Linux Audio

Check our new training course

Loading...
v4.6
   1/*
   2 *  linux/kernel/signal.c
   3 *
   4 *  Copyright (C) 1991, 1992  Linus Torvalds
   5 *
   6 *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
   7 *
   8 *  2003-06-02  Jim Houston - Concurrent Computer Corp.
   9 *		Changes to use preallocated sigqueue structures
  10 *		to allow signals to be sent reliably.
  11 */
  12
  13#include <linux/slab.h>
  14#include <linux/export.h>
  15#include <linux/init.h>
  16#include <linux/sched.h>
  17#include <linux/fs.h>
  18#include <linux/tty.h>
  19#include <linux/binfmts.h>
  20#include <linux/coredump.h>
  21#include <linux/security.h>
  22#include <linux/syscalls.h>
  23#include <linux/ptrace.h>
  24#include <linux/signal.h>
  25#include <linux/signalfd.h>
  26#include <linux/ratelimit.h>
  27#include <linux/tracehook.h>
  28#include <linux/capability.h>
  29#include <linux/freezer.h>
  30#include <linux/pid_namespace.h>
  31#include <linux/nsproxy.h>
  32#include <linux/user_namespace.h>
  33#include <linux/uprobes.h>
  34#include <linux/compat.h>
  35#include <linux/cn_proc.h>
  36#include <linux/compiler.h>
  37
  38#define CREATE_TRACE_POINTS
  39#include <trace/events/signal.h>
  40
  41#include <asm/param.h>
  42#include <asm/uaccess.h>
  43#include <asm/unistd.h>
  44#include <asm/siginfo.h>
  45#include <asm/cacheflush.h>
  46#include "audit.h"	/* audit_signal_info() */
  47
  48/*
  49 * SLAB caches for signal bits.
  50 */
  51
  52static struct kmem_cache *sigqueue_cachep;
  53
  54int print_fatal_signals __read_mostly;
  55
  56static void __user *sig_handler(struct task_struct *t, int sig)
  57{
  58	return t->sighand->action[sig - 1].sa.sa_handler;
  59}
  60
  61static int sig_handler_ignored(void __user *handler, int sig)
  62{
  63	/* Is it explicitly or implicitly ignored? */
  64	return handler == SIG_IGN ||
  65		(handler == SIG_DFL && sig_kernel_ignore(sig));
  66}
  67
  68static int sig_task_ignored(struct task_struct *t, int sig, bool force)
 
  69{
  70	void __user *handler;
  71
  72	handler = sig_handler(t, sig);
  73
  74	if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
  75			handler == SIG_DFL && !force)
  76		return 1;
  77
  78	return sig_handler_ignored(handler, sig);
  79}
  80
  81static int sig_ignored(struct task_struct *t, int sig, bool force)
  82{
  83	/*
  84	 * Blocked signals are never ignored, since the
  85	 * signal handler may change by the time it is
  86	 * unblocked.
  87	 */
  88	if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
  89		return 0;
  90
  91	if (!sig_task_ignored(t, sig, force))
  92		return 0;
  93
  94	/*
  95	 * Tracers may want to know about even ignored signals.
  96	 */
  97	return !t->ptrace;
  98}
  99
 100/*
 101 * Re-calculate pending state from the set of locally pending
 102 * signals, globally pending signals, and blocked signals.
 103 */
 104static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
 105{
 106	unsigned long ready;
 107	long i;
 108
 109	switch (_NSIG_WORDS) {
 110	default:
 111		for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
 112			ready |= signal->sig[i] &~ blocked->sig[i];
 113		break;
 114
 115	case 4: ready  = signal->sig[3] &~ blocked->sig[3];
 116		ready |= signal->sig[2] &~ blocked->sig[2];
 117		ready |= signal->sig[1] &~ blocked->sig[1];
 118		ready |= signal->sig[0] &~ blocked->sig[0];
 119		break;
 120
 121	case 2: ready  = signal->sig[1] &~ blocked->sig[1];
 122		ready |= signal->sig[0] &~ blocked->sig[0];
 123		break;
 124
 125	case 1: ready  = signal->sig[0] &~ blocked->sig[0];
 126	}
 127	return ready !=	0;
 128}
 129
 130#define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
 131
 132static int recalc_sigpending_tsk(struct task_struct *t)
 133{
 134	if ((t->jobctl & JOBCTL_PENDING_MASK) ||
 135	    PENDING(&t->pending, &t->blocked) ||
 136	    PENDING(&t->signal->shared_pending, &t->blocked)) {
 137		set_tsk_thread_flag(t, TIF_SIGPENDING);
 138		return 1;
 139	}
 140	/*
 141	 * We must never clear the flag in another thread, or in current
 142	 * when it's possible the current syscall is returning -ERESTART*.
 143	 * So we don't clear it here, and only callers who know they should do.
 144	 */
 145	return 0;
 146}
 147
 148/*
 149 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
 150 * This is superfluous when called on current, the wakeup is a harmless no-op.
 151 */
 152void recalc_sigpending_and_wake(struct task_struct *t)
 153{
 154	if (recalc_sigpending_tsk(t))
 155		signal_wake_up(t, 0);
 156}
 157
 158void recalc_sigpending(void)
 159{
 160	if (!recalc_sigpending_tsk(current) && !freezing(current))
 161		clear_thread_flag(TIF_SIGPENDING);
 162
 163}
 164
 165/* Given the mask, find the first available signal that should be serviced. */
 166
 167#define SYNCHRONOUS_MASK \
 168	(sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
 169	 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
 170
 171int next_signal(struct sigpending *pending, sigset_t *mask)
 172{
 173	unsigned long i, *s, *m, x;
 174	int sig = 0;
 175
 176	s = pending->signal.sig;
 177	m = mask->sig;
 178
 179	/*
 180	 * Handle the first word specially: it contains the
 181	 * synchronous signals that need to be dequeued first.
 182	 */
 183	x = *s &~ *m;
 184	if (x) {
 185		if (x & SYNCHRONOUS_MASK)
 186			x &= SYNCHRONOUS_MASK;
 187		sig = ffz(~x) + 1;
 188		return sig;
 189	}
 190
 191	switch (_NSIG_WORDS) {
 192	default:
 193		for (i = 1; i < _NSIG_WORDS; ++i) {
 194			x = *++s &~ *++m;
 195			if (!x)
 196				continue;
 197			sig = ffz(~x) + i*_NSIG_BPW + 1;
 198			break;
 199		}
 200		break;
 201
 202	case 2:
 203		x = s[1] &~ m[1];
 204		if (!x)
 205			break;
 206		sig = ffz(~x) + _NSIG_BPW + 1;
 207		break;
 208
 209	case 1:
 210		/* Nothing to do */
 211		break;
 212	}
 213
 214	return sig;
 215}
 216
 217static inline void print_dropped_signal(int sig)
 218{
 219	static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
 220
 221	if (!print_fatal_signals)
 222		return;
 223
 224	if (!__ratelimit(&ratelimit_state))
 225		return;
 226
 227	printk(KERN_INFO "%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
 228				current->comm, current->pid, sig);
 229}
 230
 231/**
 232 * task_set_jobctl_pending - set jobctl pending bits
 233 * @task: target task
 234 * @mask: pending bits to set
 235 *
 236 * Clear @mask from @task->jobctl.  @mask must be subset of
 237 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
 238 * %JOBCTL_TRAPPING.  If stop signo is being set, the existing signo is
 239 * cleared.  If @task is already being killed or exiting, this function
 240 * becomes noop.
 241 *
 242 * CONTEXT:
 243 * Must be called with @task->sighand->siglock held.
 244 *
 245 * RETURNS:
 246 * %true if @mask is set, %false if made noop because @task was dying.
 247 */
 248bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask)
 249{
 250	BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
 251			JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
 252	BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
 253
 254	if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
 255		return false;
 256
 257	if (mask & JOBCTL_STOP_SIGMASK)
 258		task->jobctl &= ~JOBCTL_STOP_SIGMASK;
 259
 260	task->jobctl |= mask;
 261	return true;
 262}
 263
 264/**
 265 * task_clear_jobctl_trapping - clear jobctl trapping bit
 266 * @task: target task
 267 *
 268 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
 269 * Clear it and wake up the ptracer.  Note that we don't need any further
 270 * locking.  @task->siglock guarantees that @task->parent points to the
 271 * ptracer.
 272 *
 273 * CONTEXT:
 274 * Must be called with @task->sighand->siglock held.
 275 */
 276void task_clear_jobctl_trapping(struct task_struct *task)
 277{
 278	if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
 279		task->jobctl &= ~JOBCTL_TRAPPING;
 280		smp_mb();	/* advised by wake_up_bit() */
 281		wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
 282	}
 283}
 284
 285/**
 286 * task_clear_jobctl_pending - clear jobctl pending bits
 287 * @task: target task
 288 * @mask: pending bits to clear
 289 *
 290 * Clear @mask from @task->jobctl.  @mask must be subset of
 291 * %JOBCTL_PENDING_MASK.  If %JOBCTL_STOP_PENDING is being cleared, other
 292 * STOP bits are cleared together.
 293 *
 294 * If clearing of @mask leaves no stop or trap pending, this function calls
 295 * task_clear_jobctl_trapping().
 296 *
 297 * CONTEXT:
 298 * Must be called with @task->sighand->siglock held.
 299 */
 300void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask)
 301{
 302	BUG_ON(mask & ~JOBCTL_PENDING_MASK);
 303
 304	if (mask & JOBCTL_STOP_PENDING)
 305		mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
 306
 307	task->jobctl &= ~mask;
 308
 309	if (!(task->jobctl & JOBCTL_PENDING_MASK))
 310		task_clear_jobctl_trapping(task);
 311}
 312
 313/**
 314 * task_participate_group_stop - participate in a group stop
 315 * @task: task participating in a group stop
 316 *
 317 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
 318 * Group stop states are cleared and the group stop count is consumed if
 319 * %JOBCTL_STOP_CONSUME was set.  If the consumption completes the group
 320 * stop, the appropriate %SIGNAL_* flags are set.
 321 *
 322 * CONTEXT:
 323 * Must be called with @task->sighand->siglock held.
 324 *
 325 * RETURNS:
 326 * %true if group stop completion should be notified to the parent, %false
 327 * otherwise.
 328 */
 329static bool task_participate_group_stop(struct task_struct *task)
 330{
 331	struct signal_struct *sig = task->signal;
 332	bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
 333
 334	WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
 335
 336	task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
 337
 338	if (!consume)
 339		return false;
 340
 341	if (!WARN_ON_ONCE(sig->group_stop_count == 0))
 342		sig->group_stop_count--;
 343
 344	/*
 345	 * Tell the caller to notify completion iff we are entering into a
 346	 * fresh group stop.  Read comment in do_signal_stop() for details.
 347	 */
 348	if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
 349		sig->flags = SIGNAL_STOP_STOPPED;
 350		return true;
 351	}
 352	return false;
 353}
 354
 355/*
 356 * allocate a new signal queue record
 357 * - this may be called without locks if and only if t == current, otherwise an
 358 *   appropriate lock must be held to stop the target task from exiting
 359 */
 360static struct sigqueue *
 361__sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit)
 362{
 363	struct sigqueue *q = NULL;
 364	struct user_struct *user;
 365
 366	/*
 367	 * Protect access to @t credentials. This can go away when all
 368	 * callers hold rcu read lock.
 369	 */
 370	rcu_read_lock();
 371	user = get_uid(__task_cred(t)->user);
 372	atomic_inc(&user->sigpending);
 373	rcu_read_unlock();
 374
 375	if (override_rlimit ||
 376	    atomic_read(&user->sigpending) <=
 377			task_rlimit(t, RLIMIT_SIGPENDING)) {
 378		q = kmem_cache_alloc(sigqueue_cachep, flags);
 379	} else {
 380		print_dropped_signal(sig);
 381	}
 382
 383	if (unlikely(q == NULL)) {
 384		atomic_dec(&user->sigpending);
 385		free_uid(user);
 386	} else {
 387		INIT_LIST_HEAD(&q->list);
 388		q->flags = 0;
 389		q->user = user;
 390	}
 391
 392	return q;
 393}
 394
 395static void __sigqueue_free(struct sigqueue *q)
 396{
 397	if (q->flags & SIGQUEUE_PREALLOC)
 398		return;
 399	atomic_dec(&q->user->sigpending);
 400	free_uid(q->user);
 401	kmem_cache_free(sigqueue_cachep, q);
 402}
 403
 404void flush_sigqueue(struct sigpending *queue)
 405{
 406	struct sigqueue *q;
 407
 408	sigemptyset(&queue->signal);
 409	while (!list_empty(&queue->list)) {
 410		q = list_entry(queue->list.next, struct sigqueue , list);
 411		list_del_init(&q->list);
 412		__sigqueue_free(q);
 413	}
 414}
 415
 416/*
 417 * Flush all pending signals for this kthread.
 418 */
 
 
 
 
 
 
 
 419void flush_signals(struct task_struct *t)
 420{
 421	unsigned long flags;
 422
 423	spin_lock_irqsave(&t->sighand->siglock, flags);
 424	clear_tsk_thread_flag(t, TIF_SIGPENDING);
 425	flush_sigqueue(&t->pending);
 426	flush_sigqueue(&t->signal->shared_pending);
 427	spin_unlock_irqrestore(&t->sighand->siglock, flags);
 428}
 429
 430static void __flush_itimer_signals(struct sigpending *pending)
 431{
 432	sigset_t signal, retain;
 433	struct sigqueue *q, *n;
 434
 435	signal = pending->signal;
 436	sigemptyset(&retain);
 437
 438	list_for_each_entry_safe(q, n, &pending->list, list) {
 439		int sig = q->info.si_signo;
 440
 441		if (likely(q->info.si_code != SI_TIMER)) {
 442			sigaddset(&retain, sig);
 443		} else {
 444			sigdelset(&signal, sig);
 445			list_del_init(&q->list);
 446			__sigqueue_free(q);
 447		}
 448	}
 449
 450	sigorsets(&pending->signal, &signal, &retain);
 451}
 452
 453void flush_itimer_signals(void)
 454{
 455	struct task_struct *tsk = current;
 456	unsigned long flags;
 457
 458	spin_lock_irqsave(&tsk->sighand->siglock, flags);
 459	__flush_itimer_signals(&tsk->pending);
 460	__flush_itimer_signals(&tsk->signal->shared_pending);
 461	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
 462}
 463
 464void ignore_signals(struct task_struct *t)
 465{
 466	int i;
 467
 468	for (i = 0; i < _NSIG; ++i)
 469		t->sighand->action[i].sa.sa_handler = SIG_IGN;
 470
 471	flush_signals(t);
 472}
 473
 474/*
 475 * Flush all handlers for a task.
 476 */
 477
 478void
 479flush_signal_handlers(struct task_struct *t, int force_default)
 480{
 481	int i;
 482	struct k_sigaction *ka = &t->sighand->action[0];
 483	for (i = _NSIG ; i != 0 ; i--) {
 484		if (force_default || ka->sa.sa_handler != SIG_IGN)
 485			ka->sa.sa_handler = SIG_DFL;
 486		ka->sa.sa_flags = 0;
 487#ifdef __ARCH_HAS_SA_RESTORER
 488		ka->sa.sa_restorer = NULL;
 489#endif
 490		sigemptyset(&ka->sa.sa_mask);
 491		ka++;
 492	}
 493}
 494
 495int unhandled_signal(struct task_struct *tsk, int sig)
 496{
 497	void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
 498	if (is_global_init(tsk))
 499		return 1;
 500	if (handler != SIG_IGN && handler != SIG_DFL)
 501		return 0;
 502	/* if ptraced, let the tracer determine */
 503	return !tsk->ptrace;
 504}
 505
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 506static void collect_signal(int sig, struct sigpending *list, siginfo_t *info)
 507{
 508	struct sigqueue *q, *first = NULL;
 509
 510	/*
 511	 * Collect the siginfo appropriate to this signal.  Check if
 512	 * there is another siginfo for the same signal.
 513	*/
 514	list_for_each_entry(q, &list->list, list) {
 515		if (q->info.si_signo == sig) {
 516			if (first)
 517				goto still_pending;
 518			first = q;
 519		}
 520	}
 521
 522	sigdelset(&list->signal, sig);
 523
 524	if (first) {
 525still_pending:
 526		list_del_init(&first->list);
 527		copy_siginfo(info, &first->info);
 528		__sigqueue_free(first);
 529	} else {
 530		/*
 531		 * Ok, it wasn't in the queue.  This must be
 532		 * a fast-pathed signal or we must have been
 533		 * out of queue space.  So zero out the info.
 534		 */
 535		info->si_signo = sig;
 536		info->si_errno = 0;
 537		info->si_code = SI_USER;
 538		info->si_pid = 0;
 539		info->si_uid = 0;
 540	}
 541}
 542
 543static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
 544			siginfo_t *info)
 545{
 546	int sig = next_signal(pending, mask);
 547
 548	if (sig)
 
 
 
 
 
 
 
 
 
 549		collect_signal(sig, pending, info);
 
 
 550	return sig;
 551}
 552
 553/*
 554 * Dequeue a signal and return the element to the caller, which is
 555 * expected to free it.
 556 *
 557 * All callers have to hold the siglock.
 558 */
 559int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
 560{
 561	int signr;
 562
 563	/* We only dequeue private signals from ourselves, we don't let
 564	 * signalfd steal them
 565	 */
 566	signr = __dequeue_signal(&tsk->pending, mask, info);
 567	if (!signr) {
 568		signr = __dequeue_signal(&tsk->signal->shared_pending,
 569					 mask, info);
 570		/*
 571		 * itimer signal ?
 572		 *
 573		 * itimers are process shared and we restart periodic
 574		 * itimers in the signal delivery path to prevent DoS
 575		 * attacks in the high resolution timer case. This is
 576		 * compliant with the old way of self-restarting
 577		 * itimers, as the SIGALRM is a legacy signal and only
 578		 * queued once. Changing the restart behaviour to
 579		 * restart the timer in the signal dequeue path is
 580		 * reducing the timer noise on heavy loaded !highres
 581		 * systems too.
 582		 */
 583		if (unlikely(signr == SIGALRM)) {
 584			struct hrtimer *tmr = &tsk->signal->real_timer;
 585
 586			if (!hrtimer_is_queued(tmr) &&
 587			    tsk->signal->it_real_incr.tv64 != 0) {
 588				hrtimer_forward(tmr, tmr->base->get_time(),
 589						tsk->signal->it_real_incr);
 590				hrtimer_restart(tmr);
 591			}
 592		}
 593	}
 594
 595	recalc_sigpending();
 596	if (!signr)
 597		return 0;
 598
 599	if (unlikely(sig_kernel_stop(signr))) {
 600		/*
 601		 * Set a marker that we have dequeued a stop signal.  Our
 602		 * caller might release the siglock and then the pending
 603		 * stop signal it is about to process is no longer in the
 604		 * pending bitmasks, but must still be cleared by a SIGCONT
 605		 * (and overruled by a SIGKILL).  So those cases clear this
 606		 * shared flag after we've set it.  Note that this flag may
 607		 * remain set after the signal we return is ignored or
 608		 * handled.  That doesn't matter because its only purpose
 609		 * is to alert stop-signal processing code when another
 610		 * processor has come along and cleared the flag.
 611		 */
 612		current->jobctl |= JOBCTL_STOP_DEQUEUED;
 613	}
 614	if ((info->si_code & __SI_MASK) == __SI_TIMER && info->si_sys_private) {
 615		/*
 616		 * Release the siglock to ensure proper locking order
 617		 * of timer locks outside of siglocks.  Note, we leave
 618		 * irqs disabled here, since the posix-timers code is
 619		 * about to disable them again anyway.
 620		 */
 621		spin_unlock(&tsk->sighand->siglock);
 622		do_schedule_next_timer(info);
 623		spin_lock(&tsk->sighand->siglock);
 624	}
 625	return signr;
 626}
 627
 628/*
 629 * Tell a process that it has a new active signal..
 630 *
 631 * NOTE! we rely on the previous spin_lock to
 632 * lock interrupts for us! We can only be called with
 633 * "siglock" held, and the local interrupt must
 634 * have been disabled when that got acquired!
 635 *
 636 * No need to set need_resched since signal event passing
 637 * goes through ->blocked
 638 */
 639void signal_wake_up_state(struct task_struct *t, unsigned int state)
 640{
 
 
 641	set_tsk_thread_flag(t, TIF_SIGPENDING);
 
 642	/*
 643	 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
 644	 * case. We don't check t->state here because there is a race with it
 645	 * executing another processor and just now entering stopped state.
 646	 * By using wake_up_state, we ensure the process will wake up and
 647	 * handle its death signal.
 648	 */
 649	if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
 
 
 
 650		kick_process(t);
 651}
 652
 653/*
 654 * Remove signals in mask from the pending set and queue.
 655 * Returns 1 if any signals were found.
 656 *
 657 * All callers must be holding the siglock.
 
 
 
 658 */
 659static int flush_sigqueue_mask(sigset_t *mask, struct sigpending *s)
 660{
 661	struct sigqueue *q, *n;
 662	sigset_t m;
 663
 664	sigandsets(&m, mask, &s->signal);
 665	if (sigisemptyset(&m))
 666		return 0;
 667
 668	sigandnsets(&s->signal, &s->signal, mask);
 669	list_for_each_entry_safe(q, n, &s->list, list) {
 670		if (sigismember(mask, q->info.si_signo)) {
 671			list_del_init(&q->list);
 672			__sigqueue_free(q);
 673		}
 674	}
 675	return 1;
 676}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 677
 678static inline int is_si_special(const struct siginfo *info)
 679{
 680	return info <= SEND_SIG_FORCED;
 681}
 682
 683static inline bool si_fromuser(const struct siginfo *info)
 684{
 685	return info == SEND_SIG_NOINFO ||
 686		(!is_si_special(info) && SI_FROMUSER(info));
 687}
 688
 689/*
 690 * called with RCU read lock from check_kill_permission()
 691 */
 692static int kill_ok_by_cred(struct task_struct *t)
 693{
 694	const struct cred *cred = current_cred();
 695	const struct cred *tcred = __task_cred(t);
 696
 697	if (uid_eq(cred->euid, tcred->suid) ||
 698	    uid_eq(cred->euid, tcred->uid)  ||
 699	    uid_eq(cred->uid,  tcred->suid) ||
 700	    uid_eq(cred->uid,  tcred->uid))
 
 701		return 1;
 702
 703	if (ns_capable(tcred->user_ns, CAP_KILL))
 704		return 1;
 705
 706	return 0;
 707}
 708
 709/*
 710 * Bad permissions for sending the signal
 711 * - the caller must hold the RCU read lock
 712 */
 713static int check_kill_permission(int sig, struct siginfo *info,
 714				 struct task_struct *t)
 715{
 716	struct pid *sid;
 717	int error;
 718
 719	if (!valid_signal(sig))
 720		return -EINVAL;
 721
 722	if (!si_fromuser(info))
 723		return 0;
 724
 725	error = audit_signal_info(sig, t); /* Let audit system see the signal */
 726	if (error)
 727		return error;
 728
 729	if (!same_thread_group(current, t) &&
 730	    !kill_ok_by_cred(t)) {
 731		switch (sig) {
 732		case SIGCONT:
 733			sid = task_session(t);
 734			/*
 735			 * We don't return the error if sid == NULL. The
 736			 * task was unhashed, the caller must notice this.
 737			 */
 738			if (!sid || sid == task_session(current))
 739				break;
 740		default:
 741			return -EPERM;
 742		}
 743	}
 744
 745	return security_task_kill(t, info, sig, 0);
 746}
 747
 748/**
 749 * ptrace_trap_notify - schedule trap to notify ptracer
 750 * @t: tracee wanting to notify tracer
 751 *
 752 * This function schedules sticky ptrace trap which is cleared on the next
 753 * TRAP_STOP to notify ptracer of an event.  @t must have been seized by
 754 * ptracer.
 755 *
 756 * If @t is running, STOP trap will be taken.  If trapped for STOP and
 757 * ptracer is listening for events, tracee is woken up so that it can
 758 * re-trap for the new event.  If trapped otherwise, STOP trap will be
 759 * eventually taken without returning to userland after the existing traps
 760 * are finished by PTRACE_CONT.
 761 *
 762 * CONTEXT:
 763 * Must be called with @task->sighand->siglock held.
 764 */
 765static void ptrace_trap_notify(struct task_struct *t)
 766{
 767	WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
 768	assert_spin_locked(&t->sighand->siglock);
 769
 770	task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
 771	ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
 772}
 773
 774/*
 775 * Handle magic process-wide effects of stop/continue signals. Unlike
 776 * the signal actions, these happen immediately at signal-generation
 777 * time regardless of blocking, ignoring, or handling.  This does the
 778 * actual continuing for SIGCONT, but not the actual stopping for stop
 779 * signals. The process stop is done as a signal action for SIG_DFL.
 780 *
 781 * Returns true if the signal should be actually delivered, otherwise
 782 * it should be dropped.
 783 */
 784static bool prepare_signal(int sig, struct task_struct *p, bool force)
 785{
 786	struct signal_struct *signal = p->signal;
 787	struct task_struct *t;
 788	sigset_t flush;
 789
 790	if (signal->flags & (SIGNAL_GROUP_EXIT | SIGNAL_GROUP_COREDUMP)) {
 791		if (!(signal->flags & SIGNAL_GROUP_EXIT))
 792			return sig == SIGKILL;
 793		/*
 794		 * The process is in the middle of dying, nothing to do.
 795		 */
 796	} else if (sig_kernel_stop(sig)) {
 797		/*
 798		 * This is a stop signal.  Remove SIGCONT from all queues.
 799		 */
 800		siginitset(&flush, sigmask(SIGCONT));
 801		flush_sigqueue_mask(&flush, &signal->shared_pending);
 802		for_each_thread(p, t)
 803			flush_sigqueue_mask(&flush, &t->pending);
 
 804	} else if (sig == SIGCONT) {
 805		unsigned int why;
 806		/*
 807		 * Remove all stop signals from all queues, wake all threads.
 808		 */
 809		siginitset(&flush, SIG_KERNEL_STOP_MASK);
 810		flush_sigqueue_mask(&flush, &signal->shared_pending);
 811		for_each_thread(p, t) {
 812			flush_sigqueue_mask(&flush, &t->pending);
 813			task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
 
 814			if (likely(!(t->ptrace & PT_SEIZED)))
 815				wake_up_state(t, __TASK_STOPPED);
 816			else
 817				ptrace_trap_notify(t);
 818		}
 819
 820		/*
 821		 * Notify the parent with CLD_CONTINUED if we were stopped.
 822		 *
 823		 * If we were in the middle of a group stop, we pretend it
 824		 * was already finished, and then continued. Since SIGCHLD
 825		 * doesn't queue we report only CLD_STOPPED, as if the next
 826		 * CLD_CONTINUED was dropped.
 827		 */
 828		why = 0;
 829		if (signal->flags & SIGNAL_STOP_STOPPED)
 830			why |= SIGNAL_CLD_CONTINUED;
 831		else if (signal->group_stop_count)
 832			why |= SIGNAL_CLD_STOPPED;
 833
 834		if (why) {
 835			/*
 836			 * The first thread which returns from do_signal_stop()
 837			 * will take ->siglock, notice SIGNAL_CLD_MASK, and
 838			 * notify its parent. See get_signal_to_deliver().
 839			 */
 840			signal->flags = why | SIGNAL_STOP_CONTINUED;
 841			signal->group_stop_count = 0;
 842			signal->group_exit_code = 0;
 843		}
 844	}
 845
 846	return !sig_ignored(p, sig, force);
 847}
 848
 849/*
 850 * Test if P wants to take SIG.  After we've checked all threads with this,
 851 * it's equivalent to finding no threads not blocking SIG.  Any threads not
 852 * blocking SIG were ruled out because they are not running and already
 853 * have pending signals.  Such threads will dequeue from the shared queue
 854 * as soon as they're available, so putting the signal on the shared queue
 855 * will be equivalent to sending it to one such thread.
 856 */
 857static inline int wants_signal(int sig, struct task_struct *p)
 858{
 859	if (sigismember(&p->blocked, sig))
 860		return 0;
 861	if (p->flags & PF_EXITING)
 862		return 0;
 863	if (sig == SIGKILL)
 864		return 1;
 865	if (task_is_stopped_or_traced(p))
 866		return 0;
 867	return task_curr(p) || !signal_pending(p);
 868}
 869
 870static void complete_signal(int sig, struct task_struct *p, int group)
 871{
 872	struct signal_struct *signal = p->signal;
 873	struct task_struct *t;
 874
 875	/*
 876	 * Now find a thread we can wake up to take the signal off the queue.
 877	 *
 878	 * If the main thread wants the signal, it gets first crack.
 879	 * Probably the least surprising to the average bear.
 880	 */
 881	if (wants_signal(sig, p))
 882		t = p;
 883	else if (!group || thread_group_empty(p))
 884		/*
 885		 * There is just one thread and it does not need to be woken.
 886		 * It will dequeue unblocked signals before it runs again.
 887		 */
 888		return;
 889	else {
 890		/*
 891		 * Otherwise try to find a suitable thread.
 892		 */
 893		t = signal->curr_target;
 894		while (!wants_signal(sig, t)) {
 895			t = next_thread(t);
 896			if (t == signal->curr_target)
 897				/*
 898				 * No thread needs to be woken.
 899				 * Any eligible threads will see
 900				 * the signal in the queue soon.
 901				 */
 902				return;
 903		}
 904		signal->curr_target = t;
 905	}
 906
 907	/*
 908	 * Found a killable thread.  If the signal will be fatal,
 909	 * then start taking the whole group down immediately.
 910	 */
 911	if (sig_fatal(p, sig) &&
 912	    !(signal->flags & (SIGNAL_UNKILLABLE | SIGNAL_GROUP_EXIT)) &&
 913	    !sigismember(&t->real_blocked, sig) &&
 914	    (sig == SIGKILL || !t->ptrace)) {
 915		/*
 916		 * This signal will be fatal to the whole group.
 917		 */
 918		if (!sig_kernel_coredump(sig)) {
 919			/*
 920			 * Start a group exit and wake everybody up.
 921			 * This way we don't have other threads
 922			 * running and doing things after a slower
 923			 * thread has the fatal signal pending.
 924			 */
 925			signal->flags = SIGNAL_GROUP_EXIT;
 926			signal->group_exit_code = sig;
 927			signal->group_stop_count = 0;
 928			t = p;
 929			do {
 930				task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
 931				sigaddset(&t->pending.signal, SIGKILL);
 932				signal_wake_up(t, 1);
 933			} while_each_thread(p, t);
 934			return;
 935		}
 936	}
 937
 938	/*
 939	 * The signal is already in the shared-pending queue.
 940	 * Tell the chosen thread to wake up and dequeue it.
 941	 */
 942	signal_wake_up(t, sig == SIGKILL);
 943	return;
 944}
 945
 946static inline int legacy_queue(struct sigpending *signals, int sig)
 947{
 948	return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
 949}
 950
 951#ifdef CONFIG_USER_NS
 952static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
 953{
 954	if (current_user_ns() == task_cred_xxx(t, user_ns))
 955		return;
 956
 957	if (SI_FROMKERNEL(info))
 958		return;
 959
 960	rcu_read_lock();
 961	info->si_uid = from_kuid_munged(task_cred_xxx(t, user_ns),
 962					make_kuid(current_user_ns(), info->si_uid));
 963	rcu_read_unlock();
 964}
 965#else
 966static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
 967{
 968	return;
 969}
 970#endif
 971
 972static int __send_signal(int sig, struct siginfo *info, struct task_struct *t,
 973			int group, int from_ancestor_ns)
 974{
 975	struct sigpending *pending;
 976	struct sigqueue *q;
 977	int override_rlimit;
 978	int ret = 0, result;
 
 979
 980	assert_spin_locked(&t->sighand->siglock);
 981
 982	result = TRACE_SIGNAL_IGNORED;
 983	if (!prepare_signal(sig, t,
 984			from_ancestor_ns || (info == SEND_SIG_FORCED)))
 985		goto ret;
 986
 987	pending = group ? &t->signal->shared_pending : &t->pending;
 988	/*
 989	 * Short-circuit ignored signals and support queuing
 990	 * exactly one non-rt signal, so that we can get more
 991	 * detailed information about the cause of the signal.
 992	 */
 993	result = TRACE_SIGNAL_ALREADY_PENDING;
 994	if (legacy_queue(pending, sig))
 995		goto ret;
 996
 997	result = TRACE_SIGNAL_DELIVERED;
 998	/*
 999	 * fast-pathed signals for kernel-internal things like SIGSTOP
1000	 * or SIGKILL.
1001	 */
1002	if (info == SEND_SIG_FORCED)
1003		goto out_set;
1004
1005	/*
1006	 * Real-time signals must be queued if sent by sigqueue, or
1007	 * some other real-time mechanism.  It is implementation
1008	 * defined whether kill() does so.  We attempt to do so, on
1009	 * the principle of least surprise, but since kill is not
1010	 * allowed to fail with EAGAIN when low on memory we just
1011	 * make sure at least one signal gets delivered and don't
1012	 * pass on the info struct.
1013	 */
1014	if (sig < SIGRTMIN)
1015		override_rlimit = (is_si_special(info) || info->si_code >= 0);
1016	else
1017		override_rlimit = 0;
1018
1019	q = __sigqueue_alloc(sig, t, GFP_ATOMIC | __GFP_NOTRACK_FALSE_POSITIVE,
1020		override_rlimit);
1021	if (q) {
1022		list_add_tail(&q->list, &pending->list);
1023		switch ((unsigned long) info) {
1024		case (unsigned long) SEND_SIG_NOINFO:
1025			q->info.si_signo = sig;
1026			q->info.si_errno = 0;
1027			q->info.si_code = SI_USER;
1028			q->info.si_pid = task_tgid_nr_ns(current,
1029							task_active_pid_ns(t));
1030			q->info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
1031			break;
1032		case (unsigned long) SEND_SIG_PRIV:
1033			q->info.si_signo = sig;
1034			q->info.si_errno = 0;
1035			q->info.si_code = SI_KERNEL;
1036			q->info.si_pid = 0;
1037			q->info.si_uid = 0;
1038			break;
1039		default:
1040			copy_siginfo(&q->info, info);
1041			if (from_ancestor_ns)
1042				q->info.si_pid = 0;
1043			break;
1044		}
1045
1046		userns_fixup_signal_uid(&q->info, t);
1047
1048	} else if (!is_si_special(info)) {
1049		if (sig >= SIGRTMIN && info->si_code != SI_USER) {
1050			/*
1051			 * Queue overflow, abort.  We may abort if the
1052			 * signal was rt and sent by user using something
1053			 * other than kill().
1054			 */
1055			result = TRACE_SIGNAL_OVERFLOW_FAIL;
1056			ret = -EAGAIN;
1057			goto ret;
1058		} else {
1059			/*
1060			 * This is a silent loss of information.  We still
1061			 * send the signal, but the *info bits are lost.
1062			 */
1063			result = TRACE_SIGNAL_LOSE_INFO;
1064		}
1065	}
1066
1067out_set:
1068	signalfd_notify(t, sig);
1069	sigaddset(&pending->signal, sig);
1070	complete_signal(sig, t, group);
1071ret:
1072	trace_signal_generate(sig, info, t, group, result);
1073	return ret;
1074}
1075
1076static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
1077			int group)
1078{
1079	int from_ancestor_ns = 0;
1080
1081#ifdef CONFIG_PID_NS
1082	from_ancestor_ns = si_fromuser(info) &&
1083			   !task_pid_nr_ns(current, task_active_pid_ns(t));
1084#endif
1085
1086	return __send_signal(sig, info, t, group, from_ancestor_ns);
1087}
1088
1089static void print_fatal_signal(int signr)
1090{
1091	struct pt_regs *regs = signal_pt_regs();
1092	printk(KERN_INFO "potentially unexpected fatal signal %d.\n", signr);
1093
1094#if defined(__i386__) && !defined(__arch_um__)
1095	printk(KERN_INFO "code at %08lx: ", regs->ip);
1096	{
1097		int i;
1098		for (i = 0; i < 16; i++) {
1099			unsigned char insn;
1100
1101			if (get_user(insn, (unsigned char *)(regs->ip + i)))
1102				break;
1103			printk(KERN_CONT "%02x ", insn);
1104		}
1105	}
1106	printk(KERN_CONT "\n");
1107#endif
 
1108	preempt_disable();
1109	show_regs(regs);
1110	preempt_enable();
1111}
1112
1113static int __init setup_print_fatal_signals(char *str)
1114{
1115	get_option (&str, &print_fatal_signals);
1116
1117	return 1;
1118}
1119
1120__setup("print-fatal-signals=", setup_print_fatal_signals);
1121
1122int
1123__group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1124{
1125	return send_signal(sig, info, p, 1);
1126}
1127
1128static int
1129specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1130{
1131	return send_signal(sig, info, t, 0);
1132}
1133
1134int do_send_sig_info(int sig, struct siginfo *info, struct task_struct *p,
1135			bool group)
1136{
1137	unsigned long flags;
1138	int ret = -ESRCH;
1139
1140	if (lock_task_sighand(p, &flags)) {
1141		ret = send_signal(sig, info, p, group);
1142		unlock_task_sighand(p, &flags);
1143	}
1144
1145	return ret;
1146}
1147
1148/*
1149 * Force a signal that the process can't ignore: if necessary
1150 * we unblock the signal and change any SIG_IGN to SIG_DFL.
1151 *
1152 * Note: If we unblock the signal, we always reset it to SIG_DFL,
1153 * since we do not want to have a signal handler that was blocked
1154 * be invoked when user space had explicitly blocked it.
1155 *
1156 * We don't want to have recursive SIGSEGV's etc, for example,
1157 * that is why we also clear SIGNAL_UNKILLABLE.
1158 */
1159int
1160force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1161{
1162	unsigned long int flags;
1163	int ret, blocked, ignored;
1164	struct k_sigaction *action;
1165
1166	spin_lock_irqsave(&t->sighand->siglock, flags);
1167	action = &t->sighand->action[sig-1];
1168	ignored = action->sa.sa_handler == SIG_IGN;
1169	blocked = sigismember(&t->blocked, sig);
1170	if (blocked || ignored) {
1171		action->sa.sa_handler = SIG_DFL;
1172		if (blocked) {
1173			sigdelset(&t->blocked, sig);
1174			recalc_sigpending_and_wake(t);
1175		}
1176	}
1177	if (action->sa.sa_handler == SIG_DFL)
1178		t->signal->flags &= ~SIGNAL_UNKILLABLE;
1179	ret = specific_send_sig_info(sig, info, t);
1180	spin_unlock_irqrestore(&t->sighand->siglock, flags);
1181
1182	return ret;
1183}
1184
1185/*
1186 * Nuke all other threads in the group.
1187 */
1188int zap_other_threads(struct task_struct *p)
1189{
1190	struct task_struct *t = p;
1191	int count = 0;
1192
1193	p->signal->group_stop_count = 0;
1194
1195	while_each_thread(p, t) {
1196		task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1197		count++;
1198
1199		/* Don't bother with already dead threads */
1200		if (t->exit_state)
1201			continue;
1202		sigaddset(&t->pending.signal, SIGKILL);
1203		signal_wake_up(t, 1);
1204	}
1205
1206	return count;
1207}
1208
1209struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1210					   unsigned long *flags)
1211{
1212	struct sighand_struct *sighand;
1213
1214	for (;;) {
1215		/*
1216		 * Disable interrupts early to avoid deadlocks.
1217		 * See rcu_read_unlock() comment header for details.
1218		 */
1219		local_irq_save(*flags);
1220		rcu_read_lock();
1221		sighand = rcu_dereference(tsk->sighand);
1222		if (unlikely(sighand == NULL)) {
1223			rcu_read_unlock();
1224			local_irq_restore(*flags);
1225			break;
1226		}
1227		/*
1228		 * This sighand can be already freed and even reused, but
1229		 * we rely on SLAB_DESTROY_BY_RCU and sighand_ctor() which
1230		 * initializes ->siglock: this slab can't go away, it has
1231		 * the same object type, ->siglock can't be reinitialized.
1232		 *
1233		 * We need to ensure that tsk->sighand is still the same
1234		 * after we take the lock, we can race with de_thread() or
1235		 * __exit_signal(). In the latter case the next iteration
1236		 * must see ->sighand == NULL.
1237		 */
1238		spin_lock(&sighand->siglock);
1239		if (likely(sighand == tsk->sighand)) {
1240			rcu_read_unlock();
1241			break;
1242		}
1243		spin_unlock(&sighand->siglock);
1244		rcu_read_unlock();
1245		local_irq_restore(*flags);
1246	}
1247
1248	return sighand;
1249}
1250
1251/*
1252 * send signal info to all the members of a group
1253 */
1254int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1255{
1256	int ret;
1257
1258	rcu_read_lock();
1259	ret = check_kill_permission(sig, info, p);
1260	rcu_read_unlock();
1261
1262	if (!ret && sig)
1263		ret = do_send_sig_info(sig, info, p, true);
1264
1265	return ret;
1266}
1267
1268/*
1269 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1270 * control characters do (^C, ^Z etc)
1271 * - the caller must hold at least a readlock on tasklist_lock
1272 */
1273int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1274{
1275	struct task_struct *p = NULL;
1276	int retval, success;
1277
1278	success = 0;
1279	retval = -ESRCH;
1280	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1281		int err = group_send_sig_info(sig, info, p);
1282		success |= !err;
1283		retval = err;
1284	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1285	return success ? 0 : retval;
1286}
1287
1288int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
1289{
1290	int error = -ESRCH;
1291	struct task_struct *p;
1292
1293	for (;;) {
1294		rcu_read_lock();
1295		p = pid_task(pid, PIDTYPE_PID);
1296		if (p)
1297			error = group_send_sig_info(sig, info, p);
1298		rcu_read_unlock();
1299		if (likely(!p || error != -ESRCH))
1300			return error;
1301
1302		/*
1303		 * The task was unhashed in between, try again.  If it
1304		 * is dead, pid_task() will return NULL, if we race with
1305		 * de_thread() it will find the new leader.
1306		 */
1307	}
 
 
 
1308}
1309
1310int kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1311{
1312	int error;
1313	rcu_read_lock();
1314	error = kill_pid_info(sig, info, find_vpid(pid));
1315	rcu_read_unlock();
1316	return error;
1317}
1318
1319static int kill_as_cred_perm(const struct cred *cred,
1320			     struct task_struct *target)
1321{
1322	const struct cred *pcred = __task_cred(target);
1323	if (!uid_eq(cred->euid, pcred->suid) && !uid_eq(cred->euid, pcred->uid) &&
1324	    !uid_eq(cred->uid,  pcred->suid) && !uid_eq(cred->uid,  pcred->uid))
1325		return 0;
1326	return 1;
1327}
1328
1329/* like kill_pid_info(), but doesn't use uid/euid of "current" */
1330int kill_pid_info_as_cred(int sig, struct siginfo *info, struct pid *pid,
1331			 const struct cred *cred, u32 secid)
1332{
1333	int ret = -EINVAL;
1334	struct task_struct *p;
 
1335	unsigned long flags;
1336
1337	if (!valid_signal(sig))
1338		return ret;
1339
1340	rcu_read_lock();
1341	p = pid_task(pid, PIDTYPE_PID);
1342	if (!p) {
1343		ret = -ESRCH;
1344		goto out_unlock;
1345	}
1346	if (si_fromuser(info) && !kill_as_cred_perm(cred, p)) {
 
 
 
1347		ret = -EPERM;
1348		goto out_unlock;
1349	}
1350	ret = security_task_kill(p, info, sig, secid);
1351	if (ret)
1352		goto out_unlock;
1353
1354	if (sig) {
1355		if (lock_task_sighand(p, &flags)) {
1356			ret = __send_signal(sig, info, p, 1, 0);
1357			unlock_task_sighand(p, &flags);
1358		} else
1359			ret = -ESRCH;
1360	}
1361out_unlock:
1362	rcu_read_unlock();
1363	return ret;
1364}
1365EXPORT_SYMBOL_GPL(kill_pid_info_as_cred);
1366
1367/*
1368 * kill_something_info() interprets pid in interesting ways just like kill(2).
1369 *
1370 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1371 * is probably wrong.  Should make it like BSD or SYSV.
1372 */
1373
1374static int kill_something_info(int sig, struct siginfo *info, pid_t pid)
1375{
1376	int ret;
1377
1378	if (pid > 0) {
1379		rcu_read_lock();
1380		ret = kill_pid_info(sig, info, find_vpid(pid));
1381		rcu_read_unlock();
1382		return ret;
1383	}
1384
1385	read_lock(&tasklist_lock);
1386	if (pid != -1) {
1387		ret = __kill_pgrp_info(sig, info,
1388				pid ? find_vpid(-pid) : task_pgrp(current));
1389	} else {
1390		int retval = 0, count = 0;
1391		struct task_struct * p;
1392
1393		for_each_process(p) {
1394			if (task_pid_vnr(p) > 1 &&
1395					!same_thread_group(p, current)) {
1396				int err = group_send_sig_info(sig, info, p);
1397				++count;
1398				if (err != -EPERM)
1399					retval = err;
1400			}
1401		}
1402		ret = count ? retval : -ESRCH;
1403	}
1404	read_unlock(&tasklist_lock);
1405
1406	return ret;
1407}
1408
1409/*
1410 * These are for backward compatibility with the rest of the kernel source.
1411 */
1412
1413int send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1414{
1415	/*
1416	 * Make sure legacy kernel users don't send in bad values
1417	 * (normal paths check this in check_kill_permission).
1418	 */
1419	if (!valid_signal(sig))
1420		return -EINVAL;
1421
1422	return do_send_sig_info(sig, info, p, false);
1423}
1424
1425#define __si_special(priv) \
1426	((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1427
1428int
1429send_sig(int sig, struct task_struct *p, int priv)
1430{
1431	return send_sig_info(sig, __si_special(priv), p);
1432}
1433
1434void
1435force_sig(int sig, struct task_struct *p)
1436{
1437	force_sig_info(sig, SEND_SIG_PRIV, p);
1438}
1439
1440/*
1441 * When things go south during signal handling, we
1442 * will force a SIGSEGV. And if the signal that caused
1443 * the problem was already a SIGSEGV, we'll want to
1444 * make sure we don't even try to deliver the signal..
1445 */
1446int
1447force_sigsegv(int sig, struct task_struct *p)
1448{
1449	if (sig == SIGSEGV) {
1450		unsigned long flags;
1451		spin_lock_irqsave(&p->sighand->siglock, flags);
1452		p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1453		spin_unlock_irqrestore(&p->sighand->siglock, flags);
1454	}
1455	force_sig(SIGSEGV, p);
1456	return 0;
1457}
1458
1459int kill_pgrp(struct pid *pid, int sig, int priv)
1460{
1461	int ret;
1462
1463	read_lock(&tasklist_lock);
1464	ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1465	read_unlock(&tasklist_lock);
1466
1467	return ret;
1468}
1469EXPORT_SYMBOL(kill_pgrp);
1470
1471int kill_pid(struct pid *pid, int sig, int priv)
1472{
1473	return kill_pid_info(sig, __si_special(priv), pid);
1474}
1475EXPORT_SYMBOL(kill_pid);
1476
1477/*
1478 * These functions support sending signals using preallocated sigqueue
1479 * structures.  This is needed "because realtime applications cannot
1480 * afford to lose notifications of asynchronous events, like timer
1481 * expirations or I/O completions".  In the case of POSIX Timers
1482 * we allocate the sigqueue structure from the timer_create.  If this
1483 * allocation fails we are able to report the failure to the application
1484 * with an EAGAIN error.
1485 */
1486struct sigqueue *sigqueue_alloc(void)
1487{
1488	struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0);
1489
1490	if (q)
1491		q->flags |= SIGQUEUE_PREALLOC;
1492
1493	return q;
1494}
1495
1496void sigqueue_free(struct sigqueue *q)
1497{
1498	unsigned long flags;
1499	spinlock_t *lock = &current->sighand->siglock;
1500
1501	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1502	/*
1503	 * We must hold ->siglock while testing q->list
1504	 * to serialize with collect_signal() or with
1505	 * __exit_signal()->flush_sigqueue().
1506	 */
1507	spin_lock_irqsave(lock, flags);
1508	q->flags &= ~SIGQUEUE_PREALLOC;
1509	/*
1510	 * If it is queued it will be freed when dequeued,
1511	 * like the "regular" sigqueue.
1512	 */
1513	if (!list_empty(&q->list))
1514		q = NULL;
1515	spin_unlock_irqrestore(lock, flags);
1516
1517	if (q)
1518		__sigqueue_free(q);
1519}
1520
1521int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group)
1522{
1523	int sig = q->info.si_signo;
1524	struct sigpending *pending;
1525	unsigned long flags;
1526	int ret, result;
1527
1528	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1529
1530	ret = -1;
1531	if (!likely(lock_task_sighand(t, &flags)))
1532		goto ret;
1533
1534	ret = 1; /* the signal is ignored */
1535	result = TRACE_SIGNAL_IGNORED;
1536	if (!prepare_signal(sig, t, false))
1537		goto out;
1538
1539	ret = 0;
1540	if (unlikely(!list_empty(&q->list))) {
1541		/*
1542		 * If an SI_TIMER entry is already queue just increment
1543		 * the overrun count.
1544		 */
1545		BUG_ON(q->info.si_code != SI_TIMER);
1546		q->info.si_overrun++;
1547		result = TRACE_SIGNAL_ALREADY_PENDING;
1548		goto out;
1549	}
1550	q->info.si_overrun = 0;
1551
1552	signalfd_notify(t, sig);
1553	pending = group ? &t->signal->shared_pending : &t->pending;
1554	list_add_tail(&q->list, &pending->list);
1555	sigaddset(&pending->signal, sig);
1556	complete_signal(sig, t, group);
1557	result = TRACE_SIGNAL_DELIVERED;
1558out:
1559	trace_signal_generate(sig, &q->info, t, group, result);
1560	unlock_task_sighand(t, &flags);
1561ret:
1562	return ret;
1563}
1564
1565/*
1566 * Let a parent know about the death of a child.
1567 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1568 *
1569 * Returns true if our parent ignored us and so we've switched to
1570 * self-reaping.
1571 */
1572bool do_notify_parent(struct task_struct *tsk, int sig)
1573{
1574	struct siginfo info;
1575	unsigned long flags;
1576	struct sighand_struct *psig;
1577	bool autoreap = false;
1578	cputime_t utime, stime;
1579
1580	BUG_ON(sig == -1);
1581
1582 	/* do_notify_parent_cldstop should have been called instead.  */
1583 	BUG_ON(task_is_stopped_or_traced(tsk));
1584
1585	BUG_ON(!tsk->ptrace &&
1586	       (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1587
1588	if (sig != SIGCHLD) {
1589		/*
1590		 * This is only possible if parent == real_parent.
1591		 * Check if it has changed security domain.
1592		 */
1593		if (tsk->parent_exec_id != tsk->parent->self_exec_id)
1594			sig = SIGCHLD;
1595	}
1596
1597	info.si_signo = sig;
1598	info.si_errno = 0;
1599	/*
1600	 * We are under tasklist_lock here so our parent is tied to
1601	 * us and cannot change.
1602	 *
1603	 * task_active_pid_ns will always return the same pid namespace
1604	 * until a task passes through release_task.
 
1605	 *
1606	 * write_lock() currently calls preempt_disable() which is the
1607	 * same as rcu_read_lock(), but according to Oleg, this is not
1608	 * correct to rely on this
1609	 */
1610	rcu_read_lock();
1611	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
1612	info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
1613				       task_uid(tsk));
1614	rcu_read_unlock();
1615
1616	task_cputime(tsk, &utime, &stime);
1617	info.si_utime = cputime_to_clock_t(utime + tsk->signal->utime);
1618	info.si_stime = cputime_to_clock_t(stime + tsk->signal->stime);
 
1619
1620	info.si_status = tsk->exit_code & 0x7f;
1621	if (tsk->exit_code & 0x80)
1622		info.si_code = CLD_DUMPED;
1623	else if (tsk->exit_code & 0x7f)
1624		info.si_code = CLD_KILLED;
1625	else {
1626		info.si_code = CLD_EXITED;
1627		info.si_status = tsk->exit_code >> 8;
1628	}
1629
1630	psig = tsk->parent->sighand;
1631	spin_lock_irqsave(&psig->siglock, flags);
1632	if (!tsk->ptrace && sig == SIGCHLD &&
1633	    (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1634	     (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1635		/*
1636		 * We are exiting and our parent doesn't care.  POSIX.1
1637		 * defines special semantics for setting SIGCHLD to SIG_IGN
1638		 * or setting the SA_NOCLDWAIT flag: we should be reaped
1639		 * automatically and not left for our parent's wait4 call.
1640		 * Rather than having the parent do it as a magic kind of
1641		 * signal handler, we just set this to tell do_exit that we
1642		 * can be cleaned up without becoming a zombie.  Note that
1643		 * we still call __wake_up_parent in this case, because a
1644		 * blocked sys_wait4 might now return -ECHILD.
1645		 *
1646		 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1647		 * is implementation-defined: we do (if you don't want
1648		 * it, just use SIG_IGN instead).
1649		 */
1650		autoreap = true;
1651		if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1652			sig = 0;
1653	}
1654	if (valid_signal(sig) && sig)
1655		__group_send_sig_info(sig, &info, tsk->parent);
1656	__wake_up_parent(tsk, tsk->parent);
1657	spin_unlock_irqrestore(&psig->siglock, flags);
1658
1659	return autoreap;
1660}
1661
1662/**
1663 * do_notify_parent_cldstop - notify parent of stopped/continued state change
1664 * @tsk: task reporting the state change
1665 * @for_ptracer: the notification is for ptracer
1666 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
1667 *
1668 * Notify @tsk's parent that the stopped/continued state has changed.  If
1669 * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
1670 * If %true, @tsk reports to @tsk->parent which should be the ptracer.
1671 *
1672 * CONTEXT:
1673 * Must be called with tasklist_lock at least read locked.
1674 */
1675static void do_notify_parent_cldstop(struct task_struct *tsk,
1676				     bool for_ptracer, int why)
1677{
1678	struct siginfo info;
1679	unsigned long flags;
1680	struct task_struct *parent;
1681	struct sighand_struct *sighand;
1682	cputime_t utime, stime;
1683
1684	if (for_ptracer) {
1685		parent = tsk->parent;
1686	} else {
1687		tsk = tsk->group_leader;
1688		parent = tsk->real_parent;
1689	}
1690
1691	info.si_signo = SIGCHLD;
1692	info.si_errno = 0;
1693	/*
1694	 * see comment in do_notify_parent() about the following 4 lines
1695	 */
1696	rcu_read_lock();
1697	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
1698	info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
1699	rcu_read_unlock();
1700
1701	task_cputime(tsk, &utime, &stime);
1702	info.si_utime = cputime_to_clock_t(utime);
1703	info.si_stime = cputime_to_clock_t(stime);
1704
1705 	info.si_code = why;
1706 	switch (why) {
1707 	case CLD_CONTINUED:
1708 		info.si_status = SIGCONT;
1709 		break;
1710 	case CLD_STOPPED:
1711 		info.si_status = tsk->signal->group_exit_code & 0x7f;
1712 		break;
1713 	case CLD_TRAPPED:
1714 		info.si_status = tsk->exit_code & 0x7f;
1715 		break;
1716 	default:
1717 		BUG();
1718 	}
1719
1720	sighand = parent->sighand;
1721	spin_lock_irqsave(&sighand->siglock, flags);
1722	if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1723	    !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1724		__group_send_sig_info(SIGCHLD, &info, parent);
1725	/*
1726	 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1727	 */
1728	__wake_up_parent(tsk, parent);
1729	spin_unlock_irqrestore(&sighand->siglock, flags);
1730}
1731
1732static inline int may_ptrace_stop(void)
1733{
1734	if (!likely(current->ptrace))
1735		return 0;
1736	/*
1737	 * Are we in the middle of do_coredump?
1738	 * If so and our tracer is also part of the coredump stopping
1739	 * is a deadlock situation, and pointless because our tracer
1740	 * is dead so don't allow us to stop.
1741	 * If SIGKILL was already sent before the caller unlocked
1742	 * ->siglock we must see ->core_state != NULL. Otherwise it
1743	 * is safe to enter schedule().
1744	 *
1745	 * This is almost outdated, a task with the pending SIGKILL can't
1746	 * block in TASK_TRACED. But PTRACE_EVENT_EXIT can be reported
1747	 * after SIGKILL was already dequeued.
1748	 */
1749	if (unlikely(current->mm->core_state) &&
1750	    unlikely(current->mm == current->parent->mm))
1751		return 0;
1752
1753	return 1;
1754}
1755
1756/*
1757 * Return non-zero if there is a SIGKILL that should be waking us up.
1758 * Called with the siglock held.
1759 */
1760static int sigkill_pending(struct task_struct *tsk)
1761{
1762	return	sigismember(&tsk->pending.signal, SIGKILL) ||
1763		sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
1764}
1765
1766/*
1767 * This must be called with current->sighand->siglock held.
1768 *
1769 * This should be the path for all ptrace stops.
1770 * We always set current->last_siginfo while stopped here.
1771 * That makes it a way to test a stopped process for
1772 * being ptrace-stopped vs being job-control-stopped.
1773 *
1774 * If we actually decide not to stop at all because the tracer
1775 * is gone, we keep current->exit_code unless clear_code.
1776 */
1777static void ptrace_stop(int exit_code, int why, int clear_code, siginfo_t *info)
1778	__releases(&current->sighand->siglock)
1779	__acquires(&current->sighand->siglock)
1780{
1781	bool gstop_done = false;
1782
1783	if (arch_ptrace_stop_needed(exit_code, info)) {
1784		/*
1785		 * The arch code has something special to do before a
1786		 * ptrace stop.  This is allowed to block, e.g. for faults
1787		 * on user stack pages.  We can't keep the siglock while
1788		 * calling arch_ptrace_stop, so we must release it now.
1789		 * To preserve proper semantics, we must do this before
1790		 * any signal bookkeeping like checking group_stop_count.
1791		 * Meanwhile, a SIGKILL could come in before we retake the
1792		 * siglock.  That must prevent us from sleeping in TASK_TRACED.
1793		 * So after regaining the lock, we must check for SIGKILL.
1794		 */
1795		spin_unlock_irq(&current->sighand->siglock);
1796		arch_ptrace_stop(exit_code, info);
1797		spin_lock_irq(&current->sighand->siglock);
1798		if (sigkill_pending(current))
1799			return;
1800	}
1801
1802	/*
1803	 * We're committing to trapping.  TRACED should be visible before
1804	 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
1805	 * Also, transition to TRACED and updates to ->jobctl should be
1806	 * atomic with respect to siglock and should be done after the arch
1807	 * hook as siglock is released and regrabbed across it.
1808	 */
1809	set_current_state(TASK_TRACED);
1810
1811	current->last_siginfo = info;
1812	current->exit_code = exit_code;
1813
1814	/*
1815	 * If @why is CLD_STOPPED, we're trapping to participate in a group
1816	 * stop.  Do the bookkeeping.  Note that if SIGCONT was delievered
1817	 * across siglock relocks since INTERRUPT was scheduled, PENDING
1818	 * could be clear now.  We act as if SIGCONT is received after
1819	 * TASK_TRACED is entered - ignore it.
1820	 */
1821	if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
1822		gstop_done = task_participate_group_stop(current);
1823
1824	/* any trap clears pending STOP trap, STOP trap clears NOTIFY */
1825	task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
1826	if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
1827		task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
1828
1829	/* entering a trap, clear TRAPPING */
1830	task_clear_jobctl_trapping(current);
1831
1832	spin_unlock_irq(&current->sighand->siglock);
1833	read_lock(&tasklist_lock);
1834	if (may_ptrace_stop()) {
1835		/*
1836		 * Notify parents of the stop.
1837		 *
1838		 * While ptraced, there are two parents - the ptracer and
1839		 * the real_parent of the group_leader.  The ptracer should
1840		 * know about every stop while the real parent is only
1841		 * interested in the completion of group stop.  The states
1842		 * for the two don't interact with each other.  Notify
1843		 * separately unless they're gonna be duplicates.
1844		 */
1845		do_notify_parent_cldstop(current, true, why);
1846		if (gstop_done && ptrace_reparented(current))
1847			do_notify_parent_cldstop(current, false, why);
1848
1849		/*
1850		 * Don't want to allow preemption here, because
1851		 * sys_ptrace() needs this task to be inactive.
1852		 *
1853		 * XXX: implement read_unlock_no_resched().
1854		 */
1855		preempt_disable();
1856		read_unlock(&tasklist_lock);
1857		preempt_enable_no_resched();
1858		freezable_schedule();
1859	} else {
1860		/*
1861		 * By the time we got the lock, our tracer went away.
1862		 * Don't drop the lock yet, another tracer may come.
1863		 *
1864		 * If @gstop_done, the ptracer went away between group stop
1865		 * completion and here.  During detach, it would have set
1866		 * JOBCTL_STOP_PENDING on us and we'll re-enter
1867		 * TASK_STOPPED in do_signal_stop() on return, so notifying
1868		 * the real parent of the group stop completion is enough.
1869		 */
1870		if (gstop_done)
1871			do_notify_parent_cldstop(current, false, why);
1872
1873		/* tasklist protects us from ptrace_freeze_traced() */
1874		__set_current_state(TASK_RUNNING);
1875		if (clear_code)
1876			current->exit_code = 0;
1877		read_unlock(&tasklist_lock);
1878	}
1879
1880	/*
 
 
 
 
 
 
 
1881	 * We are back.  Now reacquire the siglock before touching
1882	 * last_siginfo, so that we are sure to have synchronized with
1883	 * any signal-sending on another CPU that wants to examine it.
1884	 */
1885	spin_lock_irq(&current->sighand->siglock);
1886	current->last_siginfo = NULL;
1887
1888	/* LISTENING can be set only during STOP traps, clear it */
1889	current->jobctl &= ~JOBCTL_LISTENING;
1890
1891	/*
1892	 * Queued signals ignored us while we were stopped for tracing.
1893	 * So check for any that we should take before resuming user mode.
1894	 * This sets TIF_SIGPENDING, but never clears it.
1895	 */
1896	recalc_sigpending_tsk(current);
1897}
1898
1899static void ptrace_do_notify(int signr, int exit_code, int why)
1900{
1901	siginfo_t info;
1902
1903	memset(&info, 0, sizeof info);
1904	info.si_signo = signr;
1905	info.si_code = exit_code;
1906	info.si_pid = task_pid_vnr(current);
1907	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
1908
1909	/* Let the debugger run.  */
1910	ptrace_stop(exit_code, why, 1, &info);
1911}
1912
1913void ptrace_notify(int exit_code)
1914{
1915	BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1916	if (unlikely(current->task_works))
1917		task_work_run();
1918
1919	spin_lock_irq(&current->sighand->siglock);
1920	ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED);
1921	spin_unlock_irq(&current->sighand->siglock);
1922}
1923
1924/**
1925 * do_signal_stop - handle group stop for SIGSTOP and other stop signals
1926 * @signr: signr causing group stop if initiating
1927 *
1928 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
1929 * and participate in it.  If already set, participate in the existing
1930 * group stop.  If participated in a group stop (and thus slept), %true is
1931 * returned with siglock released.
1932 *
1933 * If ptraced, this function doesn't handle stop itself.  Instead,
1934 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
1935 * untouched.  The caller must ensure that INTERRUPT trap handling takes
1936 * places afterwards.
1937 *
1938 * CONTEXT:
1939 * Must be called with @current->sighand->siglock held, which is released
1940 * on %true return.
1941 *
1942 * RETURNS:
1943 * %false if group stop is already cancelled or ptrace trap is scheduled.
1944 * %true if participated in group stop.
1945 */
1946static bool do_signal_stop(int signr)
1947	__releases(&current->sighand->siglock)
1948{
1949	struct signal_struct *sig = current->signal;
1950
1951	if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
1952		unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
1953		struct task_struct *t;
1954
1955		/* signr will be recorded in task->jobctl for retries */
1956		WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
1957
1958		if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
1959		    unlikely(signal_group_exit(sig)))
1960			return false;
1961		/*
1962		 * There is no group stop already in progress.  We must
1963		 * initiate one now.
1964		 *
1965		 * While ptraced, a task may be resumed while group stop is
1966		 * still in effect and then receive a stop signal and
1967		 * initiate another group stop.  This deviates from the
1968		 * usual behavior as two consecutive stop signals can't
1969		 * cause two group stops when !ptraced.  That is why we
1970		 * also check !task_is_stopped(t) below.
1971		 *
1972		 * The condition can be distinguished by testing whether
1973		 * SIGNAL_STOP_STOPPED is already set.  Don't generate
1974		 * group_exit_code in such case.
1975		 *
1976		 * This is not necessary for SIGNAL_STOP_CONTINUED because
1977		 * an intervening stop signal is required to cause two
1978		 * continued events regardless of ptrace.
1979		 */
1980		if (!(sig->flags & SIGNAL_STOP_STOPPED))
1981			sig->group_exit_code = signr;
 
 
1982
1983		sig->group_stop_count = 0;
1984
1985		if (task_set_jobctl_pending(current, signr | gstop))
1986			sig->group_stop_count++;
1987
1988		t = current;
1989		while_each_thread(current, t) {
1990			/*
1991			 * Setting state to TASK_STOPPED for a group
1992			 * stop is always done with the siglock held,
1993			 * so this check has no races.
1994			 */
1995			if (!task_is_stopped(t) &&
1996			    task_set_jobctl_pending(t, signr | gstop)) {
1997				sig->group_stop_count++;
1998				if (likely(!(t->ptrace & PT_SEIZED)))
1999					signal_wake_up(t, 0);
2000				else
2001					ptrace_trap_notify(t);
2002			}
2003		}
2004	}
2005
2006	if (likely(!current->ptrace)) {
2007		int notify = 0;
2008
2009		/*
2010		 * If there are no other threads in the group, or if there
2011		 * is a group stop in progress and we are the last to stop,
2012		 * report to the parent.
2013		 */
2014		if (task_participate_group_stop(current))
2015			notify = CLD_STOPPED;
2016
2017		__set_current_state(TASK_STOPPED);
2018		spin_unlock_irq(&current->sighand->siglock);
2019
2020		/*
2021		 * Notify the parent of the group stop completion.  Because
2022		 * we're not holding either the siglock or tasklist_lock
2023		 * here, ptracer may attach inbetween; however, this is for
2024		 * group stop and should always be delivered to the real
2025		 * parent of the group leader.  The new ptracer will get
2026		 * its notification when this task transitions into
2027		 * TASK_TRACED.
2028		 */
2029		if (notify) {
2030			read_lock(&tasklist_lock);
2031			do_notify_parent_cldstop(current, false, notify);
2032			read_unlock(&tasklist_lock);
2033		}
2034
2035		/* Now we don't run again until woken by SIGCONT or SIGKILL */
2036		freezable_schedule();
2037		return true;
2038	} else {
2039		/*
2040		 * While ptraced, group stop is handled by STOP trap.
2041		 * Schedule it and let the caller deal with it.
2042		 */
2043		task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2044		return false;
2045	}
2046}
2047
2048/**
2049 * do_jobctl_trap - take care of ptrace jobctl traps
2050 *
2051 * When PT_SEIZED, it's used for both group stop and explicit
2052 * SEIZE/INTERRUPT traps.  Both generate PTRACE_EVENT_STOP trap with
2053 * accompanying siginfo.  If stopped, lower eight bits of exit_code contain
2054 * the stop signal; otherwise, %SIGTRAP.
2055 *
2056 * When !PT_SEIZED, it's used only for group stop trap with stop signal
2057 * number as exit_code and no siginfo.
2058 *
2059 * CONTEXT:
2060 * Must be called with @current->sighand->siglock held, which may be
2061 * released and re-acquired before returning with intervening sleep.
2062 */
2063static void do_jobctl_trap(void)
2064{
2065	struct signal_struct *signal = current->signal;
2066	int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2067
2068	if (current->ptrace & PT_SEIZED) {
2069		if (!signal->group_stop_count &&
2070		    !(signal->flags & SIGNAL_STOP_STOPPED))
2071			signr = SIGTRAP;
2072		WARN_ON_ONCE(!signr);
2073		ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2074				 CLD_STOPPED);
2075	} else {
2076		WARN_ON_ONCE(!signr);
2077		ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2078		current->exit_code = 0;
2079	}
2080}
2081
2082static int ptrace_signal(int signr, siginfo_t *info)
 
2083{
2084	ptrace_signal_deliver();
2085	/*
2086	 * We do not check sig_kernel_stop(signr) but set this marker
2087	 * unconditionally because we do not know whether debugger will
2088	 * change signr. This flag has no meaning unless we are going
2089	 * to stop after return from ptrace_stop(). In this case it will
2090	 * be checked in do_signal_stop(), we should only stop if it was
2091	 * not cleared by SIGCONT while we were sleeping. See also the
2092	 * comment in dequeue_signal().
2093	 */
2094	current->jobctl |= JOBCTL_STOP_DEQUEUED;
2095	ptrace_stop(signr, CLD_TRAPPED, 0, info);
2096
2097	/* We're back.  Did the debugger cancel the sig?  */
2098	signr = current->exit_code;
2099	if (signr == 0)
2100		return signr;
2101
2102	current->exit_code = 0;
2103
2104	/*
2105	 * Update the siginfo structure if the signal has
2106	 * changed.  If the debugger wanted something
2107	 * specific in the siginfo structure then it should
2108	 * have updated *info via PTRACE_SETSIGINFO.
2109	 */
2110	if (signr != info->si_signo) {
2111		info->si_signo = signr;
2112		info->si_errno = 0;
2113		info->si_code = SI_USER;
2114		rcu_read_lock();
2115		info->si_pid = task_pid_vnr(current->parent);
2116		info->si_uid = from_kuid_munged(current_user_ns(),
2117						task_uid(current->parent));
2118		rcu_read_unlock();
2119	}
2120
2121	/* If the (new) signal is now blocked, requeue it.  */
2122	if (sigismember(&current->blocked, signr)) {
2123		specific_send_sig_info(signr, info, current);
2124		signr = 0;
2125	}
2126
2127	return signr;
2128}
2129
2130int get_signal(struct ksignal *ksig)
 
2131{
2132	struct sighand_struct *sighand = current->sighand;
2133	struct signal_struct *signal = current->signal;
2134	int signr;
2135
2136	if (unlikely(current->task_works))
2137		task_work_run();
2138
2139	if (unlikely(uprobe_deny_signal()))
2140		return 0;
2141
2142	/*
2143	 * Do this once, we can't return to user-mode if freezing() == T.
2144	 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2145	 * thus do not need another check after return.
 
2146	 */
2147	try_to_freeze();
2148
2149relock:
2150	spin_lock_irq(&sighand->siglock);
2151	/*
2152	 * Every stopped thread goes here after wakeup. Check to see if
2153	 * we should notify the parent, prepare_signal(SIGCONT) encodes
2154	 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2155	 */
2156	if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2157		int why;
2158
2159		if (signal->flags & SIGNAL_CLD_CONTINUED)
2160			why = CLD_CONTINUED;
2161		else
2162			why = CLD_STOPPED;
2163
2164		signal->flags &= ~SIGNAL_CLD_MASK;
2165
2166		spin_unlock_irq(&sighand->siglock);
2167
2168		/*
2169		 * Notify the parent that we're continuing.  This event is
2170		 * always per-process and doesn't make whole lot of sense
2171		 * for ptracers, who shouldn't consume the state via
2172		 * wait(2) either, but, for backward compatibility, notify
2173		 * the ptracer of the group leader too unless it's gonna be
2174		 * a duplicate.
2175		 */
2176		read_lock(&tasklist_lock);
2177		do_notify_parent_cldstop(current, false, why);
2178
2179		if (ptrace_reparented(current->group_leader))
2180			do_notify_parent_cldstop(current->group_leader,
2181						true, why);
2182		read_unlock(&tasklist_lock);
2183
2184		goto relock;
2185	}
2186
2187	for (;;) {
2188		struct k_sigaction *ka;
2189
2190		if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2191		    do_signal_stop(0))
2192			goto relock;
2193
2194		if (unlikely(current->jobctl & JOBCTL_TRAP_MASK)) {
2195			do_jobctl_trap();
2196			spin_unlock_irq(&sighand->siglock);
2197			goto relock;
2198		}
2199
2200		signr = dequeue_signal(current, &current->blocked, &ksig->info);
2201
2202		if (!signr)
2203			break; /* will return 0 */
2204
2205		if (unlikely(current->ptrace) && signr != SIGKILL) {
2206			signr = ptrace_signal(signr, &ksig->info);
 
2207			if (!signr)
2208				continue;
2209		}
2210
2211		ka = &sighand->action[signr-1];
2212
2213		/* Trace actually delivered signals. */
2214		trace_signal_deliver(signr, &ksig->info, ka);
2215
2216		if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */
2217			continue;
2218		if (ka->sa.sa_handler != SIG_DFL) {
2219			/* Run the handler.  */
2220			ksig->ka = *ka;
2221
2222			if (ka->sa.sa_flags & SA_ONESHOT)
2223				ka->sa.sa_handler = SIG_DFL;
2224
2225			break; /* will return non-zero "signr" value */
2226		}
2227
2228		/*
2229		 * Now we are doing the default action for this signal.
2230		 */
2231		if (sig_kernel_ignore(signr)) /* Default is nothing. */
2232			continue;
2233
2234		/*
2235		 * Global init gets no signals it doesn't want.
2236		 * Container-init gets no signals it doesn't want from same
2237		 * container.
2238		 *
2239		 * Note that if global/container-init sees a sig_kernel_only()
2240		 * signal here, the signal must have been generated internally
2241		 * or must have come from an ancestor namespace. In either
2242		 * case, the signal cannot be dropped.
2243		 */
2244		if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2245				!sig_kernel_only(signr))
2246			continue;
2247
2248		if (sig_kernel_stop(signr)) {
2249			/*
2250			 * The default action is to stop all threads in
2251			 * the thread group.  The job control signals
2252			 * do nothing in an orphaned pgrp, but SIGSTOP
2253			 * always works.  Note that siglock needs to be
2254			 * dropped during the call to is_orphaned_pgrp()
2255			 * because of lock ordering with tasklist_lock.
2256			 * This allows an intervening SIGCONT to be posted.
2257			 * We need to check for that and bail out if necessary.
2258			 */
2259			if (signr != SIGSTOP) {
2260				spin_unlock_irq(&sighand->siglock);
2261
2262				/* signals can be posted during this window */
2263
2264				if (is_current_pgrp_orphaned())
2265					goto relock;
2266
2267				spin_lock_irq(&sighand->siglock);
2268			}
2269
2270			if (likely(do_signal_stop(ksig->info.si_signo))) {
2271				/* It released the siglock.  */
2272				goto relock;
2273			}
2274
2275			/*
2276			 * We didn't actually stop, due to a race
2277			 * with SIGCONT or something like that.
2278			 */
2279			continue;
2280		}
2281
2282		spin_unlock_irq(&sighand->siglock);
2283
2284		/*
2285		 * Anything else is fatal, maybe with a core dump.
2286		 */
2287		current->flags |= PF_SIGNALED;
2288
2289		if (sig_kernel_coredump(signr)) {
2290			if (print_fatal_signals)
2291				print_fatal_signal(ksig->info.si_signo);
2292			proc_coredump_connector(current);
2293			/*
2294			 * If it was able to dump core, this kills all
2295			 * other threads in the group and synchronizes with
2296			 * their demise.  If we lost the race with another
2297			 * thread getting here, it set group_exit_code
2298			 * first and our do_group_exit call below will use
2299			 * that value and ignore the one we pass it.
2300			 */
2301			do_coredump(&ksig->info);
2302		}
2303
2304		/*
2305		 * Death signals, no core dump.
2306		 */
2307		do_group_exit(ksig->info.si_signo);
2308		/* NOTREACHED */
2309	}
2310	spin_unlock_irq(&sighand->siglock);
2311
2312	ksig->sig = signr;
2313	return ksig->sig > 0;
2314}
2315
2316/**
2317 * signal_delivered - 
2318 * @ksig:		kernel signal struct
2319 * @stepping:		nonzero if debugger single-step or block-step in use
2320 *
2321 * This function should be called when a signal has successfully been
2322 * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
2323 * is always blocked, and the signal itself is blocked unless %SA_NODEFER
2324 * is set in @ksig->ka.sa.sa_flags.  Tracing is notified.
2325 */
2326static void signal_delivered(struct ksignal *ksig, int stepping)
2327{
2328	sigset_t blocked;
2329
2330	/* A signal was successfully delivered, and the
2331	   saved sigmask was stored on the signal frame,
2332	   and will be restored by sigreturn.  So we can
2333	   simply clear the restore sigmask flag.  */
2334	clear_restore_sigmask();
2335
2336	sigorsets(&blocked, &current->blocked, &ksig->ka.sa.sa_mask);
2337	if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
2338		sigaddset(&blocked, ksig->sig);
2339	set_current_blocked(&blocked);
2340	tracehook_signal_handler(stepping);
2341}
2342
2343void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2344{
2345	if (failed)
2346		force_sigsegv(ksig->sig, current);
2347	else
2348		signal_delivered(ksig, stepping);
2349}
2350
2351/*
2352 * It could be that complete_signal() picked us to notify about the
2353 * group-wide signal. Other threads should be notified now to take
2354 * the shared signals in @which since we will not.
2355 */
2356static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2357{
2358	sigset_t retarget;
2359	struct task_struct *t;
2360
2361	sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2362	if (sigisemptyset(&retarget))
2363		return;
2364
2365	t = tsk;
2366	while_each_thread(tsk, t) {
2367		if (t->flags & PF_EXITING)
2368			continue;
2369
2370		if (!has_pending_signals(&retarget, &t->blocked))
2371			continue;
2372		/* Remove the signals this thread can handle. */
2373		sigandsets(&retarget, &retarget, &t->blocked);
2374
2375		if (!signal_pending(t))
2376			signal_wake_up(t, 0);
2377
2378		if (sigisemptyset(&retarget))
2379			break;
2380	}
2381}
2382
2383void exit_signals(struct task_struct *tsk)
2384{
2385	int group_stop = 0;
2386	sigset_t unblocked;
2387
2388	/*
2389	 * @tsk is about to have PF_EXITING set - lock out users which
2390	 * expect stable threadgroup.
2391	 */
2392	threadgroup_change_begin(tsk);
2393
2394	if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
2395		tsk->flags |= PF_EXITING;
2396		threadgroup_change_end(tsk);
2397		return;
2398	}
2399
2400	spin_lock_irq(&tsk->sighand->siglock);
2401	/*
2402	 * From now this task is not visible for group-wide signals,
2403	 * see wants_signal(), do_signal_stop().
2404	 */
2405	tsk->flags |= PF_EXITING;
2406
2407	threadgroup_change_end(tsk);
2408
2409	if (!signal_pending(tsk))
2410		goto out;
2411
2412	unblocked = tsk->blocked;
2413	signotset(&unblocked);
2414	retarget_shared_pending(tsk, &unblocked);
2415
2416	if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2417	    task_participate_group_stop(tsk))
2418		group_stop = CLD_STOPPED;
2419out:
2420	spin_unlock_irq(&tsk->sighand->siglock);
2421
2422	/*
2423	 * If group stop has completed, deliver the notification.  This
2424	 * should always go to the real parent of the group leader.
2425	 */
2426	if (unlikely(group_stop)) {
2427		read_lock(&tasklist_lock);
2428		do_notify_parent_cldstop(tsk, false, group_stop);
2429		read_unlock(&tasklist_lock);
2430	}
2431}
2432
2433EXPORT_SYMBOL(recalc_sigpending);
2434EXPORT_SYMBOL_GPL(dequeue_signal);
2435EXPORT_SYMBOL(flush_signals);
2436EXPORT_SYMBOL(force_sig);
2437EXPORT_SYMBOL(send_sig);
2438EXPORT_SYMBOL(send_sig_info);
2439EXPORT_SYMBOL(sigprocmask);
 
 
 
2440
2441/*
2442 * System call entry points.
2443 */
2444
2445/**
2446 *  sys_restart_syscall - restart a system call
2447 */
2448SYSCALL_DEFINE0(restart_syscall)
2449{
2450	struct restart_block *restart = &current->restart_block;
2451	return restart->fn(restart);
2452}
2453
2454long do_no_restart_syscall(struct restart_block *param)
2455{
2456	return -EINTR;
2457}
2458
2459static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
2460{
2461	if (signal_pending(tsk) && !thread_group_empty(tsk)) {
2462		sigset_t newblocked;
2463		/* A set of now blocked but previously unblocked signals. */
2464		sigandnsets(&newblocked, newset, &current->blocked);
2465		retarget_shared_pending(tsk, &newblocked);
2466	}
2467	tsk->blocked = *newset;
2468	recalc_sigpending();
2469}
2470
2471/**
2472 * set_current_blocked - change current->blocked mask
2473 * @newset: new mask
2474 *
2475 * It is wrong to change ->blocked directly, this helper should be used
2476 * to ensure the process can't miss a shared signal we are going to block.
2477 */
2478void set_current_blocked(sigset_t *newset)
2479{
2480	sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
2481	__set_current_blocked(newset);
2482}
2483
2484void __set_current_blocked(const sigset_t *newset)
2485{
2486	struct task_struct *tsk = current;
2487
2488	spin_lock_irq(&tsk->sighand->siglock);
2489	__set_task_blocked(tsk, newset);
2490	spin_unlock_irq(&tsk->sighand->siglock);
2491}
2492
2493/*
2494 * This is also useful for kernel threads that want to temporarily
2495 * (or permanently) block certain signals.
2496 *
2497 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2498 * interface happily blocks "unblockable" signals like SIGKILL
2499 * and friends.
2500 */
2501int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2502{
2503	struct task_struct *tsk = current;
2504	sigset_t newset;
2505
2506	/* Lockless, only current can change ->blocked, never from irq */
2507	if (oldset)
2508		*oldset = tsk->blocked;
2509
2510	switch (how) {
2511	case SIG_BLOCK:
2512		sigorsets(&newset, &tsk->blocked, set);
2513		break;
2514	case SIG_UNBLOCK:
2515		sigandnsets(&newset, &tsk->blocked, set);
2516		break;
2517	case SIG_SETMASK:
2518		newset = *set;
2519		break;
2520	default:
2521		return -EINVAL;
2522	}
2523
2524	__set_current_blocked(&newset);
2525	return 0;
2526}
2527
2528/**
2529 *  sys_rt_sigprocmask - change the list of currently blocked signals
2530 *  @how: whether to add, remove, or set signals
2531 *  @nset: stores pending signals
2532 *  @oset: previous value of signal mask if non-null
2533 *  @sigsetsize: size of sigset_t type
2534 */
2535SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
2536		sigset_t __user *, oset, size_t, sigsetsize)
2537{
2538	sigset_t old_set, new_set;
2539	int error;
2540
2541	/* XXX: Don't preclude handling different sized sigset_t's.  */
2542	if (sigsetsize != sizeof(sigset_t))
2543		return -EINVAL;
2544
2545	old_set = current->blocked;
2546
2547	if (nset) {
2548		if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
2549			return -EFAULT;
2550		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2551
2552		error = sigprocmask(how, &new_set, NULL);
2553		if (error)
2554			return error;
2555	}
2556
2557	if (oset) {
2558		if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
2559			return -EFAULT;
2560	}
2561
2562	return 0;
2563}
2564
2565#ifdef CONFIG_COMPAT
2566COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
2567		compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
2568{
2569#ifdef __BIG_ENDIAN
2570	sigset_t old_set = current->blocked;
2571
2572	/* XXX: Don't preclude handling different sized sigset_t's.  */
2573	if (sigsetsize != sizeof(sigset_t))
2574		return -EINVAL;
2575
2576	if (nset) {
2577		compat_sigset_t new32;
2578		sigset_t new_set;
2579		int error;
2580		if (copy_from_user(&new32, nset, sizeof(compat_sigset_t)))
2581			return -EFAULT;
2582
2583		sigset_from_compat(&new_set, &new32);
2584		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2585
2586		error = sigprocmask(how, &new_set, NULL);
2587		if (error)
2588			return error;
2589	}
2590	if (oset) {
2591		compat_sigset_t old32;
2592		sigset_to_compat(&old32, &old_set);
2593		if (copy_to_user(oset, &old32, sizeof(compat_sigset_t)))
2594			return -EFAULT;
2595	}
2596	return 0;
2597#else
2598	return sys_rt_sigprocmask(how, (sigset_t __user *)nset,
2599				  (sigset_t __user *)oset, sigsetsize);
2600#endif
2601}
2602#endif
2603
2604static int do_sigpending(void *set, unsigned long sigsetsize)
2605{
2606	if (sigsetsize > sizeof(sigset_t))
2607		return -EINVAL;
2608
2609	spin_lock_irq(&current->sighand->siglock);
2610	sigorsets(set, &current->pending.signal,
2611		  &current->signal->shared_pending.signal);
2612	spin_unlock_irq(&current->sighand->siglock);
2613
2614	/* Outside the lock because only this thread touches it.  */
2615	sigandsets(set, &current->blocked, set);
2616	return 0;
 
 
 
 
 
 
2617}
2618
2619/**
2620 *  sys_rt_sigpending - examine a pending signal that has been raised
2621 *			while blocked
2622 *  @uset: stores pending signals
2623 *  @sigsetsize: size of sigset_t type or larger
2624 */
2625SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
2626{
2627	sigset_t set;
2628	int err = do_sigpending(&set, sigsetsize);
2629	if (!err && copy_to_user(uset, &set, sigsetsize))
2630		err = -EFAULT;
2631	return err;
2632}
2633
2634#ifdef CONFIG_COMPAT
2635COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
2636		compat_size_t, sigsetsize)
2637{
2638#ifdef __BIG_ENDIAN
2639	sigset_t set;
2640	int err = do_sigpending(&set, sigsetsize);
2641	if (!err) {
2642		compat_sigset_t set32;
2643		sigset_to_compat(&set32, &set);
2644		/* we can get here only if sigsetsize <= sizeof(set) */
2645		if (copy_to_user(uset, &set32, sigsetsize))
2646			err = -EFAULT;
2647	}
2648	return err;
2649#else
2650	return sys_rt_sigpending((sigset_t __user *)uset, sigsetsize);
2651#endif
2652}
2653#endif
2654
2655#ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2656
2657int copy_siginfo_to_user(siginfo_t __user *to, const siginfo_t *from)
2658{
2659	int err;
2660
2661	if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2662		return -EFAULT;
2663	if (from->si_code < 0)
2664		return __copy_to_user(to, from, sizeof(siginfo_t))
2665			? -EFAULT : 0;
2666	/*
2667	 * If you change siginfo_t structure, please be sure
2668	 * this code is fixed accordingly.
2669	 * Please remember to update the signalfd_copyinfo() function
2670	 * inside fs/signalfd.c too, in case siginfo_t changes.
2671	 * It should never copy any pad contained in the structure
2672	 * to avoid security leaks, but must copy the generic
2673	 * 3 ints plus the relevant union member.
2674	 */
2675	err = __put_user(from->si_signo, &to->si_signo);
2676	err |= __put_user(from->si_errno, &to->si_errno);
2677	err |= __put_user((short)from->si_code, &to->si_code);
2678	switch (from->si_code & __SI_MASK) {
2679	case __SI_KILL:
2680		err |= __put_user(from->si_pid, &to->si_pid);
2681		err |= __put_user(from->si_uid, &to->si_uid);
2682		break;
2683	case __SI_TIMER:
2684		 err |= __put_user(from->si_tid, &to->si_tid);
2685		 err |= __put_user(from->si_overrun, &to->si_overrun);
2686		 err |= __put_user(from->si_ptr, &to->si_ptr);
2687		break;
2688	case __SI_POLL:
2689		err |= __put_user(from->si_band, &to->si_band);
2690		err |= __put_user(from->si_fd, &to->si_fd);
2691		break;
2692	case __SI_FAULT:
2693		err |= __put_user(from->si_addr, &to->si_addr);
2694#ifdef __ARCH_SI_TRAPNO
2695		err |= __put_user(from->si_trapno, &to->si_trapno);
2696#endif
2697#ifdef BUS_MCEERR_AO
2698		/*
2699		 * Other callers might not initialize the si_lsb field,
2700		 * so check explicitly for the right codes here.
2701		 */
2702		if (from->si_signo == SIGBUS &&
2703		    (from->si_code == BUS_MCEERR_AR || from->si_code == BUS_MCEERR_AO))
2704			err |= __put_user(from->si_addr_lsb, &to->si_addr_lsb);
2705#endif
2706#ifdef SEGV_BNDERR
2707		if (from->si_signo == SIGSEGV && from->si_code == SEGV_BNDERR) {
2708			err |= __put_user(from->si_lower, &to->si_lower);
2709			err |= __put_user(from->si_upper, &to->si_upper);
2710		}
2711#endif
2712#ifdef SEGV_PKUERR
2713		if (from->si_signo == SIGSEGV && from->si_code == SEGV_PKUERR)
2714			err |= __put_user(from->si_pkey, &to->si_pkey);
2715#endif
2716		break;
2717	case __SI_CHLD:
2718		err |= __put_user(from->si_pid, &to->si_pid);
2719		err |= __put_user(from->si_uid, &to->si_uid);
2720		err |= __put_user(from->si_status, &to->si_status);
2721		err |= __put_user(from->si_utime, &to->si_utime);
2722		err |= __put_user(from->si_stime, &to->si_stime);
2723		break;
2724	case __SI_RT: /* This is not generated by the kernel as of now. */
2725	case __SI_MESGQ: /* But this is */
2726		err |= __put_user(from->si_pid, &to->si_pid);
2727		err |= __put_user(from->si_uid, &to->si_uid);
2728		err |= __put_user(from->si_ptr, &to->si_ptr);
2729		break;
2730#ifdef __ARCH_SIGSYS
2731	case __SI_SYS:
2732		err |= __put_user(from->si_call_addr, &to->si_call_addr);
2733		err |= __put_user(from->si_syscall, &to->si_syscall);
2734		err |= __put_user(from->si_arch, &to->si_arch);
2735		break;
2736#endif
2737	default: /* this is just in case for now ... */
2738		err |= __put_user(from->si_pid, &to->si_pid);
2739		err |= __put_user(from->si_uid, &to->si_uid);
2740		break;
2741	}
2742	return err;
2743}
2744
2745#endif
2746
2747/**
2748 *  do_sigtimedwait - wait for queued signals specified in @which
2749 *  @which: queued signals to wait for
2750 *  @info: if non-null, the signal's siginfo is returned here
2751 *  @ts: upper bound on process time suspension
2752 */
2753int do_sigtimedwait(const sigset_t *which, siginfo_t *info,
2754			const struct timespec *ts)
2755{
2756	struct task_struct *tsk = current;
2757	long timeout = MAX_SCHEDULE_TIMEOUT;
2758	sigset_t mask = *which;
2759	int sig;
2760
2761	if (ts) {
2762		if (!timespec_valid(ts))
2763			return -EINVAL;
2764		timeout = timespec_to_jiffies(ts);
2765		/*
2766		 * We can be close to the next tick, add another one
2767		 * to ensure we will wait at least the time asked for.
2768		 */
2769		if (ts->tv_sec || ts->tv_nsec)
2770			timeout++;
2771	}
2772
2773	/*
2774	 * Invert the set of allowed signals to get those we want to block.
2775	 */
2776	sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
2777	signotset(&mask);
2778
2779	spin_lock_irq(&tsk->sighand->siglock);
2780	sig = dequeue_signal(tsk, &mask, info);
2781	if (!sig && timeout) {
2782		/*
2783		 * None ready, temporarily unblock those we're interested
2784		 * while we are sleeping in so that we'll be awakened when
2785		 * they arrive. Unblocking is always fine, we can avoid
2786		 * set_current_blocked().
2787		 */
2788		tsk->real_blocked = tsk->blocked;
2789		sigandsets(&tsk->blocked, &tsk->blocked, &mask);
2790		recalc_sigpending();
2791		spin_unlock_irq(&tsk->sighand->siglock);
2792
2793		timeout = freezable_schedule_timeout_interruptible(timeout);
2794
2795		spin_lock_irq(&tsk->sighand->siglock);
2796		__set_task_blocked(tsk, &tsk->real_blocked);
2797		sigemptyset(&tsk->real_blocked);
2798		sig = dequeue_signal(tsk, &mask, info);
2799	}
2800	spin_unlock_irq(&tsk->sighand->siglock);
2801
2802	if (sig)
2803		return sig;
2804	return timeout ? -EINTR : -EAGAIN;
2805}
2806
2807/**
2808 *  sys_rt_sigtimedwait - synchronously wait for queued signals specified
2809 *			in @uthese
2810 *  @uthese: queued signals to wait for
2811 *  @uinfo: if non-null, the signal's siginfo is returned here
2812 *  @uts: upper bound on process time suspension
2813 *  @sigsetsize: size of sigset_t type
2814 */
2815SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
2816		siginfo_t __user *, uinfo, const struct timespec __user *, uts,
2817		size_t, sigsetsize)
2818{
2819	sigset_t these;
2820	struct timespec ts;
2821	siginfo_t info;
2822	int ret;
2823
2824	/* XXX: Don't preclude handling different sized sigset_t's.  */
2825	if (sigsetsize != sizeof(sigset_t))
2826		return -EINVAL;
2827
2828	if (copy_from_user(&these, uthese, sizeof(these)))
2829		return -EFAULT;
2830
2831	if (uts) {
2832		if (copy_from_user(&ts, uts, sizeof(ts)))
2833			return -EFAULT;
2834	}
2835
2836	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
2837
2838	if (ret > 0 && uinfo) {
2839		if (copy_siginfo_to_user(uinfo, &info))
2840			ret = -EFAULT;
2841	}
2842
2843	return ret;
2844}
2845
2846/**
2847 *  sys_kill - send a signal to a process
2848 *  @pid: the PID of the process
2849 *  @sig: signal to be sent
2850 */
2851SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
2852{
2853	struct siginfo info;
2854
2855	info.si_signo = sig;
2856	info.si_errno = 0;
2857	info.si_code = SI_USER;
2858	info.si_pid = task_tgid_vnr(current);
2859	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2860
2861	return kill_something_info(sig, &info, pid);
2862}
2863
2864static int
2865do_send_specific(pid_t tgid, pid_t pid, int sig, struct siginfo *info)
2866{
2867	struct task_struct *p;
2868	int error = -ESRCH;
2869
2870	rcu_read_lock();
2871	p = find_task_by_vpid(pid);
2872	if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
2873		error = check_kill_permission(sig, info, p);
2874		/*
2875		 * The null signal is a permissions and process existence
2876		 * probe.  No signal is actually delivered.
2877		 */
2878		if (!error && sig) {
2879			error = do_send_sig_info(sig, info, p, false);
2880			/*
2881			 * If lock_task_sighand() failed we pretend the task
2882			 * dies after receiving the signal. The window is tiny,
2883			 * and the signal is private anyway.
2884			 */
2885			if (unlikely(error == -ESRCH))
2886				error = 0;
2887		}
2888	}
2889	rcu_read_unlock();
2890
2891	return error;
2892}
2893
2894static int do_tkill(pid_t tgid, pid_t pid, int sig)
2895{
2896	struct siginfo info = {};
2897
2898	info.si_signo = sig;
2899	info.si_errno = 0;
2900	info.si_code = SI_TKILL;
2901	info.si_pid = task_tgid_vnr(current);
2902	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2903
2904	return do_send_specific(tgid, pid, sig, &info);
2905}
2906
2907/**
2908 *  sys_tgkill - send signal to one specific thread
2909 *  @tgid: the thread group ID of the thread
2910 *  @pid: the PID of the thread
2911 *  @sig: signal to be sent
2912 *
2913 *  This syscall also checks the @tgid and returns -ESRCH even if the PID
2914 *  exists but it's not belonging to the target process anymore. This
2915 *  method solves the problem of threads exiting and PIDs getting reused.
2916 */
2917SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
2918{
2919	/* This is only valid for single tasks */
2920	if (pid <= 0 || tgid <= 0)
2921		return -EINVAL;
2922
2923	return do_tkill(tgid, pid, sig);
2924}
2925
2926/**
2927 *  sys_tkill - send signal to one specific task
2928 *  @pid: the PID of the task
2929 *  @sig: signal to be sent
2930 *
2931 *  Send a signal to only one task, even if it's a CLONE_THREAD task.
2932 */
2933SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
2934{
2935	/* This is only valid for single tasks */
2936	if (pid <= 0)
2937		return -EINVAL;
2938
2939	return do_tkill(0, pid, sig);
2940}
2941
2942static int do_rt_sigqueueinfo(pid_t pid, int sig, siginfo_t *info)
2943{
2944	/* Not even root can pretend to send signals from the kernel.
2945	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
2946	 */
2947	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
2948	    (task_pid_vnr(current) != pid))
2949		return -EPERM;
2950
2951	info->si_signo = sig;
2952
2953	/* POSIX.1b doesn't mention process groups.  */
2954	return kill_proc_info(sig, info, pid);
2955}
2956
2957/**
2958 *  sys_rt_sigqueueinfo - send signal information to a signal
2959 *  @pid: the PID of the thread
2960 *  @sig: signal to be sent
2961 *  @uinfo: signal info to be sent
2962 */
2963SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
2964		siginfo_t __user *, uinfo)
2965{
2966	siginfo_t info;
 
2967	if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2968		return -EFAULT;
2969	return do_rt_sigqueueinfo(pid, sig, &info);
2970}
2971
2972#ifdef CONFIG_COMPAT
2973COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
2974			compat_pid_t, pid,
2975			int, sig,
2976			struct compat_siginfo __user *, uinfo)
2977{
2978	siginfo_t info = {};
2979	int ret = copy_siginfo_from_user32(&info, uinfo);
2980	if (unlikely(ret))
2981		return ret;
2982	return do_rt_sigqueueinfo(pid, sig, &info);
 
2983}
2984#endif
2985
2986static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, siginfo_t *info)
2987{
2988	/* This is only valid for single tasks */
2989	if (pid <= 0 || tgid <= 0)
2990		return -EINVAL;
2991
2992	/* Not even root can pretend to send signals from the kernel.
2993	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
2994	 */
2995	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
2996	    (task_pid_vnr(current) != pid))
 
2997		return -EPERM;
2998
2999	info->si_signo = sig;
3000
3001	return do_send_specific(tgid, pid, sig, info);
3002}
3003
3004SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
3005		siginfo_t __user *, uinfo)
3006{
3007	siginfo_t info;
3008
3009	if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
3010		return -EFAULT;
3011
3012	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3013}
3014
3015#ifdef CONFIG_COMPAT
3016COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
3017			compat_pid_t, tgid,
3018			compat_pid_t, pid,
3019			int, sig,
3020			struct compat_siginfo __user *, uinfo)
3021{
3022	siginfo_t info = {};
3023
3024	if (copy_siginfo_from_user32(&info, uinfo))
3025		return -EFAULT;
3026	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3027}
3028#endif
3029
3030/*
3031 * For kthreads only, must not be used if cloned with CLONE_SIGHAND
3032 */
3033void kernel_sigaction(int sig, __sighandler_t action)
3034{
3035	spin_lock_irq(&current->sighand->siglock);
3036	current->sighand->action[sig - 1].sa.sa_handler = action;
3037	if (action == SIG_IGN) {
3038		sigset_t mask;
3039
3040		sigemptyset(&mask);
3041		sigaddset(&mask, sig);
3042
3043		flush_sigqueue_mask(&mask, &current->signal->shared_pending);
3044		flush_sigqueue_mask(&mask, &current->pending);
3045		recalc_sigpending();
3046	}
3047	spin_unlock_irq(&current->sighand->siglock);
3048}
3049EXPORT_SYMBOL(kernel_sigaction);
3050
3051int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
3052{
3053	struct task_struct *p = current, *t;
3054	struct k_sigaction *k;
3055	sigset_t mask;
3056
3057	if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
3058		return -EINVAL;
3059
3060	k = &p->sighand->action[sig-1];
3061
3062	spin_lock_irq(&p->sighand->siglock);
3063	if (oact)
3064		*oact = *k;
3065
3066	if (act) {
3067		sigdelsetmask(&act->sa.sa_mask,
3068			      sigmask(SIGKILL) | sigmask(SIGSTOP));
3069		*k = *act;
3070		/*
3071		 * POSIX 3.3.1.3:
3072		 *  "Setting a signal action to SIG_IGN for a signal that is
3073		 *   pending shall cause the pending signal to be discarded,
3074		 *   whether or not it is blocked."
3075		 *
3076		 *  "Setting a signal action to SIG_DFL for a signal that is
3077		 *   pending and whose default action is to ignore the signal
3078		 *   (for example, SIGCHLD), shall cause the pending signal to
3079		 *   be discarded, whether or not it is blocked"
3080		 */
3081		if (sig_handler_ignored(sig_handler(p, sig), sig)) {
3082			sigemptyset(&mask);
3083			sigaddset(&mask, sig);
3084			flush_sigqueue_mask(&mask, &p->signal->shared_pending);
3085			for_each_thread(p, t)
3086				flush_sigqueue_mask(&mask, &t->pending);
 
 
3087		}
3088	}
3089
3090	spin_unlock_irq(&p->sighand->siglock);
3091	return 0;
3092}
3093
3094static int
3095do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
3096{
3097	stack_t oss;
3098	int error;
3099
3100	oss.ss_sp = (void __user *) current->sas_ss_sp;
3101	oss.ss_size = current->sas_ss_size;
3102	oss.ss_flags = sas_ss_flags(sp);
3103
3104	if (uss) {
3105		void __user *ss_sp;
3106		size_t ss_size;
3107		int ss_flags;
3108
3109		error = -EFAULT;
3110		if (!access_ok(VERIFY_READ, uss, sizeof(*uss)))
3111			goto out;
3112		error = __get_user(ss_sp, &uss->ss_sp) |
3113			__get_user(ss_flags, &uss->ss_flags) |
3114			__get_user(ss_size, &uss->ss_size);
3115		if (error)
3116			goto out;
3117
3118		error = -EPERM;
3119		if (on_sig_stack(sp))
3120			goto out;
3121
3122		error = -EINVAL;
3123		/*
3124		 * Note - this code used to test ss_flags incorrectly:
3125		 *  	  old code may have been written using ss_flags==0
3126		 *	  to mean ss_flags==SS_ONSTACK (as this was the only
3127		 *	  way that worked) - this fix preserves that older
3128		 *	  mechanism.
3129		 */
3130		if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
3131			goto out;
3132
3133		if (ss_flags == SS_DISABLE) {
3134			ss_size = 0;
3135			ss_sp = NULL;
3136		} else {
3137			error = -ENOMEM;
3138			if (ss_size < MINSIGSTKSZ)
3139				goto out;
3140		}
3141
3142		current->sas_ss_sp = (unsigned long) ss_sp;
3143		current->sas_ss_size = ss_size;
3144	}
3145
3146	error = 0;
3147	if (uoss) {
3148		error = -EFAULT;
3149		if (!access_ok(VERIFY_WRITE, uoss, sizeof(*uoss)))
3150			goto out;
3151		error = __put_user(oss.ss_sp, &uoss->ss_sp) |
3152			__put_user(oss.ss_size, &uoss->ss_size) |
3153			__put_user(oss.ss_flags, &uoss->ss_flags);
3154	}
3155
3156out:
3157	return error;
3158}
3159SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
3160{
3161	return do_sigaltstack(uss, uoss, current_user_stack_pointer());
3162}
3163
3164int restore_altstack(const stack_t __user *uss)
3165{
3166	int err = do_sigaltstack(uss, NULL, current_user_stack_pointer());
3167	/* squash all but EFAULT for now */
3168	return err == -EFAULT ? err : 0;
3169}
3170
3171int __save_altstack(stack_t __user *uss, unsigned long sp)
3172{
3173	struct task_struct *t = current;
3174	return  __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
3175		__put_user(sas_ss_flags(sp), &uss->ss_flags) |
3176		__put_user(t->sas_ss_size, &uss->ss_size);
3177}
3178
3179#ifdef CONFIG_COMPAT
3180COMPAT_SYSCALL_DEFINE2(sigaltstack,
3181			const compat_stack_t __user *, uss_ptr,
3182			compat_stack_t __user *, uoss_ptr)
3183{
3184	stack_t uss, uoss;
3185	int ret;
3186	mm_segment_t seg;
3187
3188	if (uss_ptr) {
3189		compat_stack_t uss32;
3190
3191		memset(&uss, 0, sizeof(stack_t));
3192		if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
3193			return -EFAULT;
3194		uss.ss_sp = compat_ptr(uss32.ss_sp);
3195		uss.ss_flags = uss32.ss_flags;
3196		uss.ss_size = uss32.ss_size;
3197	}
3198	seg = get_fs();
3199	set_fs(KERNEL_DS);
3200	ret = do_sigaltstack((stack_t __force __user *) (uss_ptr ? &uss : NULL),
3201			     (stack_t __force __user *) &uoss,
3202			     compat_user_stack_pointer());
3203	set_fs(seg);
3204	if (ret >= 0 && uoss_ptr)  {
3205		if (!access_ok(VERIFY_WRITE, uoss_ptr, sizeof(compat_stack_t)) ||
3206		    __put_user(ptr_to_compat(uoss.ss_sp), &uoss_ptr->ss_sp) ||
3207		    __put_user(uoss.ss_flags, &uoss_ptr->ss_flags) ||
3208		    __put_user(uoss.ss_size, &uoss_ptr->ss_size))
3209			ret = -EFAULT;
3210	}
3211	return ret;
3212}
3213
3214int compat_restore_altstack(const compat_stack_t __user *uss)
3215{
3216	int err = compat_sys_sigaltstack(uss, NULL);
3217	/* squash all but -EFAULT for now */
3218	return err == -EFAULT ? err : 0;
3219}
3220
3221int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
3222{
3223	struct task_struct *t = current;
3224	return  __put_user(ptr_to_compat((void __user *)t->sas_ss_sp), &uss->ss_sp) |
3225		__put_user(sas_ss_flags(sp), &uss->ss_flags) |
3226		__put_user(t->sas_ss_size, &uss->ss_size);
3227}
3228#endif
3229
3230#ifdef __ARCH_WANT_SYS_SIGPENDING
3231
3232/**
3233 *  sys_sigpending - examine pending signals
3234 *  @set: where mask of pending signal is returned
3235 */
3236SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, set)
3237{
3238	return sys_rt_sigpending((sigset_t __user *)set, sizeof(old_sigset_t)); 
3239}
3240
3241#endif
3242
3243#ifdef __ARCH_WANT_SYS_SIGPROCMASK
3244/**
3245 *  sys_sigprocmask - examine and change blocked signals
3246 *  @how: whether to add, remove, or set signals
3247 *  @nset: signals to add or remove (if non-null)
3248 *  @oset: previous value of signal mask if non-null
3249 *
3250 * Some platforms have their own version with special arguments;
3251 * others support only sys_rt_sigprocmask.
3252 */
3253
3254SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
3255		old_sigset_t __user *, oset)
3256{
3257	old_sigset_t old_set, new_set;
3258	sigset_t new_blocked;
3259
3260	old_set = current->blocked.sig[0];
3261
3262	if (nset) {
3263		if (copy_from_user(&new_set, nset, sizeof(*nset)))
3264			return -EFAULT;
 
3265
3266		new_blocked = current->blocked;
3267
3268		switch (how) {
3269		case SIG_BLOCK:
3270			sigaddsetmask(&new_blocked, new_set);
3271			break;
3272		case SIG_UNBLOCK:
3273			sigdelsetmask(&new_blocked, new_set);
3274			break;
3275		case SIG_SETMASK:
3276			new_blocked.sig[0] = new_set;
3277			break;
3278		default:
3279			return -EINVAL;
3280		}
3281
3282		set_current_blocked(&new_blocked);
3283	}
3284
3285	if (oset) {
3286		if (copy_to_user(oset, &old_set, sizeof(*oset)))
3287			return -EFAULT;
3288	}
3289
3290	return 0;
3291}
3292#endif /* __ARCH_WANT_SYS_SIGPROCMASK */
3293
3294#ifndef CONFIG_ODD_RT_SIGACTION
3295/**
3296 *  sys_rt_sigaction - alter an action taken by a process
3297 *  @sig: signal to be sent
3298 *  @act: new sigaction
3299 *  @oact: used to save the previous sigaction
3300 *  @sigsetsize: size of sigset_t type
3301 */
3302SYSCALL_DEFINE4(rt_sigaction, int, sig,
3303		const struct sigaction __user *, act,
3304		struct sigaction __user *, oact,
3305		size_t, sigsetsize)
3306{
3307	struct k_sigaction new_sa, old_sa;
3308	int ret = -EINVAL;
3309
3310	/* XXX: Don't preclude handling different sized sigset_t's.  */
3311	if (sigsetsize != sizeof(sigset_t))
3312		goto out;
3313
3314	if (act) {
3315		if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
3316			return -EFAULT;
3317	}
3318
3319	ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
3320
3321	if (!ret && oact) {
3322		if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
3323			return -EFAULT;
3324	}
3325out:
3326	return ret;
3327}
3328#ifdef CONFIG_COMPAT
3329COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
3330		const struct compat_sigaction __user *, act,
3331		struct compat_sigaction __user *, oact,
3332		compat_size_t, sigsetsize)
3333{
3334	struct k_sigaction new_ka, old_ka;
3335	compat_sigset_t mask;
3336#ifdef __ARCH_HAS_SA_RESTORER
3337	compat_uptr_t restorer;
3338#endif
3339	int ret;
3340
3341	/* XXX: Don't preclude handling different sized sigset_t's.  */
3342	if (sigsetsize != sizeof(compat_sigset_t))
3343		return -EINVAL;
3344
3345	if (act) {
3346		compat_uptr_t handler;
3347		ret = get_user(handler, &act->sa_handler);
3348		new_ka.sa.sa_handler = compat_ptr(handler);
3349#ifdef __ARCH_HAS_SA_RESTORER
3350		ret |= get_user(restorer, &act->sa_restorer);
3351		new_ka.sa.sa_restorer = compat_ptr(restorer);
3352#endif
3353		ret |= copy_from_user(&mask, &act->sa_mask, sizeof(mask));
3354		ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
3355		if (ret)
3356			return -EFAULT;
3357		sigset_from_compat(&new_ka.sa.sa_mask, &mask);
3358	}
3359
3360	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3361	if (!ret && oact) {
3362		sigset_to_compat(&mask, &old_ka.sa.sa_mask);
3363		ret = put_user(ptr_to_compat(old_ka.sa.sa_handler), 
3364			       &oact->sa_handler);
3365		ret |= copy_to_user(&oact->sa_mask, &mask, sizeof(mask));
3366		ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
3367#ifdef __ARCH_HAS_SA_RESTORER
3368		ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
3369				&oact->sa_restorer);
3370#endif
3371	}
3372	return ret;
3373}
3374#endif
3375#endif /* !CONFIG_ODD_RT_SIGACTION */
3376
3377#ifdef CONFIG_OLD_SIGACTION
3378SYSCALL_DEFINE3(sigaction, int, sig,
3379		const struct old_sigaction __user *, act,
3380	        struct old_sigaction __user *, oact)
3381{
3382	struct k_sigaction new_ka, old_ka;
3383	int ret;
3384
3385	if (act) {
3386		old_sigset_t mask;
3387		if (!access_ok(VERIFY_READ, act, sizeof(*act)) ||
3388		    __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
3389		    __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
3390		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
3391		    __get_user(mask, &act->sa_mask))
3392			return -EFAULT;
3393#ifdef __ARCH_HAS_KA_RESTORER
3394		new_ka.ka_restorer = NULL;
3395#endif
3396		siginitset(&new_ka.sa.sa_mask, mask);
3397	}
3398
3399	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3400
3401	if (!ret && oact) {
3402		if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) ||
3403		    __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
3404		    __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
3405		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
3406		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
3407			return -EFAULT;
3408	}
3409
3410	return ret;
3411}
3412#endif
3413#ifdef CONFIG_COMPAT_OLD_SIGACTION
3414COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
3415		const struct compat_old_sigaction __user *, act,
3416	        struct compat_old_sigaction __user *, oact)
3417{
3418	struct k_sigaction new_ka, old_ka;
3419	int ret;
3420	compat_old_sigset_t mask;
3421	compat_uptr_t handler, restorer;
3422
3423	if (act) {
3424		if (!access_ok(VERIFY_READ, act, sizeof(*act)) ||
3425		    __get_user(handler, &act->sa_handler) ||
3426		    __get_user(restorer, &act->sa_restorer) ||
3427		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
3428		    __get_user(mask, &act->sa_mask))
3429			return -EFAULT;
3430
3431#ifdef __ARCH_HAS_KA_RESTORER
3432		new_ka.ka_restorer = NULL;
3433#endif
3434		new_ka.sa.sa_handler = compat_ptr(handler);
3435		new_ka.sa.sa_restorer = compat_ptr(restorer);
3436		siginitset(&new_ka.sa.sa_mask, mask);
3437	}
3438
3439	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3440
3441	if (!ret && oact) {
3442		if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) ||
3443		    __put_user(ptr_to_compat(old_ka.sa.sa_handler),
3444			       &oact->sa_handler) ||
3445		    __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
3446			       &oact->sa_restorer) ||
3447		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
3448		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
3449			return -EFAULT;
3450	}
3451	return ret;
3452}
3453#endif
3454
3455#ifdef CONFIG_SGETMASK_SYSCALL
3456
3457/*
3458 * For backwards compatibility.  Functionality superseded by sigprocmask.
3459 */
3460SYSCALL_DEFINE0(sgetmask)
3461{
3462	/* SMP safe */
3463	return current->blocked.sig[0];
3464}
3465
3466SYSCALL_DEFINE1(ssetmask, int, newmask)
3467{
3468	int old = current->blocked.sig[0];
3469	sigset_t newset;
3470
3471	siginitset(&newset, newmask);
3472	set_current_blocked(&newset);
3473
3474	return old;
3475}
3476#endif /* CONFIG_SGETMASK_SYSCALL */
3477
3478#ifdef __ARCH_WANT_SYS_SIGNAL
3479/*
3480 * For backwards compatibility.  Functionality superseded by sigaction.
3481 */
3482SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
3483{
3484	struct k_sigaction new_sa, old_sa;
3485	int ret;
3486
3487	new_sa.sa.sa_handler = handler;
3488	new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
3489	sigemptyset(&new_sa.sa.sa_mask);
3490
3491	ret = do_sigaction(sig, &new_sa, &old_sa);
3492
3493	return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
3494}
3495#endif /* __ARCH_WANT_SYS_SIGNAL */
3496
3497#ifdef __ARCH_WANT_SYS_PAUSE
3498
3499SYSCALL_DEFINE0(pause)
3500{
3501	while (!signal_pending(current)) {
3502		__set_current_state(TASK_INTERRUPTIBLE);
3503		schedule();
3504	}
3505	return -ERESTARTNOHAND;
3506}
3507
3508#endif
3509
3510static int sigsuspend(sigset_t *set)
3511{
3512	current->saved_sigmask = current->blocked;
3513	set_current_blocked(set);
3514
3515	while (!signal_pending(current)) {
3516		__set_current_state(TASK_INTERRUPTIBLE);
3517		schedule();
3518	}
3519	set_restore_sigmask();
3520	return -ERESTARTNOHAND;
3521}
3522
3523/**
3524 *  sys_rt_sigsuspend - replace the signal mask for a value with the
3525 *	@unewset value until a signal is received
3526 *  @unewset: new signal mask value
3527 *  @sigsetsize: size of sigset_t type
3528 */
3529SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
3530{
3531	sigset_t newset;
3532
3533	/* XXX: Don't preclude handling different sized sigset_t's.  */
3534	if (sigsetsize != sizeof(sigset_t))
3535		return -EINVAL;
3536
3537	if (copy_from_user(&newset, unewset, sizeof(newset)))
3538		return -EFAULT;
3539	return sigsuspend(&newset);
3540}
3541 
3542#ifdef CONFIG_COMPAT
3543COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
3544{
3545#ifdef __BIG_ENDIAN
3546	sigset_t newset;
3547	compat_sigset_t newset32;
3548
3549	/* XXX: Don't preclude handling different sized sigset_t's.  */
3550	if (sigsetsize != sizeof(sigset_t))
3551		return -EINVAL;
3552
3553	if (copy_from_user(&newset32, unewset, sizeof(compat_sigset_t)))
3554		return -EFAULT;
3555	sigset_from_compat(&newset, &newset32);
3556	return sigsuspend(&newset);
3557#else
3558	/* on little-endian bitmaps don't care about granularity */
3559	return sys_rt_sigsuspend((sigset_t __user *)unewset, sigsetsize);
3560#endif
3561}
3562#endif
3563
3564#ifdef CONFIG_OLD_SIGSUSPEND
3565SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
3566{
3567	sigset_t blocked;
3568	siginitset(&blocked, mask);
3569	return sigsuspend(&blocked);
3570}
3571#endif
3572#ifdef CONFIG_OLD_SIGSUSPEND3
3573SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
3574{
3575	sigset_t blocked;
3576	siginitset(&blocked, mask);
3577	return sigsuspend(&blocked);
3578}
3579#endif
3580
3581__weak const char *arch_vma_name(struct vm_area_struct *vma)
3582{
3583	return NULL;
3584}
3585
3586void __init signals_init(void)
3587{
3588	/* If this check fails, the __ARCH_SI_PREAMBLE_SIZE value is wrong! */
3589	BUILD_BUG_ON(__ARCH_SI_PREAMBLE_SIZE
3590		!= offsetof(struct siginfo, _sifields._pad));
3591
3592	sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
3593}
3594
3595#ifdef CONFIG_KGDB_KDB
3596#include <linux/kdb.h>
3597/*
3598 * kdb_send_sig_info - Allows kdb to send signals without exposing
3599 * signal internals.  This function checks if the required locks are
3600 * available before calling the main signal code, to avoid kdb
3601 * deadlocks.
3602 */
3603void
3604kdb_send_sig_info(struct task_struct *t, struct siginfo *info)
3605{
3606	static struct task_struct *kdb_prev_t;
3607	int sig, new_t;
3608	if (!spin_trylock(&t->sighand->siglock)) {
3609		kdb_printf("Can't do kill command now.\n"
3610			   "The sigmask lock is held somewhere else in "
3611			   "kernel, try again later\n");
3612		return;
3613	}
3614	spin_unlock(&t->sighand->siglock);
3615	new_t = kdb_prev_t != t;
3616	kdb_prev_t = t;
3617	if (t->state != TASK_RUNNING && new_t) {
3618		kdb_printf("Process is not RUNNING, sending a signal from "
3619			   "kdb risks deadlock\n"
3620			   "on the run queue locks. "
3621			   "The signal has _not_ been sent.\n"
3622			   "Reissue the kill command if you want to risk "
3623			   "the deadlock.\n");
3624		return;
3625	}
3626	sig = info->si_signo;
3627	if (send_sig_info(sig, info, t))
3628		kdb_printf("Fail to deliver Signal %d to process %d.\n",
3629			   sig, t->pid);
3630	else
3631		kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
3632}
3633#endif	/* CONFIG_KGDB_KDB */
v3.1
   1/*
   2 *  linux/kernel/signal.c
   3 *
   4 *  Copyright (C) 1991, 1992  Linus Torvalds
   5 *
   6 *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
   7 *
   8 *  2003-06-02  Jim Houston - Concurrent Computer Corp.
   9 *		Changes to use preallocated sigqueue structures
  10 *		to allow signals to be sent reliably.
  11 */
  12
  13#include <linux/slab.h>
  14#include <linux/module.h>
  15#include <linux/init.h>
  16#include <linux/sched.h>
  17#include <linux/fs.h>
  18#include <linux/tty.h>
  19#include <linux/binfmts.h>
 
  20#include <linux/security.h>
  21#include <linux/syscalls.h>
  22#include <linux/ptrace.h>
  23#include <linux/signal.h>
  24#include <linux/signalfd.h>
  25#include <linux/ratelimit.h>
  26#include <linux/tracehook.h>
  27#include <linux/capability.h>
  28#include <linux/freezer.h>
  29#include <linux/pid_namespace.h>
  30#include <linux/nsproxy.h>
 
 
 
 
 
 
  31#define CREATE_TRACE_POINTS
  32#include <trace/events/signal.h>
  33
  34#include <asm/param.h>
  35#include <asm/uaccess.h>
  36#include <asm/unistd.h>
  37#include <asm/siginfo.h>
 
  38#include "audit.h"	/* audit_signal_info() */
  39
  40/*
  41 * SLAB caches for signal bits.
  42 */
  43
  44static struct kmem_cache *sigqueue_cachep;
  45
  46int print_fatal_signals __read_mostly;
  47
  48static void __user *sig_handler(struct task_struct *t, int sig)
  49{
  50	return t->sighand->action[sig - 1].sa.sa_handler;
  51}
  52
  53static int sig_handler_ignored(void __user *handler, int sig)
  54{
  55	/* Is it explicitly or implicitly ignored? */
  56	return handler == SIG_IGN ||
  57		(handler == SIG_DFL && sig_kernel_ignore(sig));
  58}
  59
  60static int sig_task_ignored(struct task_struct *t, int sig,
  61		int from_ancestor_ns)
  62{
  63	void __user *handler;
  64
  65	handler = sig_handler(t, sig);
  66
  67	if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
  68			handler == SIG_DFL && !from_ancestor_ns)
  69		return 1;
  70
  71	return sig_handler_ignored(handler, sig);
  72}
  73
  74static int sig_ignored(struct task_struct *t, int sig, int from_ancestor_ns)
  75{
  76	/*
  77	 * Blocked signals are never ignored, since the
  78	 * signal handler may change by the time it is
  79	 * unblocked.
  80	 */
  81	if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
  82		return 0;
  83
  84	if (!sig_task_ignored(t, sig, from_ancestor_ns))
  85		return 0;
  86
  87	/*
  88	 * Tracers may want to know about even ignored signals.
  89	 */
  90	return !t->ptrace;
  91}
  92
  93/*
  94 * Re-calculate pending state from the set of locally pending
  95 * signals, globally pending signals, and blocked signals.
  96 */
  97static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
  98{
  99	unsigned long ready;
 100	long i;
 101
 102	switch (_NSIG_WORDS) {
 103	default:
 104		for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
 105			ready |= signal->sig[i] &~ blocked->sig[i];
 106		break;
 107
 108	case 4: ready  = signal->sig[3] &~ blocked->sig[3];
 109		ready |= signal->sig[2] &~ blocked->sig[2];
 110		ready |= signal->sig[1] &~ blocked->sig[1];
 111		ready |= signal->sig[0] &~ blocked->sig[0];
 112		break;
 113
 114	case 2: ready  = signal->sig[1] &~ blocked->sig[1];
 115		ready |= signal->sig[0] &~ blocked->sig[0];
 116		break;
 117
 118	case 1: ready  = signal->sig[0] &~ blocked->sig[0];
 119	}
 120	return ready !=	0;
 121}
 122
 123#define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
 124
 125static int recalc_sigpending_tsk(struct task_struct *t)
 126{
 127	if ((t->jobctl & JOBCTL_PENDING_MASK) ||
 128	    PENDING(&t->pending, &t->blocked) ||
 129	    PENDING(&t->signal->shared_pending, &t->blocked)) {
 130		set_tsk_thread_flag(t, TIF_SIGPENDING);
 131		return 1;
 132	}
 133	/*
 134	 * We must never clear the flag in another thread, or in current
 135	 * when it's possible the current syscall is returning -ERESTART*.
 136	 * So we don't clear it here, and only callers who know they should do.
 137	 */
 138	return 0;
 139}
 140
 141/*
 142 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
 143 * This is superfluous when called on current, the wakeup is a harmless no-op.
 144 */
 145void recalc_sigpending_and_wake(struct task_struct *t)
 146{
 147	if (recalc_sigpending_tsk(t))
 148		signal_wake_up(t, 0);
 149}
 150
 151void recalc_sigpending(void)
 152{
 153	if (!recalc_sigpending_tsk(current) && !freezing(current))
 154		clear_thread_flag(TIF_SIGPENDING);
 155
 156}
 157
 158/* Given the mask, find the first available signal that should be serviced. */
 159
 160#define SYNCHRONOUS_MASK \
 161	(sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
 162	 sigmask(SIGTRAP) | sigmask(SIGFPE))
 163
 164int next_signal(struct sigpending *pending, sigset_t *mask)
 165{
 166	unsigned long i, *s, *m, x;
 167	int sig = 0;
 168
 169	s = pending->signal.sig;
 170	m = mask->sig;
 171
 172	/*
 173	 * Handle the first word specially: it contains the
 174	 * synchronous signals that need to be dequeued first.
 175	 */
 176	x = *s &~ *m;
 177	if (x) {
 178		if (x & SYNCHRONOUS_MASK)
 179			x &= SYNCHRONOUS_MASK;
 180		sig = ffz(~x) + 1;
 181		return sig;
 182	}
 183
 184	switch (_NSIG_WORDS) {
 185	default:
 186		for (i = 1; i < _NSIG_WORDS; ++i) {
 187			x = *++s &~ *++m;
 188			if (!x)
 189				continue;
 190			sig = ffz(~x) + i*_NSIG_BPW + 1;
 191			break;
 192		}
 193		break;
 194
 195	case 2:
 196		x = s[1] &~ m[1];
 197		if (!x)
 198			break;
 199		sig = ffz(~x) + _NSIG_BPW + 1;
 200		break;
 201
 202	case 1:
 203		/* Nothing to do */
 204		break;
 205	}
 206
 207	return sig;
 208}
 209
 210static inline void print_dropped_signal(int sig)
 211{
 212	static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
 213
 214	if (!print_fatal_signals)
 215		return;
 216
 217	if (!__ratelimit(&ratelimit_state))
 218		return;
 219
 220	printk(KERN_INFO "%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
 221				current->comm, current->pid, sig);
 222}
 223
 224/**
 225 * task_set_jobctl_pending - set jobctl pending bits
 226 * @task: target task
 227 * @mask: pending bits to set
 228 *
 229 * Clear @mask from @task->jobctl.  @mask must be subset of
 230 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
 231 * %JOBCTL_TRAPPING.  If stop signo is being set, the existing signo is
 232 * cleared.  If @task is already being killed or exiting, this function
 233 * becomes noop.
 234 *
 235 * CONTEXT:
 236 * Must be called with @task->sighand->siglock held.
 237 *
 238 * RETURNS:
 239 * %true if @mask is set, %false if made noop because @task was dying.
 240 */
 241bool task_set_jobctl_pending(struct task_struct *task, unsigned int mask)
 242{
 243	BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
 244			JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
 245	BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
 246
 247	if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
 248		return false;
 249
 250	if (mask & JOBCTL_STOP_SIGMASK)
 251		task->jobctl &= ~JOBCTL_STOP_SIGMASK;
 252
 253	task->jobctl |= mask;
 254	return true;
 255}
 256
 257/**
 258 * task_clear_jobctl_trapping - clear jobctl trapping bit
 259 * @task: target task
 260 *
 261 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
 262 * Clear it and wake up the ptracer.  Note that we don't need any further
 263 * locking.  @task->siglock guarantees that @task->parent points to the
 264 * ptracer.
 265 *
 266 * CONTEXT:
 267 * Must be called with @task->sighand->siglock held.
 268 */
 269void task_clear_jobctl_trapping(struct task_struct *task)
 270{
 271	if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
 272		task->jobctl &= ~JOBCTL_TRAPPING;
 
 273		wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
 274	}
 275}
 276
 277/**
 278 * task_clear_jobctl_pending - clear jobctl pending bits
 279 * @task: target task
 280 * @mask: pending bits to clear
 281 *
 282 * Clear @mask from @task->jobctl.  @mask must be subset of
 283 * %JOBCTL_PENDING_MASK.  If %JOBCTL_STOP_PENDING is being cleared, other
 284 * STOP bits are cleared together.
 285 *
 286 * If clearing of @mask leaves no stop or trap pending, this function calls
 287 * task_clear_jobctl_trapping().
 288 *
 289 * CONTEXT:
 290 * Must be called with @task->sighand->siglock held.
 291 */
 292void task_clear_jobctl_pending(struct task_struct *task, unsigned int mask)
 293{
 294	BUG_ON(mask & ~JOBCTL_PENDING_MASK);
 295
 296	if (mask & JOBCTL_STOP_PENDING)
 297		mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
 298
 299	task->jobctl &= ~mask;
 300
 301	if (!(task->jobctl & JOBCTL_PENDING_MASK))
 302		task_clear_jobctl_trapping(task);
 303}
 304
 305/**
 306 * task_participate_group_stop - participate in a group stop
 307 * @task: task participating in a group stop
 308 *
 309 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
 310 * Group stop states are cleared and the group stop count is consumed if
 311 * %JOBCTL_STOP_CONSUME was set.  If the consumption completes the group
 312 * stop, the appropriate %SIGNAL_* flags are set.
 313 *
 314 * CONTEXT:
 315 * Must be called with @task->sighand->siglock held.
 316 *
 317 * RETURNS:
 318 * %true if group stop completion should be notified to the parent, %false
 319 * otherwise.
 320 */
 321static bool task_participate_group_stop(struct task_struct *task)
 322{
 323	struct signal_struct *sig = task->signal;
 324	bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
 325
 326	WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
 327
 328	task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
 329
 330	if (!consume)
 331		return false;
 332
 333	if (!WARN_ON_ONCE(sig->group_stop_count == 0))
 334		sig->group_stop_count--;
 335
 336	/*
 337	 * Tell the caller to notify completion iff we are entering into a
 338	 * fresh group stop.  Read comment in do_signal_stop() for details.
 339	 */
 340	if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
 341		sig->flags = SIGNAL_STOP_STOPPED;
 342		return true;
 343	}
 344	return false;
 345}
 346
 347/*
 348 * allocate a new signal queue record
 349 * - this may be called without locks if and only if t == current, otherwise an
 350 *   appropriate lock must be held to stop the target task from exiting
 351 */
 352static struct sigqueue *
 353__sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit)
 354{
 355	struct sigqueue *q = NULL;
 356	struct user_struct *user;
 357
 358	/*
 359	 * Protect access to @t credentials. This can go away when all
 360	 * callers hold rcu read lock.
 361	 */
 362	rcu_read_lock();
 363	user = get_uid(__task_cred(t)->user);
 364	atomic_inc(&user->sigpending);
 365	rcu_read_unlock();
 366
 367	if (override_rlimit ||
 368	    atomic_read(&user->sigpending) <=
 369			task_rlimit(t, RLIMIT_SIGPENDING)) {
 370		q = kmem_cache_alloc(sigqueue_cachep, flags);
 371	} else {
 372		print_dropped_signal(sig);
 373	}
 374
 375	if (unlikely(q == NULL)) {
 376		atomic_dec(&user->sigpending);
 377		free_uid(user);
 378	} else {
 379		INIT_LIST_HEAD(&q->list);
 380		q->flags = 0;
 381		q->user = user;
 382	}
 383
 384	return q;
 385}
 386
 387static void __sigqueue_free(struct sigqueue *q)
 388{
 389	if (q->flags & SIGQUEUE_PREALLOC)
 390		return;
 391	atomic_dec(&q->user->sigpending);
 392	free_uid(q->user);
 393	kmem_cache_free(sigqueue_cachep, q);
 394}
 395
 396void flush_sigqueue(struct sigpending *queue)
 397{
 398	struct sigqueue *q;
 399
 400	sigemptyset(&queue->signal);
 401	while (!list_empty(&queue->list)) {
 402		q = list_entry(queue->list.next, struct sigqueue , list);
 403		list_del_init(&q->list);
 404		__sigqueue_free(q);
 405	}
 406}
 407
 408/*
 409 * Flush all pending signals for a task.
 410 */
 411void __flush_signals(struct task_struct *t)
 412{
 413	clear_tsk_thread_flag(t, TIF_SIGPENDING);
 414	flush_sigqueue(&t->pending);
 415	flush_sigqueue(&t->signal->shared_pending);
 416}
 417
 418void flush_signals(struct task_struct *t)
 419{
 420	unsigned long flags;
 421
 422	spin_lock_irqsave(&t->sighand->siglock, flags);
 423	__flush_signals(t);
 
 
 424	spin_unlock_irqrestore(&t->sighand->siglock, flags);
 425}
 426
 427static void __flush_itimer_signals(struct sigpending *pending)
 428{
 429	sigset_t signal, retain;
 430	struct sigqueue *q, *n;
 431
 432	signal = pending->signal;
 433	sigemptyset(&retain);
 434
 435	list_for_each_entry_safe(q, n, &pending->list, list) {
 436		int sig = q->info.si_signo;
 437
 438		if (likely(q->info.si_code != SI_TIMER)) {
 439			sigaddset(&retain, sig);
 440		} else {
 441			sigdelset(&signal, sig);
 442			list_del_init(&q->list);
 443			__sigqueue_free(q);
 444		}
 445	}
 446
 447	sigorsets(&pending->signal, &signal, &retain);
 448}
 449
 450void flush_itimer_signals(void)
 451{
 452	struct task_struct *tsk = current;
 453	unsigned long flags;
 454
 455	spin_lock_irqsave(&tsk->sighand->siglock, flags);
 456	__flush_itimer_signals(&tsk->pending);
 457	__flush_itimer_signals(&tsk->signal->shared_pending);
 458	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
 459}
 460
 461void ignore_signals(struct task_struct *t)
 462{
 463	int i;
 464
 465	for (i = 0; i < _NSIG; ++i)
 466		t->sighand->action[i].sa.sa_handler = SIG_IGN;
 467
 468	flush_signals(t);
 469}
 470
 471/*
 472 * Flush all handlers for a task.
 473 */
 474
 475void
 476flush_signal_handlers(struct task_struct *t, int force_default)
 477{
 478	int i;
 479	struct k_sigaction *ka = &t->sighand->action[0];
 480	for (i = _NSIG ; i != 0 ; i--) {
 481		if (force_default || ka->sa.sa_handler != SIG_IGN)
 482			ka->sa.sa_handler = SIG_DFL;
 483		ka->sa.sa_flags = 0;
 
 
 
 484		sigemptyset(&ka->sa.sa_mask);
 485		ka++;
 486	}
 487}
 488
 489int unhandled_signal(struct task_struct *tsk, int sig)
 490{
 491	void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
 492	if (is_global_init(tsk))
 493		return 1;
 494	if (handler != SIG_IGN && handler != SIG_DFL)
 495		return 0;
 496	/* if ptraced, let the tracer determine */
 497	return !tsk->ptrace;
 498}
 499
 500/*
 501 * Notify the system that a driver wants to block all signals for this
 502 * process, and wants to be notified if any signals at all were to be
 503 * sent/acted upon.  If the notifier routine returns non-zero, then the
 504 * signal will be acted upon after all.  If the notifier routine returns 0,
 505 * then then signal will be blocked.  Only one block per process is
 506 * allowed.  priv is a pointer to private data that the notifier routine
 507 * can use to determine if the signal should be blocked or not.
 508 */
 509void
 510block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
 511{
 512	unsigned long flags;
 513
 514	spin_lock_irqsave(&current->sighand->siglock, flags);
 515	current->notifier_mask = mask;
 516	current->notifier_data = priv;
 517	current->notifier = notifier;
 518	spin_unlock_irqrestore(&current->sighand->siglock, flags);
 519}
 520
 521/* Notify the system that blocking has ended. */
 522
 523void
 524unblock_all_signals(void)
 525{
 526	unsigned long flags;
 527
 528	spin_lock_irqsave(&current->sighand->siglock, flags);
 529	current->notifier = NULL;
 530	current->notifier_data = NULL;
 531	recalc_sigpending();
 532	spin_unlock_irqrestore(&current->sighand->siglock, flags);
 533}
 534
 535static void collect_signal(int sig, struct sigpending *list, siginfo_t *info)
 536{
 537	struct sigqueue *q, *first = NULL;
 538
 539	/*
 540	 * Collect the siginfo appropriate to this signal.  Check if
 541	 * there is another siginfo for the same signal.
 542	*/
 543	list_for_each_entry(q, &list->list, list) {
 544		if (q->info.si_signo == sig) {
 545			if (first)
 546				goto still_pending;
 547			first = q;
 548		}
 549	}
 550
 551	sigdelset(&list->signal, sig);
 552
 553	if (first) {
 554still_pending:
 555		list_del_init(&first->list);
 556		copy_siginfo(info, &first->info);
 557		__sigqueue_free(first);
 558	} else {
 559		/*
 560		 * Ok, it wasn't in the queue.  This must be
 561		 * a fast-pathed signal or we must have been
 562		 * out of queue space.  So zero out the info.
 563		 */
 564		info->si_signo = sig;
 565		info->si_errno = 0;
 566		info->si_code = SI_USER;
 567		info->si_pid = 0;
 568		info->si_uid = 0;
 569	}
 570}
 571
 572static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
 573			siginfo_t *info)
 574{
 575	int sig = next_signal(pending, mask);
 576
 577	if (sig) {
 578		if (current->notifier) {
 579			if (sigismember(current->notifier_mask, sig)) {
 580				if (!(current->notifier)(current->notifier_data)) {
 581					clear_thread_flag(TIF_SIGPENDING);
 582					return 0;
 583				}
 584			}
 585		}
 586
 587		collect_signal(sig, pending, info);
 588	}
 589
 590	return sig;
 591}
 592
 593/*
 594 * Dequeue a signal and return the element to the caller, which is
 595 * expected to free it.
 596 *
 597 * All callers have to hold the siglock.
 598 */
 599int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
 600{
 601	int signr;
 602
 603	/* We only dequeue private signals from ourselves, we don't let
 604	 * signalfd steal them
 605	 */
 606	signr = __dequeue_signal(&tsk->pending, mask, info);
 607	if (!signr) {
 608		signr = __dequeue_signal(&tsk->signal->shared_pending,
 609					 mask, info);
 610		/*
 611		 * itimer signal ?
 612		 *
 613		 * itimers are process shared and we restart periodic
 614		 * itimers in the signal delivery path to prevent DoS
 615		 * attacks in the high resolution timer case. This is
 616		 * compliant with the old way of self-restarting
 617		 * itimers, as the SIGALRM is a legacy signal and only
 618		 * queued once. Changing the restart behaviour to
 619		 * restart the timer in the signal dequeue path is
 620		 * reducing the timer noise on heavy loaded !highres
 621		 * systems too.
 622		 */
 623		if (unlikely(signr == SIGALRM)) {
 624			struct hrtimer *tmr = &tsk->signal->real_timer;
 625
 626			if (!hrtimer_is_queued(tmr) &&
 627			    tsk->signal->it_real_incr.tv64 != 0) {
 628				hrtimer_forward(tmr, tmr->base->get_time(),
 629						tsk->signal->it_real_incr);
 630				hrtimer_restart(tmr);
 631			}
 632		}
 633	}
 634
 635	recalc_sigpending();
 636	if (!signr)
 637		return 0;
 638
 639	if (unlikely(sig_kernel_stop(signr))) {
 640		/*
 641		 * Set a marker that we have dequeued a stop signal.  Our
 642		 * caller might release the siglock and then the pending
 643		 * stop signal it is about to process is no longer in the
 644		 * pending bitmasks, but must still be cleared by a SIGCONT
 645		 * (and overruled by a SIGKILL).  So those cases clear this
 646		 * shared flag after we've set it.  Note that this flag may
 647		 * remain set after the signal we return is ignored or
 648		 * handled.  That doesn't matter because its only purpose
 649		 * is to alert stop-signal processing code when another
 650		 * processor has come along and cleared the flag.
 651		 */
 652		current->jobctl |= JOBCTL_STOP_DEQUEUED;
 653	}
 654	if ((info->si_code & __SI_MASK) == __SI_TIMER && info->si_sys_private) {
 655		/*
 656		 * Release the siglock to ensure proper locking order
 657		 * of timer locks outside of siglocks.  Note, we leave
 658		 * irqs disabled here, since the posix-timers code is
 659		 * about to disable them again anyway.
 660		 */
 661		spin_unlock(&tsk->sighand->siglock);
 662		do_schedule_next_timer(info);
 663		spin_lock(&tsk->sighand->siglock);
 664	}
 665	return signr;
 666}
 667
 668/*
 669 * Tell a process that it has a new active signal..
 670 *
 671 * NOTE! we rely on the previous spin_lock to
 672 * lock interrupts for us! We can only be called with
 673 * "siglock" held, and the local interrupt must
 674 * have been disabled when that got acquired!
 675 *
 676 * No need to set need_resched since signal event passing
 677 * goes through ->blocked
 678 */
 679void signal_wake_up(struct task_struct *t, int resume)
 680{
 681	unsigned int mask;
 682
 683	set_tsk_thread_flag(t, TIF_SIGPENDING);
 684
 685	/*
 686	 * For SIGKILL, we want to wake it up in the stopped/traced/killable
 687	 * case. We don't check t->state here because there is a race with it
 688	 * executing another processor and just now entering stopped state.
 689	 * By using wake_up_state, we ensure the process will wake up and
 690	 * handle its death signal.
 691	 */
 692	mask = TASK_INTERRUPTIBLE;
 693	if (resume)
 694		mask |= TASK_WAKEKILL;
 695	if (!wake_up_state(t, mask))
 696		kick_process(t);
 697}
 698
 699/*
 700 * Remove signals in mask from the pending set and queue.
 701 * Returns 1 if any signals were found.
 702 *
 703 * All callers must be holding the siglock.
 704 *
 705 * This version takes a sigset mask and looks at all signals,
 706 * not just those in the first mask word.
 707 */
 708static int rm_from_queue_full(sigset_t *mask, struct sigpending *s)
 709{
 710	struct sigqueue *q, *n;
 711	sigset_t m;
 712
 713	sigandsets(&m, mask, &s->signal);
 714	if (sigisemptyset(&m))
 715		return 0;
 716
 717	sigandnsets(&s->signal, &s->signal, mask);
 718	list_for_each_entry_safe(q, n, &s->list, list) {
 719		if (sigismember(mask, q->info.si_signo)) {
 720			list_del_init(&q->list);
 721			__sigqueue_free(q);
 722		}
 723	}
 724	return 1;
 725}
 726/*
 727 * Remove signals in mask from the pending set and queue.
 728 * Returns 1 if any signals were found.
 729 *
 730 * All callers must be holding the siglock.
 731 */
 732static int rm_from_queue(unsigned long mask, struct sigpending *s)
 733{
 734	struct sigqueue *q, *n;
 735
 736	if (!sigtestsetmask(&s->signal, mask))
 737		return 0;
 738
 739	sigdelsetmask(&s->signal, mask);
 740	list_for_each_entry_safe(q, n, &s->list, list) {
 741		if (q->info.si_signo < SIGRTMIN &&
 742		    (mask & sigmask(q->info.si_signo))) {
 743			list_del_init(&q->list);
 744			__sigqueue_free(q);
 745		}
 746	}
 747	return 1;
 748}
 749
 750static inline int is_si_special(const struct siginfo *info)
 751{
 752	return info <= SEND_SIG_FORCED;
 753}
 754
 755static inline bool si_fromuser(const struct siginfo *info)
 756{
 757	return info == SEND_SIG_NOINFO ||
 758		(!is_si_special(info) && SI_FROMUSER(info));
 759}
 760
 761/*
 762 * called with RCU read lock from check_kill_permission()
 763 */
 764static int kill_ok_by_cred(struct task_struct *t)
 765{
 766	const struct cred *cred = current_cred();
 767	const struct cred *tcred = __task_cred(t);
 768
 769	if (cred->user->user_ns == tcred->user->user_ns &&
 770	    (cred->euid == tcred->suid ||
 771	     cred->euid == tcred->uid ||
 772	     cred->uid  == tcred->suid ||
 773	     cred->uid  == tcred->uid))
 774		return 1;
 775
 776	if (ns_capable(tcred->user->user_ns, CAP_KILL))
 777		return 1;
 778
 779	return 0;
 780}
 781
 782/*
 783 * Bad permissions for sending the signal
 784 * - the caller must hold the RCU read lock
 785 */
 786static int check_kill_permission(int sig, struct siginfo *info,
 787				 struct task_struct *t)
 788{
 789	struct pid *sid;
 790	int error;
 791
 792	if (!valid_signal(sig))
 793		return -EINVAL;
 794
 795	if (!si_fromuser(info))
 796		return 0;
 797
 798	error = audit_signal_info(sig, t); /* Let audit system see the signal */
 799	if (error)
 800		return error;
 801
 802	if (!same_thread_group(current, t) &&
 803	    !kill_ok_by_cred(t)) {
 804		switch (sig) {
 805		case SIGCONT:
 806			sid = task_session(t);
 807			/*
 808			 * We don't return the error if sid == NULL. The
 809			 * task was unhashed, the caller must notice this.
 810			 */
 811			if (!sid || sid == task_session(current))
 812				break;
 813		default:
 814			return -EPERM;
 815		}
 816	}
 817
 818	return security_task_kill(t, info, sig, 0);
 819}
 820
 821/**
 822 * ptrace_trap_notify - schedule trap to notify ptracer
 823 * @t: tracee wanting to notify tracer
 824 *
 825 * This function schedules sticky ptrace trap which is cleared on the next
 826 * TRAP_STOP to notify ptracer of an event.  @t must have been seized by
 827 * ptracer.
 828 *
 829 * If @t is running, STOP trap will be taken.  If trapped for STOP and
 830 * ptracer is listening for events, tracee is woken up so that it can
 831 * re-trap for the new event.  If trapped otherwise, STOP trap will be
 832 * eventually taken without returning to userland after the existing traps
 833 * are finished by PTRACE_CONT.
 834 *
 835 * CONTEXT:
 836 * Must be called with @task->sighand->siglock held.
 837 */
 838static void ptrace_trap_notify(struct task_struct *t)
 839{
 840	WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
 841	assert_spin_locked(&t->sighand->siglock);
 842
 843	task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
 844	signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
 845}
 846
 847/*
 848 * Handle magic process-wide effects of stop/continue signals. Unlike
 849 * the signal actions, these happen immediately at signal-generation
 850 * time regardless of blocking, ignoring, or handling.  This does the
 851 * actual continuing for SIGCONT, but not the actual stopping for stop
 852 * signals. The process stop is done as a signal action for SIG_DFL.
 853 *
 854 * Returns true if the signal should be actually delivered, otherwise
 855 * it should be dropped.
 856 */
 857static int prepare_signal(int sig, struct task_struct *p, int from_ancestor_ns)
 858{
 859	struct signal_struct *signal = p->signal;
 860	struct task_struct *t;
 
 861
 862	if (unlikely(signal->flags & SIGNAL_GROUP_EXIT)) {
 
 
 863		/*
 864		 * The process is in the middle of dying, nothing to do.
 865		 */
 866	} else if (sig_kernel_stop(sig)) {
 867		/*
 868		 * This is a stop signal.  Remove SIGCONT from all queues.
 869		 */
 870		rm_from_queue(sigmask(SIGCONT), &signal->shared_pending);
 871		t = p;
 872		do {
 873			rm_from_queue(sigmask(SIGCONT), &t->pending);
 874		} while_each_thread(p, t);
 875	} else if (sig == SIGCONT) {
 876		unsigned int why;
 877		/*
 878		 * Remove all stop signals from all queues, wake all threads.
 879		 */
 880		rm_from_queue(SIG_KERNEL_STOP_MASK, &signal->shared_pending);
 881		t = p;
 882		do {
 
 883			task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
 884			rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
 885			if (likely(!(t->ptrace & PT_SEIZED)))
 886				wake_up_state(t, __TASK_STOPPED);
 887			else
 888				ptrace_trap_notify(t);
 889		} while_each_thread(p, t);
 890
 891		/*
 892		 * Notify the parent with CLD_CONTINUED if we were stopped.
 893		 *
 894		 * If we were in the middle of a group stop, we pretend it
 895		 * was already finished, and then continued. Since SIGCHLD
 896		 * doesn't queue we report only CLD_STOPPED, as if the next
 897		 * CLD_CONTINUED was dropped.
 898		 */
 899		why = 0;
 900		if (signal->flags & SIGNAL_STOP_STOPPED)
 901			why |= SIGNAL_CLD_CONTINUED;
 902		else if (signal->group_stop_count)
 903			why |= SIGNAL_CLD_STOPPED;
 904
 905		if (why) {
 906			/*
 907			 * The first thread which returns from do_signal_stop()
 908			 * will take ->siglock, notice SIGNAL_CLD_MASK, and
 909			 * notify its parent. See get_signal_to_deliver().
 910			 */
 911			signal->flags = why | SIGNAL_STOP_CONTINUED;
 912			signal->group_stop_count = 0;
 913			signal->group_exit_code = 0;
 914		}
 915	}
 916
 917	return !sig_ignored(p, sig, from_ancestor_ns);
 918}
 919
 920/*
 921 * Test if P wants to take SIG.  After we've checked all threads with this,
 922 * it's equivalent to finding no threads not blocking SIG.  Any threads not
 923 * blocking SIG were ruled out because they are not running and already
 924 * have pending signals.  Such threads will dequeue from the shared queue
 925 * as soon as they're available, so putting the signal on the shared queue
 926 * will be equivalent to sending it to one such thread.
 927 */
 928static inline int wants_signal(int sig, struct task_struct *p)
 929{
 930	if (sigismember(&p->blocked, sig))
 931		return 0;
 932	if (p->flags & PF_EXITING)
 933		return 0;
 934	if (sig == SIGKILL)
 935		return 1;
 936	if (task_is_stopped_or_traced(p))
 937		return 0;
 938	return task_curr(p) || !signal_pending(p);
 939}
 940
 941static void complete_signal(int sig, struct task_struct *p, int group)
 942{
 943	struct signal_struct *signal = p->signal;
 944	struct task_struct *t;
 945
 946	/*
 947	 * Now find a thread we can wake up to take the signal off the queue.
 948	 *
 949	 * If the main thread wants the signal, it gets first crack.
 950	 * Probably the least surprising to the average bear.
 951	 */
 952	if (wants_signal(sig, p))
 953		t = p;
 954	else if (!group || thread_group_empty(p))
 955		/*
 956		 * There is just one thread and it does not need to be woken.
 957		 * It will dequeue unblocked signals before it runs again.
 958		 */
 959		return;
 960	else {
 961		/*
 962		 * Otherwise try to find a suitable thread.
 963		 */
 964		t = signal->curr_target;
 965		while (!wants_signal(sig, t)) {
 966			t = next_thread(t);
 967			if (t == signal->curr_target)
 968				/*
 969				 * No thread needs to be woken.
 970				 * Any eligible threads will see
 971				 * the signal in the queue soon.
 972				 */
 973				return;
 974		}
 975		signal->curr_target = t;
 976	}
 977
 978	/*
 979	 * Found a killable thread.  If the signal will be fatal,
 980	 * then start taking the whole group down immediately.
 981	 */
 982	if (sig_fatal(p, sig) &&
 983	    !(signal->flags & (SIGNAL_UNKILLABLE | SIGNAL_GROUP_EXIT)) &&
 984	    !sigismember(&t->real_blocked, sig) &&
 985	    (sig == SIGKILL || !t->ptrace)) {
 986		/*
 987		 * This signal will be fatal to the whole group.
 988		 */
 989		if (!sig_kernel_coredump(sig)) {
 990			/*
 991			 * Start a group exit and wake everybody up.
 992			 * This way we don't have other threads
 993			 * running and doing things after a slower
 994			 * thread has the fatal signal pending.
 995			 */
 996			signal->flags = SIGNAL_GROUP_EXIT;
 997			signal->group_exit_code = sig;
 998			signal->group_stop_count = 0;
 999			t = p;
1000			do {
1001				task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1002				sigaddset(&t->pending.signal, SIGKILL);
1003				signal_wake_up(t, 1);
1004			} while_each_thread(p, t);
1005			return;
1006		}
1007	}
1008
1009	/*
1010	 * The signal is already in the shared-pending queue.
1011	 * Tell the chosen thread to wake up and dequeue it.
1012	 */
1013	signal_wake_up(t, sig == SIGKILL);
1014	return;
1015}
1016
1017static inline int legacy_queue(struct sigpending *signals, int sig)
1018{
1019	return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1020}
1021
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1022static int __send_signal(int sig, struct siginfo *info, struct task_struct *t,
1023			int group, int from_ancestor_ns)
1024{
1025	struct sigpending *pending;
1026	struct sigqueue *q;
1027	int override_rlimit;
1028
1029	trace_signal_generate(sig, info, t);
1030
1031	assert_spin_locked(&t->sighand->siglock);
1032
1033	if (!prepare_signal(sig, t, from_ancestor_ns))
1034		return 0;
 
 
1035
1036	pending = group ? &t->signal->shared_pending : &t->pending;
1037	/*
1038	 * Short-circuit ignored signals and support queuing
1039	 * exactly one non-rt signal, so that we can get more
1040	 * detailed information about the cause of the signal.
1041	 */
 
1042	if (legacy_queue(pending, sig))
1043		return 0;
 
 
1044	/*
1045	 * fast-pathed signals for kernel-internal things like SIGSTOP
1046	 * or SIGKILL.
1047	 */
1048	if (info == SEND_SIG_FORCED)
1049		goto out_set;
1050
1051	/*
1052	 * Real-time signals must be queued if sent by sigqueue, or
1053	 * some other real-time mechanism.  It is implementation
1054	 * defined whether kill() does so.  We attempt to do so, on
1055	 * the principle of least surprise, but since kill is not
1056	 * allowed to fail with EAGAIN when low on memory we just
1057	 * make sure at least one signal gets delivered and don't
1058	 * pass on the info struct.
1059	 */
1060	if (sig < SIGRTMIN)
1061		override_rlimit = (is_si_special(info) || info->si_code >= 0);
1062	else
1063		override_rlimit = 0;
1064
1065	q = __sigqueue_alloc(sig, t, GFP_ATOMIC | __GFP_NOTRACK_FALSE_POSITIVE,
1066		override_rlimit);
1067	if (q) {
1068		list_add_tail(&q->list, &pending->list);
1069		switch ((unsigned long) info) {
1070		case (unsigned long) SEND_SIG_NOINFO:
1071			q->info.si_signo = sig;
1072			q->info.si_errno = 0;
1073			q->info.si_code = SI_USER;
1074			q->info.si_pid = task_tgid_nr_ns(current,
1075							task_active_pid_ns(t));
1076			q->info.si_uid = current_uid();
1077			break;
1078		case (unsigned long) SEND_SIG_PRIV:
1079			q->info.si_signo = sig;
1080			q->info.si_errno = 0;
1081			q->info.si_code = SI_KERNEL;
1082			q->info.si_pid = 0;
1083			q->info.si_uid = 0;
1084			break;
1085		default:
1086			copy_siginfo(&q->info, info);
1087			if (from_ancestor_ns)
1088				q->info.si_pid = 0;
1089			break;
1090		}
 
 
 
1091	} else if (!is_si_special(info)) {
1092		if (sig >= SIGRTMIN && info->si_code != SI_USER) {
1093			/*
1094			 * Queue overflow, abort.  We may abort if the
1095			 * signal was rt and sent by user using something
1096			 * other than kill().
1097			 */
1098			trace_signal_overflow_fail(sig, group, info);
1099			return -EAGAIN;
 
1100		} else {
1101			/*
1102			 * This is a silent loss of information.  We still
1103			 * send the signal, but the *info bits are lost.
1104			 */
1105			trace_signal_lose_info(sig, group, info);
1106		}
1107	}
1108
1109out_set:
1110	signalfd_notify(t, sig);
1111	sigaddset(&pending->signal, sig);
1112	complete_signal(sig, t, group);
1113	return 0;
 
 
1114}
1115
1116static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
1117			int group)
1118{
1119	int from_ancestor_ns = 0;
1120
1121#ifdef CONFIG_PID_NS
1122	from_ancestor_ns = si_fromuser(info) &&
1123			   !task_pid_nr_ns(current, task_active_pid_ns(t));
1124#endif
1125
1126	return __send_signal(sig, info, t, group, from_ancestor_ns);
1127}
1128
1129static void print_fatal_signal(struct pt_regs *regs, int signr)
1130{
1131	printk("%s/%d: potentially unexpected fatal signal %d.\n",
1132		current->comm, task_pid_nr(current), signr);
1133
1134#if defined(__i386__) && !defined(__arch_um__)
1135	printk("code at %08lx: ", regs->ip);
1136	{
1137		int i;
1138		for (i = 0; i < 16; i++) {
1139			unsigned char insn;
1140
1141			if (get_user(insn, (unsigned char *)(regs->ip + i)))
1142				break;
1143			printk("%02x ", insn);
1144		}
1145	}
 
1146#endif
1147	printk("\n");
1148	preempt_disable();
1149	show_regs(regs);
1150	preempt_enable();
1151}
1152
1153static int __init setup_print_fatal_signals(char *str)
1154{
1155	get_option (&str, &print_fatal_signals);
1156
1157	return 1;
1158}
1159
1160__setup("print-fatal-signals=", setup_print_fatal_signals);
1161
1162int
1163__group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1164{
1165	return send_signal(sig, info, p, 1);
1166}
1167
1168static int
1169specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1170{
1171	return send_signal(sig, info, t, 0);
1172}
1173
1174int do_send_sig_info(int sig, struct siginfo *info, struct task_struct *p,
1175			bool group)
1176{
1177	unsigned long flags;
1178	int ret = -ESRCH;
1179
1180	if (lock_task_sighand(p, &flags)) {
1181		ret = send_signal(sig, info, p, group);
1182		unlock_task_sighand(p, &flags);
1183	}
1184
1185	return ret;
1186}
1187
1188/*
1189 * Force a signal that the process can't ignore: if necessary
1190 * we unblock the signal and change any SIG_IGN to SIG_DFL.
1191 *
1192 * Note: If we unblock the signal, we always reset it to SIG_DFL,
1193 * since we do not want to have a signal handler that was blocked
1194 * be invoked when user space had explicitly blocked it.
1195 *
1196 * We don't want to have recursive SIGSEGV's etc, for example,
1197 * that is why we also clear SIGNAL_UNKILLABLE.
1198 */
1199int
1200force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1201{
1202	unsigned long int flags;
1203	int ret, blocked, ignored;
1204	struct k_sigaction *action;
1205
1206	spin_lock_irqsave(&t->sighand->siglock, flags);
1207	action = &t->sighand->action[sig-1];
1208	ignored = action->sa.sa_handler == SIG_IGN;
1209	blocked = sigismember(&t->blocked, sig);
1210	if (blocked || ignored) {
1211		action->sa.sa_handler = SIG_DFL;
1212		if (blocked) {
1213			sigdelset(&t->blocked, sig);
1214			recalc_sigpending_and_wake(t);
1215		}
1216	}
1217	if (action->sa.sa_handler == SIG_DFL)
1218		t->signal->flags &= ~SIGNAL_UNKILLABLE;
1219	ret = specific_send_sig_info(sig, info, t);
1220	spin_unlock_irqrestore(&t->sighand->siglock, flags);
1221
1222	return ret;
1223}
1224
1225/*
1226 * Nuke all other threads in the group.
1227 */
1228int zap_other_threads(struct task_struct *p)
1229{
1230	struct task_struct *t = p;
1231	int count = 0;
1232
1233	p->signal->group_stop_count = 0;
1234
1235	while_each_thread(p, t) {
1236		task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1237		count++;
1238
1239		/* Don't bother with already dead threads */
1240		if (t->exit_state)
1241			continue;
1242		sigaddset(&t->pending.signal, SIGKILL);
1243		signal_wake_up(t, 1);
1244	}
1245
1246	return count;
1247}
1248
1249struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1250					   unsigned long *flags)
1251{
1252	struct sighand_struct *sighand;
1253
1254	for (;;) {
 
 
 
 
1255		local_irq_save(*flags);
1256		rcu_read_lock();
1257		sighand = rcu_dereference(tsk->sighand);
1258		if (unlikely(sighand == NULL)) {
1259			rcu_read_unlock();
1260			local_irq_restore(*flags);
1261			break;
1262		}
1263
 
 
 
 
 
 
 
 
 
 
1264		spin_lock(&sighand->siglock);
1265		if (likely(sighand == tsk->sighand)) {
1266			rcu_read_unlock();
1267			break;
1268		}
1269		spin_unlock(&sighand->siglock);
1270		rcu_read_unlock();
1271		local_irq_restore(*flags);
1272	}
1273
1274	return sighand;
1275}
1276
1277/*
1278 * send signal info to all the members of a group
1279 */
1280int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1281{
1282	int ret;
1283
1284	rcu_read_lock();
1285	ret = check_kill_permission(sig, info, p);
1286	rcu_read_unlock();
1287
1288	if (!ret && sig)
1289		ret = do_send_sig_info(sig, info, p, true);
1290
1291	return ret;
1292}
1293
1294/*
1295 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1296 * control characters do (^C, ^Z etc)
1297 * - the caller must hold at least a readlock on tasklist_lock
1298 */
1299int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1300{
1301	struct task_struct *p = NULL;
1302	int retval, success;
1303
1304	success = 0;
1305	retval = -ESRCH;
1306	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1307		int err = group_send_sig_info(sig, info, p);
1308		success |= !err;
1309		retval = err;
1310	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1311	return success ? 0 : retval;
1312}
1313
1314int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
1315{
1316	int error = -ESRCH;
1317	struct task_struct *p;
1318
1319	rcu_read_lock();
1320retry:
1321	p = pid_task(pid, PIDTYPE_PID);
1322	if (p) {
1323		error = group_send_sig_info(sig, info, p);
1324		if (unlikely(error == -ESRCH))
1325			/*
1326			 * The task was unhashed in between, try again.
1327			 * If it is dead, pid_task() will return NULL,
1328			 * if we race with de_thread() it will find the
1329			 * new leader.
1330			 */
1331			goto retry;
 
1332	}
1333	rcu_read_unlock();
1334
1335	return error;
1336}
1337
1338int kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1339{
1340	int error;
1341	rcu_read_lock();
1342	error = kill_pid_info(sig, info, find_vpid(pid));
1343	rcu_read_unlock();
1344	return error;
1345}
1346
 
 
 
 
 
 
 
 
 
 
1347/* like kill_pid_info(), but doesn't use uid/euid of "current" */
1348int kill_pid_info_as_uid(int sig, struct siginfo *info, struct pid *pid,
1349		      uid_t uid, uid_t euid, u32 secid)
1350{
1351	int ret = -EINVAL;
1352	struct task_struct *p;
1353	const struct cred *pcred;
1354	unsigned long flags;
1355
1356	if (!valid_signal(sig))
1357		return ret;
1358
1359	rcu_read_lock();
1360	p = pid_task(pid, PIDTYPE_PID);
1361	if (!p) {
1362		ret = -ESRCH;
1363		goto out_unlock;
1364	}
1365	pcred = __task_cred(p);
1366	if (si_fromuser(info) &&
1367	    euid != pcred->suid && euid != pcred->uid &&
1368	    uid  != pcred->suid && uid  != pcred->uid) {
1369		ret = -EPERM;
1370		goto out_unlock;
1371	}
1372	ret = security_task_kill(p, info, sig, secid);
1373	if (ret)
1374		goto out_unlock;
1375
1376	if (sig) {
1377		if (lock_task_sighand(p, &flags)) {
1378			ret = __send_signal(sig, info, p, 1, 0);
1379			unlock_task_sighand(p, &flags);
1380		} else
1381			ret = -ESRCH;
1382	}
1383out_unlock:
1384	rcu_read_unlock();
1385	return ret;
1386}
1387EXPORT_SYMBOL_GPL(kill_pid_info_as_uid);
1388
1389/*
1390 * kill_something_info() interprets pid in interesting ways just like kill(2).
1391 *
1392 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1393 * is probably wrong.  Should make it like BSD or SYSV.
1394 */
1395
1396static int kill_something_info(int sig, struct siginfo *info, pid_t pid)
1397{
1398	int ret;
1399
1400	if (pid > 0) {
1401		rcu_read_lock();
1402		ret = kill_pid_info(sig, info, find_vpid(pid));
1403		rcu_read_unlock();
1404		return ret;
1405	}
1406
1407	read_lock(&tasklist_lock);
1408	if (pid != -1) {
1409		ret = __kill_pgrp_info(sig, info,
1410				pid ? find_vpid(-pid) : task_pgrp(current));
1411	} else {
1412		int retval = 0, count = 0;
1413		struct task_struct * p;
1414
1415		for_each_process(p) {
1416			if (task_pid_vnr(p) > 1 &&
1417					!same_thread_group(p, current)) {
1418				int err = group_send_sig_info(sig, info, p);
1419				++count;
1420				if (err != -EPERM)
1421					retval = err;
1422			}
1423		}
1424		ret = count ? retval : -ESRCH;
1425	}
1426	read_unlock(&tasklist_lock);
1427
1428	return ret;
1429}
1430
1431/*
1432 * These are for backward compatibility with the rest of the kernel source.
1433 */
1434
1435int send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1436{
1437	/*
1438	 * Make sure legacy kernel users don't send in bad values
1439	 * (normal paths check this in check_kill_permission).
1440	 */
1441	if (!valid_signal(sig))
1442		return -EINVAL;
1443
1444	return do_send_sig_info(sig, info, p, false);
1445}
1446
1447#define __si_special(priv) \
1448	((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1449
1450int
1451send_sig(int sig, struct task_struct *p, int priv)
1452{
1453	return send_sig_info(sig, __si_special(priv), p);
1454}
1455
1456void
1457force_sig(int sig, struct task_struct *p)
1458{
1459	force_sig_info(sig, SEND_SIG_PRIV, p);
1460}
1461
1462/*
1463 * When things go south during signal handling, we
1464 * will force a SIGSEGV. And if the signal that caused
1465 * the problem was already a SIGSEGV, we'll want to
1466 * make sure we don't even try to deliver the signal..
1467 */
1468int
1469force_sigsegv(int sig, struct task_struct *p)
1470{
1471	if (sig == SIGSEGV) {
1472		unsigned long flags;
1473		spin_lock_irqsave(&p->sighand->siglock, flags);
1474		p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1475		spin_unlock_irqrestore(&p->sighand->siglock, flags);
1476	}
1477	force_sig(SIGSEGV, p);
1478	return 0;
1479}
1480
1481int kill_pgrp(struct pid *pid, int sig, int priv)
1482{
1483	int ret;
1484
1485	read_lock(&tasklist_lock);
1486	ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1487	read_unlock(&tasklist_lock);
1488
1489	return ret;
1490}
1491EXPORT_SYMBOL(kill_pgrp);
1492
1493int kill_pid(struct pid *pid, int sig, int priv)
1494{
1495	return kill_pid_info(sig, __si_special(priv), pid);
1496}
1497EXPORT_SYMBOL(kill_pid);
1498
1499/*
1500 * These functions support sending signals using preallocated sigqueue
1501 * structures.  This is needed "because realtime applications cannot
1502 * afford to lose notifications of asynchronous events, like timer
1503 * expirations or I/O completions".  In the case of POSIX Timers
1504 * we allocate the sigqueue structure from the timer_create.  If this
1505 * allocation fails we are able to report the failure to the application
1506 * with an EAGAIN error.
1507 */
1508struct sigqueue *sigqueue_alloc(void)
1509{
1510	struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0);
1511
1512	if (q)
1513		q->flags |= SIGQUEUE_PREALLOC;
1514
1515	return q;
1516}
1517
1518void sigqueue_free(struct sigqueue *q)
1519{
1520	unsigned long flags;
1521	spinlock_t *lock = &current->sighand->siglock;
1522
1523	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1524	/*
1525	 * We must hold ->siglock while testing q->list
1526	 * to serialize with collect_signal() or with
1527	 * __exit_signal()->flush_sigqueue().
1528	 */
1529	spin_lock_irqsave(lock, flags);
1530	q->flags &= ~SIGQUEUE_PREALLOC;
1531	/*
1532	 * If it is queued it will be freed when dequeued,
1533	 * like the "regular" sigqueue.
1534	 */
1535	if (!list_empty(&q->list))
1536		q = NULL;
1537	spin_unlock_irqrestore(lock, flags);
1538
1539	if (q)
1540		__sigqueue_free(q);
1541}
1542
1543int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group)
1544{
1545	int sig = q->info.si_signo;
1546	struct sigpending *pending;
1547	unsigned long flags;
1548	int ret;
1549
1550	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1551
1552	ret = -1;
1553	if (!likely(lock_task_sighand(t, &flags)))
1554		goto ret;
1555
1556	ret = 1; /* the signal is ignored */
1557	if (!prepare_signal(sig, t, 0))
 
1558		goto out;
1559
1560	ret = 0;
1561	if (unlikely(!list_empty(&q->list))) {
1562		/*
1563		 * If an SI_TIMER entry is already queue just increment
1564		 * the overrun count.
1565		 */
1566		BUG_ON(q->info.si_code != SI_TIMER);
1567		q->info.si_overrun++;
 
1568		goto out;
1569	}
1570	q->info.si_overrun = 0;
1571
1572	signalfd_notify(t, sig);
1573	pending = group ? &t->signal->shared_pending : &t->pending;
1574	list_add_tail(&q->list, &pending->list);
1575	sigaddset(&pending->signal, sig);
1576	complete_signal(sig, t, group);
 
1577out:
 
1578	unlock_task_sighand(t, &flags);
1579ret:
1580	return ret;
1581}
1582
1583/*
1584 * Let a parent know about the death of a child.
1585 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1586 *
1587 * Returns true if our parent ignored us and so we've switched to
1588 * self-reaping.
1589 */
1590bool do_notify_parent(struct task_struct *tsk, int sig)
1591{
1592	struct siginfo info;
1593	unsigned long flags;
1594	struct sighand_struct *psig;
1595	bool autoreap = false;
 
1596
1597	BUG_ON(sig == -1);
1598
1599 	/* do_notify_parent_cldstop should have been called instead.  */
1600 	BUG_ON(task_is_stopped_or_traced(tsk));
1601
1602	BUG_ON(!tsk->ptrace &&
1603	       (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1604
 
 
 
 
 
 
 
 
 
1605	info.si_signo = sig;
1606	info.si_errno = 0;
1607	/*
1608	 * we are under tasklist_lock here so our parent is tied to
1609	 * us and cannot exit and release its namespace.
1610	 *
1611	 * the only it can is to switch its nsproxy with sys_unshare,
1612	 * bu uncharing pid namespaces is not allowed, so we'll always
1613	 * see relevant namespace
1614	 *
1615	 * write_lock() currently calls preempt_disable() which is the
1616	 * same as rcu_read_lock(), but according to Oleg, this is not
1617	 * correct to rely on this
1618	 */
1619	rcu_read_lock();
1620	info.si_pid = task_pid_nr_ns(tsk, tsk->parent->nsproxy->pid_ns);
1621	info.si_uid = __task_cred(tsk)->uid;
 
1622	rcu_read_unlock();
1623
1624	info.si_utime = cputime_to_clock_t(cputime_add(tsk->utime,
1625				tsk->signal->utime));
1626	info.si_stime = cputime_to_clock_t(cputime_add(tsk->stime,
1627				tsk->signal->stime));
1628
1629	info.si_status = tsk->exit_code & 0x7f;
1630	if (tsk->exit_code & 0x80)
1631		info.si_code = CLD_DUMPED;
1632	else if (tsk->exit_code & 0x7f)
1633		info.si_code = CLD_KILLED;
1634	else {
1635		info.si_code = CLD_EXITED;
1636		info.si_status = tsk->exit_code >> 8;
1637	}
1638
1639	psig = tsk->parent->sighand;
1640	spin_lock_irqsave(&psig->siglock, flags);
1641	if (!tsk->ptrace && sig == SIGCHLD &&
1642	    (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1643	     (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1644		/*
1645		 * We are exiting and our parent doesn't care.  POSIX.1
1646		 * defines special semantics for setting SIGCHLD to SIG_IGN
1647		 * or setting the SA_NOCLDWAIT flag: we should be reaped
1648		 * automatically and not left for our parent's wait4 call.
1649		 * Rather than having the parent do it as a magic kind of
1650		 * signal handler, we just set this to tell do_exit that we
1651		 * can be cleaned up without becoming a zombie.  Note that
1652		 * we still call __wake_up_parent in this case, because a
1653		 * blocked sys_wait4 might now return -ECHILD.
1654		 *
1655		 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1656		 * is implementation-defined: we do (if you don't want
1657		 * it, just use SIG_IGN instead).
1658		 */
1659		autoreap = true;
1660		if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1661			sig = 0;
1662	}
1663	if (valid_signal(sig) && sig)
1664		__group_send_sig_info(sig, &info, tsk->parent);
1665	__wake_up_parent(tsk, tsk->parent);
1666	spin_unlock_irqrestore(&psig->siglock, flags);
1667
1668	return autoreap;
1669}
1670
1671/**
1672 * do_notify_parent_cldstop - notify parent of stopped/continued state change
1673 * @tsk: task reporting the state change
1674 * @for_ptracer: the notification is for ptracer
1675 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
1676 *
1677 * Notify @tsk's parent that the stopped/continued state has changed.  If
1678 * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
1679 * If %true, @tsk reports to @tsk->parent which should be the ptracer.
1680 *
1681 * CONTEXT:
1682 * Must be called with tasklist_lock at least read locked.
1683 */
1684static void do_notify_parent_cldstop(struct task_struct *tsk,
1685				     bool for_ptracer, int why)
1686{
1687	struct siginfo info;
1688	unsigned long flags;
1689	struct task_struct *parent;
1690	struct sighand_struct *sighand;
 
1691
1692	if (for_ptracer) {
1693		parent = tsk->parent;
1694	} else {
1695		tsk = tsk->group_leader;
1696		parent = tsk->real_parent;
1697	}
1698
1699	info.si_signo = SIGCHLD;
1700	info.si_errno = 0;
1701	/*
1702	 * see comment in do_notify_parent() about the following 4 lines
1703	 */
1704	rcu_read_lock();
1705	info.si_pid = task_pid_nr_ns(tsk, parent->nsproxy->pid_ns);
1706	info.si_uid = __task_cred(tsk)->uid;
1707	rcu_read_unlock();
1708
1709	info.si_utime = cputime_to_clock_t(tsk->utime);
1710	info.si_stime = cputime_to_clock_t(tsk->stime);
 
1711
1712 	info.si_code = why;
1713 	switch (why) {
1714 	case CLD_CONTINUED:
1715 		info.si_status = SIGCONT;
1716 		break;
1717 	case CLD_STOPPED:
1718 		info.si_status = tsk->signal->group_exit_code & 0x7f;
1719 		break;
1720 	case CLD_TRAPPED:
1721 		info.si_status = tsk->exit_code & 0x7f;
1722 		break;
1723 	default:
1724 		BUG();
1725 	}
1726
1727	sighand = parent->sighand;
1728	spin_lock_irqsave(&sighand->siglock, flags);
1729	if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1730	    !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1731		__group_send_sig_info(SIGCHLD, &info, parent);
1732	/*
1733	 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1734	 */
1735	__wake_up_parent(tsk, parent);
1736	spin_unlock_irqrestore(&sighand->siglock, flags);
1737}
1738
1739static inline int may_ptrace_stop(void)
1740{
1741	if (!likely(current->ptrace))
1742		return 0;
1743	/*
1744	 * Are we in the middle of do_coredump?
1745	 * If so and our tracer is also part of the coredump stopping
1746	 * is a deadlock situation, and pointless because our tracer
1747	 * is dead so don't allow us to stop.
1748	 * If SIGKILL was already sent before the caller unlocked
1749	 * ->siglock we must see ->core_state != NULL. Otherwise it
1750	 * is safe to enter schedule().
 
 
 
 
1751	 */
1752	if (unlikely(current->mm->core_state) &&
1753	    unlikely(current->mm == current->parent->mm))
1754		return 0;
1755
1756	return 1;
1757}
1758
1759/*
1760 * Return non-zero if there is a SIGKILL that should be waking us up.
1761 * Called with the siglock held.
1762 */
1763static int sigkill_pending(struct task_struct *tsk)
1764{
1765	return	sigismember(&tsk->pending.signal, SIGKILL) ||
1766		sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
1767}
1768
1769/*
1770 * This must be called with current->sighand->siglock held.
1771 *
1772 * This should be the path for all ptrace stops.
1773 * We always set current->last_siginfo while stopped here.
1774 * That makes it a way to test a stopped process for
1775 * being ptrace-stopped vs being job-control-stopped.
1776 *
1777 * If we actually decide not to stop at all because the tracer
1778 * is gone, we keep current->exit_code unless clear_code.
1779 */
1780static void ptrace_stop(int exit_code, int why, int clear_code, siginfo_t *info)
1781	__releases(&current->sighand->siglock)
1782	__acquires(&current->sighand->siglock)
1783{
1784	bool gstop_done = false;
1785
1786	if (arch_ptrace_stop_needed(exit_code, info)) {
1787		/*
1788		 * The arch code has something special to do before a
1789		 * ptrace stop.  This is allowed to block, e.g. for faults
1790		 * on user stack pages.  We can't keep the siglock while
1791		 * calling arch_ptrace_stop, so we must release it now.
1792		 * To preserve proper semantics, we must do this before
1793		 * any signal bookkeeping like checking group_stop_count.
1794		 * Meanwhile, a SIGKILL could come in before we retake the
1795		 * siglock.  That must prevent us from sleeping in TASK_TRACED.
1796		 * So after regaining the lock, we must check for SIGKILL.
1797		 */
1798		spin_unlock_irq(&current->sighand->siglock);
1799		arch_ptrace_stop(exit_code, info);
1800		spin_lock_irq(&current->sighand->siglock);
1801		if (sigkill_pending(current))
1802			return;
1803	}
1804
1805	/*
1806	 * We're committing to trapping.  TRACED should be visible before
1807	 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
1808	 * Also, transition to TRACED and updates to ->jobctl should be
1809	 * atomic with respect to siglock and should be done after the arch
1810	 * hook as siglock is released and regrabbed across it.
1811	 */
1812	set_current_state(TASK_TRACED);
1813
1814	current->last_siginfo = info;
1815	current->exit_code = exit_code;
1816
1817	/*
1818	 * If @why is CLD_STOPPED, we're trapping to participate in a group
1819	 * stop.  Do the bookkeeping.  Note that if SIGCONT was delievered
1820	 * across siglock relocks since INTERRUPT was scheduled, PENDING
1821	 * could be clear now.  We act as if SIGCONT is received after
1822	 * TASK_TRACED is entered - ignore it.
1823	 */
1824	if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
1825		gstop_done = task_participate_group_stop(current);
1826
1827	/* any trap clears pending STOP trap, STOP trap clears NOTIFY */
1828	task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
1829	if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
1830		task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
1831
1832	/* entering a trap, clear TRAPPING */
1833	task_clear_jobctl_trapping(current);
1834
1835	spin_unlock_irq(&current->sighand->siglock);
1836	read_lock(&tasklist_lock);
1837	if (may_ptrace_stop()) {
1838		/*
1839		 * Notify parents of the stop.
1840		 *
1841		 * While ptraced, there are two parents - the ptracer and
1842		 * the real_parent of the group_leader.  The ptracer should
1843		 * know about every stop while the real parent is only
1844		 * interested in the completion of group stop.  The states
1845		 * for the two don't interact with each other.  Notify
1846		 * separately unless they're gonna be duplicates.
1847		 */
1848		do_notify_parent_cldstop(current, true, why);
1849		if (gstop_done && ptrace_reparented(current))
1850			do_notify_parent_cldstop(current, false, why);
1851
1852		/*
1853		 * Don't want to allow preemption here, because
1854		 * sys_ptrace() needs this task to be inactive.
1855		 *
1856		 * XXX: implement read_unlock_no_resched().
1857		 */
1858		preempt_disable();
1859		read_unlock(&tasklist_lock);
1860		preempt_enable_no_resched();
1861		schedule();
1862	} else {
1863		/*
1864		 * By the time we got the lock, our tracer went away.
1865		 * Don't drop the lock yet, another tracer may come.
1866		 *
1867		 * If @gstop_done, the ptracer went away between group stop
1868		 * completion and here.  During detach, it would have set
1869		 * JOBCTL_STOP_PENDING on us and we'll re-enter
1870		 * TASK_STOPPED in do_signal_stop() on return, so notifying
1871		 * the real parent of the group stop completion is enough.
1872		 */
1873		if (gstop_done)
1874			do_notify_parent_cldstop(current, false, why);
1875
 
1876		__set_current_state(TASK_RUNNING);
1877		if (clear_code)
1878			current->exit_code = 0;
1879		read_unlock(&tasklist_lock);
1880	}
1881
1882	/*
1883	 * While in TASK_TRACED, we were considered "frozen enough".
1884	 * Now that we woke up, it's crucial if we're supposed to be
1885	 * frozen that we freeze now before running anything substantial.
1886	 */
1887	try_to_freeze();
1888
1889	/*
1890	 * We are back.  Now reacquire the siglock before touching
1891	 * last_siginfo, so that we are sure to have synchronized with
1892	 * any signal-sending on another CPU that wants to examine it.
1893	 */
1894	spin_lock_irq(&current->sighand->siglock);
1895	current->last_siginfo = NULL;
1896
1897	/* LISTENING can be set only during STOP traps, clear it */
1898	current->jobctl &= ~JOBCTL_LISTENING;
1899
1900	/*
1901	 * Queued signals ignored us while we were stopped for tracing.
1902	 * So check for any that we should take before resuming user mode.
1903	 * This sets TIF_SIGPENDING, but never clears it.
1904	 */
1905	recalc_sigpending_tsk(current);
1906}
1907
1908static void ptrace_do_notify(int signr, int exit_code, int why)
1909{
1910	siginfo_t info;
1911
1912	memset(&info, 0, sizeof info);
1913	info.si_signo = signr;
1914	info.si_code = exit_code;
1915	info.si_pid = task_pid_vnr(current);
1916	info.si_uid = current_uid();
1917
1918	/* Let the debugger run.  */
1919	ptrace_stop(exit_code, why, 1, &info);
1920}
1921
1922void ptrace_notify(int exit_code)
1923{
1924	BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
 
 
1925
1926	spin_lock_irq(&current->sighand->siglock);
1927	ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED);
1928	spin_unlock_irq(&current->sighand->siglock);
1929}
1930
1931/**
1932 * do_signal_stop - handle group stop for SIGSTOP and other stop signals
1933 * @signr: signr causing group stop if initiating
1934 *
1935 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
1936 * and participate in it.  If already set, participate in the existing
1937 * group stop.  If participated in a group stop (and thus slept), %true is
1938 * returned with siglock released.
1939 *
1940 * If ptraced, this function doesn't handle stop itself.  Instead,
1941 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
1942 * untouched.  The caller must ensure that INTERRUPT trap handling takes
1943 * places afterwards.
1944 *
1945 * CONTEXT:
1946 * Must be called with @current->sighand->siglock held, which is released
1947 * on %true return.
1948 *
1949 * RETURNS:
1950 * %false if group stop is already cancelled or ptrace trap is scheduled.
1951 * %true if participated in group stop.
1952 */
1953static bool do_signal_stop(int signr)
1954	__releases(&current->sighand->siglock)
1955{
1956	struct signal_struct *sig = current->signal;
1957
1958	if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
1959		unsigned int gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
1960		struct task_struct *t;
1961
1962		/* signr will be recorded in task->jobctl for retries */
1963		WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
1964
1965		if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
1966		    unlikely(signal_group_exit(sig)))
1967			return false;
1968		/*
1969		 * There is no group stop already in progress.  We must
1970		 * initiate one now.
1971		 *
1972		 * While ptraced, a task may be resumed while group stop is
1973		 * still in effect and then receive a stop signal and
1974		 * initiate another group stop.  This deviates from the
1975		 * usual behavior as two consecutive stop signals can't
1976		 * cause two group stops when !ptraced.  That is why we
1977		 * also check !task_is_stopped(t) below.
1978		 *
1979		 * The condition can be distinguished by testing whether
1980		 * SIGNAL_STOP_STOPPED is already set.  Don't generate
1981		 * group_exit_code in such case.
1982		 *
1983		 * This is not necessary for SIGNAL_STOP_CONTINUED because
1984		 * an intervening stop signal is required to cause two
1985		 * continued events regardless of ptrace.
1986		 */
1987		if (!(sig->flags & SIGNAL_STOP_STOPPED))
1988			sig->group_exit_code = signr;
1989		else
1990			WARN_ON_ONCE(!current->ptrace);
1991
1992		sig->group_stop_count = 0;
1993
1994		if (task_set_jobctl_pending(current, signr | gstop))
1995			sig->group_stop_count++;
1996
1997		for (t = next_thread(current); t != current;
1998		     t = next_thread(t)) {
1999			/*
2000			 * Setting state to TASK_STOPPED for a group
2001			 * stop is always done with the siglock held,
2002			 * so this check has no races.
2003			 */
2004			if (!task_is_stopped(t) &&
2005			    task_set_jobctl_pending(t, signr | gstop)) {
2006				sig->group_stop_count++;
2007				if (likely(!(t->ptrace & PT_SEIZED)))
2008					signal_wake_up(t, 0);
2009				else
2010					ptrace_trap_notify(t);
2011			}
2012		}
2013	}
2014
2015	if (likely(!current->ptrace)) {
2016		int notify = 0;
2017
2018		/*
2019		 * If there are no other threads in the group, or if there
2020		 * is a group stop in progress and we are the last to stop,
2021		 * report to the parent.
2022		 */
2023		if (task_participate_group_stop(current))
2024			notify = CLD_STOPPED;
2025
2026		__set_current_state(TASK_STOPPED);
2027		spin_unlock_irq(&current->sighand->siglock);
2028
2029		/*
2030		 * Notify the parent of the group stop completion.  Because
2031		 * we're not holding either the siglock or tasklist_lock
2032		 * here, ptracer may attach inbetween; however, this is for
2033		 * group stop and should always be delivered to the real
2034		 * parent of the group leader.  The new ptracer will get
2035		 * its notification when this task transitions into
2036		 * TASK_TRACED.
2037		 */
2038		if (notify) {
2039			read_lock(&tasklist_lock);
2040			do_notify_parent_cldstop(current, false, notify);
2041			read_unlock(&tasklist_lock);
2042		}
2043
2044		/* Now we don't run again until woken by SIGCONT or SIGKILL */
2045		schedule();
2046		return true;
2047	} else {
2048		/*
2049		 * While ptraced, group stop is handled by STOP trap.
2050		 * Schedule it and let the caller deal with it.
2051		 */
2052		task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2053		return false;
2054	}
2055}
2056
2057/**
2058 * do_jobctl_trap - take care of ptrace jobctl traps
2059 *
2060 * When PT_SEIZED, it's used for both group stop and explicit
2061 * SEIZE/INTERRUPT traps.  Both generate PTRACE_EVENT_STOP trap with
2062 * accompanying siginfo.  If stopped, lower eight bits of exit_code contain
2063 * the stop signal; otherwise, %SIGTRAP.
2064 *
2065 * When !PT_SEIZED, it's used only for group stop trap with stop signal
2066 * number as exit_code and no siginfo.
2067 *
2068 * CONTEXT:
2069 * Must be called with @current->sighand->siglock held, which may be
2070 * released and re-acquired before returning with intervening sleep.
2071 */
2072static void do_jobctl_trap(void)
2073{
2074	struct signal_struct *signal = current->signal;
2075	int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2076
2077	if (current->ptrace & PT_SEIZED) {
2078		if (!signal->group_stop_count &&
2079		    !(signal->flags & SIGNAL_STOP_STOPPED))
2080			signr = SIGTRAP;
2081		WARN_ON_ONCE(!signr);
2082		ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2083				 CLD_STOPPED);
2084	} else {
2085		WARN_ON_ONCE(!signr);
2086		ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2087		current->exit_code = 0;
2088	}
2089}
2090
2091static int ptrace_signal(int signr, siginfo_t *info,
2092			 struct pt_regs *regs, void *cookie)
2093{
2094	ptrace_signal_deliver(regs, cookie);
2095	/*
2096	 * We do not check sig_kernel_stop(signr) but set this marker
2097	 * unconditionally because we do not know whether debugger will
2098	 * change signr. This flag has no meaning unless we are going
2099	 * to stop after return from ptrace_stop(). In this case it will
2100	 * be checked in do_signal_stop(), we should only stop if it was
2101	 * not cleared by SIGCONT while we were sleeping. See also the
2102	 * comment in dequeue_signal().
2103	 */
2104	current->jobctl |= JOBCTL_STOP_DEQUEUED;
2105	ptrace_stop(signr, CLD_TRAPPED, 0, info);
2106
2107	/* We're back.  Did the debugger cancel the sig?  */
2108	signr = current->exit_code;
2109	if (signr == 0)
2110		return signr;
2111
2112	current->exit_code = 0;
2113
2114	/*
2115	 * Update the siginfo structure if the signal has
2116	 * changed.  If the debugger wanted something
2117	 * specific in the siginfo structure then it should
2118	 * have updated *info via PTRACE_SETSIGINFO.
2119	 */
2120	if (signr != info->si_signo) {
2121		info->si_signo = signr;
2122		info->si_errno = 0;
2123		info->si_code = SI_USER;
 
2124		info->si_pid = task_pid_vnr(current->parent);
2125		info->si_uid = task_uid(current->parent);
 
 
2126	}
2127
2128	/* If the (new) signal is now blocked, requeue it.  */
2129	if (sigismember(&current->blocked, signr)) {
2130		specific_send_sig_info(signr, info, current);
2131		signr = 0;
2132	}
2133
2134	return signr;
2135}
2136
2137int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka,
2138			  struct pt_regs *regs, void *cookie)
2139{
2140	struct sighand_struct *sighand = current->sighand;
2141	struct signal_struct *signal = current->signal;
2142	int signr;
2143
2144relock:
 
 
 
 
 
2145	/*
2146	 * We'll jump back here after any time we were stopped in TASK_STOPPED.
2147	 * While in TASK_STOPPED, we were considered "frozen enough".
2148	 * Now that we woke up, it's crucial if we're supposed to be
2149	 * frozen that we freeze now before running anything substantial.
2150	 */
2151	try_to_freeze();
2152
 
2153	spin_lock_irq(&sighand->siglock);
2154	/*
2155	 * Every stopped thread goes here after wakeup. Check to see if
2156	 * we should notify the parent, prepare_signal(SIGCONT) encodes
2157	 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2158	 */
2159	if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2160		int why;
2161
2162		if (signal->flags & SIGNAL_CLD_CONTINUED)
2163			why = CLD_CONTINUED;
2164		else
2165			why = CLD_STOPPED;
2166
2167		signal->flags &= ~SIGNAL_CLD_MASK;
2168
2169		spin_unlock_irq(&sighand->siglock);
2170
2171		/*
2172		 * Notify the parent that we're continuing.  This event is
2173		 * always per-process and doesn't make whole lot of sense
2174		 * for ptracers, who shouldn't consume the state via
2175		 * wait(2) either, but, for backward compatibility, notify
2176		 * the ptracer of the group leader too unless it's gonna be
2177		 * a duplicate.
2178		 */
2179		read_lock(&tasklist_lock);
2180		do_notify_parent_cldstop(current, false, why);
2181
2182		if (ptrace_reparented(current->group_leader))
2183			do_notify_parent_cldstop(current->group_leader,
2184						true, why);
2185		read_unlock(&tasklist_lock);
2186
2187		goto relock;
2188	}
2189
2190	for (;;) {
2191		struct k_sigaction *ka;
2192
2193		if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2194		    do_signal_stop(0))
2195			goto relock;
2196
2197		if (unlikely(current->jobctl & JOBCTL_TRAP_MASK)) {
2198			do_jobctl_trap();
2199			spin_unlock_irq(&sighand->siglock);
2200			goto relock;
2201		}
2202
2203		signr = dequeue_signal(current, &current->blocked, info);
2204
2205		if (!signr)
2206			break; /* will return 0 */
2207
2208		if (unlikely(current->ptrace) && signr != SIGKILL) {
2209			signr = ptrace_signal(signr, info,
2210					      regs, cookie);
2211			if (!signr)
2212				continue;
2213		}
2214
2215		ka = &sighand->action[signr-1];
2216
2217		/* Trace actually delivered signals. */
2218		trace_signal_deliver(signr, info, ka);
2219
2220		if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */
2221			continue;
2222		if (ka->sa.sa_handler != SIG_DFL) {
2223			/* Run the handler.  */
2224			*return_ka = *ka;
2225
2226			if (ka->sa.sa_flags & SA_ONESHOT)
2227				ka->sa.sa_handler = SIG_DFL;
2228
2229			break; /* will return non-zero "signr" value */
2230		}
2231
2232		/*
2233		 * Now we are doing the default action for this signal.
2234		 */
2235		if (sig_kernel_ignore(signr)) /* Default is nothing. */
2236			continue;
2237
2238		/*
2239		 * Global init gets no signals it doesn't want.
2240		 * Container-init gets no signals it doesn't want from same
2241		 * container.
2242		 *
2243		 * Note that if global/container-init sees a sig_kernel_only()
2244		 * signal here, the signal must have been generated internally
2245		 * or must have come from an ancestor namespace. In either
2246		 * case, the signal cannot be dropped.
2247		 */
2248		if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2249				!sig_kernel_only(signr))
2250			continue;
2251
2252		if (sig_kernel_stop(signr)) {
2253			/*
2254			 * The default action is to stop all threads in
2255			 * the thread group.  The job control signals
2256			 * do nothing in an orphaned pgrp, but SIGSTOP
2257			 * always works.  Note that siglock needs to be
2258			 * dropped during the call to is_orphaned_pgrp()
2259			 * because of lock ordering with tasklist_lock.
2260			 * This allows an intervening SIGCONT to be posted.
2261			 * We need to check for that and bail out if necessary.
2262			 */
2263			if (signr != SIGSTOP) {
2264				spin_unlock_irq(&sighand->siglock);
2265
2266				/* signals can be posted during this window */
2267
2268				if (is_current_pgrp_orphaned())
2269					goto relock;
2270
2271				spin_lock_irq(&sighand->siglock);
2272			}
2273
2274			if (likely(do_signal_stop(info->si_signo))) {
2275				/* It released the siglock.  */
2276				goto relock;
2277			}
2278
2279			/*
2280			 * We didn't actually stop, due to a race
2281			 * with SIGCONT or something like that.
2282			 */
2283			continue;
2284		}
2285
2286		spin_unlock_irq(&sighand->siglock);
2287
2288		/*
2289		 * Anything else is fatal, maybe with a core dump.
2290		 */
2291		current->flags |= PF_SIGNALED;
2292
2293		if (sig_kernel_coredump(signr)) {
2294			if (print_fatal_signals)
2295				print_fatal_signal(regs, info->si_signo);
 
2296			/*
2297			 * If it was able to dump core, this kills all
2298			 * other threads in the group and synchronizes with
2299			 * their demise.  If we lost the race with another
2300			 * thread getting here, it set group_exit_code
2301			 * first and our do_group_exit call below will use
2302			 * that value and ignore the one we pass it.
2303			 */
2304			do_coredump(info->si_signo, info->si_signo, regs);
2305		}
2306
2307		/*
2308		 * Death signals, no core dump.
2309		 */
2310		do_group_exit(info->si_signo);
2311		/* NOTREACHED */
2312	}
2313	spin_unlock_irq(&sighand->siglock);
2314	return signr;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2315}
2316
2317/*
2318 * It could be that complete_signal() picked us to notify about the
2319 * group-wide signal. Other threads should be notified now to take
2320 * the shared signals in @which since we will not.
2321 */
2322static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2323{
2324	sigset_t retarget;
2325	struct task_struct *t;
2326
2327	sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2328	if (sigisemptyset(&retarget))
2329		return;
2330
2331	t = tsk;
2332	while_each_thread(tsk, t) {
2333		if (t->flags & PF_EXITING)
2334			continue;
2335
2336		if (!has_pending_signals(&retarget, &t->blocked))
2337			continue;
2338		/* Remove the signals this thread can handle. */
2339		sigandsets(&retarget, &retarget, &t->blocked);
2340
2341		if (!signal_pending(t))
2342			signal_wake_up(t, 0);
2343
2344		if (sigisemptyset(&retarget))
2345			break;
2346	}
2347}
2348
2349void exit_signals(struct task_struct *tsk)
2350{
2351	int group_stop = 0;
2352	sigset_t unblocked;
2353
 
 
 
 
 
 
2354	if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
2355		tsk->flags |= PF_EXITING;
 
2356		return;
2357	}
2358
2359	spin_lock_irq(&tsk->sighand->siglock);
2360	/*
2361	 * From now this task is not visible for group-wide signals,
2362	 * see wants_signal(), do_signal_stop().
2363	 */
2364	tsk->flags |= PF_EXITING;
 
 
 
2365	if (!signal_pending(tsk))
2366		goto out;
2367
2368	unblocked = tsk->blocked;
2369	signotset(&unblocked);
2370	retarget_shared_pending(tsk, &unblocked);
2371
2372	if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2373	    task_participate_group_stop(tsk))
2374		group_stop = CLD_STOPPED;
2375out:
2376	spin_unlock_irq(&tsk->sighand->siglock);
2377
2378	/*
2379	 * If group stop has completed, deliver the notification.  This
2380	 * should always go to the real parent of the group leader.
2381	 */
2382	if (unlikely(group_stop)) {
2383		read_lock(&tasklist_lock);
2384		do_notify_parent_cldstop(tsk, false, group_stop);
2385		read_unlock(&tasklist_lock);
2386	}
2387}
2388
2389EXPORT_SYMBOL(recalc_sigpending);
2390EXPORT_SYMBOL_GPL(dequeue_signal);
2391EXPORT_SYMBOL(flush_signals);
2392EXPORT_SYMBOL(force_sig);
2393EXPORT_SYMBOL(send_sig);
2394EXPORT_SYMBOL(send_sig_info);
2395EXPORT_SYMBOL(sigprocmask);
2396EXPORT_SYMBOL(block_all_signals);
2397EXPORT_SYMBOL(unblock_all_signals);
2398
2399
2400/*
2401 * System call entry points.
2402 */
2403
2404/**
2405 *  sys_restart_syscall - restart a system call
2406 */
2407SYSCALL_DEFINE0(restart_syscall)
2408{
2409	struct restart_block *restart = &current_thread_info()->restart_block;
2410	return restart->fn(restart);
2411}
2412
2413long do_no_restart_syscall(struct restart_block *param)
2414{
2415	return -EINTR;
2416}
2417
2418static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
2419{
2420	if (signal_pending(tsk) && !thread_group_empty(tsk)) {
2421		sigset_t newblocked;
2422		/* A set of now blocked but previously unblocked signals. */
2423		sigandnsets(&newblocked, newset, &current->blocked);
2424		retarget_shared_pending(tsk, &newblocked);
2425	}
2426	tsk->blocked = *newset;
2427	recalc_sigpending();
2428}
2429
2430/**
2431 * set_current_blocked - change current->blocked mask
2432 * @newset: new mask
2433 *
2434 * It is wrong to change ->blocked directly, this helper should be used
2435 * to ensure the process can't miss a shared signal we are going to block.
2436 */
2437void set_current_blocked(const sigset_t *newset)
 
 
 
 
 
 
2438{
2439	struct task_struct *tsk = current;
2440
2441	spin_lock_irq(&tsk->sighand->siglock);
2442	__set_task_blocked(tsk, newset);
2443	spin_unlock_irq(&tsk->sighand->siglock);
2444}
2445
2446/*
2447 * This is also useful for kernel threads that want to temporarily
2448 * (or permanently) block certain signals.
2449 *
2450 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2451 * interface happily blocks "unblockable" signals like SIGKILL
2452 * and friends.
2453 */
2454int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2455{
2456	struct task_struct *tsk = current;
2457	sigset_t newset;
2458
2459	/* Lockless, only current can change ->blocked, never from irq */
2460	if (oldset)
2461		*oldset = tsk->blocked;
2462
2463	switch (how) {
2464	case SIG_BLOCK:
2465		sigorsets(&newset, &tsk->blocked, set);
2466		break;
2467	case SIG_UNBLOCK:
2468		sigandnsets(&newset, &tsk->blocked, set);
2469		break;
2470	case SIG_SETMASK:
2471		newset = *set;
2472		break;
2473	default:
2474		return -EINVAL;
2475	}
2476
2477	set_current_blocked(&newset);
2478	return 0;
2479}
2480
2481/**
2482 *  sys_rt_sigprocmask - change the list of currently blocked signals
2483 *  @how: whether to add, remove, or set signals
2484 *  @nset: stores pending signals
2485 *  @oset: previous value of signal mask if non-null
2486 *  @sigsetsize: size of sigset_t type
2487 */
2488SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
2489		sigset_t __user *, oset, size_t, sigsetsize)
2490{
2491	sigset_t old_set, new_set;
2492	int error;
2493
2494	/* XXX: Don't preclude handling different sized sigset_t's.  */
2495	if (sigsetsize != sizeof(sigset_t))
2496		return -EINVAL;
2497
2498	old_set = current->blocked;
2499
2500	if (nset) {
2501		if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
2502			return -EFAULT;
2503		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2504
2505		error = sigprocmask(how, &new_set, NULL);
2506		if (error)
2507			return error;
2508	}
2509
2510	if (oset) {
2511		if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
2512			return -EFAULT;
2513	}
2514
2515	return 0;
2516}
2517
2518long do_sigpending(void __user *set, unsigned long sigsetsize)
 
 
2519{
2520	long error = -EINVAL;
2521	sigset_t pending;
2522
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2523	if (sigsetsize > sizeof(sigset_t))
2524		goto out;
2525
2526	spin_lock_irq(&current->sighand->siglock);
2527	sigorsets(&pending, &current->pending.signal,
2528		  &current->signal->shared_pending.signal);
2529	spin_unlock_irq(&current->sighand->siglock);
2530
2531	/* Outside the lock because only this thread touches it.  */
2532	sigandsets(&pending, &current->blocked, &pending);
2533
2534	error = -EFAULT;
2535	if (!copy_to_user(set, &pending, sigsetsize))
2536		error = 0;
2537
2538out:
2539	return error;
2540}
2541
2542/**
2543 *  sys_rt_sigpending - examine a pending signal that has been raised
2544 *			while blocked
2545 *  @set: stores pending signals
2546 *  @sigsetsize: size of sigset_t type or larger
2547 */
2548SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, set, size_t, sigsetsize)
2549{
2550	return do_sigpending(set, sigsetsize);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2551}
 
2552
2553#ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2554
2555int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from)
2556{
2557	int err;
2558
2559	if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2560		return -EFAULT;
2561	if (from->si_code < 0)
2562		return __copy_to_user(to, from, sizeof(siginfo_t))
2563			? -EFAULT : 0;
2564	/*
2565	 * If you change siginfo_t structure, please be sure
2566	 * this code is fixed accordingly.
2567	 * Please remember to update the signalfd_copyinfo() function
2568	 * inside fs/signalfd.c too, in case siginfo_t changes.
2569	 * It should never copy any pad contained in the structure
2570	 * to avoid security leaks, but must copy the generic
2571	 * 3 ints plus the relevant union member.
2572	 */
2573	err = __put_user(from->si_signo, &to->si_signo);
2574	err |= __put_user(from->si_errno, &to->si_errno);
2575	err |= __put_user((short)from->si_code, &to->si_code);
2576	switch (from->si_code & __SI_MASK) {
2577	case __SI_KILL:
2578		err |= __put_user(from->si_pid, &to->si_pid);
2579		err |= __put_user(from->si_uid, &to->si_uid);
2580		break;
2581	case __SI_TIMER:
2582		 err |= __put_user(from->si_tid, &to->si_tid);
2583		 err |= __put_user(from->si_overrun, &to->si_overrun);
2584		 err |= __put_user(from->si_ptr, &to->si_ptr);
2585		break;
2586	case __SI_POLL:
2587		err |= __put_user(from->si_band, &to->si_band);
2588		err |= __put_user(from->si_fd, &to->si_fd);
2589		break;
2590	case __SI_FAULT:
2591		err |= __put_user(from->si_addr, &to->si_addr);
2592#ifdef __ARCH_SI_TRAPNO
2593		err |= __put_user(from->si_trapno, &to->si_trapno);
2594#endif
2595#ifdef BUS_MCEERR_AO
2596		/*
2597		 * Other callers might not initialize the si_lsb field,
2598		 * so check explicitly for the right codes here.
2599		 */
2600		if (from->si_code == BUS_MCEERR_AR || from->si_code == BUS_MCEERR_AO)
 
2601			err |= __put_user(from->si_addr_lsb, &to->si_addr_lsb);
2602#endif
 
 
 
 
 
 
 
 
 
 
2603		break;
2604	case __SI_CHLD:
2605		err |= __put_user(from->si_pid, &to->si_pid);
2606		err |= __put_user(from->si_uid, &to->si_uid);
2607		err |= __put_user(from->si_status, &to->si_status);
2608		err |= __put_user(from->si_utime, &to->si_utime);
2609		err |= __put_user(from->si_stime, &to->si_stime);
2610		break;
2611	case __SI_RT: /* This is not generated by the kernel as of now. */
2612	case __SI_MESGQ: /* But this is */
2613		err |= __put_user(from->si_pid, &to->si_pid);
2614		err |= __put_user(from->si_uid, &to->si_uid);
2615		err |= __put_user(from->si_ptr, &to->si_ptr);
2616		break;
 
 
 
 
 
 
 
2617	default: /* this is just in case for now ... */
2618		err |= __put_user(from->si_pid, &to->si_pid);
2619		err |= __put_user(from->si_uid, &to->si_uid);
2620		break;
2621	}
2622	return err;
2623}
2624
2625#endif
2626
2627/**
2628 *  do_sigtimedwait - wait for queued signals specified in @which
2629 *  @which: queued signals to wait for
2630 *  @info: if non-null, the signal's siginfo is returned here
2631 *  @ts: upper bound on process time suspension
2632 */
2633int do_sigtimedwait(const sigset_t *which, siginfo_t *info,
2634			const struct timespec *ts)
2635{
2636	struct task_struct *tsk = current;
2637	long timeout = MAX_SCHEDULE_TIMEOUT;
2638	sigset_t mask = *which;
2639	int sig;
2640
2641	if (ts) {
2642		if (!timespec_valid(ts))
2643			return -EINVAL;
2644		timeout = timespec_to_jiffies(ts);
2645		/*
2646		 * We can be close to the next tick, add another one
2647		 * to ensure we will wait at least the time asked for.
2648		 */
2649		if (ts->tv_sec || ts->tv_nsec)
2650			timeout++;
2651	}
2652
2653	/*
2654	 * Invert the set of allowed signals to get those we want to block.
2655	 */
2656	sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
2657	signotset(&mask);
2658
2659	spin_lock_irq(&tsk->sighand->siglock);
2660	sig = dequeue_signal(tsk, &mask, info);
2661	if (!sig && timeout) {
2662		/*
2663		 * None ready, temporarily unblock those we're interested
2664		 * while we are sleeping in so that we'll be awakened when
2665		 * they arrive. Unblocking is always fine, we can avoid
2666		 * set_current_blocked().
2667		 */
2668		tsk->real_blocked = tsk->blocked;
2669		sigandsets(&tsk->blocked, &tsk->blocked, &mask);
2670		recalc_sigpending();
2671		spin_unlock_irq(&tsk->sighand->siglock);
2672
2673		timeout = schedule_timeout_interruptible(timeout);
2674
2675		spin_lock_irq(&tsk->sighand->siglock);
2676		__set_task_blocked(tsk, &tsk->real_blocked);
2677		siginitset(&tsk->real_blocked, 0);
2678		sig = dequeue_signal(tsk, &mask, info);
2679	}
2680	spin_unlock_irq(&tsk->sighand->siglock);
2681
2682	if (sig)
2683		return sig;
2684	return timeout ? -EINTR : -EAGAIN;
2685}
2686
2687/**
2688 *  sys_rt_sigtimedwait - synchronously wait for queued signals specified
2689 *			in @uthese
2690 *  @uthese: queued signals to wait for
2691 *  @uinfo: if non-null, the signal's siginfo is returned here
2692 *  @uts: upper bound on process time suspension
2693 *  @sigsetsize: size of sigset_t type
2694 */
2695SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
2696		siginfo_t __user *, uinfo, const struct timespec __user *, uts,
2697		size_t, sigsetsize)
2698{
2699	sigset_t these;
2700	struct timespec ts;
2701	siginfo_t info;
2702	int ret;
2703
2704	/* XXX: Don't preclude handling different sized sigset_t's.  */
2705	if (sigsetsize != sizeof(sigset_t))
2706		return -EINVAL;
2707
2708	if (copy_from_user(&these, uthese, sizeof(these)))
2709		return -EFAULT;
2710
2711	if (uts) {
2712		if (copy_from_user(&ts, uts, sizeof(ts)))
2713			return -EFAULT;
2714	}
2715
2716	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
2717
2718	if (ret > 0 && uinfo) {
2719		if (copy_siginfo_to_user(uinfo, &info))
2720			ret = -EFAULT;
2721	}
2722
2723	return ret;
2724}
2725
2726/**
2727 *  sys_kill - send a signal to a process
2728 *  @pid: the PID of the process
2729 *  @sig: signal to be sent
2730 */
2731SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
2732{
2733	struct siginfo info;
2734
2735	info.si_signo = sig;
2736	info.si_errno = 0;
2737	info.si_code = SI_USER;
2738	info.si_pid = task_tgid_vnr(current);
2739	info.si_uid = current_uid();
2740
2741	return kill_something_info(sig, &info, pid);
2742}
2743
2744static int
2745do_send_specific(pid_t tgid, pid_t pid, int sig, struct siginfo *info)
2746{
2747	struct task_struct *p;
2748	int error = -ESRCH;
2749
2750	rcu_read_lock();
2751	p = find_task_by_vpid(pid);
2752	if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
2753		error = check_kill_permission(sig, info, p);
2754		/*
2755		 * The null signal is a permissions and process existence
2756		 * probe.  No signal is actually delivered.
2757		 */
2758		if (!error && sig) {
2759			error = do_send_sig_info(sig, info, p, false);
2760			/*
2761			 * If lock_task_sighand() failed we pretend the task
2762			 * dies after receiving the signal. The window is tiny,
2763			 * and the signal is private anyway.
2764			 */
2765			if (unlikely(error == -ESRCH))
2766				error = 0;
2767		}
2768	}
2769	rcu_read_unlock();
2770
2771	return error;
2772}
2773
2774static int do_tkill(pid_t tgid, pid_t pid, int sig)
2775{
2776	struct siginfo info;
2777
2778	info.si_signo = sig;
2779	info.si_errno = 0;
2780	info.si_code = SI_TKILL;
2781	info.si_pid = task_tgid_vnr(current);
2782	info.si_uid = current_uid();
2783
2784	return do_send_specific(tgid, pid, sig, &info);
2785}
2786
2787/**
2788 *  sys_tgkill - send signal to one specific thread
2789 *  @tgid: the thread group ID of the thread
2790 *  @pid: the PID of the thread
2791 *  @sig: signal to be sent
2792 *
2793 *  This syscall also checks the @tgid and returns -ESRCH even if the PID
2794 *  exists but it's not belonging to the target process anymore. This
2795 *  method solves the problem of threads exiting and PIDs getting reused.
2796 */
2797SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
2798{
2799	/* This is only valid for single tasks */
2800	if (pid <= 0 || tgid <= 0)
2801		return -EINVAL;
2802
2803	return do_tkill(tgid, pid, sig);
2804}
2805
2806/**
2807 *  sys_tkill - send signal to one specific task
2808 *  @pid: the PID of the task
2809 *  @sig: signal to be sent
2810 *
2811 *  Send a signal to only one task, even if it's a CLONE_THREAD task.
2812 */
2813SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
2814{
2815	/* This is only valid for single tasks */
2816	if (pid <= 0)
2817		return -EINVAL;
2818
2819	return do_tkill(0, pid, sig);
2820}
2821
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2822/**
2823 *  sys_rt_sigqueueinfo - send signal information to a signal
2824 *  @pid: the PID of the thread
2825 *  @sig: signal to be sent
2826 *  @uinfo: signal info to be sent
2827 */
2828SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
2829		siginfo_t __user *, uinfo)
2830{
2831	siginfo_t info;
2832
2833	if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2834		return -EFAULT;
 
 
2835
2836	/* Not even root can pretend to send signals from the kernel.
2837	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
2838	 */
2839	if (info.si_code >= 0 || info.si_code == SI_TKILL) {
2840		/* We used to allow any < 0 si_code */
2841		WARN_ON_ONCE(info.si_code < 0);
2842		return -EPERM;
2843	}
2844	info.si_signo = sig;
2845
2846	/* POSIX.1b doesn't mention process groups.  */
2847	return kill_proc_info(sig, &info, pid);
2848}
 
2849
2850long do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, siginfo_t *info)
2851{
2852	/* This is only valid for single tasks */
2853	if (pid <= 0 || tgid <= 0)
2854		return -EINVAL;
2855
2856	/* Not even root can pretend to send signals from the kernel.
2857	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
2858	 */
2859	if (info->si_code >= 0 || info->si_code == SI_TKILL) {
2860		/* We used to allow any < 0 si_code */
2861		WARN_ON_ONCE(info->si_code < 0);
2862		return -EPERM;
2863	}
2864	info->si_signo = sig;
2865
2866	return do_send_specific(tgid, pid, sig, info);
2867}
2868
2869SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
2870		siginfo_t __user *, uinfo)
2871{
2872	siginfo_t info;
2873
2874	if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2875		return -EFAULT;
2876
2877	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
2878}
2879
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2880int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
2881{
2882	struct task_struct *t = current;
2883	struct k_sigaction *k;
2884	sigset_t mask;
2885
2886	if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
2887		return -EINVAL;
2888
2889	k = &t->sighand->action[sig-1];
2890
2891	spin_lock_irq(&current->sighand->siglock);
2892	if (oact)
2893		*oact = *k;
2894
2895	if (act) {
2896		sigdelsetmask(&act->sa.sa_mask,
2897			      sigmask(SIGKILL) | sigmask(SIGSTOP));
2898		*k = *act;
2899		/*
2900		 * POSIX 3.3.1.3:
2901		 *  "Setting a signal action to SIG_IGN for a signal that is
2902		 *   pending shall cause the pending signal to be discarded,
2903		 *   whether or not it is blocked."
2904		 *
2905		 *  "Setting a signal action to SIG_DFL for a signal that is
2906		 *   pending and whose default action is to ignore the signal
2907		 *   (for example, SIGCHLD), shall cause the pending signal to
2908		 *   be discarded, whether or not it is blocked"
2909		 */
2910		if (sig_handler_ignored(sig_handler(t, sig), sig)) {
2911			sigemptyset(&mask);
2912			sigaddset(&mask, sig);
2913			rm_from_queue_full(&mask, &t->signal->shared_pending);
2914			do {
2915				rm_from_queue_full(&mask, &t->pending);
2916				t = next_thread(t);
2917			} while (t != current);
2918		}
2919	}
2920
2921	spin_unlock_irq(&current->sighand->siglock);
2922	return 0;
2923}
2924
2925int 
2926do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
2927{
2928	stack_t oss;
2929	int error;
2930
2931	oss.ss_sp = (void __user *) current->sas_ss_sp;
2932	oss.ss_size = current->sas_ss_size;
2933	oss.ss_flags = sas_ss_flags(sp);
2934
2935	if (uss) {
2936		void __user *ss_sp;
2937		size_t ss_size;
2938		int ss_flags;
2939
2940		error = -EFAULT;
2941		if (!access_ok(VERIFY_READ, uss, sizeof(*uss)))
2942			goto out;
2943		error = __get_user(ss_sp, &uss->ss_sp) |
2944			__get_user(ss_flags, &uss->ss_flags) |
2945			__get_user(ss_size, &uss->ss_size);
2946		if (error)
2947			goto out;
2948
2949		error = -EPERM;
2950		if (on_sig_stack(sp))
2951			goto out;
2952
2953		error = -EINVAL;
2954		/*
2955		 * Note - this code used to test ss_flags incorrectly:
2956		 *  	  old code may have been written using ss_flags==0
2957		 *	  to mean ss_flags==SS_ONSTACK (as this was the only
2958		 *	  way that worked) - this fix preserves that older
2959		 *	  mechanism.
2960		 */
2961		if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
2962			goto out;
2963
2964		if (ss_flags == SS_DISABLE) {
2965			ss_size = 0;
2966			ss_sp = NULL;
2967		} else {
2968			error = -ENOMEM;
2969			if (ss_size < MINSIGSTKSZ)
2970				goto out;
2971		}
2972
2973		current->sas_ss_sp = (unsigned long) ss_sp;
2974		current->sas_ss_size = ss_size;
2975	}
2976
2977	error = 0;
2978	if (uoss) {
2979		error = -EFAULT;
2980		if (!access_ok(VERIFY_WRITE, uoss, sizeof(*uoss)))
2981			goto out;
2982		error = __put_user(oss.ss_sp, &uoss->ss_sp) |
2983			__put_user(oss.ss_size, &uoss->ss_size) |
2984			__put_user(oss.ss_flags, &uoss->ss_flags);
2985	}
2986
2987out:
2988	return error;
2989}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2990
2991#ifdef __ARCH_WANT_SYS_SIGPENDING
2992
2993/**
2994 *  sys_sigpending - examine pending signals
2995 *  @set: where mask of pending signal is returned
2996 */
2997SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, set)
2998{
2999	return do_sigpending(set, sizeof(*set));
3000}
3001
3002#endif
3003
3004#ifdef __ARCH_WANT_SYS_SIGPROCMASK
3005/**
3006 *  sys_sigprocmask - examine and change blocked signals
3007 *  @how: whether to add, remove, or set signals
3008 *  @nset: signals to add or remove (if non-null)
3009 *  @oset: previous value of signal mask if non-null
3010 *
3011 * Some platforms have their own version with special arguments;
3012 * others support only sys_rt_sigprocmask.
3013 */
3014
3015SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
3016		old_sigset_t __user *, oset)
3017{
3018	old_sigset_t old_set, new_set;
3019	sigset_t new_blocked;
3020
3021	old_set = current->blocked.sig[0];
3022
3023	if (nset) {
3024		if (copy_from_user(&new_set, nset, sizeof(*nset)))
3025			return -EFAULT;
3026		new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP));
3027
3028		new_blocked = current->blocked;
3029
3030		switch (how) {
3031		case SIG_BLOCK:
3032			sigaddsetmask(&new_blocked, new_set);
3033			break;
3034		case SIG_UNBLOCK:
3035			sigdelsetmask(&new_blocked, new_set);
3036			break;
3037		case SIG_SETMASK:
3038			new_blocked.sig[0] = new_set;
3039			break;
3040		default:
3041			return -EINVAL;
3042		}
3043
3044		set_current_blocked(&new_blocked);
3045	}
3046
3047	if (oset) {
3048		if (copy_to_user(oset, &old_set, sizeof(*oset)))
3049			return -EFAULT;
3050	}
3051
3052	return 0;
3053}
3054#endif /* __ARCH_WANT_SYS_SIGPROCMASK */
3055
3056#ifdef __ARCH_WANT_SYS_RT_SIGACTION
3057/**
3058 *  sys_rt_sigaction - alter an action taken by a process
3059 *  @sig: signal to be sent
3060 *  @act: new sigaction
3061 *  @oact: used to save the previous sigaction
3062 *  @sigsetsize: size of sigset_t type
3063 */
3064SYSCALL_DEFINE4(rt_sigaction, int, sig,
3065		const struct sigaction __user *, act,
3066		struct sigaction __user *, oact,
3067		size_t, sigsetsize)
3068{
3069	struct k_sigaction new_sa, old_sa;
3070	int ret = -EINVAL;
3071
3072	/* XXX: Don't preclude handling different sized sigset_t's.  */
3073	if (sigsetsize != sizeof(sigset_t))
3074		goto out;
3075
3076	if (act) {
3077		if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
3078			return -EFAULT;
3079	}
3080
3081	ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
3082
3083	if (!ret && oact) {
3084		if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
3085			return -EFAULT;
3086	}
3087out:
3088	return ret;
3089}
3090#endif /* __ARCH_WANT_SYS_RT_SIGACTION */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3091
3092#ifdef __ARCH_WANT_SYS_SGETMASK
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3093
3094/*
3095 * For backwards compatibility.  Functionality superseded by sigprocmask.
3096 */
3097SYSCALL_DEFINE0(sgetmask)
3098{
3099	/* SMP safe */
3100	return current->blocked.sig[0];
3101}
3102
3103SYSCALL_DEFINE1(ssetmask, int, newmask)
3104{
3105	int old = current->blocked.sig[0];
3106	sigset_t newset;
3107
3108	siginitset(&newset, newmask & ~(sigmask(SIGKILL) | sigmask(SIGSTOP)));
3109	set_current_blocked(&newset);
3110
3111	return old;
3112}
3113#endif /* __ARCH_WANT_SGETMASK */
3114
3115#ifdef __ARCH_WANT_SYS_SIGNAL
3116/*
3117 * For backwards compatibility.  Functionality superseded by sigaction.
3118 */
3119SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
3120{
3121	struct k_sigaction new_sa, old_sa;
3122	int ret;
3123
3124	new_sa.sa.sa_handler = handler;
3125	new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
3126	sigemptyset(&new_sa.sa.sa_mask);
3127
3128	ret = do_sigaction(sig, &new_sa, &old_sa);
3129
3130	return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
3131}
3132#endif /* __ARCH_WANT_SYS_SIGNAL */
3133
3134#ifdef __ARCH_WANT_SYS_PAUSE
3135
3136SYSCALL_DEFINE0(pause)
3137{
3138	while (!signal_pending(current)) {
3139		current->state = TASK_INTERRUPTIBLE;
3140		schedule();
3141	}
3142	return -ERESTARTNOHAND;
3143}
3144
3145#endif
3146
3147#ifdef __ARCH_WANT_SYS_RT_SIGSUSPEND
 
 
 
 
 
 
 
 
 
 
 
 
3148/**
3149 *  sys_rt_sigsuspend - replace the signal mask for a value with the
3150 *	@unewset value until a signal is received
3151 *  @unewset: new signal mask value
3152 *  @sigsetsize: size of sigset_t type
3153 */
3154SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
3155{
3156	sigset_t newset;
3157
3158	/* XXX: Don't preclude handling different sized sigset_t's.  */
3159	if (sigsetsize != sizeof(sigset_t))
3160		return -EINVAL;
3161
3162	if (copy_from_user(&newset, unewset, sizeof(newset)))
3163		return -EFAULT;
3164	sigdelsetmask(&newset, sigmask(SIGKILL)|sigmask(SIGSTOP));
 
 
 
 
 
 
 
 
3165
3166	current->saved_sigmask = current->blocked;
3167	set_current_blocked(&newset);
 
 
 
 
 
 
 
 
 
 
 
 
3168
3169	current->state = TASK_INTERRUPTIBLE;
3170	schedule();
3171	set_restore_sigmask();
3172	return -ERESTARTNOHAND;
 
 
 
 
 
 
 
 
 
 
3173}
3174#endif /* __ARCH_WANT_SYS_RT_SIGSUSPEND */
3175
3176__attribute__((weak)) const char *arch_vma_name(struct vm_area_struct *vma)
3177{
3178	return NULL;
3179}
3180
3181void __init signals_init(void)
3182{
 
 
 
 
3183	sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
3184}
3185
3186#ifdef CONFIG_KGDB_KDB
3187#include <linux/kdb.h>
3188/*
3189 * kdb_send_sig_info - Allows kdb to send signals without exposing
3190 * signal internals.  This function checks if the required locks are
3191 * available before calling the main signal code, to avoid kdb
3192 * deadlocks.
3193 */
3194void
3195kdb_send_sig_info(struct task_struct *t, struct siginfo *info)
3196{
3197	static struct task_struct *kdb_prev_t;
3198	int sig, new_t;
3199	if (!spin_trylock(&t->sighand->siglock)) {
3200		kdb_printf("Can't do kill command now.\n"
3201			   "The sigmask lock is held somewhere else in "
3202			   "kernel, try again later\n");
3203		return;
3204	}
3205	spin_unlock(&t->sighand->siglock);
3206	new_t = kdb_prev_t != t;
3207	kdb_prev_t = t;
3208	if (t->state != TASK_RUNNING && new_t) {
3209		kdb_printf("Process is not RUNNING, sending a signal from "
3210			   "kdb risks deadlock\n"
3211			   "on the run queue locks. "
3212			   "The signal has _not_ been sent.\n"
3213			   "Reissue the kill command if you want to risk "
3214			   "the deadlock.\n");
3215		return;
3216	}
3217	sig = info->si_signo;
3218	if (send_sig_info(sig, info, t))
3219		kdb_printf("Fail to deliver Signal %d to process %d.\n",
3220			   sig, t->pid);
3221	else
3222		kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
3223}
3224#endif	/* CONFIG_KGDB_KDB */