Linux Audio

Check our new training course

Loading...
v4.6
  1/*
  2 * Squashfs - a compressed read only filesystem for Linux
  3 *
  4 * Copyright (c) 2002, 2003, 2004, 2005, 2006, 2007, 2008
  5 * Phillip Lougher <phillip@squashfs.org.uk>
  6 *
  7 * This program is free software; you can redistribute it and/or
  8 * modify it under the terms of the GNU General Public License
  9 * as published by the Free Software Foundation; either version 2,
 10 * or (at your option) any later version.
 11 *
 12 * This program is distributed in the hope that it will be useful,
 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 15 * GNU General Public License for more details.
 16 *
 17 * You should have received a copy of the GNU General Public License
 18 * along with this program; if not, write to the Free Software
 19 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
 20 *
 21 * cache.c
 22 */
 23
 24/*
 25 * Blocks in Squashfs are compressed.  To avoid repeatedly decompressing
 26 * recently accessed data Squashfs uses two small metadata and fragment caches.
 27 *
 28 * This file implements a generic cache implementation used for both caches,
 29 * plus functions layered ontop of the generic cache implementation to
 30 * access the metadata and fragment caches.
 31 *
 32 * To avoid out of memory and fragmentation issues with vmalloc the cache
 33 * uses sequences of kmalloced PAGE_SIZE buffers.
 34 *
 35 * It should be noted that the cache is not used for file datablocks, these
 36 * are decompressed and cached in the page-cache in the normal way.  The
 37 * cache is only used to temporarily cache fragment and metadata blocks
 38 * which have been read as as a result of a metadata (i.e. inode or
 39 * directory) or fragment access.  Because metadata and fragments are packed
 40 * together into blocks (to gain greater compression) the read of a particular
 41 * piece of metadata or fragment will retrieve other metadata/fragments which
 42 * have been packed with it, these because of locality-of-reference may be read
 43 * in the near future. Temporarily caching them ensures they are available for
 44 * near future access without requiring an additional read and decompress.
 45 */
 46
 47#include <linux/fs.h>
 48#include <linux/vfs.h>
 49#include <linux/slab.h>
 50#include <linux/vmalloc.h>
 51#include <linux/sched.h>
 52#include <linux/spinlock.h>
 53#include <linux/wait.h>
 54#include <linux/pagemap.h>
 55
 56#include "squashfs_fs.h"
 57#include "squashfs_fs_sb.h"
 58#include "squashfs.h"
 59#include "page_actor.h"
 60
 61/*
 62 * Look-up block in cache, and increment usage count.  If not in cache, read
 63 * and decompress it from disk.
 64 */
 65struct squashfs_cache_entry *squashfs_cache_get(struct super_block *sb,
 66	struct squashfs_cache *cache, u64 block, int length)
 67{
 68	int i, n;
 69	struct squashfs_cache_entry *entry;
 70
 71	spin_lock(&cache->lock);
 72
 73	while (1) {
 74		for (i = cache->curr_blk, n = 0; n < cache->entries; n++) {
 75			if (cache->entry[i].block == block) {
 76				cache->curr_blk = i;
 77				break;
 78			}
 79			i = (i + 1) % cache->entries;
 80		}
 81
 82		if (n == cache->entries) {
 83			/*
 84			 * Block not in cache, if all cache entries are used
 85			 * go to sleep waiting for one to become available.
 86			 */
 87			if (cache->unused == 0) {
 88				cache->num_waiters++;
 89				spin_unlock(&cache->lock);
 90				wait_event(cache->wait_queue, cache->unused);
 91				spin_lock(&cache->lock);
 92				cache->num_waiters--;
 93				continue;
 94			}
 95
 96			/*
 97			 * At least one unused cache entry.  A simple
 98			 * round-robin strategy is used to choose the entry to
 99			 * be evicted from the cache.
100			 */
101			i = cache->next_blk;
102			for (n = 0; n < cache->entries; n++) {
103				if (cache->entry[i].refcount == 0)
104					break;
105				i = (i + 1) % cache->entries;
106			}
107
108			cache->next_blk = (i + 1) % cache->entries;
109			entry = &cache->entry[i];
110
111			/*
112			 * Initialise chosen cache entry, and fill it in from
113			 * disk.
114			 */
115			cache->unused--;
116			entry->block = block;
117			entry->refcount = 1;
118			entry->pending = 1;
119			entry->num_waiters = 0;
120			entry->error = 0;
121			spin_unlock(&cache->lock);
122
123			entry->length = squashfs_read_data(sb, block, length,
124				&entry->next_index, entry->actor);
 
125
126			spin_lock(&cache->lock);
127
128			if (entry->length < 0)
129				entry->error = entry->length;
130
131			entry->pending = 0;
132
133			/*
134			 * While filling this entry one or more other processes
135			 * have looked it up in the cache, and have slept
136			 * waiting for it to become available.
137			 */
138			if (entry->num_waiters) {
139				spin_unlock(&cache->lock);
140				wake_up_all(&entry->wait_queue);
141			} else
142				spin_unlock(&cache->lock);
143
144			goto out;
145		}
146
147		/*
148		 * Block already in cache.  Increment refcount so it doesn't
149		 * get reused until we're finished with it, if it was
150		 * previously unused there's one less cache entry available
151		 * for reuse.
152		 */
153		entry = &cache->entry[i];
154		if (entry->refcount == 0)
155			cache->unused--;
156		entry->refcount++;
157
158		/*
159		 * If the entry is currently being filled in by another process
160		 * go to sleep waiting for it to become available.
161		 */
162		if (entry->pending) {
163			entry->num_waiters++;
164			spin_unlock(&cache->lock);
165			wait_event(entry->wait_queue, !entry->pending);
166		} else
167			spin_unlock(&cache->lock);
168
169		goto out;
170	}
171
172out:
173	TRACE("Got %s %d, start block %lld, refcount %d, error %d\n",
174		cache->name, i, entry->block, entry->refcount, entry->error);
175
176	if (entry->error)
177		ERROR("Unable to read %s cache entry [%llx]\n", cache->name,
178							block);
179	return entry;
180}
181
182
183/*
184 * Release cache entry, once usage count is zero it can be reused.
185 */
186void squashfs_cache_put(struct squashfs_cache_entry *entry)
187{
188	struct squashfs_cache *cache = entry->cache;
189
190	spin_lock(&cache->lock);
191	entry->refcount--;
192	if (entry->refcount == 0) {
193		cache->unused++;
194		/*
195		 * If there's any processes waiting for a block to become
196		 * available, wake one up.
197		 */
198		if (cache->num_waiters) {
199			spin_unlock(&cache->lock);
200			wake_up(&cache->wait_queue);
201			return;
202		}
203	}
204	spin_unlock(&cache->lock);
205}
206
207/*
208 * Delete cache reclaiming all kmalloced buffers.
209 */
210void squashfs_cache_delete(struct squashfs_cache *cache)
211{
212	int i, j;
213
214	if (cache == NULL)
215		return;
216
217	for (i = 0; i < cache->entries; i++) {
218		if (cache->entry[i].data) {
219			for (j = 0; j < cache->pages; j++)
220				kfree(cache->entry[i].data[j]);
221			kfree(cache->entry[i].data);
222		}
223		kfree(cache->entry[i].actor);
224	}
225
226	kfree(cache->entry);
227	kfree(cache);
228}
229
230
231/*
232 * Initialise cache allocating the specified number of entries, each of
233 * size block_size.  To avoid vmalloc fragmentation issues each entry
234 * is allocated as a sequence of kmalloced PAGE_SIZE buffers.
235 */
236struct squashfs_cache *squashfs_cache_init(char *name, int entries,
237	int block_size)
238{
239	int i, j;
240	struct squashfs_cache *cache = kzalloc(sizeof(*cache), GFP_KERNEL);
241
242	if (cache == NULL) {
243		ERROR("Failed to allocate %s cache\n", name);
244		return NULL;
245	}
246
247	cache->entry = kcalloc(entries, sizeof(*(cache->entry)), GFP_KERNEL);
248	if (cache->entry == NULL) {
249		ERROR("Failed to allocate %s cache\n", name);
250		goto cleanup;
251	}
252
253	cache->curr_blk = 0;
254	cache->next_blk = 0;
255	cache->unused = entries;
256	cache->entries = entries;
257	cache->block_size = block_size;
258	cache->pages = block_size >> PAGE_SHIFT;
259	cache->pages = cache->pages ? cache->pages : 1;
260	cache->name = name;
261	cache->num_waiters = 0;
262	spin_lock_init(&cache->lock);
263	init_waitqueue_head(&cache->wait_queue);
264
265	for (i = 0; i < entries; i++) {
266		struct squashfs_cache_entry *entry = &cache->entry[i];
267
268		init_waitqueue_head(&cache->entry[i].wait_queue);
269		entry->cache = cache;
270		entry->block = SQUASHFS_INVALID_BLK;
271		entry->data = kcalloc(cache->pages, sizeof(void *), GFP_KERNEL);
272		if (entry->data == NULL) {
273			ERROR("Failed to allocate %s cache entry\n", name);
274			goto cleanup;
275		}
276
277		for (j = 0; j < cache->pages; j++) {
278			entry->data[j] = kmalloc(PAGE_SIZE, GFP_KERNEL);
279			if (entry->data[j] == NULL) {
280				ERROR("Failed to allocate %s buffer\n", name);
281				goto cleanup;
282			}
283		}
284
285		entry->actor = squashfs_page_actor_init(entry->data,
286						cache->pages, 0);
287		if (entry->actor == NULL) {
288			ERROR("Failed to allocate %s cache entry\n", name);
289			goto cleanup;
290		}
291	}
292
293	return cache;
294
295cleanup:
296	squashfs_cache_delete(cache);
297	return NULL;
298}
299
300
301/*
302 * Copy up to length bytes from cache entry to buffer starting at offset bytes
303 * into the cache entry.  If there's not length bytes then copy the number of
304 * bytes available.  In all cases return the number of bytes copied.
305 */
306int squashfs_copy_data(void *buffer, struct squashfs_cache_entry *entry,
307		int offset, int length)
308{
309	int remaining = length;
310
311	if (length == 0)
312		return 0;
313	else if (buffer == NULL)
314		return min(length, entry->length - offset);
315
316	while (offset < entry->length) {
317		void *buff = entry->data[offset / PAGE_SIZE]
318				+ (offset % PAGE_SIZE);
319		int bytes = min_t(int, entry->length - offset,
320				PAGE_SIZE - (offset % PAGE_SIZE));
321
322		if (bytes >= remaining) {
323			memcpy(buffer, buff, remaining);
324			remaining = 0;
325			break;
326		}
327
328		memcpy(buffer, buff, bytes);
329		buffer += bytes;
330		remaining -= bytes;
331		offset += bytes;
332	}
333
334	return length - remaining;
335}
336
337
338/*
339 * Read length bytes from metadata position <block, offset> (block is the
340 * start of the compressed block on disk, and offset is the offset into
341 * the block once decompressed).  Data is packed into consecutive blocks,
342 * and length bytes may require reading more than one block.
343 */
344int squashfs_read_metadata(struct super_block *sb, void *buffer,
345		u64 *block, int *offset, int length)
346{
347	struct squashfs_sb_info *msblk = sb->s_fs_info;
348	int bytes, res = length;
349	struct squashfs_cache_entry *entry;
350
351	TRACE("Entered squashfs_read_metadata [%llx:%x]\n", *block, *offset);
352
353	while (length) {
354		entry = squashfs_cache_get(sb, msblk->block_cache, *block, 0);
355		if (entry->error) {
356			res = entry->error;
357			goto error;
358		} else if (*offset >= entry->length) {
359			res = -EIO;
360			goto error;
361		}
362
363		bytes = squashfs_copy_data(buffer, entry, *offset, length);
364		if (buffer)
365			buffer += bytes;
366		length -= bytes;
367		*offset += bytes;
368
369		if (*offset == entry->length) {
370			*block = entry->next_index;
371			*offset = 0;
372		}
373
374		squashfs_cache_put(entry);
375	}
376
377	return res;
378
379error:
380	squashfs_cache_put(entry);
381	return res;
382}
383
384
385/*
386 * Look-up in the fragmment cache the fragment located at <start_block> in the
387 * filesystem.  If necessary read and decompress it from disk.
388 */
389struct squashfs_cache_entry *squashfs_get_fragment(struct super_block *sb,
390				u64 start_block, int length)
391{
392	struct squashfs_sb_info *msblk = sb->s_fs_info;
393
394	return squashfs_cache_get(sb, msblk->fragment_cache, start_block,
395		length);
396}
397
398
399/*
400 * Read and decompress the datablock located at <start_block> in the
401 * filesystem.  The cache is used here to avoid duplicating locking and
402 * read/decompress code.
403 */
404struct squashfs_cache_entry *squashfs_get_datablock(struct super_block *sb,
405				u64 start_block, int length)
406{
407	struct squashfs_sb_info *msblk = sb->s_fs_info;
408
409	return squashfs_cache_get(sb, msblk->read_page, start_block, length);
410}
411
412
413/*
414 * Read a filesystem table (uncompressed sequence of bytes) from disk
415 */
416void *squashfs_read_table(struct super_block *sb, u64 block, int length)
417{
418	int pages = (length + PAGE_SIZE - 1) >> PAGE_SHIFT;
419	int i, res;
420	void *table, *buffer, **data;
421	struct squashfs_page_actor *actor;
422
423	table = buffer = kmalloc(length, GFP_KERNEL);
424	if (table == NULL)
425		return ERR_PTR(-ENOMEM);
426
427	data = kcalloc(pages, sizeof(void *), GFP_KERNEL);
428	if (data == NULL) {
429		res = -ENOMEM;
430		goto failed;
431	}
432
433	actor = squashfs_page_actor_init(data, pages, length);
434	if (actor == NULL) {
435		res = -ENOMEM;
436		goto failed2;
437	}
438
439	for (i = 0; i < pages; i++, buffer += PAGE_SIZE)
440		data[i] = buffer;
441
442	res = squashfs_read_data(sb, block, length |
443		SQUASHFS_COMPRESSED_BIT_BLOCK, NULL, actor);
444
445	kfree(data);
446	kfree(actor);
447
448	if (res < 0)
449		goto failed;
450
451	return table;
452
453failed2:
454	kfree(data);
455failed:
456	kfree(table);
457	return ERR_PTR(res);
458}
v3.1
  1/*
  2 * Squashfs - a compressed read only filesystem for Linux
  3 *
  4 * Copyright (c) 2002, 2003, 2004, 2005, 2006, 2007, 2008
  5 * Phillip Lougher <phillip@squashfs.org.uk>
  6 *
  7 * This program is free software; you can redistribute it and/or
  8 * modify it under the terms of the GNU General Public License
  9 * as published by the Free Software Foundation; either version 2,
 10 * or (at your option) any later version.
 11 *
 12 * This program is distributed in the hope that it will be useful,
 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 15 * GNU General Public License for more details.
 16 *
 17 * You should have received a copy of the GNU General Public License
 18 * along with this program; if not, write to the Free Software
 19 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
 20 *
 21 * cache.c
 22 */
 23
 24/*
 25 * Blocks in Squashfs are compressed.  To avoid repeatedly decompressing
 26 * recently accessed data Squashfs uses two small metadata and fragment caches.
 27 *
 28 * This file implements a generic cache implementation used for both caches,
 29 * plus functions layered ontop of the generic cache implementation to
 30 * access the metadata and fragment caches.
 31 *
 32 * To avoid out of memory and fragmentation issues with vmalloc the cache
 33 * uses sequences of kmalloced PAGE_CACHE_SIZE buffers.
 34 *
 35 * It should be noted that the cache is not used for file datablocks, these
 36 * are decompressed and cached in the page-cache in the normal way.  The
 37 * cache is only used to temporarily cache fragment and metadata blocks
 38 * which have been read as as a result of a metadata (i.e. inode or
 39 * directory) or fragment access.  Because metadata and fragments are packed
 40 * together into blocks (to gain greater compression) the read of a particular
 41 * piece of metadata or fragment will retrieve other metadata/fragments which
 42 * have been packed with it, these because of locality-of-reference may be read
 43 * in the near future. Temporarily caching them ensures they are available for
 44 * near future access without requiring an additional read and decompress.
 45 */
 46
 47#include <linux/fs.h>
 48#include <linux/vfs.h>
 49#include <linux/slab.h>
 50#include <linux/vmalloc.h>
 51#include <linux/sched.h>
 52#include <linux/spinlock.h>
 53#include <linux/wait.h>
 54#include <linux/pagemap.h>
 55
 56#include "squashfs_fs.h"
 57#include "squashfs_fs_sb.h"
 58#include "squashfs.h"
 
 59
 60/*
 61 * Look-up block in cache, and increment usage count.  If not in cache, read
 62 * and decompress it from disk.
 63 */
 64struct squashfs_cache_entry *squashfs_cache_get(struct super_block *sb,
 65	struct squashfs_cache *cache, u64 block, int length)
 66{
 67	int i, n;
 68	struct squashfs_cache_entry *entry;
 69
 70	spin_lock(&cache->lock);
 71
 72	while (1) {
 73		for (i = 0; i < cache->entries; i++)
 74			if (cache->entry[i].block == block)
 
 75				break;
 
 
 
 76
 77		if (i == cache->entries) {
 78			/*
 79			 * Block not in cache, if all cache entries are used
 80			 * go to sleep waiting for one to become available.
 81			 */
 82			if (cache->unused == 0) {
 83				cache->num_waiters++;
 84				spin_unlock(&cache->lock);
 85				wait_event(cache->wait_queue, cache->unused);
 86				spin_lock(&cache->lock);
 87				cache->num_waiters--;
 88				continue;
 89			}
 90
 91			/*
 92			 * At least one unused cache entry.  A simple
 93			 * round-robin strategy is used to choose the entry to
 94			 * be evicted from the cache.
 95			 */
 96			i = cache->next_blk;
 97			for (n = 0; n < cache->entries; n++) {
 98				if (cache->entry[i].refcount == 0)
 99					break;
100				i = (i + 1) % cache->entries;
101			}
102
103			cache->next_blk = (i + 1) % cache->entries;
104			entry = &cache->entry[i];
105
106			/*
107			 * Initialise chosen cache entry, and fill it in from
108			 * disk.
109			 */
110			cache->unused--;
111			entry->block = block;
112			entry->refcount = 1;
113			entry->pending = 1;
114			entry->num_waiters = 0;
115			entry->error = 0;
116			spin_unlock(&cache->lock);
117
118			entry->length = squashfs_read_data(sb, entry->data,
119				block, length, &entry->next_index,
120				cache->block_size, cache->pages);
121
122			spin_lock(&cache->lock);
123
124			if (entry->length < 0)
125				entry->error = entry->length;
126
127			entry->pending = 0;
128
129			/*
130			 * While filling this entry one or more other processes
131			 * have looked it up in the cache, and have slept
132			 * waiting for it to become available.
133			 */
134			if (entry->num_waiters) {
135				spin_unlock(&cache->lock);
136				wake_up_all(&entry->wait_queue);
137			} else
138				spin_unlock(&cache->lock);
139
140			goto out;
141		}
142
143		/*
144		 * Block already in cache.  Increment refcount so it doesn't
145		 * get reused until we're finished with it, if it was
146		 * previously unused there's one less cache entry available
147		 * for reuse.
148		 */
149		entry = &cache->entry[i];
150		if (entry->refcount == 0)
151			cache->unused--;
152		entry->refcount++;
153
154		/*
155		 * If the entry is currently being filled in by another process
156		 * go to sleep waiting for it to become available.
157		 */
158		if (entry->pending) {
159			entry->num_waiters++;
160			spin_unlock(&cache->lock);
161			wait_event(entry->wait_queue, !entry->pending);
162		} else
163			spin_unlock(&cache->lock);
164
165		goto out;
166	}
167
168out:
169	TRACE("Got %s %d, start block %lld, refcount %d, error %d\n",
170		cache->name, i, entry->block, entry->refcount, entry->error);
171
172	if (entry->error)
173		ERROR("Unable to read %s cache entry [%llx]\n", cache->name,
174							block);
175	return entry;
176}
177
178
179/*
180 * Release cache entry, once usage count is zero it can be reused.
181 */
182void squashfs_cache_put(struct squashfs_cache_entry *entry)
183{
184	struct squashfs_cache *cache = entry->cache;
185
186	spin_lock(&cache->lock);
187	entry->refcount--;
188	if (entry->refcount == 0) {
189		cache->unused++;
190		/*
191		 * If there's any processes waiting for a block to become
192		 * available, wake one up.
193		 */
194		if (cache->num_waiters) {
195			spin_unlock(&cache->lock);
196			wake_up(&cache->wait_queue);
197			return;
198		}
199	}
200	spin_unlock(&cache->lock);
201}
202
203/*
204 * Delete cache reclaiming all kmalloced buffers.
205 */
206void squashfs_cache_delete(struct squashfs_cache *cache)
207{
208	int i, j;
209
210	if (cache == NULL)
211		return;
212
213	for (i = 0; i < cache->entries; i++) {
214		if (cache->entry[i].data) {
215			for (j = 0; j < cache->pages; j++)
216				kfree(cache->entry[i].data[j]);
217			kfree(cache->entry[i].data);
218		}
 
219	}
220
221	kfree(cache->entry);
222	kfree(cache);
223}
224
225
226/*
227 * Initialise cache allocating the specified number of entries, each of
228 * size block_size.  To avoid vmalloc fragmentation issues each entry
229 * is allocated as a sequence of kmalloced PAGE_CACHE_SIZE buffers.
230 */
231struct squashfs_cache *squashfs_cache_init(char *name, int entries,
232	int block_size)
233{
234	int i, j;
235	struct squashfs_cache *cache = kzalloc(sizeof(*cache), GFP_KERNEL);
236
237	if (cache == NULL) {
238		ERROR("Failed to allocate %s cache\n", name);
239		return NULL;
240	}
241
242	cache->entry = kcalloc(entries, sizeof(*(cache->entry)), GFP_KERNEL);
243	if (cache->entry == NULL) {
244		ERROR("Failed to allocate %s cache\n", name);
245		goto cleanup;
246	}
247
 
248	cache->next_blk = 0;
249	cache->unused = entries;
250	cache->entries = entries;
251	cache->block_size = block_size;
252	cache->pages = block_size >> PAGE_CACHE_SHIFT;
253	cache->pages = cache->pages ? cache->pages : 1;
254	cache->name = name;
255	cache->num_waiters = 0;
256	spin_lock_init(&cache->lock);
257	init_waitqueue_head(&cache->wait_queue);
258
259	for (i = 0; i < entries; i++) {
260		struct squashfs_cache_entry *entry = &cache->entry[i];
261
262		init_waitqueue_head(&cache->entry[i].wait_queue);
263		entry->cache = cache;
264		entry->block = SQUASHFS_INVALID_BLK;
265		entry->data = kcalloc(cache->pages, sizeof(void *), GFP_KERNEL);
266		if (entry->data == NULL) {
267			ERROR("Failed to allocate %s cache entry\n", name);
268			goto cleanup;
269		}
270
271		for (j = 0; j < cache->pages; j++) {
272			entry->data[j] = kmalloc(PAGE_CACHE_SIZE, GFP_KERNEL);
273			if (entry->data[j] == NULL) {
274				ERROR("Failed to allocate %s buffer\n", name);
275				goto cleanup;
276			}
277		}
 
 
 
 
 
 
 
278	}
279
280	return cache;
281
282cleanup:
283	squashfs_cache_delete(cache);
284	return NULL;
285}
286
287
288/*
289 * Copy up to length bytes from cache entry to buffer starting at offset bytes
290 * into the cache entry.  If there's not length bytes then copy the number of
291 * bytes available.  In all cases return the number of bytes copied.
292 */
293int squashfs_copy_data(void *buffer, struct squashfs_cache_entry *entry,
294		int offset, int length)
295{
296	int remaining = length;
297
298	if (length == 0)
299		return 0;
300	else if (buffer == NULL)
301		return min(length, entry->length - offset);
302
303	while (offset < entry->length) {
304		void *buff = entry->data[offset / PAGE_CACHE_SIZE]
305				+ (offset % PAGE_CACHE_SIZE);
306		int bytes = min_t(int, entry->length - offset,
307				PAGE_CACHE_SIZE - (offset % PAGE_CACHE_SIZE));
308
309		if (bytes >= remaining) {
310			memcpy(buffer, buff, remaining);
311			remaining = 0;
312			break;
313		}
314
315		memcpy(buffer, buff, bytes);
316		buffer += bytes;
317		remaining -= bytes;
318		offset += bytes;
319	}
320
321	return length - remaining;
322}
323
324
325/*
326 * Read length bytes from metadata position <block, offset> (block is the
327 * start of the compressed block on disk, and offset is the offset into
328 * the block once decompressed).  Data is packed into consecutive blocks,
329 * and length bytes may require reading more than one block.
330 */
331int squashfs_read_metadata(struct super_block *sb, void *buffer,
332		u64 *block, int *offset, int length)
333{
334	struct squashfs_sb_info *msblk = sb->s_fs_info;
335	int bytes, copied = length;
336	struct squashfs_cache_entry *entry;
337
338	TRACE("Entered squashfs_read_metadata [%llx:%x]\n", *block, *offset);
339
340	while (length) {
341		entry = squashfs_cache_get(sb, msblk->block_cache, *block, 0);
342		if (entry->error)
343			return entry->error;
344		else if (*offset >= entry->length)
345			return -EIO;
 
 
 
346
347		bytes = squashfs_copy_data(buffer, entry, *offset, length);
348		if (buffer)
349			buffer += bytes;
350		length -= bytes;
351		*offset += bytes;
352
353		if (*offset == entry->length) {
354			*block = entry->next_index;
355			*offset = 0;
356		}
357
358		squashfs_cache_put(entry);
359	}
360
361	return copied;
 
 
 
 
362}
363
364
365/*
366 * Look-up in the fragmment cache the fragment located at <start_block> in the
367 * filesystem.  If necessary read and decompress it from disk.
368 */
369struct squashfs_cache_entry *squashfs_get_fragment(struct super_block *sb,
370				u64 start_block, int length)
371{
372	struct squashfs_sb_info *msblk = sb->s_fs_info;
373
374	return squashfs_cache_get(sb, msblk->fragment_cache, start_block,
375		length);
376}
377
378
379/*
380 * Read and decompress the datablock located at <start_block> in the
381 * filesystem.  The cache is used here to avoid duplicating locking and
382 * read/decompress code.
383 */
384struct squashfs_cache_entry *squashfs_get_datablock(struct super_block *sb,
385				u64 start_block, int length)
386{
387	struct squashfs_sb_info *msblk = sb->s_fs_info;
388
389	return squashfs_cache_get(sb, msblk->read_page, start_block, length);
390}
391
392
393/*
394 * Read a filesystem table (uncompressed sequence of bytes) from disk
395 */
396void *squashfs_read_table(struct super_block *sb, u64 block, int length)
397{
398	int pages = (length + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
399	int i, res;
400	void *table, *buffer, **data;
 
401
402	table = buffer = kmalloc(length, GFP_KERNEL);
403	if (table == NULL)
404		return ERR_PTR(-ENOMEM);
405
406	data = kcalloc(pages, sizeof(void *), GFP_KERNEL);
407	if (data == NULL) {
408		res = -ENOMEM;
409		goto failed;
410	}
411
412	for (i = 0; i < pages; i++, buffer += PAGE_CACHE_SIZE)
 
 
 
 
 
 
413		data[i] = buffer;
414
415	res = squashfs_read_data(sb, data, block, length |
416		SQUASHFS_COMPRESSED_BIT_BLOCK, NULL, length, pages);
417
418	kfree(data);
 
419
420	if (res < 0)
421		goto failed;
422
423	return table;
424
 
 
425failed:
426	kfree(table);
427	return ERR_PTR(res);
428}