Linux Audio

Check our new training course

Loading...
v4.6
  1/*
  2 * kernel/stop_machine.c
  3 *
  4 * Copyright (C) 2008, 2005	IBM Corporation.
  5 * Copyright (C) 2008, 2005	Rusty Russell rusty@rustcorp.com.au
  6 * Copyright (C) 2010		SUSE Linux Products GmbH
  7 * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
  8 *
  9 * This file is released under the GPLv2 and any later version.
 10 */
 11#include <linux/completion.h>
 12#include <linux/cpu.h>
 13#include <linux/init.h>
 14#include <linux/kthread.h>
 15#include <linux/export.h>
 16#include <linux/percpu.h>
 17#include <linux/sched.h>
 18#include <linux/stop_machine.h>
 19#include <linux/interrupt.h>
 20#include <linux/kallsyms.h>
 21#include <linux/smpboot.h>
 22#include <linux/atomic.h>
 23#include <linux/lglock.h>
 24
 25/*
 26 * Structure to determine completion condition and record errors.  May
 27 * be shared by works on different cpus.
 28 */
 29struct cpu_stop_done {
 30	atomic_t		nr_todo;	/* nr left to execute */
 
 31	int			ret;		/* collected return value */
 32	struct completion	completion;	/* fired if nr_todo reaches 0 */
 33};
 34
 35/* the actual stopper, one per every possible cpu, enabled on online cpus */
 36struct cpu_stopper {
 37	struct task_struct	*thread;
 38
 39	spinlock_t		lock;
 40	bool			enabled;	/* is this stopper enabled? */
 41	struct list_head	works;		/* list of pending works */
 42
 43	struct cpu_stop_work	stop_work;	/* for stop_cpus */
 44};
 45
 46static DEFINE_PER_CPU(struct cpu_stopper, cpu_stopper);
 47static bool stop_machine_initialized = false;
 48
 49/*
 50 * Avoids a race between stop_two_cpus and global stop_cpus, where
 51 * the stoppers could get queued up in reverse order, leading to
 52 * system deadlock. Using an lglock means stop_two_cpus remains
 53 * relatively cheap.
 54 */
 55DEFINE_STATIC_LGLOCK(stop_cpus_lock);
 56
 57static void cpu_stop_init_done(struct cpu_stop_done *done, unsigned int nr_todo)
 58{
 59	memset(done, 0, sizeof(*done));
 60	atomic_set(&done->nr_todo, nr_todo);
 61	init_completion(&done->completion);
 62}
 63
 64/* signal completion unless @done is NULL */
 65static void cpu_stop_signal_done(struct cpu_stop_done *done)
 66{
 67	if (atomic_dec_and_test(&done->nr_todo))
 68		complete(&done->completion);
 69}
 70
 71static void __cpu_stop_queue_work(struct cpu_stopper *stopper,
 72					struct cpu_stop_work *work)
 73{
 74	list_add_tail(&work->list, &stopper->works);
 75	wake_up_process(stopper->thread);
 76}
 77
 78/* queue @work to @stopper.  if offline, @work is completed immediately */
 79static bool cpu_stop_queue_work(unsigned int cpu, struct cpu_stop_work *work)
 
 80{
 81	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
 82	unsigned long flags;
 83	bool enabled;
 84
 85	spin_lock_irqsave(&stopper->lock, flags);
 86	enabled = stopper->enabled;
 87	if (enabled)
 88		__cpu_stop_queue_work(stopper, work);
 89	else if (work->done)
 90		cpu_stop_signal_done(work->done);
 91	spin_unlock_irqrestore(&stopper->lock, flags);
 92
 93	return enabled;
 
 
 
 
 
 
 94}
 95
 96/**
 97 * stop_one_cpu - stop a cpu
 98 * @cpu: cpu to stop
 99 * @fn: function to execute
100 * @arg: argument to @fn
101 *
102 * Execute @fn(@arg) on @cpu.  @fn is run in a process context with
103 * the highest priority preempting any task on the cpu and
104 * monopolizing it.  This function returns after the execution is
105 * complete.
106 *
107 * This function doesn't guarantee @cpu stays online till @fn
108 * completes.  If @cpu goes down in the middle, execution may happen
109 * partially or fully on different cpus.  @fn should either be ready
110 * for that or the caller should ensure that @cpu stays online until
111 * this function completes.
112 *
113 * CONTEXT:
114 * Might sleep.
115 *
116 * RETURNS:
117 * -ENOENT if @fn(@arg) was not executed because @cpu was offline;
118 * otherwise, the return value of @fn.
119 */
120int stop_one_cpu(unsigned int cpu, cpu_stop_fn_t fn, void *arg)
121{
122	struct cpu_stop_done done;
123	struct cpu_stop_work work = { .fn = fn, .arg = arg, .done = &done };
124
125	cpu_stop_init_done(&done, 1);
126	if (!cpu_stop_queue_work(cpu, &work))
127		return -ENOENT;
128	wait_for_completion(&done.completion);
129	return done.ret;
130}
131
132/* This controls the threads on each CPU. */
133enum multi_stop_state {
134	/* Dummy starting state for thread. */
135	MULTI_STOP_NONE,
136	/* Awaiting everyone to be scheduled. */
137	MULTI_STOP_PREPARE,
138	/* Disable interrupts. */
139	MULTI_STOP_DISABLE_IRQ,
140	/* Run the function */
141	MULTI_STOP_RUN,
142	/* Exit */
143	MULTI_STOP_EXIT,
144};
145
146struct multi_stop_data {
147	cpu_stop_fn_t		fn;
148	void			*data;
149	/* Like num_online_cpus(), but hotplug cpu uses us, so we need this. */
150	unsigned int		num_threads;
151	const struct cpumask	*active_cpus;
152
153	enum multi_stop_state	state;
154	atomic_t		thread_ack;
155};
156
157static void set_state(struct multi_stop_data *msdata,
158		      enum multi_stop_state newstate)
159{
160	/* Reset ack counter. */
161	atomic_set(&msdata->thread_ack, msdata->num_threads);
162	smp_wmb();
163	msdata->state = newstate;
164}
165
166/* Last one to ack a state moves to the next state. */
167static void ack_state(struct multi_stop_data *msdata)
168{
169	if (atomic_dec_and_test(&msdata->thread_ack))
170		set_state(msdata, msdata->state + 1);
171}
172
173/* This is the cpu_stop function which stops the CPU. */
174static int multi_cpu_stop(void *data)
175{
176	struct multi_stop_data *msdata = data;
177	enum multi_stop_state curstate = MULTI_STOP_NONE;
178	int cpu = smp_processor_id(), err = 0;
179	unsigned long flags;
180	bool is_active;
181
182	/*
183	 * When called from stop_machine_from_inactive_cpu(), irq might
184	 * already be disabled.  Save the state and restore it on exit.
185	 */
186	local_save_flags(flags);
187
188	if (!msdata->active_cpus)
189		is_active = cpu == cpumask_first(cpu_online_mask);
190	else
191		is_active = cpumask_test_cpu(cpu, msdata->active_cpus);
192
193	/* Simple state machine */
194	do {
195		/* Chill out and ensure we re-read multi_stop_state. */
196		cpu_relax();
197		if (msdata->state != curstate) {
198			curstate = msdata->state;
199			switch (curstate) {
200			case MULTI_STOP_DISABLE_IRQ:
201				local_irq_disable();
202				hard_irq_disable();
203				break;
204			case MULTI_STOP_RUN:
205				if (is_active)
206					err = msdata->fn(msdata->data);
207				break;
208			default:
209				break;
210			}
211			ack_state(msdata);
212		}
213	} while (curstate != MULTI_STOP_EXIT);
214
215	local_irq_restore(flags);
216	return err;
217}
218
219static int cpu_stop_queue_two_works(int cpu1, struct cpu_stop_work *work1,
220				    int cpu2, struct cpu_stop_work *work2)
221{
222	struct cpu_stopper *stopper1 = per_cpu_ptr(&cpu_stopper, cpu1);
223	struct cpu_stopper *stopper2 = per_cpu_ptr(&cpu_stopper, cpu2);
224	int err;
225
226	lg_double_lock(&stop_cpus_lock, cpu1, cpu2);
227	spin_lock_irq(&stopper1->lock);
228	spin_lock_nested(&stopper2->lock, SINGLE_DEPTH_NESTING);
229
230	err = -ENOENT;
231	if (!stopper1->enabled || !stopper2->enabled)
232		goto unlock;
233
234	err = 0;
235	__cpu_stop_queue_work(stopper1, work1);
236	__cpu_stop_queue_work(stopper2, work2);
237unlock:
238	spin_unlock(&stopper2->lock);
239	spin_unlock_irq(&stopper1->lock);
240	lg_double_unlock(&stop_cpus_lock, cpu1, cpu2);
241
242	return err;
243}
244/**
245 * stop_two_cpus - stops two cpus
246 * @cpu1: the cpu to stop
247 * @cpu2: the other cpu to stop
248 * @fn: function to execute
249 * @arg: argument to @fn
250 *
251 * Stops both the current and specified CPU and runs @fn on one of them.
252 *
253 * returns when both are completed.
254 */
255int stop_two_cpus(unsigned int cpu1, unsigned int cpu2, cpu_stop_fn_t fn, void *arg)
256{
257	struct cpu_stop_done done;
258	struct cpu_stop_work work1, work2;
259	struct multi_stop_data msdata;
260
261	msdata = (struct multi_stop_data){
262		.fn = fn,
263		.data = arg,
264		.num_threads = 2,
265		.active_cpus = cpumask_of(cpu1),
266	};
267
268	work1 = work2 = (struct cpu_stop_work){
269		.fn = multi_cpu_stop,
270		.arg = &msdata,
271		.done = &done
272	};
273
274	cpu_stop_init_done(&done, 2);
275	set_state(&msdata, MULTI_STOP_PREPARE);
276
277	if (cpu1 > cpu2)
278		swap(cpu1, cpu2);
279	if (cpu_stop_queue_two_works(cpu1, &work1, cpu2, &work2))
280		return -ENOENT;
281
282	wait_for_completion(&done.completion);
283	return done.ret;
284}
285
286/**
287 * stop_one_cpu_nowait - stop a cpu but don't wait for completion
288 * @cpu: cpu to stop
289 * @fn: function to execute
290 * @arg: argument to @fn
291 * @work_buf: pointer to cpu_stop_work structure
292 *
293 * Similar to stop_one_cpu() but doesn't wait for completion.  The
294 * caller is responsible for ensuring @work_buf is currently unused
295 * and will remain untouched until stopper starts executing @fn.
296 *
297 * CONTEXT:
298 * Don't care.
299 *
300 * RETURNS:
301 * true if cpu_stop_work was queued successfully and @fn will be called,
302 * false otherwise.
303 */
304bool stop_one_cpu_nowait(unsigned int cpu, cpu_stop_fn_t fn, void *arg,
305			struct cpu_stop_work *work_buf)
306{
307	*work_buf = (struct cpu_stop_work){ .fn = fn, .arg = arg, };
308	return cpu_stop_queue_work(cpu, work_buf);
309}
310
311/* static data for stop_cpus */
312static DEFINE_MUTEX(stop_cpus_mutex);
 
313
314static bool queue_stop_cpus_work(const struct cpumask *cpumask,
315				 cpu_stop_fn_t fn, void *arg,
316				 struct cpu_stop_done *done)
317{
318	struct cpu_stop_work *work;
319	unsigned int cpu;
320	bool queued = false;
321
322	/*
323	 * Disable preemption while queueing to avoid getting
324	 * preempted by a stopper which might wait for other stoppers
325	 * to enter @fn which can lead to deadlock.
326	 */
327	lg_global_lock(&stop_cpus_lock);
328	for_each_cpu(cpu, cpumask) {
329		work = &per_cpu(cpu_stopper.stop_work, cpu);
330		work->fn = fn;
331		work->arg = arg;
332		work->done = done;
333		if (cpu_stop_queue_work(cpu, work))
334			queued = true;
335	}
336	lg_global_unlock(&stop_cpus_lock);
337
338	return queued;
 
 
 
 
 
 
 
 
 
339}
340
341static int __stop_cpus(const struct cpumask *cpumask,
342		       cpu_stop_fn_t fn, void *arg)
343{
344	struct cpu_stop_done done;
345
346	cpu_stop_init_done(&done, cpumask_weight(cpumask));
347	if (!queue_stop_cpus_work(cpumask, fn, arg, &done))
348		return -ENOENT;
349	wait_for_completion(&done.completion);
350	return done.ret;
351}
352
353/**
354 * stop_cpus - stop multiple cpus
355 * @cpumask: cpus to stop
356 * @fn: function to execute
357 * @arg: argument to @fn
358 *
359 * Execute @fn(@arg) on online cpus in @cpumask.  On each target cpu,
360 * @fn is run in a process context with the highest priority
361 * preempting any task on the cpu and monopolizing it.  This function
362 * returns after all executions are complete.
363 *
364 * This function doesn't guarantee the cpus in @cpumask stay online
365 * till @fn completes.  If some cpus go down in the middle, execution
366 * on the cpu may happen partially or fully on different cpus.  @fn
367 * should either be ready for that or the caller should ensure that
368 * the cpus stay online until this function completes.
369 *
370 * All stop_cpus() calls are serialized making it safe for @fn to wait
371 * for all cpus to start executing it.
372 *
373 * CONTEXT:
374 * Might sleep.
375 *
376 * RETURNS:
377 * -ENOENT if @fn(@arg) was not executed at all because all cpus in
378 * @cpumask were offline; otherwise, 0 if all executions of @fn
379 * returned 0, any non zero return value if any returned non zero.
380 */
381int stop_cpus(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg)
382{
383	int ret;
384
385	/* static works are used, process one request at a time */
386	mutex_lock(&stop_cpus_mutex);
387	ret = __stop_cpus(cpumask, fn, arg);
388	mutex_unlock(&stop_cpus_mutex);
389	return ret;
390}
391
392/**
393 * try_stop_cpus - try to stop multiple cpus
394 * @cpumask: cpus to stop
395 * @fn: function to execute
396 * @arg: argument to @fn
397 *
398 * Identical to stop_cpus() except that it fails with -EAGAIN if
399 * someone else is already using the facility.
400 *
401 * CONTEXT:
402 * Might sleep.
403 *
404 * RETURNS:
405 * -EAGAIN if someone else is already stopping cpus, -ENOENT if
406 * @fn(@arg) was not executed at all because all cpus in @cpumask were
407 * offline; otherwise, 0 if all executions of @fn returned 0, any non
408 * zero return value if any returned non zero.
409 */
410int try_stop_cpus(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg)
411{
412	int ret;
413
414	/* static works are used, process one request at a time */
415	if (!mutex_trylock(&stop_cpus_mutex))
416		return -EAGAIN;
417	ret = __stop_cpus(cpumask, fn, arg);
418	mutex_unlock(&stop_cpus_mutex);
419	return ret;
420}
421
422static int cpu_stop_should_run(unsigned int cpu)
423{
424	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
425	unsigned long flags;
426	int run;
427
428	spin_lock_irqsave(&stopper->lock, flags);
429	run = !list_empty(&stopper->works);
430	spin_unlock_irqrestore(&stopper->lock, flags);
431	return run;
432}
433
434static void cpu_stopper_thread(unsigned int cpu)
435{
436	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
437	struct cpu_stop_work *work;
 
438
439repeat:
 
 
 
 
 
 
 
440	work = NULL;
441	spin_lock_irq(&stopper->lock);
442	if (!list_empty(&stopper->works)) {
443		work = list_first_entry(&stopper->works,
444					struct cpu_stop_work, list);
445		list_del_init(&work->list);
446	}
447	spin_unlock_irq(&stopper->lock);
448
449	if (work) {
450		cpu_stop_fn_t fn = work->fn;
451		void *arg = work->arg;
452		struct cpu_stop_done *done = work->done;
453		int ret;
 
 
 
 
 
454
455		/* cpu stop callbacks must not sleep, make in_atomic() == T */
456		preempt_count_inc();
457		ret = fn(arg);
458		if (done) {
459			if (ret)
460				done->ret = ret;
461			cpu_stop_signal_done(done);
462		}
463		preempt_count_dec();
464		WARN_ONCE(preempt_count(),
465			  "cpu_stop: %pf(%p) leaked preempt count\n", fn, arg);
466		goto repeat;
467	}
468}
 
 
 
469
470void stop_machine_park(int cpu)
471{
472	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
473	/*
474	 * Lockless. cpu_stopper_thread() will take stopper->lock and flush
475	 * the pending works before it parks, until then it is fine to queue
476	 * the new works.
477	 */
478	stopper->enabled = false;
479	kthread_park(stopper->thread);
480}
481
482extern void sched_set_stop_task(int cpu, struct task_struct *stop);
483
484static void cpu_stop_create(unsigned int cpu)
485{
486	sched_set_stop_task(cpu, per_cpu(cpu_stopper.thread, cpu));
487}
488
489static void cpu_stop_park(unsigned int cpu)
490{
 
491	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
 
492
493	WARN_ON(!list_empty(&stopper->works));
494}
495
496void stop_machine_unpark(int cpu)
497{
498	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
499
500	stopper->enabled = true;
501	kthread_unpark(stopper->thread);
502}
503
504static struct smp_hotplug_thread cpu_stop_threads = {
505	.store			= &cpu_stopper.thread,
506	.thread_should_run	= cpu_stop_should_run,
507	.thread_fn		= cpu_stopper_thread,
508	.thread_comm		= "migration/%u",
509	.create			= cpu_stop_create,
510	.park			= cpu_stop_park,
511	.selfparking		= true,
512};
513
514static int __init cpu_stop_init(void)
515{
 
516	unsigned int cpu;
 
517
518	for_each_possible_cpu(cpu) {
519		struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
520
521		spin_lock_init(&stopper->lock);
522		INIT_LIST_HEAD(&stopper->works);
523	}
524
525	BUG_ON(smpboot_register_percpu_thread(&cpu_stop_threads));
526	stop_machine_unpark(raw_smp_processor_id());
527	stop_machine_initialized = true;
 
 
 
 
528	return 0;
529}
530early_initcall(cpu_stop_init);
531
532static int __stop_machine(cpu_stop_fn_t fn, void *data, const struct cpumask *cpus)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
533{
534	struct multi_stop_data msdata = {
535		.fn = fn,
536		.data = data,
537		.num_threads = num_online_cpus(),
538		.active_cpus = cpus,
539	};
540
541	if (!stop_machine_initialized) {
542		/*
543		 * Handle the case where stop_machine() is called
544		 * early in boot before stop_machine() has been
545		 * initialized.
546		 */
547		unsigned long flags;
548		int ret;
549
550		WARN_ON_ONCE(msdata.num_threads != 1);
551
552		local_irq_save(flags);
553		hard_irq_disable();
554		ret = (*fn)(data);
555		local_irq_restore(flags);
556
557		return ret;
558	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
559
560	/* Set the initial state and stop all online cpus. */
561	set_state(&msdata, MULTI_STOP_PREPARE);
562	return stop_cpus(cpu_online_mask, multi_cpu_stop, &msdata);
563}
564
565int stop_machine(cpu_stop_fn_t fn, void *data, const struct cpumask *cpus)
566{
567	int ret;
568
569	/* No CPUs can come up or down during this. */
570	get_online_cpus();
571	ret = __stop_machine(fn, data, cpus);
572	put_online_cpus();
573	return ret;
574}
575EXPORT_SYMBOL_GPL(stop_machine);
576
577/**
578 * stop_machine_from_inactive_cpu - stop_machine() from inactive CPU
579 * @fn: the function to run
580 * @data: the data ptr for the @fn()
581 * @cpus: the cpus to run the @fn() on (NULL = any online cpu)
582 *
583 * This is identical to stop_machine() but can be called from a CPU which
584 * is not active.  The local CPU is in the process of hotplug (so no other
585 * CPU hotplug can start) and not marked active and doesn't have enough
586 * context to sleep.
587 *
588 * This function provides stop_machine() functionality for such state by
589 * using busy-wait for synchronization and executing @fn directly for local
590 * CPU.
591 *
592 * CONTEXT:
593 * Local CPU is inactive.  Temporarily stops all active CPUs.
594 *
595 * RETURNS:
596 * 0 if all executions of @fn returned 0, any non zero return value if any
597 * returned non zero.
598 */
599int stop_machine_from_inactive_cpu(cpu_stop_fn_t fn, void *data,
600				  const struct cpumask *cpus)
601{
602	struct multi_stop_data msdata = { .fn = fn, .data = data,
603					    .active_cpus = cpus };
604	struct cpu_stop_done done;
605	int ret;
606
607	/* Local CPU must be inactive and CPU hotplug in progress. */
608	BUG_ON(cpu_active(raw_smp_processor_id()));
609	msdata.num_threads = num_active_cpus() + 1;	/* +1 for local */
610
611	/* No proper task established and can't sleep - busy wait for lock. */
612	while (!mutex_trylock(&stop_cpus_mutex))
613		cpu_relax();
614
615	/* Schedule work on other CPUs and execute directly for local CPU */
616	set_state(&msdata, MULTI_STOP_PREPARE);
617	cpu_stop_init_done(&done, num_active_cpus());
618	queue_stop_cpus_work(cpu_active_mask, multi_cpu_stop, &msdata,
619			     &done);
620	ret = multi_cpu_stop(&msdata);
621
622	/* Busy wait for completion. */
623	while (!completion_done(&done.completion))
624		cpu_relax();
625
626	mutex_unlock(&stop_cpus_mutex);
627	return ret ?: done.ret;
628}
v3.1
  1/*
  2 * kernel/stop_machine.c
  3 *
  4 * Copyright (C) 2008, 2005	IBM Corporation.
  5 * Copyright (C) 2008, 2005	Rusty Russell rusty@rustcorp.com.au
  6 * Copyright (C) 2010		SUSE Linux Products GmbH
  7 * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
  8 *
  9 * This file is released under the GPLv2 and any later version.
 10 */
 11#include <linux/completion.h>
 12#include <linux/cpu.h>
 13#include <linux/init.h>
 14#include <linux/kthread.h>
 15#include <linux/module.h>
 16#include <linux/percpu.h>
 17#include <linux/sched.h>
 18#include <linux/stop_machine.h>
 19#include <linux/interrupt.h>
 20#include <linux/kallsyms.h>
 21
 22#include <linux/atomic.h>
 
 23
 24/*
 25 * Structure to determine completion condition and record errors.  May
 26 * be shared by works on different cpus.
 27 */
 28struct cpu_stop_done {
 29	atomic_t		nr_todo;	/* nr left to execute */
 30	bool			executed;	/* actually executed? */
 31	int			ret;		/* collected return value */
 32	struct completion	completion;	/* fired if nr_todo reaches 0 */
 33};
 34
 35/* the actual stopper, one per every possible cpu, enabled on online cpus */
 36struct cpu_stopper {
 
 
 37	spinlock_t		lock;
 38	bool			enabled;	/* is this stopper enabled? */
 39	struct list_head	works;		/* list of pending works */
 40	struct task_struct	*thread;	/* stopper thread */
 
 41};
 42
 43static DEFINE_PER_CPU(struct cpu_stopper, cpu_stopper);
 
 
 
 
 
 
 
 
 
 44
 45static void cpu_stop_init_done(struct cpu_stop_done *done, unsigned int nr_todo)
 46{
 47	memset(done, 0, sizeof(*done));
 48	atomic_set(&done->nr_todo, nr_todo);
 49	init_completion(&done->completion);
 50}
 51
 52/* signal completion unless @done is NULL */
 53static void cpu_stop_signal_done(struct cpu_stop_done *done, bool executed)
 54{
 55	if (done) {
 56		if (executed)
 57			done->executed = true;
 58		if (atomic_dec_and_test(&done->nr_todo))
 59			complete(&done->completion);
 60	}
 
 
 
 61}
 62
 63/* queue @work to @stopper.  if offline, @work is completed immediately */
 64static void cpu_stop_queue_work(struct cpu_stopper *stopper,
 65				struct cpu_stop_work *work)
 66{
 
 67	unsigned long flags;
 
 68
 69	spin_lock_irqsave(&stopper->lock, flags);
 
 
 
 
 
 
 70
 71	if (stopper->enabled) {
 72		list_add_tail(&work->list, &stopper->works);
 73		wake_up_process(stopper->thread);
 74	} else
 75		cpu_stop_signal_done(work->done, false);
 76
 77	spin_unlock_irqrestore(&stopper->lock, flags);
 78}
 79
 80/**
 81 * stop_one_cpu - stop a cpu
 82 * @cpu: cpu to stop
 83 * @fn: function to execute
 84 * @arg: argument to @fn
 85 *
 86 * Execute @fn(@arg) on @cpu.  @fn is run in a process context with
 87 * the highest priority preempting any task on the cpu and
 88 * monopolizing it.  This function returns after the execution is
 89 * complete.
 90 *
 91 * This function doesn't guarantee @cpu stays online till @fn
 92 * completes.  If @cpu goes down in the middle, execution may happen
 93 * partially or fully on different cpus.  @fn should either be ready
 94 * for that or the caller should ensure that @cpu stays online until
 95 * this function completes.
 96 *
 97 * CONTEXT:
 98 * Might sleep.
 99 *
100 * RETURNS:
101 * -ENOENT if @fn(@arg) was not executed because @cpu was offline;
102 * otherwise, the return value of @fn.
103 */
104int stop_one_cpu(unsigned int cpu, cpu_stop_fn_t fn, void *arg)
105{
106	struct cpu_stop_done done;
107	struct cpu_stop_work work = { .fn = fn, .arg = arg, .done = &done };
108
109	cpu_stop_init_done(&done, 1);
110	cpu_stop_queue_work(&per_cpu(cpu_stopper, cpu), &work);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
111	wait_for_completion(&done.completion);
112	return done.executed ? done.ret : -ENOENT;
113}
114
115/**
116 * stop_one_cpu_nowait - stop a cpu but don't wait for completion
117 * @cpu: cpu to stop
118 * @fn: function to execute
119 * @arg: argument to @fn
 
120 *
121 * Similar to stop_one_cpu() but doesn't wait for completion.  The
122 * caller is responsible for ensuring @work_buf is currently unused
123 * and will remain untouched until stopper starts executing @fn.
124 *
125 * CONTEXT:
126 * Don't care.
 
 
 
 
127 */
128void stop_one_cpu_nowait(unsigned int cpu, cpu_stop_fn_t fn, void *arg,
129			struct cpu_stop_work *work_buf)
130{
131	*work_buf = (struct cpu_stop_work){ .fn = fn, .arg = arg, };
132	cpu_stop_queue_work(&per_cpu(cpu_stopper, cpu), work_buf);
133}
134
135/* static data for stop_cpus */
136static DEFINE_MUTEX(stop_cpus_mutex);
137static DEFINE_PER_CPU(struct cpu_stop_work, stop_cpus_work);
138
139static void queue_stop_cpus_work(const struct cpumask *cpumask,
140				 cpu_stop_fn_t fn, void *arg,
141				 struct cpu_stop_done *done)
142{
143	struct cpu_stop_work *work;
144	unsigned int cpu;
 
145
146	/* initialize works and done */
 
 
 
 
 
147	for_each_cpu(cpu, cpumask) {
148		work = &per_cpu(stop_cpus_work, cpu);
149		work->fn = fn;
150		work->arg = arg;
151		work->done = done;
 
 
152	}
 
153
154	/*
155	 * Disable preemption while queueing to avoid getting
156	 * preempted by a stopper which might wait for other stoppers
157	 * to enter @fn which can lead to deadlock.
158	 */
159	preempt_disable();
160	for_each_cpu(cpu, cpumask)
161		cpu_stop_queue_work(&per_cpu(cpu_stopper, cpu),
162				    &per_cpu(stop_cpus_work, cpu));
163	preempt_enable();
164}
165
166static int __stop_cpus(const struct cpumask *cpumask,
167		       cpu_stop_fn_t fn, void *arg)
168{
169	struct cpu_stop_done done;
170
171	cpu_stop_init_done(&done, cpumask_weight(cpumask));
172	queue_stop_cpus_work(cpumask, fn, arg, &done);
 
173	wait_for_completion(&done.completion);
174	return done.executed ? done.ret : -ENOENT;
175}
176
177/**
178 * stop_cpus - stop multiple cpus
179 * @cpumask: cpus to stop
180 * @fn: function to execute
181 * @arg: argument to @fn
182 *
183 * Execute @fn(@arg) on online cpus in @cpumask.  On each target cpu,
184 * @fn is run in a process context with the highest priority
185 * preempting any task on the cpu and monopolizing it.  This function
186 * returns after all executions are complete.
187 *
188 * This function doesn't guarantee the cpus in @cpumask stay online
189 * till @fn completes.  If some cpus go down in the middle, execution
190 * on the cpu may happen partially or fully on different cpus.  @fn
191 * should either be ready for that or the caller should ensure that
192 * the cpus stay online until this function completes.
193 *
194 * All stop_cpus() calls are serialized making it safe for @fn to wait
195 * for all cpus to start executing it.
196 *
197 * CONTEXT:
198 * Might sleep.
199 *
200 * RETURNS:
201 * -ENOENT if @fn(@arg) was not executed at all because all cpus in
202 * @cpumask were offline; otherwise, 0 if all executions of @fn
203 * returned 0, any non zero return value if any returned non zero.
204 */
205int stop_cpus(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg)
206{
207	int ret;
208
209	/* static works are used, process one request at a time */
210	mutex_lock(&stop_cpus_mutex);
211	ret = __stop_cpus(cpumask, fn, arg);
212	mutex_unlock(&stop_cpus_mutex);
213	return ret;
214}
215
216/**
217 * try_stop_cpus - try to stop multiple cpus
218 * @cpumask: cpus to stop
219 * @fn: function to execute
220 * @arg: argument to @fn
221 *
222 * Identical to stop_cpus() except that it fails with -EAGAIN if
223 * someone else is already using the facility.
224 *
225 * CONTEXT:
226 * Might sleep.
227 *
228 * RETURNS:
229 * -EAGAIN if someone else is already stopping cpus, -ENOENT if
230 * @fn(@arg) was not executed at all because all cpus in @cpumask were
231 * offline; otherwise, 0 if all executions of @fn returned 0, any non
232 * zero return value if any returned non zero.
233 */
234int try_stop_cpus(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg)
235{
236	int ret;
237
238	/* static works are used, process one request at a time */
239	if (!mutex_trylock(&stop_cpus_mutex))
240		return -EAGAIN;
241	ret = __stop_cpus(cpumask, fn, arg);
242	mutex_unlock(&stop_cpus_mutex);
243	return ret;
244}
245
246static int cpu_stopper_thread(void *data)
247{
248	struct cpu_stopper *stopper = data;
 
 
 
 
 
 
 
 
 
 
 
 
249	struct cpu_stop_work *work;
250	int ret;
251
252repeat:
253	set_current_state(TASK_INTERRUPTIBLE);	/* mb paired w/ kthread_stop */
254
255	if (kthread_should_stop()) {
256		__set_current_state(TASK_RUNNING);
257		return 0;
258	}
259
260	work = NULL;
261	spin_lock_irq(&stopper->lock);
262	if (!list_empty(&stopper->works)) {
263		work = list_first_entry(&stopper->works,
264					struct cpu_stop_work, list);
265		list_del_init(&work->list);
266	}
267	spin_unlock_irq(&stopper->lock);
268
269	if (work) {
270		cpu_stop_fn_t fn = work->fn;
271		void *arg = work->arg;
272		struct cpu_stop_done *done = work->done;
273		char ksym_buf[KSYM_NAME_LEN] __maybe_unused;
274
275		__set_current_state(TASK_RUNNING);
276
277		/* cpu stop callbacks are not allowed to sleep */
278		preempt_disable();
279
 
 
280		ret = fn(arg);
281		if (ret)
282			done->ret = ret;
283
284		/* restore preemption and check it's still balanced */
285		preempt_enable();
 
286		WARN_ONCE(preempt_count(),
287			  "cpu_stop: %s(%p) leaked preempt count\n",
288			  kallsyms_lookup((unsigned long)fn, NULL, NULL, NULL,
289					  ksym_buf), arg);
290
291		cpu_stop_signal_done(done, true);
292	} else
293		schedule();
294
295	goto repeat;
 
 
 
 
 
 
 
 
 
296}
297
298extern void sched_set_stop_task(int cpu, struct task_struct *stop);
299
300/* manage stopper for a cpu, mostly lifted from sched migration thread mgmt */
301static int __cpuinit cpu_stop_cpu_callback(struct notifier_block *nfb,
302					   unsigned long action, void *hcpu)
 
 
 
303{
304	unsigned int cpu = (unsigned long)hcpu;
305	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
306	struct task_struct *p;
307
308	switch (action & ~CPU_TASKS_FROZEN) {
309	case CPU_UP_PREPARE:
310		BUG_ON(stopper->thread || stopper->enabled ||
311		       !list_empty(&stopper->works));
312		p = kthread_create_on_node(cpu_stopper_thread,
313					   stopper,
314					   cpu_to_node(cpu),
315					   "migration/%d", cpu);
316		if (IS_ERR(p))
317			return notifier_from_errno(PTR_ERR(p));
318		get_task_struct(p);
319		kthread_bind(p, cpu);
320		sched_set_stop_task(cpu, p);
321		stopper->thread = p;
322		break;
323
324	case CPU_ONLINE:
325		/* strictly unnecessary, as first user will wake it */
326		wake_up_process(stopper->thread);
327		/* mark enabled */
328		spin_lock_irq(&stopper->lock);
329		stopper->enabled = true;
330		spin_unlock_irq(&stopper->lock);
331		break;
332
333#ifdef CONFIG_HOTPLUG_CPU
334	case CPU_UP_CANCELED:
335	case CPU_POST_DEAD:
336	{
337		struct cpu_stop_work *work;
338
339		sched_set_stop_task(cpu, NULL);
340		/* kill the stopper */
341		kthread_stop(stopper->thread);
342		/* drain remaining works */
343		spin_lock_irq(&stopper->lock);
344		list_for_each_entry(work, &stopper->works, list)
345			cpu_stop_signal_done(work->done, false);
346		stopper->enabled = false;
347		spin_unlock_irq(&stopper->lock);
348		/* release the stopper */
349		put_task_struct(stopper->thread);
350		stopper->thread = NULL;
351		break;
352	}
353#endif
354	}
355
356	return NOTIFY_OK;
 
357}
358
359/*
360 * Give it a higher priority so that cpu stopper is available to other
361 * cpu notifiers.  It currently shares the same priority as sched
362 * migration_notifier.
363 */
364static struct notifier_block __cpuinitdata cpu_stop_cpu_notifier = {
365	.notifier_call	= cpu_stop_cpu_callback,
366	.priority	= 10,
367};
368
369static int __init cpu_stop_init(void)
370{
371	void *bcpu = (void *)(long)smp_processor_id();
372	unsigned int cpu;
373	int err;
374
375	for_each_possible_cpu(cpu) {
376		struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
377
378		spin_lock_init(&stopper->lock);
379		INIT_LIST_HEAD(&stopper->works);
380	}
381
382	/* start one for the boot cpu */
383	err = cpu_stop_cpu_callback(&cpu_stop_cpu_notifier, CPU_UP_PREPARE,
384				    bcpu);
385	BUG_ON(err != NOTIFY_OK);
386	cpu_stop_cpu_callback(&cpu_stop_cpu_notifier, CPU_ONLINE, bcpu);
387	register_cpu_notifier(&cpu_stop_cpu_notifier);
388
389	return 0;
390}
391early_initcall(cpu_stop_init);
392
393#ifdef CONFIG_STOP_MACHINE
394
395/* This controls the threads on each CPU. */
396enum stopmachine_state {
397	/* Dummy starting state for thread. */
398	STOPMACHINE_NONE,
399	/* Awaiting everyone to be scheduled. */
400	STOPMACHINE_PREPARE,
401	/* Disable interrupts. */
402	STOPMACHINE_DISABLE_IRQ,
403	/* Run the function */
404	STOPMACHINE_RUN,
405	/* Exit */
406	STOPMACHINE_EXIT,
407};
408
409struct stop_machine_data {
410	int			(*fn)(void *);
411	void			*data;
412	/* Like num_online_cpus(), but hotplug cpu uses us, so we need this. */
413	unsigned int		num_threads;
414	const struct cpumask	*active_cpus;
415
416	enum stopmachine_state	state;
417	atomic_t		thread_ack;
418};
419
420static void set_state(struct stop_machine_data *smdata,
421		      enum stopmachine_state newstate)
422{
423	/* Reset ack counter. */
424	atomic_set(&smdata->thread_ack, smdata->num_threads);
425	smp_wmb();
426	smdata->state = newstate;
427}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
428
429/* Last one to ack a state moves to the next state. */
430static void ack_state(struct stop_machine_data *smdata)
431{
432	if (atomic_dec_and_test(&smdata->thread_ack))
433		set_state(smdata, smdata->state + 1);
434}
435
436/* This is the cpu_stop function which stops the CPU. */
437static int stop_machine_cpu_stop(void *data)
438{
439	struct stop_machine_data *smdata = data;
440	enum stopmachine_state curstate = STOPMACHINE_NONE;
441	int cpu = smp_processor_id(), err = 0;
442	unsigned long flags;
443	bool is_active;
444
445	/*
446	 * When called from stop_machine_from_inactive_cpu(), irq might
447	 * already be disabled.  Save the state and restore it on exit.
448	 */
449	local_save_flags(flags);
450
451	if (!smdata->active_cpus)
452		is_active = cpu == cpumask_first(cpu_online_mask);
453	else
454		is_active = cpumask_test_cpu(cpu, smdata->active_cpus);
455
456	/* Simple state machine */
457	do {
458		/* Chill out and ensure we re-read stopmachine_state. */
459		cpu_relax();
460		if (smdata->state != curstate) {
461			curstate = smdata->state;
462			switch (curstate) {
463			case STOPMACHINE_DISABLE_IRQ:
464				local_irq_disable();
465				hard_irq_disable();
466				break;
467			case STOPMACHINE_RUN:
468				if (is_active)
469					err = smdata->fn(smdata->data);
470				break;
471			default:
472				break;
473			}
474			ack_state(smdata);
475		}
476	} while (curstate != STOPMACHINE_EXIT);
477
478	local_irq_restore(flags);
479	return err;
480}
481
482int __stop_machine(int (*fn)(void *), void *data, const struct cpumask *cpus)
483{
484	struct stop_machine_data smdata = { .fn = fn, .data = data,
485					    .num_threads = num_online_cpus(),
486					    .active_cpus = cpus };
487
488	/* Set the initial state and stop all online cpus. */
489	set_state(&smdata, STOPMACHINE_PREPARE);
490	return stop_cpus(cpu_online_mask, stop_machine_cpu_stop, &smdata);
491}
492
493int stop_machine(int (*fn)(void *), void *data, const struct cpumask *cpus)
494{
495	int ret;
496
497	/* No CPUs can come up or down during this. */
498	get_online_cpus();
499	ret = __stop_machine(fn, data, cpus);
500	put_online_cpus();
501	return ret;
502}
503EXPORT_SYMBOL_GPL(stop_machine);
504
505/**
506 * stop_machine_from_inactive_cpu - stop_machine() from inactive CPU
507 * @fn: the function to run
508 * @data: the data ptr for the @fn()
509 * @cpus: the cpus to run the @fn() on (NULL = any online cpu)
510 *
511 * This is identical to stop_machine() but can be called from a CPU which
512 * is not active.  The local CPU is in the process of hotplug (so no other
513 * CPU hotplug can start) and not marked active and doesn't have enough
514 * context to sleep.
515 *
516 * This function provides stop_machine() functionality for such state by
517 * using busy-wait for synchronization and executing @fn directly for local
518 * CPU.
519 *
520 * CONTEXT:
521 * Local CPU is inactive.  Temporarily stops all active CPUs.
522 *
523 * RETURNS:
524 * 0 if all executions of @fn returned 0, any non zero return value if any
525 * returned non zero.
526 */
527int stop_machine_from_inactive_cpu(int (*fn)(void *), void *data,
528				  const struct cpumask *cpus)
529{
530	struct stop_machine_data smdata = { .fn = fn, .data = data,
531					    .active_cpus = cpus };
532	struct cpu_stop_done done;
533	int ret;
534
535	/* Local CPU must be inactive and CPU hotplug in progress. */
536	BUG_ON(cpu_active(raw_smp_processor_id()));
537	smdata.num_threads = num_active_cpus() + 1;	/* +1 for local */
538
539	/* No proper task established and can't sleep - busy wait for lock. */
540	while (!mutex_trylock(&stop_cpus_mutex))
541		cpu_relax();
542
543	/* Schedule work on other CPUs and execute directly for local CPU */
544	set_state(&smdata, STOPMACHINE_PREPARE);
545	cpu_stop_init_done(&done, num_active_cpus());
546	queue_stop_cpus_work(cpu_active_mask, stop_machine_cpu_stop, &smdata,
547			     &done);
548	ret = stop_machine_cpu_stop(&smdata);
549
550	/* Busy wait for completion. */
551	while (!completion_done(&done.completion))
552		cpu_relax();
553
554	mutex_unlock(&stop_cpus_mutex);
555	return ret ?: done.ret;
556}
557
558#endif	/* CONFIG_STOP_MACHINE */