
 213		cs->cs_last = csnow;
 214		cs->wd_last = wdnow;
 215
 216		if (atomic_read(&watchdog_reset_pending))
 217			continue;
 218
 219		/* Check the deviation from the watchdog clocksource. */
 220		if (abs(cs_nsec - wd_nsec) > WATCHDOG_THRESHOLD) {
 221			pr_warn("timekeeping watchdog on CPU%d: Marking clocksource '%s' as unstable because the skew is too large:\n",
 222				smp_processor_id(), cs->name);
 223			pr_warn("                      '%s' wd_now: %llx wd_last: %llx mask: %llx\n",
 224				watchdog->name, wdnow, wdlast, watchdog->mask);
 225			pr_warn("                      '%s' cs_now: %llx cs_last: %llx mask: %llx\n",
 226				cs->name, csnow, cslast, cs->mask);
 227			__clocksource_unstable(cs);
 228			continue;
 229		}
 230
 231		if (!(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES) &&
 232		    (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS) &&
 233		    (watchdog->flags & CLOCK_SOURCE_IS_CONTINUOUS)) {
 234			/* Mark it valid for high-res. */
 235			cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
 236
 237			/*
 238			 * clocksource_done_booting() will sort it if
 239			 * finished_booting is not set yet.
 
 240			 */
 241			if (!finished_booting)
 242				continue;
 243
 244			/*
 245			 * If this is not the current clocksource let
 246			 * the watchdog thread reselect it. Due to the
 247			 * change to high res this clocksource might
 248			 * be preferred now. If it is the current
 249			 * clocksource let the tick code know about
 250			 * that change.
 251			 */
 252			if (cs != curr_clocksource) {
 253				cs->flags |= CLOCK_SOURCE_RESELECT;
 254				schedule_work(&watchdog_work);
 255			} else {
 256				tick_clock_notify();
 257			}
 258		}
 259	}
 260
 261	/*
 262	 * We only clear the watchdog_reset_pending, when we did a
 263	 * full cycle through all clocksources.
 264	 */
 265	if (reset_pending)
 266		atomic_dec(&watchdog_reset_pending);
 267
 268	/*
 269	 * Cycle through CPUs to check if the CPUs stay synchronized
 270	 * to each other.
 271	 */
 272	next_cpu = cpumask_next(raw_smp_processor_id(), cpu_online_mask);
 273	if (next_cpu >= nr_cpu_ids)
 274		next_cpu = cpumask_first(cpu_online_mask);
 275	watchdog_timer.expires += WATCHDOG_INTERVAL;
 276	add_timer_on(&watchdog_timer, next_cpu);
 277out:
 278	spin_unlock(&watchdog_lock);
 279}
 280
 281static inline void clocksource_start_watchdog(void)
 282{
 283	if (watchdog_running || !watchdog || list_empty(&watchdog_list))
 284		return;
 285	init_timer(&watchdog_timer);
 286	watchdog_timer.function = clocksource_watchdog;
 287	watchdog_timer.expires = jiffies + WATCHDOG_INTERVAL;
 288	add_timer_on(&watchdog_timer, cpumask_first(cpu_online_mask));
 289	watchdog_running = 1;
 290}
 291
 292static inline void clocksource_stop_watchdog(void)
 293{
 294	if (!watchdog_running || (watchdog && !list_empty(&watchdog_list)))
 295		return;
 296	del_timer(&watchdog_timer);
 297	watchdog_running = 0;
 298}
 299
 300static inline void clocksource_reset_watchdog(void)
 301{
 302	struct clocksource *cs;
 303
 304	list_for_each_entry(cs, &watchdog_list, wd_list)
 305		cs->flags &= ~CLOCK_SOURCE_WATCHDOG;
 306}
 307
 308static void clocksource_resume_watchdog(void)
 309{
 310	atomic_inc(&watchdog_reset_pending);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 311}
 312
 313static void clocksource_enqueue_watchdog(struct clocksource *cs)
 314{
 315	unsigned long flags;
 316
 317	spin_lock_irqsave(&watchdog_lock, flags);
 318	if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) {
 319		/* cs is a clocksource to be watched. */
 320		list_add(&cs->wd_list, &watchdog_list);
 321		cs->flags &= ~CLOCK_SOURCE_WATCHDOG;
 322	} else {
 323		/* cs is a watchdog. */
 324		if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS)
 325			cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
 326	}
 327	spin_unlock_irqrestore(&watchdog_lock, flags);
 328}
 329
 330static void clocksource_select_watchdog(bool fallback)
 331{
 332	struct clocksource *cs, *old_wd;
 333	unsigned long flags;
 334
 335	spin_lock_irqsave(&watchdog_lock, flags);
 336	/* save current watchdog */
 337	old_wd = watchdog;
 338	if (fallback)
 339		watchdog = NULL;
 340
 341	list_for_each_entry(cs, &clocksource_list, list) {
 342		/* cs is a clocksource to be watched. */
 343		if (cs->flags & CLOCK_SOURCE_MUST_VERIFY)
 344			continue;
 345
 346		/* Skip current if we were requested for a fallback. */
 347		if (fallback && cs == old_wd)
 348			continue;
 349
 350		/* Pick the best watchdog. */
 351		if (!watchdog || cs->rating > watchdog->rating)
 352			watchdog = cs;
 
 
 
 353	}
 354	/* If we failed to find a fallback restore the old one. */
 355	if (!watchdog)
 356		watchdog = old_wd;
 357
 358	/* If we changed the watchdog we need to reset cycles. */
 359	if (watchdog != old_wd)
 360		clocksource_reset_watchdog();
 361
 362	/* Check if the watchdog timer needs to be started. */
 363	clocksource_start_watchdog();
 364	spin_unlock_irqrestore(&watchdog_lock, flags);
 365}
 366
 367static void clocksource_dequeue_watchdog(struct clocksource *cs)
 368{
 
 369	unsigned long flags;
 370
 371	spin_lock_irqsave(&watchdog_lock, flags);
 372	if (cs != watchdog) {
 373		if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) {
 374			/* cs is a watched clocksource. */
 375			list_del_init(&cs->wd_list);
 376			/* Check if the watchdog timer needs to be stopped. */
 377			clocksource_stop_watchdog();
 
 
 
 
 
 
 
 378		}
 379	}
 
 
 
 380	spin_unlock_irqrestore(&watchdog_lock, flags);
 381}
 382
 383static int __clocksource_watchdog_kthread(void)
 384{
 385	struct clocksource *cs, *tmp;
 386	unsigned long flags;
 387	LIST_HEAD(unstable);
 388	int select = 0;
 389
 
 390	spin_lock_irqsave(&watchdog_lock, flags);
 391	list_for_each_entry_safe(cs, tmp, &watchdog_list, wd_list) {
 392		if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
 393			list_del_init(&cs->wd_list);
 394			list_add(&cs->wd_list, &unstable);
 395			select = 1;
 396		}
 397		if (cs->flags & CLOCK_SOURCE_RESELECT) {
 398			cs->flags &= ~CLOCK_SOURCE_RESELECT;
 399			select = 1;
 400		}
 401	}
 402	/* Check if the watchdog timer needs to be stopped. */
 403	clocksource_stop_watchdog();
 404	spin_unlock_irqrestore(&watchdog_lock, flags);
 405
 406	/* Needs to be done outside of watchdog lock */
 407	list_for_each_entry_safe(cs, tmp, &unstable, wd_list) {
 408		list_del_init(&cs->wd_list);
 409		__clocksource_change_rating(cs, 0);
 410	}
 411	return select;
 412}
 413
 414static int clocksource_watchdog_kthread(void *data)
 415{
 416	mutex_lock(&clocksource_mutex);
 417	if (__clocksource_watchdog_kthread())
 418		clocksource_select();
 419	mutex_unlock(&clocksource_mutex);
 420	return 0;
 421}
 422
 423static bool clocksource_is_watchdog(struct clocksource *cs)
 424{
 425	return cs == watchdog;
 426}
 427
 428#else /* CONFIG_CLOCKSOURCE_WATCHDOG */
 429
 430static void clocksource_enqueue_watchdog(struct clocksource *cs)
 431{
 432	if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS)
 433		cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
 434}
 435
 436static void clocksource_select_watchdog(bool fallback) { }
 437static inline void clocksource_dequeue_watchdog(struct clocksource *cs) { }
 438static inline void clocksource_resume_watchdog(void) { }
 439static inline int __clocksource_watchdog_kthread(void) { return 0; }
 440static bool clocksource_is_watchdog(struct clocksource *cs) { return false; }
 441void clocksource_mark_unstable(struct clocksource *cs) { }
 442
 443#endif /* CONFIG_CLOCKSOURCE_WATCHDOG */
 444
 445/**
 446 * clocksource_suspend - suspend the clocksource(s)
 447 */
 448void clocksource_suspend(void)
 449{
 450	struct clocksource *cs;
 451
 452	list_for_each_entry_reverse(cs, &clocksource_list, list)
 453		if (cs->suspend)
 454			cs->suspend(cs);
 455}
 456
 457/**
 458 * clocksource_resume - resume the clocksource(s)
 459 */
 460void clocksource_resume(void)
 461{
 462	struct clocksource *cs;
 463
 464	list_for_each_entry(cs, &clocksource_list, list)
 465		if (cs->resume)
 466			cs->resume(cs);
 467
 468	clocksource_resume_watchdog();
 469}
 470
 471/**
 472 * clocksource_touch_watchdog - Update watchdog
 473 *
 474 * Update the watchdog after exception contexts such as kgdb so as not
 475 * to incorrectly trip the watchdog. This might fail when the kernel
 476 * was stopped in code which holds watchdog_lock.
 477 */
 478void clocksource_touch_watchdog(void)
 479{
 480	clocksource_resume_watchdog();
 481}
 482
 483/**
 484 * clocksource_max_adjustment- Returns max adjustment amount
 485 * @cs:         Pointer to clocksource
 486 *
 487 */
 488static u32 clocksource_max_adjustment(struct clocksource *cs)
 489{
 490	u64 ret;
 491	/*
 492	 * We won't try to correct for more than 11% adjustments (110,000 ppm),
 493	 */
 494	ret = (u64)cs->mult * 11;
 495	do_div(ret,100);
 496	return (u32)ret;
 497}
 498
 499/**
 500 * clocks_calc_max_nsecs - Returns maximum nanoseconds that can be converted
 501 * @mult:	cycle to nanosecond multiplier
 502 * @shift:	cycle to nanosecond divisor (power of two)
 503 * @maxadj:	maximum adjustment value to mult (~11%)
 504 * @mask:	bitmask for two's complement subtraction of non 64 bit counters
 505 * @max_cyc:	maximum cycle value before potential overflow (does not include
 506 *		any safety margin)
 507 *
 508 * NOTE: This function includes a safety margin of 50%, in other words, we
 509 * return half the number of nanoseconds the hardware counter can technically
 510 * cover. This is done so that we can potentially detect problems caused by
 511 * delayed timers or bad hardware, which might result in time intervals that
 512 * are larger than what the math used can handle without overflows.
 513 */
 514u64 clocks_calc_max_nsecs(u32 mult, u32 shift, u32 maxadj, u64 mask, u64 *max_cyc)
 515{
 516	u64 max_nsecs, max_cycles;
 517
 518	/*
 519	 * Calculate the maximum number of cycles that we can pass to the
 520	 * cyc2ns() function without overflowing a 64-bit result.
 
 
 
 
 
 
 
 
 
 
 521	 */
 522	max_cycles = ULLONG_MAX;
 523	do_div(max_cycles, mult+maxadj);
 524
 525	/*
 526	 * The actual maximum number of cycles we can defer the clocksource is
 527	 * determined by the minimum of max_cycles and mask.
 528	 * Note: Here we subtract the maxadj to make sure we don't sleep for
 529	 * too long if there's a large negative adjustment.
 530	 */
 531	max_cycles = min(max_cycles, mask);
 532	max_nsecs = clocksource_cyc2ns(max_cycles, mult - maxadj, shift);
 533
 534	/* return the max_cycles value as well if requested */
 535	if (max_cyc)
 536		*max_cyc = max_cycles;
 537
 538	/* Return 50% of the actual maximum, so we can detect bad values */
 539	max_nsecs >>= 1;
 540
 541	return max_nsecs;
 542}
 543
 
 
 544/**
 545 * clocksource_update_max_deferment - Updates the clocksource max_idle_ns & max_cycles
 546 * @cs:         Pointer to clocksource to be updated
 547 *
 
 
 
 
 548 */
 549static inline void clocksource_update_max_deferment(struct clocksource *cs)
 550{
 551	cs->max_idle_ns = clocks_calc_max_nsecs(cs->mult, cs->shift,
 552						cs->maxadj, cs->mask,
 553						&cs->max_cycles);
 554}
 555
 556#ifndef CONFIG_ARCH_USES_GETTIMEOFFSET
 557
 558static struct clocksource *clocksource_find_best(bool oneshot, bool skipcur)
 559{
 560	struct clocksource *cs;
 561
 562	if (!finished_booting || list_empty(&clocksource_list))
 563		return NULL;
 564
 565	/*
 566	 * We pick the clocksource with the highest rating. If oneshot
 567	 * mode is active, we pick the highres valid clocksource with
 568	 * the best rating.
 569	 */
 570	list_for_each_entry(cs, &clocksource_list, list) {
 571		if (skipcur && cs == curr_clocksource)
 572			continue;
 573		if (oneshot && !(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES))
 574			continue;
 575		return cs;
 576	}
 577	return NULL;
 578}
 579
 580static void __clocksource_select(bool skipcur)
 581{
 582	bool oneshot = tick_oneshot_mode_active();
 583	struct clocksource *best, *cs;
 584
 585	/* Find the best suitable clocksource */
 586	best = clocksource_find_best(oneshot, skipcur);
 587	if (!best)
 588		return;
 589
 
 590	/* Check for the override clocksource. */
 591	list_for_each_entry(cs, &clocksource_list, list) {
 592		if (skipcur && cs == curr_clocksource)
 593			continue;
 594		if (strcmp(cs->name, override_name) != 0)
 595			continue;
 596		/*
 597		 * Check to make sure we don't switch to a non-highres
 598		 * capable clocksource if the tick code is in oneshot
 599		 * mode (highres or nohz)
 600		 */
 601		if (!(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES) && oneshot) {
 
 602			/* Override clocksource cannot be used. */
 603			pr_warn("Override clocksource %s is not HRT compatible - cannot switch while in HRT/NOHZ mode\n",
 604				cs->name);
 
 605			override_name[0] = 0;
 606		} else
 607			/* Override clocksource can be used. */
 608			best = cs;
 609		break;
 610	}
 611
 612	if (curr_clocksource != best && !timekeeping_notify(best)) {
 613		pr_info("Switched to clocksource %s\n", best->name);
 614		curr_clocksource = best;
 
 615	}
 616}
 617
 618/**
 619 * clocksource_select - Select the best clocksource available
 620 *
 621 * Private function. Must hold clocksource_mutex when called.
 622 *
 623 * Select the clocksource with the best rating, or the clocksource,
 624 * which is selected by userspace override.
 625 */
 626static void clocksource_select(void)
 627{
 628	__clocksource_select(false);
 629}
 630
 631static void clocksource_select_fallback(void)
 632{
 633	__clocksource_select(true);
 634}
 635
 636#else /* !CONFIG_ARCH_USES_GETTIMEOFFSET */
 
 637static inline void clocksource_select(void) { }
 638static inline void clocksource_select_fallback(void) { }
 639
 640#endif
 641
 642/*
 643 * clocksource_done_booting - Called near the end of core bootup
 644 *
 645 * Hack to avoid lots of clocksource churn at boot time.
 646 * We use fs_initcall because we want this to start before
 647 * device_initcall but after subsys_initcall.
 648 */
 649static int __init clocksource_done_booting(void)
 650{
 651	mutex_lock(&clocksource_mutex);
 652	curr_clocksource = clocksource_default_clock();
 
 
 653	finished_booting = 1;
 
 654	/*
 655	 * Run the watchdog first to eliminate unstable clock sources
 656	 */
 657	__clocksource_watchdog_kthread();
 
 
 658	clocksource_select();
 659	mutex_unlock(&clocksource_mutex);
 660	return 0;
 661}
 662fs_initcall(clocksource_done_booting);
 663
 664/*
 665 * Enqueue the clocksource sorted by rating
 666 */
 667static void clocksource_enqueue(struct clocksource *cs)
 668{
 669	struct list_head *entry = &clocksource_list;
 670	struct clocksource *tmp;
 671
 672	list_for_each_entry(tmp, &clocksource_list, list)
 673		/* Keep track of the place, where to insert */
 674		if (tmp->rating >= cs->rating)
 675			entry = &tmp->list;
 676	list_add(&cs->list, entry);
 677}
 678
 679/**
 680 * __clocksource_update_freq_scale - Used update clocksource with new freq
 681 * @cs:		clocksource to be registered
 682 * @scale:	Scale factor multiplied against freq to get clocksource hz
 683 * @freq:	clocksource frequency (cycles per second) divided by scale
 684 *
 685 * This should only be called from the clocksource->enable() method.
 686 *
 687 * This *SHOULD NOT* be called directly! Please use the
 688 * __clocksource_update_freq_hz() or __clocksource_update_freq_khz() helper
 689 * functions.
 690 */
 691void __clocksource_update_freq_scale(struct clocksource *cs, u32 scale, u32 freq)
 692{
 693	u64 sec;
 694
 695	/*
 696	 * Default clocksources are *special* and self-define their mult/shift.
 697	 * But, you're not special, so you should specify a freq value.
 698	 */
 699	if (freq) {
 700		/*
 701		 * Calc the maximum number of seconds which we can run before
 702		 * wrapping around. For clocksources which have a mask > 32-bit
 703		 * we need to limit the max sleep time to have a good
 704		 * conversion precision. 10 minutes is still a reasonable
 705		 * amount. That results in a shift value of 24 for a
 706		 * clocksource with mask >= 40-bit and f >= 4GHz. That maps to
 707		 * ~ 0.06ppm granularity for NTP.
 708		 */
 709		sec = cs->mask;
 710		do_div(sec, freq);
 711		do_div(sec, scale);
 712		if (!sec)
 713			sec = 1;
 714		else if (sec > 600 && cs->mask > UINT_MAX)
 715			sec = 600;
 716
 717		clocks_calc_mult_shift(&cs->mult, &cs->shift, freq,
 718				       NSEC_PER_SEC / scale, sec * scale);
 719	}
 720	/*
 721	 * Ensure clocksources that have large 'mult' values don't overflow
 722	 * when adjusted.
 723	 */
 724	cs->maxadj = clocksource_max_adjustment(cs);
 725	while (freq && ((cs->mult + cs->maxadj < cs->mult)
 726		|| (cs->mult - cs->maxadj > cs->mult))) {
 727		cs->mult >>= 1;
 728		cs->shift--;
 729		cs->maxadj = clocksource_max_adjustment(cs);
 730	}
 731
 732	/*
 733	 * Only warn for *special* clocksources that self-define
 734	 * their mult/shift values and don't specify a freq.
 735	 */
 736	WARN_ONCE(cs->mult + cs->maxadj < cs->mult,
 737		"timekeeping: Clocksource %s might overflow on 11%% adjustment\n",
 738		cs->name);
 739
 740	clocksource_update_max_deferment(cs);
 741
 742	pr_info("%s: mask: 0x%llx max_cycles: 0x%llx, max_idle_ns: %lld ns\n",
 743		cs->name, cs->mask, cs->max_cycles, cs->max_idle_ns);
 744}
 745EXPORT_SYMBOL_GPL(__clocksource_update_freq_scale);
 746
 747/**
 748 * __clocksource_register_scale - Used to install new clocksources
 749 * @cs:		clocksource to be registered
 750 * @scale:	Scale factor multiplied against freq to get clocksource hz
 751 * @freq:	clocksource frequency (cycles per second) divided by scale
 752 *
 753 * Returns -EBUSY if registration fails, zero otherwise.
 754 *
 755 * This *SHOULD NOT* be called directly! Please use the
 756 * clocksource_register_hz() or clocksource_register_khz helper functions.
 757 */
 758int __clocksource_register_scale(struct clocksource *cs, u32 scale, u32 freq)
 759{
 760
 761	/* Initialize mult/shift and max_idle_ns */
 762	__clocksource_update_freq_scale(cs, scale, freq);
 763
 764	/* Add clocksource to the clocksource list */
 765	mutex_lock(&clocksource_mutex);
 766	clocksource_enqueue(cs);
 767	clocksource_enqueue_watchdog(cs);
 768	clocksource_select();
 769	clocksource_select_watchdog(false);
 770	mutex_unlock(&clocksource_mutex);
 771	return 0;
 772}
 773EXPORT_SYMBOL_GPL(__clocksource_register_scale);
 774
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 775static void __clocksource_change_rating(struct clocksource *cs, int rating)
 776{
 777	list_del(&cs->list);
 778	cs->rating = rating;
 779	clocksource_enqueue(cs);
 
 780}
 781
 782/**
 783 * clocksource_change_rating - Change the rating of a registered clocksource
 784 * @cs:		clocksource to be changed
 785 * @rating:	new rating
 786 */
 787void clocksource_change_rating(struct clocksource *cs, int rating)
 788{
 789	mutex_lock(&clocksource_mutex);
 790	__clocksource_change_rating(cs, rating);
 791	clocksource_select();
 792	clocksource_select_watchdog(false);
 793	mutex_unlock(&clocksource_mutex);
 794}
 795EXPORT_SYMBOL(clocksource_change_rating);
 796
 797/*
 798 * Unbind clocksource @cs. Called with clocksource_mutex held
 799 */
 800static int clocksource_unbind(struct clocksource *cs)
 801{
 802	if (clocksource_is_watchdog(cs)) {
 803		/* Select and try to install a replacement watchdog. */
 804		clocksource_select_watchdog(true);
 805		if (clocksource_is_watchdog(cs))
 806			return -EBUSY;
 807	}
 808
 809	if (cs == curr_clocksource) {
 810		/* Select and try to install a replacement clock source */
 811		clocksource_select_fallback();
 812		if (curr_clocksource == cs)
 813			return -EBUSY;
 814	}
 815	clocksource_dequeue_watchdog(cs);
 816	list_del_init(&cs->list);
 817	return 0;
 818}
 819
 820/**
 821 * clocksource_unregister - remove a registered clocksource
 822 * @cs:	clocksource to be unregistered
 823 */
 824int clocksource_unregister(struct clocksource *cs)
 825{
 826	int ret = 0;
 827
 828	mutex_lock(&clocksource_mutex);
 829	if (!list_empty(&cs->list))
 830		ret = clocksource_unbind(cs);
 
 831	mutex_unlock(&clocksource_mutex);
 832	return ret;
 833}
 834EXPORT_SYMBOL(clocksource_unregister);
 835
 836#ifdef CONFIG_SYSFS
 837/**
 838 * sysfs_show_current_clocksources - sysfs interface for current clocksource
 839 * @dev:	unused
 840 * @attr:	unused
 841 * @buf:	char buffer to be filled with clocksource list
 842 *
 843 * Provides sysfs interface for listing current clocksource.
 844 */
 845static ssize_t
 846sysfs_show_current_clocksources(struct device *dev,
 847				struct device_attribute *attr, char *buf)
 848{
 849	ssize_t count = 0;
 850
 851	mutex_lock(&clocksource_mutex);
 852	count = snprintf(buf, PAGE_SIZE, "%s\n", curr_clocksource->name);
 853	mutex_unlock(&clocksource_mutex);
 854
 855	return count;
 856}
 857
 858ssize_t sysfs_get_uname(const char *buf, char *dst, size_t cnt)
 859{
 860	size_t ret = cnt;
 861
 862	/* strings from sysfs write are not 0 terminated! */
 863	if (!cnt || cnt >= CS_NAME_LEN)
 864		return -EINVAL;
 865
 866	/* strip of \n: */
 867	if (buf[cnt-1] == '\n')
 868		cnt--;
 869	if (cnt > 0)
 870		memcpy(dst, buf, cnt);
 871	dst[cnt] = 0;
 872	return ret;
 873}
 874
 875/**
 876 * sysfs_override_clocksource - interface for manually overriding clocksource
 877 * @dev:	unused
 878 * @attr:	unused
 879 * @buf:	name of override clocksource
 880 * @count:	length of buffer
 881 *
 882 * Takes input from sysfs interface for manually overriding the default
 883 * clocksource selection.
 884 */
 885static ssize_t sysfs_override_clocksource(struct device *dev,
 886					  struct device_attribute *attr,
 887					  const char *buf, size_t count)
 888{
 889	ssize_t ret;
 890
 891	mutex_lock(&clocksource_mutex);
 892
 893	ret = sysfs_get_uname(buf, override_name, count);
 894	if (ret >= 0)
 895		clocksource_select();
 896
 897	mutex_unlock(&clocksource_mutex);
 
 
 898
 899	return ret;
 900}
 
 901
 902/**
 903 * sysfs_unbind_current_clocksource - interface for manually unbinding clocksource
 904 * @dev:	unused
 905 * @attr:	unused
 906 * @buf:	unused
 907 * @count:	length of buffer
 908 *
 909 * Takes input from sysfs interface for manually unbinding a clocksource.
 910 */
 911static ssize_t sysfs_unbind_clocksource(struct device *dev,
 912					struct device_attribute *attr,
 913					const char *buf, size_t count)
 914{
 915	struct clocksource *cs;
 916	char name[CS_NAME_LEN];
 917	ssize_t ret;
 918
 919	ret = sysfs_get_uname(buf, name, count);
 920	if (ret < 0)
 921		return ret;
 
 922
 923	ret = -ENODEV;
 924	mutex_lock(&clocksource_mutex);
 925	list_for_each_entry(cs, &clocksource_list, list) {
 926		if (strcmp(cs->name, name))
 927			continue;
 928		ret = clocksource_unbind(cs);
 929		break;
 930	}
 931	mutex_unlock(&clocksource_mutex);
 932
 933	return ret ? ret : count;
 934}
 935
 936/**
 937 * sysfs_show_available_clocksources - sysfs interface for listing clocksource
 938 * @dev:	unused
 939 * @attr:	unused
 940 * @buf:	char buffer to be filled with clocksource list
 941 *
 942 * Provides sysfs interface for listing registered clocksources
 943 */
 944static ssize_t
 945sysfs_show_available_clocksources(struct device *dev,
 946				  struct device_attribute *attr,
 947				  char *buf)
 948{
 949	struct clocksource *src;
 950	ssize_t count = 0;
 951
 952	mutex_lock(&clocksource_mutex);
 953	list_for_each_entry(src, &clocksource_list, list) {
 954		/*
 955		 * Don't show non-HRES clocksource if the tick code is
 956		 * in one shot mode (highres=on or nohz=on)
 957		 */
 958		if (!tick_oneshot_mode_active() ||
 959		    (src->flags & CLOCK_SOURCE_VALID_FOR_HRES))
 960			count += snprintf(buf + count,
 961				  max((ssize_t)PAGE_SIZE - count, (ssize_t)0),
 962				  "%s ", src->name);
 963	}
 964	mutex_unlock(&clocksource_mutex);
 965
 966	count += snprintf(buf + count,
 967			  max((ssize_t)PAGE_SIZE - count, (ssize_t)0), "\n");
 968
 969	return count;
 970}
 971
 972/*
 973 * Sysfs setup bits:
 974 */
 975static DEVICE_ATTR(current_clocksource, 0644, sysfs_show_current_clocksources,
 976		   sysfs_override_clocksource);
 977
 978static DEVICE_ATTR(unbind_clocksource, 0200, NULL, sysfs_unbind_clocksource);
 979
 980static DEVICE_ATTR(available_clocksource, 0444,
 981		   sysfs_show_available_clocksources, NULL);
 982
 983static struct bus_type clocksource_subsys = {
 984	.name = "clocksource",
 985	.dev_name = "clocksource",
 986};
 987
 988static struct device device_clocksource = {
 989	.id	= 0,
 990	.bus	= &clocksource_subsys,
 991};
 992
 993static int __init init_clocksource_sysfs(void)
 994{
 995	int error = subsys_system_register(&clocksource_subsys, NULL);
 996
 997	if (!error)
 998		error = device_register(&device_clocksource);
 999	if (!error)
1000		error = device_create_file(
1001				&device_clocksource,
1002				&dev_attr_current_clocksource);
1003	if (!error)
1004		error = device_create_file(&device_clocksource,
1005					   &dev_attr_unbind_clocksource);
1006	if (!error)
1007		error = device_create_file(
1008				&device_clocksource,
1009				&dev_attr_available_clocksource);
1010	return error;
1011}
1012
1013device_initcall(init_clocksource_sysfs);
1014#endif /* CONFIG_SYSFS */
1015
1016/**
1017 * boot_override_clocksource - boot clock override
1018 * @str:	override name
1019 *
1020 * Takes a clocksource= boot argument and uses it
1021 * as the clocksource override name.
1022 */
1023static int __init boot_override_clocksource(char* str)
1024{
1025	mutex_lock(&clocksource_mutex);
1026	if (str)
1027		strlcpy(override_name, str, sizeof(override_name));
1028	mutex_unlock(&clocksource_mutex);
1029	return 1;
1030}
1031
1032__setup("clocksource=", boot_override_clocksource);
1033
1034/**
1035 * boot_override_clock - Compatibility layer for deprecated boot option
1036 * @str:	override name
1037 *
1038 * DEPRECATED! Takes a clock= boot argument and uses it
1039 * as the clocksource override name
1040 */
1041static int __init boot_override_clock(char* str)
1042{
1043	if (!strcmp(str, "pmtmr")) {
1044		pr_warn("clock=pmtmr is deprecated - use clocksource=acpi_pm\n");
 
1045		return boot_override_clocksource("acpi_pm");
1046	}
1047	pr_warn("clock= boot option is deprecated - use clocksource=xyz\n");
 
1048	return boot_override_clocksource(str);
1049}
1050
1051__setup("clock=", boot_override_clock);
v3.1
  1/*
  2 * linux/kernel/time/clocksource.c
  3 *
  4 * This file contains the functions which manage clocksource drivers.
  5 *
  6 * Copyright (C) 2004, 2005 IBM, John Stultz (johnstul@us.ibm.com)
  7 *
  8 * This program is free software; you can redistribute it and/or modify
  9 * it under the terms of the GNU General Public License as published by
 10 * the Free Software Foundation; either version 2 of the License, or
 11 * (at your option) any later version.
 12 *
 13 * This program is distributed in the hope that it will be useful,
 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 16 * GNU General Public License for more details.
 17 *
 18 * You should have received a copy of the GNU General Public License
 19 * along with this program; if not, write to the Free Software
 20 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 21 *
 22 * TODO WishList:
 23 *   o Allow clocksource drivers to be unregistered
 24 */
 25
 
 
 
 26#include <linux/clocksource.h>
 27#include <linux/sysdev.h>
 28#include <linux/init.h>
 29#include <linux/module.h>
 30#include <linux/sched.h> /* for spin_unlock_irq() using preempt_count() m68k */
 31#include <linux/tick.h>
 32#include <linux/kthread.h>
 33
 34void timecounter_init(struct timecounter *tc,
 35		      const struct cyclecounter *cc,
 36		      u64 start_tstamp)
 37{
 38	tc->cc = cc;
 39	tc->cycle_last = cc->read(cc);
 40	tc->nsec = start_tstamp;
 41}
 42EXPORT_SYMBOL_GPL(timecounter_init);
 43
 44/**
 45 * timecounter_read_delta - get nanoseconds since last call of this function
 46 * @tc:         Pointer to time counter
 47 *
 48 * When the underlying cycle counter runs over, this will be handled
 49 * correctly as long as it does not run over more than once between
 50 * calls.
 51 *
 52 * The first call to this function for a new time counter initializes
 53 * the time tracking and returns an undefined result.
 54 */
 55static u64 timecounter_read_delta(struct timecounter *tc)
 56{
 57	cycle_t cycle_now, cycle_delta;
 58	u64 ns_offset;
 59
 60	/* read cycle counter: */
 61	cycle_now = tc->cc->read(tc->cc);
 62
 63	/* calculate the delta since the last timecounter_read_delta(): */
 64	cycle_delta = (cycle_now - tc->cycle_last) & tc->cc->mask;
 65
 66	/* convert to nanoseconds: */
 67	ns_offset = cyclecounter_cyc2ns(tc->cc, cycle_delta);
 68
 69	/* update time stamp of timecounter_read_delta() call: */
 70	tc->cycle_last = cycle_now;
 71
 72	return ns_offset;
 73}
 74
 75u64 timecounter_read(struct timecounter *tc)
 76{
 77	u64 nsec;
 78
 79	/* increment time by nanoseconds since last call */
 80	nsec = timecounter_read_delta(tc);
 81	nsec += tc->nsec;
 82	tc->nsec = nsec;
 83
 84	return nsec;
 85}
 86EXPORT_SYMBOL_GPL(timecounter_read);
 87
 88u64 timecounter_cyc2time(struct timecounter *tc,
 89			 cycle_t cycle_tstamp)
 90{
 91	u64 cycle_delta = (cycle_tstamp - tc->cycle_last) & tc->cc->mask;
 92	u64 nsec;
 93
 94	/*
 95	 * Instead of always treating cycle_tstamp as more recent
 96	 * than tc->cycle_last, detect when it is too far in the
 97	 * future and treat it as old time stamp instead.
 98	 */
 99	if (cycle_delta > tc->cc->mask / 2) {
100		cycle_delta = (tc->cycle_last - cycle_tstamp) & tc->cc->mask;
101		nsec = tc->nsec - cyclecounter_cyc2ns(tc->cc, cycle_delta);
102	} else {
103		nsec = cyclecounter_cyc2ns(tc->cc, cycle_delta) + tc->nsec;
104	}
105
106	return nsec;
107}
108EXPORT_SYMBOL_GPL(timecounter_cyc2time);
109
110/**
111 * clocks_calc_mult_shift - calculate mult/shift factors for scaled math of clocks
112 * @mult:	pointer to mult variable
113 * @shift:	pointer to shift variable
114 * @from:	frequency to convert from
115 * @to:		frequency to convert to
116 * @maxsec:	guaranteed runtime conversion range in seconds
117 *
118 * The function evaluates the shift/mult pair for the scaled math
119 * operations of clocksources and clockevents.
120 *
121 * @to and @from are frequency values in HZ. For clock sources @to is
122 * NSEC_PER_SEC == 1GHz and @from is the counter frequency. For clock
123 * event @to is the counter frequency and @from is NSEC_PER_SEC.
124 *
125 * The @maxsec conversion range argument controls the time frame in
126 * seconds which must be covered by the runtime conversion with the
127 * calculated mult and shift factors. This guarantees that no 64bit
128 * overflow happens when the input value of the conversion is
129 * multiplied with the calculated mult factor. Larger ranges may
130 * reduce the conversion accuracy by chosing smaller mult and shift
131 * factors.
132 */
133void
134clocks_calc_mult_shift(u32 *mult, u32 *shift, u32 from, u32 to, u32 maxsec)
135{
136	u64 tmp;
137	u32 sft, sftacc= 32;
138
139	/*
140	 * Calculate the shift factor which is limiting the conversion
141	 * range:
142	 */
143	tmp = ((u64)maxsec * from) >> 32;
144	while (tmp) {
145		tmp >>=1;
146		sftacc--;
147	}
148
149	/*
150	 * Find the conversion shift/mult pair which has the best
151	 * accuracy and fits the maxsec conversion range:
152	 */
153	for (sft = 32; sft > 0; sft--) {
154		tmp = (u64) to << sft;
155		tmp += from / 2;
156		do_div(tmp, from);
157		if ((tmp >> sftacc) == 0)
158			break;
159	}
160	*mult = tmp;
161	*shift = sft;
162}
163
164/*[Clocksource internal variables]---------
165 * curr_clocksource:
166 *	currently selected clocksource.
167 * clocksource_list:
168 *	linked list with the registered clocksources
169 * clocksource_mutex:
170 *	protects manipulations to curr_clocksource and the clocksource_list
171 * override_name:
172 *	Name of the user-specified clocksource.
173 */
174static struct clocksource *curr_clocksource;
175static LIST_HEAD(clocksource_list);
176static DEFINE_MUTEX(clocksource_mutex);
177static char override_name[32];
178static int finished_booting;
179
180#ifdef CONFIG_CLOCKSOURCE_WATCHDOG
181static void clocksource_watchdog_work(struct work_struct *work);
 
182
183static LIST_HEAD(watchdog_list);
184static struct clocksource *watchdog;
185static struct timer_list watchdog_timer;
186static DECLARE_WORK(watchdog_work, clocksource_watchdog_work);
187static DEFINE_SPINLOCK(watchdog_lock);
188static int watchdog_running;
 
189
190static int clocksource_watchdog_kthread(void *data);
191static void __clocksource_change_rating(struct clocksource *cs, int rating);
192
193/*
194 * Interval: 0.5sec Threshold: 0.0625s
195 */
196#define WATCHDOG_INTERVAL (HZ >> 1)
197#define WATCHDOG_THRESHOLD (NSEC_PER_SEC >> 4)
198
199static void clocksource_watchdog_work(struct work_struct *work)
200{
201	/*
202	 * If kthread_run fails the next watchdog scan over the
203	 * watchdog_list will find the unstable clock again.
204	 */
205	kthread_run(clocksource_watchdog_kthread, NULL, "kwatchdog");
206}
207
208static void __clocksource_unstable(struct clocksource *cs)
209{
210	cs->flags &= ~(CLOCK_SOURCE_VALID_FOR_HRES | CLOCK_SOURCE_WATCHDOG);
211	cs->flags |= CLOCK_SOURCE_UNSTABLE;
212	if (finished_booting)
213		schedule_work(&watchdog_work);
214}
215
216static void clocksource_unstable(struct clocksource *cs, int64_t delta)
217{
218	printk(KERN_WARNING "Clocksource %s unstable (delta = %Ld ns)\n",
219	       cs->name, delta);
220	__clocksource_unstable(cs);
221}
222
223/**
224 * clocksource_mark_unstable - mark clocksource unstable via watchdog
225 * @cs:		clocksource to be marked unstable
226 *
227 * This function is called instead of clocksource_change_rating from
228 * cpu hotplug code to avoid a deadlock between the clocksource mutex
229 * and the cpu hotplug mutex. It defers the update of the clocksource
230 * to the watchdog thread.
231 */
232void clocksource_mark_unstable(struct clocksource *cs)
233{
234	unsigned long flags;
235
236	spin_lock_irqsave(&watchdog_lock, flags);
237	if (!(cs->flags & CLOCK_SOURCE_UNSTABLE)) {
238		if (list_empty(&cs->wd_list))
239			list_add(&cs->wd_list, &watchdog_list);
240		__clocksource_unstable(cs);
241	}
242	spin_unlock_irqrestore(&watchdog_lock, flags);
243}
244
245static void clocksource_watchdog(unsigned long data)
246{
247	struct clocksource *cs;
248	cycle_t csnow, wdnow;
249	int64_t wd_nsec, cs_nsec;
250	int next_cpu;
251
252	spin_lock(&watchdog_lock);
253	if (!watchdog_running)
254		goto out;
255
 
 
256	list_for_each_entry(cs, &watchdog_list, wd_list) {
257
258		/* Clocksource already marked unstable? */
259		if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
260			if (finished_booting)
261				schedule_work(&watchdog_work);
262			continue;
263		}
264
265		local_irq_disable();
266		csnow = cs->read(cs);
267		wdnow = watchdog->read(watchdog);
268		local_irq_enable();
269
270		/* Clocksource initialized ? */
271		if (!(cs->flags & CLOCK_SOURCE_WATCHDOG)) {
 
272			cs->flags |= CLOCK_SOURCE_WATCHDOG;
273			cs->wd_last = wdnow;
274			cs->cs_last = csnow;
275			continue;
276		}
277
278		wd_nsec = clocksource_cyc2ns((wdnow - cs->wd_last) & watchdog->mask,
279					     watchdog->mult, watchdog->shift);
280
281		cs_nsec = clocksource_cyc2ns((csnow - cs->cs_last) &
282					     cs->mask, cs->mult, cs->shift);
 
 
 
283		cs->cs_last = csnow;
284		cs->wd_last = wdnow;
285
 
 
 
286		/* Check the deviation from the watchdog clocksource. */
287		if (abs(cs_nsec - wd_nsec) > WATCHDOG_THRESHOLD) {
288			clocksource_unstable(cs, cs_nsec - wd_nsec);
 
 
 
 
 
 
289			continue;
290		}
291
292		if (!(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES) &&
293		    (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS) &&
294		    (watchdog->flags & CLOCK_SOURCE_IS_CONTINUOUS)) {
 
295			cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
 
296			/*
297			 * We just marked the clocksource as highres-capable,
298			 * notify the rest of the system as well so that we
299			 * transition into high-res mode:
300			 */
301			tick_clock_notify();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
302		}
303	}
304
305	/*
 
 
 
 
 
 
 
306	 * Cycle through CPUs to check if the CPUs stay synchronized
307	 * to each other.
308	 */
309	next_cpu = cpumask_next(raw_smp_processor_id(), cpu_online_mask);
310	if (next_cpu >= nr_cpu_ids)
311		next_cpu = cpumask_first(cpu_online_mask);
312	watchdog_timer.expires += WATCHDOG_INTERVAL;
313	add_timer_on(&watchdog_timer, next_cpu);
314out:
315	spin_unlock(&watchdog_lock);
316}
317
318static inline void clocksource_start_watchdog(void)
319{
320	if (watchdog_running || !watchdog || list_empty(&watchdog_list))
321		return;
322	init_timer(&watchdog_timer);
323	watchdog_timer.function = clocksource_watchdog;
324	watchdog_timer.expires = jiffies + WATCHDOG_INTERVAL;
325	add_timer_on(&watchdog_timer, cpumask_first(cpu_online_mask));
326	watchdog_running = 1;
327}
328
329static inline void clocksource_stop_watchdog(void)
330{
331	if (!watchdog_running || (watchdog && !list_empty(&watchdog_list)))
332		return;
333	del_timer(&watchdog_timer);
334	watchdog_running = 0;
335}
336
337static inline void clocksource_reset_watchdog(void)
338{
339	struct clocksource *cs;
340
341	list_for_each_entry(cs, &watchdog_list, wd_list)
342		cs->flags &= ~CLOCK_SOURCE_WATCHDOG;
343}
344
345static void clocksource_resume_watchdog(void)
346{
347	unsigned long flags;
348
349	/*
350	 * We use trylock here to avoid a potential dead lock when
351	 * kgdb calls this code after the kernel has been stopped with
352	 * watchdog_lock held. When watchdog_lock is held we just
353	 * return and accept, that the watchdog might trigger and mark
354	 * the monitored clock source (usually TSC) unstable.
355	 *
356	 * This does not affect the other caller clocksource_resume()
357	 * because at this point the kernel is UP, interrupts are
358	 * disabled and nothing can hold watchdog_lock.
359	 */
360	if (!spin_trylock_irqsave(&watchdog_lock, flags))
361		return;
362	clocksource_reset_watchdog();
363	spin_unlock_irqrestore(&watchdog_lock, flags);
364}
365
366static void clocksource_enqueue_watchdog(struct clocksource *cs)
367{
368	unsigned long flags;
369
370	spin_lock_irqsave(&watchdog_lock, flags);
371	if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) {
372		/* cs is a clocksource to be watched. */
373		list_add(&cs->wd_list, &watchdog_list);
374		cs->flags &= ~CLOCK_SOURCE_WATCHDOG;
375	} else {
376		/* cs is a watchdog. */
377		if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS)
378			cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
379		/* Pick the best watchdog. */
380		if (!watchdog || cs->rating > watchdog->rating) {
381			watchdog = cs;
382			/* Reset watchdog cycles */
383			clocksource_reset_watchdog();
384		}
385	}
 
 
 
 
 
 
 
 
386	/* Check if the watchdog timer needs to be started. */
387	clocksource_start_watchdog();
388	spin_unlock_irqrestore(&watchdog_lock, flags);
389}
390
391static void clocksource_dequeue_watchdog(struct clocksource *cs)
392{
393	struct clocksource *tmp;
394	unsigned long flags;
395
396	spin_lock_irqsave(&watchdog_lock, flags);
397	if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) {
398		/* cs is a watched clocksource. */
399		list_del_init(&cs->wd_list);
400	} else if (cs == watchdog) {
401		/* Reset watchdog cycles */
402		clocksource_reset_watchdog();
403		/* Current watchdog is removed. Find an alternative. */
404		watchdog = NULL;
405		list_for_each_entry(tmp, &clocksource_list, list) {
406			if (tmp == cs || tmp->flags & CLOCK_SOURCE_MUST_VERIFY)
407				continue;
408			if (!watchdog || tmp->rating > watchdog->rating)
409				watchdog = tmp;
410		}
411	}
412	cs->flags &= ~CLOCK_SOURCE_WATCHDOG;
413	/* Check if the watchdog timer needs to be stopped. */
414	clocksource_stop_watchdog();
415	spin_unlock_irqrestore(&watchdog_lock, flags);
416}
417
418static int clocksource_watchdog_kthread(void *data)
419{
420	struct clocksource *cs, *tmp;
421	unsigned long flags;
422	LIST_HEAD(unstable);
 
423
424	mutex_lock(&clocksource_mutex);
425	spin_lock_irqsave(&watchdog_lock, flags);
426	list_for_each_entry_safe(cs, tmp, &watchdog_list, wd_list)
427		if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
428			list_del_init(&cs->wd_list);
429			list_add(&cs->wd_list, &unstable);
 
 
 
 
 
430		}
 
431	/* Check if the watchdog timer needs to be stopped. */
432	clocksource_stop_watchdog();
433	spin_unlock_irqrestore(&watchdog_lock, flags);
434
435	/* Needs to be done outside of watchdog lock */
436	list_for_each_entry_safe(cs, tmp, &unstable, wd_list) {
437		list_del_init(&cs->wd_list);
438		__clocksource_change_rating(cs, 0);
439	}
 
 
 
 
 
 
 
 
440	mutex_unlock(&clocksource_mutex);
441	return 0;
442}
443
 
 
 
 
 
444#else /* CONFIG_CLOCKSOURCE_WATCHDOG */
445
446static void clocksource_enqueue_watchdog(struct clocksource *cs)
447{
448	if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS)
449		cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
450}
451
 
452static inline void clocksource_dequeue_watchdog(struct clocksource *cs) { }
453static inline void clocksource_resume_watchdog(void) { }
454static inline int clocksource_watchdog_kthread(void *data) { return 0; }
 
 
455
456#endif /* CONFIG_CLOCKSOURCE_WATCHDOG */
457
458/**
459 * clocksource_suspend - suspend the clocksource(s)
460 */
461void clocksource_suspend(void)
462{
463	struct clocksource *cs;
464
465	list_for_each_entry_reverse(cs, &clocksource_list, list)
466		if (cs->suspend)
467			cs->suspend(cs);
468}
469
470/**
471 * clocksource_resume - resume the clocksource(s)
472 */
473void clocksource_resume(void)
474{
475	struct clocksource *cs;
476
477	list_for_each_entry(cs, &clocksource_list, list)
478		if (cs->resume)
479			cs->resume(cs);
480
481	clocksource_resume_watchdog();
482}
483
484/**
485 * clocksource_touch_watchdog - Update watchdog
486 *
487 * Update the watchdog after exception contexts such as kgdb so as not
488 * to incorrectly trip the watchdog. This might fail when the kernel
489 * was stopped in code which holds watchdog_lock.
490 */
491void clocksource_touch_watchdog(void)
492{
493	clocksource_resume_watchdog();
494}
495
496/**
497 * clocksource_max_deferment - Returns max time the clocksource can be deferred
498 * @cs:         Pointer to clocksource
499 *
500 */
501static u64 clocksource_max_deferment(struct clocksource *cs)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
502{
503	u64 max_nsecs, max_cycles;
504
505	/*
506	 * Calculate the maximum number of cycles that we can pass to the
507	 * cyc2ns function without overflowing a 64-bit signed result. The
508	 * maximum number of cycles is equal to ULLONG_MAX/cs->mult which
509	 * is equivalent to the below.
510	 * max_cycles < (2^63)/cs->mult
511	 * max_cycles < 2^(log2((2^63)/cs->mult))
512	 * max_cycles < 2^(log2(2^63) - log2(cs->mult))
513	 * max_cycles < 2^(63 - log2(cs->mult))
514	 * max_cycles < 1 << (63 - log2(cs->mult))
515	 * Please note that we add 1 to the result of the log2 to account for
516	 * any rounding errors, ensure the above inequality is satisfied and
517	 * no overflow will occur.
518	 */
519	max_cycles = 1ULL << (63 - (ilog2(cs->mult) + 1));
 
520
521	/*
522	 * The actual maximum number of cycles we can defer the clocksource is
523	 * determined by the minimum of max_cycles and cs->mask.
 
 
524	 */
525	max_cycles = min_t(u64, max_cycles, (u64) cs->mask);
526	max_nsecs = clocksource_cyc2ns(max_cycles, cs->mult, cs->shift);
527
528	/*
529	 * To ensure that the clocksource does not wrap whilst we are idle,
530	 * limit the time the clocksource can be deferred by 12.5%. Please
531	 * note a margin of 12.5% is used because this can be computed with
532	 * a shift, versus say 10% which would require division.
533	 */
534	return max_nsecs - (max_nsecs >> 5);
 
535}
536
537#ifndef CONFIG_ARCH_USES_GETTIMEOFFSET
538
539/**
540 * clocksource_select - Select the best clocksource available
 
541 *
542 * Private function. Must hold clocksource_mutex when called.
543 *
544 * Select the clocksource with the best rating, or the clocksource,
545 * which is selected by userspace override.
546 */
547static void clocksource_select(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
548{
 
549	struct clocksource *best, *cs;
550
551	if (!finished_booting || list_empty(&clocksource_list))
 
 
552		return;
553	/* First clocksource on the list has the best rating. */
554	best = list_first_entry(&clocksource_list, struct clocksource, list);
555	/* Check for the override clocksource. */
556	list_for_each_entry(cs, &clocksource_list, list) {
 
 
557		if (strcmp(cs->name, override_name) != 0)
558			continue;
559		/*
560		 * Check to make sure we don't switch to a non-highres
561		 * capable clocksource if the tick code is in oneshot
562		 * mode (highres or nohz)
563		 */
564		if (!(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES) &&
565		    tick_oneshot_mode_active()) {
566			/* Override clocksource cannot be used. */
567			printk(KERN_WARNING "Override clocksource %s is not "
568			       "HRT compatible. Cannot switch while in "
569			       "HRT/NOHZ mode\n", cs->name);
570			override_name[0] = 0;
571		} else
572			/* Override clocksource can be used. */
573			best = cs;
574		break;
575	}
576	if (curr_clocksource != best) {
577		printk(KERN_INFO "Switching to clocksource %s\n", best->name);
 
578		curr_clocksource = best;
579		timekeeping_notify(curr_clocksource);
580	}
581}
582
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
583#else /* !CONFIG_ARCH_USES_GETTIMEOFFSET */
584
585static inline void clocksource_select(void) { }
 
586
587#endif
588
589/*
590 * clocksource_done_booting - Called near the end of core bootup
591 *
592 * Hack to avoid lots of clocksource churn at boot time.
593 * We use fs_initcall because we want this to start before
594 * device_initcall but after subsys_initcall.
595 */
596static int __init clocksource_done_booting(void)
597{
598	mutex_lock(&clocksource_mutex);
599	curr_clocksource = clocksource_default_clock();
600	mutex_unlock(&clocksource_mutex);
601
602	finished_booting = 1;
603
604	/*
605	 * Run the watchdog first to eliminate unstable clock sources
606	 */
607	clocksource_watchdog_kthread(NULL);
608
609	mutex_lock(&clocksource_mutex);
610	clocksource_select();
611	mutex_unlock(&clocksource_mutex);
612	return 0;
613}
614fs_initcall(clocksource_done_booting);
615
616/*
617 * Enqueue the clocksource sorted by rating
618 */
619static void clocksource_enqueue(struct clocksource *cs)
620{
621	struct list_head *entry = &clocksource_list;
622	struct clocksource *tmp;
623
624	list_for_each_entry(tmp, &clocksource_list, list)
625		/* Keep track of the place, where to insert */
626		if (tmp->rating >= cs->rating)
627			entry = &tmp->list;
628	list_add(&cs->list, entry);
629}
630
631/**
632 * __clocksource_updatefreq_scale - Used update clocksource with new freq
633 * @t:		clocksource to be registered
634 * @scale:	Scale factor multiplied against freq to get clocksource hz
635 * @freq:	clocksource frequency (cycles per second) divided by scale
636 *
637 * This should only be called from the clocksource->enable() method.
638 *
639 * This *SHOULD NOT* be called directly! Please use the
640 * clocksource_updatefreq_hz() or clocksource_updatefreq_khz helper functions.
 
641 */
642void __clocksource_updatefreq_scale(struct clocksource *cs, u32 scale, u32 freq)
643{
644	u64 sec;
645
646	/*
647	 * Calc the maximum number of seconds which we can run before
648	 * wrapping around. For clocksources which have a mask > 32bit
649	 * we need to limit the max sleep time to have a good
650	 * conversion precision. 10 minutes is still a reasonable
651	 * amount. That results in a shift value of 24 for a
652	 * clocksource with mask >= 40bit and f >= 4GHz. That maps to
653	 * ~ 0.06ppm granularity for NTP. We apply the same 12.5%
654	 * margin as we do in clocksource_max_deferment()
655	 */
656	sec = (cs->mask - (cs->mask >> 5));
657	do_div(sec, freq);
658	do_div(sec, scale);
659	if (!sec)
660		sec = 1;
661	else if (sec > 600 && cs->mask > UINT_MAX)
662		sec = 600;
663
664	clocks_calc_mult_shift(&cs->mult, &cs->shift, freq,
665			       NSEC_PER_SEC / scale, sec * scale);
666	cs->max_idle_ns = clocksource_max_deferment(cs);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
667}
668EXPORT_SYMBOL_GPL(__clocksource_updatefreq_scale);
669
670/**
671 * __clocksource_register_scale - Used to install new clocksources
672 * @t:		clocksource to be registered
673 * @scale:	Scale factor multiplied against freq to get clocksource hz
674 * @freq:	clocksource frequency (cycles per second) divided by scale
675 *
676 * Returns -EBUSY if registration fails, zero otherwise.
677 *
678 * This *SHOULD NOT* be called directly! Please use the
679 * clocksource_register_hz() or clocksource_register_khz helper functions.
680 */
681int __clocksource_register_scale(struct clocksource *cs, u32 scale, u32 freq)
682{
683
684	/* Initialize mult/shift and max_idle_ns */
685	__clocksource_updatefreq_scale(cs, scale, freq);
686
687	/* Add clocksource to the clcoksource list */
688	mutex_lock(&clocksource_mutex);
689	clocksource_enqueue(cs);
690	clocksource_enqueue_watchdog(cs);
691	clocksource_select();
 
692	mutex_unlock(&clocksource_mutex);
693	return 0;
694}
695EXPORT_SYMBOL_GPL(__clocksource_register_scale);
696
697
698/**
699 * clocksource_register - Used to install new clocksources
700 * @t:		clocksource to be registered
701 *
702 * Returns -EBUSY if registration fails, zero otherwise.
703 */
704int clocksource_register(struct clocksource *cs)
705{
706	/* calculate max idle time permitted for this clocksource */
707	cs->max_idle_ns = clocksource_max_deferment(cs);
708
709	mutex_lock(&clocksource_mutex);
710	clocksource_enqueue(cs);
711	clocksource_enqueue_watchdog(cs);
712	clocksource_select();
713	mutex_unlock(&clocksource_mutex);
714	return 0;
715}
716EXPORT_SYMBOL(clocksource_register);
717
718static void __clocksource_change_rating(struct clocksource *cs, int rating)
719{
720	list_del(&cs->list);
721	cs->rating = rating;
722	clocksource_enqueue(cs);
723	clocksource_select();
724}
725
726/**
727 * clocksource_change_rating - Change the rating of a registered clocksource
 
 
728 */
729void clocksource_change_rating(struct clocksource *cs, int rating)
730{
731	mutex_lock(&clocksource_mutex);
732	__clocksource_change_rating(cs, rating);
 
 
733	mutex_unlock(&clocksource_mutex);
734}
735EXPORT_SYMBOL(clocksource_change_rating);
736
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
737/**
738 * clocksource_unregister - remove a registered clocksource
 
739 */
740void clocksource_unregister(struct clocksource *cs)
741{
 
 
742	mutex_lock(&clocksource_mutex);
743	clocksource_dequeue_watchdog(cs);
744	list_del(&cs->list);
745	clocksource_select();
746	mutex_unlock(&clocksource_mutex);
 
747}
748EXPORT_SYMBOL(clocksource_unregister);
749
750#ifdef CONFIG_SYSFS
751/**
752 * sysfs_show_current_clocksources - sysfs interface for current clocksource
753 * @dev:	unused
 
754 * @buf:	char buffer to be filled with clocksource list
755 *
756 * Provides sysfs interface for listing current clocksource.
757 */
758static ssize_t
759sysfs_show_current_clocksources(struct sys_device *dev,
760				struct sysdev_attribute *attr, char *buf)
761{
762	ssize_t count = 0;
763
764	mutex_lock(&clocksource_mutex);
765	count = snprintf(buf, PAGE_SIZE, "%s\n", curr_clocksource->name);
766	mutex_unlock(&clocksource_mutex);
767
768	return count;
769}
770
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
771/**
772 * sysfs_override_clocksource - interface for manually overriding clocksource
773 * @dev:	unused
 
774 * @buf:	name of override clocksource
775 * @count:	length of buffer
776 *
777 * Takes input from sysfs interface for manually overriding the default
778 * clocksource selection.
779 */
780static ssize_t sysfs_override_clocksource(struct sys_device *dev,
781					  struct sysdev_attribute *attr,
782					  const char *buf, size_t count)
783{
784	size_t ret = count;
 
 
 
 
 
 
785
786	/* strings from sysfs write are not 0 terminated! */
787	if (count >= sizeof(override_name))
788		return -EINVAL;
789
790	/* strip of \n: */
791	if (buf[count-1] == '\n')
792		count--;
793
794	mutex_lock(&clocksource_mutex);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
795
796	if (count > 0)
797		memcpy(override_name, buf, count);
798	override_name[count] = 0;
799	clocksource_select();
800
 
 
 
 
 
 
 
 
801	mutex_unlock(&clocksource_mutex);
802
803	return ret;
804}
805
806/**
807 * sysfs_show_available_clocksources - sysfs interface for listing clocksource
808 * @dev:	unused
 
809 * @buf:	char buffer to be filled with clocksource list
810 *
811 * Provides sysfs interface for listing registered clocksources
812 */
813static ssize_t
814sysfs_show_available_clocksources(struct sys_device *dev,
815				  struct sysdev_attribute *attr,
816				  char *buf)
817{
818	struct clocksource *src;
819	ssize_t count = 0;
820
821	mutex_lock(&clocksource_mutex);
822	list_for_each_entry(src, &clocksource_list, list) {
823		/*
824		 * Don't show non-HRES clocksource if the tick code is
825		 * in one shot mode (highres=on or nohz=on)
826		 */
827		if (!tick_oneshot_mode_active() ||
828		    (src->flags & CLOCK_SOURCE_VALID_FOR_HRES))
829			count += snprintf(buf + count,
830				  max((ssize_t)PAGE_SIZE - count, (ssize_t)0),
831				  "%s ", src->name);
832	}
833	mutex_unlock(&clocksource_mutex);
834
835	count += snprintf(buf + count,
836			  max((ssize_t)PAGE_SIZE - count, (ssize_t)0), "\n");
837
838	return count;
839}
840
841/*
842 * Sysfs setup bits:
843 */
844static SYSDEV_ATTR(current_clocksource, 0644, sysfs_show_current_clocksources,
845		   sysfs_override_clocksource);
846
847static SYSDEV_ATTR(available_clocksource, 0444,
 
 
848		   sysfs_show_available_clocksources, NULL);
849
850static struct sysdev_class clocksource_sysclass = {
851	.name = "clocksource",
 
852};
853
854static struct sys_device device_clocksource = {
855	.id	= 0,
856	.cls	= &clocksource_sysclass,
857};
858
859static int __init init_clocksource_sysfs(void)
860{
861	int error = sysdev_class_register(&clocksource_sysclass);
862
863	if (!error)
864		error = sysdev_register(&device_clocksource);
865	if (!error)
866		error = sysdev_create_file(
867				&device_clocksource,
868				&attr_current_clocksource);
 
 
 
869	if (!error)
870		error = sysdev_create_file(
871				&device_clocksource,
872				&attr_available_clocksource);
873	return error;
874}
875
876device_initcall(init_clocksource_sysfs);
877#endif /* CONFIG_SYSFS */
878
879/**
880 * boot_override_clocksource - boot clock override
881 * @str:	override name
882 *
883 * Takes a clocksource= boot argument and uses it
884 * as the clocksource override name.
885 */
886static int __init boot_override_clocksource(char* str)
887{
888	mutex_lock(&clocksource_mutex);
889	if (str)
890		strlcpy(override_name, str, sizeof(override_name));
891	mutex_unlock(&clocksource_mutex);
892	return 1;
893}
894
895__setup("clocksource=", boot_override_clocksource);
896
897/**
898 * boot_override_clock - Compatibility layer for deprecated boot option
899 * @str:	override name
900 *
901 * DEPRECATED! Takes a clock= boot argument and uses it
902 * as the clocksource override name
903 */
904static int __init boot_override_clock(char* str)
905{
906	if (!strcmp(str, "pmtmr")) {
907		printk("Warning: clock=pmtmr is deprecated. "
908			"Use clocksource=acpi_pm.\n");
909		return boot_override_clocksource("acpi_pm");
910	}
911	printk("Warning! clock= boot option is deprecated. "
912		"Use clocksource=xyz\n");
913	return boot_override_clocksource(str);
914}
915
916__setup("clock=", boot_override_clock);