Linux Audio

Check our new training course

Yocto / OpenEmbedded training

Feb 10-13, 2025
Register
Loading...
v4.6
  1/*
  2 *  linux/kernel/profile.c
  3 *  Simple profiling. Manages a direct-mapped profile hit count buffer,
  4 *  with configurable resolution, support for restricting the cpus on
  5 *  which profiling is done, and switching between cpu time and
  6 *  schedule() calls via kernel command line parameters passed at boot.
  7 *
  8 *  Scheduler profiling support, Arjan van de Ven and Ingo Molnar,
  9 *	Red Hat, July 2004
 10 *  Consolidation of architecture support code for profiling,
 11 *	Nadia Yvette Chambers, Oracle, July 2004
 12 *  Amortized hit count accounting via per-cpu open-addressed hashtables
 13 *	to resolve timer interrupt livelocks, Nadia Yvette Chambers,
 14 *	Oracle, 2004
 15 */
 16
 17#include <linux/export.h>
 18#include <linux/profile.h>
 19#include <linux/bootmem.h>
 20#include <linux/notifier.h>
 21#include <linux/mm.h>
 22#include <linux/cpumask.h>
 23#include <linux/cpu.h>
 24#include <linux/highmem.h>
 25#include <linux/mutex.h>
 26#include <linux/slab.h>
 27#include <linux/vmalloc.h>
 28#include <asm/sections.h>
 29#include <asm/irq_regs.h>
 30#include <asm/ptrace.h>
 31
 32struct profile_hit {
 33	u32 pc, hits;
 34};
 35#define PROFILE_GRPSHIFT	3
 36#define PROFILE_GRPSZ		(1 << PROFILE_GRPSHIFT)
 37#define NR_PROFILE_HIT		(PAGE_SIZE/sizeof(struct profile_hit))
 38#define NR_PROFILE_GRP		(NR_PROFILE_HIT/PROFILE_GRPSZ)
 39
 
 
 
 40static atomic_t *prof_buffer;
 41static unsigned long prof_len, prof_shift;
 42
 43int prof_on __read_mostly;
 44EXPORT_SYMBOL_GPL(prof_on);
 45
 46static cpumask_var_t prof_cpu_mask;
 47#if defined(CONFIG_SMP) && defined(CONFIG_PROC_FS)
 48static DEFINE_PER_CPU(struct profile_hit *[2], cpu_profile_hits);
 49static DEFINE_PER_CPU(int, cpu_profile_flip);
 50static DEFINE_MUTEX(profile_flip_mutex);
 51#endif /* CONFIG_SMP */
 52
 53int profile_setup(char *str)
 54{
 55	static const char schedstr[] = "schedule";
 56	static const char sleepstr[] = "sleep";
 57	static const char kvmstr[] = "kvm";
 58	int par;
 59
 60	if (!strncmp(str, sleepstr, strlen(sleepstr))) {
 61#ifdef CONFIG_SCHEDSTATS
 62		force_schedstat_enabled();
 63		prof_on = SLEEP_PROFILING;
 64		if (str[strlen(sleepstr)] == ',')
 65			str += strlen(sleepstr) + 1;
 66		if (get_option(&str, &par))
 67			prof_shift = par;
 68		pr_info("kernel sleep profiling enabled (shift: %ld)\n",
 
 69			prof_shift);
 70#else
 71		pr_warn("kernel sleep profiling requires CONFIG_SCHEDSTATS\n");
 
 72#endif /* CONFIG_SCHEDSTATS */
 73	} else if (!strncmp(str, schedstr, strlen(schedstr))) {
 74		prof_on = SCHED_PROFILING;
 75		if (str[strlen(schedstr)] == ',')
 76			str += strlen(schedstr) + 1;
 77		if (get_option(&str, &par))
 78			prof_shift = par;
 79		pr_info("kernel schedule profiling enabled (shift: %ld)\n",
 
 80			prof_shift);
 81	} else if (!strncmp(str, kvmstr, strlen(kvmstr))) {
 82		prof_on = KVM_PROFILING;
 83		if (str[strlen(kvmstr)] == ',')
 84			str += strlen(kvmstr) + 1;
 85		if (get_option(&str, &par))
 86			prof_shift = par;
 87		pr_info("kernel KVM profiling enabled (shift: %ld)\n",
 
 88			prof_shift);
 89	} else if (get_option(&str, &par)) {
 90		prof_shift = par;
 91		prof_on = CPU_PROFILING;
 92		pr_info("kernel profiling enabled (shift: %ld)\n",
 93			prof_shift);
 94	}
 95	return 1;
 96}
 97__setup("profile=", profile_setup);
 98
 99
100int __ref profile_init(void)
101{
102	int buffer_bytes;
103	if (!prof_on)
104		return 0;
105
106	/* only text is profiled */
107	prof_len = (_etext - _stext) >> prof_shift;
108	buffer_bytes = prof_len*sizeof(atomic_t);
109
110	if (!alloc_cpumask_var(&prof_cpu_mask, GFP_KERNEL))
111		return -ENOMEM;
112
113	cpumask_copy(prof_cpu_mask, cpu_possible_mask);
114
115	prof_buffer = kzalloc(buffer_bytes, GFP_KERNEL|__GFP_NOWARN);
116	if (prof_buffer)
117		return 0;
118
119	prof_buffer = alloc_pages_exact(buffer_bytes,
120					GFP_KERNEL|__GFP_ZERO|__GFP_NOWARN);
121	if (prof_buffer)
122		return 0;
123
124	prof_buffer = vzalloc(buffer_bytes);
125	if (prof_buffer)
126		return 0;
127
128	free_cpumask_var(prof_cpu_mask);
129	return -ENOMEM;
130}
131
132/* Profile event notifications */
133
134static BLOCKING_NOTIFIER_HEAD(task_exit_notifier);
135static ATOMIC_NOTIFIER_HEAD(task_free_notifier);
136static BLOCKING_NOTIFIER_HEAD(munmap_notifier);
137
138void profile_task_exit(struct task_struct *task)
139{
140	blocking_notifier_call_chain(&task_exit_notifier, 0, task);
141}
142
143int profile_handoff_task(struct task_struct *task)
144{
145	int ret;
146	ret = atomic_notifier_call_chain(&task_free_notifier, 0, task);
147	return (ret == NOTIFY_OK) ? 1 : 0;
148}
149
150void profile_munmap(unsigned long addr)
151{
152	blocking_notifier_call_chain(&munmap_notifier, 0, (void *)addr);
153}
154
155int task_handoff_register(struct notifier_block *n)
156{
157	return atomic_notifier_chain_register(&task_free_notifier, n);
158}
159EXPORT_SYMBOL_GPL(task_handoff_register);
160
161int task_handoff_unregister(struct notifier_block *n)
162{
163	return atomic_notifier_chain_unregister(&task_free_notifier, n);
164}
165EXPORT_SYMBOL_GPL(task_handoff_unregister);
166
167int profile_event_register(enum profile_type type, struct notifier_block *n)
168{
169	int err = -EINVAL;
170
171	switch (type) {
172	case PROFILE_TASK_EXIT:
173		err = blocking_notifier_chain_register(
174				&task_exit_notifier, n);
175		break;
176	case PROFILE_MUNMAP:
177		err = blocking_notifier_chain_register(
178				&munmap_notifier, n);
179		break;
180	}
181
182	return err;
183}
184EXPORT_SYMBOL_GPL(profile_event_register);
185
186int profile_event_unregister(enum profile_type type, struct notifier_block *n)
187{
188	int err = -EINVAL;
189
190	switch (type) {
191	case PROFILE_TASK_EXIT:
192		err = blocking_notifier_chain_unregister(
193				&task_exit_notifier, n);
194		break;
195	case PROFILE_MUNMAP:
196		err = blocking_notifier_chain_unregister(
197				&munmap_notifier, n);
198		break;
199	}
200
201	return err;
202}
203EXPORT_SYMBOL_GPL(profile_event_unregister);
204
205#if defined(CONFIG_SMP) && defined(CONFIG_PROC_FS)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
206/*
207 * Each cpu has a pair of open-addressed hashtables for pending
208 * profile hits. read_profile() IPI's all cpus to request them
209 * to flip buffers and flushes their contents to prof_buffer itself.
210 * Flip requests are serialized by the profile_flip_mutex. The sole
211 * use of having a second hashtable is for avoiding cacheline
212 * contention that would otherwise happen during flushes of pending
213 * profile hits required for the accuracy of reported profile hits
214 * and so resurrect the interrupt livelock issue.
215 *
216 * The open-addressed hashtables are indexed by profile buffer slot
217 * and hold the number of pending hits to that profile buffer slot on
218 * a cpu in an entry. When the hashtable overflows, all pending hits
219 * are accounted to their corresponding profile buffer slots with
220 * atomic_add() and the hashtable emptied. As numerous pending hits
221 * may be accounted to a profile buffer slot in a hashtable entry,
222 * this amortizes a number of atomic profile buffer increments likely
223 * to be far larger than the number of entries in the hashtable,
224 * particularly given that the number of distinct profile buffer
225 * positions to which hits are accounted during short intervals (e.g.
226 * several seconds) is usually very small. Exclusion from buffer
227 * flipping is provided by interrupt disablement (note that for
228 * SCHED_PROFILING or SLEEP_PROFILING profile_hit() may be called from
229 * process context).
230 * The hash function is meant to be lightweight as opposed to strong,
231 * and was vaguely inspired by ppc64 firmware-supported inverted
232 * pagetable hash functions, but uses a full hashtable full of finite
233 * collision chains, not just pairs of them.
234 *
235 * -- nyc
236 */
237static void __profile_flip_buffers(void *unused)
238{
239	int cpu = smp_processor_id();
240
241	per_cpu(cpu_profile_flip, cpu) = !per_cpu(cpu_profile_flip, cpu);
242}
243
244static void profile_flip_buffers(void)
245{
246	int i, j, cpu;
247
248	mutex_lock(&profile_flip_mutex);
249	j = per_cpu(cpu_profile_flip, get_cpu());
250	put_cpu();
251	on_each_cpu(__profile_flip_buffers, NULL, 1);
252	for_each_online_cpu(cpu) {
253		struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[j];
254		for (i = 0; i < NR_PROFILE_HIT; ++i) {
255			if (!hits[i].hits) {
256				if (hits[i].pc)
257					hits[i].pc = 0;
258				continue;
259			}
260			atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]);
261			hits[i].hits = hits[i].pc = 0;
262		}
263	}
264	mutex_unlock(&profile_flip_mutex);
265}
266
267static void profile_discard_flip_buffers(void)
268{
269	int i, cpu;
270
271	mutex_lock(&profile_flip_mutex);
272	i = per_cpu(cpu_profile_flip, get_cpu());
273	put_cpu();
274	on_each_cpu(__profile_flip_buffers, NULL, 1);
275	for_each_online_cpu(cpu) {
276		struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[i];
277		memset(hits, 0, NR_PROFILE_HIT*sizeof(struct profile_hit));
278	}
279	mutex_unlock(&profile_flip_mutex);
280}
281
282static void do_profile_hits(int type, void *__pc, unsigned int nr_hits)
283{
284	unsigned long primary, secondary, flags, pc = (unsigned long)__pc;
285	int i, j, cpu;
286	struct profile_hit *hits;
287
288	pc = min((pc - (unsigned long)_stext) >> prof_shift, prof_len - 1);
289	i = primary = (pc & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT;
290	secondary = (~(pc << 1) & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT;
291	cpu = get_cpu();
292	hits = per_cpu(cpu_profile_hits, cpu)[per_cpu(cpu_profile_flip, cpu)];
293	if (!hits) {
294		put_cpu();
295		return;
296	}
297	/*
298	 * We buffer the global profiler buffer into a per-CPU
299	 * queue and thus reduce the number of global (and possibly
300	 * NUMA-alien) accesses. The write-queue is self-coalescing:
301	 */
302	local_irq_save(flags);
303	do {
304		for (j = 0; j < PROFILE_GRPSZ; ++j) {
305			if (hits[i + j].pc == pc) {
306				hits[i + j].hits += nr_hits;
307				goto out;
308			} else if (!hits[i + j].hits) {
309				hits[i + j].pc = pc;
310				hits[i + j].hits = nr_hits;
311				goto out;
312			}
313		}
314		i = (i + secondary) & (NR_PROFILE_HIT - 1);
315	} while (i != primary);
316
317	/*
318	 * Add the current hit(s) and flush the write-queue out
319	 * to the global buffer:
320	 */
321	atomic_add(nr_hits, &prof_buffer[pc]);
322	for (i = 0; i < NR_PROFILE_HIT; ++i) {
323		atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]);
324		hits[i].pc = hits[i].hits = 0;
325	}
326out:
327	local_irq_restore(flags);
328	put_cpu();
329}
330
331static int profile_cpu_callback(struct notifier_block *info,
332					unsigned long action, void *__cpu)
333{
334	int node, cpu = (unsigned long)__cpu;
335	struct page *page;
336
337	switch (action) {
338	case CPU_UP_PREPARE:
339	case CPU_UP_PREPARE_FROZEN:
340		node = cpu_to_mem(cpu);
341		per_cpu(cpu_profile_flip, cpu) = 0;
342		if (!per_cpu(cpu_profile_hits, cpu)[1]) {
343			page = __alloc_pages_node(node,
344					GFP_KERNEL | __GFP_ZERO,
345					0);
346			if (!page)
347				return notifier_from_errno(-ENOMEM);
348			per_cpu(cpu_profile_hits, cpu)[1] = page_address(page);
349		}
350		if (!per_cpu(cpu_profile_hits, cpu)[0]) {
351			page = __alloc_pages_node(node,
352					GFP_KERNEL | __GFP_ZERO,
353					0);
354			if (!page)
355				goto out_free;
356			per_cpu(cpu_profile_hits, cpu)[0] = page_address(page);
357		}
358		break;
359out_free:
360		page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]);
361		per_cpu(cpu_profile_hits, cpu)[1] = NULL;
362		__free_page(page);
363		return notifier_from_errno(-ENOMEM);
364	case CPU_ONLINE:
365	case CPU_ONLINE_FROZEN:
366		if (prof_cpu_mask != NULL)
367			cpumask_set_cpu(cpu, prof_cpu_mask);
368		break;
369	case CPU_UP_CANCELED:
370	case CPU_UP_CANCELED_FROZEN:
371	case CPU_DEAD:
372	case CPU_DEAD_FROZEN:
373		if (prof_cpu_mask != NULL)
374			cpumask_clear_cpu(cpu, prof_cpu_mask);
375		if (per_cpu(cpu_profile_hits, cpu)[0]) {
376			page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[0]);
377			per_cpu(cpu_profile_hits, cpu)[0] = NULL;
378			__free_page(page);
379		}
380		if (per_cpu(cpu_profile_hits, cpu)[1]) {
381			page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]);
382			per_cpu(cpu_profile_hits, cpu)[1] = NULL;
383			__free_page(page);
384		}
385		break;
386	}
387	return NOTIFY_OK;
388}
389#else /* !CONFIG_SMP */
390#define profile_flip_buffers()		do { } while (0)
391#define profile_discard_flip_buffers()	do { } while (0)
392#define profile_cpu_callback		NULL
393
394static void do_profile_hits(int type, void *__pc, unsigned int nr_hits)
395{
396	unsigned long pc;
397	pc = ((unsigned long)__pc - (unsigned long)_stext) >> prof_shift;
398	atomic_add(nr_hits, &prof_buffer[min(pc, prof_len - 1)]);
399}
400#endif /* !CONFIG_SMP */
401
402void profile_hits(int type, void *__pc, unsigned int nr_hits)
403{
404	if (prof_on != type || !prof_buffer)
405		return;
406	do_profile_hits(type, __pc, nr_hits);
407}
408EXPORT_SYMBOL_GPL(profile_hits);
409
410void profile_tick(int type)
411{
412	struct pt_regs *regs = get_irq_regs();
413
 
 
414	if (!user_mode(regs) && prof_cpu_mask != NULL &&
415	    cpumask_test_cpu(smp_processor_id(), prof_cpu_mask))
416		profile_hit(type, (void *)profile_pc(regs));
417}
418
419#ifdef CONFIG_PROC_FS
420#include <linux/proc_fs.h>
421#include <linux/seq_file.h>
422#include <asm/uaccess.h>
423
424static int prof_cpu_mask_proc_show(struct seq_file *m, void *v)
425{
426	seq_printf(m, "%*pb\n", cpumask_pr_args(prof_cpu_mask));
 
427	return 0;
428}
429
430static int prof_cpu_mask_proc_open(struct inode *inode, struct file *file)
431{
432	return single_open(file, prof_cpu_mask_proc_show, NULL);
433}
434
435static ssize_t prof_cpu_mask_proc_write(struct file *file,
436	const char __user *buffer, size_t count, loff_t *pos)
437{
438	cpumask_var_t new_value;
439	int err;
440
441	if (!alloc_cpumask_var(&new_value, GFP_KERNEL))
442		return -ENOMEM;
443
444	err = cpumask_parse_user(buffer, count, new_value);
445	if (!err) {
446		cpumask_copy(prof_cpu_mask, new_value);
447		err = count;
448	}
449	free_cpumask_var(new_value);
450	return err;
451}
452
453static const struct file_operations prof_cpu_mask_proc_fops = {
454	.open		= prof_cpu_mask_proc_open,
455	.read		= seq_read,
456	.llseek		= seq_lseek,
457	.release	= single_release,
458	.write		= prof_cpu_mask_proc_write,
459};
460
461void create_prof_cpu_mask(void)
462{
463	/* create /proc/irq/prof_cpu_mask */
464	proc_create("irq/prof_cpu_mask", 0600, NULL, &prof_cpu_mask_proc_fops);
465}
466
467/*
468 * This function accesses profiling information. The returned data is
469 * binary: the sampling step and the actual contents of the profile
470 * buffer. Use of the program readprofile is recommended in order to
471 * get meaningful info out of these data.
472 */
473static ssize_t
474read_profile(struct file *file, char __user *buf, size_t count, loff_t *ppos)
475{
476	unsigned long p = *ppos;
477	ssize_t read;
478	char *pnt;
479	unsigned int sample_step = 1 << prof_shift;
480
481	profile_flip_buffers();
482	if (p >= (prof_len+1)*sizeof(unsigned int))
483		return 0;
484	if (count > (prof_len+1)*sizeof(unsigned int) - p)
485		count = (prof_len+1)*sizeof(unsigned int) - p;
486	read = 0;
487
488	while (p < sizeof(unsigned int) && count > 0) {
489		if (put_user(*((char *)(&sample_step)+p), buf))
490			return -EFAULT;
491		buf++; p++; count--; read++;
492	}
493	pnt = (char *)prof_buffer + p - sizeof(atomic_t);
494	if (copy_to_user(buf, (void *)pnt, count))
495		return -EFAULT;
496	read += count;
497	*ppos += read;
498	return read;
499}
500
501/*
502 * Writing to /proc/profile resets the counters
503 *
504 * Writing a 'profiling multiplier' value into it also re-sets the profiling
505 * interrupt frequency, on architectures that support this.
506 */
507static ssize_t write_profile(struct file *file, const char __user *buf,
508			     size_t count, loff_t *ppos)
509{
510#ifdef CONFIG_SMP
511	extern int setup_profiling_timer(unsigned int multiplier);
512
513	if (count == sizeof(int)) {
514		unsigned int multiplier;
515
516		if (copy_from_user(&multiplier, buf, sizeof(int)))
517			return -EFAULT;
518
519		if (setup_profiling_timer(multiplier))
520			return -EINVAL;
521	}
522#endif
523	profile_discard_flip_buffers();
524	memset(prof_buffer, 0, prof_len * sizeof(atomic_t));
525	return count;
526}
527
528static const struct file_operations proc_profile_operations = {
529	.read		= read_profile,
530	.write		= write_profile,
531	.llseek		= default_llseek,
532};
533
534#ifdef CONFIG_SMP
535static void profile_nop(void *unused)
536{
537}
538
539static int create_hash_tables(void)
540{
541	int cpu;
542
543	for_each_online_cpu(cpu) {
544		int node = cpu_to_mem(cpu);
545		struct page *page;
546
547		page = __alloc_pages_node(node,
548				GFP_KERNEL | __GFP_ZERO | __GFP_THISNODE,
549				0);
550		if (!page)
551			goto out_cleanup;
552		per_cpu(cpu_profile_hits, cpu)[1]
553				= (struct profile_hit *)page_address(page);
554		page = __alloc_pages_node(node,
555				GFP_KERNEL | __GFP_ZERO | __GFP_THISNODE,
556				0);
557		if (!page)
558			goto out_cleanup;
559		per_cpu(cpu_profile_hits, cpu)[0]
560				= (struct profile_hit *)page_address(page);
561	}
562	return 0;
563out_cleanup:
564	prof_on = 0;
565	smp_mb();
566	on_each_cpu(profile_nop, NULL, 1);
567	for_each_online_cpu(cpu) {
568		struct page *page;
569
570		if (per_cpu(cpu_profile_hits, cpu)[0]) {
571			page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[0]);
572			per_cpu(cpu_profile_hits, cpu)[0] = NULL;
573			__free_page(page);
574		}
575		if (per_cpu(cpu_profile_hits, cpu)[1]) {
576			page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]);
577			per_cpu(cpu_profile_hits, cpu)[1] = NULL;
578			__free_page(page);
579		}
580	}
581	return -1;
582}
583#else
584#define create_hash_tables()			({ 0; })
585#endif
586
587int __ref create_proc_profile(void) /* false positive from hotcpu_notifier */
588{
589	struct proc_dir_entry *entry;
590	int err = 0;
591
592	if (!prof_on)
593		return 0;
594
595	cpu_notifier_register_begin();
596
597	if (create_hash_tables()) {
598		err = -ENOMEM;
599		goto out;
600	}
601
602	entry = proc_create("profile", S_IWUSR | S_IRUGO,
603			    NULL, &proc_profile_operations);
604	if (!entry)
605		goto out;
606	proc_set_size(entry, (1 + prof_len) * sizeof(atomic_t));
607	__hotcpu_notifier(profile_cpu_callback, 0);
608
609out:
610	cpu_notifier_register_done();
611	return err;
612}
613subsys_initcall(create_proc_profile);
614#endif /* CONFIG_PROC_FS */
v3.1
  1/*
  2 *  linux/kernel/profile.c
  3 *  Simple profiling. Manages a direct-mapped profile hit count buffer,
  4 *  with configurable resolution, support for restricting the cpus on
  5 *  which profiling is done, and switching between cpu time and
  6 *  schedule() calls via kernel command line parameters passed at boot.
  7 *
  8 *  Scheduler profiling support, Arjan van de Ven and Ingo Molnar,
  9 *	Red Hat, July 2004
 10 *  Consolidation of architecture support code for profiling,
 11 *	William Irwin, Oracle, July 2004
 12 *  Amortized hit count accounting via per-cpu open-addressed hashtables
 13 *	to resolve timer interrupt livelocks, William Irwin, Oracle, 2004
 
 14 */
 15
 16#include <linux/module.h>
 17#include <linux/profile.h>
 18#include <linux/bootmem.h>
 19#include <linux/notifier.h>
 20#include <linux/mm.h>
 21#include <linux/cpumask.h>
 22#include <linux/cpu.h>
 23#include <linux/highmem.h>
 24#include <linux/mutex.h>
 25#include <linux/slab.h>
 26#include <linux/vmalloc.h>
 27#include <asm/sections.h>
 28#include <asm/irq_regs.h>
 29#include <asm/ptrace.h>
 30
 31struct profile_hit {
 32	u32 pc, hits;
 33};
 34#define PROFILE_GRPSHIFT	3
 35#define PROFILE_GRPSZ		(1 << PROFILE_GRPSHIFT)
 36#define NR_PROFILE_HIT		(PAGE_SIZE/sizeof(struct profile_hit))
 37#define NR_PROFILE_GRP		(NR_PROFILE_HIT/PROFILE_GRPSZ)
 38
 39/* Oprofile timer tick hook */
 40static int (*timer_hook)(struct pt_regs *) __read_mostly;
 41
 42static atomic_t *prof_buffer;
 43static unsigned long prof_len, prof_shift;
 44
 45int prof_on __read_mostly;
 46EXPORT_SYMBOL_GPL(prof_on);
 47
 48static cpumask_var_t prof_cpu_mask;
 49#ifdef CONFIG_SMP
 50static DEFINE_PER_CPU(struct profile_hit *[2], cpu_profile_hits);
 51static DEFINE_PER_CPU(int, cpu_profile_flip);
 52static DEFINE_MUTEX(profile_flip_mutex);
 53#endif /* CONFIG_SMP */
 54
 55int profile_setup(char *str)
 56{
 57	static char schedstr[] = "schedule";
 58	static char sleepstr[] = "sleep";
 59	static char kvmstr[] = "kvm";
 60	int par;
 61
 62	if (!strncmp(str, sleepstr, strlen(sleepstr))) {
 63#ifdef CONFIG_SCHEDSTATS
 
 64		prof_on = SLEEP_PROFILING;
 65		if (str[strlen(sleepstr)] == ',')
 66			str += strlen(sleepstr) + 1;
 67		if (get_option(&str, &par))
 68			prof_shift = par;
 69		printk(KERN_INFO
 70			"kernel sleep profiling enabled (shift: %ld)\n",
 71			prof_shift);
 72#else
 73		printk(KERN_WARNING
 74			"kernel sleep profiling requires CONFIG_SCHEDSTATS\n");
 75#endif /* CONFIG_SCHEDSTATS */
 76	} else if (!strncmp(str, schedstr, strlen(schedstr))) {
 77		prof_on = SCHED_PROFILING;
 78		if (str[strlen(schedstr)] == ',')
 79			str += strlen(schedstr) + 1;
 80		if (get_option(&str, &par))
 81			prof_shift = par;
 82		printk(KERN_INFO
 83			"kernel schedule profiling enabled (shift: %ld)\n",
 84			prof_shift);
 85	} else if (!strncmp(str, kvmstr, strlen(kvmstr))) {
 86		prof_on = KVM_PROFILING;
 87		if (str[strlen(kvmstr)] == ',')
 88			str += strlen(kvmstr) + 1;
 89		if (get_option(&str, &par))
 90			prof_shift = par;
 91		printk(KERN_INFO
 92			"kernel KVM profiling enabled (shift: %ld)\n",
 93			prof_shift);
 94	} else if (get_option(&str, &par)) {
 95		prof_shift = par;
 96		prof_on = CPU_PROFILING;
 97		printk(KERN_INFO "kernel profiling enabled (shift: %ld)\n",
 98			prof_shift);
 99	}
100	return 1;
101}
102__setup("profile=", profile_setup);
103
104
105int __ref profile_init(void)
106{
107	int buffer_bytes;
108	if (!prof_on)
109		return 0;
110
111	/* only text is profiled */
112	prof_len = (_etext - _stext) >> prof_shift;
113	buffer_bytes = prof_len*sizeof(atomic_t);
114
115	if (!alloc_cpumask_var(&prof_cpu_mask, GFP_KERNEL))
116		return -ENOMEM;
117
118	cpumask_copy(prof_cpu_mask, cpu_possible_mask);
119
120	prof_buffer = kzalloc(buffer_bytes, GFP_KERNEL|__GFP_NOWARN);
121	if (prof_buffer)
122		return 0;
123
124	prof_buffer = alloc_pages_exact(buffer_bytes,
125					GFP_KERNEL|__GFP_ZERO|__GFP_NOWARN);
126	if (prof_buffer)
127		return 0;
128
129	prof_buffer = vzalloc(buffer_bytes);
130	if (prof_buffer)
131		return 0;
132
133	free_cpumask_var(prof_cpu_mask);
134	return -ENOMEM;
135}
136
137/* Profile event notifications */
138
139static BLOCKING_NOTIFIER_HEAD(task_exit_notifier);
140static ATOMIC_NOTIFIER_HEAD(task_free_notifier);
141static BLOCKING_NOTIFIER_HEAD(munmap_notifier);
142
143void profile_task_exit(struct task_struct *task)
144{
145	blocking_notifier_call_chain(&task_exit_notifier, 0, task);
146}
147
148int profile_handoff_task(struct task_struct *task)
149{
150	int ret;
151	ret = atomic_notifier_call_chain(&task_free_notifier, 0, task);
152	return (ret == NOTIFY_OK) ? 1 : 0;
153}
154
155void profile_munmap(unsigned long addr)
156{
157	blocking_notifier_call_chain(&munmap_notifier, 0, (void *)addr);
158}
159
160int task_handoff_register(struct notifier_block *n)
161{
162	return atomic_notifier_chain_register(&task_free_notifier, n);
163}
164EXPORT_SYMBOL_GPL(task_handoff_register);
165
166int task_handoff_unregister(struct notifier_block *n)
167{
168	return atomic_notifier_chain_unregister(&task_free_notifier, n);
169}
170EXPORT_SYMBOL_GPL(task_handoff_unregister);
171
172int profile_event_register(enum profile_type type, struct notifier_block *n)
173{
174	int err = -EINVAL;
175
176	switch (type) {
177	case PROFILE_TASK_EXIT:
178		err = blocking_notifier_chain_register(
179				&task_exit_notifier, n);
180		break;
181	case PROFILE_MUNMAP:
182		err = blocking_notifier_chain_register(
183				&munmap_notifier, n);
184		break;
185	}
186
187	return err;
188}
189EXPORT_SYMBOL_GPL(profile_event_register);
190
191int profile_event_unregister(enum profile_type type, struct notifier_block *n)
192{
193	int err = -EINVAL;
194
195	switch (type) {
196	case PROFILE_TASK_EXIT:
197		err = blocking_notifier_chain_unregister(
198				&task_exit_notifier, n);
199		break;
200	case PROFILE_MUNMAP:
201		err = blocking_notifier_chain_unregister(
202				&munmap_notifier, n);
203		break;
204	}
205
206	return err;
207}
208EXPORT_SYMBOL_GPL(profile_event_unregister);
209
210int register_timer_hook(int (*hook)(struct pt_regs *))
211{
212	if (timer_hook)
213		return -EBUSY;
214	timer_hook = hook;
215	return 0;
216}
217EXPORT_SYMBOL_GPL(register_timer_hook);
218
219void unregister_timer_hook(int (*hook)(struct pt_regs *))
220{
221	WARN_ON(hook != timer_hook);
222	timer_hook = NULL;
223	/* make sure all CPUs see the NULL hook */
224	synchronize_sched();  /* Allow ongoing interrupts to complete. */
225}
226EXPORT_SYMBOL_GPL(unregister_timer_hook);
227
228
229#ifdef CONFIG_SMP
230/*
231 * Each cpu has a pair of open-addressed hashtables for pending
232 * profile hits. read_profile() IPI's all cpus to request them
233 * to flip buffers and flushes their contents to prof_buffer itself.
234 * Flip requests are serialized by the profile_flip_mutex. The sole
235 * use of having a second hashtable is for avoiding cacheline
236 * contention that would otherwise happen during flushes of pending
237 * profile hits required for the accuracy of reported profile hits
238 * and so resurrect the interrupt livelock issue.
239 *
240 * The open-addressed hashtables are indexed by profile buffer slot
241 * and hold the number of pending hits to that profile buffer slot on
242 * a cpu in an entry. When the hashtable overflows, all pending hits
243 * are accounted to their corresponding profile buffer slots with
244 * atomic_add() and the hashtable emptied. As numerous pending hits
245 * may be accounted to a profile buffer slot in a hashtable entry,
246 * this amortizes a number of atomic profile buffer increments likely
247 * to be far larger than the number of entries in the hashtable,
248 * particularly given that the number of distinct profile buffer
249 * positions to which hits are accounted during short intervals (e.g.
250 * several seconds) is usually very small. Exclusion from buffer
251 * flipping is provided by interrupt disablement (note that for
252 * SCHED_PROFILING or SLEEP_PROFILING profile_hit() may be called from
253 * process context).
254 * The hash function is meant to be lightweight as opposed to strong,
255 * and was vaguely inspired by ppc64 firmware-supported inverted
256 * pagetable hash functions, but uses a full hashtable full of finite
257 * collision chains, not just pairs of them.
258 *
259 * -- wli
260 */
261static void __profile_flip_buffers(void *unused)
262{
263	int cpu = smp_processor_id();
264
265	per_cpu(cpu_profile_flip, cpu) = !per_cpu(cpu_profile_flip, cpu);
266}
267
268static void profile_flip_buffers(void)
269{
270	int i, j, cpu;
271
272	mutex_lock(&profile_flip_mutex);
273	j = per_cpu(cpu_profile_flip, get_cpu());
274	put_cpu();
275	on_each_cpu(__profile_flip_buffers, NULL, 1);
276	for_each_online_cpu(cpu) {
277		struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[j];
278		for (i = 0; i < NR_PROFILE_HIT; ++i) {
279			if (!hits[i].hits) {
280				if (hits[i].pc)
281					hits[i].pc = 0;
282				continue;
283			}
284			atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]);
285			hits[i].hits = hits[i].pc = 0;
286		}
287	}
288	mutex_unlock(&profile_flip_mutex);
289}
290
291static void profile_discard_flip_buffers(void)
292{
293	int i, cpu;
294
295	mutex_lock(&profile_flip_mutex);
296	i = per_cpu(cpu_profile_flip, get_cpu());
297	put_cpu();
298	on_each_cpu(__profile_flip_buffers, NULL, 1);
299	for_each_online_cpu(cpu) {
300		struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[i];
301		memset(hits, 0, NR_PROFILE_HIT*sizeof(struct profile_hit));
302	}
303	mutex_unlock(&profile_flip_mutex);
304}
305
306static void do_profile_hits(int type, void *__pc, unsigned int nr_hits)
307{
308	unsigned long primary, secondary, flags, pc = (unsigned long)__pc;
309	int i, j, cpu;
310	struct profile_hit *hits;
311
312	pc = min((pc - (unsigned long)_stext) >> prof_shift, prof_len - 1);
313	i = primary = (pc & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT;
314	secondary = (~(pc << 1) & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT;
315	cpu = get_cpu();
316	hits = per_cpu(cpu_profile_hits, cpu)[per_cpu(cpu_profile_flip, cpu)];
317	if (!hits) {
318		put_cpu();
319		return;
320	}
321	/*
322	 * We buffer the global profiler buffer into a per-CPU
323	 * queue and thus reduce the number of global (and possibly
324	 * NUMA-alien) accesses. The write-queue is self-coalescing:
325	 */
326	local_irq_save(flags);
327	do {
328		for (j = 0; j < PROFILE_GRPSZ; ++j) {
329			if (hits[i + j].pc == pc) {
330				hits[i + j].hits += nr_hits;
331				goto out;
332			} else if (!hits[i + j].hits) {
333				hits[i + j].pc = pc;
334				hits[i + j].hits = nr_hits;
335				goto out;
336			}
337		}
338		i = (i + secondary) & (NR_PROFILE_HIT - 1);
339	} while (i != primary);
340
341	/*
342	 * Add the current hit(s) and flush the write-queue out
343	 * to the global buffer:
344	 */
345	atomic_add(nr_hits, &prof_buffer[pc]);
346	for (i = 0; i < NR_PROFILE_HIT; ++i) {
347		atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]);
348		hits[i].pc = hits[i].hits = 0;
349	}
350out:
351	local_irq_restore(flags);
352	put_cpu();
353}
354
355static int __cpuinit profile_cpu_callback(struct notifier_block *info,
356					unsigned long action, void *__cpu)
357{
358	int node, cpu = (unsigned long)__cpu;
359	struct page *page;
360
361	switch (action) {
362	case CPU_UP_PREPARE:
363	case CPU_UP_PREPARE_FROZEN:
364		node = cpu_to_mem(cpu);
365		per_cpu(cpu_profile_flip, cpu) = 0;
366		if (!per_cpu(cpu_profile_hits, cpu)[1]) {
367			page = alloc_pages_exact_node(node,
368					GFP_KERNEL | __GFP_ZERO,
369					0);
370			if (!page)
371				return notifier_from_errno(-ENOMEM);
372			per_cpu(cpu_profile_hits, cpu)[1] = page_address(page);
373		}
374		if (!per_cpu(cpu_profile_hits, cpu)[0]) {
375			page = alloc_pages_exact_node(node,
376					GFP_KERNEL | __GFP_ZERO,
377					0);
378			if (!page)
379				goto out_free;
380			per_cpu(cpu_profile_hits, cpu)[0] = page_address(page);
381		}
382		break;
383out_free:
384		page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]);
385		per_cpu(cpu_profile_hits, cpu)[1] = NULL;
386		__free_page(page);
387		return notifier_from_errno(-ENOMEM);
388	case CPU_ONLINE:
389	case CPU_ONLINE_FROZEN:
390		if (prof_cpu_mask != NULL)
391			cpumask_set_cpu(cpu, prof_cpu_mask);
392		break;
393	case CPU_UP_CANCELED:
394	case CPU_UP_CANCELED_FROZEN:
395	case CPU_DEAD:
396	case CPU_DEAD_FROZEN:
397		if (prof_cpu_mask != NULL)
398			cpumask_clear_cpu(cpu, prof_cpu_mask);
399		if (per_cpu(cpu_profile_hits, cpu)[0]) {
400			page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[0]);
401			per_cpu(cpu_profile_hits, cpu)[0] = NULL;
402			__free_page(page);
403		}
404		if (per_cpu(cpu_profile_hits, cpu)[1]) {
405			page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]);
406			per_cpu(cpu_profile_hits, cpu)[1] = NULL;
407			__free_page(page);
408		}
409		break;
410	}
411	return NOTIFY_OK;
412}
413#else /* !CONFIG_SMP */
414#define profile_flip_buffers()		do { } while (0)
415#define profile_discard_flip_buffers()	do { } while (0)
416#define profile_cpu_callback		NULL
417
418static void do_profile_hits(int type, void *__pc, unsigned int nr_hits)
419{
420	unsigned long pc;
421	pc = ((unsigned long)__pc - (unsigned long)_stext) >> prof_shift;
422	atomic_add(nr_hits, &prof_buffer[min(pc, prof_len - 1)]);
423}
424#endif /* !CONFIG_SMP */
425
426void profile_hits(int type, void *__pc, unsigned int nr_hits)
427{
428	if (prof_on != type || !prof_buffer)
429		return;
430	do_profile_hits(type, __pc, nr_hits);
431}
432EXPORT_SYMBOL_GPL(profile_hits);
433
434void profile_tick(int type)
435{
436	struct pt_regs *regs = get_irq_regs();
437
438	if (type == CPU_PROFILING && timer_hook)
439		timer_hook(regs);
440	if (!user_mode(regs) && prof_cpu_mask != NULL &&
441	    cpumask_test_cpu(smp_processor_id(), prof_cpu_mask))
442		profile_hit(type, (void *)profile_pc(regs));
443}
444
445#ifdef CONFIG_PROC_FS
446#include <linux/proc_fs.h>
447#include <linux/seq_file.h>
448#include <asm/uaccess.h>
449
450static int prof_cpu_mask_proc_show(struct seq_file *m, void *v)
451{
452	seq_cpumask(m, prof_cpu_mask);
453	seq_putc(m, '\n');
454	return 0;
455}
456
457static int prof_cpu_mask_proc_open(struct inode *inode, struct file *file)
458{
459	return single_open(file, prof_cpu_mask_proc_show, NULL);
460}
461
462static ssize_t prof_cpu_mask_proc_write(struct file *file,
463	const char __user *buffer, size_t count, loff_t *pos)
464{
465	cpumask_var_t new_value;
466	int err;
467
468	if (!alloc_cpumask_var(&new_value, GFP_KERNEL))
469		return -ENOMEM;
470
471	err = cpumask_parse_user(buffer, count, new_value);
472	if (!err) {
473		cpumask_copy(prof_cpu_mask, new_value);
474		err = count;
475	}
476	free_cpumask_var(new_value);
477	return err;
478}
479
480static const struct file_operations prof_cpu_mask_proc_fops = {
481	.open		= prof_cpu_mask_proc_open,
482	.read		= seq_read,
483	.llseek		= seq_lseek,
484	.release	= single_release,
485	.write		= prof_cpu_mask_proc_write,
486};
487
488void create_prof_cpu_mask(struct proc_dir_entry *root_irq_dir)
489{
490	/* create /proc/irq/prof_cpu_mask */
491	proc_create("prof_cpu_mask", 0600, root_irq_dir, &prof_cpu_mask_proc_fops);
492}
493
494/*
495 * This function accesses profiling information. The returned data is
496 * binary: the sampling step and the actual contents of the profile
497 * buffer. Use of the program readprofile is recommended in order to
498 * get meaningful info out of these data.
499 */
500static ssize_t
501read_profile(struct file *file, char __user *buf, size_t count, loff_t *ppos)
502{
503	unsigned long p = *ppos;
504	ssize_t read;
505	char *pnt;
506	unsigned int sample_step = 1 << prof_shift;
507
508	profile_flip_buffers();
509	if (p >= (prof_len+1)*sizeof(unsigned int))
510		return 0;
511	if (count > (prof_len+1)*sizeof(unsigned int) - p)
512		count = (prof_len+1)*sizeof(unsigned int) - p;
513	read = 0;
514
515	while (p < sizeof(unsigned int) && count > 0) {
516		if (put_user(*((char *)(&sample_step)+p), buf))
517			return -EFAULT;
518		buf++; p++; count--; read++;
519	}
520	pnt = (char *)prof_buffer + p - sizeof(atomic_t);
521	if (copy_to_user(buf, (void *)pnt, count))
522		return -EFAULT;
523	read += count;
524	*ppos += read;
525	return read;
526}
527
528/*
529 * Writing to /proc/profile resets the counters
530 *
531 * Writing a 'profiling multiplier' value into it also re-sets the profiling
532 * interrupt frequency, on architectures that support this.
533 */
534static ssize_t write_profile(struct file *file, const char __user *buf,
535			     size_t count, loff_t *ppos)
536{
537#ifdef CONFIG_SMP
538	extern int setup_profiling_timer(unsigned int multiplier);
539
540	if (count == sizeof(int)) {
541		unsigned int multiplier;
542
543		if (copy_from_user(&multiplier, buf, sizeof(int)))
544			return -EFAULT;
545
546		if (setup_profiling_timer(multiplier))
547			return -EINVAL;
548	}
549#endif
550	profile_discard_flip_buffers();
551	memset(prof_buffer, 0, prof_len * sizeof(atomic_t));
552	return count;
553}
554
555static const struct file_operations proc_profile_operations = {
556	.read		= read_profile,
557	.write		= write_profile,
558	.llseek		= default_llseek,
559};
560
561#ifdef CONFIG_SMP
562static void profile_nop(void *unused)
563{
564}
565
566static int create_hash_tables(void)
567{
568	int cpu;
569
570	for_each_online_cpu(cpu) {
571		int node = cpu_to_mem(cpu);
572		struct page *page;
573
574		page = alloc_pages_exact_node(node,
575				GFP_KERNEL | __GFP_ZERO | GFP_THISNODE,
576				0);
577		if (!page)
578			goto out_cleanup;
579		per_cpu(cpu_profile_hits, cpu)[1]
580				= (struct profile_hit *)page_address(page);
581		page = alloc_pages_exact_node(node,
582				GFP_KERNEL | __GFP_ZERO | GFP_THISNODE,
583				0);
584		if (!page)
585			goto out_cleanup;
586		per_cpu(cpu_profile_hits, cpu)[0]
587				= (struct profile_hit *)page_address(page);
588	}
589	return 0;
590out_cleanup:
591	prof_on = 0;
592	smp_mb();
593	on_each_cpu(profile_nop, NULL, 1);
594	for_each_online_cpu(cpu) {
595		struct page *page;
596
597		if (per_cpu(cpu_profile_hits, cpu)[0]) {
598			page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[0]);
599			per_cpu(cpu_profile_hits, cpu)[0] = NULL;
600			__free_page(page);
601		}
602		if (per_cpu(cpu_profile_hits, cpu)[1]) {
603			page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]);
604			per_cpu(cpu_profile_hits, cpu)[1] = NULL;
605			__free_page(page);
606		}
607	}
608	return -1;
609}
610#else
611#define create_hash_tables()			({ 0; })
612#endif
613
614int __ref create_proc_profile(void) /* false positive from hotcpu_notifier */
615{
616	struct proc_dir_entry *entry;
 
617
618	if (!prof_on)
619		return 0;
620	if (create_hash_tables())
621		return -ENOMEM;
 
 
 
 
 
 
622	entry = proc_create("profile", S_IWUSR | S_IRUGO,
623			    NULL, &proc_profile_operations);
624	if (!entry)
625		return 0;
626	entry->size = (1+prof_len) * sizeof(atomic_t);
627	hotcpu_notifier(profile_cpu_callback, 0);
628	return 0;
 
 
 
629}
630module_init(create_proc_profile);
631#endif /* CONFIG_PROC_FS */