Linux Audio

Check our new training course

Loading...
v4.6
   1/* auditsc.c -- System-call auditing support
   2 * Handles all system-call specific auditing features.
   3 *
   4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
   5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
   6 * Copyright (C) 2005, 2006 IBM Corporation
   7 * All Rights Reserved.
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of the GNU General Public License as published by
  11 * the Free Software Foundation; either version 2 of the License, or
  12 * (at your option) any later version.
  13 *
  14 * This program is distributed in the hope that it will be useful,
  15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  17 * GNU General Public License for more details.
  18 *
  19 * You should have received a copy of the GNU General Public License
  20 * along with this program; if not, write to the Free Software
  21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  22 *
  23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
  24 *
  25 * Many of the ideas implemented here are from Stephen C. Tweedie,
  26 * especially the idea of avoiding a copy by using getname.
  27 *
  28 * The method for actual interception of syscall entry and exit (not in
  29 * this file -- see entry.S) is based on a GPL'd patch written by
  30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
  31 *
  32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
  33 * 2006.
  34 *
  35 * The support of additional filter rules compares (>, <, >=, <=) was
  36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
  37 *
  38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
  39 * filesystem information.
  40 *
  41 * Subject and object context labeling support added by <danjones@us.ibm.com>
  42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
  43 */
  44
  45#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  46
  47#include <linux/init.h>
  48#include <asm/types.h>
  49#include <linux/atomic.h>
  50#include <linux/fs.h>
  51#include <linux/namei.h>
  52#include <linux/mm.h>
  53#include <linux/export.h>
  54#include <linux/slab.h>
  55#include <linux/mount.h>
  56#include <linux/socket.h>
  57#include <linux/mqueue.h>
  58#include <linux/audit.h>
  59#include <linux/personality.h>
  60#include <linux/time.h>
  61#include <linux/netlink.h>
  62#include <linux/compiler.h>
  63#include <asm/unistd.h>
  64#include <linux/security.h>
  65#include <linux/list.h>
  66#include <linux/tty.h>
  67#include <linux/binfmts.h>
  68#include <linux/highmem.h>
  69#include <linux/syscalls.h>
  70#include <asm/syscall.h>
  71#include <linux/capability.h>
  72#include <linux/fs_struct.h>
  73#include <linux/compat.h>
  74#include <linux/ctype.h>
  75#include <linux/string.h>
  76#include <uapi/linux/limits.h>
  77
  78#include "audit.h"
  79
  80/* flags stating the success for a syscall */
  81#define AUDITSC_INVALID 0
  82#define AUDITSC_SUCCESS 1
  83#define AUDITSC_FAILURE 2
 
 
  84
  85/* no execve audit message should be longer than this (userspace limits) */
  86#define MAX_EXECVE_AUDIT_LEN 7500
  87
  88/* max length to print of cmdline/proctitle value during audit */
  89#define MAX_PROCTITLE_AUDIT_LEN 128
  90
  91/* number of audit rules */
  92int audit_n_rules;
  93
  94/* determines whether we collect data for signals sent */
  95int audit_signals;
  96
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  97struct audit_aux_data {
  98	struct audit_aux_data	*next;
  99	int			type;
 100};
 101
 102#define AUDIT_AUX_IPCPERM	0
 103
 104/* Number of target pids per aux struct. */
 105#define AUDIT_AUX_PIDS	16
 106
 
 
 
 
 
 
 
 107struct audit_aux_data_pids {
 108	struct audit_aux_data	d;
 109	pid_t			target_pid[AUDIT_AUX_PIDS];
 110	kuid_t			target_auid[AUDIT_AUX_PIDS];
 111	kuid_t			target_uid[AUDIT_AUX_PIDS];
 112	unsigned int		target_sessionid[AUDIT_AUX_PIDS];
 113	u32			target_sid[AUDIT_AUX_PIDS];
 114	char 			target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
 115	int			pid_count;
 116};
 117
 118struct audit_aux_data_bprm_fcaps {
 119	struct audit_aux_data	d;
 120	struct audit_cap_data	fcap;
 121	unsigned int		fcap_ver;
 122	struct audit_cap_data	old_pcap;
 123	struct audit_cap_data	new_pcap;
 124};
 125
 
 
 
 
 
 
 126struct audit_tree_refs {
 127	struct audit_tree_refs *next;
 128	struct audit_chunk *c[31];
 129};
 130
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 131static int audit_match_perm(struct audit_context *ctx, int mask)
 132{
 133	unsigned n;
 134	if (unlikely(!ctx))
 135		return 0;
 136	n = ctx->major;
 137
 138	switch (audit_classify_syscall(ctx->arch, n)) {
 139	case 0:	/* native */
 140		if ((mask & AUDIT_PERM_WRITE) &&
 141		     audit_match_class(AUDIT_CLASS_WRITE, n))
 142			return 1;
 143		if ((mask & AUDIT_PERM_READ) &&
 144		     audit_match_class(AUDIT_CLASS_READ, n))
 145			return 1;
 146		if ((mask & AUDIT_PERM_ATTR) &&
 147		     audit_match_class(AUDIT_CLASS_CHATTR, n))
 148			return 1;
 149		return 0;
 150	case 1: /* 32bit on biarch */
 151		if ((mask & AUDIT_PERM_WRITE) &&
 152		     audit_match_class(AUDIT_CLASS_WRITE_32, n))
 153			return 1;
 154		if ((mask & AUDIT_PERM_READ) &&
 155		     audit_match_class(AUDIT_CLASS_READ_32, n))
 156			return 1;
 157		if ((mask & AUDIT_PERM_ATTR) &&
 158		     audit_match_class(AUDIT_CLASS_CHATTR_32, n))
 159			return 1;
 160		return 0;
 161	case 2: /* open */
 162		return mask & ACC_MODE(ctx->argv[1]);
 163	case 3: /* openat */
 164		return mask & ACC_MODE(ctx->argv[2]);
 165	case 4: /* socketcall */
 166		return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
 167	case 5: /* execve */
 168		return mask & AUDIT_PERM_EXEC;
 169	default:
 170		return 0;
 171	}
 172}
 173
 174static int audit_match_filetype(struct audit_context *ctx, int val)
 175{
 176	struct audit_names *n;
 177	umode_t mode = (umode_t)val;
 178
 179	if (unlikely(!ctx))
 180		return 0;
 181
 182	list_for_each_entry(n, &ctx->names_list, list) {
 183		if ((n->ino != AUDIT_INO_UNSET) &&
 184		    ((n->mode & S_IFMT) == mode))
 185			return 1;
 186	}
 187
 188	return 0;
 189}
 190
 191/*
 192 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
 193 * ->first_trees points to its beginning, ->trees - to the current end of data.
 194 * ->tree_count is the number of free entries in array pointed to by ->trees.
 195 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
 196 * "empty" becomes (p, p, 31) afterwards.  We don't shrink the list (and seriously,
 197 * it's going to remain 1-element for almost any setup) until we free context itself.
 198 * References in it _are_ dropped - at the same time we free/drop aux stuff.
 199 */
 200
 201#ifdef CONFIG_AUDIT_TREE
 202static void audit_set_auditable(struct audit_context *ctx)
 203{
 204	if (!ctx->prio) {
 205		ctx->prio = 1;
 206		ctx->current_state = AUDIT_RECORD_CONTEXT;
 207	}
 208}
 209
 210static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
 211{
 212	struct audit_tree_refs *p = ctx->trees;
 213	int left = ctx->tree_count;
 214	if (likely(left)) {
 215		p->c[--left] = chunk;
 216		ctx->tree_count = left;
 217		return 1;
 218	}
 219	if (!p)
 220		return 0;
 221	p = p->next;
 222	if (p) {
 223		p->c[30] = chunk;
 224		ctx->trees = p;
 225		ctx->tree_count = 30;
 226		return 1;
 227	}
 228	return 0;
 229}
 230
 231static int grow_tree_refs(struct audit_context *ctx)
 232{
 233	struct audit_tree_refs *p = ctx->trees;
 234	ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
 235	if (!ctx->trees) {
 236		ctx->trees = p;
 237		return 0;
 238	}
 239	if (p)
 240		p->next = ctx->trees;
 241	else
 242		ctx->first_trees = ctx->trees;
 243	ctx->tree_count = 31;
 244	return 1;
 245}
 246#endif
 247
 248static void unroll_tree_refs(struct audit_context *ctx,
 249		      struct audit_tree_refs *p, int count)
 250{
 251#ifdef CONFIG_AUDIT_TREE
 252	struct audit_tree_refs *q;
 253	int n;
 254	if (!p) {
 255		/* we started with empty chain */
 256		p = ctx->first_trees;
 257		count = 31;
 258		/* if the very first allocation has failed, nothing to do */
 259		if (!p)
 260			return;
 261	}
 262	n = count;
 263	for (q = p; q != ctx->trees; q = q->next, n = 31) {
 264		while (n--) {
 265			audit_put_chunk(q->c[n]);
 266			q->c[n] = NULL;
 267		}
 268	}
 269	while (n-- > ctx->tree_count) {
 270		audit_put_chunk(q->c[n]);
 271		q->c[n] = NULL;
 272	}
 273	ctx->trees = p;
 274	ctx->tree_count = count;
 275#endif
 276}
 277
 278static void free_tree_refs(struct audit_context *ctx)
 279{
 280	struct audit_tree_refs *p, *q;
 281	for (p = ctx->first_trees; p; p = q) {
 282		q = p->next;
 283		kfree(p);
 284	}
 285}
 286
 287static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
 288{
 289#ifdef CONFIG_AUDIT_TREE
 290	struct audit_tree_refs *p;
 291	int n;
 292	if (!tree)
 293		return 0;
 294	/* full ones */
 295	for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
 296		for (n = 0; n < 31; n++)
 297			if (audit_tree_match(p->c[n], tree))
 298				return 1;
 299	}
 300	/* partial */
 301	if (p) {
 302		for (n = ctx->tree_count; n < 31; n++)
 303			if (audit_tree_match(p->c[n], tree))
 304				return 1;
 305	}
 306#endif
 307	return 0;
 308}
 309
 310static int audit_compare_uid(kuid_t uid,
 311			     struct audit_names *name,
 312			     struct audit_field *f,
 313			     struct audit_context *ctx)
 314{
 315	struct audit_names *n;
 316	int rc;
 317 
 318	if (name) {
 319		rc = audit_uid_comparator(uid, f->op, name->uid);
 320		if (rc)
 321			return rc;
 322	}
 323 
 324	if (ctx) {
 325		list_for_each_entry(n, &ctx->names_list, list) {
 326			rc = audit_uid_comparator(uid, f->op, n->uid);
 327			if (rc)
 328				return rc;
 329		}
 330	}
 331	return 0;
 332}
 333
 334static int audit_compare_gid(kgid_t gid,
 335			     struct audit_names *name,
 336			     struct audit_field *f,
 337			     struct audit_context *ctx)
 338{
 339	struct audit_names *n;
 340	int rc;
 341 
 342	if (name) {
 343		rc = audit_gid_comparator(gid, f->op, name->gid);
 344		if (rc)
 345			return rc;
 346	}
 347 
 348	if (ctx) {
 349		list_for_each_entry(n, &ctx->names_list, list) {
 350			rc = audit_gid_comparator(gid, f->op, n->gid);
 351			if (rc)
 352				return rc;
 353		}
 354	}
 355	return 0;
 356}
 357
 358static int audit_field_compare(struct task_struct *tsk,
 359			       const struct cred *cred,
 360			       struct audit_field *f,
 361			       struct audit_context *ctx,
 362			       struct audit_names *name)
 363{
 364	switch (f->val) {
 365	/* process to file object comparisons */
 366	case AUDIT_COMPARE_UID_TO_OBJ_UID:
 367		return audit_compare_uid(cred->uid, name, f, ctx);
 368	case AUDIT_COMPARE_GID_TO_OBJ_GID:
 369		return audit_compare_gid(cred->gid, name, f, ctx);
 370	case AUDIT_COMPARE_EUID_TO_OBJ_UID:
 371		return audit_compare_uid(cred->euid, name, f, ctx);
 372	case AUDIT_COMPARE_EGID_TO_OBJ_GID:
 373		return audit_compare_gid(cred->egid, name, f, ctx);
 374	case AUDIT_COMPARE_AUID_TO_OBJ_UID:
 375		return audit_compare_uid(tsk->loginuid, name, f, ctx);
 376	case AUDIT_COMPARE_SUID_TO_OBJ_UID:
 377		return audit_compare_uid(cred->suid, name, f, ctx);
 378	case AUDIT_COMPARE_SGID_TO_OBJ_GID:
 379		return audit_compare_gid(cred->sgid, name, f, ctx);
 380	case AUDIT_COMPARE_FSUID_TO_OBJ_UID:
 381		return audit_compare_uid(cred->fsuid, name, f, ctx);
 382	case AUDIT_COMPARE_FSGID_TO_OBJ_GID:
 383		return audit_compare_gid(cred->fsgid, name, f, ctx);
 384	/* uid comparisons */
 385	case AUDIT_COMPARE_UID_TO_AUID:
 386		return audit_uid_comparator(cred->uid, f->op, tsk->loginuid);
 387	case AUDIT_COMPARE_UID_TO_EUID:
 388		return audit_uid_comparator(cred->uid, f->op, cred->euid);
 389	case AUDIT_COMPARE_UID_TO_SUID:
 390		return audit_uid_comparator(cred->uid, f->op, cred->suid);
 391	case AUDIT_COMPARE_UID_TO_FSUID:
 392		return audit_uid_comparator(cred->uid, f->op, cred->fsuid);
 393	/* auid comparisons */
 394	case AUDIT_COMPARE_AUID_TO_EUID:
 395		return audit_uid_comparator(tsk->loginuid, f->op, cred->euid);
 396	case AUDIT_COMPARE_AUID_TO_SUID:
 397		return audit_uid_comparator(tsk->loginuid, f->op, cred->suid);
 398	case AUDIT_COMPARE_AUID_TO_FSUID:
 399		return audit_uid_comparator(tsk->loginuid, f->op, cred->fsuid);
 400	/* euid comparisons */
 401	case AUDIT_COMPARE_EUID_TO_SUID:
 402		return audit_uid_comparator(cred->euid, f->op, cred->suid);
 403	case AUDIT_COMPARE_EUID_TO_FSUID:
 404		return audit_uid_comparator(cred->euid, f->op, cred->fsuid);
 405	/* suid comparisons */
 406	case AUDIT_COMPARE_SUID_TO_FSUID:
 407		return audit_uid_comparator(cred->suid, f->op, cred->fsuid);
 408	/* gid comparisons */
 409	case AUDIT_COMPARE_GID_TO_EGID:
 410		return audit_gid_comparator(cred->gid, f->op, cred->egid);
 411	case AUDIT_COMPARE_GID_TO_SGID:
 412		return audit_gid_comparator(cred->gid, f->op, cred->sgid);
 413	case AUDIT_COMPARE_GID_TO_FSGID:
 414		return audit_gid_comparator(cred->gid, f->op, cred->fsgid);
 415	/* egid comparisons */
 416	case AUDIT_COMPARE_EGID_TO_SGID:
 417		return audit_gid_comparator(cred->egid, f->op, cred->sgid);
 418	case AUDIT_COMPARE_EGID_TO_FSGID:
 419		return audit_gid_comparator(cred->egid, f->op, cred->fsgid);
 420	/* sgid comparison */
 421	case AUDIT_COMPARE_SGID_TO_FSGID:
 422		return audit_gid_comparator(cred->sgid, f->op, cred->fsgid);
 423	default:
 424		WARN(1, "Missing AUDIT_COMPARE define.  Report as a bug\n");
 425		return 0;
 426	}
 427	return 0;
 428}
 429
 430/* Determine if any context name data matches a rule's watch data */
 431/* Compare a task_struct with an audit_rule.  Return 1 on match, 0
 432 * otherwise.
 433 *
 434 * If task_creation is true, this is an explicit indication that we are
 435 * filtering a task rule at task creation time.  This and tsk == current are
 436 * the only situations where tsk->cred may be accessed without an rcu read lock.
 437 */
 438static int audit_filter_rules(struct task_struct *tsk,
 439			      struct audit_krule *rule,
 440			      struct audit_context *ctx,
 441			      struct audit_names *name,
 442			      enum audit_state *state,
 443			      bool task_creation)
 444{
 445	const struct cred *cred;
 446	int i, need_sid = 1;
 447	u32 sid;
 448
 449	cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
 450
 451	for (i = 0; i < rule->field_count; i++) {
 452		struct audit_field *f = &rule->fields[i];
 453		struct audit_names *n;
 454		int result = 0;
 455		pid_t pid;
 456
 457		switch (f->type) {
 458		case AUDIT_PID:
 459			pid = task_pid_nr(tsk);
 460			result = audit_comparator(pid, f->op, f->val);
 461			break;
 462		case AUDIT_PPID:
 463			if (ctx) {
 464				if (!ctx->ppid)
 465					ctx->ppid = task_ppid_nr(tsk);
 466				result = audit_comparator(ctx->ppid, f->op, f->val);
 467			}
 468			break;
 469		case AUDIT_EXE:
 470			result = audit_exe_compare(tsk, rule->exe);
 471			break;
 472		case AUDIT_UID:
 473			result = audit_uid_comparator(cred->uid, f->op, f->uid);
 474			break;
 475		case AUDIT_EUID:
 476			result = audit_uid_comparator(cred->euid, f->op, f->uid);
 477			break;
 478		case AUDIT_SUID:
 479			result = audit_uid_comparator(cred->suid, f->op, f->uid);
 480			break;
 481		case AUDIT_FSUID:
 482			result = audit_uid_comparator(cred->fsuid, f->op, f->uid);
 483			break;
 484		case AUDIT_GID:
 485			result = audit_gid_comparator(cred->gid, f->op, f->gid);
 486			if (f->op == Audit_equal) {
 487				if (!result)
 488					result = in_group_p(f->gid);
 489			} else if (f->op == Audit_not_equal) {
 490				if (result)
 491					result = !in_group_p(f->gid);
 492			}
 493			break;
 494		case AUDIT_EGID:
 495			result = audit_gid_comparator(cred->egid, f->op, f->gid);
 496			if (f->op == Audit_equal) {
 497				if (!result)
 498					result = in_egroup_p(f->gid);
 499			} else if (f->op == Audit_not_equal) {
 500				if (result)
 501					result = !in_egroup_p(f->gid);
 502			}
 503			break;
 504		case AUDIT_SGID:
 505			result = audit_gid_comparator(cred->sgid, f->op, f->gid);
 506			break;
 507		case AUDIT_FSGID:
 508			result = audit_gid_comparator(cred->fsgid, f->op, f->gid);
 509			break;
 510		case AUDIT_PERS:
 511			result = audit_comparator(tsk->personality, f->op, f->val);
 512			break;
 513		case AUDIT_ARCH:
 514			if (ctx)
 515				result = audit_comparator(ctx->arch, f->op, f->val);
 516			break;
 517
 518		case AUDIT_EXIT:
 519			if (ctx && ctx->return_valid)
 520				result = audit_comparator(ctx->return_code, f->op, f->val);
 521			break;
 522		case AUDIT_SUCCESS:
 523			if (ctx && ctx->return_valid) {
 524				if (f->val)
 525					result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
 526				else
 527					result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
 528			}
 529			break;
 530		case AUDIT_DEVMAJOR:
 531			if (name) {
 532				if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
 533				    audit_comparator(MAJOR(name->rdev), f->op, f->val))
 534					++result;
 535			} else if (ctx) {
 536				list_for_each_entry(n, &ctx->names_list, list) {
 537					if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
 538					    audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
 539						++result;
 540						break;
 541					}
 542				}
 543			}
 544			break;
 545		case AUDIT_DEVMINOR:
 546			if (name) {
 547				if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
 548				    audit_comparator(MINOR(name->rdev), f->op, f->val))
 549					++result;
 550			} else if (ctx) {
 551				list_for_each_entry(n, &ctx->names_list, list) {
 552					if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
 553					    audit_comparator(MINOR(n->rdev), f->op, f->val)) {
 554						++result;
 555						break;
 556					}
 557				}
 558			}
 559			break;
 560		case AUDIT_INODE:
 561			if (name)
 562				result = audit_comparator(name->ino, f->op, f->val);
 563			else if (ctx) {
 564				list_for_each_entry(n, &ctx->names_list, list) {
 565					if (audit_comparator(n->ino, f->op, f->val)) {
 566						++result;
 567						break;
 568					}
 569				}
 570			}
 571			break;
 572		case AUDIT_OBJ_UID:
 573			if (name) {
 574				result = audit_uid_comparator(name->uid, f->op, f->uid);
 575			} else if (ctx) {
 576				list_for_each_entry(n, &ctx->names_list, list) {
 577					if (audit_uid_comparator(n->uid, f->op, f->uid)) {
 578						++result;
 579						break;
 580					}
 581				}
 582			}
 583			break;
 584		case AUDIT_OBJ_GID:
 585			if (name) {
 586				result = audit_gid_comparator(name->gid, f->op, f->gid);
 587			} else if (ctx) {
 588				list_for_each_entry(n, &ctx->names_list, list) {
 589					if (audit_gid_comparator(n->gid, f->op, f->gid)) {
 590						++result;
 591						break;
 592					}
 593				}
 594			}
 595			break;
 596		case AUDIT_WATCH:
 597			if (name)
 598				result = audit_watch_compare(rule->watch, name->ino, name->dev);
 599			break;
 600		case AUDIT_DIR:
 601			if (ctx)
 602				result = match_tree_refs(ctx, rule->tree);
 603			break;
 604		case AUDIT_LOGINUID:
 605			result = audit_uid_comparator(tsk->loginuid, f->op, f->uid);
 606			break;
 607		case AUDIT_LOGINUID_SET:
 608			result = audit_comparator(audit_loginuid_set(tsk), f->op, f->val);
 609			break;
 610		case AUDIT_SUBJ_USER:
 611		case AUDIT_SUBJ_ROLE:
 612		case AUDIT_SUBJ_TYPE:
 613		case AUDIT_SUBJ_SEN:
 614		case AUDIT_SUBJ_CLR:
 615			/* NOTE: this may return negative values indicating
 616			   a temporary error.  We simply treat this as a
 617			   match for now to avoid losing information that
 618			   may be wanted.   An error message will also be
 619			   logged upon error */
 620			if (f->lsm_rule) {
 621				if (need_sid) {
 622					security_task_getsecid(tsk, &sid);
 623					need_sid = 0;
 624				}
 625				result = security_audit_rule_match(sid, f->type,
 626				                                  f->op,
 627				                                  f->lsm_rule,
 628				                                  ctx);
 629			}
 630			break;
 631		case AUDIT_OBJ_USER:
 632		case AUDIT_OBJ_ROLE:
 633		case AUDIT_OBJ_TYPE:
 634		case AUDIT_OBJ_LEV_LOW:
 635		case AUDIT_OBJ_LEV_HIGH:
 636			/* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
 637			   also applies here */
 638			if (f->lsm_rule) {
 639				/* Find files that match */
 640				if (name) {
 641					result = security_audit_rule_match(
 642					           name->osid, f->type, f->op,
 643					           f->lsm_rule, ctx);
 644				} else if (ctx) {
 645					list_for_each_entry(n, &ctx->names_list, list) {
 646						if (security_audit_rule_match(n->osid, f->type,
 647									      f->op, f->lsm_rule,
 648									      ctx)) {
 
 649							++result;
 650							break;
 651						}
 652					}
 653				}
 654				/* Find ipc objects that match */
 655				if (!ctx || ctx->type != AUDIT_IPC)
 656					break;
 657				if (security_audit_rule_match(ctx->ipc.osid,
 658							      f->type, f->op,
 659							      f->lsm_rule, ctx))
 660					++result;
 661			}
 662			break;
 663		case AUDIT_ARG0:
 664		case AUDIT_ARG1:
 665		case AUDIT_ARG2:
 666		case AUDIT_ARG3:
 667			if (ctx)
 668				result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
 669			break;
 670		case AUDIT_FILTERKEY:
 671			/* ignore this field for filtering */
 672			result = 1;
 673			break;
 674		case AUDIT_PERM:
 675			result = audit_match_perm(ctx, f->val);
 676			break;
 677		case AUDIT_FILETYPE:
 678			result = audit_match_filetype(ctx, f->val);
 679			break;
 680		case AUDIT_FIELD_COMPARE:
 681			result = audit_field_compare(tsk, cred, f, ctx, name);
 682			break;
 683		}
 
 684		if (!result)
 685			return 0;
 686	}
 687
 688	if (ctx) {
 689		if (rule->prio <= ctx->prio)
 690			return 0;
 691		if (rule->filterkey) {
 692			kfree(ctx->filterkey);
 693			ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
 694		}
 695		ctx->prio = rule->prio;
 696	}
 697	switch (rule->action) {
 698	case AUDIT_NEVER:    *state = AUDIT_DISABLED;	    break;
 699	case AUDIT_ALWAYS:   *state = AUDIT_RECORD_CONTEXT; break;
 700	}
 701	return 1;
 702}
 703
 704/* At process creation time, we can determine if system-call auditing is
 705 * completely disabled for this task.  Since we only have the task
 706 * structure at this point, we can only check uid and gid.
 707 */
 708static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
 709{
 710	struct audit_entry *e;
 711	enum audit_state   state;
 712
 713	rcu_read_lock();
 714	list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
 715		if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
 716				       &state, true)) {
 717			if (state == AUDIT_RECORD_CONTEXT)
 718				*key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
 719			rcu_read_unlock();
 720			return state;
 721		}
 722	}
 723	rcu_read_unlock();
 724	return AUDIT_BUILD_CONTEXT;
 725}
 726
 727static int audit_in_mask(const struct audit_krule *rule, unsigned long val)
 728{
 729	int word, bit;
 730
 731	if (val > 0xffffffff)
 732		return false;
 733
 734	word = AUDIT_WORD(val);
 735	if (word >= AUDIT_BITMASK_SIZE)
 736		return false;
 737
 738	bit = AUDIT_BIT(val);
 739
 740	return rule->mask[word] & bit;
 741}
 742
 743/* At syscall entry and exit time, this filter is called if the
 744 * audit_state is not low enough that auditing cannot take place, but is
 745 * also not high enough that we already know we have to write an audit
 746 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
 747 */
 748static enum audit_state audit_filter_syscall(struct task_struct *tsk,
 749					     struct audit_context *ctx,
 750					     struct list_head *list)
 751{
 752	struct audit_entry *e;
 753	enum audit_state state;
 754
 755	if (audit_pid && tsk->tgid == audit_pid)
 756		return AUDIT_DISABLED;
 757
 758	rcu_read_lock();
 759	if (!list_empty(list)) {
 
 
 
 760		list_for_each_entry_rcu(e, list, list) {
 761			if (audit_in_mask(&e->rule, ctx->major) &&
 762			    audit_filter_rules(tsk, &e->rule, ctx, NULL,
 763					       &state, false)) {
 764				rcu_read_unlock();
 765				ctx->current_state = state;
 766				return state;
 767			}
 768		}
 769	}
 770	rcu_read_unlock();
 771	return AUDIT_BUILD_CONTEXT;
 772}
 773
 774/*
 775 * Given an audit_name check the inode hash table to see if they match.
 776 * Called holding the rcu read lock to protect the use of audit_inode_hash
 777 */
 778static int audit_filter_inode_name(struct task_struct *tsk,
 779				   struct audit_names *n,
 780				   struct audit_context *ctx) {
 781	int h = audit_hash_ino((u32)n->ino);
 782	struct list_head *list = &audit_inode_hash[h];
 783	struct audit_entry *e;
 784	enum audit_state state;
 785
 786	if (list_empty(list))
 787		return 0;
 788
 789	list_for_each_entry_rcu(e, list, list) {
 790		if (audit_in_mask(&e->rule, ctx->major) &&
 791		    audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) {
 792			ctx->current_state = state;
 793			return 1;
 794		}
 795	}
 796
 797	return 0;
 798}
 799
 800/* At syscall exit time, this filter is called if any audit_names have been
 801 * collected during syscall processing.  We only check rules in sublists at hash
 802 * buckets applicable to the inode numbers in audit_names.
 803 * Regarding audit_state, same rules apply as for audit_filter_syscall().
 804 */
 805void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
 806{
 807	struct audit_names *n;
 
 
 808
 809	if (audit_pid && tsk->tgid == audit_pid)
 810		return;
 811
 812	rcu_read_lock();
 
 
 
 
 
 
 813
 814	list_for_each_entry(n, &ctx->names_list, list) {
 815		if (audit_filter_inode_name(tsk, n, ctx))
 816			break;
 
 
 
 
 
 
 
 
 
 817	}
 818	rcu_read_unlock();
 819}
 820
 821/* Transfer the audit context pointer to the caller, clearing it in the tsk's struct */
 822static inline struct audit_context *audit_take_context(struct task_struct *tsk,
 823						      int return_valid,
 824						      long return_code)
 825{
 826	struct audit_context *context = tsk->audit_context;
 827
 828	if (!context)
 829		return NULL;
 830	context->return_valid = return_valid;
 831
 832	/*
 833	 * we need to fix up the return code in the audit logs if the actual
 834	 * return codes are later going to be fixed up by the arch specific
 835	 * signal handlers
 836	 *
 837	 * This is actually a test for:
 838	 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
 839	 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
 840	 *
 841	 * but is faster than a bunch of ||
 842	 */
 843	if (unlikely(return_code <= -ERESTARTSYS) &&
 844	    (return_code >= -ERESTART_RESTARTBLOCK) &&
 845	    (return_code != -ENOIOCTLCMD))
 846		context->return_code = -EINTR;
 847	else
 848		context->return_code  = return_code;
 849
 850	if (context->in_syscall && !context->dummy) {
 851		audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
 852		audit_filter_inodes(tsk, context);
 853	}
 854
 855	tsk->audit_context = NULL;
 856	return context;
 857}
 858
 859static inline void audit_proctitle_free(struct audit_context *context)
 860{
 861	kfree(context->proctitle.value);
 862	context->proctitle.value = NULL;
 863	context->proctitle.len = 0;
 864}
 865
 866static inline void audit_free_names(struct audit_context *context)
 867{
 868	struct audit_names *n, *next;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 869
 870	list_for_each_entry_safe(n, next, &context->names_list, list) {
 871		list_del(&n->list);
 872		if (n->name)
 873			putname(n->name);
 874		if (n->should_free)
 875			kfree(n);
 876	}
 877	context->name_count = 0;
 878	path_put(&context->pwd);
 879	context->pwd.dentry = NULL;
 880	context->pwd.mnt = NULL;
 881}
 882
 883static inline void audit_free_aux(struct audit_context *context)
 884{
 885	struct audit_aux_data *aux;
 886
 887	while ((aux = context->aux)) {
 888		context->aux = aux->next;
 889		kfree(aux);
 890	}
 891	while ((aux = context->aux_pids)) {
 892		context->aux_pids = aux->next;
 893		kfree(aux);
 894	}
 895}
 896
 
 
 
 
 
 
 
 
 897static inline struct audit_context *audit_alloc_context(enum audit_state state)
 898{
 899	struct audit_context *context;
 900
 901	context = kzalloc(sizeof(*context), GFP_KERNEL);
 902	if (!context)
 903		return NULL;
 904	context->state = state;
 905	context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
 906	INIT_LIST_HEAD(&context->killed_trees);
 907	INIT_LIST_HEAD(&context->names_list);
 908	return context;
 909}
 910
 911/**
 912 * audit_alloc - allocate an audit context block for a task
 913 * @tsk: task
 914 *
 915 * Filter on the task information and allocate a per-task audit context
 916 * if necessary.  Doing so turns on system call auditing for the
 917 * specified task.  This is called from copy_process, so no lock is
 918 * needed.
 919 */
 920int audit_alloc(struct task_struct *tsk)
 921{
 922	struct audit_context *context;
 923	enum audit_state     state;
 924	char *key = NULL;
 925
 926	if (likely(!audit_ever_enabled))
 927		return 0; /* Return if not auditing. */
 928
 929	state = audit_filter_task(tsk, &key);
 930	if (state == AUDIT_DISABLED) {
 931		clear_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
 932		return 0;
 933	}
 934
 935	if (!(context = audit_alloc_context(state))) {
 936		kfree(key);
 937		audit_log_lost("out of memory in audit_alloc");
 938		return -ENOMEM;
 939	}
 940	context->filterkey = key;
 941
 942	tsk->audit_context  = context;
 943	set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
 944	return 0;
 945}
 946
 947static inline void audit_free_context(struct audit_context *context)
 948{
 949	audit_free_names(context);
 950	unroll_tree_refs(context, NULL, 0);
 951	free_tree_refs(context);
 952	audit_free_aux(context);
 953	kfree(context->filterkey);
 954	kfree(context->sockaddr);
 955	audit_proctitle_free(context);
 956	kfree(context);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 957}
 958
 959static int audit_log_pid_context(struct audit_context *context, pid_t pid,
 960				 kuid_t auid, kuid_t uid, unsigned int sessionid,
 961				 u32 sid, char *comm)
 962{
 963	struct audit_buffer *ab;
 964	char *ctx = NULL;
 965	u32 len;
 966	int rc = 0;
 967
 968	ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
 969	if (!ab)
 970		return rc;
 971
 972	audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid,
 973			 from_kuid(&init_user_ns, auid),
 974			 from_kuid(&init_user_ns, uid), sessionid);
 975	if (sid) {
 976		if (security_secid_to_secctx(sid, &ctx, &len)) {
 977			audit_log_format(ab, " obj=(none)");
 978			rc = 1;
 979		} else {
 980			audit_log_format(ab, " obj=%s", ctx);
 981			security_release_secctx(ctx, len);
 982		}
 983	}
 984	audit_log_format(ab, " ocomm=");
 985	audit_log_untrustedstring(ab, comm);
 986	audit_log_end(ab);
 987
 988	return rc;
 989}
 990
 991/*
 992 * to_send and len_sent accounting are very loose estimates.  We aren't
 993 * really worried about a hard cap to MAX_EXECVE_AUDIT_LEN so much as being
 994 * within about 500 bytes (next page boundary)
 995 *
 996 * why snprintf?  an int is up to 12 digits long.  if we just assumed when
 997 * logging that a[%d]= was going to be 16 characters long we would be wasting
 998 * space in every audit message.  In one 7500 byte message we can log up to
 999 * about 1000 min size arguments.  That comes down to about 50% waste of space
1000 * if we didn't do the snprintf to find out how long arg_num_len was.
1001 */
1002static int audit_log_single_execve_arg(struct audit_context *context,
1003					struct audit_buffer **ab,
1004					int arg_num,
1005					size_t *len_sent,
1006					const char __user *p,
1007					char *buf)
1008{
1009	char arg_num_len_buf[12];
1010	const char __user *tmp_p = p;
1011	/* how many digits are in arg_num? 5 is the length of ' a=""' */
1012	size_t arg_num_len = snprintf(arg_num_len_buf, 12, "%d", arg_num) + 5;
1013	size_t len, len_left, to_send;
1014	size_t max_execve_audit_len = MAX_EXECVE_AUDIT_LEN;
1015	unsigned int i, has_cntl = 0, too_long = 0;
1016	int ret;
1017
1018	/* strnlen_user includes the null we don't want to send */
1019	len_left = len = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1020
1021	/*
1022	 * We just created this mm, if we can't find the strings
1023	 * we just copied into it something is _very_ wrong. Similar
1024	 * for strings that are too long, we should not have created
1025	 * any.
1026	 */
1027	if (WARN_ON_ONCE(len < 0 || len > MAX_ARG_STRLEN - 1)) {
 
1028		send_sig(SIGKILL, current, 0);
1029		return -1;
1030	}
1031
1032	/* walk the whole argument looking for non-ascii chars */
1033	do {
1034		if (len_left > MAX_EXECVE_AUDIT_LEN)
1035			to_send = MAX_EXECVE_AUDIT_LEN;
1036		else
1037			to_send = len_left;
1038		ret = copy_from_user(buf, tmp_p, to_send);
1039		/*
1040		 * There is no reason for this copy to be short. We just
1041		 * copied them here, and the mm hasn't been exposed to user-
1042		 * space yet.
1043		 */
1044		if (ret) {
1045			WARN_ON(1);
1046			send_sig(SIGKILL, current, 0);
1047			return -1;
1048		}
1049		buf[to_send] = '\0';
1050		has_cntl = audit_string_contains_control(buf, to_send);
1051		if (has_cntl) {
1052			/*
1053			 * hex messages get logged as 2 bytes, so we can only
1054			 * send half as much in each message
1055			 */
1056			max_execve_audit_len = MAX_EXECVE_AUDIT_LEN / 2;
1057			break;
1058		}
1059		len_left -= to_send;
1060		tmp_p += to_send;
1061	} while (len_left > 0);
1062
1063	len_left = len;
1064
1065	if (len > max_execve_audit_len)
1066		too_long = 1;
1067
1068	/* rewalk the argument actually logging the message */
1069	for (i = 0; len_left > 0; i++) {
1070		int room_left;
1071
1072		if (len_left > max_execve_audit_len)
1073			to_send = max_execve_audit_len;
1074		else
1075			to_send = len_left;
1076
1077		/* do we have space left to send this argument in this ab? */
1078		room_left = MAX_EXECVE_AUDIT_LEN - arg_num_len - *len_sent;
1079		if (has_cntl)
1080			room_left -= (to_send * 2);
1081		else
1082			room_left -= to_send;
1083		if (room_left < 0) {
1084			*len_sent = 0;
1085			audit_log_end(*ab);
1086			*ab = audit_log_start(context, GFP_KERNEL, AUDIT_EXECVE);
1087			if (!*ab)
1088				return 0;
1089		}
1090
1091		/*
1092		 * first record needs to say how long the original string was
1093		 * so we can be sure nothing was lost.
1094		 */
1095		if ((i == 0) && (too_long))
1096			audit_log_format(*ab, " a%d_len=%zu", arg_num,
1097					 has_cntl ? 2*len : len);
1098
1099		/*
1100		 * normally arguments are small enough to fit and we already
1101		 * filled buf above when we checked for control characters
1102		 * so don't bother with another copy_from_user
1103		 */
1104		if (len >= max_execve_audit_len)
1105			ret = copy_from_user(buf, p, to_send);
1106		else
1107			ret = 0;
1108		if (ret) {
1109			WARN_ON(1);
1110			send_sig(SIGKILL, current, 0);
1111			return -1;
1112		}
1113		buf[to_send] = '\0';
1114
1115		/* actually log it */
1116		audit_log_format(*ab, " a%d", arg_num);
1117		if (too_long)
1118			audit_log_format(*ab, "[%d]", i);
1119		audit_log_format(*ab, "=");
1120		if (has_cntl)
1121			audit_log_n_hex(*ab, buf, to_send);
1122		else
1123			audit_log_string(*ab, buf);
1124
1125		p += to_send;
1126		len_left -= to_send;
1127		*len_sent += arg_num_len;
1128		if (has_cntl)
1129			*len_sent += to_send * 2;
1130		else
1131			*len_sent += to_send;
1132	}
1133	/* include the null we didn't log */
1134	return len + 1;
1135}
1136
1137static void audit_log_execve_info(struct audit_context *context,
1138				  struct audit_buffer **ab)
 
1139{
1140	int i, len;
1141	size_t len_sent = 0;
1142	const char __user *p;
1143	char *buf;
1144
1145	p = (const char __user *)current->mm->arg_start;
 
 
 
1146
1147	audit_log_format(*ab, "argc=%d", context->execve.argc);
1148
1149	/*
1150	 * we need some kernel buffer to hold the userspace args.  Just
1151	 * allocate one big one rather than allocating one of the right size
1152	 * for every single argument inside audit_log_single_execve_arg()
1153	 * should be <8k allocation so should be pretty safe.
1154	 */
1155	buf = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1156	if (!buf) {
1157		audit_panic("out of memory for argv string");
1158		return;
1159	}
1160
1161	for (i = 0; i < context->execve.argc; i++) {
1162		len = audit_log_single_execve_arg(context, ab, i,
1163						  &len_sent, p, buf);
1164		if (len <= 0)
1165			break;
1166		p += len;
1167	}
1168	kfree(buf);
1169}
1170
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1171static void show_special(struct audit_context *context, int *call_panic)
1172{
1173	struct audit_buffer *ab;
1174	int i;
1175
1176	ab = audit_log_start(context, GFP_KERNEL, context->type);
1177	if (!ab)
1178		return;
1179
1180	switch (context->type) {
1181	case AUDIT_SOCKETCALL: {
1182		int nargs = context->socketcall.nargs;
1183		audit_log_format(ab, "nargs=%d", nargs);
1184		for (i = 0; i < nargs; i++)
1185			audit_log_format(ab, " a%d=%lx", i,
1186				context->socketcall.args[i]);
1187		break; }
1188	case AUDIT_IPC: {
1189		u32 osid = context->ipc.osid;
1190
1191		audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
1192				 from_kuid(&init_user_ns, context->ipc.uid),
1193				 from_kgid(&init_user_ns, context->ipc.gid),
1194				 context->ipc.mode);
1195		if (osid) {
1196			char *ctx = NULL;
1197			u32 len;
1198			if (security_secid_to_secctx(osid, &ctx, &len)) {
1199				audit_log_format(ab, " osid=%u", osid);
1200				*call_panic = 1;
1201			} else {
1202				audit_log_format(ab, " obj=%s", ctx);
1203				security_release_secctx(ctx, len);
1204			}
1205		}
1206		if (context->ipc.has_perm) {
1207			audit_log_end(ab);
1208			ab = audit_log_start(context, GFP_KERNEL,
1209					     AUDIT_IPC_SET_PERM);
1210			if (unlikely(!ab))
1211				return;
1212			audit_log_format(ab,
1213				"qbytes=%lx ouid=%u ogid=%u mode=%#ho",
1214				context->ipc.qbytes,
1215				context->ipc.perm_uid,
1216				context->ipc.perm_gid,
1217				context->ipc.perm_mode);
 
 
1218		}
1219		break; }
1220	case AUDIT_MQ_OPEN: {
1221		audit_log_format(ab,
1222			"oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
1223			"mq_msgsize=%ld mq_curmsgs=%ld",
1224			context->mq_open.oflag, context->mq_open.mode,
1225			context->mq_open.attr.mq_flags,
1226			context->mq_open.attr.mq_maxmsg,
1227			context->mq_open.attr.mq_msgsize,
1228			context->mq_open.attr.mq_curmsgs);
1229		break; }
1230	case AUDIT_MQ_SENDRECV: {
1231		audit_log_format(ab,
1232			"mqdes=%d msg_len=%zd msg_prio=%u "
1233			"abs_timeout_sec=%ld abs_timeout_nsec=%ld",
1234			context->mq_sendrecv.mqdes,
1235			context->mq_sendrecv.msg_len,
1236			context->mq_sendrecv.msg_prio,
1237			context->mq_sendrecv.abs_timeout.tv_sec,
1238			context->mq_sendrecv.abs_timeout.tv_nsec);
1239		break; }
1240	case AUDIT_MQ_NOTIFY: {
1241		audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1242				context->mq_notify.mqdes,
1243				context->mq_notify.sigev_signo);
1244		break; }
1245	case AUDIT_MQ_GETSETATTR: {
1246		struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1247		audit_log_format(ab,
1248			"mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1249			"mq_curmsgs=%ld ",
1250			context->mq_getsetattr.mqdes,
1251			attr->mq_flags, attr->mq_maxmsg,
1252			attr->mq_msgsize, attr->mq_curmsgs);
1253		break; }
1254	case AUDIT_CAPSET: {
1255		audit_log_format(ab, "pid=%d", context->capset.pid);
1256		audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1257		audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1258		audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1259		break; }
1260	case AUDIT_MMAP: {
1261		audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1262				 context->mmap.flags);
1263		break; }
1264	case AUDIT_EXECVE: {
1265		audit_log_execve_info(context, &ab);
1266		break; }
1267	}
1268	audit_log_end(ab);
1269}
1270
1271static inline int audit_proctitle_rtrim(char *proctitle, int len)
1272{
1273	char *end = proctitle + len - 1;
1274	while (end > proctitle && !isprint(*end))
1275		end--;
1276
1277	/* catch the case where proctitle is only 1 non-print character */
1278	len = end - proctitle + 1;
1279	len -= isprint(proctitle[len-1]) == 0;
1280	return len;
1281}
1282
1283static void audit_log_proctitle(struct task_struct *tsk,
1284			 struct audit_context *context)
1285{
1286	int res;
1287	char *buf;
1288	char *msg = "(null)";
1289	int len = strlen(msg);
1290	struct audit_buffer *ab;
1291
1292	ab = audit_log_start(context, GFP_KERNEL, AUDIT_PROCTITLE);
1293	if (!ab)
1294		return;	/* audit_panic or being filtered */
1295
1296	audit_log_format(ab, "proctitle=");
1297
1298	/* Not  cached */
1299	if (!context->proctitle.value) {
1300		buf = kmalloc(MAX_PROCTITLE_AUDIT_LEN, GFP_KERNEL);
1301		if (!buf)
1302			goto out;
1303		/* Historically called this from procfs naming */
1304		res = get_cmdline(tsk, buf, MAX_PROCTITLE_AUDIT_LEN);
1305		if (res == 0) {
1306			kfree(buf);
1307			goto out;
1308		}
1309		res = audit_proctitle_rtrim(buf, res);
1310		if (res == 0) {
1311			kfree(buf);
1312			goto out;
1313		}
1314		context->proctitle.value = buf;
1315		context->proctitle.len = res;
1316	}
1317	msg = context->proctitle.value;
1318	len = context->proctitle.len;
1319out:
1320	audit_log_n_untrustedstring(ab, msg, len);
1321	audit_log_end(ab);
1322}
1323
1324static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
1325{
 
1326	int i, call_panic = 0;
1327	struct audit_buffer *ab;
1328	struct audit_aux_data *aux;
1329	struct audit_names *n;
1330
1331	/* tsk == current */
 
 
 
 
 
 
 
 
 
 
 
 
1332	context->personality = tsk->personality;
1333
1334	ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1335	if (!ab)
1336		return;		/* audit_panic has been called */
1337	audit_log_format(ab, "arch=%x syscall=%d",
1338			 context->arch, context->major);
1339	if (context->personality != PER_LINUX)
1340		audit_log_format(ab, " per=%lx", context->personality);
1341	if (context->return_valid)
1342		audit_log_format(ab, " success=%s exit=%ld",
1343				 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1344				 context->return_code);
1345
 
 
 
 
 
 
 
1346	audit_log_format(ab,
1347			 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d",
1348			 context->argv[0],
1349			 context->argv[1],
1350			 context->argv[2],
1351			 context->argv[3],
1352			 context->name_count);
 
 
 
 
 
 
 
 
 
 
 
 
1353
1354	audit_log_task_info(ab, tsk);
1355	audit_log_key(ab, context->filterkey);
1356	audit_log_end(ab);
1357
1358	for (aux = context->aux; aux; aux = aux->next) {
1359
1360		ab = audit_log_start(context, GFP_KERNEL, aux->type);
1361		if (!ab)
1362			continue; /* audit_panic has been called */
1363
1364		switch (aux->type) {
1365
 
 
 
 
 
1366		case AUDIT_BPRM_FCAPS: {
1367			struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1368			audit_log_format(ab, "fver=%x", axs->fcap_ver);
1369			audit_log_cap(ab, "fp", &axs->fcap.permitted);
1370			audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1371			audit_log_format(ab, " fe=%d", axs->fcap.fE);
1372			audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1373			audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1374			audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1375			audit_log_cap(ab, "new_pp", &axs->new_pcap.permitted);
1376			audit_log_cap(ab, "new_pi", &axs->new_pcap.inheritable);
1377			audit_log_cap(ab, "new_pe", &axs->new_pcap.effective);
1378			break; }
1379
1380		}
1381		audit_log_end(ab);
1382	}
1383
1384	if (context->type)
1385		show_special(context, &call_panic);
1386
1387	if (context->fds[0] >= 0) {
1388		ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1389		if (ab) {
1390			audit_log_format(ab, "fd0=%d fd1=%d",
1391					context->fds[0], context->fds[1]);
1392			audit_log_end(ab);
1393		}
1394	}
1395
1396	if (context->sockaddr_len) {
1397		ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1398		if (ab) {
1399			audit_log_format(ab, "saddr=");
1400			audit_log_n_hex(ab, (void *)context->sockaddr,
1401					context->sockaddr_len);
1402			audit_log_end(ab);
1403		}
1404	}
1405
1406	for (aux = context->aux_pids; aux; aux = aux->next) {
1407		struct audit_aux_data_pids *axs = (void *)aux;
1408
1409		for (i = 0; i < axs->pid_count; i++)
1410			if (audit_log_pid_context(context, axs->target_pid[i],
1411						  axs->target_auid[i],
1412						  axs->target_uid[i],
1413						  axs->target_sessionid[i],
1414						  axs->target_sid[i],
1415						  axs->target_comm[i]))
1416				call_panic = 1;
1417	}
1418
1419	if (context->target_pid &&
1420	    audit_log_pid_context(context, context->target_pid,
1421				  context->target_auid, context->target_uid,
1422				  context->target_sessionid,
1423				  context->target_sid, context->target_comm))
1424			call_panic = 1;
1425
1426	if (context->pwd.dentry && context->pwd.mnt) {
1427		ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1428		if (ab) {
1429			audit_log_d_path(ab, " cwd=", &context->pwd);
1430			audit_log_end(ab);
1431		}
1432	}
 
 
1433
1434	i = 0;
1435	list_for_each_entry(n, &context->names_list, list) {
1436		if (n->hidden)
1437			continue;
1438		audit_log_name(context, n, NULL, i++, &call_panic);
1439	}
1440
1441	audit_log_proctitle(tsk, context);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1442
1443	/* Send end of event record to help user space know we are finished */
1444	ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1445	if (ab)
1446		audit_log_end(ab);
1447	if (call_panic)
1448		audit_panic("error converting sid to string");
1449}
1450
1451/**
1452 * audit_free - free a per-task audit context
1453 * @tsk: task whose audit context block to free
1454 *
1455 * Called from copy_process and do_exit
1456 */
1457void __audit_free(struct task_struct *tsk)
1458{
1459	struct audit_context *context;
1460
1461	context = audit_take_context(tsk, 0, 0);
1462	if (!context)
1463		return;
1464
1465	/* Check for system calls that do not go through the exit
1466	 * function (e.g., exit_group), then free context block.
1467	 * We use GFP_ATOMIC here because we might be doing this
1468	 * in the context of the idle thread */
1469	/* that can happen only if we are called from do_exit() */
1470	if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1471		audit_log_exit(context, tsk);
1472	if (!list_empty(&context->killed_trees))
1473		audit_kill_trees(&context->killed_trees);
1474
1475	audit_free_context(context);
1476}
1477
1478/**
1479 * audit_syscall_entry - fill in an audit record at syscall entry
 
1480 * @major: major syscall type (function)
1481 * @a1: additional syscall register 1
1482 * @a2: additional syscall register 2
1483 * @a3: additional syscall register 3
1484 * @a4: additional syscall register 4
1485 *
1486 * Fill in audit context at syscall entry.  This only happens if the
1487 * audit context was created when the task was created and the state or
1488 * filters demand the audit context be built.  If the state from the
1489 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1490 * then the record will be written at syscall exit time (otherwise, it
1491 * will only be written if another part of the kernel requests that it
1492 * be written).
1493 */
1494void __audit_syscall_entry(int major, unsigned long a1, unsigned long a2,
1495			   unsigned long a3, unsigned long a4)
 
1496{
1497	struct task_struct *tsk = current;
1498	struct audit_context *context = tsk->audit_context;
1499	enum audit_state     state;
1500
1501	if (!context)
1502		return;
1503
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1504	BUG_ON(context->in_syscall || context->name_count);
1505
1506	if (!audit_enabled)
1507		return;
1508
1509	context->arch	    = syscall_get_arch();
1510	context->major      = major;
1511	context->argv[0]    = a1;
1512	context->argv[1]    = a2;
1513	context->argv[2]    = a3;
1514	context->argv[3]    = a4;
1515
1516	state = context->state;
1517	context->dummy = !audit_n_rules;
1518	if (!context->dummy && state == AUDIT_BUILD_CONTEXT) {
1519		context->prio = 0;
1520		state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]);
1521	}
1522	if (state == AUDIT_DISABLED)
1523		return;
1524
1525	context->serial     = 0;
1526	context->ctime      = CURRENT_TIME;
1527	context->in_syscall = 1;
1528	context->current_state  = state;
1529	context->ppid       = 0;
1530}
1531
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1532/**
1533 * audit_syscall_exit - deallocate audit context after a system call
1534 * @success: success value of the syscall
1535 * @return_code: return value of the syscall
1536 *
1537 * Tear down after system call.  If the audit context has been marked as
1538 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1539 * filtering, or because some other part of the kernel wrote an audit
1540 * message), then write out the syscall information.  In call cases,
1541 * free the names stored from getname().
1542 */
1543void __audit_syscall_exit(int success, long return_code)
1544{
1545	struct task_struct *tsk = current;
1546	struct audit_context *context;
1547
1548	if (success)
1549		success = AUDITSC_SUCCESS;
1550	else
1551		success = AUDITSC_FAILURE;
1552
1553	context = audit_take_context(tsk, success, return_code);
1554	if (!context)
1555		return;
1556
1557	if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1558		audit_log_exit(context, tsk);
1559
1560	context->in_syscall = 0;
1561	context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
1562
1563	if (!list_empty(&context->killed_trees))
1564		audit_kill_trees(&context->killed_trees);
1565
1566	audit_free_names(context);
1567	unroll_tree_refs(context, NULL, 0);
1568	audit_free_aux(context);
1569	context->aux = NULL;
1570	context->aux_pids = NULL;
1571	context->target_pid = 0;
1572	context->target_sid = 0;
1573	context->sockaddr_len = 0;
1574	context->type = 0;
1575	context->fds[0] = -1;
1576	if (context->state != AUDIT_RECORD_CONTEXT) {
1577		kfree(context->filterkey);
1578		context->filterkey = NULL;
 
 
 
 
 
 
 
 
1579	}
1580	tsk->audit_context = context;
1581}
1582
1583static inline void handle_one(const struct inode *inode)
1584{
1585#ifdef CONFIG_AUDIT_TREE
1586	struct audit_context *context;
1587	struct audit_tree_refs *p;
1588	struct audit_chunk *chunk;
1589	int count;
1590	if (likely(hlist_empty(&inode->i_fsnotify_marks)))
1591		return;
1592	context = current->audit_context;
1593	p = context->trees;
1594	count = context->tree_count;
1595	rcu_read_lock();
1596	chunk = audit_tree_lookup(inode);
1597	rcu_read_unlock();
1598	if (!chunk)
1599		return;
1600	if (likely(put_tree_ref(context, chunk)))
1601		return;
1602	if (unlikely(!grow_tree_refs(context))) {
1603		pr_warn("out of memory, audit has lost a tree reference\n");
1604		audit_set_auditable(context);
1605		audit_put_chunk(chunk);
1606		unroll_tree_refs(context, p, count);
1607		return;
1608	}
1609	put_tree_ref(context, chunk);
1610#endif
1611}
1612
1613static void handle_path(const struct dentry *dentry)
1614{
1615#ifdef CONFIG_AUDIT_TREE
1616	struct audit_context *context;
1617	struct audit_tree_refs *p;
1618	const struct dentry *d, *parent;
1619	struct audit_chunk *drop;
1620	unsigned long seq;
1621	int count;
1622
1623	context = current->audit_context;
1624	p = context->trees;
1625	count = context->tree_count;
1626retry:
1627	drop = NULL;
1628	d = dentry;
1629	rcu_read_lock();
1630	seq = read_seqbegin(&rename_lock);
1631	for(;;) {
1632		struct inode *inode = d_backing_inode(d);
1633		if (inode && unlikely(!hlist_empty(&inode->i_fsnotify_marks))) {
1634			struct audit_chunk *chunk;
1635			chunk = audit_tree_lookup(inode);
1636			if (chunk) {
1637				if (unlikely(!put_tree_ref(context, chunk))) {
1638					drop = chunk;
1639					break;
1640				}
1641			}
1642		}
1643		parent = d->d_parent;
1644		if (parent == d)
1645			break;
1646		d = parent;
1647	}
1648	if (unlikely(read_seqretry(&rename_lock, seq) || drop)) {  /* in this order */
1649		rcu_read_unlock();
1650		if (!drop) {
1651			/* just a race with rename */
1652			unroll_tree_refs(context, p, count);
1653			goto retry;
1654		}
1655		audit_put_chunk(drop);
1656		if (grow_tree_refs(context)) {
1657			/* OK, got more space */
1658			unroll_tree_refs(context, p, count);
1659			goto retry;
1660		}
1661		/* too bad */
1662		pr_warn("out of memory, audit has lost a tree reference\n");
 
1663		unroll_tree_refs(context, p, count);
1664		audit_set_auditable(context);
1665		return;
1666	}
1667	rcu_read_unlock();
1668#endif
1669}
1670
1671static struct audit_names *audit_alloc_name(struct audit_context *context,
1672						unsigned char type)
 
 
 
 
 
 
1673{
1674	struct audit_names *aname;
1675
1676	if (context->name_count < AUDIT_NAMES) {
1677		aname = &context->preallocated_names[context->name_count];
1678		memset(aname, 0, sizeof(*aname));
1679	} else {
1680		aname = kzalloc(sizeof(*aname), GFP_NOFS);
1681		if (!aname)
1682			return NULL;
1683		aname->should_free = true;
1684	}
1685
1686	aname->ino = AUDIT_INO_UNSET;
1687	aname->type = type;
1688	list_add_tail(&aname->list, &context->names_list);
1689
1690	context->name_count++;
1691	return aname;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1692}
1693
1694/**
1695 * audit_reusename - fill out filename with info from existing entry
1696 * @uptr: userland ptr to pathname
1697 *
1698 * Search the audit_names list for the current audit context. If there is an
1699 * existing entry with a matching "uptr" then return the filename
1700 * associated with that audit_name. If not, return NULL.
1701 */
1702struct filename *
1703__audit_reusename(const __user char *uptr)
1704{
1705	struct audit_context *context = current->audit_context;
1706	struct audit_names *n;
1707
1708	list_for_each_entry(n, &context->names_list, list) {
1709		if (!n->name)
1710			continue;
1711		if (n->name->uptr == uptr) {
1712			n->name->refcnt++;
1713			return n->name;
 
 
 
 
 
1714		}
 
 
1715	}
1716	return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1717}
1718
1719/**
1720 * audit_getname - add a name to the list
1721 * @name: name to add
1722 *
1723 * Add a name to the list of audit names for this context.
1724 * Called from fs/namei.c:getname().
1725 */
1726void __audit_getname(struct filename *name)
1727{
1728	struct audit_context *context = current->audit_context;
1729	struct audit_names *n;
 
 
 
 
 
1730
1731	if (!context->in_syscall)
1732		return;
 
 
 
 
 
 
 
 
1733
1734	n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
1735	if (!n)
1736		return;
1737
1738	n->name = name;
1739	n->name_len = AUDIT_NAME_FULL;
1740	name->aname = n;
1741	name->refcnt++;
1742
1743	if (!context->pwd.dentry)
1744		get_fs_pwd(current->fs, &context->pwd);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1745}
1746
1747/**
1748 * __audit_inode - store the inode and device from a lookup
1749 * @name: name being audited
1750 * @dentry: dentry being audited
1751 * @flags: attributes for this particular entry
 
1752 */
1753void __audit_inode(struct filename *name, const struct dentry *dentry,
1754		   unsigned int flags)
1755{
 
1756	struct audit_context *context = current->audit_context;
1757	struct inode *inode = d_backing_inode(dentry);
1758	struct audit_names *n;
1759	bool parent = flags & AUDIT_INODE_PARENT;
1760
1761	if (!context->in_syscall)
1762		return;
1763
1764	if (!name)
1765		goto out_alloc;
1766
1767	/*
1768	 * If we have a pointer to an audit_names entry already, then we can
1769	 * just use it directly if the type is correct.
1770	 */
1771	n = name->aname;
1772	if (n) {
1773		if (parent) {
1774			if (n->type == AUDIT_TYPE_PARENT ||
1775			    n->type == AUDIT_TYPE_UNKNOWN)
1776				goto out;
1777		} else {
1778			if (n->type != AUDIT_TYPE_PARENT)
1779				goto out;
1780		}
1781	}
1782
1783	list_for_each_entry_reverse(n, &context->names_list, list) {
1784		if (n->ino) {
1785			/* valid inode number, use that for the comparison */
1786			if (n->ino != inode->i_ino ||
1787			    n->dev != inode->i_sb->s_dev)
1788				continue;
1789		} else if (n->name) {
1790			/* inode number has not been set, check the name */
1791			if (strcmp(n->name->name, name->name))
1792				continue;
1793		} else
1794			/* no inode and no name (?!) ... this is odd ... */
1795			continue;
1796
1797		/* match the correct record type */
1798		if (parent) {
1799			if (n->type == AUDIT_TYPE_PARENT ||
1800			    n->type == AUDIT_TYPE_UNKNOWN)
1801				goto out;
1802		} else {
1803			if (n->type != AUDIT_TYPE_PARENT)
1804				goto out;
1805		}
1806	}
1807
1808out_alloc:
1809	/* unable to find an entry with both a matching name and type */
1810	n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
1811	if (!n)
1812		return;
1813	if (name) {
1814		n->name = name;
1815		name->refcnt++;
1816	}
1817
1818out:
1819	if (parent) {
1820		n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL;
1821		n->type = AUDIT_TYPE_PARENT;
1822		if (flags & AUDIT_INODE_HIDDEN)
1823			n->hidden = true;
1824	} else {
1825		n->name_len = AUDIT_NAME_FULL;
1826		n->type = AUDIT_TYPE_NORMAL;
1827	}
1828	handle_path(dentry);
1829	audit_copy_inode(n, dentry, inode);
1830}
1831
1832void __audit_file(const struct file *file)
1833{
1834	__audit_inode(NULL, file->f_path.dentry, 0);
1835}
1836
1837/**
1838 * __audit_inode_child - collect inode info for created/removed objects
1839 * @parent: inode of dentry parent
1840 * @dentry: dentry being audited
1841 * @type:   AUDIT_TYPE_* value that we're looking for
1842 *
1843 * For syscalls that create or remove filesystem objects, audit_inode
1844 * can only collect information for the filesystem object's parent.
1845 * This call updates the audit context with the child's information.
1846 * Syscalls that create a new filesystem object must be hooked after
1847 * the object is created.  Syscalls that remove a filesystem object
1848 * must be hooked prior, in order to capture the target inode during
1849 * unsuccessful attempts.
1850 */
1851void __audit_inode_child(struct inode *parent,
1852			 const struct dentry *dentry,
1853			 const unsigned char type)
1854{
 
1855	struct audit_context *context = current->audit_context;
1856	struct inode *inode = d_backing_inode(dentry);
 
1857	const char *dname = dentry->d_name.name;
1858	struct audit_names *n, *found_parent = NULL, *found_child = NULL;
1859
1860	if (!context->in_syscall)
1861		return;
1862
1863	if (inode)
1864		handle_one(inode);
1865
1866	/* look for a parent entry first */
1867	list_for_each_entry(n, &context->names_list, list) {
1868		if (!n->name ||
1869		    (n->type != AUDIT_TYPE_PARENT &&
1870		     n->type != AUDIT_TYPE_UNKNOWN))
1871			continue;
1872
1873		if (n->ino == parent->i_ino && n->dev == parent->i_sb->s_dev &&
1874		    !audit_compare_dname_path(dname,
1875					      n->name->name, n->name_len)) {
1876			if (n->type == AUDIT_TYPE_UNKNOWN)
1877				n->type = AUDIT_TYPE_PARENT;
1878			found_parent = n;
1879			break;
1880		}
1881	}
1882
1883	/* is there a matching child entry? */
1884	list_for_each_entry(n, &context->names_list, list) {
1885		/* can only match entries that have a name */
1886		if (!n->name ||
1887		    (n->type != type && n->type != AUDIT_TYPE_UNKNOWN))
1888			continue;
1889
1890		if (!strcmp(dname, n->name->name) ||
1891		    !audit_compare_dname_path(dname, n->name->name,
1892						found_parent ?
1893						found_parent->name_len :
1894						AUDIT_NAME_FULL)) {
1895			if (n->type == AUDIT_TYPE_UNKNOWN)
1896				n->type = type;
1897			found_child = n;
1898			break;
1899		}
1900	}
1901
 
1902	if (!found_parent) {
1903		/* create a new, "anonymous" parent record */
1904		n = audit_alloc_name(context, AUDIT_TYPE_PARENT);
1905		if (!n)
1906			return;
1907		audit_copy_inode(n, NULL, parent);
 
 
1908	}
1909
1910	if (!found_child) {
1911		found_child = audit_alloc_name(context, type);
1912		if (!found_child)
1913			return;
 
1914
1915		/* Re-use the name belonging to the slot for a matching parent
1916		 * directory. All names for this context are relinquished in
1917		 * audit_free_names() */
1918		if (found_parent) {
1919			found_child->name = found_parent->name;
1920			found_child->name_len = AUDIT_NAME_FULL;
1921			found_child->name->refcnt++;
 
 
 
1922		}
1923	}
1924
1925	if (inode)
1926		audit_copy_inode(found_child, dentry, inode);
1927	else
1928		found_child->ino = AUDIT_INO_UNSET;
 
1929}
1930EXPORT_SYMBOL_GPL(__audit_inode_child);
1931
1932/**
1933 * auditsc_get_stamp - get local copies of audit_context values
1934 * @ctx: audit_context for the task
1935 * @t: timespec to store time recorded in the audit_context
1936 * @serial: serial value that is recorded in the audit_context
1937 *
1938 * Also sets the context as auditable.
1939 */
1940int auditsc_get_stamp(struct audit_context *ctx,
1941		       struct timespec *t, unsigned int *serial)
1942{
1943	if (!ctx->in_syscall)
1944		return 0;
1945	if (!ctx->serial)
1946		ctx->serial = audit_serial();
1947	t->tv_sec  = ctx->ctime.tv_sec;
1948	t->tv_nsec = ctx->ctime.tv_nsec;
1949	*serial    = ctx->serial;
1950	if (!ctx->prio) {
1951		ctx->prio = 1;
1952		ctx->current_state = AUDIT_RECORD_CONTEXT;
1953	}
1954	return 1;
1955}
1956
1957/* global counter which is incremented every time something logs in */
1958static atomic_t session_id = ATOMIC_INIT(0);
1959
1960static int audit_set_loginuid_perm(kuid_t loginuid)
1961{
1962	/* if we are unset, we don't need privs */
1963	if (!audit_loginuid_set(current))
1964		return 0;
1965	/* if AUDIT_FEATURE_LOGINUID_IMMUTABLE means never ever allow a change*/
1966	if (is_audit_feature_set(AUDIT_FEATURE_LOGINUID_IMMUTABLE))
1967		return -EPERM;
1968	/* it is set, you need permission */
1969	if (!capable(CAP_AUDIT_CONTROL))
1970		return -EPERM;
1971	/* reject if this is not an unset and we don't allow that */
1972	if (is_audit_feature_set(AUDIT_FEATURE_ONLY_UNSET_LOGINUID) && uid_valid(loginuid))
1973		return -EPERM;
1974	return 0;
1975}
1976
1977static void audit_log_set_loginuid(kuid_t koldloginuid, kuid_t kloginuid,
1978				   unsigned int oldsessionid, unsigned int sessionid,
1979				   int rc)
1980{
1981	struct audit_buffer *ab;
1982	uid_t uid, oldloginuid, loginuid;
1983
1984	if (!audit_enabled)
1985		return;
1986
1987	uid = from_kuid(&init_user_ns, task_uid(current));
1988	oldloginuid = from_kuid(&init_user_ns, koldloginuid);
1989	loginuid = from_kuid(&init_user_ns, kloginuid),
1990
1991	ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
1992	if (!ab)
1993		return;
1994	audit_log_format(ab, "pid=%d uid=%u", task_pid_nr(current), uid);
1995	audit_log_task_context(ab);
1996	audit_log_format(ab, " old-auid=%u auid=%u old-ses=%u ses=%u res=%d",
1997			 oldloginuid, loginuid, oldsessionid, sessionid, !rc);
1998	audit_log_end(ab);
1999}
2000
2001/**
2002 * audit_set_loginuid - set current task's audit_context loginuid
 
2003 * @loginuid: loginuid value
2004 *
2005 * Returns 0.
2006 *
2007 * Called (set) from fs/proc/base.c::proc_loginuid_write().
2008 */
2009int audit_set_loginuid(kuid_t loginuid)
2010{
2011	struct task_struct *task = current;
2012	unsigned int oldsessionid, sessionid = (unsigned int)-1;
2013	kuid_t oldloginuid;
2014	int rc;
2015
2016	oldloginuid = audit_get_loginuid(current);
2017	oldsessionid = audit_get_sessionid(current);
2018
2019	rc = audit_set_loginuid_perm(loginuid);
2020	if (rc)
2021		goto out;
2022
2023	/* are we setting or clearing? */
2024	if (uid_valid(loginuid))
2025		sessionid = (unsigned int)atomic_inc_return(&session_id);
2026
 
 
 
 
 
 
 
 
 
 
 
2027	task->sessionid = sessionid;
2028	task->loginuid = loginuid;
2029out:
2030	audit_log_set_loginuid(oldloginuid, loginuid, oldsessionid, sessionid, rc);
2031	return rc;
2032}
2033
2034/**
2035 * __audit_mq_open - record audit data for a POSIX MQ open
2036 * @oflag: open flag
2037 * @mode: mode bits
2038 * @attr: queue attributes
2039 *
2040 */
2041void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
2042{
2043	struct audit_context *context = current->audit_context;
2044
2045	if (attr)
2046		memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2047	else
2048		memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
2049
2050	context->mq_open.oflag = oflag;
2051	context->mq_open.mode = mode;
2052
2053	context->type = AUDIT_MQ_OPEN;
2054}
2055
2056/**
2057 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2058 * @mqdes: MQ descriptor
2059 * @msg_len: Message length
2060 * @msg_prio: Message priority
2061 * @abs_timeout: Message timeout in absolute time
2062 *
2063 */
2064void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2065			const struct timespec *abs_timeout)
2066{
2067	struct audit_context *context = current->audit_context;
2068	struct timespec *p = &context->mq_sendrecv.abs_timeout;
2069
2070	if (abs_timeout)
2071		memcpy(p, abs_timeout, sizeof(struct timespec));
2072	else
2073		memset(p, 0, sizeof(struct timespec));
2074
2075	context->mq_sendrecv.mqdes = mqdes;
2076	context->mq_sendrecv.msg_len = msg_len;
2077	context->mq_sendrecv.msg_prio = msg_prio;
2078
2079	context->type = AUDIT_MQ_SENDRECV;
2080}
2081
2082/**
2083 * __audit_mq_notify - record audit data for a POSIX MQ notify
2084 * @mqdes: MQ descriptor
2085 * @notification: Notification event
2086 *
2087 */
2088
2089void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
2090{
2091	struct audit_context *context = current->audit_context;
2092
2093	if (notification)
2094		context->mq_notify.sigev_signo = notification->sigev_signo;
2095	else
2096		context->mq_notify.sigev_signo = 0;
2097
2098	context->mq_notify.mqdes = mqdes;
2099	context->type = AUDIT_MQ_NOTIFY;
2100}
2101
2102/**
2103 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2104 * @mqdes: MQ descriptor
2105 * @mqstat: MQ flags
2106 *
2107 */
2108void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2109{
2110	struct audit_context *context = current->audit_context;
2111	context->mq_getsetattr.mqdes = mqdes;
2112	context->mq_getsetattr.mqstat = *mqstat;
2113	context->type = AUDIT_MQ_GETSETATTR;
2114}
2115
2116/**
2117 * audit_ipc_obj - record audit data for ipc object
2118 * @ipcp: ipc permissions
2119 *
2120 */
2121void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2122{
2123	struct audit_context *context = current->audit_context;
2124	context->ipc.uid = ipcp->uid;
2125	context->ipc.gid = ipcp->gid;
2126	context->ipc.mode = ipcp->mode;
2127	context->ipc.has_perm = 0;
2128	security_ipc_getsecid(ipcp, &context->ipc.osid);
2129	context->type = AUDIT_IPC;
2130}
2131
2132/**
2133 * audit_ipc_set_perm - record audit data for new ipc permissions
2134 * @qbytes: msgq bytes
2135 * @uid: msgq user id
2136 * @gid: msgq group id
2137 * @mode: msgq mode (permissions)
2138 *
2139 * Called only after audit_ipc_obj().
2140 */
2141void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
2142{
2143	struct audit_context *context = current->audit_context;
2144
2145	context->ipc.qbytes = qbytes;
2146	context->ipc.perm_uid = uid;
2147	context->ipc.perm_gid = gid;
2148	context->ipc.perm_mode = mode;
2149	context->ipc.has_perm = 1;
2150}
2151
2152void __audit_bprm(struct linux_binprm *bprm)
2153{
 
2154	struct audit_context *context = current->audit_context;
2155
2156	context->type = AUDIT_EXECVE;
2157	context->execve.argc = bprm->argc;
 
 
 
 
 
 
 
 
 
 
 
 
2158}
2159
2160
2161/**
2162 * audit_socketcall - record audit data for sys_socketcall
2163 * @nargs: number of args, which should not be more than AUDITSC_ARGS.
2164 * @args: args array
2165 *
2166 */
2167int __audit_socketcall(int nargs, unsigned long *args)
2168{
2169	struct audit_context *context = current->audit_context;
2170
2171	if (nargs <= 0 || nargs > AUDITSC_ARGS || !args)
2172		return -EINVAL;
 
2173	context->type = AUDIT_SOCKETCALL;
2174	context->socketcall.nargs = nargs;
2175	memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2176	return 0;
2177}
2178
2179/**
2180 * __audit_fd_pair - record audit data for pipe and socketpair
2181 * @fd1: the first file descriptor
2182 * @fd2: the second file descriptor
2183 *
2184 */
2185void __audit_fd_pair(int fd1, int fd2)
2186{
2187	struct audit_context *context = current->audit_context;
2188	context->fds[0] = fd1;
2189	context->fds[1] = fd2;
2190}
2191
2192/**
2193 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2194 * @len: data length in user space
2195 * @a: data address in kernel space
2196 *
2197 * Returns 0 for success or NULL context or < 0 on error.
2198 */
2199int __audit_sockaddr(int len, void *a)
2200{
2201	struct audit_context *context = current->audit_context;
2202
 
 
 
2203	if (!context->sockaddr) {
2204		void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2205		if (!p)
2206			return -ENOMEM;
2207		context->sockaddr = p;
2208	}
2209
2210	context->sockaddr_len = len;
2211	memcpy(context->sockaddr, a, len);
2212	return 0;
2213}
2214
2215void __audit_ptrace(struct task_struct *t)
2216{
2217	struct audit_context *context = current->audit_context;
2218
2219	context->target_pid = task_pid_nr(t);
2220	context->target_auid = audit_get_loginuid(t);
2221	context->target_uid = task_uid(t);
2222	context->target_sessionid = audit_get_sessionid(t);
2223	security_task_getsecid(t, &context->target_sid);
2224	memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
2225}
2226
2227/**
2228 * audit_signal_info - record signal info for shutting down audit subsystem
2229 * @sig: signal value
2230 * @t: task being signaled
2231 *
2232 * If the audit subsystem is being terminated, record the task (pid)
2233 * and uid that is doing that.
2234 */
2235int __audit_signal_info(int sig, struct task_struct *t)
2236{
2237	struct audit_aux_data_pids *axp;
2238	struct task_struct *tsk = current;
2239	struct audit_context *ctx = tsk->audit_context;
2240	kuid_t uid = current_uid(), t_uid = task_uid(t);
2241
2242	if (audit_pid && t->tgid == audit_pid) {
2243		if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1 || sig == SIGUSR2) {
2244			audit_sig_pid = task_pid_nr(tsk);
2245			if (uid_valid(tsk->loginuid))
2246				audit_sig_uid = tsk->loginuid;
2247			else
2248				audit_sig_uid = uid;
2249			security_task_getsecid(tsk, &audit_sig_sid);
2250		}
2251		if (!audit_signals || audit_dummy_context())
2252			return 0;
2253	}
2254
2255	/* optimize the common case by putting first signal recipient directly
2256	 * in audit_context */
2257	if (!ctx->target_pid) {
2258		ctx->target_pid = task_tgid_nr(t);
2259		ctx->target_auid = audit_get_loginuid(t);
2260		ctx->target_uid = t_uid;
2261		ctx->target_sessionid = audit_get_sessionid(t);
2262		security_task_getsecid(t, &ctx->target_sid);
2263		memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
2264		return 0;
2265	}
2266
2267	axp = (void *)ctx->aux_pids;
2268	if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2269		axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2270		if (!axp)
2271			return -ENOMEM;
2272
2273		axp->d.type = AUDIT_OBJ_PID;
2274		axp->d.next = ctx->aux_pids;
2275		ctx->aux_pids = (void *)axp;
2276	}
2277	BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2278
2279	axp->target_pid[axp->pid_count] = task_tgid_nr(t);
2280	axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2281	axp->target_uid[axp->pid_count] = t_uid;
2282	axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2283	security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
2284	memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
2285	axp->pid_count++;
2286
2287	return 0;
2288}
2289
2290/**
2291 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2292 * @bprm: pointer to the bprm being processed
2293 * @new: the proposed new credentials
2294 * @old: the old credentials
2295 *
2296 * Simply check if the proc already has the caps given by the file and if not
2297 * store the priv escalation info for later auditing at the end of the syscall
2298 *
2299 * -Eric
2300 */
2301int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2302			   const struct cred *new, const struct cred *old)
2303{
2304	struct audit_aux_data_bprm_fcaps *ax;
2305	struct audit_context *context = current->audit_context;
2306	struct cpu_vfs_cap_data vcaps;
 
2307
2308	ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2309	if (!ax)
2310		return -ENOMEM;
2311
2312	ax->d.type = AUDIT_BPRM_FCAPS;
2313	ax->d.next = context->aux;
2314	context->aux = (void *)ax;
2315
2316	get_vfs_caps_from_disk(bprm->file->f_path.dentry, &vcaps);
 
 
2317
2318	ax->fcap.permitted = vcaps.permitted;
2319	ax->fcap.inheritable = vcaps.inheritable;
2320	ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2321	ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2322
2323	ax->old_pcap.permitted   = old->cap_permitted;
2324	ax->old_pcap.inheritable = old->cap_inheritable;
2325	ax->old_pcap.effective   = old->cap_effective;
2326
2327	ax->new_pcap.permitted   = new->cap_permitted;
2328	ax->new_pcap.inheritable = new->cap_inheritable;
2329	ax->new_pcap.effective   = new->cap_effective;
2330	return 0;
2331}
2332
2333/**
2334 * __audit_log_capset - store information about the arguments to the capset syscall
 
2335 * @new: the new credentials
2336 * @old: the old (current) credentials
2337 *
2338 * Record the arguments userspace sent to sys_capset for later printing by the
2339 * audit system if applicable
2340 */
2341void __audit_log_capset(const struct cred *new, const struct cred *old)
 
2342{
2343	struct audit_context *context = current->audit_context;
2344	context->capset.pid = task_pid_nr(current);
2345	context->capset.cap.effective   = new->cap_effective;
2346	context->capset.cap.inheritable = new->cap_effective;
2347	context->capset.cap.permitted   = new->cap_permitted;
2348	context->type = AUDIT_CAPSET;
2349}
2350
2351void __audit_mmap_fd(int fd, int flags)
2352{
2353	struct audit_context *context = current->audit_context;
2354	context->mmap.fd = fd;
2355	context->mmap.flags = flags;
2356	context->type = AUDIT_MMAP;
2357}
2358
2359static void audit_log_task(struct audit_buffer *ab)
2360{
2361	kuid_t auid, uid;
2362	kgid_t gid;
2363	unsigned int sessionid;
2364	char comm[sizeof(current->comm)];
2365
2366	auid = audit_get_loginuid(current);
2367	sessionid = audit_get_sessionid(current);
2368	current_uid_gid(&uid, &gid);
2369
2370	audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2371			 from_kuid(&init_user_ns, auid),
2372			 from_kuid(&init_user_ns, uid),
2373			 from_kgid(&init_user_ns, gid),
2374			 sessionid);
2375	audit_log_task_context(ab);
2376	audit_log_format(ab, " pid=%d comm=", task_pid_nr(current));
2377	audit_log_untrustedstring(ab, get_task_comm(comm, current));
2378	audit_log_d_path_exe(ab, current->mm);
2379}
2380
2381/**
2382 * audit_core_dumps - record information about processes that end abnormally
2383 * @signr: signal value
2384 *
2385 * If a process ends with a core dump, something fishy is going on and we
2386 * should record the event for investigation.
2387 */
2388void audit_core_dumps(long signr)
2389{
2390	struct audit_buffer *ab;
 
 
 
 
2391
2392	if (!audit_enabled)
2393		return;
2394
2395	if (signr == SIGQUIT)	/* don't care for those */
2396		return;
2397
2398	ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
2399	if (unlikely(!ab))
2400		return;
2401	audit_log_task(ab);
2402	audit_log_format(ab, " sig=%ld", signr);
2403	audit_log_end(ab);
2404}
2405
2406void __audit_seccomp(unsigned long syscall, long signr, int code)
2407{
2408	struct audit_buffer *ab;
2409
2410	ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_SECCOMP);
2411	if (unlikely(!ab))
2412		return;
2413	audit_log_task(ab);
2414	audit_log_format(ab, " sig=%ld arch=%x syscall=%ld compat=%d ip=0x%lx code=0x%x",
2415			 signr, syscall_get_arch(), syscall,
2416			 in_compat_syscall(), KSTK_EIP(current), code);
 
 
 
2417	audit_log_end(ab);
2418}
2419
2420struct list_head *audit_killed_trees(void)
2421{
2422	struct audit_context *ctx = current->audit_context;
2423	if (likely(!ctx || !ctx->in_syscall))
2424		return NULL;
2425	return &ctx->killed_trees;
2426}
v3.1
   1/* auditsc.c -- System-call auditing support
   2 * Handles all system-call specific auditing features.
   3 *
   4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
   5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
   6 * Copyright (C) 2005, 2006 IBM Corporation
   7 * All Rights Reserved.
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of the GNU General Public License as published by
  11 * the Free Software Foundation; either version 2 of the License, or
  12 * (at your option) any later version.
  13 *
  14 * This program is distributed in the hope that it will be useful,
  15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  17 * GNU General Public License for more details.
  18 *
  19 * You should have received a copy of the GNU General Public License
  20 * along with this program; if not, write to the Free Software
  21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  22 *
  23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
  24 *
  25 * Many of the ideas implemented here are from Stephen C. Tweedie,
  26 * especially the idea of avoiding a copy by using getname.
  27 *
  28 * The method for actual interception of syscall entry and exit (not in
  29 * this file -- see entry.S) is based on a GPL'd patch written by
  30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
  31 *
  32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
  33 * 2006.
  34 *
  35 * The support of additional filter rules compares (>, <, >=, <=) was
  36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
  37 *
  38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
  39 * filesystem information.
  40 *
  41 * Subject and object context labeling support added by <danjones@us.ibm.com>
  42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
  43 */
  44
 
 
  45#include <linux/init.h>
  46#include <asm/types.h>
  47#include <linux/atomic.h>
  48#include <linux/fs.h>
  49#include <linux/namei.h>
  50#include <linux/mm.h>
  51#include <linux/module.h>
  52#include <linux/slab.h>
  53#include <linux/mount.h>
  54#include <linux/socket.h>
  55#include <linux/mqueue.h>
  56#include <linux/audit.h>
  57#include <linux/personality.h>
  58#include <linux/time.h>
  59#include <linux/netlink.h>
  60#include <linux/compiler.h>
  61#include <asm/unistd.h>
  62#include <linux/security.h>
  63#include <linux/list.h>
  64#include <linux/tty.h>
  65#include <linux/binfmts.h>
  66#include <linux/highmem.h>
  67#include <linux/syscalls.h>
 
  68#include <linux/capability.h>
  69#include <linux/fs_struct.h>
 
 
 
 
  70
  71#include "audit.h"
  72
  73/* AUDIT_NAMES is the number of slots we reserve in the audit_context
  74 * for saving names from getname(). */
  75#define AUDIT_NAMES    20
  76
  77/* Indicates that audit should log the full pathname. */
  78#define AUDIT_NAME_FULL -1
  79
  80/* no execve audit message should be longer than this (userspace limits) */
  81#define MAX_EXECVE_AUDIT_LEN 7500
  82
 
 
 
  83/* number of audit rules */
  84int audit_n_rules;
  85
  86/* determines whether we collect data for signals sent */
  87int audit_signals;
  88
  89struct audit_cap_data {
  90	kernel_cap_t		permitted;
  91	kernel_cap_t		inheritable;
  92	union {
  93		unsigned int	fE;		/* effective bit of a file capability */
  94		kernel_cap_t	effective;	/* effective set of a process */
  95	};
  96};
  97
  98/* When fs/namei.c:getname() is called, we store the pointer in name and
  99 * we don't let putname() free it (instead we free all of the saved
 100 * pointers at syscall exit time).
 101 *
 102 * Further, in fs/namei.c:path_lookup() we store the inode and device. */
 103struct audit_names {
 104	const char	*name;
 105	int		name_len;	/* number of name's characters to log */
 106	unsigned	name_put;	/* call __putname() for this name */
 107	unsigned long	ino;
 108	dev_t		dev;
 109	umode_t		mode;
 110	uid_t		uid;
 111	gid_t		gid;
 112	dev_t		rdev;
 113	u32		osid;
 114	struct audit_cap_data fcap;
 115	unsigned int	fcap_ver;
 116};
 117
 118struct audit_aux_data {
 119	struct audit_aux_data	*next;
 120	int			type;
 121};
 122
 123#define AUDIT_AUX_IPCPERM	0
 124
 125/* Number of target pids per aux struct. */
 126#define AUDIT_AUX_PIDS	16
 127
 128struct audit_aux_data_execve {
 129	struct audit_aux_data	d;
 130	int argc;
 131	int envc;
 132	struct mm_struct *mm;
 133};
 134
 135struct audit_aux_data_pids {
 136	struct audit_aux_data	d;
 137	pid_t			target_pid[AUDIT_AUX_PIDS];
 138	uid_t			target_auid[AUDIT_AUX_PIDS];
 139	uid_t			target_uid[AUDIT_AUX_PIDS];
 140	unsigned int		target_sessionid[AUDIT_AUX_PIDS];
 141	u32			target_sid[AUDIT_AUX_PIDS];
 142	char 			target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
 143	int			pid_count;
 144};
 145
 146struct audit_aux_data_bprm_fcaps {
 147	struct audit_aux_data	d;
 148	struct audit_cap_data	fcap;
 149	unsigned int		fcap_ver;
 150	struct audit_cap_data	old_pcap;
 151	struct audit_cap_data	new_pcap;
 152};
 153
 154struct audit_aux_data_capset {
 155	struct audit_aux_data	d;
 156	pid_t			pid;
 157	struct audit_cap_data	cap;
 158};
 159
 160struct audit_tree_refs {
 161	struct audit_tree_refs *next;
 162	struct audit_chunk *c[31];
 163};
 164
 165/* The per-task audit context. */
 166struct audit_context {
 167	int		    dummy;	/* must be the first element */
 168	int		    in_syscall;	/* 1 if task is in a syscall */
 169	enum audit_state    state, current_state;
 170	unsigned int	    serial;     /* serial number for record */
 171	int		    major;      /* syscall number */
 172	struct timespec	    ctime;      /* time of syscall entry */
 173	unsigned long	    argv[4];    /* syscall arguments */
 174	long		    return_code;/* syscall return code */
 175	u64		    prio;
 176	int		    return_valid; /* return code is valid */
 177	int		    name_count;
 178	struct audit_names  names[AUDIT_NAMES];
 179	char *		    filterkey;	/* key for rule that triggered record */
 180	struct path	    pwd;
 181	struct audit_context *previous; /* For nested syscalls */
 182	struct audit_aux_data *aux;
 183	struct audit_aux_data *aux_pids;
 184	struct sockaddr_storage *sockaddr;
 185	size_t sockaddr_len;
 186				/* Save things to print about task_struct */
 187	pid_t		    pid, ppid;
 188	uid_t		    uid, euid, suid, fsuid;
 189	gid_t		    gid, egid, sgid, fsgid;
 190	unsigned long	    personality;
 191	int		    arch;
 192
 193	pid_t		    target_pid;
 194	uid_t		    target_auid;
 195	uid_t		    target_uid;
 196	unsigned int	    target_sessionid;
 197	u32		    target_sid;
 198	char		    target_comm[TASK_COMM_LEN];
 199
 200	struct audit_tree_refs *trees, *first_trees;
 201	struct list_head killed_trees;
 202	int tree_count;
 203
 204	int type;
 205	union {
 206		struct {
 207			int nargs;
 208			long args[6];
 209		} socketcall;
 210		struct {
 211			uid_t			uid;
 212			gid_t			gid;
 213			mode_t			mode;
 214			u32			osid;
 215			int			has_perm;
 216			uid_t			perm_uid;
 217			gid_t			perm_gid;
 218			mode_t			perm_mode;
 219			unsigned long		qbytes;
 220		} ipc;
 221		struct {
 222			mqd_t			mqdes;
 223			struct mq_attr 		mqstat;
 224		} mq_getsetattr;
 225		struct {
 226			mqd_t			mqdes;
 227			int			sigev_signo;
 228		} mq_notify;
 229		struct {
 230			mqd_t			mqdes;
 231			size_t			msg_len;
 232			unsigned int		msg_prio;
 233			struct timespec		abs_timeout;
 234		} mq_sendrecv;
 235		struct {
 236			int			oflag;
 237			mode_t			mode;
 238			struct mq_attr		attr;
 239		} mq_open;
 240		struct {
 241			pid_t			pid;
 242			struct audit_cap_data	cap;
 243		} capset;
 244		struct {
 245			int			fd;
 246			int			flags;
 247		} mmap;
 248	};
 249	int fds[2];
 250
 251#if AUDIT_DEBUG
 252	int		    put_count;
 253	int		    ino_count;
 254#endif
 255};
 256
 257static inline int open_arg(int flags, int mask)
 258{
 259	int n = ACC_MODE(flags);
 260	if (flags & (O_TRUNC | O_CREAT))
 261		n |= AUDIT_PERM_WRITE;
 262	return n & mask;
 263}
 264
 265static int audit_match_perm(struct audit_context *ctx, int mask)
 266{
 267	unsigned n;
 268	if (unlikely(!ctx))
 269		return 0;
 270	n = ctx->major;
 271
 272	switch (audit_classify_syscall(ctx->arch, n)) {
 273	case 0:	/* native */
 274		if ((mask & AUDIT_PERM_WRITE) &&
 275		     audit_match_class(AUDIT_CLASS_WRITE, n))
 276			return 1;
 277		if ((mask & AUDIT_PERM_READ) &&
 278		     audit_match_class(AUDIT_CLASS_READ, n))
 279			return 1;
 280		if ((mask & AUDIT_PERM_ATTR) &&
 281		     audit_match_class(AUDIT_CLASS_CHATTR, n))
 282			return 1;
 283		return 0;
 284	case 1: /* 32bit on biarch */
 285		if ((mask & AUDIT_PERM_WRITE) &&
 286		     audit_match_class(AUDIT_CLASS_WRITE_32, n))
 287			return 1;
 288		if ((mask & AUDIT_PERM_READ) &&
 289		     audit_match_class(AUDIT_CLASS_READ_32, n))
 290			return 1;
 291		if ((mask & AUDIT_PERM_ATTR) &&
 292		     audit_match_class(AUDIT_CLASS_CHATTR_32, n))
 293			return 1;
 294		return 0;
 295	case 2: /* open */
 296		return mask & ACC_MODE(ctx->argv[1]);
 297	case 3: /* openat */
 298		return mask & ACC_MODE(ctx->argv[2]);
 299	case 4: /* socketcall */
 300		return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
 301	case 5: /* execve */
 302		return mask & AUDIT_PERM_EXEC;
 303	default:
 304		return 0;
 305	}
 306}
 307
 308static int audit_match_filetype(struct audit_context *ctx, int which)
 309{
 310	unsigned index = which & ~S_IFMT;
 311	mode_t mode = which & S_IFMT;
 312
 313	if (unlikely(!ctx))
 314		return 0;
 315
 316	if (index >= ctx->name_count)
 317		return 0;
 318	if (ctx->names[index].ino == -1)
 319		return 0;
 320	if ((ctx->names[index].mode ^ mode) & S_IFMT)
 321		return 0;
 322	return 1;
 323}
 324
 325/*
 326 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
 327 * ->first_trees points to its beginning, ->trees - to the current end of data.
 328 * ->tree_count is the number of free entries in array pointed to by ->trees.
 329 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
 330 * "empty" becomes (p, p, 31) afterwards.  We don't shrink the list (and seriously,
 331 * it's going to remain 1-element for almost any setup) until we free context itself.
 332 * References in it _are_ dropped - at the same time we free/drop aux stuff.
 333 */
 334
 335#ifdef CONFIG_AUDIT_TREE
 336static void audit_set_auditable(struct audit_context *ctx)
 337{
 338	if (!ctx->prio) {
 339		ctx->prio = 1;
 340		ctx->current_state = AUDIT_RECORD_CONTEXT;
 341	}
 342}
 343
 344static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
 345{
 346	struct audit_tree_refs *p = ctx->trees;
 347	int left = ctx->tree_count;
 348	if (likely(left)) {
 349		p->c[--left] = chunk;
 350		ctx->tree_count = left;
 351		return 1;
 352	}
 353	if (!p)
 354		return 0;
 355	p = p->next;
 356	if (p) {
 357		p->c[30] = chunk;
 358		ctx->trees = p;
 359		ctx->tree_count = 30;
 360		return 1;
 361	}
 362	return 0;
 363}
 364
 365static int grow_tree_refs(struct audit_context *ctx)
 366{
 367	struct audit_tree_refs *p = ctx->trees;
 368	ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
 369	if (!ctx->trees) {
 370		ctx->trees = p;
 371		return 0;
 372	}
 373	if (p)
 374		p->next = ctx->trees;
 375	else
 376		ctx->first_trees = ctx->trees;
 377	ctx->tree_count = 31;
 378	return 1;
 379}
 380#endif
 381
 382static void unroll_tree_refs(struct audit_context *ctx,
 383		      struct audit_tree_refs *p, int count)
 384{
 385#ifdef CONFIG_AUDIT_TREE
 386	struct audit_tree_refs *q;
 387	int n;
 388	if (!p) {
 389		/* we started with empty chain */
 390		p = ctx->first_trees;
 391		count = 31;
 392		/* if the very first allocation has failed, nothing to do */
 393		if (!p)
 394			return;
 395	}
 396	n = count;
 397	for (q = p; q != ctx->trees; q = q->next, n = 31) {
 398		while (n--) {
 399			audit_put_chunk(q->c[n]);
 400			q->c[n] = NULL;
 401		}
 402	}
 403	while (n-- > ctx->tree_count) {
 404		audit_put_chunk(q->c[n]);
 405		q->c[n] = NULL;
 406	}
 407	ctx->trees = p;
 408	ctx->tree_count = count;
 409#endif
 410}
 411
 412static void free_tree_refs(struct audit_context *ctx)
 413{
 414	struct audit_tree_refs *p, *q;
 415	for (p = ctx->first_trees; p; p = q) {
 416		q = p->next;
 417		kfree(p);
 418	}
 419}
 420
 421static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
 422{
 423#ifdef CONFIG_AUDIT_TREE
 424	struct audit_tree_refs *p;
 425	int n;
 426	if (!tree)
 427		return 0;
 428	/* full ones */
 429	for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
 430		for (n = 0; n < 31; n++)
 431			if (audit_tree_match(p->c[n], tree))
 432				return 1;
 433	}
 434	/* partial */
 435	if (p) {
 436		for (n = ctx->tree_count; n < 31; n++)
 437			if (audit_tree_match(p->c[n], tree))
 438				return 1;
 439	}
 440#endif
 441	return 0;
 442}
 443
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 444/* Determine if any context name data matches a rule's watch data */
 445/* Compare a task_struct with an audit_rule.  Return 1 on match, 0
 446 * otherwise.
 447 *
 448 * If task_creation is true, this is an explicit indication that we are
 449 * filtering a task rule at task creation time.  This and tsk == current are
 450 * the only situations where tsk->cred may be accessed without an rcu read lock.
 451 */
 452static int audit_filter_rules(struct task_struct *tsk,
 453			      struct audit_krule *rule,
 454			      struct audit_context *ctx,
 455			      struct audit_names *name,
 456			      enum audit_state *state,
 457			      bool task_creation)
 458{
 459	const struct cred *cred;
 460	int i, j, need_sid = 1;
 461	u32 sid;
 462
 463	cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
 464
 465	for (i = 0; i < rule->field_count; i++) {
 466		struct audit_field *f = &rule->fields[i];
 
 467		int result = 0;
 
 468
 469		switch (f->type) {
 470		case AUDIT_PID:
 471			result = audit_comparator(tsk->pid, f->op, f->val);
 
 472			break;
 473		case AUDIT_PPID:
 474			if (ctx) {
 475				if (!ctx->ppid)
 476					ctx->ppid = sys_getppid();
 477				result = audit_comparator(ctx->ppid, f->op, f->val);
 478			}
 479			break;
 
 
 
 480		case AUDIT_UID:
 481			result = audit_comparator(cred->uid, f->op, f->val);
 482			break;
 483		case AUDIT_EUID:
 484			result = audit_comparator(cred->euid, f->op, f->val);
 485			break;
 486		case AUDIT_SUID:
 487			result = audit_comparator(cred->suid, f->op, f->val);
 488			break;
 489		case AUDIT_FSUID:
 490			result = audit_comparator(cred->fsuid, f->op, f->val);
 491			break;
 492		case AUDIT_GID:
 493			result = audit_comparator(cred->gid, f->op, f->val);
 
 
 
 
 
 
 
 494			break;
 495		case AUDIT_EGID:
 496			result = audit_comparator(cred->egid, f->op, f->val);
 
 
 
 
 
 
 
 497			break;
 498		case AUDIT_SGID:
 499			result = audit_comparator(cred->sgid, f->op, f->val);
 500			break;
 501		case AUDIT_FSGID:
 502			result = audit_comparator(cred->fsgid, f->op, f->val);
 503			break;
 504		case AUDIT_PERS:
 505			result = audit_comparator(tsk->personality, f->op, f->val);
 506			break;
 507		case AUDIT_ARCH:
 508			if (ctx)
 509				result = audit_comparator(ctx->arch, f->op, f->val);
 510			break;
 511
 512		case AUDIT_EXIT:
 513			if (ctx && ctx->return_valid)
 514				result = audit_comparator(ctx->return_code, f->op, f->val);
 515			break;
 516		case AUDIT_SUCCESS:
 517			if (ctx && ctx->return_valid) {
 518				if (f->val)
 519					result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
 520				else
 521					result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
 522			}
 523			break;
 524		case AUDIT_DEVMAJOR:
 525			if (name)
 526				result = audit_comparator(MAJOR(name->dev),
 527							  f->op, f->val);
 528			else if (ctx) {
 529				for (j = 0; j < ctx->name_count; j++) {
 530					if (audit_comparator(MAJOR(ctx->names[j].dev),	f->op, f->val)) {
 
 
 531						++result;
 532						break;
 533					}
 534				}
 535			}
 536			break;
 537		case AUDIT_DEVMINOR:
 538			if (name)
 539				result = audit_comparator(MINOR(name->dev),
 540							  f->op, f->val);
 541			else if (ctx) {
 542				for (j = 0; j < ctx->name_count; j++) {
 543					if (audit_comparator(MINOR(ctx->names[j].dev), f->op, f->val)) {
 
 
 544						++result;
 545						break;
 546					}
 547				}
 548			}
 549			break;
 550		case AUDIT_INODE:
 551			if (name)
 552				result = (name->ino == f->val);
 553			else if (ctx) {
 554				for (j = 0; j < ctx->name_count; j++) {
 555					if (audit_comparator(ctx->names[j].ino, f->op, f->val)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 556						++result;
 557						break;
 558					}
 559				}
 560			}
 561			break;
 562		case AUDIT_WATCH:
 563			if (name)
 564				result = audit_watch_compare(rule->watch, name->ino, name->dev);
 565			break;
 566		case AUDIT_DIR:
 567			if (ctx)
 568				result = match_tree_refs(ctx, rule->tree);
 569			break;
 570		case AUDIT_LOGINUID:
 571			result = 0;
 572			if (ctx)
 573				result = audit_comparator(tsk->loginuid, f->op, f->val);
 
 574			break;
 575		case AUDIT_SUBJ_USER:
 576		case AUDIT_SUBJ_ROLE:
 577		case AUDIT_SUBJ_TYPE:
 578		case AUDIT_SUBJ_SEN:
 579		case AUDIT_SUBJ_CLR:
 580			/* NOTE: this may return negative values indicating
 581			   a temporary error.  We simply treat this as a
 582			   match for now to avoid losing information that
 583			   may be wanted.   An error message will also be
 584			   logged upon error */
 585			if (f->lsm_rule) {
 586				if (need_sid) {
 587					security_task_getsecid(tsk, &sid);
 588					need_sid = 0;
 589				}
 590				result = security_audit_rule_match(sid, f->type,
 591				                                  f->op,
 592				                                  f->lsm_rule,
 593				                                  ctx);
 594			}
 595			break;
 596		case AUDIT_OBJ_USER:
 597		case AUDIT_OBJ_ROLE:
 598		case AUDIT_OBJ_TYPE:
 599		case AUDIT_OBJ_LEV_LOW:
 600		case AUDIT_OBJ_LEV_HIGH:
 601			/* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
 602			   also applies here */
 603			if (f->lsm_rule) {
 604				/* Find files that match */
 605				if (name) {
 606					result = security_audit_rule_match(
 607					           name->osid, f->type, f->op,
 608					           f->lsm_rule, ctx);
 609				} else if (ctx) {
 610					for (j = 0; j < ctx->name_count; j++) {
 611						if (security_audit_rule_match(
 612						      ctx->names[j].osid,
 613						      f->type, f->op,
 614						      f->lsm_rule, ctx)) {
 615							++result;
 616							break;
 617						}
 618					}
 619				}
 620				/* Find ipc objects that match */
 621				if (!ctx || ctx->type != AUDIT_IPC)
 622					break;
 623				if (security_audit_rule_match(ctx->ipc.osid,
 624							      f->type, f->op,
 625							      f->lsm_rule, ctx))
 626					++result;
 627			}
 628			break;
 629		case AUDIT_ARG0:
 630		case AUDIT_ARG1:
 631		case AUDIT_ARG2:
 632		case AUDIT_ARG3:
 633			if (ctx)
 634				result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
 635			break;
 636		case AUDIT_FILTERKEY:
 637			/* ignore this field for filtering */
 638			result = 1;
 639			break;
 640		case AUDIT_PERM:
 641			result = audit_match_perm(ctx, f->val);
 642			break;
 643		case AUDIT_FILETYPE:
 644			result = audit_match_filetype(ctx, f->val);
 645			break;
 
 
 
 646		}
 647
 648		if (!result)
 649			return 0;
 650	}
 651
 652	if (ctx) {
 653		if (rule->prio <= ctx->prio)
 654			return 0;
 655		if (rule->filterkey) {
 656			kfree(ctx->filterkey);
 657			ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
 658		}
 659		ctx->prio = rule->prio;
 660	}
 661	switch (rule->action) {
 662	case AUDIT_NEVER:    *state = AUDIT_DISABLED;	    break;
 663	case AUDIT_ALWAYS:   *state = AUDIT_RECORD_CONTEXT; break;
 664	}
 665	return 1;
 666}
 667
 668/* At process creation time, we can determine if system-call auditing is
 669 * completely disabled for this task.  Since we only have the task
 670 * structure at this point, we can only check uid and gid.
 671 */
 672static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
 673{
 674	struct audit_entry *e;
 675	enum audit_state   state;
 676
 677	rcu_read_lock();
 678	list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
 679		if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
 680				       &state, true)) {
 681			if (state == AUDIT_RECORD_CONTEXT)
 682				*key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
 683			rcu_read_unlock();
 684			return state;
 685		}
 686	}
 687	rcu_read_unlock();
 688	return AUDIT_BUILD_CONTEXT;
 689}
 690
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 691/* At syscall entry and exit time, this filter is called if the
 692 * audit_state is not low enough that auditing cannot take place, but is
 693 * also not high enough that we already know we have to write an audit
 694 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
 695 */
 696static enum audit_state audit_filter_syscall(struct task_struct *tsk,
 697					     struct audit_context *ctx,
 698					     struct list_head *list)
 699{
 700	struct audit_entry *e;
 701	enum audit_state state;
 702
 703	if (audit_pid && tsk->tgid == audit_pid)
 704		return AUDIT_DISABLED;
 705
 706	rcu_read_lock();
 707	if (!list_empty(list)) {
 708		int word = AUDIT_WORD(ctx->major);
 709		int bit  = AUDIT_BIT(ctx->major);
 710
 711		list_for_each_entry_rcu(e, list, list) {
 712			if ((e->rule.mask[word] & bit) == bit &&
 713			    audit_filter_rules(tsk, &e->rule, ctx, NULL,
 714					       &state, false)) {
 715				rcu_read_unlock();
 716				ctx->current_state = state;
 717				return state;
 718			}
 719		}
 720	}
 721	rcu_read_unlock();
 722	return AUDIT_BUILD_CONTEXT;
 723}
 724
 725/* At syscall exit time, this filter is called if any audit_names[] have been
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 726 * collected during syscall processing.  We only check rules in sublists at hash
 727 * buckets applicable to the inode numbers in audit_names[].
 728 * Regarding audit_state, same rules apply as for audit_filter_syscall().
 729 */
 730void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
 731{
 732	int i;
 733	struct audit_entry *e;
 734	enum audit_state state;
 735
 736	if (audit_pid && tsk->tgid == audit_pid)
 737		return;
 738
 739	rcu_read_lock();
 740	for (i = 0; i < ctx->name_count; i++) {
 741		int word = AUDIT_WORD(ctx->major);
 742		int bit  = AUDIT_BIT(ctx->major);
 743		struct audit_names *n = &ctx->names[i];
 744		int h = audit_hash_ino((u32)n->ino);
 745		struct list_head *list = &audit_inode_hash[h];
 746
 747		if (list_empty(list))
 748			continue;
 749
 750		list_for_each_entry_rcu(e, list, list) {
 751			if ((e->rule.mask[word] & bit) == bit &&
 752			    audit_filter_rules(tsk, &e->rule, ctx, n,
 753				    	       &state, false)) {
 754				rcu_read_unlock();
 755				ctx->current_state = state;
 756				return;
 757			}
 758		}
 759	}
 760	rcu_read_unlock();
 761}
 762
 763static inline struct audit_context *audit_get_context(struct task_struct *tsk,
 
 764						      int return_valid,
 765						      long return_code)
 766{
 767	struct audit_context *context = tsk->audit_context;
 768
 769	if (likely(!context))
 770		return NULL;
 771	context->return_valid = return_valid;
 772
 773	/*
 774	 * we need to fix up the return code in the audit logs if the actual
 775	 * return codes are later going to be fixed up by the arch specific
 776	 * signal handlers
 777	 *
 778	 * This is actually a test for:
 779	 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
 780	 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
 781	 *
 782	 * but is faster than a bunch of ||
 783	 */
 784	if (unlikely(return_code <= -ERESTARTSYS) &&
 785	    (return_code >= -ERESTART_RESTARTBLOCK) &&
 786	    (return_code != -ENOIOCTLCMD))
 787		context->return_code = -EINTR;
 788	else
 789		context->return_code  = return_code;
 790
 791	if (context->in_syscall && !context->dummy) {
 792		audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
 793		audit_filter_inodes(tsk, context);
 794	}
 795
 796	tsk->audit_context = NULL;
 797	return context;
 798}
 799
 
 
 
 
 
 
 
 800static inline void audit_free_names(struct audit_context *context)
 801{
 802	int i;
 803
 804#if AUDIT_DEBUG == 2
 805	if (context->put_count + context->ino_count != context->name_count) {
 806		printk(KERN_ERR "%s:%d(:%d): major=%d in_syscall=%d"
 807		       " name_count=%d put_count=%d"
 808		       " ino_count=%d [NOT freeing]\n",
 809		       __FILE__, __LINE__,
 810		       context->serial, context->major, context->in_syscall,
 811		       context->name_count, context->put_count,
 812		       context->ino_count);
 813		for (i = 0; i < context->name_count; i++) {
 814			printk(KERN_ERR "names[%d] = %p = %s\n", i,
 815			       context->names[i].name,
 816			       context->names[i].name ?: "(null)");
 817		}
 818		dump_stack();
 819		return;
 820	}
 821#endif
 822#if AUDIT_DEBUG
 823	context->put_count  = 0;
 824	context->ino_count  = 0;
 825#endif
 826
 827	for (i = 0; i < context->name_count; i++) {
 828		if (context->names[i].name && context->names[i].name_put)
 829			__putname(context->names[i].name);
 
 
 
 830	}
 831	context->name_count = 0;
 832	path_put(&context->pwd);
 833	context->pwd.dentry = NULL;
 834	context->pwd.mnt = NULL;
 835}
 836
 837static inline void audit_free_aux(struct audit_context *context)
 838{
 839	struct audit_aux_data *aux;
 840
 841	while ((aux = context->aux)) {
 842		context->aux = aux->next;
 843		kfree(aux);
 844	}
 845	while ((aux = context->aux_pids)) {
 846		context->aux_pids = aux->next;
 847		kfree(aux);
 848	}
 849}
 850
 851static inline void audit_zero_context(struct audit_context *context,
 852				      enum audit_state state)
 853{
 854	memset(context, 0, sizeof(*context));
 855	context->state      = state;
 856	context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
 857}
 858
 859static inline struct audit_context *audit_alloc_context(enum audit_state state)
 860{
 861	struct audit_context *context;
 862
 863	if (!(context = kmalloc(sizeof(*context), GFP_KERNEL)))
 
 864		return NULL;
 865	audit_zero_context(context, state);
 
 866	INIT_LIST_HEAD(&context->killed_trees);
 
 867	return context;
 868}
 869
 870/**
 871 * audit_alloc - allocate an audit context block for a task
 872 * @tsk: task
 873 *
 874 * Filter on the task information and allocate a per-task audit context
 875 * if necessary.  Doing so turns on system call auditing for the
 876 * specified task.  This is called from copy_process, so no lock is
 877 * needed.
 878 */
 879int audit_alloc(struct task_struct *tsk)
 880{
 881	struct audit_context *context;
 882	enum audit_state     state;
 883	char *key = NULL;
 884
 885	if (likely(!audit_ever_enabled))
 886		return 0; /* Return if not auditing. */
 887
 888	state = audit_filter_task(tsk, &key);
 889	if (likely(state == AUDIT_DISABLED))
 
 890		return 0;
 
 891
 892	if (!(context = audit_alloc_context(state))) {
 893		kfree(key);
 894		audit_log_lost("out of memory in audit_alloc");
 895		return -ENOMEM;
 896	}
 897	context->filterkey = key;
 898
 899	tsk->audit_context  = context;
 900	set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
 901	return 0;
 902}
 903
 904static inline void audit_free_context(struct audit_context *context)
 905{
 906	struct audit_context *previous;
 907	int		     count = 0;
 908
 909	do {
 910		previous = context->previous;
 911		if (previous || (count &&  count < 10)) {
 912			++count;
 913			printk(KERN_ERR "audit(:%d): major=%d name_count=%d:"
 914			       " freeing multiple contexts (%d)\n",
 915			       context->serial, context->major,
 916			       context->name_count, count);
 917		}
 918		audit_free_names(context);
 919		unroll_tree_refs(context, NULL, 0);
 920		free_tree_refs(context);
 921		audit_free_aux(context);
 922		kfree(context->filterkey);
 923		kfree(context->sockaddr);
 924		kfree(context);
 925		context  = previous;
 926	} while (context);
 927	if (count >= 10)
 928		printk(KERN_ERR "audit: freed %d contexts\n", count);
 929}
 930
 931void audit_log_task_context(struct audit_buffer *ab)
 932{
 933	char *ctx = NULL;
 934	unsigned len;
 935	int error;
 936	u32 sid;
 937
 938	security_task_getsecid(current, &sid);
 939	if (!sid)
 940		return;
 941
 942	error = security_secid_to_secctx(sid, &ctx, &len);
 943	if (error) {
 944		if (error != -EINVAL)
 945			goto error_path;
 946		return;
 947	}
 948
 949	audit_log_format(ab, " subj=%s", ctx);
 950	security_release_secctx(ctx, len);
 951	return;
 952
 953error_path:
 954	audit_panic("error in audit_log_task_context");
 955	return;
 956}
 957
 958EXPORT_SYMBOL(audit_log_task_context);
 959
 960static void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
 961{
 962	char name[sizeof(tsk->comm)];
 963	struct mm_struct *mm = tsk->mm;
 964	struct vm_area_struct *vma;
 965
 966	/* tsk == current */
 967
 968	get_task_comm(name, tsk);
 969	audit_log_format(ab, " comm=");
 970	audit_log_untrustedstring(ab, name);
 971
 972	if (mm) {
 973		down_read(&mm->mmap_sem);
 974		vma = mm->mmap;
 975		while (vma) {
 976			if ((vma->vm_flags & VM_EXECUTABLE) &&
 977			    vma->vm_file) {
 978				audit_log_d_path(ab, "exe=",
 979						 &vma->vm_file->f_path);
 980				break;
 981			}
 982			vma = vma->vm_next;
 983		}
 984		up_read(&mm->mmap_sem);
 985	}
 986	audit_log_task_context(ab);
 987}
 988
 989static int audit_log_pid_context(struct audit_context *context, pid_t pid,
 990				 uid_t auid, uid_t uid, unsigned int sessionid,
 991				 u32 sid, char *comm)
 992{
 993	struct audit_buffer *ab;
 994	char *ctx = NULL;
 995	u32 len;
 996	int rc = 0;
 997
 998	ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
 999	if (!ab)
1000		return rc;
1001
1002	audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid, auid,
1003			 uid, sessionid);
1004	if (security_secid_to_secctx(sid, &ctx, &len)) {
1005		audit_log_format(ab, " obj=(none)");
1006		rc = 1;
1007	} else {
1008		audit_log_format(ab, " obj=%s", ctx);
1009		security_release_secctx(ctx, len);
 
 
 
1010	}
1011	audit_log_format(ab, " ocomm=");
1012	audit_log_untrustedstring(ab, comm);
1013	audit_log_end(ab);
1014
1015	return rc;
1016}
1017
1018/*
1019 * to_send and len_sent accounting are very loose estimates.  We aren't
1020 * really worried about a hard cap to MAX_EXECVE_AUDIT_LEN so much as being
1021 * within about 500 bytes (next page boundary)
1022 *
1023 * why snprintf?  an int is up to 12 digits long.  if we just assumed when
1024 * logging that a[%d]= was going to be 16 characters long we would be wasting
1025 * space in every audit message.  In one 7500 byte message we can log up to
1026 * about 1000 min size arguments.  That comes down to about 50% waste of space
1027 * if we didn't do the snprintf to find out how long arg_num_len was.
1028 */
1029static int audit_log_single_execve_arg(struct audit_context *context,
1030					struct audit_buffer **ab,
1031					int arg_num,
1032					size_t *len_sent,
1033					const char __user *p,
1034					char *buf)
1035{
1036	char arg_num_len_buf[12];
1037	const char __user *tmp_p = p;
1038	/* how many digits are in arg_num? 5 is the length of ' a=""' */
1039	size_t arg_num_len = snprintf(arg_num_len_buf, 12, "%d", arg_num) + 5;
1040	size_t len, len_left, to_send;
1041	size_t max_execve_audit_len = MAX_EXECVE_AUDIT_LEN;
1042	unsigned int i, has_cntl = 0, too_long = 0;
1043	int ret;
1044
1045	/* strnlen_user includes the null we don't want to send */
1046	len_left = len = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1047
1048	/*
1049	 * We just created this mm, if we can't find the strings
1050	 * we just copied into it something is _very_ wrong. Similar
1051	 * for strings that are too long, we should not have created
1052	 * any.
1053	 */
1054	if (unlikely((len == -1) || len > MAX_ARG_STRLEN - 1)) {
1055		WARN_ON(1);
1056		send_sig(SIGKILL, current, 0);
1057		return -1;
1058	}
1059
1060	/* walk the whole argument looking for non-ascii chars */
1061	do {
1062		if (len_left > MAX_EXECVE_AUDIT_LEN)
1063			to_send = MAX_EXECVE_AUDIT_LEN;
1064		else
1065			to_send = len_left;
1066		ret = copy_from_user(buf, tmp_p, to_send);
1067		/*
1068		 * There is no reason for this copy to be short. We just
1069		 * copied them here, and the mm hasn't been exposed to user-
1070		 * space yet.
1071		 */
1072		if (ret) {
1073			WARN_ON(1);
1074			send_sig(SIGKILL, current, 0);
1075			return -1;
1076		}
1077		buf[to_send] = '\0';
1078		has_cntl = audit_string_contains_control(buf, to_send);
1079		if (has_cntl) {
1080			/*
1081			 * hex messages get logged as 2 bytes, so we can only
1082			 * send half as much in each message
1083			 */
1084			max_execve_audit_len = MAX_EXECVE_AUDIT_LEN / 2;
1085			break;
1086		}
1087		len_left -= to_send;
1088		tmp_p += to_send;
1089	} while (len_left > 0);
1090
1091	len_left = len;
1092
1093	if (len > max_execve_audit_len)
1094		too_long = 1;
1095
1096	/* rewalk the argument actually logging the message */
1097	for (i = 0; len_left > 0; i++) {
1098		int room_left;
1099
1100		if (len_left > max_execve_audit_len)
1101			to_send = max_execve_audit_len;
1102		else
1103			to_send = len_left;
1104
1105		/* do we have space left to send this argument in this ab? */
1106		room_left = MAX_EXECVE_AUDIT_LEN - arg_num_len - *len_sent;
1107		if (has_cntl)
1108			room_left -= (to_send * 2);
1109		else
1110			room_left -= to_send;
1111		if (room_left < 0) {
1112			*len_sent = 0;
1113			audit_log_end(*ab);
1114			*ab = audit_log_start(context, GFP_KERNEL, AUDIT_EXECVE);
1115			if (!*ab)
1116				return 0;
1117		}
1118
1119		/*
1120		 * first record needs to say how long the original string was
1121		 * so we can be sure nothing was lost.
1122		 */
1123		if ((i == 0) && (too_long))
1124			audit_log_format(*ab, " a%d_len=%zu", arg_num,
1125					 has_cntl ? 2*len : len);
1126
1127		/*
1128		 * normally arguments are small enough to fit and we already
1129		 * filled buf above when we checked for control characters
1130		 * so don't bother with another copy_from_user
1131		 */
1132		if (len >= max_execve_audit_len)
1133			ret = copy_from_user(buf, p, to_send);
1134		else
1135			ret = 0;
1136		if (ret) {
1137			WARN_ON(1);
1138			send_sig(SIGKILL, current, 0);
1139			return -1;
1140		}
1141		buf[to_send] = '\0';
1142
1143		/* actually log it */
1144		audit_log_format(*ab, " a%d", arg_num);
1145		if (too_long)
1146			audit_log_format(*ab, "[%d]", i);
1147		audit_log_format(*ab, "=");
1148		if (has_cntl)
1149			audit_log_n_hex(*ab, buf, to_send);
1150		else
1151			audit_log_string(*ab, buf);
1152
1153		p += to_send;
1154		len_left -= to_send;
1155		*len_sent += arg_num_len;
1156		if (has_cntl)
1157			*len_sent += to_send * 2;
1158		else
1159			*len_sent += to_send;
1160	}
1161	/* include the null we didn't log */
1162	return len + 1;
1163}
1164
1165static void audit_log_execve_info(struct audit_context *context,
1166				  struct audit_buffer **ab,
1167				  struct audit_aux_data_execve *axi)
1168{
1169	int i;
1170	size_t len, len_sent = 0;
1171	const char __user *p;
1172	char *buf;
1173
1174	if (axi->mm != current->mm)
1175		return; /* execve failed, no additional info */
1176
1177	p = (const char __user *)axi->mm->arg_start;
1178
1179	audit_log_format(*ab, "argc=%d", axi->argc);
1180
1181	/*
1182	 * we need some kernel buffer to hold the userspace args.  Just
1183	 * allocate one big one rather than allocating one of the right size
1184	 * for every single argument inside audit_log_single_execve_arg()
1185	 * should be <8k allocation so should be pretty safe.
1186	 */
1187	buf = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1188	if (!buf) {
1189		audit_panic("out of memory for argv string\n");
1190		return;
1191	}
1192
1193	for (i = 0; i < axi->argc; i++) {
1194		len = audit_log_single_execve_arg(context, ab, i,
1195						  &len_sent, p, buf);
1196		if (len <= 0)
1197			break;
1198		p += len;
1199	}
1200	kfree(buf);
1201}
1202
1203static void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap)
1204{
1205	int i;
1206
1207	audit_log_format(ab, " %s=", prefix);
1208	CAP_FOR_EACH_U32(i) {
1209		audit_log_format(ab, "%08x", cap->cap[(_KERNEL_CAPABILITY_U32S-1) - i]);
1210	}
1211}
1212
1213static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1214{
1215	kernel_cap_t *perm = &name->fcap.permitted;
1216	kernel_cap_t *inh = &name->fcap.inheritable;
1217	int log = 0;
1218
1219	if (!cap_isclear(*perm)) {
1220		audit_log_cap(ab, "cap_fp", perm);
1221		log = 1;
1222	}
1223	if (!cap_isclear(*inh)) {
1224		audit_log_cap(ab, "cap_fi", inh);
1225		log = 1;
1226	}
1227
1228	if (log)
1229		audit_log_format(ab, " cap_fe=%d cap_fver=%x", name->fcap.fE, name->fcap_ver);
1230}
1231
1232static void show_special(struct audit_context *context, int *call_panic)
1233{
1234	struct audit_buffer *ab;
1235	int i;
1236
1237	ab = audit_log_start(context, GFP_KERNEL, context->type);
1238	if (!ab)
1239		return;
1240
1241	switch (context->type) {
1242	case AUDIT_SOCKETCALL: {
1243		int nargs = context->socketcall.nargs;
1244		audit_log_format(ab, "nargs=%d", nargs);
1245		for (i = 0; i < nargs; i++)
1246			audit_log_format(ab, " a%d=%lx", i,
1247				context->socketcall.args[i]);
1248		break; }
1249	case AUDIT_IPC: {
1250		u32 osid = context->ipc.osid;
1251
1252		audit_log_format(ab, "ouid=%u ogid=%u mode=%#o",
1253			 context->ipc.uid, context->ipc.gid, context->ipc.mode);
 
 
1254		if (osid) {
1255			char *ctx = NULL;
1256			u32 len;
1257			if (security_secid_to_secctx(osid, &ctx, &len)) {
1258				audit_log_format(ab, " osid=%u", osid);
1259				*call_panic = 1;
1260			} else {
1261				audit_log_format(ab, " obj=%s", ctx);
1262				security_release_secctx(ctx, len);
1263			}
1264		}
1265		if (context->ipc.has_perm) {
1266			audit_log_end(ab);
1267			ab = audit_log_start(context, GFP_KERNEL,
1268					     AUDIT_IPC_SET_PERM);
 
 
1269			audit_log_format(ab,
1270				"qbytes=%lx ouid=%u ogid=%u mode=%#o",
1271				context->ipc.qbytes,
1272				context->ipc.perm_uid,
1273				context->ipc.perm_gid,
1274				context->ipc.perm_mode);
1275			if (!ab)
1276				return;
1277		}
1278		break; }
1279	case AUDIT_MQ_OPEN: {
1280		audit_log_format(ab,
1281			"oflag=0x%x mode=%#o mq_flags=0x%lx mq_maxmsg=%ld "
1282			"mq_msgsize=%ld mq_curmsgs=%ld",
1283			context->mq_open.oflag, context->mq_open.mode,
1284			context->mq_open.attr.mq_flags,
1285			context->mq_open.attr.mq_maxmsg,
1286			context->mq_open.attr.mq_msgsize,
1287			context->mq_open.attr.mq_curmsgs);
1288		break; }
1289	case AUDIT_MQ_SENDRECV: {
1290		audit_log_format(ab,
1291			"mqdes=%d msg_len=%zd msg_prio=%u "
1292			"abs_timeout_sec=%ld abs_timeout_nsec=%ld",
1293			context->mq_sendrecv.mqdes,
1294			context->mq_sendrecv.msg_len,
1295			context->mq_sendrecv.msg_prio,
1296			context->mq_sendrecv.abs_timeout.tv_sec,
1297			context->mq_sendrecv.abs_timeout.tv_nsec);
1298		break; }
1299	case AUDIT_MQ_NOTIFY: {
1300		audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1301				context->mq_notify.mqdes,
1302				context->mq_notify.sigev_signo);
1303		break; }
1304	case AUDIT_MQ_GETSETATTR: {
1305		struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1306		audit_log_format(ab,
1307			"mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1308			"mq_curmsgs=%ld ",
1309			context->mq_getsetattr.mqdes,
1310			attr->mq_flags, attr->mq_maxmsg,
1311			attr->mq_msgsize, attr->mq_curmsgs);
1312		break; }
1313	case AUDIT_CAPSET: {
1314		audit_log_format(ab, "pid=%d", context->capset.pid);
1315		audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1316		audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1317		audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1318		break; }
1319	case AUDIT_MMAP: {
1320		audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1321				 context->mmap.flags);
1322		break; }
 
 
 
1323	}
1324	audit_log_end(ab);
1325}
1326
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1327static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
1328{
1329	const struct cred *cred;
1330	int i, call_panic = 0;
1331	struct audit_buffer *ab;
1332	struct audit_aux_data *aux;
1333	const char *tty;
1334
1335	/* tsk == current */
1336	context->pid = tsk->pid;
1337	if (!context->ppid)
1338		context->ppid = sys_getppid();
1339	cred = current_cred();
1340	context->uid   = cred->uid;
1341	context->gid   = cred->gid;
1342	context->euid  = cred->euid;
1343	context->suid  = cred->suid;
1344	context->fsuid = cred->fsuid;
1345	context->egid  = cred->egid;
1346	context->sgid  = cred->sgid;
1347	context->fsgid = cred->fsgid;
1348	context->personality = tsk->personality;
1349
1350	ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1351	if (!ab)
1352		return;		/* audit_panic has been called */
1353	audit_log_format(ab, "arch=%x syscall=%d",
1354			 context->arch, context->major);
1355	if (context->personality != PER_LINUX)
1356		audit_log_format(ab, " per=%lx", context->personality);
1357	if (context->return_valid)
1358		audit_log_format(ab, " success=%s exit=%ld",
1359				 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1360				 context->return_code);
1361
1362	spin_lock_irq(&tsk->sighand->siglock);
1363	if (tsk->signal && tsk->signal->tty && tsk->signal->tty->name)
1364		tty = tsk->signal->tty->name;
1365	else
1366		tty = "(none)";
1367	spin_unlock_irq(&tsk->sighand->siglock);
1368
1369	audit_log_format(ab,
1370		  " a0=%lx a1=%lx a2=%lx a3=%lx items=%d"
1371		  " ppid=%d pid=%d auid=%u uid=%u gid=%u"
1372		  " euid=%u suid=%u fsuid=%u"
1373		  " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
1374		  context->argv[0],
1375		  context->argv[1],
1376		  context->argv[2],
1377		  context->argv[3],
1378		  context->name_count,
1379		  context->ppid,
1380		  context->pid,
1381		  tsk->loginuid,
1382		  context->uid,
1383		  context->gid,
1384		  context->euid, context->suid, context->fsuid,
1385		  context->egid, context->sgid, context->fsgid, tty,
1386		  tsk->sessionid);
1387
1388
1389	audit_log_task_info(ab, tsk);
1390	audit_log_key(ab, context->filterkey);
1391	audit_log_end(ab);
1392
1393	for (aux = context->aux; aux; aux = aux->next) {
1394
1395		ab = audit_log_start(context, GFP_KERNEL, aux->type);
1396		if (!ab)
1397			continue; /* audit_panic has been called */
1398
1399		switch (aux->type) {
1400
1401		case AUDIT_EXECVE: {
1402			struct audit_aux_data_execve *axi = (void *)aux;
1403			audit_log_execve_info(context, &ab, axi);
1404			break; }
1405
1406		case AUDIT_BPRM_FCAPS: {
1407			struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1408			audit_log_format(ab, "fver=%x", axs->fcap_ver);
1409			audit_log_cap(ab, "fp", &axs->fcap.permitted);
1410			audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1411			audit_log_format(ab, " fe=%d", axs->fcap.fE);
1412			audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1413			audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1414			audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1415			audit_log_cap(ab, "new_pp", &axs->new_pcap.permitted);
1416			audit_log_cap(ab, "new_pi", &axs->new_pcap.inheritable);
1417			audit_log_cap(ab, "new_pe", &axs->new_pcap.effective);
1418			break; }
1419
1420		}
1421		audit_log_end(ab);
1422	}
1423
1424	if (context->type)
1425		show_special(context, &call_panic);
1426
1427	if (context->fds[0] >= 0) {
1428		ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1429		if (ab) {
1430			audit_log_format(ab, "fd0=%d fd1=%d",
1431					context->fds[0], context->fds[1]);
1432			audit_log_end(ab);
1433		}
1434	}
1435
1436	if (context->sockaddr_len) {
1437		ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1438		if (ab) {
1439			audit_log_format(ab, "saddr=");
1440			audit_log_n_hex(ab, (void *)context->sockaddr,
1441					context->sockaddr_len);
1442			audit_log_end(ab);
1443		}
1444	}
1445
1446	for (aux = context->aux_pids; aux; aux = aux->next) {
1447		struct audit_aux_data_pids *axs = (void *)aux;
1448
1449		for (i = 0; i < axs->pid_count; i++)
1450			if (audit_log_pid_context(context, axs->target_pid[i],
1451						  axs->target_auid[i],
1452						  axs->target_uid[i],
1453						  axs->target_sessionid[i],
1454						  axs->target_sid[i],
1455						  axs->target_comm[i]))
1456				call_panic = 1;
1457	}
1458
1459	if (context->target_pid &&
1460	    audit_log_pid_context(context, context->target_pid,
1461				  context->target_auid, context->target_uid,
1462				  context->target_sessionid,
1463				  context->target_sid, context->target_comm))
1464			call_panic = 1;
1465
1466	if (context->pwd.dentry && context->pwd.mnt) {
1467		ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1468		if (ab) {
1469			audit_log_d_path(ab, "cwd=", &context->pwd);
1470			audit_log_end(ab);
1471		}
1472	}
1473	for (i = 0; i < context->name_count; i++) {
1474		struct audit_names *n = &context->names[i];
1475
1476		ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1477		if (!ab)
1478			continue; /* audit_panic has been called */
 
 
 
1479
1480		audit_log_format(ab, "item=%d", i);
1481
1482		if (n->name) {
1483			switch(n->name_len) {
1484			case AUDIT_NAME_FULL:
1485				/* log the full path */
1486				audit_log_format(ab, " name=");
1487				audit_log_untrustedstring(ab, n->name);
1488				break;
1489			case 0:
1490				/* name was specified as a relative path and the
1491				 * directory component is the cwd */
1492				audit_log_d_path(ab, "name=", &context->pwd);
1493				break;
1494			default:
1495				/* log the name's directory component */
1496				audit_log_format(ab, " name=");
1497				audit_log_n_untrustedstring(ab, n->name,
1498							    n->name_len);
1499			}
1500		} else
1501			audit_log_format(ab, " name=(null)");
1502
1503		if (n->ino != (unsigned long)-1) {
1504			audit_log_format(ab, " inode=%lu"
1505					 " dev=%02x:%02x mode=%#o"
1506					 " ouid=%u ogid=%u rdev=%02x:%02x",
1507					 n->ino,
1508					 MAJOR(n->dev),
1509					 MINOR(n->dev),
1510					 n->mode,
1511					 n->uid,
1512					 n->gid,
1513					 MAJOR(n->rdev),
1514					 MINOR(n->rdev));
1515		}
1516		if (n->osid != 0) {
1517			char *ctx = NULL;
1518			u32 len;
1519			if (security_secid_to_secctx(
1520				n->osid, &ctx, &len)) {
1521				audit_log_format(ab, " osid=%u", n->osid);
1522				call_panic = 2;
1523			} else {
1524				audit_log_format(ab, " obj=%s", ctx);
1525				security_release_secctx(ctx, len);
1526			}
1527		}
1528
1529		audit_log_fcaps(ab, n);
1530
1531		audit_log_end(ab);
1532	}
1533
1534	/* Send end of event record to help user space know we are finished */
1535	ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1536	if (ab)
1537		audit_log_end(ab);
1538	if (call_panic)
1539		audit_panic("error converting sid to string");
1540}
1541
1542/**
1543 * audit_free - free a per-task audit context
1544 * @tsk: task whose audit context block to free
1545 *
1546 * Called from copy_process and do_exit
1547 */
1548void audit_free(struct task_struct *tsk)
1549{
1550	struct audit_context *context;
1551
1552	context = audit_get_context(tsk, 0, 0);
1553	if (likely(!context))
1554		return;
1555
1556	/* Check for system calls that do not go through the exit
1557	 * function (e.g., exit_group), then free context block.
1558	 * We use GFP_ATOMIC here because we might be doing this
1559	 * in the context of the idle thread */
1560	/* that can happen only if we are called from do_exit() */
1561	if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1562		audit_log_exit(context, tsk);
1563	if (!list_empty(&context->killed_trees))
1564		audit_kill_trees(&context->killed_trees);
1565
1566	audit_free_context(context);
1567}
1568
1569/**
1570 * audit_syscall_entry - fill in an audit record at syscall entry
1571 * @arch: architecture type
1572 * @major: major syscall type (function)
1573 * @a1: additional syscall register 1
1574 * @a2: additional syscall register 2
1575 * @a3: additional syscall register 3
1576 * @a4: additional syscall register 4
1577 *
1578 * Fill in audit context at syscall entry.  This only happens if the
1579 * audit context was created when the task was created and the state or
1580 * filters demand the audit context be built.  If the state from the
1581 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1582 * then the record will be written at syscall exit time (otherwise, it
1583 * will only be written if another part of the kernel requests that it
1584 * be written).
1585 */
1586void audit_syscall_entry(int arch, int major,
1587			 unsigned long a1, unsigned long a2,
1588			 unsigned long a3, unsigned long a4)
1589{
1590	struct task_struct *tsk = current;
1591	struct audit_context *context = tsk->audit_context;
1592	enum audit_state     state;
1593
1594	if (unlikely(!context))
1595		return;
1596
1597	/*
1598	 * This happens only on certain architectures that make system
1599	 * calls in kernel_thread via the entry.S interface, instead of
1600	 * with direct calls.  (If you are porting to a new
1601	 * architecture, hitting this condition can indicate that you
1602	 * got the _exit/_leave calls backward in entry.S.)
1603	 *
1604	 * i386     no
1605	 * x86_64   no
1606	 * ppc64    yes (see arch/powerpc/platforms/iseries/misc.S)
1607	 *
1608	 * This also happens with vm86 emulation in a non-nested manner
1609	 * (entries without exits), so this case must be caught.
1610	 */
1611	if (context->in_syscall) {
1612		struct audit_context *newctx;
1613
1614#if AUDIT_DEBUG
1615		printk(KERN_ERR
1616		       "audit(:%d) pid=%d in syscall=%d;"
1617		       " entering syscall=%d\n",
1618		       context->serial, tsk->pid, context->major, major);
1619#endif
1620		newctx = audit_alloc_context(context->state);
1621		if (newctx) {
1622			newctx->previous   = context;
1623			context		   = newctx;
1624			tsk->audit_context = newctx;
1625		} else	{
1626			/* If we can't alloc a new context, the best we
1627			 * can do is to leak memory (any pending putname
1628			 * will be lost).  The only other alternative is
1629			 * to abandon auditing. */
1630			audit_zero_context(context, context->state);
1631		}
1632	}
1633	BUG_ON(context->in_syscall || context->name_count);
1634
1635	if (!audit_enabled)
1636		return;
1637
1638	context->arch	    = arch;
1639	context->major      = major;
1640	context->argv[0]    = a1;
1641	context->argv[1]    = a2;
1642	context->argv[2]    = a3;
1643	context->argv[3]    = a4;
1644
1645	state = context->state;
1646	context->dummy = !audit_n_rules;
1647	if (!context->dummy && state == AUDIT_BUILD_CONTEXT) {
1648		context->prio = 0;
1649		state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]);
1650	}
1651	if (likely(state == AUDIT_DISABLED))
1652		return;
1653
1654	context->serial     = 0;
1655	context->ctime      = CURRENT_TIME;
1656	context->in_syscall = 1;
1657	context->current_state  = state;
1658	context->ppid       = 0;
1659}
1660
1661void audit_finish_fork(struct task_struct *child)
1662{
1663	struct audit_context *ctx = current->audit_context;
1664	struct audit_context *p = child->audit_context;
1665	if (!p || !ctx)
1666		return;
1667	if (!ctx->in_syscall || ctx->current_state != AUDIT_RECORD_CONTEXT)
1668		return;
1669	p->arch = ctx->arch;
1670	p->major = ctx->major;
1671	memcpy(p->argv, ctx->argv, sizeof(ctx->argv));
1672	p->ctime = ctx->ctime;
1673	p->dummy = ctx->dummy;
1674	p->in_syscall = ctx->in_syscall;
1675	p->filterkey = kstrdup(ctx->filterkey, GFP_KERNEL);
1676	p->ppid = current->pid;
1677	p->prio = ctx->prio;
1678	p->current_state = ctx->current_state;
1679}
1680
1681/**
1682 * audit_syscall_exit - deallocate audit context after a system call
1683 * @valid: success/failure flag
1684 * @return_code: syscall return value
1685 *
1686 * Tear down after system call.  If the audit context has been marked as
1687 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1688 * filtering, or because some other part of the kernel write an audit
1689 * message), then write out the syscall information.  In call cases,
1690 * free the names stored from getname().
1691 */
1692void audit_syscall_exit(int valid, long return_code)
1693{
1694	struct task_struct *tsk = current;
1695	struct audit_context *context;
1696
1697	context = audit_get_context(tsk, valid, return_code);
 
 
 
1698
1699	if (likely(!context))
 
1700		return;
1701
1702	if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1703		audit_log_exit(context, tsk);
1704
1705	context->in_syscall = 0;
1706	context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
1707
1708	if (!list_empty(&context->killed_trees))
1709		audit_kill_trees(&context->killed_trees);
1710
1711	if (context->previous) {
1712		struct audit_context *new_context = context->previous;
1713		context->previous  = NULL;
1714		audit_free_context(context);
1715		tsk->audit_context = new_context;
1716	} else {
1717		audit_free_names(context);
1718		unroll_tree_refs(context, NULL, 0);
1719		audit_free_aux(context);
1720		context->aux = NULL;
1721		context->aux_pids = NULL;
1722		context->target_pid = 0;
1723		context->target_sid = 0;
1724		context->sockaddr_len = 0;
1725		context->type = 0;
1726		context->fds[0] = -1;
1727		if (context->state != AUDIT_RECORD_CONTEXT) {
1728			kfree(context->filterkey);
1729			context->filterkey = NULL;
1730		}
1731		tsk->audit_context = context;
1732	}
 
1733}
1734
1735static inline void handle_one(const struct inode *inode)
1736{
1737#ifdef CONFIG_AUDIT_TREE
1738	struct audit_context *context;
1739	struct audit_tree_refs *p;
1740	struct audit_chunk *chunk;
1741	int count;
1742	if (likely(hlist_empty(&inode->i_fsnotify_marks)))
1743		return;
1744	context = current->audit_context;
1745	p = context->trees;
1746	count = context->tree_count;
1747	rcu_read_lock();
1748	chunk = audit_tree_lookup(inode);
1749	rcu_read_unlock();
1750	if (!chunk)
1751		return;
1752	if (likely(put_tree_ref(context, chunk)))
1753		return;
1754	if (unlikely(!grow_tree_refs(context))) {
1755		printk(KERN_WARNING "out of memory, audit has lost a tree reference\n");
1756		audit_set_auditable(context);
1757		audit_put_chunk(chunk);
1758		unroll_tree_refs(context, p, count);
1759		return;
1760	}
1761	put_tree_ref(context, chunk);
1762#endif
1763}
1764
1765static void handle_path(const struct dentry *dentry)
1766{
1767#ifdef CONFIG_AUDIT_TREE
1768	struct audit_context *context;
1769	struct audit_tree_refs *p;
1770	const struct dentry *d, *parent;
1771	struct audit_chunk *drop;
1772	unsigned long seq;
1773	int count;
1774
1775	context = current->audit_context;
1776	p = context->trees;
1777	count = context->tree_count;
1778retry:
1779	drop = NULL;
1780	d = dentry;
1781	rcu_read_lock();
1782	seq = read_seqbegin(&rename_lock);
1783	for(;;) {
1784		struct inode *inode = d->d_inode;
1785		if (inode && unlikely(!hlist_empty(&inode->i_fsnotify_marks))) {
1786			struct audit_chunk *chunk;
1787			chunk = audit_tree_lookup(inode);
1788			if (chunk) {
1789				if (unlikely(!put_tree_ref(context, chunk))) {
1790					drop = chunk;
1791					break;
1792				}
1793			}
1794		}
1795		parent = d->d_parent;
1796		if (parent == d)
1797			break;
1798		d = parent;
1799	}
1800	if (unlikely(read_seqretry(&rename_lock, seq) || drop)) {  /* in this order */
1801		rcu_read_unlock();
1802		if (!drop) {
1803			/* just a race with rename */
1804			unroll_tree_refs(context, p, count);
1805			goto retry;
1806		}
1807		audit_put_chunk(drop);
1808		if (grow_tree_refs(context)) {
1809			/* OK, got more space */
1810			unroll_tree_refs(context, p, count);
1811			goto retry;
1812		}
1813		/* too bad */
1814		printk(KERN_WARNING
1815			"out of memory, audit has lost a tree reference\n");
1816		unroll_tree_refs(context, p, count);
1817		audit_set_auditable(context);
1818		return;
1819	}
1820	rcu_read_unlock();
1821#endif
1822}
1823
1824/**
1825 * audit_getname - add a name to the list
1826 * @name: name to add
1827 *
1828 * Add a name to the list of audit names for this context.
1829 * Called from fs/namei.c:getname().
1830 */
1831void __audit_getname(const char *name)
1832{
1833	struct audit_context *context = current->audit_context;
 
 
 
 
 
 
 
 
 
 
1834
1835	if (IS_ERR(name) || !name)
1836		return;
 
1837
1838	if (!context->in_syscall) {
1839#if AUDIT_DEBUG == 2
1840		printk(KERN_ERR "%s:%d(:%d): ignoring getname(%p)\n",
1841		       __FILE__, __LINE__, context->serial, name);
1842		dump_stack();
1843#endif
1844		return;
1845	}
1846	BUG_ON(context->name_count >= AUDIT_NAMES);
1847	context->names[context->name_count].name = name;
1848	context->names[context->name_count].name_len = AUDIT_NAME_FULL;
1849	context->names[context->name_count].name_put = 1;
1850	context->names[context->name_count].ino  = (unsigned long)-1;
1851	context->names[context->name_count].osid = 0;
1852	++context->name_count;
1853	if (!context->pwd.dentry)
1854		get_fs_pwd(current->fs, &context->pwd);
1855}
1856
1857/* audit_putname - intercept a putname request
1858 * @name: name to intercept and delay for putname
 
1859 *
1860 * If we have stored the name from getname in the audit context,
1861 * then we delay the putname until syscall exit.
1862 * Called from include/linux/fs.h:putname().
1863 */
1864void audit_putname(const char *name)
 
1865{
1866	struct audit_context *context = current->audit_context;
 
1867
1868	BUG_ON(!context);
1869	if (!context->in_syscall) {
1870#if AUDIT_DEBUG == 2
1871		printk(KERN_ERR "%s:%d(:%d): __putname(%p)\n",
1872		       __FILE__, __LINE__, context->serial, name);
1873		if (context->name_count) {
1874			int i;
1875			for (i = 0; i < context->name_count; i++)
1876				printk(KERN_ERR "name[%d] = %p = %s\n", i,
1877				       context->names[i].name,
1878				       context->names[i].name ?: "(null)");
1879		}
1880#endif
1881		__putname(name);
1882	}
1883#if AUDIT_DEBUG
1884	else {
1885		++context->put_count;
1886		if (context->put_count > context->name_count) {
1887			printk(KERN_ERR "%s:%d(:%d): major=%d"
1888			       " in_syscall=%d putname(%p) name_count=%d"
1889			       " put_count=%d\n",
1890			       __FILE__, __LINE__,
1891			       context->serial, context->major,
1892			       context->in_syscall, name, context->name_count,
1893			       context->put_count);
1894			dump_stack();
1895		}
1896	}
1897#endif
1898}
1899
1900static int audit_inc_name_count(struct audit_context *context,
1901				const struct inode *inode)
 
 
 
 
 
 
1902{
1903	if (context->name_count >= AUDIT_NAMES) {
1904		if (inode)
1905			printk(KERN_DEBUG "audit: name_count maxed, losing inode data: "
1906			       "dev=%02x:%02x, inode=%lu\n",
1907			       MAJOR(inode->i_sb->s_dev),
1908			       MINOR(inode->i_sb->s_dev),
1909			       inode->i_ino);
1910
1911		else
1912			printk(KERN_DEBUG "name_count maxed, losing inode data\n");
1913		return 1;
1914	}
1915	context->name_count++;
1916#if AUDIT_DEBUG
1917	context->ino_count++;
1918#endif
1919	return 0;
1920}
1921
 
 
 
1922
1923static inline int audit_copy_fcaps(struct audit_names *name, const struct dentry *dentry)
1924{
1925	struct cpu_vfs_cap_data caps;
1926	int rc;
1927
1928	memset(&name->fcap.permitted, 0, sizeof(kernel_cap_t));
1929	memset(&name->fcap.inheritable, 0, sizeof(kernel_cap_t));
1930	name->fcap.fE = 0;
1931	name->fcap_ver = 0;
1932
1933	if (!dentry)
1934		return 0;
1935
1936	rc = get_vfs_caps_from_disk(dentry, &caps);
1937	if (rc)
1938		return rc;
1939
1940	name->fcap.permitted = caps.permitted;
1941	name->fcap.inheritable = caps.inheritable;
1942	name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
1943	name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
1944
1945	return 0;
1946}
1947
1948
1949/* Copy inode data into an audit_names. */
1950static void audit_copy_inode(struct audit_names *name, const struct dentry *dentry,
1951			     const struct inode *inode)
1952{
1953	name->ino   = inode->i_ino;
1954	name->dev   = inode->i_sb->s_dev;
1955	name->mode  = inode->i_mode;
1956	name->uid   = inode->i_uid;
1957	name->gid   = inode->i_gid;
1958	name->rdev  = inode->i_rdev;
1959	security_inode_getsecid(inode, &name->osid);
1960	audit_copy_fcaps(name, dentry);
1961}
1962
1963/**
1964 * audit_inode - store the inode and device from a lookup
1965 * @name: name being audited
1966 * @dentry: dentry being audited
1967 *
1968 * Called from fs/namei.c:path_lookup().
1969 */
1970void __audit_inode(const char *name, const struct dentry *dentry)
 
1971{
1972	int idx;
1973	struct audit_context *context = current->audit_context;
1974	const struct inode *inode = dentry->d_inode;
 
 
1975
1976	if (!context->in_syscall)
1977		return;
1978	if (context->name_count
1979	    && context->names[context->name_count-1].name
1980	    && context->names[context->name_count-1].name == name)
1981		idx = context->name_count - 1;
1982	else if (context->name_count > 1
1983		 && context->names[context->name_count-2].name
1984		 && context->names[context->name_count-2].name == name)
1985		idx = context->name_count - 2;
1986	else {
1987		/* FIXME: how much do we care about inodes that have no
1988		 * associated name? */
1989		if (audit_inc_name_count(context, inode))
1990			return;
1991		idx = context->name_count - 1;
1992		context->names[idx].name = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1993	}
1994	handle_path(dentry);
1995	audit_copy_inode(&context->names[idx], dentry, inode);
 
 
 
 
 
1996}
1997
1998/**
1999 * audit_inode_child - collect inode info for created/removed objects
 
2000 * @dentry: dentry being audited
2001 * @parent: inode of dentry parent
2002 *
2003 * For syscalls that create or remove filesystem objects, audit_inode
2004 * can only collect information for the filesystem object's parent.
2005 * This call updates the audit context with the child's information.
2006 * Syscalls that create a new filesystem object must be hooked after
2007 * the object is created.  Syscalls that remove a filesystem object
2008 * must be hooked prior, in order to capture the target inode during
2009 * unsuccessful attempts.
2010 */
2011void __audit_inode_child(const struct dentry *dentry,
2012			 const struct inode *parent)
 
2013{
2014	int idx;
2015	struct audit_context *context = current->audit_context;
2016	const char *found_parent = NULL, *found_child = NULL;
2017	const struct inode *inode = dentry->d_inode;
2018	const char *dname = dentry->d_name.name;
2019	int dirlen = 0;
2020
2021	if (!context->in_syscall)
2022		return;
2023
2024	if (inode)
2025		handle_one(inode);
2026
2027	/* parent is more likely, look for it first */
2028	for (idx = 0; idx < context->name_count; idx++) {
2029		struct audit_names *n = &context->names[idx];
2030
2031		if (!n->name)
2032			continue;
2033
2034		if (n->ino == parent->i_ino &&
2035		    !audit_compare_dname_path(dname, n->name, &dirlen)) {
2036			n->name_len = dirlen; /* update parent data in place */
2037			found_parent = n->name;
2038			goto add_names;
 
 
2039		}
2040	}
2041
2042	/* no matching parent, look for matching child */
2043	for (idx = 0; idx < context->name_count; idx++) {
2044		struct audit_names *n = &context->names[idx];
2045
2046		if (!n->name)
2047			continue;
2048
2049		/* strcmp() is the more likely scenario */
2050		if (!strcmp(dname, n->name) ||
2051		     !audit_compare_dname_path(dname, n->name, &dirlen)) {
2052			if (inode)
2053				audit_copy_inode(n, NULL, inode);
2054			else
2055				n->ino = (unsigned long)-1;
2056			found_child = n->name;
2057			goto add_names;
2058		}
2059	}
2060
2061add_names:
2062	if (!found_parent) {
2063		if (audit_inc_name_count(context, parent))
 
 
2064			return;
2065		idx = context->name_count - 1;
2066		context->names[idx].name = NULL;
2067		audit_copy_inode(&context->names[idx], NULL, parent);
2068	}
2069
2070	if (!found_child) {
2071		if (audit_inc_name_count(context, inode))
 
2072			return;
2073		idx = context->name_count - 1;
2074
2075		/* Re-use the name belonging to the slot for a matching parent
2076		 * directory. All names for this context are relinquished in
2077		 * audit_free_names() */
2078		if (found_parent) {
2079			context->names[idx].name = found_parent;
2080			context->names[idx].name_len = AUDIT_NAME_FULL;
2081			/* don't call __putname() */
2082			context->names[idx].name_put = 0;
2083		} else {
2084			context->names[idx].name = NULL;
2085		}
 
2086
2087		if (inode)
2088			audit_copy_inode(&context->names[idx], NULL, inode);
2089		else
2090			context->names[idx].ino = (unsigned long)-1;
2091	}
2092}
2093EXPORT_SYMBOL_GPL(__audit_inode_child);
2094
2095/**
2096 * auditsc_get_stamp - get local copies of audit_context values
2097 * @ctx: audit_context for the task
2098 * @t: timespec to store time recorded in the audit_context
2099 * @serial: serial value that is recorded in the audit_context
2100 *
2101 * Also sets the context as auditable.
2102 */
2103int auditsc_get_stamp(struct audit_context *ctx,
2104		       struct timespec *t, unsigned int *serial)
2105{
2106	if (!ctx->in_syscall)
2107		return 0;
2108	if (!ctx->serial)
2109		ctx->serial = audit_serial();
2110	t->tv_sec  = ctx->ctime.tv_sec;
2111	t->tv_nsec = ctx->ctime.tv_nsec;
2112	*serial    = ctx->serial;
2113	if (!ctx->prio) {
2114		ctx->prio = 1;
2115		ctx->current_state = AUDIT_RECORD_CONTEXT;
2116	}
2117	return 1;
2118}
2119
2120/* global counter which is incremented every time something logs in */
2121static atomic_t session_id = ATOMIC_INIT(0);
2122
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2123/**
2124 * audit_set_loginuid - set a task's audit_context loginuid
2125 * @task: task whose audit context is being modified
2126 * @loginuid: loginuid value
2127 *
2128 * Returns 0.
2129 *
2130 * Called (set) from fs/proc/base.c::proc_loginuid_write().
2131 */
2132int audit_set_loginuid(struct task_struct *task, uid_t loginuid)
2133{
2134	unsigned int sessionid = atomic_inc_return(&session_id);
2135	struct audit_context *context = task->audit_context;
 
 
2136
2137	if (context && context->in_syscall) {
2138		struct audit_buffer *ab;
 
 
 
 
 
 
 
 
2139
2140		ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
2141		if (ab) {
2142			audit_log_format(ab, "login pid=%d uid=%u "
2143				"old auid=%u new auid=%u"
2144				" old ses=%u new ses=%u",
2145				task->pid, task_uid(task),
2146				task->loginuid, loginuid,
2147				task->sessionid, sessionid);
2148			audit_log_end(ab);
2149		}
2150	}
2151	task->sessionid = sessionid;
2152	task->loginuid = loginuid;
2153	return 0;
 
 
2154}
2155
2156/**
2157 * __audit_mq_open - record audit data for a POSIX MQ open
2158 * @oflag: open flag
2159 * @mode: mode bits
2160 * @attr: queue attributes
2161 *
2162 */
2163void __audit_mq_open(int oflag, mode_t mode, struct mq_attr *attr)
2164{
2165	struct audit_context *context = current->audit_context;
2166
2167	if (attr)
2168		memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2169	else
2170		memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
2171
2172	context->mq_open.oflag = oflag;
2173	context->mq_open.mode = mode;
2174
2175	context->type = AUDIT_MQ_OPEN;
2176}
2177
2178/**
2179 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2180 * @mqdes: MQ descriptor
2181 * @msg_len: Message length
2182 * @msg_prio: Message priority
2183 * @abs_timeout: Message timeout in absolute time
2184 *
2185 */
2186void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2187			const struct timespec *abs_timeout)
2188{
2189	struct audit_context *context = current->audit_context;
2190	struct timespec *p = &context->mq_sendrecv.abs_timeout;
2191
2192	if (abs_timeout)
2193		memcpy(p, abs_timeout, sizeof(struct timespec));
2194	else
2195		memset(p, 0, sizeof(struct timespec));
2196
2197	context->mq_sendrecv.mqdes = mqdes;
2198	context->mq_sendrecv.msg_len = msg_len;
2199	context->mq_sendrecv.msg_prio = msg_prio;
2200
2201	context->type = AUDIT_MQ_SENDRECV;
2202}
2203
2204/**
2205 * __audit_mq_notify - record audit data for a POSIX MQ notify
2206 * @mqdes: MQ descriptor
2207 * @notification: Notification event
2208 *
2209 */
2210
2211void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
2212{
2213	struct audit_context *context = current->audit_context;
2214
2215	if (notification)
2216		context->mq_notify.sigev_signo = notification->sigev_signo;
2217	else
2218		context->mq_notify.sigev_signo = 0;
2219
2220	context->mq_notify.mqdes = mqdes;
2221	context->type = AUDIT_MQ_NOTIFY;
2222}
2223
2224/**
2225 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2226 * @mqdes: MQ descriptor
2227 * @mqstat: MQ flags
2228 *
2229 */
2230void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2231{
2232	struct audit_context *context = current->audit_context;
2233	context->mq_getsetattr.mqdes = mqdes;
2234	context->mq_getsetattr.mqstat = *mqstat;
2235	context->type = AUDIT_MQ_GETSETATTR;
2236}
2237
2238/**
2239 * audit_ipc_obj - record audit data for ipc object
2240 * @ipcp: ipc permissions
2241 *
2242 */
2243void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2244{
2245	struct audit_context *context = current->audit_context;
2246	context->ipc.uid = ipcp->uid;
2247	context->ipc.gid = ipcp->gid;
2248	context->ipc.mode = ipcp->mode;
2249	context->ipc.has_perm = 0;
2250	security_ipc_getsecid(ipcp, &context->ipc.osid);
2251	context->type = AUDIT_IPC;
2252}
2253
2254/**
2255 * audit_ipc_set_perm - record audit data for new ipc permissions
2256 * @qbytes: msgq bytes
2257 * @uid: msgq user id
2258 * @gid: msgq group id
2259 * @mode: msgq mode (permissions)
2260 *
2261 * Called only after audit_ipc_obj().
2262 */
2263void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, mode_t mode)
2264{
2265	struct audit_context *context = current->audit_context;
2266
2267	context->ipc.qbytes = qbytes;
2268	context->ipc.perm_uid = uid;
2269	context->ipc.perm_gid = gid;
2270	context->ipc.perm_mode = mode;
2271	context->ipc.has_perm = 1;
2272}
2273
2274int audit_bprm(struct linux_binprm *bprm)
2275{
2276	struct audit_aux_data_execve *ax;
2277	struct audit_context *context = current->audit_context;
2278
2279	if (likely(!audit_enabled || !context || context->dummy))
2280		return 0;
2281
2282	ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2283	if (!ax)
2284		return -ENOMEM;
2285
2286	ax->argc = bprm->argc;
2287	ax->envc = bprm->envc;
2288	ax->mm = bprm->mm;
2289	ax->d.type = AUDIT_EXECVE;
2290	ax->d.next = context->aux;
2291	context->aux = (void *)ax;
2292	return 0;
2293}
2294
2295
2296/**
2297 * audit_socketcall - record audit data for sys_socketcall
2298 * @nargs: number of args
2299 * @args: args array
2300 *
2301 */
2302void audit_socketcall(int nargs, unsigned long *args)
2303{
2304	struct audit_context *context = current->audit_context;
2305
2306	if (likely(!context || context->dummy))
2307		return;
2308
2309	context->type = AUDIT_SOCKETCALL;
2310	context->socketcall.nargs = nargs;
2311	memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
 
2312}
2313
2314/**
2315 * __audit_fd_pair - record audit data for pipe and socketpair
2316 * @fd1: the first file descriptor
2317 * @fd2: the second file descriptor
2318 *
2319 */
2320void __audit_fd_pair(int fd1, int fd2)
2321{
2322	struct audit_context *context = current->audit_context;
2323	context->fds[0] = fd1;
2324	context->fds[1] = fd2;
2325}
2326
2327/**
2328 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2329 * @len: data length in user space
2330 * @a: data address in kernel space
2331 *
2332 * Returns 0 for success or NULL context or < 0 on error.
2333 */
2334int audit_sockaddr(int len, void *a)
2335{
2336	struct audit_context *context = current->audit_context;
2337
2338	if (likely(!context || context->dummy))
2339		return 0;
2340
2341	if (!context->sockaddr) {
2342		void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2343		if (!p)
2344			return -ENOMEM;
2345		context->sockaddr = p;
2346	}
2347
2348	context->sockaddr_len = len;
2349	memcpy(context->sockaddr, a, len);
2350	return 0;
2351}
2352
2353void __audit_ptrace(struct task_struct *t)
2354{
2355	struct audit_context *context = current->audit_context;
2356
2357	context->target_pid = t->pid;
2358	context->target_auid = audit_get_loginuid(t);
2359	context->target_uid = task_uid(t);
2360	context->target_sessionid = audit_get_sessionid(t);
2361	security_task_getsecid(t, &context->target_sid);
2362	memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
2363}
2364
2365/**
2366 * audit_signal_info - record signal info for shutting down audit subsystem
2367 * @sig: signal value
2368 * @t: task being signaled
2369 *
2370 * If the audit subsystem is being terminated, record the task (pid)
2371 * and uid that is doing that.
2372 */
2373int __audit_signal_info(int sig, struct task_struct *t)
2374{
2375	struct audit_aux_data_pids *axp;
2376	struct task_struct *tsk = current;
2377	struct audit_context *ctx = tsk->audit_context;
2378	uid_t uid = current_uid(), t_uid = task_uid(t);
2379
2380	if (audit_pid && t->tgid == audit_pid) {
2381		if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1 || sig == SIGUSR2) {
2382			audit_sig_pid = tsk->pid;
2383			if (tsk->loginuid != -1)
2384				audit_sig_uid = tsk->loginuid;
2385			else
2386				audit_sig_uid = uid;
2387			security_task_getsecid(tsk, &audit_sig_sid);
2388		}
2389		if (!audit_signals || audit_dummy_context())
2390			return 0;
2391	}
2392
2393	/* optimize the common case by putting first signal recipient directly
2394	 * in audit_context */
2395	if (!ctx->target_pid) {
2396		ctx->target_pid = t->tgid;
2397		ctx->target_auid = audit_get_loginuid(t);
2398		ctx->target_uid = t_uid;
2399		ctx->target_sessionid = audit_get_sessionid(t);
2400		security_task_getsecid(t, &ctx->target_sid);
2401		memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
2402		return 0;
2403	}
2404
2405	axp = (void *)ctx->aux_pids;
2406	if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2407		axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2408		if (!axp)
2409			return -ENOMEM;
2410
2411		axp->d.type = AUDIT_OBJ_PID;
2412		axp->d.next = ctx->aux_pids;
2413		ctx->aux_pids = (void *)axp;
2414	}
2415	BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2416
2417	axp->target_pid[axp->pid_count] = t->tgid;
2418	axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2419	axp->target_uid[axp->pid_count] = t_uid;
2420	axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2421	security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
2422	memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
2423	axp->pid_count++;
2424
2425	return 0;
2426}
2427
2428/**
2429 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2430 * @bprm: pointer to the bprm being processed
2431 * @new: the proposed new credentials
2432 * @old: the old credentials
2433 *
2434 * Simply check if the proc already has the caps given by the file and if not
2435 * store the priv escalation info for later auditing at the end of the syscall
2436 *
2437 * -Eric
2438 */
2439int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2440			   const struct cred *new, const struct cred *old)
2441{
2442	struct audit_aux_data_bprm_fcaps *ax;
2443	struct audit_context *context = current->audit_context;
2444	struct cpu_vfs_cap_data vcaps;
2445	struct dentry *dentry;
2446
2447	ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2448	if (!ax)
2449		return -ENOMEM;
2450
2451	ax->d.type = AUDIT_BPRM_FCAPS;
2452	ax->d.next = context->aux;
2453	context->aux = (void *)ax;
2454
2455	dentry = dget(bprm->file->f_dentry);
2456	get_vfs_caps_from_disk(dentry, &vcaps);
2457	dput(dentry);
2458
2459	ax->fcap.permitted = vcaps.permitted;
2460	ax->fcap.inheritable = vcaps.inheritable;
2461	ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2462	ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2463
2464	ax->old_pcap.permitted   = old->cap_permitted;
2465	ax->old_pcap.inheritable = old->cap_inheritable;
2466	ax->old_pcap.effective   = old->cap_effective;
2467
2468	ax->new_pcap.permitted   = new->cap_permitted;
2469	ax->new_pcap.inheritable = new->cap_inheritable;
2470	ax->new_pcap.effective   = new->cap_effective;
2471	return 0;
2472}
2473
2474/**
2475 * __audit_log_capset - store information about the arguments to the capset syscall
2476 * @pid: target pid of the capset call
2477 * @new: the new credentials
2478 * @old: the old (current) credentials
2479 *
2480 * Record the aguments userspace sent to sys_capset for later printing by the
2481 * audit system if applicable
2482 */
2483void __audit_log_capset(pid_t pid,
2484		       const struct cred *new, const struct cred *old)
2485{
2486	struct audit_context *context = current->audit_context;
2487	context->capset.pid = pid;
2488	context->capset.cap.effective   = new->cap_effective;
2489	context->capset.cap.inheritable = new->cap_effective;
2490	context->capset.cap.permitted   = new->cap_permitted;
2491	context->type = AUDIT_CAPSET;
2492}
2493
2494void __audit_mmap_fd(int fd, int flags)
2495{
2496	struct audit_context *context = current->audit_context;
2497	context->mmap.fd = fd;
2498	context->mmap.flags = flags;
2499	context->type = AUDIT_MMAP;
2500}
2501
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2502/**
2503 * audit_core_dumps - record information about processes that end abnormally
2504 * @signr: signal value
2505 *
2506 * If a process ends with a core dump, something fishy is going on and we
2507 * should record the event for investigation.
2508 */
2509void audit_core_dumps(long signr)
2510{
2511	struct audit_buffer *ab;
2512	u32 sid;
2513	uid_t auid = audit_get_loginuid(current), uid;
2514	gid_t gid;
2515	unsigned int sessionid = audit_get_sessionid(current);
2516
2517	if (!audit_enabled)
2518		return;
2519
2520	if (signr == SIGQUIT)	/* don't care for those */
2521		return;
2522
2523	ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
2524	current_uid_gid(&uid, &gid);
2525	audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2526			 auid, uid, gid, sessionid);
2527	security_task_getsecid(current, &sid);
2528	if (sid) {
2529		char *ctx = NULL;
2530		u32 len;
 
 
 
2531
2532		if (security_secid_to_secctx(sid, &ctx, &len))
2533			audit_log_format(ab, " ssid=%u", sid);
2534		else {
2535			audit_log_format(ab, " subj=%s", ctx);
2536			security_release_secctx(ctx, len);
2537		}
2538	}
2539	audit_log_format(ab, " pid=%d comm=", current->pid);
2540	audit_log_untrustedstring(ab, current->comm);
2541	audit_log_format(ab, " sig=%ld", signr);
2542	audit_log_end(ab);
2543}
2544
2545struct list_head *audit_killed_trees(void)
2546{
2547	struct audit_context *ctx = current->audit_context;
2548	if (likely(!ctx || !ctx->in_syscall))
2549		return NULL;
2550	return &ctx->killed_trees;
2551}