Loading...
1/* audit.c -- Auditing support
2 * Gateway between the kernel (e.g., selinux) and the user-space audit daemon.
3 * System-call specific features have moved to auditsc.c
4 *
5 * Copyright 2003-2007 Red Hat Inc., Durham, North Carolina.
6 * All Rights Reserved.
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21 *
22 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
23 *
24 * Goals: 1) Integrate fully with Security Modules.
25 * 2) Minimal run-time overhead:
26 * a) Minimal when syscall auditing is disabled (audit_enable=0).
27 * b) Small when syscall auditing is enabled and no audit record
28 * is generated (defer as much work as possible to record
29 * generation time):
30 * i) context is allocated,
31 * ii) names from getname are stored without a copy, and
32 * iii) inode information stored from path_lookup.
33 * 3) Ability to disable syscall auditing at boot time (audit=0).
34 * 4) Usable by other parts of the kernel (if audit_log* is called,
35 * then a syscall record will be generated automatically for the
36 * current syscall).
37 * 5) Netlink interface to user-space.
38 * 6) Support low-overhead kernel-based filtering to minimize the
39 * information that must be passed to user-space.
40 *
41 * Example user-space utilities: http://people.redhat.com/sgrubb/audit/
42 */
43
44#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
45
46#include <linux/file.h>
47#include <linux/init.h>
48#include <linux/types.h>
49#include <linux/atomic.h>
50#include <linux/mm.h>
51#include <linux/export.h>
52#include <linux/slab.h>
53#include <linux/err.h>
54#include <linux/kthread.h>
55#include <linux/kernel.h>
56#include <linux/syscalls.h>
57
58#include <linux/audit.h>
59
60#include <net/sock.h>
61#include <net/netlink.h>
62#include <linux/skbuff.h>
63#ifdef CONFIG_SECURITY
64#include <linux/security.h>
65#endif
66#include <linux/freezer.h>
67#include <linux/tty.h>
68#include <linux/pid_namespace.h>
69#include <net/netns/generic.h>
70
71#include "audit.h"
72
73/* No auditing will take place until audit_initialized == AUDIT_INITIALIZED.
74 * (Initialization happens after skb_init is called.) */
75#define AUDIT_DISABLED -1
76#define AUDIT_UNINITIALIZED 0
77#define AUDIT_INITIALIZED 1
78static int audit_initialized;
79
80#define AUDIT_OFF 0
81#define AUDIT_ON 1
82#define AUDIT_LOCKED 2
83u32 audit_enabled;
84u32 audit_ever_enabled;
85
86EXPORT_SYMBOL_GPL(audit_enabled);
87
88/* Default state when kernel boots without any parameters. */
89static u32 audit_default;
90
91/* If auditing cannot proceed, audit_failure selects what happens. */
92static u32 audit_failure = AUDIT_FAIL_PRINTK;
93
94/*
95 * If audit records are to be written to the netlink socket, audit_pid
96 * contains the pid of the auditd process and audit_nlk_portid contains
97 * the portid to use to send netlink messages to that process.
98 */
99int audit_pid;
100static __u32 audit_nlk_portid;
101
102/* If audit_rate_limit is non-zero, limit the rate of sending audit records
103 * to that number per second. This prevents DoS attacks, but results in
104 * audit records being dropped. */
105static u32 audit_rate_limit;
106
107/* Number of outstanding audit_buffers allowed.
108 * When set to zero, this means unlimited. */
109static u32 audit_backlog_limit = 64;
110#define AUDIT_BACKLOG_WAIT_TIME (60 * HZ)
111static u32 audit_backlog_wait_time_master = AUDIT_BACKLOG_WAIT_TIME;
112static u32 audit_backlog_wait_time = AUDIT_BACKLOG_WAIT_TIME;
113
114/* The identity of the user shutting down the audit system. */
115kuid_t audit_sig_uid = INVALID_UID;
116pid_t audit_sig_pid = -1;
117u32 audit_sig_sid = 0;
118
119/* Records can be lost in several ways:
120 0) [suppressed in audit_alloc]
121 1) out of memory in audit_log_start [kmalloc of struct audit_buffer]
122 2) out of memory in audit_log_move [alloc_skb]
123 3) suppressed due to audit_rate_limit
124 4) suppressed due to audit_backlog_limit
125*/
126static atomic_t audit_lost = ATOMIC_INIT(0);
127
128/* The netlink socket. */
129static struct sock *audit_sock;
130static int audit_net_id;
131
132/* Hash for inode-based rules */
133struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS];
134
135/* The audit_freelist is a list of pre-allocated audit buffers (if more
136 * than AUDIT_MAXFREE are in use, the audit buffer is freed instead of
137 * being placed on the freelist). */
138static DEFINE_SPINLOCK(audit_freelist_lock);
139static int audit_freelist_count;
140static LIST_HEAD(audit_freelist);
141
142static struct sk_buff_head audit_skb_queue;
143/* queue of skbs to send to auditd when/if it comes back */
144static struct sk_buff_head audit_skb_hold_queue;
145static struct task_struct *kauditd_task;
146static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait);
147static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait);
148
149static struct audit_features af = {.vers = AUDIT_FEATURE_VERSION,
150 .mask = -1,
151 .features = 0,
152 .lock = 0,};
153
154static char *audit_feature_names[2] = {
155 "only_unset_loginuid",
156 "loginuid_immutable",
157};
158
159
160/* Serialize requests from userspace. */
161DEFINE_MUTEX(audit_cmd_mutex);
162
163/* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting
164 * audit records. Since printk uses a 1024 byte buffer, this buffer
165 * should be at least that large. */
166#define AUDIT_BUFSIZ 1024
167
168/* AUDIT_MAXFREE is the number of empty audit_buffers we keep on the
169 * audit_freelist. Doing so eliminates many kmalloc/kfree calls. */
170#define AUDIT_MAXFREE (2*NR_CPUS)
171
172/* The audit_buffer is used when formatting an audit record. The caller
173 * locks briefly to get the record off the freelist or to allocate the
174 * buffer, and locks briefly to send the buffer to the netlink layer or
175 * to place it on a transmit queue. Multiple audit_buffers can be in
176 * use simultaneously. */
177struct audit_buffer {
178 struct list_head list;
179 struct sk_buff *skb; /* formatted skb ready to send */
180 struct audit_context *ctx; /* NULL or associated context */
181 gfp_t gfp_mask;
182};
183
184struct audit_reply {
185 __u32 portid;
186 struct net *net;
187 struct sk_buff *skb;
188};
189
190static void audit_set_portid(struct audit_buffer *ab, __u32 portid)
191{
192 if (ab) {
193 struct nlmsghdr *nlh = nlmsg_hdr(ab->skb);
194 nlh->nlmsg_pid = portid;
195 }
196}
197
198void audit_panic(const char *message)
199{
200 switch (audit_failure) {
201 case AUDIT_FAIL_SILENT:
202 break;
203 case AUDIT_FAIL_PRINTK:
204 if (printk_ratelimit())
205 pr_err("%s\n", message);
206 break;
207 case AUDIT_FAIL_PANIC:
208 /* test audit_pid since printk is always losey, why bother? */
209 if (audit_pid)
210 panic("audit: %s\n", message);
211 break;
212 }
213}
214
215static inline int audit_rate_check(void)
216{
217 static unsigned long last_check = 0;
218 static int messages = 0;
219 static DEFINE_SPINLOCK(lock);
220 unsigned long flags;
221 unsigned long now;
222 unsigned long elapsed;
223 int retval = 0;
224
225 if (!audit_rate_limit) return 1;
226
227 spin_lock_irqsave(&lock, flags);
228 if (++messages < audit_rate_limit) {
229 retval = 1;
230 } else {
231 now = jiffies;
232 elapsed = now - last_check;
233 if (elapsed > HZ) {
234 last_check = now;
235 messages = 0;
236 retval = 1;
237 }
238 }
239 spin_unlock_irqrestore(&lock, flags);
240
241 return retval;
242}
243
244/**
245 * audit_log_lost - conditionally log lost audit message event
246 * @message: the message stating reason for lost audit message
247 *
248 * Emit at least 1 message per second, even if audit_rate_check is
249 * throttling.
250 * Always increment the lost messages counter.
251*/
252void audit_log_lost(const char *message)
253{
254 static unsigned long last_msg = 0;
255 static DEFINE_SPINLOCK(lock);
256 unsigned long flags;
257 unsigned long now;
258 int print;
259
260 atomic_inc(&audit_lost);
261
262 print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit);
263
264 if (!print) {
265 spin_lock_irqsave(&lock, flags);
266 now = jiffies;
267 if (now - last_msg > HZ) {
268 print = 1;
269 last_msg = now;
270 }
271 spin_unlock_irqrestore(&lock, flags);
272 }
273
274 if (print) {
275 if (printk_ratelimit())
276 pr_warn("audit_lost=%u audit_rate_limit=%u audit_backlog_limit=%u\n",
277 atomic_read(&audit_lost),
278 audit_rate_limit,
279 audit_backlog_limit);
280 audit_panic(message);
281 }
282}
283
284static int audit_log_config_change(char *function_name, u32 new, u32 old,
285 int allow_changes)
286{
287 struct audit_buffer *ab;
288 int rc = 0;
289
290 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE);
291 if (unlikely(!ab))
292 return rc;
293 audit_log_format(ab, "%s=%u old=%u", function_name, new, old);
294 audit_log_session_info(ab);
295 rc = audit_log_task_context(ab);
296 if (rc)
297 allow_changes = 0; /* Something weird, deny request */
298 audit_log_format(ab, " res=%d", allow_changes);
299 audit_log_end(ab);
300 return rc;
301}
302
303static int audit_do_config_change(char *function_name, u32 *to_change, u32 new)
304{
305 int allow_changes, rc = 0;
306 u32 old = *to_change;
307
308 /* check if we are locked */
309 if (audit_enabled == AUDIT_LOCKED)
310 allow_changes = 0;
311 else
312 allow_changes = 1;
313
314 if (audit_enabled != AUDIT_OFF) {
315 rc = audit_log_config_change(function_name, new, old, allow_changes);
316 if (rc)
317 allow_changes = 0;
318 }
319
320 /* If we are allowed, make the change */
321 if (allow_changes == 1)
322 *to_change = new;
323 /* Not allowed, update reason */
324 else if (rc == 0)
325 rc = -EPERM;
326 return rc;
327}
328
329static int audit_set_rate_limit(u32 limit)
330{
331 return audit_do_config_change("audit_rate_limit", &audit_rate_limit, limit);
332}
333
334static int audit_set_backlog_limit(u32 limit)
335{
336 return audit_do_config_change("audit_backlog_limit", &audit_backlog_limit, limit);
337}
338
339static int audit_set_backlog_wait_time(u32 timeout)
340{
341 return audit_do_config_change("audit_backlog_wait_time",
342 &audit_backlog_wait_time_master, timeout);
343}
344
345static int audit_set_enabled(u32 state)
346{
347 int rc;
348 if (state > AUDIT_LOCKED)
349 return -EINVAL;
350
351 rc = audit_do_config_change("audit_enabled", &audit_enabled, state);
352 if (!rc)
353 audit_ever_enabled |= !!state;
354
355 return rc;
356}
357
358static int audit_set_failure(u32 state)
359{
360 if (state != AUDIT_FAIL_SILENT
361 && state != AUDIT_FAIL_PRINTK
362 && state != AUDIT_FAIL_PANIC)
363 return -EINVAL;
364
365 return audit_do_config_change("audit_failure", &audit_failure, state);
366}
367
368/*
369 * Queue skbs to be sent to auditd when/if it comes back. These skbs should
370 * already have been sent via prink/syslog and so if these messages are dropped
371 * it is not a huge concern since we already passed the audit_log_lost()
372 * notification and stuff. This is just nice to get audit messages during
373 * boot before auditd is running or messages generated while auditd is stopped.
374 * This only holds messages is audit_default is set, aka booting with audit=1
375 * or building your kernel that way.
376 */
377static void audit_hold_skb(struct sk_buff *skb)
378{
379 if (audit_default &&
380 (!audit_backlog_limit ||
381 skb_queue_len(&audit_skb_hold_queue) < audit_backlog_limit))
382 skb_queue_tail(&audit_skb_hold_queue, skb);
383 else
384 kfree_skb(skb);
385}
386
387/*
388 * For one reason or another this nlh isn't getting delivered to the userspace
389 * audit daemon, just send it to printk.
390 */
391static void audit_printk_skb(struct sk_buff *skb)
392{
393 struct nlmsghdr *nlh = nlmsg_hdr(skb);
394 char *data = nlmsg_data(nlh);
395
396 if (nlh->nlmsg_type != AUDIT_EOE) {
397 if (printk_ratelimit())
398 pr_notice("type=%d %s\n", nlh->nlmsg_type, data);
399 else
400 audit_log_lost("printk limit exceeded");
401 }
402
403 audit_hold_skb(skb);
404}
405
406static void kauditd_send_skb(struct sk_buff *skb)
407{
408 int err;
409 int attempts = 0;
410#define AUDITD_RETRIES 5
411
412restart:
413 /* take a reference in case we can't send it and we want to hold it */
414 skb_get(skb);
415 err = netlink_unicast(audit_sock, skb, audit_nlk_portid, 0);
416 if (err < 0) {
417 pr_err("netlink_unicast sending to audit_pid=%d returned error: %d\n",
418 audit_pid, err);
419 if (audit_pid) {
420 if (err == -ECONNREFUSED || err == -EPERM
421 || ++attempts >= AUDITD_RETRIES) {
422 char s[32];
423
424 snprintf(s, sizeof(s), "audit_pid=%d reset", audit_pid);
425 audit_log_lost(s);
426 audit_pid = 0;
427 audit_sock = NULL;
428 } else {
429 pr_warn("re-scheduling(#%d) write to audit_pid=%d\n",
430 attempts, audit_pid);
431 set_current_state(TASK_INTERRUPTIBLE);
432 schedule();
433 __set_current_state(TASK_RUNNING);
434 goto restart;
435 }
436 }
437 /* we might get lucky and get this in the next auditd */
438 audit_hold_skb(skb);
439 } else
440 /* drop the extra reference if sent ok */
441 consume_skb(skb);
442}
443
444/*
445 * kauditd_send_multicast_skb - send the skb to multicast userspace listeners
446 *
447 * This function doesn't consume an skb as might be expected since it has to
448 * copy it anyways.
449 */
450static void kauditd_send_multicast_skb(struct sk_buff *skb, gfp_t gfp_mask)
451{
452 struct sk_buff *copy;
453 struct audit_net *aunet = net_generic(&init_net, audit_net_id);
454 struct sock *sock = aunet->nlsk;
455
456 if (!netlink_has_listeners(sock, AUDIT_NLGRP_READLOG))
457 return;
458
459 /*
460 * The seemingly wasteful skb_copy() rather than bumping the refcount
461 * using skb_get() is necessary because non-standard mods are made to
462 * the skb by the original kaudit unicast socket send routine. The
463 * existing auditd daemon assumes this breakage. Fixing this would
464 * require co-ordinating a change in the established protocol between
465 * the kaudit kernel subsystem and the auditd userspace code. There is
466 * no reason for new multicast clients to continue with this
467 * non-compliance.
468 */
469 copy = skb_copy(skb, gfp_mask);
470 if (!copy)
471 return;
472
473 nlmsg_multicast(sock, copy, 0, AUDIT_NLGRP_READLOG, gfp_mask);
474}
475
476/*
477 * flush_hold_queue - empty the hold queue if auditd appears
478 *
479 * If auditd just started, drain the queue of messages already
480 * sent to syslog/printk. Remember loss here is ok. We already
481 * called audit_log_lost() if it didn't go out normally. so the
482 * race between the skb_dequeue and the next check for audit_pid
483 * doesn't matter.
484 *
485 * If you ever find kauditd to be too slow we can get a perf win
486 * by doing our own locking and keeping better track if there
487 * are messages in this queue. I don't see the need now, but
488 * in 5 years when I want to play with this again I'll see this
489 * note and still have no friggin idea what i'm thinking today.
490 */
491static void flush_hold_queue(void)
492{
493 struct sk_buff *skb;
494
495 if (!audit_default || !audit_pid)
496 return;
497
498 skb = skb_dequeue(&audit_skb_hold_queue);
499 if (likely(!skb))
500 return;
501
502 while (skb && audit_pid) {
503 kauditd_send_skb(skb);
504 skb = skb_dequeue(&audit_skb_hold_queue);
505 }
506
507 /*
508 * if auditd just disappeared but we
509 * dequeued an skb we need to drop ref
510 */
511 consume_skb(skb);
512}
513
514static int kauditd_thread(void *dummy)
515{
516 set_freezable();
517 while (!kthread_should_stop()) {
518 struct sk_buff *skb;
519
520 flush_hold_queue();
521
522 skb = skb_dequeue(&audit_skb_queue);
523
524 if (skb) {
525 if (!audit_backlog_limit ||
526 (skb_queue_len(&audit_skb_queue) <= audit_backlog_limit))
527 wake_up(&audit_backlog_wait);
528 if (audit_pid)
529 kauditd_send_skb(skb);
530 else
531 audit_printk_skb(skb);
532 continue;
533 }
534
535 wait_event_freezable(kauditd_wait, skb_queue_len(&audit_skb_queue));
536 }
537 return 0;
538}
539
540int audit_send_list(void *_dest)
541{
542 struct audit_netlink_list *dest = _dest;
543 struct sk_buff *skb;
544 struct net *net = dest->net;
545 struct audit_net *aunet = net_generic(net, audit_net_id);
546
547 /* wait for parent to finish and send an ACK */
548 mutex_lock(&audit_cmd_mutex);
549 mutex_unlock(&audit_cmd_mutex);
550
551 while ((skb = __skb_dequeue(&dest->q)) != NULL)
552 netlink_unicast(aunet->nlsk, skb, dest->portid, 0);
553
554 put_net(net);
555 kfree(dest);
556
557 return 0;
558}
559
560struct sk_buff *audit_make_reply(__u32 portid, int seq, int type, int done,
561 int multi, const void *payload, int size)
562{
563 struct sk_buff *skb;
564 struct nlmsghdr *nlh;
565 void *data;
566 int flags = multi ? NLM_F_MULTI : 0;
567 int t = done ? NLMSG_DONE : type;
568
569 skb = nlmsg_new(size, GFP_KERNEL);
570 if (!skb)
571 return NULL;
572
573 nlh = nlmsg_put(skb, portid, seq, t, size, flags);
574 if (!nlh)
575 goto out_kfree_skb;
576 data = nlmsg_data(nlh);
577 memcpy(data, payload, size);
578 return skb;
579
580out_kfree_skb:
581 kfree_skb(skb);
582 return NULL;
583}
584
585static int audit_send_reply_thread(void *arg)
586{
587 struct audit_reply *reply = (struct audit_reply *)arg;
588 struct net *net = reply->net;
589 struct audit_net *aunet = net_generic(net, audit_net_id);
590
591 mutex_lock(&audit_cmd_mutex);
592 mutex_unlock(&audit_cmd_mutex);
593
594 /* Ignore failure. It'll only happen if the sender goes away,
595 because our timeout is set to infinite. */
596 netlink_unicast(aunet->nlsk , reply->skb, reply->portid, 0);
597 put_net(net);
598 kfree(reply);
599 return 0;
600}
601/**
602 * audit_send_reply - send an audit reply message via netlink
603 * @request_skb: skb of request we are replying to (used to target the reply)
604 * @seq: sequence number
605 * @type: audit message type
606 * @done: done (last) flag
607 * @multi: multi-part message flag
608 * @payload: payload data
609 * @size: payload size
610 *
611 * Allocates an skb, builds the netlink message, and sends it to the port id.
612 * No failure notifications.
613 */
614static void audit_send_reply(struct sk_buff *request_skb, int seq, int type, int done,
615 int multi, const void *payload, int size)
616{
617 u32 portid = NETLINK_CB(request_skb).portid;
618 struct net *net = sock_net(NETLINK_CB(request_skb).sk);
619 struct sk_buff *skb;
620 struct task_struct *tsk;
621 struct audit_reply *reply = kmalloc(sizeof(struct audit_reply),
622 GFP_KERNEL);
623
624 if (!reply)
625 return;
626
627 skb = audit_make_reply(portid, seq, type, done, multi, payload, size);
628 if (!skb)
629 goto out;
630
631 reply->net = get_net(net);
632 reply->portid = portid;
633 reply->skb = skb;
634
635 tsk = kthread_run(audit_send_reply_thread, reply, "audit_send_reply");
636 if (!IS_ERR(tsk))
637 return;
638 kfree_skb(skb);
639out:
640 kfree(reply);
641}
642
643/*
644 * Check for appropriate CAP_AUDIT_ capabilities on incoming audit
645 * control messages.
646 */
647static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type)
648{
649 int err = 0;
650
651 /* Only support initial user namespace for now. */
652 /*
653 * We return ECONNREFUSED because it tricks userspace into thinking
654 * that audit was not configured into the kernel. Lots of users
655 * configure their PAM stack (because that's what the distro does)
656 * to reject login if unable to send messages to audit. If we return
657 * ECONNREFUSED the PAM stack thinks the kernel does not have audit
658 * configured in and will let login proceed. If we return EPERM
659 * userspace will reject all logins. This should be removed when we
660 * support non init namespaces!!
661 */
662 if (current_user_ns() != &init_user_ns)
663 return -ECONNREFUSED;
664
665 switch (msg_type) {
666 case AUDIT_LIST:
667 case AUDIT_ADD:
668 case AUDIT_DEL:
669 return -EOPNOTSUPP;
670 case AUDIT_GET:
671 case AUDIT_SET:
672 case AUDIT_GET_FEATURE:
673 case AUDIT_SET_FEATURE:
674 case AUDIT_LIST_RULES:
675 case AUDIT_ADD_RULE:
676 case AUDIT_DEL_RULE:
677 case AUDIT_SIGNAL_INFO:
678 case AUDIT_TTY_GET:
679 case AUDIT_TTY_SET:
680 case AUDIT_TRIM:
681 case AUDIT_MAKE_EQUIV:
682 /* Only support auditd and auditctl in initial pid namespace
683 * for now. */
684 if (task_active_pid_ns(current) != &init_pid_ns)
685 return -EPERM;
686
687 if (!netlink_capable(skb, CAP_AUDIT_CONTROL))
688 err = -EPERM;
689 break;
690 case AUDIT_USER:
691 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
692 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
693 if (!netlink_capable(skb, CAP_AUDIT_WRITE))
694 err = -EPERM;
695 break;
696 default: /* bad msg */
697 err = -EINVAL;
698 }
699
700 return err;
701}
702
703static void audit_log_common_recv_msg(struct audit_buffer **ab, u16 msg_type)
704{
705 uid_t uid = from_kuid(&init_user_ns, current_uid());
706 pid_t pid = task_tgid_nr(current);
707
708 if (!audit_enabled && msg_type != AUDIT_USER_AVC) {
709 *ab = NULL;
710 return;
711 }
712
713 *ab = audit_log_start(NULL, GFP_KERNEL, msg_type);
714 if (unlikely(!*ab))
715 return;
716 audit_log_format(*ab, "pid=%d uid=%u", pid, uid);
717 audit_log_session_info(*ab);
718 audit_log_task_context(*ab);
719}
720
721int is_audit_feature_set(int i)
722{
723 return af.features & AUDIT_FEATURE_TO_MASK(i);
724}
725
726
727static int audit_get_feature(struct sk_buff *skb)
728{
729 u32 seq;
730
731 seq = nlmsg_hdr(skb)->nlmsg_seq;
732
733 audit_send_reply(skb, seq, AUDIT_GET_FEATURE, 0, 0, &af, sizeof(af));
734
735 return 0;
736}
737
738static void audit_log_feature_change(int which, u32 old_feature, u32 new_feature,
739 u32 old_lock, u32 new_lock, int res)
740{
741 struct audit_buffer *ab;
742
743 if (audit_enabled == AUDIT_OFF)
744 return;
745
746 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_FEATURE_CHANGE);
747 audit_log_task_info(ab, current);
748 audit_log_format(ab, " feature=%s old=%u new=%u old_lock=%u new_lock=%u res=%d",
749 audit_feature_names[which], !!old_feature, !!new_feature,
750 !!old_lock, !!new_lock, res);
751 audit_log_end(ab);
752}
753
754static int audit_set_feature(struct sk_buff *skb)
755{
756 struct audit_features *uaf;
757 int i;
758
759 BUILD_BUG_ON(AUDIT_LAST_FEATURE + 1 > ARRAY_SIZE(audit_feature_names));
760 uaf = nlmsg_data(nlmsg_hdr(skb));
761
762 /* if there is ever a version 2 we should handle that here */
763
764 for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
765 u32 feature = AUDIT_FEATURE_TO_MASK(i);
766 u32 old_feature, new_feature, old_lock, new_lock;
767
768 /* if we are not changing this feature, move along */
769 if (!(feature & uaf->mask))
770 continue;
771
772 old_feature = af.features & feature;
773 new_feature = uaf->features & feature;
774 new_lock = (uaf->lock | af.lock) & feature;
775 old_lock = af.lock & feature;
776
777 /* are we changing a locked feature? */
778 if (old_lock && (new_feature != old_feature)) {
779 audit_log_feature_change(i, old_feature, new_feature,
780 old_lock, new_lock, 0);
781 return -EPERM;
782 }
783 }
784 /* nothing invalid, do the changes */
785 for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
786 u32 feature = AUDIT_FEATURE_TO_MASK(i);
787 u32 old_feature, new_feature, old_lock, new_lock;
788
789 /* if we are not changing this feature, move along */
790 if (!(feature & uaf->mask))
791 continue;
792
793 old_feature = af.features & feature;
794 new_feature = uaf->features & feature;
795 old_lock = af.lock & feature;
796 new_lock = (uaf->lock | af.lock) & feature;
797
798 if (new_feature != old_feature)
799 audit_log_feature_change(i, old_feature, new_feature,
800 old_lock, new_lock, 1);
801
802 if (new_feature)
803 af.features |= feature;
804 else
805 af.features &= ~feature;
806 af.lock |= new_lock;
807 }
808
809 return 0;
810}
811
812static int audit_replace(pid_t pid)
813{
814 struct sk_buff *skb = audit_make_reply(0, 0, AUDIT_REPLACE, 0, 0,
815 &pid, sizeof(pid));
816
817 if (!skb)
818 return -ENOMEM;
819 return netlink_unicast(audit_sock, skb, audit_nlk_portid, 0);
820}
821
822static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh)
823{
824 u32 seq;
825 void *data;
826 int err;
827 struct audit_buffer *ab;
828 u16 msg_type = nlh->nlmsg_type;
829 struct audit_sig_info *sig_data;
830 char *ctx = NULL;
831 u32 len;
832
833 err = audit_netlink_ok(skb, msg_type);
834 if (err)
835 return err;
836
837 /* As soon as there's any sign of userspace auditd,
838 * start kauditd to talk to it */
839 if (!kauditd_task) {
840 kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd");
841 if (IS_ERR(kauditd_task)) {
842 err = PTR_ERR(kauditd_task);
843 kauditd_task = NULL;
844 return err;
845 }
846 }
847 seq = nlh->nlmsg_seq;
848 data = nlmsg_data(nlh);
849
850 switch (msg_type) {
851 case AUDIT_GET: {
852 struct audit_status s;
853 memset(&s, 0, sizeof(s));
854 s.enabled = audit_enabled;
855 s.failure = audit_failure;
856 s.pid = audit_pid;
857 s.rate_limit = audit_rate_limit;
858 s.backlog_limit = audit_backlog_limit;
859 s.lost = atomic_read(&audit_lost);
860 s.backlog = skb_queue_len(&audit_skb_queue);
861 s.feature_bitmap = AUDIT_FEATURE_BITMAP_ALL;
862 s.backlog_wait_time = audit_backlog_wait_time_master;
863 audit_send_reply(skb, seq, AUDIT_GET, 0, 0, &s, sizeof(s));
864 break;
865 }
866 case AUDIT_SET: {
867 struct audit_status s;
868 memset(&s, 0, sizeof(s));
869 /* guard against past and future API changes */
870 memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh)));
871 if (s.mask & AUDIT_STATUS_ENABLED) {
872 err = audit_set_enabled(s.enabled);
873 if (err < 0)
874 return err;
875 }
876 if (s.mask & AUDIT_STATUS_FAILURE) {
877 err = audit_set_failure(s.failure);
878 if (err < 0)
879 return err;
880 }
881 if (s.mask & AUDIT_STATUS_PID) {
882 int new_pid = s.pid;
883 pid_t requesting_pid = task_tgid_vnr(current);
884
885 if ((!new_pid) && (requesting_pid != audit_pid)) {
886 audit_log_config_change("audit_pid", new_pid, audit_pid, 0);
887 return -EACCES;
888 }
889 if (audit_pid && new_pid &&
890 audit_replace(requesting_pid) != -ECONNREFUSED) {
891 audit_log_config_change("audit_pid", new_pid, audit_pid, 0);
892 return -EEXIST;
893 }
894 if (audit_enabled != AUDIT_OFF)
895 audit_log_config_change("audit_pid", new_pid, audit_pid, 1);
896 audit_pid = new_pid;
897 audit_nlk_portid = NETLINK_CB(skb).portid;
898 audit_sock = skb->sk;
899 }
900 if (s.mask & AUDIT_STATUS_RATE_LIMIT) {
901 err = audit_set_rate_limit(s.rate_limit);
902 if (err < 0)
903 return err;
904 }
905 if (s.mask & AUDIT_STATUS_BACKLOG_LIMIT) {
906 err = audit_set_backlog_limit(s.backlog_limit);
907 if (err < 0)
908 return err;
909 }
910 if (s.mask & AUDIT_STATUS_BACKLOG_WAIT_TIME) {
911 if (sizeof(s) > (size_t)nlh->nlmsg_len)
912 return -EINVAL;
913 if (s.backlog_wait_time > 10*AUDIT_BACKLOG_WAIT_TIME)
914 return -EINVAL;
915 err = audit_set_backlog_wait_time(s.backlog_wait_time);
916 if (err < 0)
917 return err;
918 }
919 break;
920 }
921 case AUDIT_GET_FEATURE:
922 err = audit_get_feature(skb);
923 if (err)
924 return err;
925 break;
926 case AUDIT_SET_FEATURE:
927 err = audit_set_feature(skb);
928 if (err)
929 return err;
930 break;
931 case AUDIT_USER:
932 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
933 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
934 if (!audit_enabled && msg_type != AUDIT_USER_AVC)
935 return 0;
936
937 err = audit_filter_user(msg_type);
938 if (err == 1) { /* match or error */
939 err = 0;
940 if (msg_type == AUDIT_USER_TTY) {
941 err = tty_audit_push();
942 if (err)
943 break;
944 }
945 mutex_unlock(&audit_cmd_mutex);
946 audit_log_common_recv_msg(&ab, msg_type);
947 if (msg_type != AUDIT_USER_TTY)
948 audit_log_format(ab, " msg='%.*s'",
949 AUDIT_MESSAGE_TEXT_MAX,
950 (char *)data);
951 else {
952 int size;
953
954 audit_log_format(ab, " data=");
955 size = nlmsg_len(nlh);
956 if (size > 0 &&
957 ((unsigned char *)data)[size - 1] == '\0')
958 size--;
959 audit_log_n_untrustedstring(ab, data, size);
960 }
961 audit_set_portid(ab, NETLINK_CB(skb).portid);
962 audit_log_end(ab);
963 mutex_lock(&audit_cmd_mutex);
964 }
965 break;
966 case AUDIT_ADD_RULE:
967 case AUDIT_DEL_RULE:
968 if (nlmsg_len(nlh) < sizeof(struct audit_rule_data))
969 return -EINVAL;
970 if (audit_enabled == AUDIT_LOCKED) {
971 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
972 audit_log_format(ab, " audit_enabled=%d res=0", audit_enabled);
973 audit_log_end(ab);
974 return -EPERM;
975 }
976 err = audit_rule_change(msg_type, NETLINK_CB(skb).portid,
977 seq, data, nlmsg_len(nlh));
978 break;
979 case AUDIT_LIST_RULES:
980 err = audit_list_rules_send(skb, seq);
981 break;
982 case AUDIT_TRIM:
983 audit_trim_trees();
984 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
985 audit_log_format(ab, " op=trim res=1");
986 audit_log_end(ab);
987 break;
988 case AUDIT_MAKE_EQUIV: {
989 void *bufp = data;
990 u32 sizes[2];
991 size_t msglen = nlmsg_len(nlh);
992 char *old, *new;
993
994 err = -EINVAL;
995 if (msglen < 2 * sizeof(u32))
996 break;
997 memcpy(sizes, bufp, 2 * sizeof(u32));
998 bufp += 2 * sizeof(u32);
999 msglen -= 2 * sizeof(u32);
1000 old = audit_unpack_string(&bufp, &msglen, sizes[0]);
1001 if (IS_ERR(old)) {
1002 err = PTR_ERR(old);
1003 break;
1004 }
1005 new = audit_unpack_string(&bufp, &msglen, sizes[1]);
1006 if (IS_ERR(new)) {
1007 err = PTR_ERR(new);
1008 kfree(old);
1009 break;
1010 }
1011 /* OK, here comes... */
1012 err = audit_tag_tree(old, new);
1013
1014 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
1015
1016 audit_log_format(ab, " op=make_equiv old=");
1017 audit_log_untrustedstring(ab, old);
1018 audit_log_format(ab, " new=");
1019 audit_log_untrustedstring(ab, new);
1020 audit_log_format(ab, " res=%d", !err);
1021 audit_log_end(ab);
1022 kfree(old);
1023 kfree(new);
1024 break;
1025 }
1026 case AUDIT_SIGNAL_INFO:
1027 len = 0;
1028 if (audit_sig_sid) {
1029 err = security_secid_to_secctx(audit_sig_sid, &ctx, &len);
1030 if (err)
1031 return err;
1032 }
1033 sig_data = kmalloc(sizeof(*sig_data) + len, GFP_KERNEL);
1034 if (!sig_data) {
1035 if (audit_sig_sid)
1036 security_release_secctx(ctx, len);
1037 return -ENOMEM;
1038 }
1039 sig_data->uid = from_kuid(&init_user_ns, audit_sig_uid);
1040 sig_data->pid = audit_sig_pid;
1041 if (audit_sig_sid) {
1042 memcpy(sig_data->ctx, ctx, len);
1043 security_release_secctx(ctx, len);
1044 }
1045 audit_send_reply(skb, seq, AUDIT_SIGNAL_INFO, 0, 0,
1046 sig_data, sizeof(*sig_data) + len);
1047 kfree(sig_data);
1048 break;
1049 case AUDIT_TTY_GET: {
1050 struct audit_tty_status s;
1051 unsigned int t;
1052
1053 t = READ_ONCE(current->signal->audit_tty);
1054 s.enabled = t & AUDIT_TTY_ENABLE;
1055 s.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD);
1056
1057 audit_send_reply(skb, seq, AUDIT_TTY_GET, 0, 0, &s, sizeof(s));
1058 break;
1059 }
1060 case AUDIT_TTY_SET: {
1061 struct audit_tty_status s, old;
1062 struct audit_buffer *ab;
1063 unsigned int t;
1064
1065 memset(&s, 0, sizeof(s));
1066 /* guard against past and future API changes */
1067 memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh)));
1068 /* check if new data is valid */
1069 if ((s.enabled != 0 && s.enabled != 1) ||
1070 (s.log_passwd != 0 && s.log_passwd != 1))
1071 err = -EINVAL;
1072
1073 if (err)
1074 t = READ_ONCE(current->signal->audit_tty);
1075 else {
1076 t = s.enabled | (-s.log_passwd & AUDIT_TTY_LOG_PASSWD);
1077 t = xchg(¤t->signal->audit_tty, t);
1078 }
1079 old.enabled = t & AUDIT_TTY_ENABLE;
1080 old.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD);
1081
1082 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
1083 audit_log_format(ab, " op=tty_set old-enabled=%d new-enabled=%d"
1084 " old-log_passwd=%d new-log_passwd=%d res=%d",
1085 old.enabled, s.enabled, old.log_passwd,
1086 s.log_passwd, !err);
1087 audit_log_end(ab);
1088 break;
1089 }
1090 default:
1091 err = -EINVAL;
1092 break;
1093 }
1094
1095 return err < 0 ? err : 0;
1096}
1097
1098/*
1099 * Get message from skb. Each message is processed by audit_receive_msg.
1100 * Malformed skbs with wrong length are discarded silently.
1101 */
1102static void audit_receive_skb(struct sk_buff *skb)
1103{
1104 struct nlmsghdr *nlh;
1105 /*
1106 * len MUST be signed for nlmsg_next to be able to dec it below 0
1107 * if the nlmsg_len was not aligned
1108 */
1109 int len;
1110 int err;
1111
1112 nlh = nlmsg_hdr(skb);
1113 len = skb->len;
1114
1115 while (nlmsg_ok(nlh, len)) {
1116 err = audit_receive_msg(skb, nlh);
1117 /* if err or if this message says it wants a response */
1118 if (err || (nlh->nlmsg_flags & NLM_F_ACK))
1119 netlink_ack(skb, nlh, err);
1120
1121 nlh = nlmsg_next(nlh, &len);
1122 }
1123}
1124
1125/* Receive messages from netlink socket. */
1126static void audit_receive(struct sk_buff *skb)
1127{
1128 mutex_lock(&audit_cmd_mutex);
1129 audit_receive_skb(skb);
1130 mutex_unlock(&audit_cmd_mutex);
1131}
1132
1133/* Run custom bind function on netlink socket group connect or bind requests. */
1134static int audit_bind(struct net *net, int group)
1135{
1136 if (!capable(CAP_AUDIT_READ))
1137 return -EPERM;
1138
1139 return 0;
1140}
1141
1142static int __net_init audit_net_init(struct net *net)
1143{
1144 struct netlink_kernel_cfg cfg = {
1145 .input = audit_receive,
1146 .bind = audit_bind,
1147 .flags = NL_CFG_F_NONROOT_RECV,
1148 .groups = AUDIT_NLGRP_MAX,
1149 };
1150
1151 struct audit_net *aunet = net_generic(net, audit_net_id);
1152
1153 aunet->nlsk = netlink_kernel_create(net, NETLINK_AUDIT, &cfg);
1154 if (aunet->nlsk == NULL) {
1155 audit_panic("cannot initialize netlink socket in namespace");
1156 return -ENOMEM;
1157 }
1158 aunet->nlsk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
1159 return 0;
1160}
1161
1162static void __net_exit audit_net_exit(struct net *net)
1163{
1164 struct audit_net *aunet = net_generic(net, audit_net_id);
1165 struct sock *sock = aunet->nlsk;
1166 if (sock == audit_sock) {
1167 audit_pid = 0;
1168 audit_sock = NULL;
1169 }
1170
1171 RCU_INIT_POINTER(aunet->nlsk, NULL);
1172 synchronize_net();
1173 netlink_kernel_release(sock);
1174}
1175
1176static struct pernet_operations audit_net_ops __net_initdata = {
1177 .init = audit_net_init,
1178 .exit = audit_net_exit,
1179 .id = &audit_net_id,
1180 .size = sizeof(struct audit_net),
1181};
1182
1183/* Initialize audit support at boot time. */
1184static int __init audit_init(void)
1185{
1186 int i;
1187
1188 if (audit_initialized == AUDIT_DISABLED)
1189 return 0;
1190
1191 pr_info("initializing netlink subsys (%s)\n",
1192 audit_default ? "enabled" : "disabled");
1193 register_pernet_subsys(&audit_net_ops);
1194
1195 skb_queue_head_init(&audit_skb_queue);
1196 skb_queue_head_init(&audit_skb_hold_queue);
1197 audit_initialized = AUDIT_INITIALIZED;
1198 audit_enabled = audit_default;
1199 audit_ever_enabled |= !!audit_default;
1200
1201 audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL, "initialized");
1202
1203 for (i = 0; i < AUDIT_INODE_BUCKETS; i++)
1204 INIT_LIST_HEAD(&audit_inode_hash[i]);
1205
1206 return 0;
1207}
1208__initcall(audit_init);
1209
1210/* Process kernel command-line parameter at boot time. audit=0 or audit=1. */
1211static int __init audit_enable(char *str)
1212{
1213 audit_default = !!simple_strtol(str, NULL, 0);
1214 if (!audit_default)
1215 audit_initialized = AUDIT_DISABLED;
1216
1217 pr_info("%s\n", audit_default ?
1218 "enabled (after initialization)" : "disabled (until reboot)");
1219
1220 return 1;
1221}
1222__setup("audit=", audit_enable);
1223
1224/* Process kernel command-line parameter at boot time.
1225 * audit_backlog_limit=<n> */
1226static int __init audit_backlog_limit_set(char *str)
1227{
1228 u32 audit_backlog_limit_arg;
1229
1230 pr_info("audit_backlog_limit: ");
1231 if (kstrtouint(str, 0, &audit_backlog_limit_arg)) {
1232 pr_cont("using default of %u, unable to parse %s\n",
1233 audit_backlog_limit, str);
1234 return 1;
1235 }
1236
1237 audit_backlog_limit = audit_backlog_limit_arg;
1238 pr_cont("%d\n", audit_backlog_limit);
1239
1240 return 1;
1241}
1242__setup("audit_backlog_limit=", audit_backlog_limit_set);
1243
1244static void audit_buffer_free(struct audit_buffer *ab)
1245{
1246 unsigned long flags;
1247
1248 if (!ab)
1249 return;
1250
1251 kfree_skb(ab->skb);
1252 spin_lock_irqsave(&audit_freelist_lock, flags);
1253 if (audit_freelist_count > AUDIT_MAXFREE)
1254 kfree(ab);
1255 else {
1256 audit_freelist_count++;
1257 list_add(&ab->list, &audit_freelist);
1258 }
1259 spin_unlock_irqrestore(&audit_freelist_lock, flags);
1260}
1261
1262static struct audit_buffer * audit_buffer_alloc(struct audit_context *ctx,
1263 gfp_t gfp_mask, int type)
1264{
1265 unsigned long flags;
1266 struct audit_buffer *ab = NULL;
1267 struct nlmsghdr *nlh;
1268
1269 spin_lock_irqsave(&audit_freelist_lock, flags);
1270 if (!list_empty(&audit_freelist)) {
1271 ab = list_entry(audit_freelist.next,
1272 struct audit_buffer, list);
1273 list_del(&ab->list);
1274 --audit_freelist_count;
1275 }
1276 spin_unlock_irqrestore(&audit_freelist_lock, flags);
1277
1278 if (!ab) {
1279 ab = kmalloc(sizeof(*ab), gfp_mask);
1280 if (!ab)
1281 goto err;
1282 }
1283
1284 ab->ctx = ctx;
1285 ab->gfp_mask = gfp_mask;
1286
1287 ab->skb = nlmsg_new(AUDIT_BUFSIZ, gfp_mask);
1288 if (!ab->skb)
1289 goto err;
1290
1291 nlh = nlmsg_put(ab->skb, 0, 0, type, 0, 0);
1292 if (!nlh)
1293 goto out_kfree_skb;
1294
1295 return ab;
1296
1297out_kfree_skb:
1298 kfree_skb(ab->skb);
1299 ab->skb = NULL;
1300err:
1301 audit_buffer_free(ab);
1302 return NULL;
1303}
1304
1305/**
1306 * audit_serial - compute a serial number for the audit record
1307 *
1308 * Compute a serial number for the audit record. Audit records are
1309 * written to user-space as soon as they are generated, so a complete
1310 * audit record may be written in several pieces. The timestamp of the
1311 * record and this serial number are used by the user-space tools to
1312 * determine which pieces belong to the same audit record. The
1313 * (timestamp,serial) tuple is unique for each syscall and is live from
1314 * syscall entry to syscall exit.
1315 *
1316 * NOTE: Another possibility is to store the formatted records off the
1317 * audit context (for those records that have a context), and emit them
1318 * all at syscall exit. However, this could delay the reporting of
1319 * significant errors until syscall exit (or never, if the system
1320 * halts).
1321 */
1322unsigned int audit_serial(void)
1323{
1324 static atomic_t serial = ATOMIC_INIT(0);
1325
1326 return atomic_add_return(1, &serial);
1327}
1328
1329static inline void audit_get_stamp(struct audit_context *ctx,
1330 struct timespec *t, unsigned int *serial)
1331{
1332 if (!ctx || !auditsc_get_stamp(ctx, t, serial)) {
1333 *t = CURRENT_TIME;
1334 *serial = audit_serial();
1335 }
1336}
1337
1338/*
1339 * Wait for auditd to drain the queue a little
1340 */
1341static long wait_for_auditd(long sleep_time)
1342{
1343 DECLARE_WAITQUEUE(wait, current);
1344 set_current_state(TASK_UNINTERRUPTIBLE);
1345 add_wait_queue_exclusive(&audit_backlog_wait, &wait);
1346
1347 if (audit_backlog_limit &&
1348 skb_queue_len(&audit_skb_queue) > audit_backlog_limit)
1349 sleep_time = schedule_timeout(sleep_time);
1350
1351 __set_current_state(TASK_RUNNING);
1352 remove_wait_queue(&audit_backlog_wait, &wait);
1353
1354 return sleep_time;
1355}
1356
1357/**
1358 * audit_log_start - obtain an audit buffer
1359 * @ctx: audit_context (may be NULL)
1360 * @gfp_mask: type of allocation
1361 * @type: audit message type
1362 *
1363 * Returns audit_buffer pointer on success or NULL on error.
1364 *
1365 * Obtain an audit buffer. This routine does locking to obtain the
1366 * audit buffer, but then no locking is required for calls to
1367 * audit_log_*format. If the task (ctx) is a task that is currently in a
1368 * syscall, then the syscall is marked as auditable and an audit record
1369 * will be written at syscall exit. If there is no associated task, then
1370 * task context (ctx) should be NULL.
1371 */
1372struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask,
1373 int type)
1374{
1375 struct audit_buffer *ab = NULL;
1376 struct timespec t;
1377 unsigned int uninitialized_var(serial);
1378 int reserve = 5; /* Allow atomic callers to go up to five
1379 entries over the normal backlog limit */
1380 unsigned long timeout_start = jiffies;
1381
1382 if (audit_initialized != AUDIT_INITIALIZED)
1383 return NULL;
1384
1385 if (unlikely(audit_filter_type(type)))
1386 return NULL;
1387
1388 if (gfp_mask & __GFP_DIRECT_RECLAIM) {
1389 if (audit_pid && audit_pid == current->tgid)
1390 gfp_mask &= ~__GFP_DIRECT_RECLAIM;
1391 else
1392 reserve = 0;
1393 }
1394
1395 while (audit_backlog_limit
1396 && skb_queue_len(&audit_skb_queue) > audit_backlog_limit + reserve) {
1397 if (gfp_mask & __GFP_DIRECT_RECLAIM && audit_backlog_wait_time) {
1398 long sleep_time;
1399
1400 sleep_time = timeout_start + audit_backlog_wait_time - jiffies;
1401 if (sleep_time > 0) {
1402 sleep_time = wait_for_auditd(sleep_time);
1403 if (sleep_time > 0)
1404 continue;
1405 }
1406 }
1407 if (audit_rate_check() && printk_ratelimit())
1408 pr_warn("audit_backlog=%d > audit_backlog_limit=%d\n",
1409 skb_queue_len(&audit_skb_queue),
1410 audit_backlog_limit);
1411 audit_log_lost("backlog limit exceeded");
1412 audit_backlog_wait_time = 0;
1413 wake_up(&audit_backlog_wait);
1414 return NULL;
1415 }
1416
1417 if (!reserve && !audit_backlog_wait_time)
1418 audit_backlog_wait_time = audit_backlog_wait_time_master;
1419
1420 ab = audit_buffer_alloc(ctx, gfp_mask, type);
1421 if (!ab) {
1422 audit_log_lost("out of memory in audit_log_start");
1423 return NULL;
1424 }
1425
1426 audit_get_stamp(ab->ctx, &t, &serial);
1427
1428 audit_log_format(ab, "audit(%lu.%03lu:%u): ",
1429 t.tv_sec, t.tv_nsec/1000000, serial);
1430 return ab;
1431}
1432
1433/**
1434 * audit_expand - expand skb in the audit buffer
1435 * @ab: audit_buffer
1436 * @extra: space to add at tail of the skb
1437 *
1438 * Returns 0 (no space) on failed expansion, or available space if
1439 * successful.
1440 */
1441static inline int audit_expand(struct audit_buffer *ab, int extra)
1442{
1443 struct sk_buff *skb = ab->skb;
1444 int oldtail = skb_tailroom(skb);
1445 int ret = pskb_expand_head(skb, 0, extra, ab->gfp_mask);
1446 int newtail = skb_tailroom(skb);
1447
1448 if (ret < 0) {
1449 audit_log_lost("out of memory in audit_expand");
1450 return 0;
1451 }
1452
1453 skb->truesize += newtail - oldtail;
1454 return newtail;
1455}
1456
1457/*
1458 * Format an audit message into the audit buffer. If there isn't enough
1459 * room in the audit buffer, more room will be allocated and vsnprint
1460 * will be called a second time. Currently, we assume that a printk
1461 * can't format message larger than 1024 bytes, so we don't either.
1462 */
1463static void audit_log_vformat(struct audit_buffer *ab, const char *fmt,
1464 va_list args)
1465{
1466 int len, avail;
1467 struct sk_buff *skb;
1468 va_list args2;
1469
1470 if (!ab)
1471 return;
1472
1473 BUG_ON(!ab->skb);
1474 skb = ab->skb;
1475 avail = skb_tailroom(skb);
1476 if (avail == 0) {
1477 avail = audit_expand(ab, AUDIT_BUFSIZ);
1478 if (!avail)
1479 goto out;
1480 }
1481 va_copy(args2, args);
1482 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args);
1483 if (len >= avail) {
1484 /* The printk buffer is 1024 bytes long, so if we get
1485 * here and AUDIT_BUFSIZ is at least 1024, then we can
1486 * log everything that printk could have logged. */
1487 avail = audit_expand(ab,
1488 max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail));
1489 if (!avail)
1490 goto out_va_end;
1491 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2);
1492 }
1493 if (len > 0)
1494 skb_put(skb, len);
1495out_va_end:
1496 va_end(args2);
1497out:
1498 return;
1499}
1500
1501/**
1502 * audit_log_format - format a message into the audit buffer.
1503 * @ab: audit_buffer
1504 * @fmt: format string
1505 * @...: optional parameters matching @fmt string
1506 *
1507 * All the work is done in audit_log_vformat.
1508 */
1509void audit_log_format(struct audit_buffer *ab, const char *fmt, ...)
1510{
1511 va_list args;
1512
1513 if (!ab)
1514 return;
1515 va_start(args, fmt);
1516 audit_log_vformat(ab, fmt, args);
1517 va_end(args);
1518}
1519
1520/**
1521 * audit_log_hex - convert a buffer to hex and append it to the audit skb
1522 * @ab: the audit_buffer
1523 * @buf: buffer to convert to hex
1524 * @len: length of @buf to be converted
1525 *
1526 * No return value; failure to expand is silently ignored.
1527 *
1528 * This function will take the passed buf and convert it into a string of
1529 * ascii hex digits. The new string is placed onto the skb.
1530 */
1531void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf,
1532 size_t len)
1533{
1534 int i, avail, new_len;
1535 unsigned char *ptr;
1536 struct sk_buff *skb;
1537
1538 if (!ab)
1539 return;
1540
1541 BUG_ON(!ab->skb);
1542 skb = ab->skb;
1543 avail = skb_tailroom(skb);
1544 new_len = len<<1;
1545 if (new_len >= avail) {
1546 /* Round the buffer request up to the next multiple */
1547 new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1);
1548 avail = audit_expand(ab, new_len);
1549 if (!avail)
1550 return;
1551 }
1552
1553 ptr = skb_tail_pointer(skb);
1554 for (i = 0; i < len; i++)
1555 ptr = hex_byte_pack_upper(ptr, buf[i]);
1556 *ptr = 0;
1557 skb_put(skb, len << 1); /* new string is twice the old string */
1558}
1559
1560/*
1561 * Format a string of no more than slen characters into the audit buffer,
1562 * enclosed in quote marks.
1563 */
1564void audit_log_n_string(struct audit_buffer *ab, const char *string,
1565 size_t slen)
1566{
1567 int avail, new_len;
1568 unsigned char *ptr;
1569 struct sk_buff *skb;
1570
1571 if (!ab)
1572 return;
1573
1574 BUG_ON(!ab->skb);
1575 skb = ab->skb;
1576 avail = skb_tailroom(skb);
1577 new_len = slen + 3; /* enclosing quotes + null terminator */
1578 if (new_len > avail) {
1579 avail = audit_expand(ab, new_len);
1580 if (!avail)
1581 return;
1582 }
1583 ptr = skb_tail_pointer(skb);
1584 *ptr++ = '"';
1585 memcpy(ptr, string, slen);
1586 ptr += slen;
1587 *ptr++ = '"';
1588 *ptr = 0;
1589 skb_put(skb, slen + 2); /* don't include null terminator */
1590}
1591
1592/**
1593 * audit_string_contains_control - does a string need to be logged in hex
1594 * @string: string to be checked
1595 * @len: max length of the string to check
1596 */
1597bool audit_string_contains_control(const char *string, size_t len)
1598{
1599 const unsigned char *p;
1600 for (p = string; p < (const unsigned char *)string + len; p++) {
1601 if (*p == '"' || *p < 0x21 || *p > 0x7e)
1602 return true;
1603 }
1604 return false;
1605}
1606
1607/**
1608 * audit_log_n_untrustedstring - log a string that may contain random characters
1609 * @ab: audit_buffer
1610 * @len: length of string (not including trailing null)
1611 * @string: string to be logged
1612 *
1613 * This code will escape a string that is passed to it if the string
1614 * contains a control character, unprintable character, double quote mark,
1615 * or a space. Unescaped strings will start and end with a double quote mark.
1616 * Strings that are escaped are printed in hex (2 digits per char).
1617 *
1618 * The caller specifies the number of characters in the string to log, which may
1619 * or may not be the entire string.
1620 */
1621void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string,
1622 size_t len)
1623{
1624 if (audit_string_contains_control(string, len))
1625 audit_log_n_hex(ab, string, len);
1626 else
1627 audit_log_n_string(ab, string, len);
1628}
1629
1630/**
1631 * audit_log_untrustedstring - log a string that may contain random characters
1632 * @ab: audit_buffer
1633 * @string: string to be logged
1634 *
1635 * Same as audit_log_n_untrustedstring(), except that strlen is used to
1636 * determine string length.
1637 */
1638void audit_log_untrustedstring(struct audit_buffer *ab, const char *string)
1639{
1640 audit_log_n_untrustedstring(ab, string, strlen(string));
1641}
1642
1643/* This is a helper-function to print the escaped d_path */
1644void audit_log_d_path(struct audit_buffer *ab, const char *prefix,
1645 const struct path *path)
1646{
1647 char *p, *pathname;
1648
1649 if (prefix)
1650 audit_log_format(ab, "%s", prefix);
1651
1652 /* We will allow 11 spaces for ' (deleted)' to be appended */
1653 pathname = kmalloc(PATH_MAX+11, ab->gfp_mask);
1654 if (!pathname) {
1655 audit_log_string(ab, "<no_memory>");
1656 return;
1657 }
1658 p = d_path(path, pathname, PATH_MAX+11);
1659 if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */
1660 /* FIXME: can we save some information here? */
1661 audit_log_string(ab, "<too_long>");
1662 } else
1663 audit_log_untrustedstring(ab, p);
1664 kfree(pathname);
1665}
1666
1667void audit_log_session_info(struct audit_buffer *ab)
1668{
1669 unsigned int sessionid = audit_get_sessionid(current);
1670 uid_t auid = from_kuid(&init_user_ns, audit_get_loginuid(current));
1671
1672 audit_log_format(ab, " auid=%u ses=%u", auid, sessionid);
1673}
1674
1675void audit_log_key(struct audit_buffer *ab, char *key)
1676{
1677 audit_log_format(ab, " key=");
1678 if (key)
1679 audit_log_untrustedstring(ab, key);
1680 else
1681 audit_log_format(ab, "(null)");
1682}
1683
1684void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap)
1685{
1686 int i;
1687
1688 audit_log_format(ab, " %s=", prefix);
1689 CAP_FOR_EACH_U32(i) {
1690 audit_log_format(ab, "%08x",
1691 cap->cap[CAP_LAST_U32 - i]);
1692 }
1693}
1694
1695static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1696{
1697 kernel_cap_t *perm = &name->fcap.permitted;
1698 kernel_cap_t *inh = &name->fcap.inheritable;
1699 int log = 0;
1700
1701 if (!cap_isclear(*perm)) {
1702 audit_log_cap(ab, "cap_fp", perm);
1703 log = 1;
1704 }
1705 if (!cap_isclear(*inh)) {
1706 audit_log_cap(ab, "cap_fi", inh);
1707 log = 1;
1708 }
1709
1710 if (log)
1711 audit_log_format(ab, " cap_fe=%d cap_fver=%x",
1712 name->fcap.fE, name->fcap_ver);
1713}
1714
1715static inline int audit_copy_fcaps(struct audit_names *name,
1716 const struct dentry *dentry)
1717{
1718 struct cpu_vfs_cap_data caps;
1719 int rc;
1720
1721 if (!dentry)
1722 return 0;
1723
1724 rc = get_vfs_caps_from_disk(dentry, &caps);
1725 if (rc)
1726 return rc;
1727
1728 name->fcap.permitted = caps.permitted;
1729 name->fcap.inheritable = caps.inheritable;
1730 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
1731 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >>
1732 VFS_CAP_REVISION_SHIFT;
1733
1734 return 0;
1735}
1736
1737/* Copy inode data into an audit_names. */
1738void audit_copy_inode(struct audit_names *name, const struct dentry *dentry,
1739 struct inode *inode)
1740{
1741 name->ino = inode->i_ino;
1742 name->dev = inode->i_sb->s_dev;
1743 name->mode = inode->i_mode;
1744 name->uid = inode->i_uid;
1745 name->gid = inode->i_gid;
1746 name->rdev = inode->i_rdev;
1747 security_inode_getsecid(inode, &name->osid);
1748 audit_copy_fcaps(name, dentry);
1749}
1750
1751/**
1752 * audit_log_name - produce AUDIT_PATH record from struct audit_names
1753 * @context: audit_context for the task
1754 * @n: audit_names structure with reportable details
1755 * @path: optional path to report instead of audit_names->name
1756 * @record_num: record number to report when handling a list of names
1757 * @call_panic: optional pointer to int that will be updated if secid fails
1758 */
1759void audit_log_name(struct audit_context *context, struct audit_names *n,
1760 struct path *path, int record_num, int *call_panic)
1761{
1762 struct audit_buffer *ab;
1763 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1764 if (!ab)
1765 return;
1766
1767 audit_log_format(ab, "item=%d", record_num);
1768
1769 if (path)
1770 audit_log_d_path(ab, " name=", path);
1771 else if (n->name) {
1772 switch (n->name_len) {
1773 case AUDIT_NAME_FULL:
1774 /* log the full path */
1775 audit_log_format(ab, " name=");
1776 audit_log_untrustedstring(ab, n->name->name);
1777 break;
1778 case 0:
1779 /* name was specified as a relative path and the
1780 * directory component is the cwd */
1781 audit_log_d_path(ab, " name=", &context->pwd);
1782 break;
1783 default:
1784 /* log the name's directory component */
1785 audit_log_format(ab, " name=");
1786 audit_log_n_untrustedstring(ab, n->name->name,
1787 n->name_len);
1788 }
1789 } else
1790 audit_log_format(ab, " name=(null)");
1791
1792 if (n->ino != AUDIT_INO_UNSET)
1793 audit_log_format(ab, " inode=%lu"
1794 " dev=%02x:%02x mode=%#ho"
1795 " ouid=%u ogid=%u rdev=%02x:%02x",
1796 n->ino,
1797 MAJOR(n->dev),
1798 MINOR(n->dev),
1799 n->mode,
1800 from_kuid(&init_user_ns, n->uid),
1801 from_kgid(&init_user_ns, n->gid),
1802 MAJOR(n->rdev),
1803 MINOR(n->rdev));
1804 if (n->osid != 0) {
1805 char *ctx = NULL;
1806 u32 len;
1807 if (security_secid_to_secctx(
1808 n->osid, &ctx, &len)) {
1809 audit_log_format(ab, " osid=%u", n->osid);
1810 if (call_panic)
1811 *call_panic = 2;
1812 } else {
1813 audit_log_format(ab, " obj=%s", ctx);
1814 security_release_secctx(ctx, len);
1815 }
1816 }
1817
1818 /* log the audit_names record type */
1819 audit_log_format(ab, " nametype=");
1820 switch(n->type) {
1821 case AUDIT_TYPE_NORMAL:
1822 audit_log_format(ab, "NORMAL");
1823 break;
1824 case AUDIT_TYPE_PARENT:
1825 audit_log_format(ab, "PARENT");
1826 break;
1827 case AUDIT_TYPE_CHILD_DELETE:
1828 audit_log_format(ab, "DELETE");
1829 break;
1830 case AUDIT_TYPE_CHILD_CREATE:
1831 audit_log_format(ab, "CREATE");
1832 break;
1833 default:
1834 audit_log_format(ab, "UNKNOWN");
1835 break;
1836 }
1837
1838 audit_log_fcaps(ab, n);
1839 audit_log_end(ab);
1840}
1841
1842int audit_log_task_context(struct audit_buffer *ab)
1843{
1844 char *ctx = NULL;
1845 unsigned len;
1846 int error;
1847 u32 sid;
1848
1849 security_task_getsecid(current, &sid);
1850 if (!sid)
1851 return 0;
1852
1853 error = security_secid_to_secctx(sid, &ctx, &len);
1854 if (error) {
1855 if (error != -EINVAL)
1856 goto error_path;
1857 return 0;
1858 }
1859
1860 audit_log_format(ab, " subj=%s", ctx);
1861 security_release_secctx(ctx, len);
1862 return 0;
1863
1864error_path:
1865 audit_panic("error in audit_log_task_context");
1866 return error;
1867}
1868EXPORT_SYMBOL(audit_log_task_context);
1869
1870void audit_log_d_path_exe(struct audit_buffer *ab,
1871 struct mm_struct *mm)
1872{
1873 struct file *exe_file;
1874
1875 if (!mm)
1876 goto out_null;
1877
1878 exe_file = get_mm_exe_file(mm);
1879 if (!exe_file)
1880 goto out_null;
1881
1882 audit_log_d_path(ab, " exe=", &exe_file->f_path);
1883 fput(exe_file);
1884 return;
1885out_null:
1886 audit_log_format(ab, " exe=(null)");
1887}
1888
1889void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
1890{
1891 const struct cred *cred;
1892 char comm[sizeof(tsk->comm)];
1893 char *tty;
1894
1895 if (!ab)
1896 return;
1897
1898 /* tsk == current */
1899 cred = current_cred();
1900
1901 spin_lock_irq(&tsk->sighand->siglock);
1902 if (tsk->signal && tsk->signal->tty && tsk->signal->tty->name)
1903 tty = tsk->signal->tty->name;
1904 else
1905 tty = "(none)";
1906 spin_unlock_irq(&tsk->sighand->siglock);
1907
1908 audit_log_format(ab,
1909 " ppid=%d pid=%d auid=%u uid=%u gid=%u"
1910 " euid=%u suid=%u fsuid=%u"
1911 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
1912 task_ppid_nr(tsk),
1913 task_pid_nr(tsk),
1914 from_kuid(&init_user_ns, audit_get_loginuid(tsk)),
1915 from_kuid(&init_user_ns, cred->uid),
1916 from_kgid(&init_user_ns, cred->gid),
1917 from_kuid(&init_user_ns, cred->euid),
1918 from_kuid(&init_user_ns, cred->suid),
1919 from_kuid(&init_user_ns, cred->fsuid),
1920 from_kgid(&init_user_ns, cred->egid),
1921 from_kgid(&init_user_ns, cred->sgid),
1922 from_kgid(&init_user_ns, cred->fsgid),
1923 tty, audit_get_sessionid(tsk));
1924
1925 audit_log_format(ab, " comm=");
1926 audit_log_untrustedstring(ab, get_task_comm(comm, tsk));
1927
1928 audit_log_d_path_exe(ab, tsk->mm);
1929 audit_log_task_context(ab);
1930}
1931EXPORT_SYMBOL(audit_log_task_info);
1932
1933/**
1934 * audit_log_link_denied - report a link restriction denial
1935 * @operation: specific link operation
1936 * @link: the path that triggered the restriction
1937 */
1938void audit_log_link_denied(const char *operation, struct path *link)
1939{
1940 struct audit_buffer *ab;
1941 struct audit_names *name;
1942
1943 name = kzalloc(sizeof(*name), GFP_NOFS);
1944 if (!name)
1945 return;
1946
1947 /* Generate AUDIT_ANOM_LINK with subject, operation, outcome. */
1948 ab = audit_log_start(current->audit_context, GFP_KERNEL,
1949 AUDIT_ANOM_LINK);
1950 if (!ab)
1951 goto out;
1952 audit_log_format(ab, "op=%s", operation);
1953 audit_log_task_info(ab, current);
1954 audit_log_format(ab, " res=0");
1955 audit_log_end(ab);
1956
1957 /* Generate AUDIT_PATH record with object. */
1958 name->type = AUDIT_TYPE_NORMAL;
1959 audit_copy_inode(name, link->dentry, d_backing_inode(link->dentry));
1960 audit_log_name(current->audit_context, name, link, 0, NULL);
1961out:
1962 kfree(name);
1963}
1964
1965/**
1966 * audit_log_end - end one audit record
1967 * @ab: the audit_buffer
1968 *
1969 * netlink_unicast() cannot be called inside an irq context because it blocks
1970 * (last arg, flags, is not set to MSG_DONTWAIT), so the audit buffer is placed
1971 * on a queue and a tasklet is scheduled to remove them from the queue outside
1972 * the irq context. May be called in any context.
1973 */
1974void audit_log_end(struct audit_buffer *ab)
1975{
1976 if (!ab)
1977 return;
1978 if (!audit_rate_check()) {
1979 audit_log_lost("rate limit exceeded");
1980 } else {
1981 struct nlmsghdr *nlh = nlmsg_hdr(ab->skb);
1982
1983 nlh->nlmsg_len = ab->skb->len;
1984 kauditd_send_multicast_skb(ab->skb, ab->gfp_mask);
1985
1986 /*
1987 * The original kaudit unicast socket sends up messages with
1988 * nlmsg_len set to the payload length rather than the entire
1989 * message length. This breaks the standard set by netlink.
1990 * The existing auditd daemon assumes this breakage. Fixing
1991 * this would require co-ordinating a change in the established
1992 * protocol between the kaudit kernel subsystem and the auditd
1993 * userspace code.
1994 */
1995 nlh->nlmsg_len -= NLMSG_HDRLEN;
1996
1997 if (audit_pid) {
1998 skb_queue_tail(&audit_skb_queue, ab->skb);
1999 wake_up_interruptible(&kauditd_wait);
2000 } else {
2001 audit_printk_skb(ab->skb);
2002 }
2003 ab->skb = NULL;
2004 }
2005 audit_buffer_free(ab);
2006}
2007
2008/**
2009 * audit_log - Log an audit record
2010 * @ctx: audit context
2011 * @gfp_mask: type of allocation
2012 * @type: audit message type
2013 * @fmt: format string to use
2014 * @...: variable parameters matching the format string
2015 *
2016 * This is a convenience function that calls audit_log_start,
2017 * audit_log_vformat, and audit_log_end. It may be called
2018 * in any context.
2019 */
2020void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type,
2021 const char *fmt, ...)
2022{
2023 struct audit_buffer *ab;
2024 va_list args;
2025
2026 ab = audit_log_start(ctx, gfp_mask, type);
2027 if (ab) {
2028 va_start(args, fmt);
2029 audit_log_vformat(ab, fmt, args);
2030 va_end(args);
2031 audit_log_end(ab);
2032 }
2033}
2034
2035#ifdef CONFIG_SECURITY
2036/**
2037 * audit_log_secctx - Converts and logs SELinux context
2038 * @ab: audit_buffer
2039 * @secid: security number
2040 *
2041 * This is a helper function that calls security_secid_to_secctx to convert
2042 * secid to secctx and then adds the (converted) SELinux context to the audit
2043 * log by calling audit_log_format, thus also preventing leak of internal secid
2044 * to userspace. If secid cannot be converted audit_panic is called.
2045 */
2046void audit_log_secctx(struct audit_buffer *ab, u32 secid)
2047{
2048 u32 len;
2049 char *secctx;
2050
2051 if (security_secid_to_secctx(secid, &secctx, &len)) {
2052 audit_panic("Cannot convert secid to context");
2053 } else {
2054 audit_log_format(ab, " obj=%s", secctx);
2055 security_release_secctx(secctx, len);
2056 }
2057}
2058EXPORT_SYMBOL(audit_log_secctx);
2059#endif
2060
2061EXPORT_SYMBOL(audit_log_start);
2062EXPORT_SYMBOL(audit_log_end);
2063EXPORT_SYMBOL(audit_log_format);
2064EXPORT_SYMBOL(audit_log);
1/* audit.c -- Auditing support
2 * Gateway between the kernel (e.g., selinux) and the user-space audit daemon.
3 * System-call specific features have moved to auditsc.c
4 *
5 * Copyright 2003-2007 Red Hat Inc., Durham, North Carolina.
6 * All Rights Reserved.
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21 *
22 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
23 *
24 * Goals: 1) Integrate fully with Security Modules.
25 * 2) Minimal run-time overhead:
26 * a) Minimal when syscall auditing is disabled (audit_enable=0).
27 * b) Small when syscall auditing is enabled and no audit record
28 * is generated (defer as much work as possible to record
29 * generation time):
30 * i) context is allocated,
31 * ii) names from getname are stored without a copy, and
32 * iii) inode information stored from path_lookup.
33 * 3) Ability to disable syscall auditing at boot time (audit=0).
34 * 4) Usable by other parts of the kernel (if audit_log* is called,
35 * then a syscall record will be generated automatically for the
36 * current syscall).
37 * 5) Netlink interface to user-space.
38 * 6) Support low-overhead kernel-based filtering to minimize the
39 * information that must be passed to user-space.
40 *
41 * Example user-space utilities: http://people.redhat.com/sgrubb/audit/
42 */
43
44#include <linux/init.h>
45#include <asm/types.h>
46#include <linux/atomic.h>
47#include <linux/mm.h>
48#include <linux/module.h>
49#include <linux/slab.h>
50#include <linux/err.h>
51#include <linux/kthread.h>
52
53#include <linux/audit.h>
54
55#include <net/sock.h>
56#include <net/netlink.h>
57#include <linux/skbuff.h>
58#ifdef CONFIG_SECURITY
59#include <linux/security.h>
60#endif
61#include <linux/netlink.h>
62#include <linux/freezer.h>
63#include <linux/tty.h>
64
65#include "audit.h"
66
67/* No auditing will take place until audit_initialized == AUDIT_INITIALIZED.
68 * (Initialization happens after skb_init is called.) */
69#define AUDIT_DISABLED -1
70#define AUDIT_UNINITIALIZED 0
71#define AUDIT_INITIALIZED 1
72static int audit_initialized;
73
74#define AUDIT_OFF 0
75#define AUDIT_ON 1
76#define AUDIT_LOCKED 2
77int audit_enabled;
78int audit_ever_enabled;
79
80EXPORT_SYMBOL_GPL(audit_enabled);
81
82/* Default state when kernel boots without any parameters. */
83static int audit_default;
84
85/* If auditing cannot proceed, audit_failure selects what happens. */
86static int audit_failure = AUDIT_FAIL_PRINTK;
87
88/*
89 * If audit records are to be written to the netlink socket, audit_pid
90 * contains the pid of the auditd process and audit_nlk_pid contains
91 * the pid to use to send netlink messages to that process.
92 */
93int audit_pid;
94static int audit_nlk_pid;
95
96/* If audit_rate_limit is non-zero, limit the rate of sending audit records
97 * to that number per second. This prevents DoS attacks, but results in
98 * audit records being dropped. */
99static int audit_rate_limit;
100
101/* Number of outstanding audit_buffers allowed. */
102static int audit_backlog_limit = 64;
103static int audit_backlog_wait_time = 60 * HZ;
104static int audit_backlog_wait_overflow = 0;
105
106/* The identity of the user shutting down the audit system. */
107uid_t audit_sig_uid = -1;
108pid_t audit_sig_pid = -1;
109u32 audit_sig_sid = 0;
110
111/* Records can be lost in several ways:
112 0) [suppressed in audit_alloc]
113 1) out of memory in audit_log_start [kmalloc of struct audit_buffer]
114 2) out of memory in audit_log_move [alloc_skb]
115 3) suppressed due to audit_rate_limit
116 4) suppressed due to audit_backlog_limit
117*/
118static atomic_t audit_lost = ATOMIC_INIT(0);
119
120/* The netlink socket. */
121static struct sock *audit_sock;
122
123/* Hash for inode-based rules */
124struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS];
125
126/* The audit_freelist is a list of pre-allocated audit buffers (if more
127 * than AUDIT_MAXFREE are in use, the audit buffer is freed instead of
128 * being placed on the freelist). */
129static DEFINE_SPINLOCK(audit_freelist_lock);
130static int audit_freelist_count;
131static LIST_HEAD(audit_freelist);
132
133static struct sk_buff_head audit_skb_queue;
134/* queue of skbs to send to auditd when/if it comes back */
135static struct sk_buff_head audit_skb_hold_queue;
136static struct task_struct *kauditd_task;
137static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait);
138static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait);
139
140/* Serialize requests from userspace. */
141DEFINE_MUTEX(audit_cmd_mutex);
142
143/* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting
144 * audit records. Since printk uses a 1024 byte buffer, this buffer
145 * should be at least that large. */
146#define AUDIT_BUFSIZ 1024
147
148/* AUDIT_MAXFREE is the number of empty audit_buffers we keep on the
149 * audit_freelist. Doing so eliminates many kmalloc/kfree calls. */
150#define AUDIT_MAXFREE (2*NR_CPUS)
151
152/* The audit_buffer is used when formatting an audit record. The caller
153 * locks briefly to get the record off the freelist or to allocate the
154 * buffer, and locks briefly to send the buffer to the netlink layer or
155 * to place it on a transmit queue. Multiple audit_buffers can be in
156 * use simultaneously. */
157struct audit_buffer {
158 struct list_head list;
159 struct sk_buff *skb; /* formatted skb ready to send */
160 struct audit_context *ctx; /* NULL or associated context */
161 gfp_t gfp_mask;
162};
163
164struct audit_reply {
165 int pid;
166 struct sk_buff *skb;
167};
168
169static void audit_set_pid(struct audit_buffer *ab, pid_t pid)
170{
171 if (ab) {
172 struct nlmsghdr *nlh = nlmsg_hdr(ab->skb);
173 nlh->nlmsg_pid = pid;
174 }
175}
176
177void audit_panic(const char *message)
178{
179 switch (audit_failure)
180 {
181 case AUDIT_FAIL_SILENT:
182 break;
183 case AUDIT_FAIL_PRINTK:
184 if (printk_ratelimit())
185 printk(KERN_ERR "audit: %s\n", message);
186 break;
187 case AUDIT_FAIL_PANIC:
188 /* test audit_pid since printk is always losey, why bother? */
189 if (audit_pid)
190 panic("audit: %s\n", message);
191 break;
192 }
193}
194
195static inline int audit_rate_check(void)
196{
197 static unsigned long last_check = 0;
198 static int messages = 0;
199 static DEFINE_SPINLOCK(lock);
200 unsigned long flags;
201 unsigned long now;
202 unsigned long elapsed;
203 int retval = 0;
204
205 if (!audit_rate_limit) return 1;
206
207 spin_lock_irqsave(&lock, flags);
208 if (++messages < audit_rate_limit) {
209 retval = 1;
210 } else {
211 now = jiffies;
212 elapsed = now - last_check;
213 if (elapsed > HZ) {
214 last_check = now;
215 messages = 0;
216 retval = 1;
217 }
218 }
219 spin_unlock_irqrestore(&lock, flags);
220
221 return retval;
222}
223
224/**
225 * audit_log_lost - conditionally log lost audit message event
226 * @message: the message stating reason for lost audit message
227 *
228 * Emit at least 1 message per second, even if audit_rate_check is
229 * throttling.
230 * Always increment the lost messages counter.
231*/
232void audit_log_lost(const char *message)
233{
234 static unsigned long last_msg = 0;
235 static DEFINE_SPINLOCK(lock);
236 unsigned long flags;
237 unsigned long now;
238 int print;
239
240 atomic_inc(&audit_lost);
241
242 print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit);
243
244 if (!print) {
245 spin_lock_irqsave(&lock, flags);
246 now = jiffies;
247 if (now - last_msg > HZ) {
248 print = 1;
249 last_msg = now;
250 }
251 spin_unlock_irqrestore(&lock, flags);
252 }
253
254 if (print) {
255 if (printk_ratelimit())
256 printk(KERN_WARNING
257 "audit: audit_lost=%d audit_rate_limit=%d "
258 "audit_backlog_limit=%d\n",
259 atomic_read(&audit_lost),
260 audit_rate_limit,
261 audit_backlog_limit);
262 audit_panic(message);
263 }
264}
265
266static int audit_log_config_change(char *function_name, int new, int old,
267 uid_t loginuid, u32 sessionid, u32 sid,
268 int allow_changes)
269{
270 struct audit_buffer *ab;
271 int rc = 0;
272
273 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE);
274 audit_log_format(ab, "%s=%d old=%d auid=%u ses=%u", function_name, new,
275 old, loginuid, sessionid);
276 if (sid) {
277 char *ctx = NULL;
278 u32 len;
279
280 rc = security_secid_to_secctx(sid, &ctx, &len);
281 if (rc) {
282 audit_log_format(ab, " sid=%u", sid);
283 allow_changes = 0; /* Something weird, deny request */
284 } else {
285 audit_log_format(ab, " subj=%s", ctx);
286 security_release_secctx(ctx, len);
287 }
288 }
289 audit_log_format(ab, " res=%d", allow_changes);
290 audit_log_end(ab);
291 return rc;
292}
293
294static int audit_do_config_change(char *function_name, int *to_change,
295 int new, uid_t loginuid, u32 sessionid,
296 u32 sid)
297{
298 int allow_changes, rc = 0, old = *to_change;
299
300 /* check if we are locked */
301 if (audit_enabled == AUDIT_LOCKED)
302 allow_changes = 0;
303 else
304 allow_changes = 1;
305
306 if (audit_enabled != AUDIT_OFF) {
307 rc = audit_log_config_change(function_name, new, old, loginuid,
308 sessionid, sid, allow_changes);
309 if (rc)
310 allow_changes = 0;
311 }
312
313 /* If we are allowed, make the change */
314 if (allow_changes == 1)
315 *to_change = new;
316 /* Not allowed, update reason */
317 else if (rc == 0)
318 rc = -EPERM;
319 return rc;
320}
321
322static int audit_set_rate_limit(int limit, uid_t loginuid, u32 sessionid,
323 u32 sid)
324{
325 return audit_do_config_change("audit_rate_limit", &audit_rate_limit,
326 limit, loginuid, sessionid, sid);
327}
328
329static int audit_set_backlog_limit(int limit, uid_t loginuid, u32 sessionid,
330 u32 sid)
331{
332 return audit_do_config_change("audit_backlog_limit", &audit_backlog_limit,
333 limit, loginuid, sessionid, sid);
334}
335
336static int audit_set_enabled(int state, uid_t loginuid, u32 sessionid, u32 sid)
337{
338 int rc;
339 if (state < AUDIT_OFF || state > AUDIT_LOCKED)
340 return -EINVAL;
341
342 rc = audit_do_config_change("audit_enabled", &audit_enabled, state,
343 loginuid, sessionid, sid);
344
345 if (!rc)
346 audit_ever_enabled |= !!state;
347
348 return rc;
349}
350
351static int audit_set_failure(int state, uid_t loginuid, u32 sessionid, u32 sid)
352{
353 if (state != AUDIT_FAIL_SILENT
354 && state != AUDIT_FAIL_PRINTK
355 && state != AUDIT_FAIL_PANIC)
356 return -EINVAL;
357
358 return audit_do_config_change("audit_failure", &audit_failure, state,
359 loginuid, sessionid, sid);
360}
361
362/*
363 * Queue skbs to be sent to auditd when/if it comes back. These skbs should
364 * already have been sent via prink/syslog and so if these messages are dropped
365 * it is not a huge concern since we already passed the audit_log_lost()
366 * notification and stuff. This is just nice to get audit messages during
367 * boot before auditd is running or messages generated while auditd is stopped.
368 * This only holds messages is audit_default is set, aka booting with audit=1
369 * or building your kernel that way.
370 */
371static void audit_hold_skb(struct sk_buff *skb)
372{
373 if (audit_default &&
374 skb_queue_len(&audit_skb_hold_queue) < audit_backlog_limit)
375 skb_queue_tail(&audit_skb_hold_queue, skb);
376 else
377 kfree_skb(skb);
378}
379
380/*
381 * For one reason or another this nlh isn't getting delivered to the userspace
382 * audit daemon, just send it to printk.
383 */
384static void audit_printk_skb(struct sk_buff *skb)
385{
386 struct nlmsghdr *nlh = nlmsg_hdr(skb);
387 char *data = NLMSG_DATA(nlh);
388
389 if (nlh->nlmsg_type != AUDIT_EOE) {
390 if (printk_ratelimit())
391 printk(KERN_NOTICE "type=%d %s\n", nlh->nlmsg_type, data);
392 else
393 audit_log_lost("printk limit exceeded\n");
394 }
395
396 audit_hold_skb(skb);
397}
398
399static void kauditd_send_skb(struct sk_buff *skb)
400{
401 int err;
402 /* take a reference in case we can't send it and we want to hold it */
403 skb_get(skb);
404 err = netlink_unicast(audit_sock, skb, audit_nlk_pid, 0);
405 if (err < 0) {
406 BUG_ON(err != -ECONNREFUSED); /* Shouldn't happen */
407 printk(KERN_ERR "audit: *NO* daemon at audit_pid=%d\n", audit_pid);
408 audit_log_lost("auditd disappeared\n");
409 audit_pid = 0;
410 /* we might get lucky and get this in the next auditd */
411 audit_hold_skb(skb);
412 } else
413 /* drop the extra reference if sent ok */
414 consume_skb(skb);
415}
416
417static int kauditd_thread(void *dummy)
418{
419 struct sk_buff *skb;
420
421 set_freezable();
422 while (!kthread_should_stop()) {
423 /*
424 * if auditd just started drain the queue of messages already
425 * sent to syslog/printk. remember loss here is ok. we already
426 * called audit_log_lost() if it didn't go out normally. so the
427 * race between the skb_dequeue and the next check for audit_pid
428 * doesn't matter.
429 *
430 * if you ever find kauditd to be too slow we can get a perf win
431 * by doing our own locking and keeping better track if there
432 * are messages in this queue. I don't see the need now, but
433 * in 5 years when I want to play with this again I'll see this
434 * note and still have no friggin idea what i'm thinking today.
435 */
436 if (audit_default && audit_pid) {
437 skb = skb_dequeue(&audit_skb_hold_queue);
438 if (unlikely(skb)) {
439 while (skb && audit_pid) {
440 kauditd_send_skb(skb);
441 skb = skb_dequeue(&audit_skb_hold_queue);
442 }
443 }
444 }
445
446 skb = skb_dequeue(&audit_skb_queue);
447 wake_up(&audit_backlog_wait);
448 if (skb) {
449 if (audit_pid)
450 kauditd_send_skb(skb);
451 else
452 audit_printk_skb(skb);
453 } else {
454 DECLARE_WAITQUEUE(wait, current);
455 set_current_state(TASK_INTERRUPTIBLE);
456 add_wait_queue(&kauditd_wait, &wait);
457
458 if (!skb_queue_len(&audit_skb_queue)) {
459 try_to_freeze();
460 schedule();
461 }
462
463 __set_current_state(TASK_RUNNING);
464 remove_wait_queue(&kauditd_wait, &wait);
465 }
466 }
467 return 0;
468}
469
470static int audit_prepare_user_tty(pid_t pid, uid_t loginuid, u32 sessionid)
471{
472 struct task_struct *tsk;
473 int err;
474
475 rcu_read_lock();
476 tsk = find_task_by_vpid(pid);
477 if (!tsk) {
478 rcu_read_unlock();
479 return -ESRCH;
480 }
481 get_task_struct(tsk);
482 rcu_read_unlock();
483 err = tty_audit_push_task(tsk, loginuid, sessionid);
484 put_task_struct(tsk);
485 return err;
486}
487
488int audit_send_list(void *_dest)
489{
490 struct audit_netlink_list *dest = _dest;
491 int pid = dest->pid;
492 struct sk_buff *skb;
493
494 /* wait for parent to finish and send an ACK */
495 mutex_lock(&audit_cmd_mutex);
496 mutex_unlock(&audit_cmd_mutex);
497
498 while ((skb = __skb_dequeue(&dest->q)) != NULL)
499 netlink_unicast(audit_sock, skb, pid, 0);
500
501 kfree(dest);
502
503 return 0;
504}
505
506struct sk_buff *audit_make_reply(int pid, int seq, int type, int done,
507 int multi, const void *payload, int size)
508{
509 struct sk_buff *skb;
510 struct nlmsghdr *nlh;
511 void *data;
512 int flags = multi ? NLM_F_MULTI : 0;
513 int t = done ? NLMSG_DONE : type;
514
515 skb = nlmsg_new(size, GFP_KERNEL);
516 if (!skb)
517 return NULL;
518
519 nlh = NLMSG_NEW(skb, pid, seq, t, size, flags);
520 data = NLMSG_DATA(nlh);
521 memcpy(data, payload, size);
522 return skb;
523
524nlmsg_failure: /* Used by NLMSG_NEW */
525 if (skb)
526 kfree_skb(skb);
527 return NULL;
528}
529
530static int audit_send_reply_thread(void *arg)
531{
532 struct audit_reply *reply = (struct audit_reply *)arg;
533
534 mutex_lock(&audit_cmd_mutex);
535 mutex_unlock(&audit_cmd_mutex);
536
537 /* Ignore failure. It'll only happen if the sender goes away,
538 because our timeout is set to infinite. */
539 netlink_unicast(audit_sock, reply->skb, reply->pid, 0);
540 kfree(reply);
541 return 0;
542}
543/**
544 * audit_send_reply - send an audit reply message via netlink
545 * @pid: process id to send reply to
546 * @seq: sequence number
547 * @type: audit message type
548 * @done: done (last) flag
549 * @multi: multi-part message flag
550 * @payload: payload data
551 * @size: payload size
552 *
553 * Allocates an skb, builds the netlink message, and sends it to the pid.
554 * No failure notifications.
555 */
556static void audit_send_reply(int pid, int seq, int type, int done, int multi,
557 const void *payload, int size)
558{
559 struct sk_buff *skb;
560 struct task_struct *tsk;
561 struct audit_reply *reply = kmalloc(sizeof(struct audit_reply),
562 GFP_KERNEL);
563
564 if (!reply)
565 return;
566
567 skb = audit_make_reply(pid, seq, type, done, multi, payload, size);
568 if (!skb)
569 goto out;
570
571 reply->pid = pid;
572 reply->skb = skb;
573
574 tsk = kthread_run(audit_send_reply_thread, reply, "audit_send_reply");
575 if (!IS_ERR(tsk))
576 return;
577 kfree_skb(skb);
578out:
579 kfree(reply);
580}
581
582/*
583 * Check for appropriate CAP_AUDIT_ capabilities on incoming audit
584 * control messages.
585 */
586static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type)
587{
588 int err = 0;
589
590 switch (msg_type) {
591 case AUDIT_GET:
592 case AUDIT_LIST:
593 case AUDIT_LIST_RULES:
594 case AUDIT_SET:
595 case AUDIT_ADD:
596 case AUDIT_ADD_RULE:
597 case AUDIT_DEL:
598 case AUDIT_DEL_RULE:
599 case AUDIT_SIGNAL_INFO:
600 case AUDIT_TTY_GET:
601 case AUDIT_TTY_SET:
602 case AUDIT_TRIM:
603 case AUDIT_MAKE_EQUIV:
604 if (security_netlink_recv(skb, CAP_AUDIT_CONTROL))
605 err = -EPERM;
606 break;
607 case AUDIT_USER:
608 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
609 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
610 if (security_netlink_recv(skb, CAP_AUDIT_WRITE))
611 err = -EPERM;
612 break;
613 default: /* bad msg */
614 err = -EINVAL;
615 }
616
617 return err;
618}
619
620static int audit_log_common_recv_msg(struct audit_buffer **ab, u16 msg_type,
621 u32 pid, u32 uid, uid_t auid, u32 ses,
622 u32 sid)
623{
624 int rc = 0;
625 char *ctx = NULL;
626 u32 len;
627
628 if (!audit_enabled) {
629 *ab = NULL;
630 return rc;
631 }
632
633 *ab = audit_log_start(NULL, GFP_KERNEL, msg_type);
634 audit_log_format(*ab, "user pid=%d uid=%u auid=%u ses=%u",
635 pid, uid, auid, ses);
636 if (sid) {
637 rc = security_secid_to_secctx(sid, &ctx, &len);
638 if (rc)
639 audit_log_format(*ab, " ssid=%u", sid);
640 else {
641 audit_log_format(*ab, " subj=%s", ctx);
642 security_release_secctx(ctx, len);
643 }
644 }
645
646 return rc;
647}
648
649static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh)
650{
651 u32 uid, pid, seq, sid;
652 void *data;
653 struct audit_status *status_get, status_set;
654 int err;
655 struct audit_buffer *ab;
656 u16 msg_type = nlh->nlmsg_type;
657 uid_t loginuid; /* loginuid of sender */
658 u32 sessionid;
659 struct audit_sig_info *sig_data;
660 char *ctx = NULL;
661 u32 len;
662
663 err = audit_netlink_ok(skb, msg_type);
664 if (err)
665 return err;
666
667 /* As soon as there's any sign of userspace auditd,
668 * start kauditd to talk to it */
669 if (!kauditd_task)
670 kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd");
671 if (IS_ERR(kauditd_task)) {
672 err = PTR_ERR(kauditd_task);
673 kauditd_task = NULL;
674 return err;
675 }
676
677 pid = NETLINK_CREDS(skb)->pid;
678 uid = NETLINK_CREDS(skb)->uid;
679 loginuid = audit_get_loginuid(current);
680 sessionid = audit_get_sessionid(current);
681 security_task_getsecid(current, &sid);
682 seq = nlh->nlmsg_seq;
683 data = NLMSG_DATA(nlh);
684
685 switch (msg_type) {
686 case AUDIT_GET:
687 status_set.enabled = audit_enabled;
688 status_set.failure = audit_failure;
689 status_set.pid = audit_pid;
690 status_set.rate_limit = audit_rate_limit;
691 status_set.backlog_limit = audit_backlog_limit;
692 status_set.lost = atomic_read(&audit_lost);
693 status_set.backlog = skb_queue_len(&audit_skb_queue);
694 audit_send_reply(NETLINK_CB(skb).pid, seq, AUDIT_GET, 0, 0,
695 &status_set, sizeof(status_set));
696 break;
697 case AUDIT_SET:
698 if (nlh->nlmsg_len < sizeof(struct audit_status))
699 return -EINVAL;
700 status_get = (struct audit_status *)data;
701 if (status_get->mask & AUDIT_STATUS_ENABLED) {
702 err = audit_set_enabled(status_get->enabled,
703 loginuid, sessionid, sid);
704 if (err < 0)
705 return err;
706 }
707 if (status_get->mask & AUDIT_STATUS_FAILURE) {
708 err = audit_set_failure(status_get->failure,
709 loginuid, sessionid, sid);
710 if (err < 0)
711 return err;
712 }
713 if (status_get->mask & AUDIT_STATUS_PID) {
714 int new_pid = status_get->pid;
715
716 if (audit_enabled != AUDIT_OFF)
717 audit_log_config_change("audit_pid", new_pid,
718 audit_pid, loginuid,
719 sessionid, sid, 1);
720
721 audit_pid = new_pid;
722 audit_nlk_pid = NETLINK_CB(skb).pid;
723 }
724 if (status_get->mask & AUDIT_STATUS_RATE_LIMIT) {
725 err = audit_set_rate_limit(status_get->rate_limit,
726 loginuid, sessionid, sid);
727 if (err < 0)
728 return err;
729 }
730 if (status_get->mask & AUDIT_STATUS_BACKLOG_LIMIT)
731 err = audit_set_backlog_limit(status_get->backlog_limit,
732 loginuid, sessionid, sid);
733 break;
734 case AUDIT_USER:
735 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
736 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
737 if (!audit_enabled && msg_type != AUDIT_USER_AVC)
738 return 0;
739
740 err = audit_filter_user(&NETLINK_CB(skb));
741 if (err == 1) {
742 err = 0;
743 if (msg_type == AUDIT_USER_TTY) {
744 err = audit_prepare_user_tty(pid, loginuid,
745 sessionid);
746 if (err)
747 break;
748 }
749 audit_log_common_recv_msg(&ab, msg_type, pid, uid,
750 loginuid, sessionid, sid);
751
752 if (msg_type != AUDIT_USER_TTY)
753 audit_log_format(ab, " msg='%.1024s'",
754 (char *)data);
755 else {
756 int size;
757
758 audit_log_format(ab, " msg=");
759 size = nlmsg_len(nlh);
760 if (size > 0 &&
761 ((unsigned char *)data)[size - 1] == '\0')
762 size--;
763 audit_log_n_untrustedstring(ab, data, size);
764 }
765 audit_set_pid(ab, pid);
766 audit_log_end(ab);
767 }
768 break;
769 case AUDIT_ADD:
770 case AUDIT_DEL:
771 if (nlmsg_len(nlh) < sizeof(struct audit_rule))
772 return -EINVAL;
773 if (audit_enabled == AUDIT_LOCKED) {
774 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE, pid,
775 uid, loginuid, sessionid, sid);
776
777 audit_log_format(ab, " audit_enabled=%d res=0",
778 audit_enabled);
779 audit_log_end(ab);
780 return -EPERM;
781 }
782 /* fallthrough */
783 case AUDIT_LIST:
784 err = audit_receive_filter(msg_type, NETLINK_CB(skb).pid,
785 uid, seq, data, nlmsg_len(nlh),
786 loginuid, sessionid, sid);
787 break;
788 case AUDIT_ADD_RULE:
789 case AUDIT_DEL_RULE:
790 if (nlmsg_len(nlh) < sizeof(struct audit_rule_data))
791 return -EINVAL;
792 if (audit_enabled == AUDIT_LOCKED) {
793 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE, pid,
794 uid, loginuid, sessionid, sid);
795
796 audit_log_format(ab, " audit_enabled=%d res=0",
797 audit_enabled);
798 audit_log_end(ab);
799 return -EPERM;
800 }
801 /* fallthrough */
802 case AUDIT_LIST_RULES:
803 err = audit_receive_filter(msg_type, NETLINK_CB(skb).pid,
804 uid, seq, data, nlmsg_len(nlh),
805 loginuid, sessionid, sid);
806 break;
807 case AUDIT_TRIM:
808 audit_trim_trees();
809
810 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE, pid,
811 uid, loginuid, sessionid, sid);
812
813 audit_log_format(ab, " op=trim res=1");
814 audit_log_end(ab);
815 break;
816 case AUDIT_MAKE_EQUIV: {
817 void *bufp = data;
818 u32 sizes[2];
819 size_t msglen = nlmsg_len(nlh);
820 char *old, *new;
821
822 err = -EINVAL;
823 if (msglen < 2 * sizeof(u32))
824 break;
825 memcpy(sizes, bufp, 2 * sizeof(u32));
826 bufp += 2 * sizeof(u32);
827 msglen -= 2 * sizeof(u32);
828 old = audit_unpack_string(&bufp, &msglen, sizes[0]);
829 if (IS_ERR(old)) {
830 err = PTR_ERR(old);
831 break;
832 }
833 new = audit_unpack_string(&bufp, &msglen, sizes[1]);
834 if (IS_ERR(new)) {
835 err = PTR_ERR(new);
836 kfree(old);
837 break;
838 }
839 /* OK, here comes... */
840 err = audit_tag_tree(old, new);
841
842 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE, pid,
843 uid, loginuid, sessionid, sid);
844
845 audit_log_format(ab, " op=make_equiv old=");
846 audit_log_untrustedstring(ab, old);
847 audit_log_format(ab, " new=");
848 audit_log_untrustedstring(ab, new);
849 audit_log_format(ab, " res=%d", !err);
850 audit_log_end(ab);
851 kfree(old);
852 kfree(new);
853 break;
854 }
855 case AUDIT_SIGNAL_INFO:
856 len = 0;
857 if (audit_sig_sid) {
858 err = security_secid_to_secctx(audit_sig_sid, &ctx, &len);
859 if (err)
860 return err;
861 }
862 sig_data = kmalloc(sizeof(*sig_data) + len, GFP_KERNEL);
863 if (!sig_data) {
864 if (audit_sig_sid)
865 security_release_secctx(ctx, len);
866 return -ENOMEM;
867 }
868 sig_data->uid = audit_sig_uid;
869 sig_data->pid = audit_sig_pid;
870 if (audit_sig_sid) {
871 memcpy(sig_data->ctx, ctx, len);
872 security_release_secctx(ctx, len);
873 }
874 audit_send_reply(NETLINK_CB(skb).pid, seq, AUDIT_SIGNAL_INFO,
875 0, 0, sig_data, sizeof(*sig_data) + len);
876 kfree(sig_data);
877 break;
878 case AUDIT_TTY_GET: {
879 struct audit_tty_status s;
880 struct task_struct *tsk;
881 unsigned long flags;
882
883 rcu_read_lock();
884 tsk = find_task_by_vpid(pid);
885 if (tsk && lock_task_sighand(tsk, &flags)) {
886 s.enabled = tsk->signal->audit_tty != 0;
887 unlock_task_sighand(tsk, &flags);
888 } else
889 err = -ESRCH;
890 rcu_read_unlock();
891
892 if (!err)
893 audit_send_reply(NETLINK_CB(skb).pid, seq,
894 AUDIT_TTY_GET, 0, 0, &s, sizeof(s));
895 break;
896 }
897 case AUDIT_TTY_SET: {
898 struct audit_tty_status *s;
899 struct task_struct *tsk;
900 unsigned long flags;
901
902 if (nlh->nlmsg_len < sizeof(struct audit_tty_status))
903 return -EINVAL;
904 s = data;
905 if (s->enabled != 0 && s->enabled != 1)
906 return -EINVAL;
907 rcu_read_lock();
908 tsk = find_task_by_vpid(pid);
909 if (tsk && lock_task_sighand(tsk, &flags)) {
910 tsk->signal->audit_tty = s->enabled != 0;
911 unlock_task_sighand(tsk, &flags);
912 } else
913 err = -ESRCH;
914 rcu_read_unlock();
915 break;
916 }
917 default:
918 err = -EINVAL;
919 break;
920 }
921
922 return err < 0 ? err : 0;
923}
924
925/*
926 * Get message from skb. Each message is processed by audit_receive_msg.
927 * Malformed skbs with wrong length are discarded silently.
928 */
929static void audit_receive_skb(struct sk_buff *skb)
930{
931 struct nlmsghdr *nlh;
932 /*
933 * len MUST be signed for NLMSG_NEXT to be able to dec it below 0
934 * if the nlmsg_len was not aligned
935 */
936 int len;
937 int err;
938
939 nlh = nlmsg_hdr(skb);
940 len = skb->len;
941
942 while (NLMSG_OK(nlh, len)) {
943 err = audit_receive_msg(skb, nlh);
944 /* if err or if this message says it wants a response */
945 if (err || (nlh->nlmsg_flags & NLM_F_ACK))
946 netlink_ack(skb, nlh, err);
947
948 nlh = NLMSG_NEXT(nlh, len);
949 }
950}
951
952/* Receive messages from netlink socket. */
953static void audit_receive(struct sk_buff *skb)
954{
955 mutex_lock(&audit_cmd_mutex);
956 audit_receive_skb(skb);
957 mutex_unlock(&audit_cmd_mutex);
958}
959
960/* Initialize audit support at boot time. */
961static int __init audit_init(void)
962{
963 int i;
964
965 if (audit_initialized == AUDIT_DISABLED)
966 return 0;
967
968 printk(KERN_INFO "audit: initializing netlink socket (%s)\n",
969 audit_default ? "enabled" : "disabled");
970 audit_sock = netlink_kernel_create(&init_net, NETLINK_AUDIT, 0,
971 audit_receive, NULL, THIS_MODULE);
972 if (!audit_sock)
973 audit_panic("cannot initialize netlink socket");
974 else
975 audit_sock->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
976
977 skb_queue_head_init(&audit_skb_queue);
978 skb_queue_head_init(&audit_skb_hold_queue);
979 audit_initialized = AUDIT_INITIALIZED;
980 audit_enabled = audit_default;
981 audit_ever_enabled |= !!audit_default;
982
983 audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL, "initialized");
984
985 for (i = 0; i < AUDIT_INODE_BUCKETS; i++)
986 INIT_LIST_HEAD(&audit_inode_hash[i]);
987
988 return 0;
989}
990__initcall(audit_init);
991
992/* Process kernel command-line parameter at boot time. audit=0 or audit=1. */
993static int __init audit_enable(char *str)
994{
995 audit_default = !!simple_strtol(str, NULL, 0);
996 if (!audit_default)
997 audit_initialized = AUDIT_DISABLED;
998
999 printk(KERN_INFO "audit: %s", audit_default ? "enabled" : "disabled");
1000
1001 if (audit_initialized == AUDIT_INITIALIZED) {
1002 audit_enabled = audit_default;
1003 audit_ever_enabled |= !!audit_default;
1004 } else if (audit_initialized == AUDIT_UNINITIALIZED) {
1005 printk(" (after initialization)");
1006 } else {
1007 printk(" (until reboot)");
1008 }
1009 printk("\n");
1010
1011 return 1;
1012}
1013
1014__setup("audit=", audit_enable);
1015
1016static void audit_buffer_free(struct audit_buffer *ab)
1017{
1018 unsigned long flags;
1019
1020 if (!ab)
1021 return;
1022
1023 if (ab->skb)
1024 kfree_skb(ab->skb);
1025
1026 spin_lock_irqsave(&audit_freelist_lock, flags);
1027 if (audit_freelist_count > AUDIT_MAXFREE)
1028 kfree(ab);
1029 else {
1030 audit_freelist_count++;
1031 list_add(&ab->list, &audit_freelist);
1032 }
1033 spin_unlock_irqrestore(&audit_freelist_lock, flags);
1034}
1035
1036static struct audit_buffer * audit_buffer_alloc(struct audit_context *ctx,
1037 gfp_t gfp_mask, int type)
1038{
1039 unsigned long flags;
1040 struct audit_buffer *ab = NULL;
1041 struct nlmsghdr *nlh;
1042
1043 spin_lock_irqsave(&audit_freelist_lock, flags);
1044 if (!list_empty(&audit_freelist)) {
1045 ab = list_entry(audit_freelist.next,
1046 struct audit_buffer, list);
1047 list_del(&ab->list);
1048 --audit_freelist_count;
1049 }
1050 spin_unlock_irqrestore(&audit_freelist_lock, flags);
1051
1052 if (!ab) {
1053 ab = kmalloc(sizeof(*ab), gfp_mask);
1054 if (!ab)
1055 goto err;
1056 }
1057
1058 ab->ctx = ctx;
1059 ab->gfp_mask = gfp_mask;
1060
1061 ab->skb = nlmsg_new(AUDIT_BUFSIZ, gfp_mask);
1062 if (!ab->skb)
1063 goto nlmsg_failure;
1064
1065 nlh = NLMSG_NEW(ab->skb, 0, 0, type, 0, 0);
1066
1067 return ab;
1068
1069nlmsg_failure: /* Used by NLMSG_NEW */
1070 kfree_skb(ab->skb);
1071 ab->skb = NULL;
1072err:
1073 audit_buffer_free(ab);
1074 return NULL;
1075}
1076
1077/**
1078 * audit_serial - compute a serial number for the audit record
1079 *
1080 * Compute a serial number for the audit record. Audit records are
1081 * written to user-space as soon as they are generated, so a complete
1082 * audit record may be written in several pieces. The timestamp of the
1083 * record and this serial number are used by the user-space tools to
1084 * determine which pieces belong to the same audit record. The
1085 * (timestamp,serial) tuple is unique for each syscall and is live from
1086 * syscall entry to syscall exit.
1087 *
1088 * NOTE: Another possibility is to store the formatted records off the
1089 * audit context (for those records that have a context), and emit them
1090 * all at syscall exit. However, this could delay the reporting of
1091 * significant errors until syscall exit (or never, if the system
1092 * halts).
1093 */
1094unsigned int audit_serial(void)
1095{
1096 static DEFINE_SPINLOCK(serial_lock);
1097 static unsigned int serial = 0;
1098
1099 unsigned long flags;
1100 unsigned int ret;
1101
1102 spin_lock_irqsave(&serial_lock, flags);
1103 do {
1104 ret = ++serial;
1105 } while (unlikely(!ret));
1106 spin_unlock_irqrestore(&serial_lock, flags);
1107
1108 return ret;
1109}
1110
1111static inline void audit_get_stamp(struct audit_context *ctx,
1112 struct timespec *t, unsigned int *serial)
1113{
1114 if (!ctx || !auditsc_get_stamp(ctx, t, serial)) {
1115 *t = CURRENT_TIME;
1116 *serial = audit_serial();
1117 }
1118}
1119
1120/* Obtain an audit buffer. This routine does locking to obtain the
1121 * audit buffer, but then no locking is required for calls to
1122 * audit_log_*format. If the tsk is a task that is currently in a
1123 * syscall, then the syscall is marked as auditable and an audit record
1124 * will be written at syscall exit. If there is no associated task, tsk
1125 * should be NULL. */
1126
1127/**
1128 * audit_log_start - obtain an audit buffer
1129 * @ctx: audit_context (may be NULL)
1130 * @gfp_mask: type of allocation
1131 * @type: audit message type
1132 *
1133 * Returns audit_buffer pointer on success or NULL on error.
1134 *
1135 * Obtain an audit buffer. This routine does locking to obtain the
1136 * audit buffer, but then no locking is required for calls to
1137 * audit_log_*format. If the task (ctx) is a task that is currently in a
1138 * syscall, then the syscall is marked as auditable and an audit record
1139 * will be written at syscall exit. If there is no associated task, then
1140 * task context (ctx) should be NULL.
1141 */
1142struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask,
1143 int type)
1144{
1145 struct audit_buffer *ab = NULL;
1146 struct timespec t;
1147 unsigned int uninitialized_var(serial);
1148 int reserve;
1149 unsigned long timeout_start = jiffies;
1150
1151 if (audit_initialized != AUDIT_INITIALIZED)
1152 return NULL;
1153
1154 if (unlikely(audit_filter_type(type)))
1155 return NULL;
1156
1157 if (gfp_mask & __GFP_WAIT)
1158 reserve = 0;
1159 else
1160 reserve = 5; /* Allow atomic callers to go up to five
1161 entries over the normal backlog limit */
1162
1163 while (audit_backlog_limit
1164 && skb_queue_len(&audit_skb_queue) > audit_backlog_limit + reserve) {
1165 if (gfp_mask & __GFP_WAIT && audit_backlog_wait_time
1166 && time_before(jiffies, timeout_start + audit_backlog_wait_time)) {
1167
1168 /* Wait for auditd to drain the queue a little */
1169 DECLARE_WAITQUEUE(wait, current);
1170 set_current_state(TASK_INTERRUPTIBLE);
1171 add_wait_queue(&audit_backlog_wait, &wait);
1172
1173 if (audit_backlog_limit &&
1174 skb_queue_len(&audit_skb_queue) > audit_backlog_limit)
1175 schedule_timeout(timeout_start + audit_backlog_wait_time - jiffies);
1176
1177 __set_current_state(TASK_RUNNING);
1178 remove_wait_queue(&audit_backlog_wait, &wait);
1179 continue;
1180 }
1181 if (audit_rate_check() && printk_ratelimit())
1182 printk(KERN_WARNING
1183 "audit: audit_backlog=%d > "
1184 "audit_backlog_limit=%d\n",
1185 skb_queue_len(&audit_skb_queue),
1186 audit_backlog_limit);
1187 audit_log_lost("backlog limit exceeded");
1188 audit_backlog_wait_time = audit_backlog_wait_overflow;
1189 wake_up(&audit_backlog_wait);
1190 return NULL;
1191 }
1192
1193 ab = audit_buffer_alloc(ctx, gfp_mask, type);
1194 if (!ab) {
1195 audit_log_lost("out of memory in audit_log_start");
1196 return NULL;
1197 }
1198
1199 audit_get_stamp(ab->ctx, &t, &serial);
1200
1201 audit_log_format(ab, "audit(%lu.%03lu:%u): ",
1202 t.tv_sec, t.tv_nsec/1000000, serial);
1203 return ab;
1204}
1205
1206/**
1207 * audit_expand - expand skb in the audit buffer
1208 * @ab: audit_buffer
1209 * @extra: space to add at tail of the skb
1210 *
1211 * Returns 0 (no space) on failed expansion, or available space if
1212 * successful.
1213 */
1214static inline int audit_expand(struct audit_buffer *ab, int extra)
1215{
1216 struct sk_buff *skb = ab->skb;
1217 int oldtail = skb_tailroom(skb);
1218 int ret = pskb_expand_head(skb, 0, extra, ab->gfp_mask);
1219 int newtail = skb_tailroom(skb);
1220
1221 if (ret < 0) {
1222 audit_log_lost("out of memory in audit_expand");
1223 return 0;
1224 }
1225
1226 skb->truesize += newtail - oldtail;
1227 return newtail;
1228}
1229
1230/*
1231 * Format an audit message into the audit buffer. If there isn't enough
1232 * room in the audit buffer, more room will be allocated and vsnprint
1233 * will be called a second time. Currently, we assume that a printk
1234 * can't format message larger than 1024 bytes, so we don't either.
1235 */
1236static void audit_log_vformat(struct audit_buffer *ab, const char *fmt,
1237 va_list args)
1238{
1239 int len, avail;
1240 struct sk_buff *skb;
1241 va_list args2;
1242
1243 if (!ab)
1244 return;
1245
1246 BUG_ON(!ab->skb);
1247 skb = ab->skb;
1248 avail = skb_tailroom(skb);
1249 if (avail == 0) {
1250 avail = audit_expand(ab, AUDIT_BUFSIZ);
1251 if (!avail)
1252 goto out;
1253 }
1254 va_copy(args2, args);
1255 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args);
1256 if (len >= avail) {
1257 /* The printk buffer is 1024 bytes long, so if we get
1258 * here and AUDIT_BUFSIZ is at least 1024, then we can
1259 * log everything that printk could have logged. */
1260 avail = audit_expand(ab,
1261 max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail));
1262 if (!avail)
1263 goto out;
1264 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2);
1265 }
1266 va_end(args2);
1267 if (len > 0)
1268 skb_put(skb, len);
1269out:
1270 return;
1271}
1272
1273/**
1274 * audit_log_format - format a message into the audit buffer.
1275 * @ab: audit_buffer
1276 * @fmt: format string
1277 * @...: optional parameters matching @fmt string
1278 *
1279 * All the work is done in audit_log_vformat.
1280 */
1281void audit_log_format(struct audit_buffer *ab, const char *fmt, ...)
1282{
1283 va_list args;
1284
1285 if (!ab)
1286 return;
1287 va_start(args, fmt);
1288 audit_log_vformat(ab, fmt, args);
1289 va_end(args);
1290}
1291
1292/**
1293 * audit_log_hex - convert a buffer to hex and append it to the audit skb
1294 * @ab: the audit_buffer
1295 * @buf: buffer to convert to hex
1296 * @len: length of @buf to be converted
1297 *
1298 * No return value; failure to expand is silently ignored.
1299 *
1300 * This function will take the passed buf and convert it into a string of
1301 * ascii hex digits. The new string is placed onto the skb.
1302 */
1303void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf,
1304 size_t len)
1305{
1306 int i, avail, new_len;
1307 unsigned char *ptr;
1308 struct sk_buff *skb;
1309 static const unsigned char *hex = "0123456789ABCDEF";
1310
1311 if (!ab)
1312 return;
1313
1314 BUG_ON(!ab->skb);
1315 skb = ab->skb;
1316 avail = skb_tailroom(skb);
1317 new_len = len<<1;
1318 if (new_len >= avail) {
1319 /* Round the buffer request up to the next multiple */
1320 new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1);
1321 avail = audit_expand(ab, new_len);
1322 if (!avail)
1323 return;
1324 }
1325
1326 ptr = skb_tail_pointer(skb);
1327 for (i=0; i<len; i++) {
1328 *ptr++ = hex[(buf[i] & 0xF0)>>4]; /* Upper nibble */
1329 *ptr++ = hex[buf[i] & 0x0F]; /* Lower nibble */
1330 }
1331 *ptr = 0;
1332 skb_put(skb, len << 1); /* new string is twice the old string */
1333}
1334
1335/*
1336 * Format a string of no more than slen characters into the audit buffer,
1337 * enclosed in quote marks.
1338 */
1339void audit_log_n_string(struct audit_buffer *ab, const char *string,
1340 size_t slen)
1341{
1342 int avail, new_len;
1343 unsigned char *ptr;
1344 struct sk_buff *skb;
1345
1346 if (!ab)
1347 return;
1348
1349 BUG_ON(!ab->skb);
1350 skb = ab->skb;
1351 avail = skb_tailroom(skb);
1352 new_len = slen + 3; /* enclosing quotes + null terminator */
1353 if (new_len > avail) {
1354 avail = audit_expand(ab, new_len);
1355 if (!avail)
1356 return;
1357 }
1358 ptr = skb_tail_pointer(skb);
1359 *ptr++ = '"';
1360 memcpy(ptr, string, slen);
1361 ptr += slen;
1362 *ptr++ = '"';
1363 *ptr = 0;
1364 skb_put(skb, slen + 2); /* don't include null terminator */
1365}
1366
1367/**
1368 * audit_string_contains_control - does a string need to be logged in hex
1369 * @string: string to be checked
1370 * @len: max length of the string to check
1371 */
1372int audit_string_contains_control(const char *string, size_t len)
1373{
1374 const unsigned char *p;
1375 for (p = string; p < (const unsigned char *)string + len; p++) {
1376 if (*p == '"' || *p < 0x21 || *p > 0x7e)
1377 return 1;
1378 }
1379 return 0;
1380}
1381
1382/**
1383 * audit_log_n_untrustedstring - log a string that may contain random characters
1384 * @ab: audit_buffer
1385 * @len: length of string (not including trailing null)
1386 * @string: string to be logged
1387 *
1388 * This code will escape a string that is passed to it if the string
1389 * contains a control character, unprintable character, double quote mark,
1390 * or a space. Unescaped strings will start and end with a double quote mark.
1391 * Strings that are escaped are printed in hex (2 digits per char).
1392 *
1393 * The caller specifies the number of characters in the string to log, which may
1394 * or may not be the entire string.
1395 */
1396void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string,
1397 size_t len)
1398{
1399 if (audit_string_contains_control(string, len))
1400 audit_log_n_hex(ab, string, len);
1401 else
1402 audit_log_n_string(ab, string, len);
1403}
1404
1405/**
1406 * audit_log_untrustedstring - log a string that may contain random characters
1407 * @ab: audit_buffer
1408 * @string: string to be logged
1409 *
1410 * Same as audit_log_n_untrustedstring(), except that strlen is used to
1411 * determine string length.
1412 */
1413void audit_log_untrustedstring(struct audit_buffer *ab, const char *string)
1414{
1415 audit_log_n_untrustedstring(ab, string, strlen(string));
1416}
1417
1418/* This is a helper-function to print the escaped d_path */
1419void audit_log_d_path(struct audit_buffer *ab, const char *prefix,
1420 struct path *path)
1421{
1422 char *p, *pathname;
1423
1424 if (prefix)
1425 audit_log_format(ab, " %s", prefix);
1426
1427 /* We will allow 11 spaces for ' (deleted)' to be appended */
1428 pathname = kmalloc(PATH_MAX+11, ab->gfp_mask);
1429 if (!pathname) {
1430 audit_log_string(ab, "<no_memory>");
1431 return;
1432 }
1433 p = d_path(path, pathname, PATH_MAX+11);
1434 if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */
1435 /* FIXME: can we save some information here? */
1436 audit_log_string(ab, "<too_long>");
1437 } else
1438 audit_log_untrustedstring(ab, p);
1439 kfree(pathname);
1440}
1441
1442void audit_log_key(struct audit_buffer *ab, char *key)
1443{
1444 audit_log_format(ab, " key=");
1445 if (key)
1446 audit_log_untrustedstring(ab, key);
1447 else
1448 audit_log_format(ab, "(null)");
1449}
1450
1451/**
1452 * audit_log_end - end one audit record
1453 * @ab: the audit_buffer
1454 *
1455 * The netlink_* functions cannot be called inside an irq context, so
1456 * the audit buffer is placed on a queue and a tasklet is scheduled to
1457 * remove them from the queue outside the irq context. May be called in
1458 * any context.
1459 */
1460void audit_log_end(struct audit_buffer *ab)
1461{
1462 if (!ab)
1463 return;
1464 if (!audit_rate_check()) {
1465 audit_log_lost("rate limit exceeded");
1466 } else {
1467 struct nlmsghdr *nlh = nlmsg_hdr(ab->skb);
1468 nlh->nlmsg_len = ab->skb->len - NLMSG_SPACE(0);
1469
1470 if (audit_pid) {
1471 skb_queue_tail(&audit_skb_queue, ab->skb);
1472 wake_up_interruptible(&kauditd_wait);
1473 } else {
1474 audit_printk_skb(ab->skb);
1475 }
1476 ab->skb = NULL;
1477 }
1478 audit_buffer_free(ab);
1479}
1480
1481/**
1482 * audit_log - Log an audit record
1483 * @ctx: audit context
1484 * @gfp_mask: type of allocation
1485 * @type: audit message type
1486 * @fmt: format string to use
1487 * @...: variable parameters matching the format string
1488 *
1489 * This is a convenience function that calls audit_log_start,
1490 * audit_log_vformat, and audit_log_end. It may be called
1491 * in any context.
1492 */
1493void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type,
1494 const char *fmt, ...)
1495{
1496 struct audit_buffer *ab;
1497 va_list args;
1498
1499 ab = audit_log_start(ctx, gfp_mask, type);
1500 if (ab) {
1501 va_start(args, fmt);
1502 audit_log_vformat(ab, fmt, args);
1503 va_end(args);
1504 audit_log_end(ab);
1505 }
1506}
1507
1508#ifdef CONFIG_SECURITY
1509/**
1510 * audit_log_secctx - Converts and logs SELinux context
1511 * @ab: audit_buffer
1512 * @secid: security number
1513 *
1514 * This is a helper function that calls security_secid_to_secctx to convert
1515 * secid to secctx and then adds the (converted) SELinux context to the audit
1516 * log by calling audit_log_format, thus also preventing leak of internal secid
1517 * to userspace. If secid cannot be converted audit_panic is called.
1518 */
1519void audit_log_secctx(struct audit_buffer *ab, u32 secid)
1520{
1521 u32 len;
1522 char *secctx;
1523
1524 if (security_secid_to_secctx(secid, &secctx, &len)) {
1525 audit_panic("Cannot convert secid to context");
1526 } else {
1527 audit_log_format(ab, " obj=%s", secctx);
1528 security_release_secctx(secctx, len);
1529 }
1530}
1531EXPORT_SYMBOL(audit_log_secctx);
1532#endif
1533
1534EXPORT_SYMBOL(audit_log_start);
1535EXPORT_SYMBOL(audit_log_end);
1536EXPORT_SYMBOL(audit_log_format);
1537EXPORT_SYMBOL(audit_log);