Linux Audio

Check our new training course

Loading...
v4.6
  1/*
  2 * Generic pidhash and scalable, time-bounded PID allocator
  3 *
  4 * (C) 2002-2003 Nadia Yvette Chambers, IBM
  5 * (C) 2004 Nadia Yvette Chambers, Oracle
  6 * (C) 2002-2004 Ingo Molnar, Red Hat
  7 *
  8 * pid-structures are backing objects for tasks sharing a given ID to chain
  9 * against. There is very little to them aside from hashing them and
 10 * parking tasks using given ID's on a list.
 11 *
 12 * The hash is always changed with the tasklist_lock write-acquired,
 13 * and the hash is only accessed with the tasklist_lock at least
 14 * read-acquired, so there's no additional SMP locking needed here.
 15 *
 16 * We have a list of bitmap pages, which bitmaps represent the PID space.
 17 * Allocating and freeing PIDs is completely lockless. The worst-case
 18 * allocation scenario when all but one out of 1 million PIDs possible are
 19 * allocated already: the scanning of 32 list entries and at most PAGE_SIZE
 20 * bytes. The typical fastpath is a single successful setbit. Freeing is O(1).
 21 *
 22 * Pid namespaces:
 23 *    (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
 24 *    (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
 25 *     Many thanks to Oleg Nesterov for comments and help
 26 *
 27 */
 28
 29#include <linux/mm.h>
 30#include <linux/export.h>
 31#include <linux/slab.h>
 32#include <linux/init.h>
 33#include <linux/rculist.h>
 34#include <linux/bootmem.h>
 35#include <linux/hash.h>
 36#include <linux/pid_namespace.h>
 37#include <linux/init_task.h>
 38#include <linux/syscalls.h>
 39#include <linux/proc_ns.h>
 40#include <linux/proc_fs.h>
 41
 42#define pid_hashfn(nr, ns)	\
 43	hash_long((unsigned long)nr + (unsigned long)ns, pidhash_shift)
 44static struct hlist_head *pid_hash;
 45static unsigned int pidhash_shift = 4;
 46struct pid init_struct_pid = INIT_STRUCT_PID;
 47
 48int pid_max = PID_MAX_DEFAULT;
 49
 50#define RESERVED_PIDS		300
 51
 52int pid_max_min = RESERVED_PIDS + 1;
 53int pid_max_max = PID_MAX_LIMIT;
 54
 
 
 
 55static inline int mk_pid(struct pid_namespace *pid_ns,
 56		struct pidmap *map, int off)
 57{
 58	return (map - pid_ns->pidmap)*BITS_PER_PAGE + off;
 59}
 60
 61#define find_next_offset(map, off)					\
 62		find_next_zero_bit((map)->page, BITS_PER_PAGE, off)
 63
 64/*
 65 * PID-map pages start out as NULL, they get allocated upon
 66 * first use and are never deallocated. This way a low pid_max
 67 * value does not cause lots of bitmaps to be allocated, but
 68 * the scheme scales to up to 4 million PIDs, runtime.
 69 */
 70struct pid_namespace init_pid_ns = {
 71	.kref = {
 72		.refcount       = ATOMIC_INIT(2),
 73	},
 74	.pidmap = {
 75		[ 0 ... PIDMAP_ENTRIES-1] = { ATOMIC_INIT(BITS_PER_PAGE), NULL }
 76	},
 77	.last_pid = 0,
 78	.nr_hashed = PIDNS_HASH_ADDING,
 79	.level = 0,
 80	.child_reaper = &init_task,
 81	.user_ns = &init_user_ns,
 82	.ns.inum = PROC_PID_INIT_INO,
 83#ifdef CONFIG_PID_NS
 84	.ns.ops = &pidns_operations,
 85#endif
 86};
 87EXPORT_SYMBOL_GPL(init_pid_ns);
 88
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 89/*
 90 * Note: disable interrupts while the pidmap_lock is held as an
 91 * interrupt might come in and do read_lock(&tasklist_lock).
 92 *
 93 * If we don't disable interrupts there is a nasty deadlock between
 94 * detach_pid()->free_pid() and another cpu that does
 95 * spin_lock(&pidmap_lock) followed by an interrupt routine that does
 96 * read_lock(&tasklist_lock);
 97 *
 98 * After we clean up the tasklist_lock and know there are no
 99 * irq handlers that take it we can leave the interrupts enabled.
100 * For now it is easier to be safe than to prove it can't happen.
101 */
102
103static  __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock);
104
105static void free_pidmap(struct upid *upid)
106{
107	int nr = upid->nr;
108	struct pidmap *map = upid->ns->pidmap + nr / BITS_PER_PAGE;
109	int offset = nr & BITS_PER_PAGE_MASK;
110
111	clear_bit(offset, map->page);
112	atomic_inc(&map->nr_free);
113}
114
115/*
116 * If we started walking pids at 'base', is 'a' seen before 'b'?
117 */
118static int pid_before(int base, int a, int b)
119{
120	/*
121	 * This is the same as saying
122	 *
123	 * (a - base + MAXUINT) % MAXUINT < (b - base + MAXUINT) % MAXUINT
124	 * and that mapping orders 'a' and 'b' with respect to 'base'.
125	 */
126	return (unsigned)(a - base) < (unsigned)(b - base);
127}
128
129/*
130 * We might be racing with someone else trying to set pid_ns->last_pid
131 * at the pid allocation time (there's also a sysctl for this, but racing
132 * with this one is OK, see comment in kernel/pid_namespace.c about it).
133 * We want the winner to have the "later" value, because if the
134 * "earlier" value prevails, then a pid may get reused immediately.
135 *
136 * Since pids rollover, it is not sufficient to just pick the bigger
137 * value.  We have to consider where we started counting from.
138 *
139 * 'base' is the value of pid_ns->last_pid that we observed when
140 * we started looking for a pid.
141 *
142 * 'pid' is the pid that we eventually found.
143 */
144static void set_last_pid(struct pid_namespace *pid_ns, int base, int pid)
145{
146	int prev;
147	int last_write = base;
148	do {
149		prev = last_write;
150		last_write = cmpxchg(&pid_ns->last_pid, prev, pid);
151	} while ((prev != last_write) && (pid_before(base, last_write, pid)));
152}
153
154static int alloc_pidmap(struct pid_namespace *pid_ns)
155{
156	int i, offset, max_scan, pid, last = pid_ns->last_pid;
157	struct pidmap *map;
158
159	pid = last + 1;
160	if (pid >= pid_max)
161		pid = RESERVED_PIDS;
162	offset = pid & BITS_PER_PAGE_MASK;
163	map = &pid_ns->pidmap[pid/BITS_PER_PAGE];
164	/*
165	 * If last_pid points into the middle of the map->page we
166	 * want to scan this bitmap block twice, the second time
167	 * we start with offset == 0 (or RESERVED_PIDS).
168	 */
169	max_scan = DIV_ROUND_UP(pid_max, BITS_PER_PAGE) - !offset;
170	for (i = 0; i <= max_scan; ++i) {
171		if (unlikely(!map->page)) {
172			void *page = kzalloc(PAGE_SIZE, GFP_KERNEL);
173			/*
174			 * Free the page if someone raced with us
175			 * installing it:
176			 */
177			spin_lock_irq(&pidmap_lock);
178			if (!map->page) {
179				map->page = page;
180				page = NULL;
181			}
182			spin_unlock_irq(&pidmap_lock);
183			kfree(page);
184			if (unlikely(!map->page))
185				return -ENOMEM;
186		}
187		if (likely(atomic_read(&map->nr_free))) {
188			for ( ; ; ) {
189				if (!test_and_set_bit(offset, map->page)) {
190					atomic_dec(&map->nr_free);
191					set_last_pid(pid_ns, last, pid);
192					return pid;
193				}
194				offset = find_next_offset(map, offset);
195				if (offset >= BITS_PER_PAGE)
196					break;
197				pid = mk_pid(pid_ns, map, offset);
198				if (pid >= pid_max)
199					break;
200			}
201		}
202		if (map < &pid_ns->pidmap[(pid_max-1)/BITS_PER_PAGE]) {
203			++map;
204			offset = 0;
205		} else {
206			map = &pid_ns->pidmap[0];
207			offset = RESERVED_PIDS;
208			if (unlikely(last == offset))
209				break;
210		}
211		pid = mk_pid(pid_ns, map, offset);
212	}
213	return -EAGAIN;
214}
215
216int next_pidmap(struct pid_namespace *pid_ns, unsigned int last)
217{
218	int offset;
219	struct pidmap *map, *end;
220
221	if (last >= PID_MAX_LIMIT)
222		return -1;
223
224	offset = (last + 1) & BITS_PER_PAGE_MASK;
225	map = &pid_ns->pidmap[(last + 1)/BITS_PER_PAGE];
226	end = &pid_ns->pidmap[PIDMAP_ENTRIES];
227	for (; map < end; map++, offset = 0) {
228		if (unlikely(!map->page))
229			continue;
230		offset = find_next_bit((map)->page, BITS_PER_PAGE, offset);
231		if (offset < BITS_PER_PAGE)
232			return mk_pid(pid_ns, map, offset);
233	}
234	return -1;
235}
236
237void put_pid(struct pid *pid)
238{
239	struct pid_namespace *ns;
240
241	if (!pid)
242		return;
243
244	ns = pid->numbers[pid->level].ns;
245	if ((atomic_read(&pid->count) == 1) ||
246	     atomic_dec_and_test(&pid->count)) {
247		kmem_cache_free(ns->pid_cachep, pid);
248		put_pid_ns(ns);
249	}
250}
251EXPORT_SYMBOL_GPL(put_pid);
252
253static void delayed_put_pid(struct rcu_head *rhp)
254{
255	struct pid *pid = container_of(rhp, struct pid, rcu);
256	put_pid(pid);
257}
258
259void free_pid(struct pid *pid)
260{
261	/* We can be called with write_lock_irq(&tasklist_lock) held */
262	int i;
263	unsigned long flags;
264
265	spin_lock_irqsave(&pidmap_lock, flags);
266	for (i = 0; i <= pid->level; i++) {
267		struct upid *upid = pid->numbers + i;
268		struct pid_namespace *ns = upid->ns;
269		hlist_del_rcu(&upid->pid_chain);
270		switch(--ns->nr_hashed) {
271		case 2:
272		case 1:
273			/* When all that is left in the pid namespace
274			 * is the reaper wake up the reaper.  The reaper
275			 * may be sleeping in zap_pid_ns_processes().
276			 */
277			wake_up_process(ns->child_reaper);
278			break;
279		case PIDNS_HASH_ADDING:
280			/* Handle a fork failure of the first process */
281			WARN_ON(ns->child_reaper);
282			ns->nr_hashed = 0;
283			/* fall through */
284		case 0:
285			schedule_work(&ns->proc_work);
286			break;
287		}
288	}
289	spin_unlock_irqrestore(&pidmap_lock, flags);
290
291	for (i = 0; i <= pid->level; i++)
292		free_pidmap(pid->numbers + i);
293
294	call_rcu(&pid->rcu, delayed_put_pid);
295}
296
297struct pid *alloc_pid(struct pid_namespace *ns)
298{
299	struct pid *pid;
300	enum pid_type type;
301	int i, nr;
302	struct pid_namespace *tmp;
303	struct upid *upid;
304	int retval = -ENOMEM;
305
306	pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL);
307	if (!pid)
308		return ERR_PTR(retval);
309
310	tmp = ns;
311	pid->level = ns->level;
312	for (i = ns->level; i >= 0; i--) {
313		nr = alloc_pidmap(tmp);
314		if (IS_ERR_VALUE(nr)) {
315			retval = nr;
316			goto out_free;
317		}
318
319		pid->numbers[i].nr = nr;
320		pid->numbers[i].ns = tmp;
321		tmp = tmp->parent;
322	}
323
324	if (unlikely(is_child_reaper(pid))) {
325		if (pid_ns_prepare_proc(ns))
326			goto out_free;
327	}
328
329	get_pid_ns(ns);
 
330	atomic_set(&pid->count, 1);
331	for (type = 0; type < PIDTYPE_MAX; ++type)
332		INIT_HLIST_HEAD(&pid->tasks[type]);
333
334	upid = pid->numbers + ns->level;
335	spin_lock_irq(&pidmap_lock);
336	if (!(ns->nr_hashed & PIDNS_HASH_ADDING))
337		goto out_unlock;
338	for ( ; upid >= pid->numbers; --upid) {
339		hlist_add_head_rcu(&upid->pid_chain,
340				&pid_hash[pid_hashfn(upid->nr, upid->ns)]);
341		upid->ns->nr_hashed++;
342	}
343	spin_unlock_irq(&pidmap_lock);
344
 
345	return pid;
346
347out_unlock:
348	spin_unlock_irq(&pidmap_lock);
349	put_pid_ns(ns);
350
351out_free:
352	while (++i <= ns->level)
353		free_pidmap(pid->numbers + i);
354
355	kmem_cache_free(ns->pid_cachep, pid);
356	return ERR_PTR(retval);
357}
358
359void disable_pid_allocation(struct pid_namespace *ns)
360{
361	spin_lock_irq(&pidmap_lock);
362	ns->nr_hashed &= ~PIDNS_HASH_ADDING;
363	spin_unlock_irq(&pidmap_lock);
364}
365
366struct pid *find_pid_ns(int nr, struct pid_namespace *ns)
367{
 
368	struct upid *pnr;
369
370	hlist_for_each_entry_rcu(pnr,
371			&pid_hash[pid_hashfn(nr, ns)], pid_chain)
372		if (pnr->nr == nr && pnr->ns == ns)
373			return container_of(pnr, struct pid,
374					numbers[ns->level]);
375
376	return NULL;
377}
378EXPORT_SYMBOL_GPL(find_pid_ns);
379
380struct pid *find_vpid(int nr)
381{
382	return find_pid_ns(nr, task_active_pid_ns(current));
383}
384EXPORT_SYMBOL_GPL(find_vpid);
385
386/*
387 * attach_pid() must be called with the tasklist_lock write-held.
388 */
389void attach_pid(struct task_struct *task, enum pid_type type)
 
390{
391	struct pid_link *link = &task->pids[type];
392	hlist_add_head_rcu(&link->node, &link->pid->tasks[type]);
 
 
 
393}
394
395static void __change_pid(struct task_struct *task, enum pid_type type,
396			struct pid *new)
397{
398	struct pid_link *link;
399	struct pid *pid;
400	int tmp;
401
402	link = &task->pids[type];
403	pid = link->pid;
404
405	hlist_del_rcu(&link->node);
406	link->pid = new;
407
408	for (tmp = PIDTYPE_MAX; --tmp >= 0; )
409		if (!hlist_empty(&pid->tasks[tmp]))
410			return;
411
412	free_pid(pid);
413}
414
415void detach_pid(struct task_struct *task, enum pid_type type)
416{
417	__change_pid(task, type, NULL);
418}
419
420void change_pid(struct task_struct *task, enum pid_type type,
421		struct pid *pid)
422{
423	__change_pid(task, type, pid);
424	attach_pid(task, type);
425}
426
427/* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */
428void transfer_pid(struct task_struct *old, struct task_struct *new,
429			   enum pid_type type)
430{
431	new->pids[type].pid = old->pids[type].pid;
432	hlist_replace_rcu(&old->pids[type].node, &new->pids[type].node);
433}
434
435struct task_struct *pid_task(struct pid *pid, enum pid_type type)
436{
437	struct task_struct *result = NULL;
438	if (pid) {
439		struct hlist_node *first;
440		first = rcu_dereference_check(hlist_first_rcu(&pid->tasks[type]),
441					      lockdep_tasklist_lock_is_held());
442		if (first)
443			result = hlist_entry(first, struct task_struct, pids[(type)].node);
444	}
445	return result;
446}
447EXPORT_SYMBOL(pid_task);
448
449/*
450 * Must be called under rcu_read_lock().
451 */
452struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns)
453{
454	RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
455			 "find_task_by_pid_ns() needs rcu_read_lock() protection");
456	return pid_task(find_pid_ns(nr, ns), PIDTYPE_PID);
457}
458
459struct task_struct *find_task_by_vpid(pid_t vnr)
460{
461	return find_task_by_pid_ns(vnr, task_active_pid_ns(current));
462}
463
464struct pid *get_task_pid(struct task_struct *task, enum pid_type type)
465{
466	struct pid *pid;
467	rcu_read_lock();
468	if (type != PIDTYPE_PID)
469		task = task->group_leader;
470	pid = get_pid(rcu_dereference(task->pids[type].pid));
471	rcu_read_unlock();
472	return pid;
473}
474EXPORT_SYMBOL_GPL(get_task_pid);
475
476struct task_struct *get_pid_task(struct pid *pid, enum pid_type type)
477{
478	struct task_struct *result;
479	rcu_read_lock();
480	result = pid_task(pid, type);
481	if (result)
482		get_task_struct(result);
483	rcu_read_unlock();
484	return result;
485}
486EXPORT_SYMBOL_GPL(get_pid_task);
487
488struct pid *find_get_pid(pid_t nr)
489{
490	struct pid *pid;
491
492	rcu_read_lock();
493	pid = get_pid(find_vpid(nr));
494	rcu_read_unlock();
495
496	return pid;
497}
498EXPORT_SYMBOL_GPL(find_get_pid);
499
500pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns)
501{
502	struct upid *upid;
503	pid_t nr = 0;
504
505	if (pid && ns->level <= pid->level) {
506		upid = &pid->numbers[ns->level];
507		if (upid->ns == ns)
508			nr = upid->nr;
509	}
510	return nr;
511}
512EXPORT_SYMBOL_GPL(pid_nr_ns);
513
514pid_t pid_vnr(struct pid *pid)
515{
516	return pid_nr_ns(pid, task_active_pid_ns(current));
517}
518EXPORT_SYMBOL_GPL(pid_vnr);
519
520pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
521			struct pid_namespace *ns)
522{
523	pid_t nr = 0;
524
525	rcu_read_lock();
526	if (!ns)
527		ns = task_active_pid_ns(current);
528	if (likely(pid_alive(task))) {
529		if (type != PIDTYPE_PID)
530			task = task->group_leader;
531		nr = pid_nr_ns(rcu_dereference(task->pids[type].pid), ns);
532	}
533	rcu_read_unlock();
534
535	return nr;
536}
537EXPORT_SYMBOL(__task_pid_nr_ns);
538
539pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
540{
541	return pid_nr_ns(task_tgid(tsk), ns);
542}
543EXPORT_SYMBOL(task_tgid_nr_ns);
544
545struct pid_namespace *task_active_pid_ns(struct task_struct *tsk)
546{
547	return ns_of_pid(task_pid(tsk));
548}
549EXPORT_SYMBOL_GPL(task_active_pid_ns);
550
551/*
552 * Used by proc to find the first pid that is greater than or equal to nr.
553 *
554 * If there is a pid at nr this function is exactly the same as find_pid_ns.
555 */
556struct pid *find_ge_pid(int nr, struct pid_namespace *ns)
557{
558	struct pid *pid;
559
560	do {
561		pid = find_pid_ns(nr, ns);
562		if (pid)
563			break;
564		nr = next_pidmap(ns, nr);
565	} while (nr > 0);
566
567	return pid;
568}
569
570/*
571 * The pid hash table is scaled according to the amount of memory in the
572 * machine.  From a minimum of 16 slots up to 4096 slots at one gigabyte or
573 * more.
574 */
575void __init pidhash_init(void)
576{
577	unsigned int i, pidhash_size;
578
579	pid_hash = alloc_large_system_hash("PID", sizeof(*pid_hash), 0, 18,
580					   HASH_EARLY | HASH_SMALL,
581					   &pidhash_shift, NULL,
582					   0, 4096);
583	pidhash_size = 1U << pidhash_shift;
584
585	for (i = 0; i < pidhash_size; i++)
586		INIT_HLIST_HEAD(&pid_hash[i]);
587}
588
589void __init pidmap_init(void)
590{
591	/* Verify no one has done anything silly: */
592	BUILD_BUG_ON(PID_MAX_LIMIT >= PIDNS_HASH_ADDING);
593
594	/* bump default and minimum pid_max based on number of cpus */
595	pid_max = min(pid_max_max, max_t(int, pid_max,
596				PIDS_PER_CPU_DEFAULT * num_possible_cpus()));
597	pid_max_min = max_t(int, pid_max_min,
598				PIDS_PER_CPU_MIN * num_possible_cpus());
599	pr_info("pid_max: default: %u minimum: %u\n", pid_max, pid_max_min);
600
601	init_pid_ns.pidmap[0].page = kzalloc(PAGE_SIZE, GFP_KERNEL);
602	/* Reserve PID 0. We never call free_pidmap(0) */
603	set_bit(0, init_pid_ns.pidmap[0].page);
604	atomic_dec(&init_pid_ns.pidmap[0].nr_free);
605
606	init_pid_ns.pid_cachep = KMEM_CACHE(pid,
607			SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT);
608}
v3.1
  1/*
  2 * Generic pidhash and scalable, time-bounded PID allocator
  3 *
  4 * (C) 2002-2003 William Irwin, IBM
  5 * (C) 2004 William Irwin, Oracle
  6 * (C) 2002-2004 Ingo Molnar, Red Hat
  7 *
  8 * pid-structures are backing objects for tasks sharing a given ID to chain
  9 * against. There is very little to them aside from hashing them and
 10 * parking tasks using given ID's on a list.
 11 *
 12 * The hash is always changed with the tasklist_lock write-acquired,
 13 * and the hash is only accessed with the tasklist_lock at least
 14 * read-acquired, so there's no additional SMP locking needed here.
 15 *
 16 * We have a list of bitmap pages, which bitmaps represent the PID space.
 17 * Allocating and freeing PIDs is completely lockless. The worst-case
 18 * allocation scenario when all but one out of 1 million PIDs possible are
 19 * allocated already: the scanning of 32 list entries and at most PAGE_SIZE
 20 * bytes. The typical fastpath is a single successful setbit. Freeing is O(1).
 21 *
 22 * Pid namespaces:
 23 *    (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
 24 *    (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
 25 *     Many thanks to Oleg Nesterov for comments and help
 26 *
 27 */
 28
 29#include <linux/mm.h>
 30#include <linux/module.h>
 31#include <linux/slab.h>
 32#include <linux/init.h>
 33#include <linux/rculist.h>
 34#include <linux/bootmem.h>
 35#include <linux/hash.h>
 36#include <linux/pid_namespace.h>
 37#include <linux/init_task.h>
 38#include <linux/syscalls.h>
 
 
 39
 40#define pid_hashfn(nr, ns)	\
 41	hash_long((unsigned long)nr + (unsigned long)ns, pidhash_shift)
 42static struct hlist_head *pid_hash;
 43static unsigned int pidhash_shift = 4;
 44struct pid init_struct_pid = INIT_STRUCT_PID;
 45
 46int pid_max = PID_MAX_DEFAULT;
 47
 48#define RESERVED_PIDS		300
 49
 50int pid_max_min = RESERVED_PIDS + 1;
 51int pid_max_max = PID_MAX_LIMIT;
 52
 53#define BITS_PER_PAGE		(PAGE_SIZE*8)
 54#define BITS_PER_PAGE_MASK	(BITS_PER_PAGE-1)
 55
 56static inline int mk_pid(struct pid_namespace *pid_ns,
 57		struct pidmap *map, int off)
 58{
 59	return (map - pid_ns->pidmap)*BITS_PER_PAGE + off;
 60}
 61
 62#define find_next_offset(map, off)					\
 63		find_next_zero_bit((map)->page, BITS_PER_PAGE, off)
 64
 65/*
 66 * PID-map pages start out as NULL, they get allocated upon
 67 * first use and are never deallocated. This way a low pid_max
 68 * value does not cause lots of bitmaps to be allocated, but
 69 * the scheme scales to up to 4 million PIDs, runtime.
 70 */
 71struct pid_namespace init_pid_ns = {
 72	.kref = {
 73		.refcount       = ATOMIC_INIT(2),
 74	},
 75	.pidmap = {
 76		[ 0 ... PIDMAP_ENTRIES-1] = { ATOMIC_INIT(BITS_PER_PAGE), NULL }
 77	},
 78	.last_pid = 0,
 
 79	.level = 0,
 80	.child_reaper = &init_task,
 
 
 
 
 
 81};
 82EXPORT_SYMBOL_GPL(init_pid_ns);
 83
 84int is_container_init(struct task_struct *tsk)
 85{
 86	int ret = 0;
 87	struct pid *pid;
 88
 89	rcu_read_lock();
 90	pid = task_pid(tsk);
 91	if (pid != NULL && pid->numbers[pid->level].nr == 1)
 92		ret = 1;
 93	rcu_read_unlock();
 94
 95	return ret;
 96}
 97EXPORT_SYMBOL(is_container_init);
 98
 99/*
100 * Note: disable interrupts while the pidmap_lock is held as an
101 * interrupt might come in and do read_lock(&tasklist_lock).
102 *
103 * If we don't disable interrupts there is a nasty deadlock between
104 * detach_pid()->free_pid() and another cpu that does
105 * spin_lock(&pidmap_lock) followed by an interrupt routine that does
106 * read_lock(&tasklist_lock);
107 *
108 * After we clean up the tasklist_lock and know there are no
109 * irq handlers that take it we can leave the interrupts enabled.
110 * For now it is easier to be safe than to prove it can't happen.
111 */
112
113static  __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock);
114
115static void free_pidmap(struct upid *upid)
116{
117	int nr = upid->nr;
118	struct pidmap *map = upid->ns->pidmap + nr / BITS_PER_PAGE;
119	int offset = nr & BITS_PER_PAGE_MASK;
120
121	clear_bit(offset, map->page);
122	atomic_inc(&map->nr_free);
123}
124
125/*
126 * If we started walking pids at 'base', is 'a' seen before 'b'?
127 */
128static int pid_before(int base, int a, int b)
129{
130	/*
131	 * This is the same as saying
132	 *
133	 * (a - base + MAXUINT) % MAXUINT < (b - base + MAXUINT) % MAXUINT
134	 * and that mapping orders 'a' and 'b' with respect to 'base'.
135	 */
136	return (unsigned)(a - base) < (unsigned)(b - base);
137}
138
139/*
140 * We might be racing with someone else trying to set pid_ns->last_pid.
 
 
141 * We want the winner to have the "later" value, because if the
142 * "earlier" value prevails, then a pid may get reused immediately.
143 *
144 * Since pids rollover, it is not sufficient to just pick the bigger
145 * value.  We have to consider where we started counting from.
146 *
147 * 'base' is the value of pid_ns->last_pid that we observed when
148 * we started looking for a pid.
149 *
150 * 'pid' is the pid that we eventually found.
151 */
152static void set_last_pid(struct pid_namespace *pid_ns, int base, int pid)
153{
154	int prev;
155	int last_write = base;
156	do {
157		prev = last_write;
158		last_write = cmpxchg(&pid_ns->last_pid, prev, pid);
159	} while ((prev != last_write) && (pid_before(base, last_write, pid)));
160}
161
162static int alloc_pidmap(struct pid_namespace *pid_ns)
163{
164	int i, offset, max_scan, pid, last = pid_ns->last_pid;
165	struct pidmap *map;
166
167	pid = last + 1;
168	if (pid >= pid_max)
169		pid = RESERVED_PIDS;
170	offset = pid & BITS_PER_PAGE_MASK;
171	map = &pid_ns->pidmap[pid/BITS_PER_PAGE];
172	/*
173	 * If last_pid points into the middle of the map->page we
174	 * want to scan this bitmap block twice, the second time
175	 * we start with offset == 0 (or RESERVED_PIDS).
176	 */
177	max_scan = DIV_ROUND_UP(pid_max, BITS_PER_PAGE) - !offset;
178	for (i = 0; i <= max_scan; ++i) {
179		if (unlikely(!map->page)) {
180			void *page = kzalloc(PAGE_SIZE, GFP_KERNEL);
181			/*
182			 * Free the page if someone raced with us
183			 * installing it:
184			 */
185			spin_lock_irq(&pidmap_lock);
186			if (!map->page) {
187				map->page = page;
188				page = NULL;
189			}
190			spin_unlock_irq(&pidmap_lock);
191			kfree(page);
192			if (unlikely(!map->page))
193				break;
194		}
195		if (likely(atomic_read(&map->nr_free))) {
196			do {
197				if (!test_and_set_bit(offset, map->page)) {
198					atomic_dec(&map->nr_free);
199					set_last_pid(pid_ns, last, pid);
200					return pid;
201				}
202				offset = find_next_offset(map, offset);
 
 
203				pid = mk_pid(pid_ns, map, offset);
204			} while (offset < BITS_PER_PAGE && pid < pid_max);
 
 
205		}
206		if (map < &pid_ns->pidmap[(pid_max-1)/BITS_PER_PAGE]) {
207			++map;
208			offset = 0;
209		} else {
210			map = &pid_ns->pidmap[0];
211			offset = RESERVED_PIDS;
212			if (unlikely(last == offset))
213				break;
214		}
215		pid = mk_pid(pid_ns, map, offset);
216	}
217	return -1;
218}
219
220int next_pidmap(struct pid_namespace *pid_ns, unsigned int last)
221{
222	int offset;
223	struct pidmap *map, *end;
224
225	if (last >= PID_MAX_LIMIT)
226		return -1;
227
228	offset = (last + 1) & BITS_PER_PAGE_MASK;
229	map = &pid_ns->pidmap[(last + 1)/BITS_PER_PAGE];
230	end = &pid_ns->pidmap[PIDMAP_ENTRIES];
231	for (; map < end; map++, offset = 0) {
232		if (unlikely(!map->page))
233			continue;
234		offset = find_next_bit((map)->page, BITS_PER_PAGE, offset);
235		if (offset < BITS_PER_PAGE)
236			return mk_pid(pid_ns, map, offset);
237	}
238	return -1;
239}
240
241void put_pid(struct pid *pid)
242{
243	struct pid_namespace *ns;
244
245	if (!pid)
246		return;
247
248	ns = pid->numbers[pid->level].ns;
249	if ((atomic_read(&pid->count) == 1) ||
250	     atomic_dec_and_test(&pid->count)) {
251		kmem_cache_free(ns->pid_cachep, pid);
252		put_pid_ns(ns);
253	}
254}
255EXPORT_SYMBOL_GPL(put_pid);
256
257static void delayed_put_pid(struct rcu_head *rhp)
258{
259	struct pid *pid = container_of(rhp, struct pid, rcu);
260	put_pid(pid);
261}
262
263void free_pid(struct pid *pid)
264{
265	/* We can be called with write_lock_irq(&tasklist_lock) held */
266	int i;
267	unsigned long flags;
268
269	spin_lock_irqsave(&pidmap_lock, flags);
270	for (i = 0; i <= pid->level; i++)
271		hlist_del_rcu(&pid->numbers[i].pid_chain);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
272	spin_unlock_irqrestore(&pidmap_lock, flags);
273
274	for (i = 0; i <= pid->level; i++)
275		free_pidmap(pid->numbers + i);
276
277	call_rcu(&pid->rcu, delayed_put_pid);
278}
279
280struct pid *alloc_pid(struct pid_namespace *ns)
281{
282	struct pid *pid;
283	enum pid_type type;
284	int i, nr;
285	struct pid_namespace *tmp;
286	struct upid *upid;
 
287
288	pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL);
289	if (!pid)
290		goto out;
291
292	tmp = ns;
 
293	for (i = ns->level; i >= 0; i--) {
294		nr = alloc_pidmap(tmp);
295		if (nr < 0)
 
296			goto out_free;
 
297
298		pid->numbers[i].nr = nr;
299		pid->numbers[i].ns = tmp;
300		tmp = tmp->parent;
301	}
302
 
 
 
 
 
303	get_pid_ns(ns);
304	pid->level = ns->level;
305	atomic_set(&pid->count, 1);
306	for (type = 0; type < PIDTYPE_MAX; ++type)
307		INIT_HLIST_HEAD(&pid->tasks[type]);
308
309	upid = pid->numbers + ns->level;
310	spin_lock_irq(&pidmap_lock);
311	for ( ; upid >= pid->numbers; --upid)
 
 
312		hlist_add_head_rcu(&upid->pid_chain,
313				&pid_hash[pid_hashfn(upid->nr, upid->ns)]);
 
 
314	spin_unlock_irq(&pidmap_lock);
315
316out:
317	return pid;
318
 
 
 
 
319out_free:
320	while (++i <= ns->level)
321		free_pidmap(pid->numbers + i);
322
323	kmem_cache_free(ns->pid_cachep, pid);
324	pid = NULL;
325	goto out;
 
 
 
 
 
 
326}
327
328struct pid *find_pid_ns(int nr, struct pid_namespace *ns)
329{
330	struct hlist_node *elem;
331	struct upid *pnr;
332
333	hlist_for_each_entry_rcu(pnr, elem,
334			&pid_hash[pid_hashfn(nr, ns)], pid_chain)
335		if (pnr->nr == nr && pnr->ns == ns)
336			return container_of(pnr, struct pid,
337					numbers[ns->level]);
338
339	return NULL;
340}
341EXPORT_SYMBOL_GPL(find_pid_ns);
342
343struct pid *find_vpid(int nr)
344{
345	return find_pid_ns(nr, current->nsproxy->pid_ns);
346}
347EXPORT_SYMBOL_GPL(find_vpid);
348
349/*
350 * attach_pid() must be called with the tasklist_lock write-held.
351 */
352void attach_pid(struct task_struct *task, enum pid_type type,
353		struct pid *pid)
354{
355	struct pid_link *link;
356
357	link = &task->pids[type];
358	link->pid = pid;
359	hlist_add_head_rcu(&link->node, &pid->tasks[type]);
360}
361
362static void __change_pid(struct task_struct *task, enum pid_type type,
363			struct pid *new)
364{
365	struct pid_link *link;
366	struct pid *pid;
367	int tmp;
368
369	link = &task->pids[type];
370	pid = link->pid;
371
372	hlist_del_rcu(&link->node);
373	link->pid = new;
374
375	for (tmp = PIDTYPE_MAX; --tmp >= 0; )
376		if (!hlist_empty(&pid->tasks[tmp]))
377			return;
378
379	free_pid(pid);
380}
381
382void detach_pid(struct task_struct *task, enum pid_type type)
383{
384	__change_pid(task, type, NULL);
385}
386
387void change_pid(struct task_struct *task, enum pid_type type,
388		struct pid *pid)
389{
390	__change_pid(task, type, pid);
391	attach_pid(task, type, pid);
392}
393
394/* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */
395void transfer_pid(struct task_struct *old, struct task_struct *new,
396			   enum pid_type type)
397{
398	new->pids[type].pid = old->pids[type].pid;
399	hlist_replace_rcu(&old->pids[type].node, &new->pids[type].node);
400}
401
402struct task_struct *pid_task(struct pid *pid, enum pid_type type)
403{
404	struct task_struct *result = NULL;
405	if (pid) {
406		struct hlist_node *first;
407		first = rcu_dereference_check(hlist_first_rcu(&pid->tasks[type]),
408					      lockdep_tasklist_lock_is_held());
409		if (first)
410			result = hlist_entry(first, struct task_struct, pids[(type)].node);
411	}
412	return result;
413}
414EXPORT_SYMBOL(pid_task);
415
416/*
417 * Must be called under rcu_read_lock().
418 */
419struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns)
420{
421	rcu_lockdep_assert(rcu_read_lock_held());
 
422	return pid_task(find_pid_ns(nr, ns), PIDTYPE_PID);
423}
424
425struct task_struct *find_task_by_vpid(pid_t vnr)
426{
427	return find_task_by_pid_ns(vnr, current->nsproxy->pid_ns);
428}
429
430struct pid *get_task_pid(struct task_struct *task, enum pid_type type)
431{
432	struct pid *pid;
433	rcu_read_lock();
434	if (type != PIDTYPE_PID)
435		task = task->group_leader;
436	pid = get_pid(task->pids[type].pid);
437	rcu_read_unlock();
438	return pid;
439}
440EXPORT_SYMBOL_GPL(get_task_pid);
441
442struct task_struct *get_pid_task(struct pid *pid, enum pid_type type)
443{
444	struct task_struct *result;
445	rcu_read_lock();
446	result = pid_task(pid, type);
447	if (result)
448		get_task_struct(result);
449	rcu_read_unlock();
450	return result;
451}
452EXPORT_SYMBOL_GPL(get_pid_task);
453
454struct pid *find_get_pid(pid_t nr)
455{
456	struct pid *pid;
457
458	rcu_read_lock();
459	pid = get_pid(find_vpid(nr));
460	rcu_read_unlock();
461
462	return pid;
463}
464EXPORT_SYMBOL_GPL(find_get_pid);
465
466pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns)
467{
468	struct upid *upid;
469	pid_t nr = 0;
470
471	if (pid && ns->level <= pid->level) {
472		upid = &pid->numbers[ns->level];
473		if (upid->ns == ns)
474			nr = upid->nr;
475	}
476	return nr;
477}
 
478
479pid_t pid_vnr(struct pid *pid)
480{
481	return pid_nr_ns(pid, current->nsproxy->pid_ns);
482}
483EXPORT_SYMBOL_GPL(pid_vnr);
484
485pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
486			struct pid_namespace *ns)
487{
488	pid_t nr = 0;
489
490	rcu_read_lock();
491	if (!ns)
492		ns = current->nsproxy->pid_ns;
493	if (likely(pid_alive(task))) {
494		if (type != PIDTYPE_PID)
495			task = task->group_leader;
496		nr = pid_nr_ns(task->pids[type].pid, ns);
497	}
498	rcu_read_unlock();
499
500	return nr;
501}
502EXPORT_SYMBOL(__task_pid_nr_ns);
503
504pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
505{
506	return pid_nr_ns(task_tgid(tsk), ns);
507}
508EXPORT_SYMBOL(task_tgid_nr_ns);
509
510struct pid_namespace *task_active_pid_ns(struct task_struct *tsk)
511{
512	return ns_of_pid(task_pid(tsk));
513}
514EXPORT_SYMBOL_GPL(task_active_pid_ns);
515
516/*
517 * Used by proc to find the first pid that is greater than or equal to nr.
518 *
519 * If there is a pid at nr this function is exactly the same as find_pid_ns.
520 */
521struct pid *find_ge_pid(int nr, struct pid_namespace *ns)
522{
523	struct pid *pid;
524
525	do {
526		pid = find_pid_ns(nr, ns);
527		if (pid)
528			break;
529		nr = next_pidmap(ns, nr);
530	} while (nr > 0);
531
532	return pid;
533}
534
535/*
536 * The pid hash table is scaled according to the amount of memory in the
537 * machine.  From a minimum of 16 slots up to 4096 slots at one gigabyte or
538 * more.
539 */
540void __init pidhash_init(void)
541{
542	int i, pidhash_size;
543
544	pid_hash = alloc_large_system_hash("PID", sizeof(*pid_hash), 0, 18,
545					   HASH_EARLY | HASH_SMALL,
546					   &pidhash_shift, NULL, 4096);
547	pidhash_size = 1 << pidhash_shift;
 
548
549	for (i = 0; i < pidhash_size; i++)
550		INIT_HLIST_HEAD(&pid_hash[i]);
551}
552
553void __init pidmap_init(void)
554{
 
 
 
555	/* bump default and minimum pid_max based on number of cpus */
556	pid_max = min(pid_max_max, max_t(int, pid_max,
557				PIDS_PER_CPU_DEFAULT * num_possible_cpus()));
558	pid_max_min = max_t(int, pid_max_min,
559				PIDS_PER_CPU_MIN * num_possible_cpus());
560	pr_info("pid_max: default: %u minimum: %u\n", pid_max, pid_max_min);
561
562	init_pid_ns.pidmap[0].page = kzalloc(PAGE_SIZE, GFP_KERNEL);
563	/* Reserve PID 0. We never call free_pidmap(0) */
564	set_bit(0, init_pid_ns.pidmap[0].page);
565	atomic_dec(&init_pid_ns.pidmap[0].nr_free);
566
567	init_pid_ns.pid_cachep = KMEM_CACHE(pid,
568			SLAB_HWCACHE_ALIGN | SLAB_PANIC);
569}