Linux Audio

Check our new training course

Loading...
Note: File does not exist in v4.6.
   1/*
   2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
   3 *
   4 *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
   5 *
   6 *  Interactivity improvements by Mike Galbraith
   7 *  (C) 2007 Mike Galbraith <efault@gmx.de>
   8 *
   9 *  Various enhancements by Dmitry Adamushko.
  10 *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
  11 *
  12 *  Group scheduling enhancements by Srivatsa Vaddagiri
  13 *  Copyright IBM Corporation, 2007
  14 *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
  15 *
  16 *  Scaled math optimizations by Thomas Gleixner
  17 *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
  18 *
  19 *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
  20 *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
  21 */
  22
  23#include <linux/latencytop.h>
  24#include <linux/sched.h>
  25#include <linux/cpumask.h>
  26
  27/*
  28 * Targeted preemption latency for CPU-bound tasks:
  29 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
  30 *
  31 * NOTE: this latency value is not the same as the concept of
  32 * 'timeslice length' - timeslices in CFS are of variable length
  33 * and have no persistent notion like in traditional, time-slice
  34 * based scheduling concepts.
  35 *
  36 * (to see the precise effective timeslice length of your workload,
  37 *  run vmstat and monitor the context-switches (cs) field)
  38 */
  39unsigned int sysctl_sched_latency = 6000000ULL;
  40unsigned int normalized_sysctl_sched_latency = 6000000ULL;
  41
  42/*
  43 * The initial- and re-scaling of tunables is configurable
  44 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
  45 *
  46 * Options are:
  47 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
  48 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
  49 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
  50 */
  51enum sched_tunable_scaling sysctl_sched_tunable_scaling
  52	= SCHED_TUNABLESCALING_LOG;
  53
  54/*
  55 * Minimal preemption granularity for CPU-bound tasks:
  56 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
  57 */
  58unsigned int sysctl_sched_min_granularity = 750000ULL;
  59unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
  60
  61/*
  62 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
  63 */
  64static unsigned int sched_nr_latency = 8;
  65
  66/*
  67 * After fork, child runs first. If set to 0 (default) then
  68 * parent will (try to) run first.
  69 */
  70unsigned int sysctl_sched_child_runs_first __read_mostly;
  71
  72/*
  73 * SCHED_OTHER wake-up granularity.
  74 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
  75 *
  76 * This option delays the preemption effects of decoupled workloads
  77 * and reduces their over-scheduling. Synchronous workloads will still
  78 * have immediate wakeup/sleep latencies.
  79 */
  80unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
  81unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
  82
  83const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
  84
  85/*
  86 * The exponential sliding  window over which load is averaged for shares
  87 * distribution.
  88 * (default: 10msec)
  89 */
  90unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
  91
  92static const struct sched_class fair_sched_class;
  93
  94/**************************************************************
  95 * CFS operations on generic schedulable entities:
  96 */
  97
  98#ifdef CONFIG_FAIR_GROUP_SCHED
  99
 100/* cpu runqueue to which this cfs_rq is attached */
 101static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
 102{
 103	return cfs_rq->rq;
 104}
 105
 106/* An entity is a task if it doesn't "own" a runqueue */
 107#define entity_is_task(se)	(!se->my_q)
 108
 109static inline struct task_struct *task_of(struct sched_entity *se)
 110{
 111#ifdef CONFIG_SCHED_DEBUG
 112	WARN_ON_ONCE(!entity_is_task(se));
 113#endif
 114	return container_of(se, struct task_struct, se);
 115}
 116
 117/* Walk up scheduling entities hierarchy */
 118#define for_each_sched_entity(se) \
 119		for (; se; se = se->parent)
 120
 121static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
 122{
 123	return p->se.cfs_rq;
 124}
 125
 126/* runqueue on which this entity is (to be) queued */
 127static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
 128{
 129	return se->cfs_rq;
 130}
 131
 132/* runqueue "owned" by this group */
 133static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
 134{
 135	return grp->my_q;
 136}
 137
 138static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
 139{
 140	if (!cfs_rq->on_list) {
 141		/*
 142		 * Ensure we either appear before our parent (if already
 143		 * enqueued) or force our parent to appear after us when it is
 144		 * enqueued.  The fact that we always enqueue bottom-up
 145		 * reduces this to two cases.
 146		 */
 147		if (cfs_rq->tg->parent &&
 148		    cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
 149			list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
 150				&rq_of(cfs_rq)->leaf_cfs_rq_list);
 151		} else {
 152			list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
 153				&rq_of(cfs_rq)->leaf_cfs_rq_list);
 154		}
 155
 156		cfs_rq->on_list = 1;
 157	}
 158}
 159
 160static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
 161{
 162	if (cfs_rq->on_list) {
 163		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
 164		cfs_rq->on_list = 0;
 165	}
 166}
 167
 168/* Iterate thr' all leaf cfs_rq's on a runqueue */
 169#define for_each_leaf_cfs_rq(rq, cfs_rq) \
 170	list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
 171
 172/* Do the two (enqueued) entities belong to the same group ? */
 173static inline int
 174is_same_group(struct sched_entity *se, struct sched_entity *pse)
 175{
 176	if (se->cfs_rq == pse->cfs_rq)
 177		return 1;
 178
 179	return 0;
 180}
 181
 182static inline struct sched_entity *parent_entity(struct sched_entity *se)
 183{
 184	return se->parent;
 185}
 186
 187/* return depth at which a sched entity is present in the hierarchy */
 188static inline int depth_se(struct sched_entity *se)
 189{
 190	int depth = 0;
 191
 192	for_each_sched_entity(se)
 193		depth++;
 194
 195	return depth;
 196}
 197
 198static void
 199find_matching_se(struct sched_entity **se, struct sched_entity **pse)
 200{
 201	int se_depth, pse_depth;
 202
 203	/*
 204	 * preemption test can be made between sibling entities who are in the
 205	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
 206	 * both tasks until we find their ancestors who are siblings of common
 207	 * parent.
 208	 */
 209
 210	/* First walk up until both entities are at same depth */
 211	se_depth = depth_se(*se);
 212	pse_depth = depth_se(*pse);
 213
 214	while (se_depth > pse_depth) {
 215		se_depth--;
 216		*se = parent_entity(*se);
 217	}
 218
 219	while (pse_depth > se_depth) {
 220		pse_depth--;
 221		*pse = parent_entity(*pse);
 222	}
 223
 224	while (!is_same_group(*se, *pse)) {
 225		*se = parent_entity(*se);
 226		*pse = parent_entity(*pse);
 227	}
 228}
 229
 230#else	/* !CONFIG_FAIR_GROUP_SCHED */
 231
 232static inline struct task_struct *task_of(struct sched_entity *se)
 233{
 234	return container_of(se, struct task_struct, se);
 235}
 236
 237static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
 238{
 239	return container_of(cfs_rq, struct rq, cfs);
 240}
 241
 242#define entity_is_task(se)	1
 243
 244#define for_each_sched_entity(se) \
 245		for (; se; se = NULL)
 246
 247static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
 248{
 249	return &task_rq(p)->cfs;
 250}
 251
 252static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
 253{
 254	struct task_struct *p = task_of(se);
 255	struct rq *rq = task_rq(p);
 256
 257	return &rq->cfs;
 258}
 259
 260/* runqueue "owned" by this group */
 261static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
 262{
 263	return NULL;
 264}
 265
 266static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
 267{
 268}
 269
 270static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
 271{
 272}
 273
 274#define for_each_leaf_cfs_rq(rq, cfs_rq) \
 275		for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
 276
 277static inline int
 278is_same_group(struct sched_entity *se, struct sched_entity *pse)
 279{
 280	return 1;
 281}
 282
 283static inline struct sched_entity *parent_entity(struct sched_entity *se)
 284{
 285	return NULL;
 286}
 287
 288static inline void
 289find_matching_se(struct sched_entity **se, struct sched_entity **pse)
 290{
 291}
 292
 293#endif	/* CONFIG_FAIR_GROUP_SCHED */
 294
 295
 296/**************************************************************
 297 * Scheduling class tree data structure manipulation methods:
 298 */
 299
 300static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
 301{
 302	s64 delta = (s64)(vruntime - min_vruntime);
 303	if (delta > 0)
 304		min_vruntime = vruntime;
 305
 306	return min_vruntime;
 307}
 308
 309static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
 310{
 311	s64 delta = (s64)(vruntime - min_vruntime);
 312	if (delta < 0)
 313		min_vruntime = vruntime;
 314
 315	return min_vruntime;
 316}
 317
 318static inline int entity_before(struct sched_entity *a,
 319				struct sched_entity *b)
 320{
 321	return (s64)(a->vruntime - b->vruntime) < 0;
 322}
 323
 324static void update_min_vruntime(struct cfs_rq *cfs_rq)
 325{
 326	u64 vruntime = cfs_rq->min_vruntime;
 327
 328	if (cfs_rq->curr)
 329		vruntime = cfs_rq->curr->vruntime;
 330
 331	if (cfs_rq->rb_leftmost) {
 332		struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
 333						   struct sched_entity,
 334						   run_node);
 335
 336		if (!cfs_rq->curr)
 337			vruntime = se->vruntime;
 338		else
 339			vruntime = min_vruntime(vruntime, se->vruntime);
 340	}
 341
 342	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
 343#ifndef CONFIG_64BIT
 344	smp_wmb();
 345	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
 346#endif
 347}
 348
 349/*
 350 * Enqueue an entity into the rb-tree:
 351 */
 352static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
 353{
 354	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
 355	struct rb_node *parent = NULL;
 356	struct sched_entity *entry;
 357	int leftmost = 1;
 358
 359	/*
 360	 * Find the right place in the rbtree:
 361	 */
 362	while (*link) {
 363		parent = *link;
 364		entry = rb_entry(parent, struct sched_entity, run_node);
 365		/*
 366		 * We dont care about collisions. Nodes with
 367		 * the same key stay together.
 368		 */
 369		if (entity_before(se, entry)) {
 370			link = &parent->rb_left;
 371		} else {
 372			link = &parent->rb_right;
 373			leftmost = 0;
 374		}
 375	}
 376
 377	/*
 378	 * Maintain a cache of leftmost tree entries (it is frequently
 379	 * used):
 380	 */
 381	if (leftmost)
 382		cfs_rq->rb_leftmost = &se->run_node;
 383
 384	rb_link_node(&se->run_node, parent, link);
 385	rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
 386}
 387
 388static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
 389{
 390	if (cfs_rq->rb_leftmost == &se->run_node) {
 391		struct rb_node *next_node;
 392
 393		next_node = rb_next(&se->run_node);
 394		cfs_rq->rb_leftmost = next_node;
 395	}
 396
 397	rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
 398}
 399
 400static struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
 401{
 402	struct rb_node *left = cfs_rq->rb_leftmost;
 403
 404	if (!left)
 405		return NULL;
 406
 407	return rb_entry(left, struct sched_entity, run_node);
 408}
 409
 410static struct sched_entity *__pick_next_entity(struct sched_entity *se)
 411{
 412	struct rb_node *next = rb_next(&se->run_node);
 413
 414	if (!next)
 415		return NULL;
 416
 417	return rb_entry(next, struct sched_entity, run_node);
 418}
 419
 420#ifdef CONFIG_SCHED_DEBUG
 421static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
 422{
 423	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
 424
 425	if (!last)
 426		return NULL;
 427
 428	return rb_entry(last, struct sched_entity, run_node);
 429}
 430
 431/**************************************************************
 432 * Scheduling class statistics methods:
 433 */
 434
 435int sched_proc_update_handler(struct ctl_table *table, int write,
 436		void __user *buffer, size_t *lenp,
 437		loff_t *ppos)
 438{
 439	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
 440	int factor = get_update_sysctl_factor();
 441
 442	if (ret || !write)
 443		return ret;
 444
 445	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
 446					sysctl_sched_min_granularity);
 447
 448#define WRT_SYSCTL(name) \
 449	(normalized_sysctl_##name = sysctl_##name / (factor))
 450	WRT_SYSCTL(sched_min_granularity);
 451	WRT_SYSCTL(sched_latency);
 452	WRT_SYSCTL(sched_wakeup_granularity);
 453#undef WRT_SYSCTL
 454
 455	return 0;
 456}
 457#endif
 458
 459/*
 460 * delta /= w
 461 */
 462static inline unsigned long
 463calc_delta_fair(unsigned long delta, struct sched_entity *se)
 464{
 465	if (unlikely(se->load.weight != NICE_0_LOAD))
 466		delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
 467
 468	return delta;
 469}
 470
 471/*
 472 * The idea is to set a period in which each task runs once.
 473 *
 474 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
 475 * this period because otherwise the slices get too small.
 476 *
 477 * p = (nr <= nl) ? l : l*nr/nl
 478 */
 479static u64 __sched_period(unsigned long nr_running)
 480{
 481	u64 period = sysctl_sched_latency;
 482	unsigned long nr_latency = sched_nr_latency;
 483
 484	if (unlikely(nr_running > nr_latency)) {
 485		period = sysctl_sched_min_granularity;
 486		period *= nr_running;
 487	}
 488
 489	return period;
 490}
 491
 492/*
 493 * We calculate the wall-time slice from the period by taking a part
 494 * proportional to the weight.
 495 *
 496 * s = p*P[w/rw]
 497 */
 498static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
 499{
 500	u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
 501
 502	for_each_sched_entity(se) {
 503		struct load_weight *load;
 504		struct load_weight lw;
 505
 506		cfs_rq = cfs_rq_of(se);
 507		load = &cfs_rq->load;
 508
 509		if (unlikely(!se->on_rq)) {
 510			lw = cfs_rq->load;
 511
 512			update_load_add(&lw, se->load.weight);
 513			load = &lw;
 514		}
 515		slice = calc_delta_mine(slice, se->load.weight, load);
 516	}
 517	return slice;
 518}
 519
 520/*
 521 * We calculate the vruntime slice of a to be inserted task
 522 *
 523 * vs = s/w
 524 */
 525static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
 526{
 527	return calc_delta_fair(sched_slice(cfs_rq, se), se);
 528}
 529
 530static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update);
 531static void update_cfs_shares(struct cfs_rq *cfs_rq);
 532
 533/*
 534 * Update the current task's runtime statistics. Skip current tasks that
 535 * are not in our scheduling class.
 536 */
 537static inline void
 538__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
 539	      unsigned long delta_exec)
 540{
 541	unsigned long delta_exec_weighted;
 542
 543	schedstat_set(curr->statistics.exec_max,
 544		      max((u64)delta_exec, curr->statistics.exec_max));
 545
 546	curr->sum_exec_runtime += delta_exec;
 547	schedstat_add(cfs_rq, exec_clock, delta_exec);
 548	delta_exec_weighted = calc_delta_fair(delta_exec, curr);
 549
 550	curr->vruntime += delta_exec_weighted;
 551	update_min_vruntime(cfs_rq);
 552
 553#if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
 554	cfs_rq->load_unacc_exec_time += delta_exec;
 555#endif
 556}
 557
 558static void update_curr(struct cfs_rq *cfs_rq)
 559{
 560	struct sched_entity *curr = cfs_rq->curr;
 561	u64 now = rq_of(cfs_rq)->clock_task;
 562	unsigned long delta_exec;
 563
 564	if (unlikely(!curr))
 565		return;
 566
 567	/*
 568	 * Get the amount of time the current task was running
 569	 * since the last time we changed load (this cannot
 570	 * overflow on 32 bits):
 571	 */
 572	delta_exec = (unsigned long)(now - curr->exec_start);
 573	if (!delta_exec)
 574		return;
 575
 576	__update_curr(cfs_rq, curr, delta_exec);
 577	curr->exec_start = now;
 578
 579	if (entity_is_task(curr)) {
 580		struct task_struct *curtask = task_of(curr);
 581
 582		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
 583		cpuacct_charge(curtask, delta_exec);
 584		account_group_exec_runtime(curtask, delta_exec);
 585	}
 586}
 587
 588static inline void
 589update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
 590{
 591	schedstat_set(se->statistics.wait_start, rq_of(cfs_rq)->clock);
 592}
 593
 594/*
 595 * Task is being enqueued - update stats:
 596 */
 597static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
 598{
 599	/*
 600	 * Are we enqueueing a waiting task? (for current tasks
 601	 * a dequeue/enqueue event is a NOP)
 602	 */
 603	if (se != cfs_rq->curr)
 604		update_stats_wait_start(cfs_rq, se);
 605}
 606
 607static void
 608update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
 609{
 610	schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
 611			rq_of(cfs_rq)->clock - se->statistics.wait_start));
 612	schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
 613	schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
 614			rq_of(cfs_rq)->clock - se->statistics.wait_start);
 615#ifdef CONFIG_SCHEDSTATS
 616	if (entity_is_task(se)) {
 617		trace_sched_stat_wait(task_of(se),
 618			rq_of(cfs_rq)->clock - se->statistics.wait_start);
 619	}
 620#endif
 621	schedstat_set(se->statistics.wait_start, 0);
 622}
 623
 624static inline void
 625update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
 626{
 627	/*
 628	 * Mark the end of the wait period if dequeueing a
 629	 * waiting task:
 630	 */
 631	if (se != cfs_rq->curr)
 632		update_stats_wait_end(cfs_rq, se);
 633}
 634
 635/*
 636 * We are picking a new current task - update its stats:
 637 */
 638static inline void
 639update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
 640{
 641	/*
 642	 * We are starting a new run period:
 643	 */
 644	se->exec_start = rq_of(cfs_rq)->clock_task;
 645}
 646
 647/**************************************************
 648 * Scheduling class queueing methods:
 649 */
 650
 651#if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
 652static void
 653add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
 654{
 655	cfs_rq->task_weight += weight;
 656}
 657#else
 658static inline void
 659add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
 660{
 661}
 662#endif
 663
 664static void
 665account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
 666{
 667	update_load_add(&cfs_rq->load, se->load.weight);
 668	if (!parent_entity(se))
 669		inc_cpu_load(rq_of(cfs_rq), se->load.weight);
 670	if (entity_is_task(se)) {
 671		add_cfs_task_weight(cfs_rq, se->load.weight);
 672		list_add(&se->group_node, &cfs_rq->tasks);
 673	}
 674	cfs_rq->nr_running++;
 675}
 676
 677static void
 678account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
 679{
 680	update_load_sub(&cfs_rq->load, se->load.weight);
 681	if (!parent_entity(se))
 682		dec_cpu_load(rq_of(cfs_rq), se->load.weight);
 683	if (entity_is_task(se)) {
 684		add_cfs_task_weight(cfs_rq, -se->load.weight);
 685		list_del_init(&se->group_node);
 686	}
 687	cfs_rq->nr_running--;
 688}
 689
 690#ifdef CONFIG_FAIR_GROUP_SCHED
 691# ifdef CONFIG_SMP
 692static void update_cfs_rq_load_contribution(struct cfs_rq *cfs_rq,
 693					    int global_update)
 694{
 695	struct task_group *tg = cfs_rq->tg;
 696	long load_avg;
 697
 698	load_avg = div64_u64(cfs_rq->load_avg, cfs_rq->load_period+1);
 699	load_avg -= cfs_rq->load_contribution;
 700
 701	if (global_update || abs(load_avg) > cfs_rq->load_contribution / 8) {
 702		atomic_add(load_avg, &tg->load_weight);
 703		cfs_rq->load_contribution += load_avg;
 704	}
 705}
 706
 707static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
 708{
 709	u64 period = sysctl_sched_shares_window;
 710	u64 now, delta;
 711	unsigned long load = cfs_rq->load.weight;
 712
 713	if (cfs_rq->tg == &root_task_group)
 714		return;
 715
 716	now = rq_of(cfs_rq)->clock_task;
 717	delta = now - cfs_rq->load_stamp;
 718
 719	/* truncate load history at 4 idle periods */
 720	if (cfs_rq->load_stamp > cfs_rq->load_last &&
 721	    now - cfs_rq->load_last > 4 * period) {
 722		cfs_rq->load_period = 0;
 723		cfs_rq->load_avg = 0;
 724		delta = period - 1;
 725	}
 726
 727	cfs_rq->load_stamp = now;
 728	cfs_rq->load_unacc_exec_time = 0;
 729	cfs_rq->load_period += delta;
 730	if (load) {
 731		cfs_rq->load_last = now;
 732		cfs_rq->load_avg += delta * load;
 733	}
 734
 735	/* consider updating load contribution on each fold or truncate */
 736	if (global_update || cfs_rq->load_period > period
 737	    || !cfs_rq->load_period)
 738		update_cfs_rq_load_contribution(cfs_rq, global_update);
 739
 740	while (cfs_rq->load_period > period) {
 741		/*
 742		 * Inline assembly required to prevent the compiler
 743		 * optimising this loop into a divmod call.
 744		 * See __iter_div_u64_rem() for another example of this.
 745		 */
 746		asm("" : "+rm" (cfs_rq->load_period));
 747		cfs_rq->load_period /= 2;
 748		cfs_rq->load_avg /= 2;
 749	}
 750
 751	if (!cfs_rq->curr && !cfs_rq->nr_running && !cfs_rq->load_avg)
 752		list_del_leaf_cfs_rq(cfs_rq);
 753}
 754
 755static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
 756{
 757	long load_weight, load, shares;
 758
 759	load = cfs_rq->load.weight;
 760
 761	load_weight = atomic_read(&tg->load_weight);
 762	load_weight += load;
 763	load_weight -= cfs_rq->load_contribution;
 764
 765	shares = (tg->shares * load);
 766	if (load_weight)
 767		shares /= load_weight;
 768
 769	if (shares < MIN_SHARES)
 770		shares = MIN_SHARES;
 771	if (shares > tg->shares)
 772		shares = tg->shares;
 773
 774	return shares;
 775}
 776
 777static void update_entity_shares_tick(struct cfs_rq *cfs_rq)
 778{
 779	if (cfs_rq->load_unacc_exec_time > sysctl_sched_shares_window) {
 780		update_cfs_load(cfs_rq, 0);
 781		update_cfs_shares(cfs_rq);
 782	}
 783}
 784# else /* CONFIG_SMP */
 785static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
 786{
 787}
 788
 789static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
 790{
 791	return tg->shares;
 792}
 793
 794static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
 795{
 796}
 797# endif /* CONFIG_SMP */
 798static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
 799			    unsigned long weight)
 800{
 801	if (se->on_rq) {
 802		/* commit outstanding execution time */
 803		if (cfs_rq->curr == se)
 804			update_curr(cfs_rq);
 805		account_entity_dequeue(cfs_rq, se);
 806	}
 807
 808	update_load_set(&se->load, weight);
 809
 810	if (se->on_rq)
 811		account_entity_enqueue(cfs_rq, se);
 812}
 813
 814static void update_cfs_shares(struct cfs_rq *cfs_rq)
 815{
 816	struct task_group *tg;
 817	struct sched_entity *se;
 818	long shares;
 819
 820	tg = cfs_rq->tg;
 821	se = tg->se[cpu_of(rq_of(cfs_rq))];
 822	if (!se)
 823		return;
 824#ifndef CONFIG_SMP
 825	if (likely(se->load.weight == tg->shares))
 826		return;
 827#endif
 828	shares = calc_cfs_shares(cfs_rq, tg);
 829
 830	reweight_entity(cfs_rq_of(se), se, shares);
 831}
 832#else /* CONFIG_FAIR_GROUP_SCHED */
 833static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
 834{
 835}
 836
 837static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
 838{
 839}
 840
 841static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
 842{
 843}
 844#endif /* CONFIG_FAIR_GROUP_SCHED */
 845
 846static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
 847{
 848#ifdef CONFIG_SCHEDSTATS
 849	struct task_struct *tsk = NULL;
 850
 851	if (entity_is_task(se))
 852		tsk = task_of(se);
 853
 854	if (se->statistics.sleep_start) {
 855		u64 delta = rq_of(cfs_rq)->clock - se->statistics.sleep_start;
 856
 857		if ((s64)delta < 0)
 858			delta = 0;
 859
 860		if (unlikely(delta > se->statistics.sleep_max))
 861			se->statistics.sleep_max = delta;
 862
 863		se->statistics.sleep_start = 0;
 864		se->statistics.sum_sleep_runtime += delta;
 865
 866		if (tsk) {
 867			account_scheduler_latency(tsk, delta >> 10, 1);
 868			trace_sched_stat_sleep(tsk, delta);
 869		}
 870	}
 871	if (se->statistics.block_start) {
 872		u64 delta = rq_of(cfs_rq)->clock - se->statistics.block_start;
 873
 874		if ((s64)delta < 0)
 875			delta = 0;
 876
 877		if (unlikely(delta > se->statistics.block_max))
 878			se->statistics.block_max = delta;
 879
 880		se->statistics.block_start = 0;
 881		se->statistics.sum_sleep_runtime += delta;
 882
 883		if (tsk) {
 884			if (tsk->in_iowait) {
 885				se->statistics.iowait_sum += delta;
 886				se->statistics.iowait_count++;
 887				trace_sched_stat_iowait(tsk, delta);
 888			}
 889
 890			/*
 891			 * Blocking time is in units of nanosecs, so shift by
 892			 * 20 to get a milliseconds-range estimation of the
 893			 * amount of time that the task spent sleeping:
 894			 */
 895			if (unlikely(prof_on == SLEEP_PROFILING)) {
 896				profile_hits(SLEEP_PROFILING,
 897						(void *)get_wchan(tsk),
 898						delta >> 20);
 899			}
 900			account_scheduler_latency(tsk, delta >> 10, 0);
 901		}
 902	}
 903#endif
 904}
 905
 906static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
 907{
 908#ifdef CONFIG_SCHED_DEBUG
 909	s64 d = se->vruntime - cfs_rq->min_vruntime;
 910
 911	if (d < 0)
 912		d = -d;
 913
 914	if (d > 3*sysctl_sched_latency)
 915		schedstat_inc(cfs_rq, nr_spread_over);
 916#endif
 917}
 918
 919static void
 920place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
 921{
 922	u64 vruntime = cfs_rq->min_vruntime;
 923
 924	/*
 925	 * The 'current' period is already promised to the current tasks,
 926	 * however the extra weight of the new task will slow them down a
 927	 * little, place the new task so that it fits in the slot that
 928	 * stays open at the end.
 929	 */
 930	if (initial && sched_feat(START_DEBIT))
 931		vruntime += sched_vslice(cfs_rq, se);
 932
 933	/* sleeps up to a single latency don't count. */
 934	if (!initial) {
 935		unsigned long thresh = sysctl_sched_latency;
 936
 937		/*
 938		 * Halve their sleep time's effect, to allow
 939		 * for a gentler effect of sleepers:
 940		 */
 941		if (sched_feat(GENTLE_FAIR_SLEEPERS))
 942			thresh >>= 1;
 943
 944		vruntime -= thresh;
 945	}
 946
 947	/* ensure we never gain time by being placed backwards. */
 948	vruntime = max_vruntime(se->vruntime, vruntime);
 949
 950	se->vruntime = vruntime;
 951}
 952
 953static void
 954enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
 955{
 956	/*
 957	 * Update the normalized vruntime before updating min_vruntime
 958	 * through callig update_curr().
 959	 */
 960	if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
 961		se->vruntime += cfs_rq->min_vruntime;
 962
 963	/*
 964	 * Update run-time statistics of the 'current'.
 965	 */
 966	update_curr(cfs_rq);
 967	update_cfs_load(cfs_rq, 0);
 968	account_entity_enqueue(cfs_rq, se);
 969	update_cfs_shares(cfs_rq);
 970
 971	if (flags & ENQUEUE_WAKEUP) {
 972		place_entity(cfs_rq, se, 0);
 973		enqueue_sleeper(cfs_rq, se);
 974	}
 975
 976	update_stats_enqueue(cfs_rq, se);
 977	check_spread(cfs_rq, se);
 978	if (se != cfs_rq->curr)
 979		__enqueue_entity(cfs_rq, se);
 980	se->on_rq = 1;
 981
 982	if (cfs_rq->nr_running == 1)
 983		list_add_leaf_cfs_rq(cfs_rq);
 984}
 985
 986static void __clear_buddies_last(struct sched_entity *se)
 987{
 988	for_each_sched_entity(se) {
 989		struct cfs_rq *cfs_rq = cfs_rq_of(se);
 990		if (cfs_rq->last == se)
 991			cfs_rq->last = NULL;
 992		else
 993			break;
 994	}
 995}
 996
 997static void __clear_buddies_next(struct sched_entity *se)
 998{
 999	for_each_sched_entity(se) {
1000		struct cfs_rq *cfs_rq = cfs_rq_of(se);
1001		if (cfs_rq->next == se)
1002			cfs_rq->next = NULL;
1003		else
1004			break;
1005	}
1006}
1007
1008static void __clear_buddies_skip(struct sched_entity *se)
1009{
1010	for_each_sched_entity(se) {
1011		struct cfs_rq *cfs_rq = cfs_rq_of(se);
1012		if (cfs_rq->skip == se)
1013			cfs_rq->skip = NULL;
1014		else
1015			break;
1016	}
1017}
1018
1019static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
1020{
1021	if (cfs_rq->last == se)
1022		__clear_buddies_last(se);
1023
1024	if (cfs_rq->next == se)
1025		__clear_buddies_next(se);
1026
1027	if (cfs_rq->skip == se)
1028		__clear_buddies_skip(se);
1029}
1030
1031static void
1032dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1033{
1034	/*
1035	 * Update run-time statistics of the 'current'.
1036	 */
1037	update_curr(cfs_rq);
1038
1039	update_stats_dequeue(cfs_rq, se);
1040	if (flags & DEQUEUE_SLEEP) {
1041#ifdef CONFIG_SCHEDSTATS
1042		if (entity_is_task(se)) {
1043			struct task_struct *tsk = task_of(se);
1044
1045			if (tsk->state & TASK_INTERRUPTIBLE)
1046				se->statistics.sleep_start = rq_of(cfs_rq)->clock;
1047			if (tsk->state & TASK_UNINTERRUPTIBLE)
1048				se->statistics.block_start = rq_of(cfs_rq)->clock;
1049		}
1050#endif
1051	}
1052
1053	clear_buddies(cfs_rq, se);
1054
1055	if (se != cfs_rq->curr)
1056		__dequeue_entity(cfs_rq, se);
1057	se->on_rq = 0;
1058	update_cfs_load(cfs_rq, 0);
1059	account_entity_dequeue(cfs_rq, se);
1060
1061	/*
1062	 * Normalize the entity after updating the min_vruntime because the
1063	 * update can refer to the ->curr item and we need to reflect this
1064	 * movement in our normalized position.
1065	 */
1066	if (!(flags & DEQUEUE_SLEEP))
1067		se->vruntime -= cfs_rq->min_vruntime;
1068
1069	update_min_vruntime(cfs_rq);
1070	update_cfs_shares(cfs_rq);
1071}
1072
1073/*
1074 * Preempt the current task with a newly woken task if needed:
1075 */
1076static void
1077check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
1078{
1079	unsigned long ideal_runtime, delta_exec;
1080
1081	ideal_runtime = sched_slice(cfs_rq, curr);
1082	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
1083	if (delta_exec > ideal_runtime) {
1084		resched_task(rq_of(cfs_rq)->curr);
1085		/*
1086		 * The current task ran long enough, ensure it doesn't get
1087		 * re-elected due to buddy favours.
1088		 */
1089		clear_buddies(cfs_rq, curr);
1090		return;
1091	}
1092
1093	/*
1094	 * Ensure that a task that missed wakeup preemption by a
1095	 * narrow margin doesn't have to wait for a full slice.
1096	 * This also mitigates buddy induced latencies under load.
1097	 */
1098	if (!sched_feat(WAKEUP_PREEMPT))
1099		return;
1100
1101	if (delta_exec < sysctl_sched_min_granularity)
1102		return;
1103
1104	if (cfs_rq->nr_running > 1) {
1105		struct sched_entity *se = __pick_first_entity(cfs_rq);
1106		s64 delta = curr->vruntime - se->vruntime;
1107
1108		if (delta < 0)
1109			return;
1110
1111		if (delta > ideal_runtime)
1112			resched_task(rq_of(cfs_rq)->curr);
1113	}
1114}
1115
1116static void
1117set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
1118{
1119	/* 'current' is not kept within the tree. */
1120	if (se->on_rq) {
1121		/*
1122		 * Any task has to be enqueued before it get to execute on
1123		 * a CPU. So account for the time it spent waiting on the
1124		 * runqueue.
1125		 */
1126		update_stats_wait_end(cfs_rq, se);
1127		__dequeue_entity(cfs_rq, se);
1128	}
1129
1130	update_stats_curr_start(cfs_rq, se);
1131	cfs_rq->curr = se;
1132#ifdef CONFIG_SCHEDSTATS
1133	/*
1134	 * Track our maximum slice length, if the CPU's load is at
1135	 * least twice that of our own weight (i.e. dont track it
1136	 * when there are only lesser-weight tasks around):
1137	 */
1138	if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
1139		se->statistics.slice_max = max(se->statistics.slice_max,
1140			se->sum_exec_runtime - se->prev_sum_exec_runtime);
1141	}
1142#endif
1143	se->prev_sum_exec_runtime = se->sum_exec_runtime;
1144}
1145
1146static int
1147wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
1148
1149/*
1150 * Pick the next process, keeping these things in mind, in this order:
1151 * 1) keep things fair between processes/task groups
1152 * 2) pick the "next" process, since someone really wants that to run
1153 * 3) pick the "last" process, for cache locality
1154 * 4) do not run the "skip" process, if something else is available
1155 */
1156static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
1157{
1158	struct sched_entity *se = __pick_first_entity(cfs_rq);
1159	struct sched_entity *left = se;
1160
1161	/*
1162	 * Avoid running the skip buddy, if running something else can
1163	 * be done without getting too unfair.
1164	 */
1165	if (cfs_rq->skip == se) {
1166		struct sched_entity *second = __pick_next_entity(se);
1167		if (second && wakeup_preempt_entity(second, left) < 1)
1168			se = second;
1169	}
1170
1171	/*
1172	 * Prefer last buddy, try to return the CPU to a preempted task.
1173	 */
1174	if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
1175		se = cfs_rq->last;
1176
1177	/*
1178	 * Someone really wants this to run. If it's not unfair, run it.
1179	 */
1180	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
1181		se = cfs_rq->next;
1182
1183	clear_buddies(cfs_rq, se);
1184
1185	return se;
1186}
1187
1188static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
1189{
1190	/*
1191	 * If still on the runqueue then deactivate_task()
1192	 * was not called and update_curr() has to be done:
1193	 */
1194	if (prev->on_rq)
1195		update_curr(cfs_rq);
1196
1197	check_spread(cfs_rq, prev);
1198	if (prev->on_rq) {
1199		update_stats_wait_start(cfs_rq, prev);
1200		/* Put 'current' back into the tree. */
1201		__enqueue_entity(cfs_rq, prev);
1202	}
1203	cfs_rq->curr = NULL;
1204}
1205
1206static void
1207entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
1208{
1209	/*
1210	 * Update run-time statistics of the 'current'.
1211	 */
1212	update_curr(cfs_rq);
1213
1214	/*
1215	 * Update share accounting for long-running entities.
1216	 */
1217	update_entity_shares_tick(cfs_rq);
1218
1219#ifdef CONFIG_SCHED_HRTICK
1220	/*
1221	 * queued ticks are scheduled to match the slice, so don't bother
1222	 * validating it and just reschedule.
1223	 */
1224	if (queued) {
1225		resched_task(rq_of(cfs_rq)->curr);
1226		return;
1227	}
1228	/*
1229	 * don't let the period tick interfere with the hrtick preemption
1230	 */
1231	if (!sched_feat(DOUBLE_TICK) &&
1232			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
1233		return;
1234#endif
1235
1236	if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
1237		check_preempt_tick(cfs_rq, curr);
1238}
1239
1240/**************************************************
1241 * CFS operations on tasks:
1242 */
1243
1244#ifdef CONFIG_SCHED_HRTICK
1245static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
1246{
1247	struct sched_entity *se = &p->se;
1248	struct cfs_rq *cfs_rq = cfs_rq_of(se);
1249
1250	WARN_ON(task_rq(p) != rq);
1251
1252	if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
1253		u64 slice = sched_slice(cfs_rq, se);
1254		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
1255		s64 delta = slice - ran;
1256
1257		if (delta < 0) {
1258			if (rq->curr == p)
1259				resched_task(p);
1260			return;
1261		}
1262
1263		/*
1264		 * Don't schedule slices shorter than 10000ns, that just
1265		 * doesn't make sense. Rely on vruntime for fairness.
1266		 */
1267		if (rq->curr != p)
1268			delta = max_t(s64, 10000LL, delta);
1269
1270		hrtick_start(rq, delta);
1271	}
1272}
1273
1274/*
1275 * called from enqueue/dequeue and updates the hrtick when the
1276 * current task is from our class and nr_running is low enough
1277 * to matter.
1278 */
1279static void hrtick_update(struct rq *rq)
1280{
1281	struct task_struct *curr = rq->curr;
1282
1283	if (curr->sched_class != &fair_sched_class)
1284		return;
1285
1286	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
1287		hrtick_start_fair(rq, curr);
1288}
1289#else /* !CONFIG_SCHED_HRTICK */
1290static inline void
1291hrtick_start_fair(struct rq *rq, struct task_struct *p)
1292{
1293}
1294
1295static inline void hrtick_update(struct rq *rq)
1296{
1297}
1298#endif
1299
1300/*
1301 * The enqueue_task method is called before nr_running is
1302 * increased. Here we update the fair scheduling stats and
1303 * then put the task into the rbtree:
1304 */
1305static void
1306enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
1307{
1308	struct cfs_rq *cfs_rq;
1309	struct sched_entity *se = &p->se;
1310
1311	for_each_sched_entity(se) {
1312		if (se->on_rq)
1313			break;
1314		cfs_rq = cfs_rq_of(se);
1315		enqueue_entity(cfs_rq, se, flags);
1316		flags = ENQUEUE_WAKEUP;
1317	}
1318
1319	for_each_sched_entity(se) {
1320		cfs_rq = cfs_rq_of(se);
1321
1322		update_cfs_load(cfs_rq, 0);
1323		update_cfs_shares(cfs_rq);
1324	}
1325
1326	hrtick_update(rq);
1327}
1328
1329static void set_next_buddy(struct sched_entity *se);
1330
1331/*
1332 * The dequeue_task method is called before nr_running is
1333 * decreased. We remove the task from the rbtree and
1334 * update the fair scheduling stats:
1335 */
1336static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
1337{
1338	struct cfs_rq *cfs_rq;
1339	struct sched_entity *se = &p->se;
1340	int task_sleep = flags & DEQUEUE_SLEEP;
1341
1342	for_each_sched_entity(se) {
1343		cfs_rq = cfs_rq_of(se);
1344		dequeue_entity(cfs_rq, se, flags);
1345
1346		/* Don't dequeue parent if it has other entities besides us */
1347		if (cfs_rq->load.weight) {
1348			/*
1349			 * Bias pick_next to pick a task from this cfs_rq, as
1350			 * p is sleeping when it is within its sched_slice.
1351			 */
1352			if (task_sleep && parent_entity(se))
1353				set_next_buddy(parent_entity(se));
1354
1355			/* avoid re-evaluating load for this entity */
1356			se = parent_entity(se);
1357			break;
1358		}
1359		flags |= DEQUEUE_SLEEP;
1360	}
1361
1362	for_each_sched_entity(se) {
1363		cfs_rq = cfs_rq_of(se);
1364
1365		update_cfs_load(cfs_rq, 0);
1366		update_cfs_shares(cfs_rq);
1367	}
1368
1369	hrtick_update(rq);
1370}
1371
1372#ifdef CONFIG_SMP
1373
1374static void task_waking_fair(struct task_struct *p)
1375{
1376	struct sched_entity *se = &p->se;
1377	struct cfs_rq *cfs_rq = cfs_rq_of(se);
1378	u64 min_vruntime;
1379
1380#ifndef CONFIG_64BIT
1381	u64 min_vruntime_copy;
1382
1383	do {
1384		min_vruntime_copy = cfs_rq->min_vruntime_copy;
1385		smp_rmb();
1386		min_vruntime = cfs_rq->min_vruntime;
1387	} while (min_vruntime != min_vruntime_copy);
1388#else
1389	min_vruntime = cfs_rq->min_vruntime;
1390#endif
1391
1392	se->vruntime -= min_vruntime;
1393}
1394
1395#ifdef CONFIG_FAIR_GROUP_SCHED
1396/*
1397 * effective_load() calculates the load change as seen from the root_task_group
1398 *
1399 * Adding load to a group doesn't make a group heavier, but can cause movement
1400 * of group shares between cpus. Assuming the shares were perfectly aligned one
1401 * can calculate the shift in shares.
1402 */
1403static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
1404{
1405	struct sched_entity *se = tg->se[cpu];
1406
1407	if (!tg->parent)
1408		return wl;
1409
1410	for_each_sched_entity(se) {
1411		long lw, w;
1412
1413		tg = se->my_q->tg;
1414		w = se->my_q->load.weight;
1415
1416		/* use this cpu's instantaneous contribution */
1417		lw = atomic_read(&tg->load_weight);
1418		lw -= se->my_q->load_contribution;
1419		lw += w + wg;
1420
1421		wl += w;
1422
1423		if (lw > 0 && wl < lw)
1424			wl = (wl * tg->shares) / lw;
1425		else
1426			wl = tg->shares;
1427
1428		/* zero point is MIN_SHARES */
1429		if (wl < MIN_SHARES)
1430			wl = MIN_SHARES;
1431		wl -= se->load.weight;
1432		wg = 0;
1433	}
1434
1435	return wl;
1436}
1437
1438#else
1439
1440static inline unsigned long effective_load(struct task_group *tg, int cpu,
1441		unsigned long wl, unsigned long wg)
1442{
1443	return wl;
1444}
1445
1446#endif
1447
1448static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
1449{
1450	s64 this_load, load;
1451	int idx, this_cpu, prev_cpu;
1452	unsigned long tl_per_task;
1453	struct task_group *tg;
1454	unsigned long weight;
1455	int balanced;
1456
1457	idx	  = sd->wake_idx;
1458	this_cpu  = smp_processor_id();
1459	prev_cpu  = task_cpu(p);
1460	load	  = source_load(prev_cpu, idx);
1461	this_load = target_load(this_cpu, idx);
1462
1463	/*
1464	 * If sync wakeup then subtract the (maximum possible)
1465	 * effect of the currently running task from the load
1466	 * of the current CPU:
1467	 */
1468	if (sync) {
1469		tg = task_group(current);
1470		weight = current->se.load.weight;
1471
1472		this_load += effective_load(tg, this_cpu, -weight, -weight);
1473		load += effective_load(tg, prev_cpu, 0, -weight);
1474	}
1475
1476	tg = task_group(p);
1477	weight = p->se.load.weight;
1478
1479	/*
1480	 * In low-load situations, where prev_cpu is idle and this_cpu is idle
1481	 * due to the sync cause above having dropped this_load to 0, we'll
1482	 * always have an imbalance, but there's really nothing you can do
1483	 * about that, so that's good too.
1484	 *
1485	 * Otherwise check if either cpus are near enough in load to allow this
1486	 * task to be woken on this_cpu.
1487	 */
1488	if (this_load > 0) {
1489		s64 this_eff_load, prev_eff_load;
1490
1491		this_eff_load = 100;
1492		this_eff_load *= power_of(prev_cpu);
1493		this_eff_load *= this_load +
1494			effective_load(tg, this_cpu, weight, weight);
1495
1496		prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
1497		prev_eff_load *= power_of(this_cpu);
1498		prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
1499
1500		balanced = this_eff_load <= prev_eff_load;
1501	} else
1502		balanced = true;
1503
1504	/*
1505	 * If the currently running task will sleep within
1506	 * a reasonable amount of time then attract this newly
1507	 * woken task:
1508	 */
1509	if (sync && balanced)
1510		return 1;
1511
1512	schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
1513	tl_per_task = cpu_avg_load_per_task(this_cpu);
1514
1515	if (balanced ||
1516	    (this_load <= load &&
1517	     this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
1518		/*
1519		 * This domain has SD_WAKE_AFFINE and
1520		 * p is cache cold in this domain, and
1521		 * there is no bad imbalance.
1522		 */
1523		schedstat_inc(sd, ttwu_move_affine);
1524		schedstat_inc(p, se.statistics.nr_wakeups_affine);
1525
1526		return 1;
1527	}
1528	return 0;
1529}
1530
1531/*
1532 * find_idlest_group finds and returns the least busy CPU group within the
1533 * domain.
1534 */
1535static struct sched_group *
1536find_idlest_group(struct sched_domain *sd, struct task_struct *p,
1537		  int this_cpu, int load_idx)
1538{
1539	struct sched_group *idlest = NULL, *group = sd->groups;
1540	unsigned long min_load = ULONG_MAX, this_load = 0;
1541	int imbalance = 100 + (sd->imbalance_pct-100)/2;
1542
1543	do {
1544		unsigned long load, avg_load;
1545		int local_group;
1546		int i;
1547
1548		/* Skip over this group if it has no CPUs allowed */
1549		if (!cpumask_intersects(sched_group_cpus(group),
1550					&p->cpus_allowed))
1551			continue;
1552
1553		local_group = cpumask_test_cpu(this_cpu,
1554					       sched_group_cpus(group));
1555
1556		/* Tally up the load of all CPUs in the group */
1557		avg_load = 0;
1558
1559		for_each_cpu(i, sched_group_cpus(group)) {
1560			/* Bias balancing toward cpus of our domain */
1561			if (local_group)
1562				load = source_load(i, load_idx);
1563			else
1564				load = target_load(i, load_idx);
1565
1566			avg_load += load;
1567		}
1568
1569		/* Adjust by relative CPU power of the group */
1570		avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
1571
1572		if (local_group) {
1573			this_load = avg_load;
1574		} else if (avg_load < min_load) {
1575			min_load = avg_load;
1576			idlest = group;
1577		}
1578	} while (group = group->next, group != sd->groups);
1579
1580	if (!idlest || 100*this_load < imbalance*min_load)
1581		return NULL;
1582	return idlest;
1583}
1584
1585/*
1586 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1587 */
1588static int
1589find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1590{
1591	unsigned long load, min_load = ULONG_MAX;
1592	int idlest = -1;
1593	int i;
1594
1595	/* Traverse only the allowed CPUs */
1596	for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
1597		load = weighted_cpuload(i);
1598
1599		if (load < min_load || (load == min_load && i == this_cpu)) {
1600			min_load = load;
1601			idlest = i;
1602		}
1603	}
1604
1605	return idlest;
1606}
1607
1608/*
1609 * Try and locate an idle CPU in the sched_domain.
1610 */
1611static int select_idle_sibling(struct task_struct *p, int target)
1612{
1613	int cpu = smp_processor_id();
1614	int prev_cpu = task_cpu(p);
1615	struct sched_domain *sd;
1616	int i;
1617
1618	/*
1619	 * If the task is going to be woken-up on this cpu and if it is
1620	 * already idle, then it is the right target.
1621	 */
1622	if (target == cpu && idle_cpu(cpu))
1623		return cpu;
1624
1625	/*
1626	 * If the task is going to be woken-up on the cpu where it previously
1627	 * ran and if it is currently idle, then it the right target.
1628	 */
1629	if (target == prev_cpu && idle_cpu(prev_cpu))
1630		return prev_cpu;
1631
1632	/*
1633	 * Otherwise, iterate the domains and find an elegible idle cpu.
1634	 */
1635	rcu_read_lock();
1636	for_each_domain(target, sd) {
1637		if (!(sd->flags & SD_SHARE_PKG_RESOURCES))
1638			break;
1639
1640		for_each_cpu_and(i, sched_domain_span(sd), &p->cpus_allowed) {
1641			if (idle_cpu(i)) {
1642				target = i;
1643				break;
1644			}
1645		}
1646
1647		/*
1648		 * Lets stop looking for an idle sibling when we reached
1649		 * the domain that spans the current cpu and prev_cpu.
1650		 */
1651		if (cpumask_test_cpu(cpu, sched_domain_span(sd)) &&
1652		    cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
1653			break;
1654	}
1655	rcu_read_unlock();
1656
1657	return target;
1658}
1659
1660/*
1661 * sched_balance_self: balance the current task (running on cpu) in domains
1662 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1663 * SD_BALANCE_EXEC.
1664 *
1665 * Balance, ie. select the least loaded group.
1666 *
1667 * Returns the target CPU number, or the same CPU if no balancing is needed.
1668 *
1669 * preempt must be disabled.
1670 */
1671static int
1672select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags)
1673{
1674	struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
1675	int cpu = smp_processor_id();
1676	int prev_cpu = task_cpu(p);
1677	int new_cpu = cpu;
1678	int want_affine = 0;
1679	int want_sd = 1;
1680	int sync = wake_flags & WF_SYNC;
1681
1682	if (sd_flag & SD_BALANCE_WAKE) {
1683		if (cpumask_test_cpu(cpu, &p->cpus_allowed))
1684			want_affine = 1;
1685		new_cpu = prev_cpu;
1686	}
1687
1688	rcu_read_lock();
1689	for_each_domain(cpu, tmp) {
1690		if (!(tmp->flags & SD_LOAD_BALANCE))
1691			continue;
1692
1693		/*
1694		 * If power savings logic is enabled for a domain, see if we
1695		 * are not overloaded, if so, don't balance wider.
1696		 */
1697		if (tmp->flags & (SD_POWERSAVINGS_BALANCE|SD_PREFER_LOCAL)) {
1698			unsigned long power = 0;
1699			unsigned long nr_running = 0;
1700			unsigned long capacity;
1701			int i;
1702
1703			for_each_cpu(i, sched_domain_span(tmp)) {
1704				power += power_of(i);
1705				nr_running += cpu_rq(i)->cfs.nr_running;
1706			}
1707
1708			capacity = DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE);
1709
1710			if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1711				nr_running /= 2;
1712
1713			if (nr_running < capacity)
1714				want_sd = 0;
1715		}
1716
1717		/*
1718		 * If both cpu and prev_cpu are part of this domain,
1719		 * cpu is a valid SD_WAKE_AFFINE target.
1720		 */
1721		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
1722		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
1723			affine_sd = tmp;
1724			want_affine = 0;
1725		}
1726
1727		if (!want_sd && !want_affine)
1728			break;
1729
1730		if (!(tmp->flags & sd_flag))
1731			continue;
1732
1733		if (want_sd)
1734			sd = tmp;
1735	}
1736
1737	if (affine_sd) {
1738		if (cpu == prev_cpu || wake_affine(affine_sd, p, sync))
1739			prev_cpu = cpu;
1740
1741		new_cpu = select_idle_sibling(p, prev_cpu);
1742		goto unlock;
1743	}
1744
1745	while (sd) {
1746		int load_idx = sd->forkexec_idx;
1747		struct sched_group *group;
1748		int weight;
1749
1750		if (!(sd->flags & sd_flag)) {
1751			sd = sd->child;
1752			continue;
1753		}
1754
1755		if (sd_flag & SD_BALANCE_WAKE)
1756			load_idx = sd->wake_idx;
1757
1758		group = find_idlest_group(sd, p, cpu, load_idx);
1759		if (!group) {
1760			sd = sd->child;
1761			continue;
1762		}
1763
1764		new_cpu = find_idlest_cpu(group, p, cpu);
1765		if (new_cpu == -1 || new_cpu == cpu) {
1766			/* Now try balancing at a lower domain level of cpu */
1767			sd = sd->child;
1768			continue;
1769		}
1770
1771		/* Now try balancing at a lower domain level of new_cpu */
1772		cpu = new_cpu;
1773		weight = sd->span_weight;
1774		sd = NULL;
1775		for_each_domain(cpu, tmp) {
1776			if (weight <= tmp->span_weight)
1777				break;
1778			if (tmp->flags & sd_flag)
1779				sd = tmp;
1780		}
1781		/* while loop will break here if sd == NULL */
1782	}
1783unlock:
1784	rcu_read_unlock();
1785
1786	return new_cpu;
1787}
1788#endif /* CONFIG_SMP */
1789
1790static unsigned long
1791wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
1792{
1793	unsigned long gran = sysctl_sched_wakeup_granularity;
1794
1795	/*
1796	 * Since its curr running now, convert the gran from real-time
1797	 * to virtual-time in his units.
1798	 *
1799	 * By using 'se' instead of 'curr' we penalize light tasks, so
1800	 * they get preempted easier. That is, if 'se' < 'curr' then
1801	 * the resulting gran will be larger, therefore penalizing the
1802	 * lighter, if otoh 'se' > 'curr' then the resulting gran will
1803	 * be smaller, again penalizing the lighter task.
1804	 *
1805	 * This is especially important for buddies when the leftmost
1806	 * task is higher priority than the buddy.
1807	 */
1808	return calc_delta_fair(gran, se);
1809}
1810
1811/*
1812 * Should 'se' preempt 'curr'.
1813 *
1814 *             |s1
1815 *        |s2
1816 *   |s3
1817 *         g
1818 *      |<--->|c
1819 *
1820 *  w(c, s1) = -1
1821 *  w(c, s2) =  0
1822 *  w(c, s3) =  1
1823 *
1824 */
1825static int
1826wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
1827{
1828	s64 gran, vdiff = curr->vruntime - se->vruntime;
1829
1830	if (vdiff <= 0)
1831		return -1;
1832
1833	gran = wakeup_gran(curr, se);
1834	if (vdiff > gran)
1835		return 1;
1836
1837	return 0;
1838}
1839
1840static void set_last_buddy(struct sched_entity *se)
1841{
1842	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
1843		return;
1844
1845	for_each_sched_entity(se)
1846		cfs_rq_of(se)->last = se;
1847}
1848
1849static void set_next_buddy(struct sched_entity *se)
1850{
1851	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
1852		return;
1853
1854	for_each_sched_entity(se)
1855		cfs_rq_of(se)->next = se;
1856}
1857
1858static void set_skip_buddy(struct sched_entity *se)
1859{
1860	for_each_sched_entity(se)
1861		cfs_rq_of(se)->skip = se;
1862}
1863
1864/*
1865 * Preempt the current task with a newly woken task if needed:
1866 */
1867static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1868{
1869	struct task_struct *curr = rq->curr;
1870	struct sched_entity *se = &curr->se, *pse = &p->se;
1871	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1872	int scale = cfs_rq->nr_running >= sched_nr_latency;
1873	int next_buddy_marked = 0;
1874
1875	if (unlikely(se == pse))
1876		return;
1877
1878	if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
1879		set_next_buddy(pse);
1880		next_buddy_marked = 1;
1881	}
1882
1883	/*
1884	 * We can come here with TIF_NEED_RESCHED already set from new task
1885	 * wake up path.
1886	 */
1887	if (test_tsk_need_resched(curr))
1888		return;
1889
1890	/* Idle tasks are by definition preempted by non-idle tasks. */
1891	if (unlikely(curr->policy == SCHED_IDLE) &&
1892	    likely(p->policy != SCHED_IDLE))
1893		goto preempt;
1894
1895	/*
1896	 * Batch and idle tasks do not preempt non-idle tasks (their preemption
1897	 * is driven by the tick):
1898	 */
1899	if (unlikely(p->policy != SCHED_NORMAL))
1900		return;
1901
1902
1903	if (!sched_feat(WAKEUP_PREEMPT))
1904		return;
1905
1906	find_matching_se(&se, &pse);
1907	update_curr(cfs_rq_of(se));
1908	BUG_ON(!pse);
1909	if (wakeup_preempt_entity(se, pse) == 1) {
1910		/*
1911		 * Bias pick_next to pick the sched entity that is
1912		 * triggering this preemption.
1913		 */
1914		if (!next_buddy_marked)
1915			set_next_buddy(pse);
1916		goto preempt;
1917	}
1918
1919	return;
1920
1921preempt:
1922	resched_task(curr);
1923	/*
1924	 * Only set the backward buddy when the current task is still
1925	 * on the rq. This can happen when a wakeup gets interleaved
1926	 * with schedule on the ->pre_schedule() or idle_balance()
1927	 * point, either of which can * drop the rq lock.
1928	 *
1929	 * Also, during early boot the idle thread is in the fair class,
1930	 * for obvious reasons its a bad idea to schedule back to it.
1931	 */
1932	if (unlikely(!se->on_rq || curr == rq->idle))
1933		return;
1934
1935	if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
1936		set_last_buddy(se);
1937}
1938
1939static struct task_struct *pick_next_task_fair(struct rq *rq)
1940{
1941	struct task_struct *p;
1942	struct cfs_rq *cfs_rq = &rq->cfs;
1943	struct sched_entity *se;
1944
1945	if (!cfs_rq->nr_running)
1946		return NULL;
1947
1948	do {
1949		se = pick_next_entity(cfs_rq);
1950		set_next_entity(cfs_rq, se);
1951		cfs_rq = group_cfs_rq(se);
1952	} while (cfs_rq);
1953
1954	p = task_of(se);
1955	hrtick_start_fair(rq, p);
1956
1957	return p;
1958}
1959
1960/*
1961 * Account for a descheduled task:
1962 */
1963static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
1964{
1965	struct sched_entity *se = &prev->se;
1966	struct cfs_rq *cfs_rq;
1967
1968	for_each_sched_entity(se) {
1969		cfs_rq = cfs_rq_of(se);
1970		put_prev_entity(cfs_rq, se);
1971	}
1972}
1973
1974/*
1975 * sched_yield() is very simple
1976 *
1977 * The magic of dealing with the ->skip buddy is in pick_next_entity.
1978 */
1979static void yield_task_fair(struct rq *rq)
1980{
1981	struct task_struct *curr = rq->curr;
1982	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1983	struct sched_entity *se = &curr->se;
1984
1985	/*
1986	 * Are we the only task in the tree?
1987	 */
1988	if (unlikely(rq->nr_running == 1))
1989		return;
1990
1991	clear_buddies(cfs_rq, se);
1992
1993	if (curr->policy != SCHED_BATCH) {
1994		update_rq_clock(rq);
1995		/*
1996		 * Update run-time statistics of the 'current'.
1997		 */
1998		update_curr(cfs_rq);
1999	}
2000
2001	set_skip_buddy(se);
2002}
2003
2004static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
2005{
2006	struct sched_entity *se = &p->se;
2007
2008	if (!se->on_rq)
2009		return false;
2010
2011	/* Tell the scheduler that we'd really like pse to run next. */
2012	set_next_buddy(se);
2013
2014	yield_task_fair(rq);
2015
2016	return true;
2017}
2018
2019#ifdef CONFIG_SMP
2020/**************************************************
2021 * Fair scheduling class load-balancing methods:
2022 */
2023
2024/*
2025 * pull_task - move a task from a remote runqueue to the local runqueue.
2026 * Both runqueues must be locked.
2027 */
2028static void pull_task(struct rq *src_rq, struct task_struct *p,
2029		      struct rq *this_rq, int this_cpu)
2030{
2031	deactivate_task(src_rq, p, 0);
2032	set_task_cpu(p, this_cpu);
2033	activate_task(this_rq, p, 0);
2034	check_preempt_curr(this_rq, p, 0);
2035}
2036
2037/*
2038 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2039 */
2040static
2041int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2042		     struct sched_domain *sd, enum cpu_idle_type idle,
2043		     int *all_pinned)
2044{
2045	int tsk_cache_hot = 0;
2046	/*
2047	 * We do not migrate tasks that are:
2048	 * 1) running (obviously), or
2049	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2050	 * 3) are cache-hot on their current CPU.
2051	 */
2052	if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
2053		schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
2054		return 0;
2055	}
2056	*all_pinned = 0;
2057
2058	if (task_running(rq, p)) {
2059		schedstat_inc(p, se.statistics.nr_failed_migrations_running);
2060		return 0;
2061	}
2062
2063	/*
2064	 * Aggressive migration if:
2065	 * 1) task is cache cold, or
2066	 * 2) too many balance attempts have failed.
2067	 */
2068
2069	tsk_cache_hot = task_hot(p, rq->clock_task, sd);
2070	if (!tsk_cache_hot ||
2071		sd->nr_balance_failed > sd->cache_nice_tries) {
2072#ifdef CONFIG_SCHEDSTATS
2073		if (tsk_cache_hot) {
2074			schedstat_inc(sd, lb_hot_gained[idle]);
2075			schedstat_inc(p, se.statistics.nr_forced_migrations);
2076		}
2077#endif
2078		return 1;
2079	}
2080
2081	if (tsk_cache_hot) {
2082		schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
2083		return 0;
2084	}
2085	return 1;
2086}
2087
2088/*
2089 * move_one_task tries to move exactly one task from busiest to this_rq, as
2090 * part of active balancing operations within "domain".
2091 * Returns 1 if successful and 0 otherwise.
2092 *
2093 * Called with both runqueues locked.
2094 */
2095static int
2096move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2097	      struct sched_domain *sd, enum cpu_idle_type idle)
2098{
2099	struct task_struct *p, *n;
2100	struct cfs_rq *cfs_rq;
2101	int pinned = 0;
2102
2103	for_each_leaf_cfs_rq(busiest, cfs_rq) {
2104		list_for_each_entry_safe(p, n, &cfs_rq->tasks, se.group_node) {
2105
2106			if (!can_migrate_task(p, busiest, this_cpu,
2107						sd, idle, &pinned))
2108				continue;
2109
2110			pull_task(busiest, p, this_rq, this_cpu);
2111			/*
2112			 * Right now, this is only the second place pull_task()
2113			 * is called, so we can safely collect pull_task()
2114			 * stats here rather than inside pull_task().
2115			 */
2116			schedstat_inc(sd, lb_gained[idle]);
2117			return 1;
2118		}
2119	}
2120
2121	return 0;
2122}
2123
2124static unsigned long
2125balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2126	      unsigned long max_load_move, struct sched_domain *sd,
2127	      enum cpu_idle_type idle, int *all_pinned,
2128	      struct cfs_rq *busiest_cfs_rq)
2129{
2130	int loops = 0, pulled = 0;
2131	long rem_load_move = max_load_move;
2132	struct task_struct *p, *n;
2133
2134	if (max_load_move == 0)
2135		goto out;
2136
2137	list_for_each_entry_safe(p, n, &busiest_cfs_rq->tasks, se.group_node) {
2138		if (loops++ > sysctl_sched_nr_migrate)
2139			break;
2140
2141		if ((p->se.load.weight >> 1) > rem_load_move ||
2142		    !can_migrate_task(p, busiest, this_cpu, sd, idle,
2143				      all_pinned))
2144			continue;
2145
2146		pull_task(busiest, p, this_rq, this_cpu);
2147		pulled++;
2148		rem_load_move -= p->se.load.weight;
2149
2150#ifdef CONFIG_PREEMPT
2151		/*
2152		 * NEWIDLE balancing is a source of latency, so preemptible
2153		 * kernels will stop after the first task is pulled to minimize
2154		 * the critical section.
2155		 */
2156		if (idle == CPU_NEWLY_IDLE)
2157			break;
2158#endif
2159
2160		/*
2161		 * We only want to steal up to the prescribed amount of
2162		 * weighted load.
2163		 */
2164		if (rem_load_move <= 0)
2165			break;
2166	}
2167out:
2168	/*
2169	 * Right now, this is one of only two places pull_task() is called,
2170	 * so we can safely collect pull_task() stats here rather than
2171	 * inside pull_task().
2172	 */
2173	schedstat_add(sd, lb_gained[idle], pulled);
2174
2175	return max_load_move - rem_load_move;
2176}
2177
2178#ifdef CONFIG_FAIR_GROUP_SCHED
2179/*
2180 * update tg->load_weight by folding this cpu's load_avg
2181 */
2182static int update_shares_cpu(struct task_group *tg, int cpu)
2183{
2184	struct cfs_rq *cfs_rq;
2185	unsigned long flags;
2186	struct rq *rq;
2187
2188	if (!tg->se[cpu])
2189		return 0;
2190
2191	rq = cpu_rq(cpu);
2192	cfs_rq = tg->cfs_rq[cpu];
2193
2194	raw_spin_lock_irqsave(&rq->lock, flags);
2195
2196	update_rq_clock(rq);
2197	update_cfs_load(cfs_rq, 1);
2198
2199	/*
2200	 * We need to update shares after updating tg->load_weight in
2201	 * order to adjust the weight of groups with long running tasks.
2202	 */
2203	update_cfs_shares(cfs_rq);
2204
2205	raw_spin_unlock_irqrestore(&rq->lock, flags);
2206
2207	return 0;
2208}
2209
2210static void update_shares(int cpu)
2211{
2212	struct cfs_rq *cfs_rq;
2213	struct rq *rq = cpu_rq(cpu);
2214
2215	rcu_read_lock();
2216	/*
2217	 * Iterates the task_group tree in a bottom up fashion, see
2218	 * list_add_leaf_cfs_rq() for details.
2219	 */
2220	for_each_leaf_cfs_rq(rq, cfs_rq)
2221		update_shares_cpu(cfs_rq->tg, cpu);
2222	rcu_read_unlock();
2223}
2224
2225/*
2226 * Compute the cpu's hierarchical load factor for each task group.
2227 * This needs to be done in a top-down fashion because the load of a child
2228 * group is a fraction of its parents load.
2229 */
2230static int tg_load_down(struct task_group *tg, void *data)
2231{
2232	unsigned long load;
2233	long cpu = (long)data;
2234
2235	if (!tg->parent) {
2236		load = cpu_rq(cpu)->load.weight;
2237	} else {
2238		load = tg->parent->cfs_rq[cpu]->h_load;
2239		load *= tg->se[cpu]->load.weight;
2240		load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
2241	}
2242
2243	tg->cfs_rq[cpu]->h_load = load;
2244
2245	return 0;
2246}
2247
2248static void update_h_load(long cpu)
2249{
2250	walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
2251}
2252
2253static unsigned long
2254load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
2255		  unsigned long max_load_move,
2256		  struct sched_domain *sd, enum cpu_idle_type idle,
2257		  int *all_pinned)
2258{
2259	long rem_load_move = max_load_move;
2260	struct cfs_rq *busiest_cfs_rq;
2261
2262	rcu_read_lock();
2263	update_h_load(cpu_of(busiest));
2264
2265	for_each_leaf_cfs_rq(busiest, busiest_cfs_rq) {
2266		unsigned long busiest_h_load = busiest_cfs_rq->h_load;
2267		unsigned long busiest_weight = busiest_cfs_rq->load.weight;
2268		u64 rem_load, moved_load;
2269
2270		/*
2271		 * empty group
2272		 */
2273		if (!busiest_cfs_rq->task_weight)
2274			continue;
2275
2276		rem_load = (u64)rem_load_move * busiest_weight;
2277		rem_load = div_u64(rem_load, busiest_h_load + 1);
2278
2279		moved_load = balance_tasks(this_rq, this_cpu, busiest,
2280				rem_load, sd, idle, all_pinned,
2281				busiest_cfs_rq);
2282
2283		if (!moved_load)
2284			continue;
2285
2286		moved_load *= busiest_h_load;
2287		moved_load = div_u64(moved_load, busiest_weight + 1);
2288
2289		rem_load_move -= moved_load;
2290		if (rem_load_move < 0)
2291			break;
2292	}
2293	rcu_read_unlock();
2294
2295	return max_load_move - rem_load_move;
2296}
2297#else
2298static inline void update_shares(int cpu)
2299{
2300}
2301
2302static unsigned long
2303load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
2304		  unsigned long max_load_move,
2305		  struct sched_domain *sd, enum cpu_idle_type idle,
2306		  int *all_pinned)
2307{
2308	return balance_tasks(this_rq, this_cpu, busiest,
2309			max_load_move, sd, idle, all_pinned,
2310			&busiest->cfs);
2311}
2312#endif
2313
2314/*
2315 * move_tasks tries to move up to max_load_move weighted load from busiest to
2316 * this_rq, as part of a balancing operation within domain "sd".
2317 * Returns 1 if successful and 0 otherwise.
2318 *
2319 * Called with both runqueues locked.
2320 */
2321static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2322		      unsigned long max_load_move,
2323		      struct sched_domain *sd, enum cpu_idle_type idle,
2324		      int *all_pinned)
2325{
2326	unsigned long total_load_moved = 0, load_moved;
2327
2328	do {
2329		load_moved = load_balance_fair(this_rq, this_cpu, busiest,
2330				max_load_move - total_load_moved,
2331				sd, idle, all_pinned);
2332
2333		total_load_moved += load_moved;
2334
2335#ifdef CONFIG_PREEMPT
2336		/*
2337		 * NEWIDLE balancing is a source of latency, so preemptible
2338		 * kernels will stop after the first task is pulled to minimize
2339		 * the critical section.
2340		 */
2341		if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
2342			break;
2343
2344		if (raw_spin_is_contended(&this_rq->lock) ||
2345				raw_spin_is_contended(&busiest->lock))
2346			break;
2347#endif
2348	} while (load_moved && max_load_move > total_load_moved);
2349
2350	return total_load_moved > 0;
2351}
2352
2353/********** Helpers for find_busiest_group ************************/
2354/*
2355 * sd_lb_stats - Structure to store the statistics of a sched_domain
2356 * 		during load balancing.
2357 */
2358struct sd_lb_stats {
2359	struct sched_group *busiest; /* Busiest group in this sd */
2360	struct sched_group *this;  /* Local group in this sd */
2361	unsigned long total_load;  /* Total load of all groups in sd */
2362	unsigned long total_pwr;   /*	Total power of all groups in sd */
2363	unsigned long avg_load;	   /* Average load across all groups in sd */
2364
2365	/** Statistics of this group */
2366	unsigned long this_load;
2367	unsigned long this_load_per_task;
2368	unsigned long this_nr_running;
2369	unsigned long this_has_capacity;
2370	unsigned int  this_idle_cpus;
2371
2372	/* Statistics of the busiest group */
2373	unsigned int  busiest_idle_cpus;
2374	unsigned long max_load;
2375	unsigned long busiest_load_per_task;
2376	unsigned long busiest_nr_running;
2377	unsigned long busiest_group_capacity;
2378	unsigned long busiest_has_capacity;
2379	unsigned int  busiest_group_weight;
2380
2381	int group_imb; /* Is there imbalance in this sd */
2382#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2383	int power_savings_balance; /* Is powersave balance needed for this sd */
2384	struct sched_group *group_min; /* Least loaded group in sd */
2385	struct sched_group *group_leader; /* Group which relieves group_min */
2386	unsigned long min_load_per_task; /* load_per_task in group_min */
2387	unsigned long leader_nr_running; /* Nr running of group_leader */
2388	unsigned long min_nr_running; /* Nr running of group_min */
2389#endif
2390};
2391
2392/*
2393 * sg_lb_stats - stats of a sched_group required for load_balancing
2394 */
2395struct sg_lb_stats {
2396	unsigned long avg_load; /*Avg load across the CPUs of the group */
2397	unsigned long group_load; /* Total load over the CPUs of the group */
2398	unsigned long sum_nr_running; /* Nr tasks running in the group */
2399	unsigned long sum_weighted_load; /* Weighted load of group's tasks */
2400	unsigned long group_capacity;
2401	unsigned long idle_cpus;
2402	unsigned long group_weight;
2403	int group_imb; /* Is there an imbalance in the group ? */
2404	int group_has_capacity; /* Is there extra capacity in the group? */
2405};
2406
2407/**
2408 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
2409 * @group: The group whose first cpu is to be returned.
2410 */
2411static inline unsigned int group_first_cpu(struct sched_group *group)
2412{
2413	return cpumask_first(sched_group_cpus(group));
2414}
2415
2416/**
2417 * get_sd_load_idx - Obtain the load index for a given sched domain.
2418 * @sd: The sched_domain whose load_idx is to be obtained.
2419 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
2420 */
2421static inline int get_sd_load_idx(struct sched_domain *sd,
2422					enum cpu_idle_type idle)
2423{
2424	int load_idx;
2425
2426	switch (idle) {
2427	case CPU_NOT_IDLE:
2428		load_idx = sd->busy_idx;
2429		break;
2430
2431	case CPU_NEWLY_IDLE:
2432		load_idx = sd->newidle_idx;
2433		break;
2434	default:
2435		load_idx = sd->idle_idx;
2436		break;
2437	}
2438
2439	return load_idx;
2440}
2441
2442
2443#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2444/**
2445 * init_sd_power_savings_stats - Initialize power savings statistics for
2446 * the given sched_domain, during load balancing.
2447 *
2448 * @sd: Sched domain whose power-savings statistics are to be initialized.
2449 * @sds: Variable containing the statistics for sd.
2450 * @idle: Idle status of the CPU at which we're performing load-balancing.
2451 */
2452static inline void init_sd_power_savings_stats(struct sched_domain *sd,
2453	struct sd_lb_stats *sds, enum cpu_idle_type idle)
2454{
2455	/*
2456	 * Busy processors will not participate in power savings
2457	 * balance.
2458	 */
2459	if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2460		sds->power_savings_balance = 0;
2461	else {
2462		sds->power_savings_balance = 1;
2463		sds->min_nr_running = ULONG_MAX;
2464		sds->leader_nr_running = 0;
2465	}
2466}
2467
2468/**
2469 * update_sd_power_savings_stats - Update the power saving stats for a
2470 * sched_domain while performing load balancing.
2471 *
2472 * @group: sched_group belonging to the sched_domain under consideration.
2473 * @sds: Variable containing the statistics of the sched_domain
2474 * @local_group: Does group contain the CPU for which we're performing
2475 * 		load balancing ?
2476 * @sgs: Variable containing the statistics of the group.
2477 */
2478static inline void update_sd_power_savings_stats(struct sched_group *group,
2479	struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
2480{
2481
2482	if (!sds->power_savings_balance)
2483		return;
2484
2485	/*
2486	 * If the local group is idle or completely loaded
2487	 * no need to do power savings balance at this domain
2488	 */
2489	if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
2490				!sds->this_nr_running))
2491		sds->power_savings_balance = 0;
2492
2493	/*
2494	 * If a group is already running at full capacity or idle,
2495	 * don't include that group in power savings calculations
2496	 */
2497	if (!sds->power_savings_balance ||
2498		sgs->sum_nr_running >= sgs->group_capacity ||
2499		!sgs->sum_nr_running)
2500		return;
2501
2502	/*
2503	 * Calculate the group which has the least non-idle load.
2504	 * This is the group from where we need to pick up the load
2505	 * for saving power
2506	 */
2507	if ((sgs->sum_nr_running < sds->min_nr_running) ||
2508	    (sgs->sum_nr_running == sds->min_nr_running &&
2509	     group_first_cpu(group) > group_first_cpu(sds->group_min))) {
2510		sds->group_min = group;
2511		sds->min_nr_running = sgs->sum_nr_running;
2512		sds->min_load_per_task = sgs->sum_weighted_load /
2513						sgs->sum_nr_running;
2514	}
2515
2516	/*
2517	 * Calculate the group which is almost near its
2518	 * capacity but still has some space to pick up some load
2519	 * from other group and save more power
2520	 */
2521	if (sgs->sum_nr_running + 1 > sgs->group_capacity)
2522		return;
2523
2524	if (sgs->sum_nr_running > sds->leader_nr_running ||
2525	    (sgs->sum_nr_running == sds->leader_nr_running &&
2526	     group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
2527		sds->group_leader = group;
2528		sds->leader_nr_running = sgs->sum_nr_running;
2529	}
2530}
2531
2532/**
2533 * check_power_save_busiest_group - see if there is potential for some power-savings balance
2534 * @sds: Variable containing the statistics of the sched_domain
2535 *	under consideration.
2536 * @this_cpu: Cpu at which we're currently performing load-balancing.
2537 * @imbalance: Variable to store the imbalance.
2538 *
2539 * Description:
2540 * Check if we have potential to perform some power-savings balance.
2541 * If yes, set the busiest group to be the least loaded group in the
2542 * sched_domain, so that it's CPUs can be put to idle.
2543 *
2544 * Returns 1 if there is potential to perform power-savings balance.
2545 * Else returns 0.
2546 */
2547static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
2548					int this_cpu, unsigned long *imbalance)
2549{
2550	if (!sds->power_savings_balance)
2551		return 0;
2552
2553	if (sds->this != sds->group_leader ||
2554			sds->group_leader == sds->group_min)
2555		return 0;
2556
2557	*imbalance = sds->min_load_per_task;
2558	sds->busiest = sds->group_min;
2559
2560	return 1;
2561
2562}
2563#else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
2564static inline void init_sd_power_savings_stats(struct sched_domain *sd,
2565	struct sd_lb_stats *sds, enum cpu_idle_type idle)
2566{
2567	return;
2568}
2569
2570static inline void update_sd_power_savings_stats(struct sched_group *group,
2571	struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
2572{
2573	return;
2574}
2575
2576static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
2577					int this_cpu, unsigned long *imbalance)
2578{
2579	return 0;
2580}
2581#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
2582
2583
2584unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
2585{
2586	return SCHED_POWER_SCALE;
2587}
2588
2589unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
2590{
2591	return default_scale_freq_power(sd, cpu);
2592}
2593
2594unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
2595{
2596	unsigned long weight = sd->span_weight;
2597	unsigned long smt_gain = sd->smt_gain;
2598
2599	smt_gain /= weight;
2600
2601	return smt_gain;
2602}
2603
2604unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
2605{
2606	return default_scale_smt_power(sd, cpu);
2607}
2608
2609unsigned long scale_rt_power(int cpu)
2610{
2611	struct rq *rq = cpu_rq(cpu);
2612	u64 total, available;
2613
2614	total = sched_avg_period() + (rq->clock - rq->age_stamp);
2615
2616	if (unlikely(total < rq->rt_avg)) {
2617		/* Ensures that power won't end up being negative */
2618		available = 0;
2619	} else {
2620		available = total - rq->rt_avg;
2621	}
2622
2623	if (unlikely((s64)total < SCHED_POWER_SCALE))
2624		total = SCHED_POWER_SCALE;
2625
2626	total >>= SCHED_POWER_SHIFT;
2627
2628	return div_u64(available, total);
2629}
2630
2631static void update_cpu_power(struct sched_domain *sd, int cpu)
2632{
2633	unsigned long weight = sd->span_weight;
2634	unsigned long power = SCHED_POWER_SCALE;
2635	struct sched_group *sdg = sd->groups;
2636
2637	if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
2638		if (sched_feat(ARCH_POWER))
2639			power *= arch_scale_smt_power(sd, cpu);
2640		else
2641			power *= default_scale_smt_power(sd, cpu);
2642
2643		power >>= SCHED_POWER_SHIFT;
2644	}
2645
2646	sdg->sgp->power_orig = power;
2647
2648	if (sched_feat(ARCH_POWER))
2649		power *= arch_scale_freq_power(sd, cpu);
2650	else
2651		power *= default_scale_freq_power(sd, cpu);
2652
2653	power >>= SCHED_POWER_SHIFT;
2654
2655	power *= scale_rt_power(cpu);
2656	power >>= SCHED_POWER_SHIFT;
2657
2658	if (!power)
2659		power = 1;
2660
2661	cpu_rq(cpu)->cpu_power = power;
2662	sdg->sgp->power = power;
2663}
2664
2665static void update_group_power(struct sched_domain *sd, int cpu)
2666{
2667	struct sched_domain *child = sd->child;
2668	struct sched_group *group, *sdg = sd->groups;
2669	unsigned long power;
2670
2671	if (!child) {
2672		update_cpu_power(sd, cpu);
2673		return;
2674	}
2675
2676	power = 0;
2677
2678	group = child->groups;
2679	do {
2680		power += group->sgp->power;
2681		group = group->next;
2682	} while (group != child->groups);
2683
2684	sdg->sgp->power = power;
2685}
2686
2687/*
2688 * Try and fix up capacity for tiny siblings, this is needed when
2689 * things like SD_ASYM_PACKING need f_b_g to select another sibling
2690 * which on its own isn't powerful enough.
2691 *
2692 * See update_sd_pick_busiest() and check_asym_packing().
2693 */
2694static inline int
2695fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
2696{
2697	/*
2698	 * Only siblings can have significantly less than SCHED_POWER_SCALE
2699	 */
2700	if (!(sd->flags & SD_SHARE_CPUPOWER))
2701		return 0;
2702
2703	/*
2704	 * If ~90% of the cpu_power is still there, we're good.
2705	 */
2706	if (group->sgp->power * 32 > group->sgp->power_orig * 29)
2707		return 1;
2708
2709	return 0;
2710}
2711
2712/**
2713 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
2714 * @sd: The sched_domain whose statistics are to be updated.
2715 * @group: sched_group whose statistics are to be updated.
2716 * @this_cpu: Cpu for which load balance is currently performed.
2717 * @idle: Idle status of this_cpu
2718 * @load_idx: Load index of sched_domain of this_cpu for load calc.
2719 * @local_group: Does group contain this_cpu.
2720 * @cpus: Set of cpus considered for load balancing.
2721 * @balance: Should we balance.
2722 * @sgs: variable to hold the statistics for this group.
2723 */
2724static inline void update_sg_lb_stats(struct sched_domain *sd,
2725			struct sched_group *group, int this_cpu,
2726			enum cpu_idle_type idle, int load_idx,
2727			int local_group, const struct cpumask *cpus,
2728			int *balance, struct sg_lb_stats *sgs)
2729{
2730	unsigned long load, max_cpu_load, min_cpu_load, max_nr_running;
2731	int i;
2732	unsigned int balance_cpu = -1, first_idle_cpu = 0;
2733	unsigned long avg_load_per_task = 0;
2734
2735	if (local_group)
2736		balance_cpu = group_first_cpu(group);
2737
2738	/* Tally up the load of all CPUs in the group */
2739	max_cpu_load = 0;
2740	min_cpu_load = ~0UL;
2741	max_nr_running = 0;
2742
2743	for_each_cpu_and(i, sched_group_cpus(group), cpus) {
2744		struct rq *rq = cpu_rq(i);
2745
2746		/* Bias balancing toward cpus of our domain */
2747		if (local_group) {
2748			if (idle_cpu(i) && !first_idle_cpu) {
2749				first_idle_cpu = 1;
2750				balance_cpu = i;
2751			}
2752
2753			load = target_load(i, load_idx);
2754		} else {
2755			load = source_load(i, load_idx);
2756			if (load > max_cpu_load) {
2757				max_cpu_load = load;
2758				max_nr_running = rq->nr_running;
2759			}
2760			if (min_cpu_load > load)
2761				min_cpu_load = load;
2762		}
2763
2764		sgs->group_load += load;
2765		sgs->sum_nr_running += rq->nr_running;
2766		sgs->sum_weighted_load += weighted_cpuload(i);
2767		if (idle_cpu(i))
2768			sgs->idle_cpus++;
2769	}
2770
2771	/*
2772	 * First idle cpu or the first cpu(busiest) in this sched group
2773	 * is eligible for doing load balancing at this and above
2774	 * domains. In the newly idle case, we will allow all the cpu's
2775	 * to do the newly idle load balance.
2776	 */
2777	if (idle != CPU_NEWLY_IDLE && local_group) {
2778		if (balance_cpu != this_cpu) {
2779			*balance = 0;
2780			return;
2781		}
2782		update_group_power(sd, this_cpu);
2783	}
2784
2785	/* Adjust by relative CPU power of the group */
2786	sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / group->sgp->power;
2787
2788	/*
2789	 * Consider the group unbalanced when the imbalance is larger
2790	 * than the average weight of a task.
2791	 *
2792	 * APZ: with cgroup the avg task weight can vary wildly and
2793	 *      might not be a suitable number - should we keep a
2794	 *      normalized nr_running number somewhere that negates
2795	 *      the hierarchy?
2796	 */
2797	if (sgs->sum_nr_running)
2798		avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
2799
2800	if ((max_cpu_load - min_cpu_load) >= avg_load_per_task && max_nr_running > 1)
2801		sgs->group_imb = 1;
2802
2803	sgs->group_capacity = DIV_ROUND_CLOSEST(group->sgp->power,
2804						SCHED_POWER_SCALE);
2805	if (!sgs->group_capacity)
2806		sgs->group_capacity = fix_small_capacity(sd, group);
2807	sgs->group_weight = group->group_weight;
2808
2809	if (sgs->group_capacity > sgs->sum_nr_running)
2810		sgs->group_has_capacity = 1;
2811}
2812
2813/**
2814 * update_sd_pick_busiest - return 1 on busiest group
2815 * @sd: sched_domain whose statistics are to be checked
2816 * @sds: sched_domain statistics
2817 * @sg: sched_group candidate to be checked for being the busiest
2818 * @sgs: sched_group statistics
2819 * @this_cpu: the current cpu
2820 *
2821 * Determine if @sg is a busier group than the previously selected
2822 * busiest group.
2823 */
2824static bool update_sd_pick_busiest(struct sched_domain *sd,
2825				   struct sd_lb_stats *sds,
2826				   struct sched_group *sg,
2827				   struct sg_lb_stats *sgs,
2828				   int this_cpu)
2829{
2830	if (sgs->avg_load <= sds->max_load)
2831		return false;
2832
2833	if (sgs->sum_nr_running > sgs->group_capacity)
2834		return true;
2835
2836	if (sgs->group_imb)
2837		return true;
2838
2839	/*
2840	 * ASYM_PACKING needs to move all the work to the lowest
2841	 * numbered CPUs in the group, therefore mark all groups
2842	 * higher than ourself as busy.
2843	 */
2844	if ((sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
2845	    this_cpu < group_first_cpu(sg)) {
2846		if (!sds->busiest)
2847			return true;
2848
2849		if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
2850			return true;
2851	}
2852
2853	return false;
2854}
2855
2856/**
2857 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
2858 * @sd: sched_domain whose statistics are to be updated.
2859 * @this_cpu: Cpu for which load balance is currently performed.
2860 * @idle: Idle status of this_cpu
2861 * @cpus: Set of cpus considered for load balancing.
2862 * @balance: Should we balance.
2863 * @sds: variable to hold the statistics for this sched_domain.
2864 */
2865static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
2866			enum cpu_idle_type idle, const struct cpumask *cpus,
2867			int *balance, struct sd_lb_stats *sds)
2868{
2869	struct sched_domain *child = sd->child;
2870	struct sched_group *sg = sd->groups;
2871	struct sg_lb_stats sgs;
2872	int load_idx, prefer_sibling = 0;
2873
2874	if (child && child->flags & SD_PREFER_SIBLING)
2875		prefer_sibling = 1;
2876
2877	init_sd_power_savings_stats(sd, sds, idle);
2878	load_idx = get_sd_load_idx(sd, idle);
2879
2880	do {
2881		int local_group;
2882
2883		local_group = cpumask_test_cpu(this_cpu, sched_group_cpus(sg));
2884		memset(&sgs, 0, sizeof(sgs));
2885		update_sg_lb_stats(sd, sg, this_cpu, idle, load_idx,
2886				local_group, cpus, balance, &sgs);
2887
2888		if (local_group && !(*balance))
2889			return;
2890
2891		sds->total_load += sgs.group_load;
2892		sds->total_pwr += sg->sgp->power;
2893
2894		/*
2895		 * In case the child domain prefers tasks go to siblings
2896		 * first, lower the sg capacity to one so that we'll try
2897		 * and move all the excess tasks away. We lower the capacity
2898		 * of a group only if the local group has the capacity to fit
2899		 * these excess tasks, i.e. nr_running < group_capacity. The
2900		 * extra check prevents the case where you always pull from the
2901		 * heaviest group when it is already under-utilized (possible
2902		 * with a large weight task outweighs the tasks on the system).
2903		 */
2904		if (prefer_sibling && !local_group && sds->this_has_capacity)
2905			sgs.group_capacity = min(sgs.group_capacity, 1UL);
2906
2907		if (local_group) {
2908			sds->this_load = sgs.avg_load;
2909			sds->this = sg;
2910			sds->this_nr_running = sgs.sum_nr_running;
2911			sds->this_load_per_task = sgs.sum_weighted_load;
2912			sds->this_has_capacity = sgs.group_has_capacity;
2913			sds->this_idle_cpus = sgs.idle_cpus;
2914		} else if (update_sd_pick_busiest(sd, sds, sg, &sgs, this_cpu)) {
2915			sds->max_load = sgs.avg_load;
2916			sds->busiest = sg;
2917			sds->busiest_nr_running = sgs.sum_nr_running;
2918			sds->busiest_idle_cpus = sgs.idle_cpus;
2919			sds->busiest_group_capacity = sgs.group_capacity;
2920			sds->busiest_load_per_task = sgs.sum_weighted_load;
2921			sds->busiest_has_capacity = sgs.group_has_capacity;
2922			sds->busiest_group_weight = sgs.group_weight;
2923			sds->group_imb = sgs.group_imb;
2924		}
2925
2926		update_sd_power_savings_stats(sg, sds, local_group, &sgs);
2927		sg = sg->next;
2928	} while (sg != sd->groups);
2929}
2930
2931int __weak arch_sd_sibling_asym_packing(void)
2932{
2933       return 0*SD_ASYM_PACKING;
2934}
2935
2936/**
2937 * check_asym_packing - Check to see if the group is packed into the
2938 *			sched doman.
2939 *
2940 * This is primarily intended to used at the sibling level.  Some
2941 * cores like POWER7 prefer to use lower numbered SMT threads.  In the
2942 * case of POWER7, it can move to lower SMT modes only when higher
2943 * threads are idle.  When in lower SMT modes, the threads will
2944 * perform better since they share less core resources.  Hence when we
2945 * have idle threads, we want them to be the higher ones.
2946 *
2947 * This packing function is run on idle threads.  It checks to see if
2948 * the busiest CPU in this domain (core in the P7 case) has a higher
2949 * CPU number than the packing function is being run on.  Here we are
2950 * assuming lower CPU number will be equivalent to lower a SMT thread
2951 * number.
2952 *
2953 * Returns 1 when packing is required and a task should be moved to
2954 * this CPU.  The amount of the imbalance is returned in *imbalance.
2955 *
2956 * @sd: The sched_domain whose packing is to be checked.
2957 * @sds: Statistics of the sched_domain which is to be packed
2958 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
2959 * @imbalance: returns amount of imbalanced due to packing.
2960 */
2961static int check_asym_packing(struct sched_domain *sd,
2962			      struct sd_lb_stats *sds,
2963			      int this_cpu, unsigned long *imbalance)
2964{
2965	int busiest_cpu;
2966
2967	if (!(sd->flags & SD_ASYM_PACKING))
2968		return 0;
2969
2970	if (!sds->busiest)
2971		return 0;
2972
2973	busiest_cpu = group_first_cpu(sds->busiest);
2974	if (this_cpu > busiest_cpu)
2975		return 0;
2976
2977	*imbalance = DIV_ROUND_CLOSEST(sds->max_load * sds->busiest->sgp->power,
2978				       SCHED_POWER_SCALE);
2979	return 1;
2980}
2981
2982/**
2983 * fix_small_imbalance - Calculate the minor imbalance that exists
2984 *			amongst the groups of a sched_domain, during
2985 *			load balancing.
2986 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
2987 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
2988 * @imbalance: Variable to store the imbalance.
2989 */
2990static inline void fix_small_imbalance(struct sd_lb_stats *sds,
2991				int this_cpu, unsigned long *imbalance)
2992{
2993	unsigned long tmp, pwr_now = 0, pwr_move = 0;
2994	unsigned int imbn = 2;
2995	unsigned long scaled_busy_load_per_task;
2996
2997	if (sds->this_nr_running) {
2998		sds->this_load_per_task /= sds->this_nr_running;
2999		if (sds->busiest_load_per_task >
3000				sds->this_load_per_task)
3001			imbn = 1;
3002	} else
3003		sds->this_load_per_task =
3004			cpu_avg_load_per_task(this_cpu);
3005
3006	scaled_busy_load_per_task = sds->busiest_load_per_task
3007					 * SCHED_POWER_SCALE;
3008	scaled_busy_load_per_task /= sds->busiest->sgp->power;
3009
3010	if (sds->max_load - sds->this_load + scaled_busy_load_per_task >=
3011			(scaled_busy_load_per_task * imbn)) {
3012		*imbalance = sds->busiest_load_per_task;
3013		return;
3014	}
3015
3016	/*
3017	 * OK, we don't have enough imbalance to justify moving tasks,
3018	 * however we may be able to increase total CPU power used by
3019	 * moving them.
3020	 */
3021
3022	pwr_now += sds->busiest->sgp->power *
3023			min(sds->busiest_load_per_task, sds->max_load);
3024	pwr_now += sds->this->sgp->power *
3025			min(sds->this_load_per_task, sds->this_load);
3026	pwr_now /= SCHED_POWER_SCALE;
3027
3028	/* Amount of load we'd subtract */
3029	tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
3030		sds->busiest->sgp->power;
3031	if (sds->max_load > tmp)
3032		pwr_move += sds->busiest->sgp->power *
3033			min(sds->busiest_load_per_task, sds->max_load - tmp);
3034
3035	/* Amount of load we'd add */
3036	if (sds->max_load * sds->busiest->sgp->power <
3037		sds->busiest_load_per_task * SCHED_POWER_SCALE)
3038		tmp = (sds->max_load * sds->busiest->sgp->power) /
3039			sds->this->sgp->power;
3040	else
3041		tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
3042			sds->this->sgp->power;
3043	pwr_move += sds->this->sgp->power *
3044			min(sds->this_load_per_task, sds->this_load + tmp);
3045	pwr_move /= SCHED_POWER_SCALE;
3046
3047	/* Move if we gain throughput */
3048	if (pwr_move > pwr_now)
3049		*imbalance = sds->busiest_load_per_task;
3050}
3051
3052/**
3053 * calculate_imbalance - Calculate the amount of imbalance present within the
3054 *			 groups of a given sched_domain during load balance.
3055 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
3056 * @this_cpu: Cpu for which currently load balance is being performed.
3057 * @imbalance: The variable to store the imbalance.
3058 */
3059static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
3060		unsigned long *imbalance)
3061{
3062	unsigned long max_pull, load_above_capacity = ~0UL;
3063
3064	sds->busiest_load_per_task /= sds->busiest_nr_running;
3065	if (sds->group_imb) {
3066		sds->busiest_load_per_task =
3067			min(sds->busiest_load_per_task, sds->avg_load);
3068	}
3069
3070	/*
3071	 * In the presence of smp nice balancing, certain scenarios can have
3072	 * max load less than avg load(as we skip the groups at or below
3073	 * its cpu_power, while calculating max_load..)
3074	 */
3075	if (sds->max_load < sds->avg_load) {
3076		*imbalance = 0;
3077		return fix_small_imbalance(sds, this_cpu, imbalance);
3078	}
3079
3080	if (!sds->group_imb) {
3081		/*
3082		 * Don't want to pull so many tasks that a group would go idle.
3083		 */
3084		load_above_capacity = (sds->busiest_nr_running -
3085						sds->busiest_group_capacity);
3086
3087		load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
3088
3089		load_above_capacity /= sds->busiest->sgp->power;
3090	}
3091
3092	/*
3093	 * We're trying to get all the cpus to the average_load, so we don't
3094	 * want to push ourselves above the average load, nor do we wish to
3095	 * reduce the max loaded cpu below the average load. At the same time,
3096	 * we also don't want to reduce the group load below the group capacity
3097	 * (so that we can implement power-savings policies etc). Thus we look
3098	 * for the minimum possible imbalance.
3099	 * Be careful of negative numbers as they'll appear as very large values
3100	 * with unsigned longs.
3101	 */
3102	max_pull = min(sds->max_load - sds->avg_load, load_above_capacity);
3103
3104	/* How much load to actually move to equalise the imbalance */
3105	*imbalance = min(max_pull * sds->busiest->sgp->power,
3106		(sds->avg_load - sds->this_load) * sds->this->sgp->power)
3107			/ SCHED_POWER_SCALE;
3108
3109	/*
3110	 * if *imbalance is less than the average load per runnable task
3111	 * there is no guarantee that any tasks will be moved so we'll have
3112	 * a think about bumping its value to force at least one task to be
3113	 * moved
3114	 */
3115	if (*imbalance < sds->busiest_load_per_task)
3116		return fix_small_imbalance(sds, this_cpu, imbalance);
3117
3118}
3119
3120/******* find_busiest_group() helpers end here *********************/
3121
3122/**
3123 * find_busiest_group - Returns the busiest group within the sched_domain
3124 * if there is an imbalance. If there isn't an imbalance, and
3125 * the user has opted for power-savings, it returns a group whose
3126 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
3127 * such a group exists.
3128 *
3129 * Also calculates the amount of weighted load which should be moved
3130 * to restore balance.
3131 *
3132 * @sd: The sched_domain whose busiest group is to be returned.
3133 * @this_cpu: The cpu for which load balancing is currently being performed.
3134 * @imbalance: Variable which stores amount of weighted load which should
3135 *		be moved to restore balance/put a group to idle.
3136 * @idle: The idle status of this_cpu.
3137 * @cpus: The set of CPUs under consideration for load-balancing.
3138 * @balance: Pointer to a variable indicating if this_cpu
3139 *	is the appropriate cpu to perform load balancing at this_level.
3140 *
3141 * Returns:	- the busiest group if imbalance exists.
3142 *		- If no imbalance and user has opted for power-savings balance,
3143 *		   return the least loaded group whose CPUs can be
3144 *		   put to idle by rebalancing its tasks onto our group.
3145 */
3146static struct sched_group *
3147find_busiest_group(struct sched_domain *sd, int this_cpu,
3148		   unsigned long *imbalance, enum cpu_idle_type idle,
3149		   const struct cpumask *cpus, int *balance)
3150{
3151	struct sd_lb_stats sds;
3152
3153	memset(&sds, 0, sizeof(sds));
3154
3155	/*
3156	 * Compute the various statistics relavent for load balancing at
3157	 * this level.
3158	 */
3159	update_sd_lb_stats(sd, this_cpu, idle, cpus, balance, &sds);
3160
3161	/*
3162	 * this_cpu is not the appropriate cpu to perform load balancing at
3163	 * this level.
3164	 */
3165	if (!(*balance))
3166		goto ret;
3167
3168	if ((idle == CPU_IDLE || idle == CPU_NEWLY_IDLE) &&
3169	    check_asym_packing(sd, &sds, this_cpu, imbalance))
3170		return sds.busiest;
3171
3172	/* There is no busy sibling group to pull tasks from */
3173	if (!sds.busiest || sds.busiest_nr_running == 0)
3174		goto out_balanced;
3175
3176	sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
3177
3178	/*
3179	 * If the busiest group is imbalanced the below checks don't
3180	 * work because they assumes all things are equal, which typically
3181	 * isn't true due to cpus_allowed constraints and the like.
3182	 */
3183	if (sds.group_imb)
3184		goto force_balance;
3185
3186	/* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
3187	if (idle == CPU_NEWLY_IDLE && sds.this_has_capacity &&
3188			!sds.busiest_has_capacity)
3189		goto force_balance;
3190
3191	/*
3192	 * If the local group is more busy than the selected busiest group
3193	 * don't try and pull any tasks.
3194	 */
3195	if (sds.this_load >= sds.max_load)
3196		goto out_balanced;
3197
3198	/*
3199	 * Don't pull any tasks if this group is already above the domain
3200	 * average load.
3201	 */
3202	if (sds.this_load >= sds.avg_load)
3203		goto out_balanced;
3204
3205	if (idle == CPU_IDLE) {
3206		/*
3207		 * This cpu is idle. If the busiest group load doesn't
3208		 * have more tasks than the number of available cpu's and
3209		 * there is no imbalance between this and busiest group
3210		 * wrt to idle cpu's, it is balanced.
3211		 */
3212		if ((sds.this_idle_cpus <= sds.busiest_idle_cpus + 1) &&
3213		    sds.busiest_nr_running <= sds.busiest_group_weight)
3214			goto out_balanced;
3215	} else {
3216		/*
3217		 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
3218		 * imbalance_pct to be conservative.
3219		 */
3220		if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
3221			goto out_balanced;
3222	}
3223
3224force_balance:
3225	/* Looks like there is an imbalance. Compute it */
3226	calculate_imbalance(&sds, this_cpu, imbalance);
3227	return sds.busiest;
3228
3229out_balanced:
3230	/*
3231	 * There is no obvious imbalance. But check if we can do some balancing
3232	 * to save power.
3233	 */
3234	if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
3235		return sds.busiest;
3236ret:
3237	*imbalance = 0;
3238	return NULL;
3239}
3240
3241/*
3242 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3243 */
3244static struct rq *
3245find_busiest_queue(struct sched_domain *sd, struct sched_group *group,
3246		   enum cpu_idle_type idle, unsigned long imbalance,
3247		   const struct cpumask *cpus)
3248{
3249	struct rq *busiest = NULL, *rq;
3250	unsigned long max_load = 0;
3251	int i;
3252
3253	for_each_cpu(i, sched_group_cpus(group)) {
3254		unsigned long power = power_of(i);
3255		unsigned long capacity = DIV_ROUND_CLOSEST(power,
3256							   SCHED_POWER_SCALE);
3257		unsigned long wl;
3258
3259		if (!capacity)
3260			capacity = fix_small_capacity(sd, group);
3261
3262		if (!cpumask_test_cpu(i, cpus))
3263			continue;
3264
3265		rq = cpu_rq(i);
3266		wl = weighted_cpuload(i);
3267
3268		/*
3269		 * When comparing with imbalance, use weighted_cpuload()
3270		 * which is not scaled with the cpu power.
3271		 */
3272		if (capacity && rq->nr_running == 1 && wl > imbalance)
3273			continue;
3274
3275		/*
3276		 * For the load comparisons with the other cpu's, consider
3277		 * the weighted_cpuload() scaled with the cpu power, so that
3278		 * the load can be moved away from the cpu that is potentially
3279		 * running at a lower capacity.
3280		 */
3281		wl = (wl * SCHED_POWER_SCALE) / power;
3282
3283		if (wl > max_load) {
3284			max_load = wl;
3285			busiest = rq;
3286		}
3287	}
3288
3289	return busiest;
3290}
3291
3292/*
3293 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3294 * so long as it is large enough.
3295 */
3296#define MAX_PINNED_INTERVAL	512
3297
3298/* Working cpumask for load_balance and load_balance_newidle. */
3299static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
3300
3301static int need_active_balance(struct sched_domain *sd, int idle,
3302			       int busiest_cpu, int this_cpu)
3303{
3304	if (idle == CPU_NEWLY_IDLE) {
3305
3306		/*
3307		 * ASYM_PACKING needs to force migrate tasks from busy but
3308		 * higher numbered CPUs in order to pack all tasks in the
3309		 * lowest numbered CPUs.
3310		 */
3311		if ((sd->flags & SD_ASYM_PACKING) && busiest_cpu > this_cpu)
3312			return 1;
3313
3314		/*
3315		 * The only task running in a non-idle cpu can be moved to this
3316		 * cpu in an attempt to completely freeup the other CPU
3317		 * package.
3318		 *
3319		 * The package power saving logic comes from
3320		 * find_busiest_group(). If there are no imbalance, then
3321		 * f_b_g() will return NULL. However when sched_mc={1,2} then
3322		 * f_b_g() will select a group from which a running task may be
3323		 * pulled to this cpu in order to make the other package idle.
3324		 * If there is no opportunity to make a package idle and if
3325		 * there are no imbalance, then f_b_g() will return NULL and no
3326		 * action will be taken in load_balance_newidle().
3327		 *
3328		 * Under normal task pull operation due to imbalance, there
3329		 * will be more than one task in the source run queue and
3330		 * move_tasks() will succeed.  ld_moved will be true and this
3331		 * active balance code will not be triggered.
3332		 */
3333		if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
3334			return 0;
3335	}
3336
3337	return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
3338}
3339
3340static int active_load_balance_cpu_stop(void *data);
3341
3342/*
3343 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3344 * tasks if there is an imbalance.
3345 */
3346static int load_balance(int this_cpu, struct rq *this_rq,
3347			struct sched_domain *sd, enum cpu_idle_type idle,
3348			int *balance)
3349{
3350	int ld_moved, all_pinned = 0, active_balance = 0;
3351	struct sched_group *group;
3352	unsigned long imbalance;
3353	struct rq *busiest;
3354	unsigned long flags;
3355	struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
3356
3357	cpumask_copy(cpus, cpu_active_mask);
3358
3359	schedstat_inc(sd, lb_count[idle]);
3360
3361redo:
3362	group = find_busiest_group(sd, this_cpu, &imbalance, idle,
3363				   cpus, balance);
3364
3365	if (*balance == 0)
3366		goto out_balanced;
3367
3368	if (!group) {
3369		schedstat_inc(sd, lb_nobusyg[idle]);
3370		goto out_balanced;
3371	}
3372
3373	busiest = find_busiest_queue(sd, group, idle, imbalance, cpus);
3374	if (!busiest) {
3375		schedstat_inc(sd, lb_nobusyq[idle]);
3376		goto out_balanced;
3377	}
3378
3379	BUG_ON(busiest == this_rq);
3380
3381	schedstat_add(sd, lb_imbalance[idle], imbalance);
3382
3383	ld_moved = 0;
3384	if (busiest->nr_running > 1) {
3385		/*
3386		 * Attempt to move tasks. If find_busiest_group has found
3387		 * an imbalance but busiest->nr_running <= 1, the group is
3388		 * still unbalanced. ld_moved simply stays zero, so it is
3389		 * correctly treated as an imbalance.
3390		 */
3391		all_pinned = 1;
3392		local_irq_save(flags);
3393		double_rq_lock(this_rq, busiest);
3394		ld_moved = move_tasks(this_rq, this_cpu, busiest,
3395				      imbalance, sd, idle, &all_pinned);
3396		double_rq_unlock(this_rq, busiest);
3397		local_irq_restore(flags);
3398
3399		/*
3400		 * some other cpu did the load balance for us.
3401		 */
3402		if (ld_moved && this_cpu != smp_processor_id())
3403			resched_cpu(this_cpu);
3404
3405		/* All tasks on this runqueue were pinned by CPU affinity */
3406		if (unlikely(all_pinned)) {
3407			cpumask_clear_cpu(cpu_of(busiest), cpus);
3408			if (!cpumask_empty(cpus))
3409				goto redo;
3410			goto out_balanced;
3411		}
3412	}
3413
3414	if (!ld_moved) {
3415		schedstat_inc(sd, lb_failed[idle]);
3416		/*
3417		 * Increment the failure counter only on periodic balance.
3418		 * We do not want newidle balance, which can be very
3419		 * frequent, pollute the failure counter causing
3420		 * excessive cache_hot migrations and active balances.
3421		 */
3422		if (idle != CPU_NEWLY_IDLE)
3423			sd->nr_balance_failed++;
3424
3425		if (need_active_balance(sd, idle, cpu_of(busiest), this_cpu)) {
3426			raw_spin_lock_irqsave(&busiest->lock, flags);
3427
3428			/* don't kick the active_load_balance_cpu_stop,
3429			 * if the curr task on busiest cpu can't be
3430			 * moved to this_cpu
3431			 */
3432			if (!cpumask_test_cpu(this_cpu,
3433					      &busiest->curr->cpus_allowed)) {
3434				raw_spin_unlock_irqrestore(&busiest->lock,
3435							    flags);
3436				all_pinned = 1;
3437				goto out_one_pinned;
3438			}
3439
3440			/*
3441			 * ->active_balance synchronizes accesses to
3442			 * ->active_balance_work.  Once set, it's cleared
3443			 * only after active load balance is finished.
3444			 */
3445			if (!busiest->active_balance) {
3446				busiest->active_balance = 1;
3447				busiest->push_cpu = this_cpu;
3448				active_balance = 1;
3449			}
3450			raw_spin_unlock_irqrestore(&busiest->lock, flags);
3451
3452			if (active_balance)
3453				stop_one_cpu_nowait(cpu_of(busiest),
3454					active_load_balance_cpu_stop, busiest,
3455					&busiest->active_balance_work);
3456
3457			/*
3458			 * We've kicked active balancing, reset the failure
3459			 * counter.
3460			 */
3461			sd->nr_balance_failed = sd->cache_nice_tries+1;
3462		}
3463	} else
3464		sd->nr_balance_failed = 0;
3465
3466	if (likely(!active_balance)) {
3467		/* We were unbalanced, so reset the balancing interval */
3468		sd->balance_interval = sd->min_interval;
3469	} else {
3470		/*
3471		 * If we've begun active balancing, start to back off. This
3472		 * case may not be covered by the all_pinned logic if there
3473		 * is only 1 task on the busy runqueue (because we don't call
3474		 * move_tasks).
3475		 */
3476		if (sd->balance_interval < sd->max_interval)
3477			sd->balance_interval *= 2;
3478	}
3479
3480	goto out;
3481
3482out_balanced:
3483	schedstat_inc(sd, lb_balanced[idle]);
3484
3485	sd->nr_balance_failed = 0;
3486
3487out_one_pinned:
3488	/* tune up the balancing interval */
3489	if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3490			(sd->balance_interval < sd->max_interval))
3491		sd->balance_interval *= 2;
3492
3493	ld_moved = 0;
3494out:
3495	return ld_moved;
3496}
3497
3498/*
3499 * idle_balance is called by schedule() if this_cpu is about to become
3500 * idle. Attempts to pull tasks from other CPUs.
3501 */
3502static void idle_balance(int this_cpu, struct rq *this_rq)
3503{
3504	struct sched_domain *sd;
3505	int pulled_task = 0;
3506	unsigned long next_balance = jiffies + HZ;
3507
3508	this_rq->idle_stamp = this_rq->clock;
3509
3510	if (this_rq->avg_idle < sysctl_sched_migration_cost)
3511		return;
3512
3513	/*
3514	 * Drop the rq->lock, but keep IRQ/preempt disabled.
3515	 */
3516	raw_spin_unlock(&this_rq->lock);
3517
3518	update_shares(this_cpu);
3519	rcu_read_lock();
3520	for_each_domain(this_cpu, sd) {
3521		unsigned long interval;
3522		int balance = 1;
3523
3524		if (!(sd->flags & SD_LOAD_BALANCE))
3525			continue;
3526
3527		if (sd->flags & SD_BALANCE_NEWIDLE) {
3528			/* If we've pulled tasks over stop searching: */
3529			pulled_task = load_balance(this_cpu, this_rq,
3530						   sd, CPU_NEWLY_IDLE, &balance);
3531		}
3532
3533		interval = msecs_to_jiffies(sd->balance_interval);
3534		if (time_after(next_balance, sd->last_balance + interval))
3535			next_balance = sd->last_balance + interval;
3536		if (pulled_task) {
3537			this_rq->idle_stamp = 0;
3538			break;
3539		}
3540	}
3541	rcu_read_unlock();
3542
3543	raw_spin_lock(&this_rq->lock);
3544
3545	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3546		/*
3547		 * We are going idle. next_balance may be set based on
3548		 * a busy processor. So reset next_balance.
3549		 */
3550		this_rq->next_balance = next_balance;
3551	}
3552}
3553
3554/*
3555 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
3556 * running tasks off the busiest CPU onto idle CPUs. It requires at
3557 * least 1 task to be running on each physical CPU where possible, and
3558 * avoids physical / logical imbalances.
3559 */
3560static int active_load_balance_cpu_stop(void *data)
3561{
3562	struct rq *busiest_rq = data;
3563	int busiest_cpu = cpu_of(busiest_rq);
3564	int target_cpu = busiest_rq->push_cpu;
3565	struct rq *target_rq = cpu_rq(target_cpu);
3566	struct sched_domain *sd;
3567
3568	raw_spin_lock_irq(&busiest_rq->lock);
3569
3570	/* make sure the requested cpu hasn't gone down in the meantime */
3571	if (unlikely(busiest_cpu != smp_processor_id() ||
3572		     !busiest_rq->active_balance))
3573		goto out_unlock;
3574
3575	/* Is there any task to move? */
3576	if (busiest_rq->nr_running <= 1)
3577		goto out_unlock;
3578
3579	/*
3580	 * This condition is "impossible", if it occurs
3581	 * we need to fix it. Originally reported by
3582	 * Bjorn Helgaas on a 128-cpu setup.
3583	 */
3584	BUG_ON(busiest_rq == target_rq);
3585
3586	/* move a task from busiest_rq to target_rq */
3587	double_lock_balance(busiest_rq, target_rq);
3588
3589	/* Search for an sd spanning us and the target CPU. */
3590	rcu_read_lock();
3591	for_each_domain(target_cpu, sd) {
3592		if ((sd->flags & SD_LOAD_BALANCE) &&
3593		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
3594				break;
3595	}
3596
3597	if (likely(sd)) {
3598		schedstat_inc(sd, alb_count);
3599
3600		if (move_one_task(target_rq, target_cpu, busiest_rq,
3601				  sd, CPU_IDLE))
3602			schedstat_inc(sd, alb_pushed);
3603		else
3604			schedstat_inc(sd, alb_failed);
3605	}
3606	rcu_read_unlock();
3607	double_unlock_balance(busiest_rq, target_rq);
3608out_unlock:
3609	busiest_rq->active_balance = 0;
3610	raw_spin_unlock_irq(&busiest_rq->lock);
3611	return 0;
3612}
3613
3614#ifdef CONFIG_NO_HZ
3615
3616static DEFINE_PER_CPU(struct call_single_data, remote_sched_softirq_cb);
3617
3618static void trigger_sched_softirq(void *data)
3619{
3620	raise_softirq_irqoff(SCHED_SOFTIRQ);
3621}
3622
3623static inline void init_sched_softirq_csd(struct call_single_data *csd)
3624{
3625	csd->func = trigger_sched_softirq;
3626	csd->info = NULL;
3627	csd->flags = 0;
3628	csd->priv = 0;
3629}
3630
3631/*
3632 * idle load balancing details
3633 * - One of the idle CPUs nominates itself as idle load_balancer, while
3634 *   entering idle.
3635 * - This idle load balancer CPU will also go into tickless mode when
3636 *   it is idle, just like all other idle CPUs
3637 * - When one of the busy CPUs notice that there may be an idle rebalancing
3638 *   needed, they will kick the idle load balancer, which then does idle
3639 *   load balancing for all the idle CPUs.
3640 */
3641static struct {
3642	atomic_t load_balancer;
3643	atomic_t first_pick_cpu;
3644	atomic_t second_pick_cpu;
3645	cpumask_var_t idle_cpus_mask;
3646	cpumask_var_t grp_idle_mask;
3647	unsigned long next_balance;     /* in jiffy units */
3648} nohz ____cacheline_aligned;
3649
3650int get_nohz_load_balancer(void)
3651{
3652	return atomic_read(&nohz.load_balancer);
3653}
3654
3655#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3656/**
3657 * lowest_flag_domain - Return lowest sched_domain containing flag.
3658 * @cpu:	The cpu whose lowest level of sched domain is to
3659 *		be returned.
3660 * @flag:	The flag to check for the lowest sched_domain
3661 *		for the given cpu.
3662 *
3663 * Returns the lowest sched_domain of a cpu which contains the given flag.
3664 */
3665static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
3666{
3667	struct sched_domain *sd;
3668
3669	for_each_domain(cpu, sd)
3670		if (sd && (sd->flags & flag))
3671			break;
3672
3673	return sd;
3674}
3675
3676/**
3677 * for_each_flag_domain - Iterates over sched_domains containing the flag.
3678 * @cpu:	The cpu whose domains we're iterating over.
3679 * @sd:		variable holding the value of the power_savings_sd
3680 *		for cpu.
3681 * @flag:	The flag to filter the sched_domains to be iterated.
3682 *
3683 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
3684 * set, starting from the lowest sched_domain to the highest.
3685 */
3686#define for_each_flag_domain(cpu, sd, flag) \
3687	for (sd = lowest_flag_domain(cpu, flag); \
3688		(sd && (sd->flags & flag)); sd = sd->parent)
3689
3690/**
3691 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
3692 * @ilb_group:	group to be checked for semi-idleness
3693 *
3694 * Returns:	1 if the group is semi-idle. 0 otherwise.
3695 *
3696 * We define a sched_group to be semi idle if it has atleast one idle-CPU
3697 * and atleast one non-idle CPU. This helper function checks if the given
3698 * sched_group is semi-idle or not.
3699 */
3700static inline int is_semi_idle_group(struct sched_group *ilb_group)
3701{
3702	cpumask_and(nohz.grp_idle_mask, nohz.idle_cpus_mask,
3703					sched_group_cpus(ilb_group));
3704
3705	/*
3706	 * A sched_group is semi-idle when it has atleast one busy cpu
3707	 * and atleast one idle cpu.
3708	 */
3709	if (cpumask_empty(nohz.grp_idle_mask))
3710		return 0;
3711
3712	if (cpumask_equal(nohz.grp_idle_mask, sched_group_cpus(ilb_group)))
3713		return 0;
3714
3715	return 1;
3716}
3717/**
3718 * find_new_ilb - Finds the optimum idle load balancer for nomination.
3719 * @cpu:	The cpu which is nominating a new idle_load_balancer.
3720 *
3721 * Returns:	Returns the id of the idle load balancer if it exists,
3722 *		Else, returns >= nr_cpu_ids.
3723 *
3724 * This algorithm picks the idle load balancer such that it belongs to a
3725 * semi-idle powersavings sched_domain. The idea is to try and avoid
3726 * completely idle packages/cores just for the purpose of idle load balancing
3727 * when there are other idle cpu's which are better suited for that job.
3728 */
3729static int find_new_ilb(int cpu)
3730{
3731	struct sched_domain *sd;
3732	struct sched_group *ilb_group;
3733	int ilb = nr_cpu_ids;
3734
3735	/*
3736	 * Have idle load balancer selection from semi-idle packages only
3737	 * when power-aware load balancing is enabled
3738	 */
3739	if (!(sched_smt_power_savings || sched_mc_power_savings))
3740		goto out_done;
3741
3742	/*
3743	 * Optimize for the case when we have no idle CPUs or only one
3744	 * idle CPU. Don't walk the sched_domain hierarchy in such cases
3745	 */
3746	if (cpumask_weight(nohz.idle_cpus_mask) < 2)
3747		goto out_done;
3748
3749	rcu_read_lock();
3750	for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
3751		ilb_group = sd->groups;
3752
3753		do {
3754			if (is_semi_idle_group(ilb_group)) {
3755				ilb = cpumask_first(nohz.grp_idle_mask);
3756				goto unlock;
3757			}
3758
3759			ilb_group = ilb_group->next;
3760
3761		} while (ilb_group != sd->groups);
3762	}
3763unlock:
3764	rcu_read_unlock();
3765
3766out_done:
3767	return ilb;
3768}
3769#else /*  (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
3770static inline int find_new_ilb(int call_cpu)
3771{
3772	return nr_cpu_ids;
3773}
3774#endif
3775
3776/*
3777 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
3778 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
3779 * CPU (if there is one).
3780 */
3781static void nohz_balancer_kick(int cpu)
3782{
3783	int ilb_cpu;
3784
3785	nohz.next_balance++;
3786
3787	ilb_cpu = get_nohz_load_balancer();
3788
3789	if (ilb_cpu >= nr_cpu_ids) {
3790		ilb_cpu = cpumask_first(nohz.idle_cpus_mask);
3791		if (ilb_cpu >= nr_cpu_ids)
3792			return;
3793	}
3794
3795	if (!cpu_rq(ilb_cpu)->nohz_balance_kick) {
3796		struct call_single_data *cp;
3797
3798		cpu_rq(ilb_cpu)->nohz_balance_kick = 1;
3799		cp = &per_cpu(remote_sched_softirq_cb, cpu);
3800		__smp_call_function_single(ilb_cpu, cp, 0);
3801	}
3802	return;
3803}
3804
3805/*
3806 * This routine will try to nominate the ilb (idle load balancing)
3807 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3808 * load balancing on behalf of all those cpus.
3809 *
3810 * When the ilb owner becomes busy, we will not have new ilb owner until some
3811 * idle CPU wakes up and goes back to idle or some busy CPU tries to kick
3812 * idle load balancing by kicking one of the idle CPUs.
3813 *
3814 * Ticks are stopped for the ilb owner as well, with busy CPU kicking this
3815 * ilb owner CPU in future (when there is a need for idle load balancing on
3816 * behalf of all idle CPUs).
3817 */
3818void select_nohz_load_balancer(int stop_tick)
3819{
3820	int cpu = smp_processor_id();
3821
3822	if (stop_tick) {
3823		if (!cpu_active(cpu)) {
3824			if (atomic_read(&nohz.load_balancer) != cpu)
3825				return;
3826
3827			/*
3828			 * If we are going offline and still the leader,
3829			 * give up!
3830			 */
3831			if (atomic_cmpxchg(&nohz.load_balancer, cpu,
3832					   nr_cpu_ids) != cpu)
3833				BUG();
3834
3835			return;
3836		}
3837
3838		cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
3839
3840		if (atomic_read(&nohz.first_pick_cpu) == cpu)
3841			atomic_cmpxchg(&nohz.first_pick_cpu, cpu, nr_cpu_ids);
3842		if (atomic_read(&nohz.second_pick_cpu) == cpu)
3843			atomic_cmpxchg(&nohz.second_pick_cpu, cpu, nr_cpu_ids);
3844
3845		if (atomic_read(&nohz.load_balancer) >= nr_cpu_ids) {
3846			int new_ilb;
3847
3848			/* make me the ilb owner */
3849			if (atomic_cmpxchg(&nohz.load_balancer, nr_cpu_ids,
3850					   cpu) != nr_cpu_ids)
3851				return;
3852
3853			/*
3854			 * Check to see if there is a more power-efficient
3855			 * ilb.
3856			 */
3857			new_ilb = find_new_ilb(cpu);
3858			if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
3859				atomic_set(&nohz.load_balancer, nr_cpu_ids);
3860				resched_cpu(new_ilb);
3861				return;
3862			}
3863			return;
3864		}
3865	} else {
3866		if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
3867			return;
3868
3869		cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
3870
3871		if (atomic_read(&nohz.load_balancer) == cpu)
3872			if (atomic_cmpxchg(&nohz.load_balancer, cpu,
3873					   nr_cpu_ids) != cpu)
3874				BUG();
3875	}
3876	return;
3877}
3878#endif
3879
3880static DEFINE_SPINLOCK(balancing);
3881
3882static unsigned long __read_mostly max_load_balance_interval = HZ/10;
3883
3884/*
3885 * Scale the max load_balance interval with the number of CPUs in the system.
3886 * This trades load-balance latency on larger machines for less cross talk.
3887 */
3888static void update_max_interval(void)
3889{
3890	max_load_balance_interval = HZ*num_online_cpus()/10;
3891}
3892
3893/*
3894 * It checks each scheduling domain to see if it is due to be balanced,
3895 * and initiates a balancing operation if so.
3896 *
3897 * Balancing parameters are set up in arch_init_sched_domains.
3898 */
3899static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3900{
3901	int balance = 1;
3902	struct rq *rq = cpu_rq(cpu);
3903	unsigned long interval;
3904	struct sched_domain *sd;
3905	/* Earliest time when we have to do rebalance again */
3906	unsigned long next_balance = jiffies + 60*HZ;
3907	int update_next_balance = 0;
3908	int need_serialize;
3909
3910	update_shares(cpu);
3911
3912	rcu_read_lock();
3913	for_each_domain(cpu, sd) {
3914		if (!(sd->flags & SD_LOAD_BALANCE))
3915			continue;
3916
3917		interval = sd->balance_interval;
3918		if (idle != CPU_IDLE)
3919			interval *= sd->busy_factor;
3920
3921		/* scale ms to jiffies */
3922		interval = msecs_to_jiffies(interval);
3923		interval = clamp(interval, 1UL, max_load_balance_interval);
3924
3925		need_serialize = sd->flags & SD_SERIALIZE;
3926
3927		if (need_serialize) {
3928			if (!spin_trylock(&balancing))
3929				goto out;
3930		}
3931
3932		if (time_after_eq(jiffies, sd->last_balance + interval)) {
3933			if (load_balance(cpu, rq, sd, idle, &balance)) {
3934				/*
3935				 * We've pulled tasks over so either we're no
3936				 * longer idle.
3937				 */
3938				idle = CPU_NOT_IDLE;
3939			}
3940			sd->last_balance = jiffies;
3941		}
3942		if (need_serialize)
3943			spin_unlock(&balancing);
3944out:
3945		if (time_after(next_balance, sd->last_balance + interval)) {
3946			next_balance = sd->last_balance + interval;
3947			update_next_balance = 1;
3948		}
3949
3950		/*
3951		 * Stop the load balance at this level. There is another
3952		 * CPU in our sched group which is doing load balancing more
3953		 * actively.
3954		 */
3955		if (!balance)
3956			break;
3957	}
3958	rcu_read_unlock();
3959
3960	/*
3961	 * next_balance will be updated only when there is a need.
3962	 * When the cpu is attached to null domain for ex, it will not be
3963	 * updated.
3964	 */
3965	if (likely(update_next_balance))
3966		rq->next_balance = next_balance;
3967}
3968
3969#ifdef CONFIG_NO_HZ
3970/*
3971 * In CONFIG_NO_HZ case, the idle balance kickee will do the
3972 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3973 */
3974static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
3975{
3976	struct rq *this_rq = cpu_rq(this_cpu);
3977	struct rq *rq;
3978	int balance_cpu;
3979
3980	if (idle != CPU_IDLE || !this_rq->nohz_balance_kick)
3981		return;
3982
3983	for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
3984		if (balance_cpu == this_cpu)
3985			continue;
3986
3987		/*
3988		 * If this cpu gets work to do, stop the load balancing
3989		 * work being done for other cpus. Next load
3990		 * balancing owner will pick it up.
3991		 */
3992		if (need_resched()) {
3993			this_rq->nohz_balance_kick = 0;
3994			break;
3995		}
3996
3997		raw_spin_lock_irq(&this_rq->lock);
3998		update_rq_clock(this_rq);
3999		update_cpu_load(this_rq);
4000		raw_spin_unlock_irq(&this_rq->lock);
4001
4002		rebalance_domains(balance_cpu, CPU_IDLE);
4003
4004		rq = cpu_rq(balance_cpu);
4005		if (time_after(this_rq->next_balance, rq->next_balance))
4006			this_rq->next_balance = rq->next_balance;
4007	}
4008	nohz.next_balance = this_rq->next_balance;
4009	this_rq->nohz_balance_kick = 0;
4010}
4011
4012/*
4013 * Current heuristic for kicking the idle load balancer
4014 * - first_pick_cpu is the one of the busy CPUs. It will kick
4015 *   idle load balancer when it has more than one process active. This
4016 *   eliminates the need for idle load balancing altogether when we have
4017 *   only one running process in the system (common case).
4018 * - If there are more than one busy CPU, idle load balancer may have
4019 *   to run for active_load_balance to happen (i.e., two busy CPUs are
4020 *   SMT or core siblings and can run better if they move to different
4021 *   physical CPUs). So, second_pick_cpu is the second of the busy CPUs
4022 *   which will kick idle load balancer as soon as it has any load.
4023 */
4024static inline int nohz_kick_needed(struct rq *rq, int cpu)
4025{
4026	unsigned long now = jiffies;
4027	int ret;
4028	int first_pick_cpu, second_pick_cpu;
4029
4030	if (time_before(now, nohz.next_balance))
4031		return 0;
4032
4033	if (rq->idle_at_tick)
4034		return 0;
4035
4036	first_pick_cpu = atomic_read(&nohz.first_pick_cpu);
4037	second_pick_cpu = atomic_read(&nohz.second_pick_cpu);
4038
4039	if (first_pick_cpu < nr_cpu_ids && first_pick_cpu != cpu &&
4040	    second_pick_cpu < nr_cpu_ids && second_pick_cpu != cpu)
4041		return 0;
4042
4043	ret = atomic_cmpxchg(&nohz.first_pick_cpu, nr_cpu_ids, cpu);
4044	if (ret == nr_cpu_ids || ret == cpu) {
4045		atomic_cmpxchg(&nohz.second_pick_cpu, cpu, nr_cpu_ids);
4046		if (rq->nr_running > 1)
4047			return 1;
4048	} else {
4049		ret = atomic_cmpxchg(&nohz.second_pick_cpu, nr_cpu_ids, cpu);
4050		if (ret == nr_cpu_ids || ret == cpu) {
4051			if (rq->nr_running)
4052				return 1;
4053		}
4054	}
4055	return 0;
4056}
4057#else
4058static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
4059#endif
4060
4061/*
4062 * run_rebalance_domains is triggered when needed from the scheduler tick.
4063 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
4064 */
4065static void run_rebalance_domains(struct softirq_action *h)
4066{
4067	int this_cpu = smp_processor_id();
4068	struct rq *this_rq = cpu_rq(this_cpu);
4069	enum cpu_idle_type idle = this_rq->idle_at_tick ?
4070						CPU_IDLE : CPU_NOT_IDLE;
4071
4072	rebalance_domains(this_cpu, idle);
4073
4074	/*
4075	 * If this cpu has a pending nohz_balance_kick, then do the
4076	 * balancing on behalf of the other idle cpus whose ticks are
4077	 * stopped.
4078	 */
4079	nohz_idle_balance(this_cpu, idle);
4080}
4081
4082static inline int on_null_domain(int cpu)
4083{
4084	return !rcu_dereference_sched(cpu_rq(cpu)->sd);
4085}
4086
4087/*
4088 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4089 */
4090static inline void trigger_load_balance(struct rq *rq, int cpu)
4091{
4092	/* Don't need to rebalance while attached to NULL domain */
4093	if (time_after_eq(jiffies, rq->next_balance) &&
4094	    likely(!on_null_domain(cpu)))
4095		raise_softirq(SCHED_SOFTIRQ);
4096#ifdef CONFIG_NO_HZ
4097	else if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
4098		nohz_balancer_kick(cpu);
4099#endif
4100}
4101
4102static void rq_online_fair(struct rq *rq)
4103{
4104	update_sysctl();
4105}
4106
4107static void rq_offline_fair(struct rq *rq)
4108{
4109	update_sysctl();
4110}
4111
4112#else	/* CONFIG_SMP */
4113
4114/*
4115 * on UP we do not need to balance between CPUs:
4116 */
4117static inline void idle_balance(int cpu, struct rq *rq)
4118{
4119}
4120
4121#endif /* CONFIG_SMP */
4122
4123/*
4124 * scheduler tick hitting a task of our scheduling class:
4125 */
4126static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
4127{
4128	struct cfs_rq *cfs_rq;
4129	struct sched_entity *se = &curr->se;
4130
4131	for_each_sched_entity(se) {
4132		cfs_rq = cfs_rq_of(se);
4133		entity_tick(cfs_rq, se, queued);
4134	}
4135}
4136
4137/*
4138 * called on fork with the child task as argument from the parent's context
4139 *  - child not yet on the tasklist
4140 *  - preemption disabled
4141 */
4142static void task_fork_fair(struct task_struct *p)
4143{
4144	struct cfs_rq *cfs_rq = task_cfs_rq(current);
4145	struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
4146	int this_cpu = smp_processor_id();
4147	struct rq *rq = this_rq();
4148	unsigned long flags;
4149
4150	raw_spin_lock_irqsave(&rq->lock, flags);
4151
4152	update_rq_clock(rq);
4153
4154	if (unlikely(task_cpu(p) != this_cpu)) {
4155		rcu_read_lock();
4156		__set_task_cpu(p, this_cpu);
4157		rcu_read_unlock();
4158	}
4159
4160	update_curr(cfs_rq);
4161
4162	if (curr)
4163		se->vruntime = curr->vruntime;
4164	place_entity(cfs_rq, se, 1);
4165
4166	if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
4167		/*
4168		 * Upon rescheduling, sched_class::put_prev_task() will place
4169		 * 'current' within the tree based on its new key value.
4170		 */
4171		swap(curr->vruntime, se->vruntime);
4172		resched_task(rq->curr);
4173	}
4174
4175	se->vruntime -= cfs_rq->min_vruntime;
4176
4177	raw_spin_unlock_irqrestore(&rq->lock, flags);
4178}
4179
4180/*
4181 * Priority of the task has changed. Check to see if we preempt
4182 * the current task.
4183 */
4184static void
4185prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
4186{
4187	if (!p->se.on_rq)
4188		return;
4189
4190	/*
4191	 * Reschedule if we are currently running on this runqueue and
4192	 * our priority decreased, or if we are not currently running on
4193	 * this runqueue and our priority is higher than the current's
4194	 */
4195	if (rq->curr == p) {
4196		if (p->prio > oldprio)
4197			resched_task(rq->curr);
4198	} else
4199		check_preempt_curr(rq, p, 0);
4200}
4201
4202static void switched_from_fair(struct rq *rq, struct task_struct *p)
4203{
4204	struct sched_entity *se = &p->se;
4205	struct cfs_rq *cfs_rq = cfs_rq_of(se);
4206
4207	/*
4208	 * Ensure the task's vruntime is normalized, so that when its
4209	 * switched back to the fair class the enqueue_entity(.flags=0) will
4210	 * do the right thing.
4211	 *
4212	 * If it was on_rq, then the dequeue_entity(.flags=0) will already
4213	 * have normalized the vruntime, if it was !on_rq, then only when
4214	 * the task is sleeping will it still have non-normalized vruntime.
4215	 */
4216	if (!se->on_rq && p->state != TASK_RUNNING) {
4217		/*
4218		 * Fix up our vruntime so that the current sleep doesn't
4219		 * cause 'unlimited' sleep bonus.
4220		 */
4221		place_entity(cfs_rq, se, 0);
4222		se->vruntime -= cfs_rq->min_vruntime;
4223	}
4224}
4225
4226/*
4227 * We switched to the sched_fair class.
4228 */
4229static void switched_to_fair(struct rq *rq, struct task_struct *p)
4230{
4231	if (!p->se.on_rq)
4232		return;
4233
4234	/*
4235	 * We were most likely switched from sched_rt, so
4236	 * kick off the schedule if running, otherwise just see
4237	 * if we can still preempt the current task.
4238	 */
4239	if (rq->curr == p)
4240		resched_task(rq->curr);
4241	else
4242		check_preempt_curr(rq, p, 0);
4243}
4244
4245/* Account for a task changing its policy or group.
4246 *
4247 * This routine is mostly called to set cfs_rq->curr field when a task
4248 * migrates between groups/classes.
4249 */
4250static void set_curr_task_fair(struct rq *rq)
4251{
4252	struct sched_entity *se = &rq->curr->se;
4253
4254	for_each_sched_entity(se)
4255		set_next_entity(cfs_rq_of(se), se);
4256}
4257
4258#ifdef CONFIG_FAIR_GROUP_SCHED
4259static void task_move_group_fair(struct task_struct *p, int on_rq)
4260{
4261	/*
4262	 * If the task was not on the rq at the time of this cgroup movement
4263	 * it must have been asleep, sleeping tasks keep their ->vruntime
4264	 * absolute on their old rq until wakeup (needed for the fair sleeper
4265	 * bonus in place_entity()).
4266	 *
4267	 * If it was on the rq, we've just 'preempted' it, which does convert
4268	 * ->vruntime to a relative base.
4269	 *
4270	 * Make sure both cases convert their relative position when migrating
4271	 * to another cgroup's rq. This does somewhat interfere with the
4272	 * fair sleeper stuff for the first placement, but who cares.
4273	 */
4274	if (!on_rq)
4275		p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
4276	set_task_rq(p, task_cpu(p));
4277	if (!on_rq)
4278		p->se.vruntime += cfs_rq_of(&p->se)->min_vruntime;
4279}
4280#endif
4281
4282static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
4283{
4284	struct sched_entity *se = &task->se;
4285	unsigned int rr_interval = 0;
4286
4287	/*
4288	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
4289	 * idle runqueue:
4290	 */
4291	if (rq->cfs.load.weight)
4292		rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
4293
4294	return rr_interval;
4295}
4296
4297/*
4298 * All the scheduling class methods:
4299 */
4300static const struct sched_class fair_sched_class = {
4301	.next			= &idle_sched_class,
4302	.enqueue_task		= enqueue_task_fair,
4303	.dequeue_task		= dequeue_task_fair,
4304	.yield_task		= yield_task_fair,
4305	.yield_to_task		= yield_to_task_fair,
4306
4307	.check_preempt_curr	= check_preempt_wakeup,
4308
4309	.pick_next_task		= pick_next_task_fair,
4310	.put_prev_task		= put_prev_task_fair,
4311
4312#ifdef CONFIG_SMP
4313	.select_task_rq		= select_task_rq_fair,
4314
4315	.rq_online		= rq_online_fair,
4316	.rq_offline		= rq_offline_fair,
4317
4318	.task_waking		= task_waking_fair,
4319#endif
4320
4321	.set_curr_task          = set_curr_task_fair,
4322	.task_tick		= task_tick_fair,
4323	.task_fork		= task_fork_fair,
4324
4325	.prio_changed		= prio_changed_fair,
4326	.switched_from		= switched_from_fair,
4327	.switched_to		= switched_to_fair,
4328
4329	.get_rr_interval	= get_rr_interval_fair,
4330
4331#ifdef CONFIG_FAIR_GROUP_SCHED
4332	.task_move_group	= task_move_group_fair,
4333#endif
4334};
4335
4336#ifdef CONFIG_SCHED_DEBUG
4337static void print_cfs_stats(struct seq_file *m, int cpu)
4338{
4339	struct cfs_rq *cfs_rq;
4340
4341	rcu_read_lock();
4342	for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
4343		print_cfs_rq(m, cpu, cfs_rq);
4344	rcu_read_unlock();
4345}
4346#endif