Loading...
1/*
2 * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
3 */
4
5/*
6 * Written by Anatoly P. Pinchuk pap@namesys.botik.ru
7 * Programm System Institute
8 * Pereslavl-Zalessky Russia
9 */
10
11#include <linux/time.h>
12#include <linux/string.h>
13#include <linux/pagemap.h>
14#include "reiserfs.h"
15#include <linux/buffer_head.h>
16#include <linux/quotaops.h>
17
18/* Does the buffer contain a disk block which is in the tree. */
19inline int B_IS_IN_TREE(const struct buffer_head *bh)
20{
21
22 RFALSE(B_LEVEL(bh) > MAX_HEIGHT,
23 "PAP-1010: block (%b) has too big level (%z)", bh, bh);
24
25 return (B_LEVEL(bh) != FREE_LEVEL);
26}
27
28/* to get item head in le form */
29inline void copy_item_head(struct item_head *to,
30 const struct item_head *from)
31{
32 memcpy(to, from, IH_SIZE);
33}
34
35/*
36 * k1 is pointer to on-disk structure which is stored in little-endian
37 * form. k2 is pointer to cpu variable. For key of items of the same
38 * object this returns 0.
39 * Returns: -1 if key1 < key2
40 * 0 if key1 == key2
41 * 1 if key1 > key2
42 */
43inline int comp_short_keys(const struct reiserfs_key *le_key,
44 const struct cpu_key *cpu_key)
45{
46 __u32 n;
47 n = le32_to_cpu(le_key->k_dir_id);
48 if (n < cpu_key->on_disk_key.k_dir_id)
49 return -1;
50 if (n > cpu_key->on_disk_key.k_dir_id)
51 return 1;
52 n = le32_to_cpu(le_key->k_objectid);
53 if (n < cpu_key->on_disk_key.k_objectid)
54 return -1;
55 if (n > cpu_key->on_disk_key.k_objectid)
56 return 1;
57 return 0;
58}
59
60/*
61 * k1 is pointer to on-disk structure which is stored in little-endian
62 * form. k2 is pointer to cpu variable.
63 * Compare keys using all 4 key fields.
64 * Returns: -1 if key1 < key2 0
65 * if key1 = key2 1 if key1 > key2
66 */
67static inline int comp_keys(const struct reiserfs_key *le_key,
68 const struct cpu_key *cpu_key)
69{
70 int retval;
71
72 retval = comp_short_keys(le_key, cpu_key);
73 if (retval)
74 return retval;
75 if (le_key_k_offset(le_key_version(le_key), le_key) <
76 cpu_key_k_offset(cpu_key))
77 return -1;
78 if (le_key_k_offset(le_key_version(le_key), le_key) >
79 cpu_key_k_offset(cpu_key))
80 return 1;
81
82 if (cpu_key->key_length == 3)
83 return 0;
84
85 /* this part is needed only when tail conversion is in progress */
86 if (le_key_k_type(le_key_version(le_key), le_key) <
87 cpu_key_k_type(cpu_key))
88 return -1;
89
90 if (le_key_k_type(le_key_version(le_key), le_key) >
91 cpu_key_k_type(cpu_key))
92 return 1;
93
94 return 0;
95}
96
97inline int comp_short_le_keys(const struct reiserfs_key *key1,
98 const struct reiserfs_key *key2)
99{
100 __u32 *k1_u32, *k2_u32;
101 int key_length = REISERFS_SHORT_KEY_LEN;
102
103 k1_u32 = (__u32 *) key1;
104 k2_u32 = (__u32 *) key2;
105 for (; key_length--; ++k1_u32, ++k2_u32) {
106 if (le32_to_cpu(*k1_u32) < le32_to_cpu(*k2_u32))
107 return -1;
108 if (le32_to_cpu(*k1_u32) > le32_to_cpu(*k2_u32))
109 return 1;
110 }
111 return 0;
112}
113
114inline void le_key2cpu_key(struct cpu_key *to, const struct reiserfs_key *from)
115{
116 int version;
117 to->on_disk_key.k_dir_id = le32_to_cpu(from->k_dir_id);
118 to->on_disk_key.k_objectid = le32_to_cpu(from->k_objectid);
119
120 /* find out version of the key */
121 version = le_key_version(from);
122 to->version = version;
123 to->on_disk_key.k_offset = le_key_k_offset(version, from);
124 to->on_disk_key.k_type = le_key_k_type(version, from);
125}
126
127/*
128 * this does not say which one is bigger, it only returns 1 if keys
129 * are not equal, 0 otherwise
130 */
131inline int comp_le_keys(const struct reiserfs_key *k1,
132 const struct reiserfs_key *k2)
133{
134 return memcmp(k1, k2, sizeof(struct reiserfs_key));
135}
136
137/**************************************************************************
138 * Binary search toolkit function *
139 * Search for an item in the array by the item key *
140 * Returns: 1 if found, 0 if not found; *
141 * *pos = number of the searched element if found, else the *
142 * number of the first element that is larger than key. *
143 **************************************************************************/
144/*
145 * For those not familiar with binary search: lbound is the leftmost item
146 * that it could be, rbound the rightmost item that it could be. We examine
147 * the item halfway between lbound and rbound, and that tells us either
148 * that we can increase lbound, or decrease rbound, or that we have found it,
149 * or if lbound <= rbound that there are no possible items, and we have not
150 * found it. With each examination we cut the number of possible items it
151 * could be by one more than half rounded down, or we find it.
152 */
153static inline int bin_search(const void *key, /* Key to search for. */
154 const void *base, /* First item in the array. */
155 int num, /* Number of items in the array. */
156 /*
157 * Item size in the array. searched. Lest the
158 * reader be confused, note that this is crafted
159 * as a general function, and when it is applied
160 * specifically to the array of item headers in a
161 * node, width is actually the item header size
162 * not the item size.
163 */
164 int width,
165 int *pos /* Number of the searched for element. */
166 )
167{
168 int rbound, lbound, j;
169
170 for (j = ((rbound = num - 1) + (lbound = 0)) / 2;
171 lbound <= rbound; j = (rbound + lbound) / 2)
172 switch (comp_keys
173 ((struct reiserfs_key *)((char *)base + j * width),
174 (struct cpu_key *)key)) {
175 case -1:
176 lbound = j + 1;
177 continue;
178 case 1:
179 rbound = j - 1;
180 continue;
181 case 0:
182 *pos = j;
183 return ITEM_FOUND; /* Key found in the array. */
184 }
185
186 /*
187 * bin_search did not find given key, it returns position of key,
188 * that is minimal and greater than the given one.
189 */
190 *pos = lbound;
191 return ITEM_NOT_FOUND;
192}
193
194
195/* Minimal possible key. It is never in the tree. */
196const struct reiserfs_key MIN_KEY = { 0, 0, {{0, 0},} };
197
198/* Maximal possible key. It is never in the tree. */
199static const struct reiserfs_key MAX_KEY = {
200 cpu_to_le32(0xffffffff),
201 cpu_to_le32(0xffffffff),
202 {{cpu_to_le32(0xffffffff),
203 cpu_to_le32(0xffffffff)},}
204};
205
206/*
207 * Get delimiting key of the buffer by looking for it in the buffers in the
208 * path, starting from the bottom of the path, and going upwards. We must
209 * check the path's validity at each step. If the key is not in the path,
210 * there is no delimiting key in the tree (buffer is first or last buffer
211 * in tree), and in this case we return a special key, either MIN_KEY or
212 * MAX_KEY.
213 */
214static inline const struct reiserfs_key *get_lkey(const struct treepath *chk_path,
215 const struct super_block *sb)
216{
217 int position, path_offset = chk_path->path_length;
218 struct buffer_head *parent;
219
220 RFALSE(path_offset < FIRST_PATH_ELEMENT_OFFSET,
221 "PAP-5010: invalid offset in the path");
222
223 /* While not higher in path than first element. */
224 while (path_offset-- > FIRST_PATH_ELEMENT_OFFSET) {
225
226 RFALSE(!buffer_uptodate
227 (PATH_OFFSET_PBUFFER(chk_path, path_offset)),
228 "PAP-5020: parent is not uptodate");
229
230 /* Parent at the path is not in the tree now. */
231 if (!B_IS_IN_TREE
232 (parent =
233 PATH_OFFSET_PBUFFER(chk_path, path_offset)))
234 return &MAX_KEY;
235 /* Check whether position in the parent is correct. */
236 if ((position =
237 PATH_OFFSET_POSITION(chk_path,
238 path_offset)) >
239 B_NR_ITEMS(parent))
240 return &MAX_KEY;
241 /* Check whether parent at the path really points to the child. */
242 if (B_N_CHILD_NUM(parent, position) !=
243 PATH_OFFSET_PBUFFER(chk_path,
244 path_offset + 1)->b_blocknr)
245 return &MAX_KEY;
246 /*
247 * Return delimiting key if position in the parent
248 * is not equal to zero.
249 */
250 if (position)
251 return internal_key(parent, position - 1);
252 }
253 /* Return MIN_KEY if we are in the root of the buffer tree. */
254 if (PATH_OFFSET_PBUFFER(chk_path, FIRST_PATH_ELEMENT_OFFSET)->
255 b_blocknr == SB_ROOT_BLOCK(sb))
256 return &MIN_KEY;
257 return &MAX_KEY;
258}
259
260/* Get delimiting key of the buffer at the path and its right neighbor. */
261inline const struct reiserfs_key *get_rkey(const struct treepath *chk_path,
262 const struct super_block *sb)
263{
264 int position, path_offset = chk_path->path_length;
265 struct buffer_head *parent;
266
267 RFALSE(path_offset < FIRST_PATH_ELEMENT_OFFSET,
268 "PAP-5030: invalid offset in the path");
269
270 while (path_offset-- > FIRST_PATH_ELEMENT_OFFSET) {
271
272 RFALSE(!buffer_uptodate
273 (PATH_OFFSET_PBUFFER(chk_path, path_offset)),
274 "PAP-5040: parent is not uptodate");
275
276 /* Parent at the path is not in the tree now. */
277 if (!B_IS_IN_TREE
278 (parent =
279 PATH_OFFSET_PBUFFER(chk_path, path_offset)))
280 return &MIN_KEY;
281 /* Check whether position in the parent is correct. */
282 if ((position =
283 PATH_OFFSET_POSITION(chk_path,
284 path_offset)) >
285 B_NR_ITEMS(parent))
286 return &MIN_KEY;
287 /*
288 * Check whether parent at the path really points
289 * to the child.
290 */
291 if (B_N_CHILD_NUM(parent, position) !=
292 PATH_OFFSET_PBUFFER(chk_path,
293 path_offset + 1)->b_blocknr)
294 return &MIN_KEY;
295
296 /*
297 * Return delimiting key if position in the parent
298 * is not the last one.
299 */
300 if (position != B_NR_ITEMS(parent))
301 return internal_key(parent, position);
302 }
303
304 /* Return MAX_KEY if we are in the root of the buffer tree. */
305 if (PATH_OFFSET_PBUFFER(chk_path, FIRST_PATH_ELEMENT_OFFSET)->
306 b_blocknr == SB_ROOT_BLOCK(sb))
307 return &MAX_KEY;
308 return &MIN_KEY;
309}
310
311/*
312 * Check whether a key is contained in the tree rooted from a buffer at a path.
313 * This works by looking at the left and right delimiting keys for the buffer
314 * in the last path_element in the path. These delimiting keys are stored
315 * at least one level above that buffer in the tree. If the buffer is the
316 * first or last node in the tree order then one of the delimiting keys may
317 * be absent, and in this case get_lkey and get_rkey return a special key
318 * which is MIN_KEY or MAX_KEY.
319 */
320static inline int key_in_buffer(
321 /* Path which should be checked. */
322 struct treepath *chk_path,
323 /* Key which should be checked. */
324 const struct cpu_key *key,
325 struct super_block *sb
326 )
327{
328
329 RFALSE(!key || chk_path->path_length < FIRST_PATH_ELEMENT_OFFSET
330 || chk_path->path_length > MAX_HEIGHT,
331 "PAP-5050: pointer to the key(%p) is NULL or invalid path length(%d)",
332 key, chk_path->path_length);
333 RFALSE(!PATH_PLAST_BUFFER(chk_path)->b_bdev,
334 "PAP-5060: device must not be NODEV");
335
336 if (comp_keys(get_lkey(chk_path, sb), key) == 1)
337 /* left delimiting key is bigger, that the key we look for */
338 return 0;
339 /* if ( comp_keys(key, get_rkey(chk_path, sb)) != -1 ) */
340 if (comp_keys(get_rkey(chk_path, sb), key) != 1)
341 /* key must be less than right delimitiing key */
342 return 0;
343 return 1;
344}
345
346int reiserfs_check_path(struct treepath *p)
347{
348 RFALSE(p->path_length != ILLEGAL_PATH_ELEMENT_OFFSET,
349 "path not properly relsed");
350 return 0;
351}
352
353/*
354 * Drop the reference to each buffer in a path and restore
355 * dirty bits clean when preparing the buffer for the log.
356 * This version should only be called from fix_nodes()
357 */
358void pathrelse_and_restore(struct super_block *sb,
359 struct treepath *search_path)
360{
361 int path_offset = search_path->path_length;
362
363 RFALSE(path_offset < ILLEGAL_PATH_ELEMENT_OFFSET,
364 "clm-4000: invalid path offset");
365
366 while (path_offset > ILLEGAL_PATH_ELEMENT_OFFSET) {
367 struct buffer_head *bh;
368 bh = PATH_OFFSET_PBUFFER(search_path, path_offset--);
369 reiserfs_restore_prepared_buffer(sb, bh);
370 brelse(bh);
371 }
372 search_path->path_length = ILLEGAL_PATH_ELEMENT_OFFSET;
373}
374
375/* Drop the reference to each buffer in a path */
376void pathrelse(struct treepath *search_path)
377{
378 int path_offset = search_path->path_length;
379
380 RFALSE(path_offset < ILLEGAL_PATH_ELEMENT_OFFSET,
381 "PAP-5090: invalid path offset");
382
383 while (path_offset > ILLEGAL_PATH_ELEMENT_OFFSET)
384 brelse(PATH_OFFSET_PBUFFER(search_path, path_offset--));
385
386 search_path->path_length = ILLEGAL_PATH_ELEMENT_OFFSET;
387}
388
389static int is_leaf(char *buf, int blocksize, struct buffer_head *bh)
390{
391 struct block_head *blkh;
392 struct item_head *ih;
393 int used_space;
394 int prev_location;
395 int i;
396 int nr;
397
398 blkh = (struct block_head *)buf;
399 if (blkh_level(blkh) != DISK_LEAF_NODE_LEVEL) {
400 reiserfs_warning(NULL, "reiserfs-5080",
401 "this should be caught earlier");
402 return 0;
403 }
404
405 nr = blkh_nr_item(blkh);
406 if (nr < 1 || nr > ((blocksize - BLKH_SIZE) / (IH_SIZE + MIN_ITEM_LEN))) {
407 /* item number is too big or too small */
408 reiserfs_warning(NULL, "reiserfs-5081",
409 "nr_item seems wrong: %z", bh);
410 return 0;
411 }
412 ih = (struct item_head *)(buf + BLKH_SIZE) + nr - 1;
413 used_space = BLKH_SIZE + IH_SIZE * nr + (blocksize - ih_location(ih));
414
415 /* free space does not match to calculated amount of use space */
416 if (used_space != blocksize - blkh_free_space(blkh)) {
417 reiserfs_warning(NULL, "reiserfs-5082",
418 "free space seems wrong: %z", bh);
419 return 0;
420 }
421 /*
422 * FIXME: it is_leaf will hit performance too much - we may have
423 * return 1 here
424 */
425
426 /* check tables of item heads */
427 ih = (struct item_head *)(buf + BLKH_SIZE);
428 prev_location = blocksize;
429 for (i = 0; i < nr; i++, ih++) {
430 if (le_ih_k_type(ih) == TYPE_ANY) {
431 reiserfs_warning(NULL, "reiserfs-5083",
432 "wrong item type for item %h",
433 ih);
434 return 0;
435 }
436 if (ih_location(ih) >= blocksize
437 || ih_location(ih) < IH_SIZE * nr) {
438 reiserfs_warning(NULL, "reiserfs-5084",
439 "item location seems wrong: %h",
440 ih);
441 return 0;
442 }
443 if (ih_item_len(ih) < 1
444 || ih_item_len(ih) > MAX_ITEM_LEN(blocksize)) {
445 reiserfs_warning(NULL, "reiserfs-5085",
446 "item length seems wrong: %h",
447 ih);
448 return 0;
449 }
450 if (prev_location - ih_location(ih) != ih_item_len(ih)) {
451 reiserfs_warning(NULL, "reiserfs-5086",
452 "item location seems wrong "
453 "(second one): %h", ih);
454 return 0;
455 }
456 prev_location = ih_location(ih);
457 }
458
459 /* one may imagine many more checks */
460 return 1;
461}
462
463/* returns 1 if buf looks like an internal node, 0 otherwise */
464static int is_internal(char *buf, int blocksize, struct buffer_head *bh)
465{
466 struct block_head *blkh;
467 int nr;
468 int used_space;
469
470 blkh = (struct block_head *)buf;
471 nr = blkh_level(blkh);
472 if (nr <= DISK_LEAF_NODE_LEVEL || nr > MAX_HEIGHT) {
473 /* this level is not possible for internal nodes */
474 reiserfs_warning(NULL, "reiserfs-5087",
475 "this should be caught earlier");
476 return 0;
477 }
478
479 nr = blkh_nr_item(blkh);
480 /* for internal which is not root we might check min number of keys */
481 if (nr > (blocksize - BLKH_SIZE - DC_SIZE) / (KEY_SIZE + DC_SIZE)) {
482 reiserfs_warning(NULL, "reiserfs-5088",
483 "number of key seems wrong: %z", bh);
484 return 0;
485 }
486
487 used_space = BLKH_SIZE + KEY_SIZE * nr + DC_SIZE * (nr + 1);
488 if (used_space != blocksize - blkh_free_space(blkh)) {
489 reiserfs_warning(NULL, "reiserfs-5089",
490 "free space seems wrong: %z", bh);
491 return 0;
492 }
493
494 /* one may imagine many more checks */
495 return 1;
496}
497
498/*
499 * make sure that bh contains formatted node of reiserfs tree of
500 * 'level'-th level
501 */
502static int is_tree_node(struct buffer_head *bh, int level)
503{
504 if (B_LEVEL(bh) != level) {
505 reiserfs_warning(NULL, "reiserfs-5090", "node level %d does "
506 "not match to the expected one %d",
507 B_LEVEL(bh), level);
508 return 0;
509 }
510 if (level == DISK_LEAF_NODE_LEVEL)
511 return is_leaf(bh->b_data, bh->b_size, bh);
512
513 return is_internal(bh->b_data, bh->b_size, bh);
514}
515
516#define SEARCH_BY_KEY_READA 16
517
518/*
519 * The function is NOT SCHEDULE-SAFE!
520 * It might unlock the write lock if we needed to wait for a block
521 * to be read. Note that in this case it won't recover the lock to avoid
522 * high contention resulting from too much lock requests, especially
523 * the caller (search_by_key) will perform other schedule-unsafe
524 * operations just after calling this function.
525 *
526 * @return depth of lock to be restored after read completes
527 */
528static int search_by_key_reada(struct super_block *s,
529 struct buffer_head **bh,
530 b_blocknr_t *b, int num)
531{
532 int i, j;
533 int depth = -1;
534
535 for (i = 0; i < num; i++) {
536 bh[i] = sb_getblk(s, b[i]);
537 }
538 /*
539 * We are going to read some blocks on which we
540 * have a reference. It's safe, though we might be
541 * reading blocks concurrently changed if we release
542 * the lock. But it's still fine because we check later
543 * if the tree changed
544 */
545 for (j = 0; j < i; j++) {
546 /*
547 * note, this needs attention if we are getting rid of the BKL
548 * you have to make sure the prepared bit isn't set on this
549 * buffer
550 */
551 if (!buffer_uptodate(bh[j])) {
552 if (depth == -1)
553 depth = reiserfs_write_unlock_nested(s);
554 ll_rw_block(READA, 1, bh + j);
555 }
556 brelse(bh[j]);
557 }
558 return depth;
559}
560
561/*
562 * This function fills up the path from the root to the leaf as it
563 * descends the tree looking for the key. It uses reiserfs_bread to
564 * try to find buffers in the cache given their block number. If it
565 * does not find them in the cache it reads them from disk. For each
566 * node search_by_key finds using reiserfs_bread it then uses
567 * bin_search to look through that node. bin_search will find the
568 * position of the block_number of the next node if it is looking
569 * through an internal node. If it is looking through a leaf node
570 * bin_search will find the position of the item which has key either
571 * equal to given key, or which is the maximal key less than the given
572 * key. search_by_key returns a path that must be checked for the
573 * correctness of the top of the path but need not be checked for the
574 * correctness of the bottom of the path
575 */
576/*
577 * search_by_key - search for key (and item) in stree
578 * @sb: superblock
579 * @key: pointer to key to search for
580 * @search_path: Allocated and initialized struct treepath; Returned filled
581 * on success.
582 * @stop_level: How far down the tree to search, Use DISK_LEAF_NODE_LEVEL to
583 * stop at leaf level.
584 *
585 * The function is NOT SCHEDULE-SAFE!
586 */
587int search_by_key(struct super_block *sb, const struct cpu_key *key,
588 struct treepath *search_path, int stop_level)
589{
590 b_blocknr_t block_number;
591 int expected_level;
592 struct buffer_head *bh;
593 struct path_element *last_element;
594 int node_level, retval;
595 int right_neighbor_of_leaf_node;
596 int fs_gen;
597 struct buffer_head *reada_bh[SEARCH_BY_KEY_READA];
598 b_blocknr_t reada_blocks[SEARCH_BY_KEY_READA];
599 int reada_count = 0;
600
601#ifdef CONFIG_REISERFS_CHECK
602 int repeat_counter = 0;
603#endif
604
605 PROC_INFO_INC(sb, search_by_key);
606
607 /*
608 * As we add each node to a path we increase its count. This means
609 * that we must be careful to release all nodes in a path before we
610 * either discard the path struct or re-use the path struct, as we
611 * do here.
612 */
613
614 pathrelse(search_path);
615
616 right_neighbor_of_leaf_node = 0;
617
618 /*
619 * With each iteration of this loop we search through the items in the
620 * current node, and calculate the next current node(next path element)
621 * for the next iteration of this loop..
622 */
623 block_number = SB_ROOT_BLOCK(sb);
624 expected_level = -1;
625 while (1) {
626
627#ifdef CONFIG_REISERFS_CHECK
628 if (!(++repeat_counter % 50000))
629 reiserfs_warning(sb, "PAP-5100",
630 "%s: there were %d iterations of "
631 "while loop looking for key %K",
632 current->comm, repeat_counter,
633 key);
634#endif
635
636 /* prep path to have another element added to it. */
637 last_element =
638 PATH_OFFSET_PELEMENT(search_path,
639 ++search_path->path_length);
640 fs_gen = get_generation(sb);
641
642 /*
643 * Read the next tree node, and set the last element
644 * in the path to have a pointer to it.
645 */
646 if ((bh = last_element->pe_buffer =
647 sb_getblk(sb, block_number))) {
648
649 /*
650 * We'll need to drop the lock if we encounter any
651 * buffers that need to be read. If all of them are
652 * already up to date, we don't need to drop the lock.
653 */
654 int depth = -1;
655
656 if (!buffer_uptodate(bh) && reada_count > 1)
657 depth = search_by_key_reada(sb, reada_bh,
658 reada_blocks, reada_count);
659
660 if (!buffer_uptodate(bh) && depth == -1)
661 depth = reiserfs_write_unlock_nested(sb);
662
663 ll_rw_block(READ, 1, &bh);
664 wait_on_buffer(bh);
665
666 if (depth != -1)
667 reiserfs_write_lock_nested(sb, depth);
668 if (!buffer_uptodate(bh))
669 goto io_error;
670 } else {
671io_error:
672 search_path->path_length--;
673 pathrelse(search_path);
674 return IO_ERROR;
675 }
676 reada_count = 0;
677 if (expected_level == -1)
678 expected_level = SB_TREE_HEIGHT(sb);
679 expected_level--;
680
681 /*
682 * It is possible that schedule occurred. We must check
683 * whether the key to search is still in the tree rooted
684 * from the current buffer. If not then repeat search
685 * from the root.
686 */
687 if (fs_changed(fs_gen, sb) &&
688 (!B_IS_IN_TREE(bh) ||
689 B_LEVEL(bh) != expected_level ||
690 !key_in_buffer(search_path, key, sb))) {
691 PROC_INFO_INC(sb, search_by_key_fs_changed);
692 PROC_INFO_INC(sb, search_by_key_restarted);
693 PROC_INFO_INC(sb,
694 sbk_restarted[expected_level - 1]);
695 pathrelse(search_path);
696
697 /*
698 * Get the root block number so that we can
699 * repeat the search starting from the root.
700 */
701 block_number = SB_ROOT_BLOCK(sb);
702 expected_level = -1;
703 right_neighbor_of_leaf_node = 0;
704
705 /* repeat search from the root */
706 continue;
707 }
708
709 /*
710 * only check that the key is in the buffer if key is not
711 * equal to the MAX_KEY. Latter case is only possible in
712 * "finish_unfinished()" processing during mount.
713 */
714 RFALSE(comp_keys(&MAX_KEY, key) &&
715 !key_in_buffer(search_path, key, sb),
716 "PAP-5130: key is not in the buffer");
717#ifdef CONFIG_REISERFS_CHECK
718 if (REISERFS_SB(sb)->cur_tb) {
719 print_cur_tb("5140");
720 reiserfs_panic(sb, "PAP-5140",
721 "schedule occurred in do_balance!");
722 }
723#endif
724
725 /*
726 * make sure, that the node contents look like a node of
727 * certain level
728 */
729 if (!is_tree_node(bh, expected_level)) {
730 reiserfs_error(sb, "vs-5150",
731 "invalid format found in block %ld. "
732 "Fsck?", bh->b_blocknr);
733 pathrelse(search_path);
734 return IO_ERROR;
735 }
736
737 /* ok, we have acquired next formatted node in the tree */
738 node_level = B_LEVEL(bh);
739
740 PROC_INFO_BH_STAT(sb, bh, node_level - 1);
741
742 RFALSE(node_level < stop_level,
743 "vs-5152: tree level (%d) is less than stop level (%d)",
744 node_level, stop_level);
745
746 retval = bin_search(key, item_head(bh, 0),
747 B_NR_ITEMS(bh),
748 (node_level ==
749 DISK_LEAF_NODE_LEVEL) ? IH_SIZE :
750 KEY_SIZE,
751 &last_element->pe_position);
752 if (node_level == stop_level) {
753 return retval;
754 }
755
756 /* we are not in the stop level */
757 /*
758 * item has been found, so we choose the pointer which
759 * is to the right of the found one
760 */
761 if (retval == ITEM_FOUND)
762 last_element->pe_position++;
763
764 /*
765 * if item was not found we choose the position which is to
766 * the left of the found item. This requires no code,
767 * bin_search did it already.
768 */
769
770 /*
771 * So we have chosen a position in the current node which is
772 * an internal node. Now we calculate child block number by
773 * position in the node.
774 */
775 block_number =
776 B_N_CHILD_NUM(bh, last_element->pe_position);
777
778 /*
779 * if we are going to read leaf nodes, try for read
780 * ahead as well
781 */
782 if ((search_path->reada & PATH_READA) &&
783 node_level == DISK_LEAF_NODE_LEVEL + 1) {
784 int pos = last_element->pe_position;
785 int limit = B_NR_ITEMS(bh);
786 struct reiserfs_key *le_key;
787
788 if (search_path->reada & PATH_READA_BACK)
789 limit = 0;
790 while (reada_count < SEARCH_BY_KEY_READA) {
791 if (pos == limit)
792 break;
793 reada_blocks[reada_count++] =
794 B_N_CHILD_NUM(bh, pos);
795 if (search_path->reada & PATH_READA_BACK)
796 pos--;
797 else
798 pos++;
799
800 /*
801 * check to make sure we're in the same object
802 */
803 le_key = internal_key(bh, pos);
804 if (le32_to_cpu(le_key->k_objectid) !=
805 key->on_disk_key.k_objectid) {
806 break;
807 }
808 }
809 }
810 }
811}
812
813/*
814 * Form the path to an item and position in this item which contains
815 * file byte defined by key. If there is no such item
816 * corresponding to the key, we point the path to the item with
817 * maximal key less than key, and *pos_in_item is set to one
818 * past the last entry/byte in the item. If searching for entry in a
819 * directory item, and it is not found, *pos_in_item is set to one
820 * entry more than the entry with maximal key which is less than the
821 * sought key.
822 *
823 * Note that if there is no entry in this same node which is one more,
824 * then we point to an imaginary entry. for direct items, the
825 * position is in units of bytes, for indirect items the position is
826 * in units of blocknr entries, for directory items the position is in
827 * units of directory entries.
828 */
829/* The function is NOT SCHEDULE-SAFE! */
830int search_for_position_by_key(struct super_block *sb,
831 /* Key to search (cpu variable) */
832 const struct cpu_key *p_cpu_key,
833 /* Filled up by this function. */
834 struct treepath *search_path)
835{
836 struct item_head *p_le_ih; /* pointer to on-disk structure */
837 int blk_size;
838 loff_t item_offset, offset;
839 struct reiserfs_dir_entry de;
840 int retval;
841
842 /* If searching for directory entry. */
843 if (is_direntry_cpu_key(p_cpu_key))
844 return search_by_entry_key(sb, p_cpu_key, search_path,
845 &de);
846
847 /* If not searching for directory entry. */
848
849 /* If item is found. */
850 retval = search_item(sb, p_cpu_key, search_path);
851 if (retval == IO_ERROR)
852 return retval;
853 if (retval == ITEM_FOUND) {
854
855 RFALSE(!ih_item_len
856 (item_head
857 (PATH_PLAST_BUFFER(search_path),
858 PATH_LAST_POSITION(search_path))),
859 "PAP-5165: item length equals zero");
860
861 pos_in_item(search_path) = 0;
862 return POSITION_FOUND;
863 }
864
865 RFALSE(!PATH_LAST_POSITION(search_path),
866 "PAP-5170: position equals zero");
867
868 /* Item is not found. Set path to the previous item. */
869 p_le_ih =
870 item_head(PATH_PLAST_BUFFER(search_path),
871 --PATH_LAST_POSITION(search_path));
872 blk_size = sb->s_blocksize;
873
874 if (comp_short_keys(&p_le_ih->ih_key, p_cpu_key))
875 return FILE_NOT_FOUND;
876
877 /* FIXME: quite ugly this far */
878
879 item_offset = le_ih_k_offset(p_le_ih);
880 offset = cpu_key_k_offset(p_cpu_key);
881
882 /* Needed byte is contained in the item pointed to by the path. */
883 if (item_offset <= offset &&
884 item_offset + op_bytes_number(p_le_ih, blk_size) > offset) {
885 pos_in_item(search_path) = offset - item_offset;
886 if (is_indirect_le_ih(p_le_ih)) {
887 pos_in_item(search_path) /= blk_size;
888 }
889 return POSITION_FOUND;
890 }
891
892 /*
893 * Needed byte is not contained in the item pointed to by the
894 * path. Set pos_in_item out of the item.
895 */
896 if (is_indirect_le_ih(p_le_ih))
897 pos_in_item(search_path) =
898 ih_item_len(p_le_ih) / UNFM_P_SIZE;
899 else
900 pos_in_item(search_path) = ih_item_len(p_le_ih);
901
902 return POSITION_NOT_FOUND;
903}
904
905/* Compare given item and item pointed to by the path. */
906int comp_items(const struct item_head *stored_ih, const struct treepath *path)
907{
908 struct buffer_head *bh = PATH_PLAST_BUFFER(path);
909 struct item_head *ih;
910
911 /* Last buffer at the path is not in the tree. */
912 if (!B_IS_IN_TREE(bh))
913 return 1;
914
915 /* Last path position is invalid. */
916 if (PATH_LAST_POSITION(path) >= B_NR_ITEMS(bh))
917 return 1;
918
919 /* we need only to know, whether it is the same item */
920 ih = tp_item_head(path);
921 return memcmp(stored_ih, ih, IH_SIZE);
922}
923
924/* unformatted nodes are not logged anymore, ever. This is safe now */
925#define held_by_others(bh) (atomic_read(&(bh)->b_count) > 1)
926
927/* block can not be forgotten as it is in I/O or held by someone */
928#define block_in_use(bh) (buffer_locked(bh) || (held_by_others(bh)))
929
930/* prepare for delete or cut of direct item */
931static inline int prepare_for_direct_item(struct treepath *path,
932 struct item_head *le_ih,
933 struct inode *inode,
934 loff_t new_file_length, int *cut_size)
935{
936 loff_t round_len;
937
938 if (new_file_length == max_reiserfs_offset(inode)) {
939 /* item has to be deleted */
940 *cut_size = -(IH_SIZE + ih_item_len(le_ih));
941 return M_DELETE;
942 }
943 /* new file gets truncated */
944 if (get_inode_item_key_version(inode) == KEY_FORMAT_3_6) {
945 round_len = ROUND_UP(new_file_length);
946 /* this was new_file_length < le_ih ... */
947 if (round_len < le_ih_k_offset(le_ih)) {
948 *cut_size = -(IH_SIZE + ih_item_len(le_ih));
949 return M_DELETE; /* Delete this item. */
950 }
951 /* Calculate first position and size for cutting from item. */
952 pos_in_item(path) = round_len - (le_ih_k_offset(le_ih) - 1);
953 *cut_size = -(ih_item_len(le_ih) - pos_in_item(path));
954
955 return M_CUT; /* Cut from this item. */
956 }
957
958 /* old file: items may have any length */
959
960 if (new_file_length < le_ih_k_offset(le_ih)) {
961 *cut_size = -(IH_SIZE + ih_item_len(le_ih));
962 return M_DELETE; /* Delete this item. */
963 }
964
965 /* Calculate first position and size for cutting from item. */
966 *cut_size = -(ih_item_len(le_ih) -
967 (pos_in_item(path) =
968 new_file_length + 1 - le_ih_k_offset(le_ih)));
969 return M_CUT; /* Cut from this item. */
970}
971
972static inline int prepare_for_direntry_item(struct treepath *path,
973 struct item_head *le_ih,
974 struct inode *inode,
975 loff_t new_file_length,
976 int *cut_size)
977{
978 if (le_ih_k_offset(le_ih) == DOT_OFFSET &&
979 new_file_length == max_reiserfs_offset(inode)) {
980 RFALSE(ih_entry_count(le_ih) != 2,
981 "PAP-5220: incorrect empty directory item (%h)", le_ih);
982 *cut_size = -(IH_SIZE + ih_item_len(le_ih));
983 /* Delete the directory item containing "." and ".." entry. */
984 return M_DELETE;
985 }
986
987 if (ih_entry_count(le_ih) == 1) {
988 /*
989 * Delete the directory item such as there is one record only
990 * in this item
991 */
992 *cut_size = -(IH_SIZE + ih_item_len(le_ih));
993 return M_DELETE;
994 }
995
996 /* Cut one record from the directory item. */
997 *cut_size =
998 -(DEH_SIZE +
999 entry_length(get_last_bh(path), le_ih, pos_in_item(path)));
1000 return M_CUT;
1001}
1002
1003#define JOURNAL_FOR_FREE_BLOCK_AND_UPDATE_SD (2 * JOURNAL_PER_BALANCE_CNT + 1)
1004
1005/*
1006 * If the path points to a directory or direct item, calculate mode
1007 * and the size cut, for balance.
1008 * If the path points to an indirect item, remove some number of its
1009 * unformatted nodes.
1010 * In case of file truncate calculate whether this item must be
1011 * deleted/truncated or last unformatted node of this item will be
1012 * converted to a direct item.
1013 * This function returns a determination of what balance mode the
1014 * calling function should employ.
1015 */
1016static char prepare_for_delete_or_cut(struct reiserfs_transaction_handle *th,
1017 struct inode *inode,
1018 struct treepath *path,
1019 const struct cpu_key *item_key,
1020 /*
1021 * Number of unformatted nodes
1022 * which were removed from end
1023 * of the file.
1024 */
1025 int *removed,
1026 int *cut_size,
1027 /* MAX_KEY_OFFSET in case of delete. */
1028 unsigned long long new_file_length
1029 )
1030{
1031 struct super_block *sb = inode->i_sb;
1032 struct item_head *p_le_ih = tp_item_head(path);
1033 struct buffer_head *bh = PATH_PLAST_BUFFER(path);
1034
1035 BUG_ON(!th->t_trans_id);
1036
1037 /* Stat_data item. */
1038 if (is_statdata_le_ih(p_le_ih)) {
1039
1040 RFALSE(new_file_length != max_reiserfs_offset(inode),
1041 "PAP-5210: mode must be M_DELETE");
1042
1043 *cut_size = -(IH_SIZE + ih_item_len(p_le_ih));
1044 return M_DELETE;
1045 }
1046
1047 /* Directory item. */
1048 if (is_direntry_le_ih(p_le_ih))
1049 return prepare_for_direntry_item(path, p_le_ih, inode,
1050 new_file_length,
1051 cut_size);
1052
1053 /* Direct item. */
1054 if (is_direct_le_ih(p_le_ih))
1055 return prepare_for_direct_item(path, p_le_ih, inode,
1056 new_file_length, cut_size);
1057
1058 /* Case of an indirect item. */
1059 {
1060 int blk_size = sb->s_blocksize;
1061 struct item_head s_ih;
1062 int need_re_search;
1063 int delete = 0;
1064 int result = M_CUT;
1065 int pos = 0;
1066
1067 if ( new_file_length == max_reiserfs_offset (inode) ) {
1068 /*
1069 * prepare_for_delete_or_cut() is called by
1070 * reiserfs_delete_item()
1071 */
1072 new_file_length = 0;
1073 delete = 1;
1074 }
1075
1076 do {
1077 need_re_search = 0;
1078 *cut_size = 0;
1079 bh = PATH_PLAST_BUFFER(path);
1080 copy_item_head(&s_ih, tp_item_head(path));
1081 pos = I_UNFM_NUM(&s_ih);
1082
1083 while (le_ih_k_offset (&s_ih) + (pos - 1) * blk_size > new_file_length) {
1084 __le32 *unfm;
1085 __u32 block;
1086
1087 /*
1088 * Each unformatted block deletion may involve
1089 * one additional bitmap block into the transaction,
1090 * thereby the initial journal space reservation
1091 * might not be enough.
1092 */
1093 if (!delete && (*cut_size) != 0 &&
1094 reiserfs_transaction_free_space(th) < JOURNAL_FOR_FREE_BLOCK_AND_UPDATE_SD)
1095 break;
1096
1097 unfm = (__le32 *)ih_item_body(bh, &s_ih) + pos - 1;
1098 block = get_block_num(unfm, 0);
1099
1100 if (block != 0) {
1101 reiserfs_prepare_for_journal(sb, bh, 1);
1102 put_block_num(unfm, 0, 0);
1103 journal_mark_dirty(th, bh);
1104 reiserfs_free_block(th, inode, block, 1);
1105 }
1106
1107 reiserfs_cond_resched(sb);
1108
1109 if (item_moved (&s_ih, path)) {
1110 need_re_search = 1;
1111 break;
1112 }
1113
1114 pos --;
1115 (*removed)++;
1116 (*cut_size) -= UNFM_P_SIZE;
1117
1118 if (pos == 0) {
1119 (*cut_size) -= IH_SIZE;
1120 result = M_DELETE;
1121 break;
1122 }
1123 }
1124 /*
1125 * a trick. If the buffer has been logged, this will
1126 * do nothing. If we've broken the loop without logging
1127 * it, it will restore the buffer
1128 */
1129 reiserfs_restore_prepared_buffer(sb, bh);
1130 } while (need_re_search &&
1131 search_for_position_by_key(sb, item_key, path) == POSITION_FOUND);
1132 pos_in_item(path) = pos * UNFM_P_SIZE;
1133
1134 if (*cut_size == 0) {
1135 /*
1136 * Nothing was cut. maybe convert last unformatted node to the
1137 * direct item?
1138 */
1139 result = M_CONVERT;
1140 }
1141 return result;
1142 }
1143}
1144
1145/* Calculate number of bytes which will be deleted or cut during balance */
1146static int calc_deleted_bytes_number(struct tree_balance *tb, char mode)
1147{
1148 int del_size;
1149 struct item_head *p_le_ih = tp_item_head(tb->tb_path);
1150
1151 if (is_statdata_le_ih(p_le_ih))
1152 return 0;
1153
1154 del_size =
1155 (mode ==
1156 M_DELETE) ? ih_item_len(p_le_ih) : -tb->insert_size[0];
1157 if (is_direntry_le_ih(p_le_ih)) {
1158 /*
1159 * return EMPTY_DIR_SIZE; We delete emty directories only.
1160 * we can't use EMPTY_DIR_SIZE, as old format dirs have a
1161 * different empty size. ick. FIXME, is this right?
1162 */
1163 return del_size;
1164 }
1165
1166 if (is_indirect_le_ih(p_le_ih))
1167 del_size = (del_size / UNFM_P_SIZE) *
1168 (PATH_PLAST_BUFFER(tb->tb_path)->b_size);
1169 return del_size;
1170}
1171
1172static void init_tb_struct(struct reiserfs_transaction_handle *th,
1173 struct tree_balance *tb,
1174 struct super_block *sb,
1175 struct treepath *path, int size)
1176{
1177
1178 BUG_ON(!th->t_trans_id);
1179
1180 memset(tb, '\0', sizeof(struct tree_balance));
1181 tb->transaction_handle = th;
1182 tb->tb_sb = sb;
1183 tb->tb_path = path;
1184 PATH_OFFSET_PBUFFER(path, ILLEGAL_PATH_ELEMENT_OFFSET) = NULL;
1185 PATH_OFFSET_POSITION(path, ILLEGAL_PATH_ELEMENT_OFFSET) = 0;
1186 tb->insert_size[0] = size;
1187}
1188
1189void padd_item(char *item, int total_length, int length)
1190{
1191 int i;
1192
1193 for (i = total_length; i > length;)
1194 item[--i] = 0;
1195}
1196
1197#ifdef REISERQUOTA_DEBUG
1198char key2type(struct reiserfs_key *ih)
1199{
1200 if (is_direntry_le_key(2, ih))
1201 return 'd';
1202 if (is_direct_le_key(2, ih))
1203 return 'D';
1204 if (is_indirect_le_key(2, ih))
1205 return 'i';
1206 if (is_statdata_le_key(2, ih))
1207 return 's';
1208 return 'u';
1209}
1210
1211char head2type(struct item_head *ih)
1212{
1213 if (is_direntry_le_ih(ih))
1214 return 'd';
1215 if (is_direct_le_ih(ih))
1216 return 'D';
1217 if (is_indirect_le_ih(ih))
1218 return 'i';
1219 if (is_statdata_le_ih(ih))
1220 return 's';
1221 return 'u';
1222}
1223#endif
1224
1225/*
1226 * Delete object item.
1227 * th - active transaction handle
1228 * path - path to the deleted item
1229 * item_key - key to search for the deleted item
1230 * indode - used for updating i_blocks and quotas
1231 * un_bh - NULL or unformatted node pointer
1232 */
1233int reiserfs_delete_item(struct reiserfs_transaction_handle *th,
1234 struct treepath *path, const struct cpu_key *item_key,
1235 struct inode *inode, struct buffer_head *un_bh)
1236{
1237 struct super_block *sb = inode->i_sb;
1238 struct tree_balance s_del_balance;
1239 struct item_head s_ih;
1240 struct item_head *q_ih;
1241 int quota_cut_bytes;
1242 int ret_value, del_size, removed;
1243 int depth;
1244
1245#ifdef CONFIG_REISERFS_CHECK
1246 char mode;
1247 int iter = 0;
1248#endif
1249
1250 BUG_ON(!th->t_trans_id);
1251
1252 init_tb_struct(th, &s_del_balance, sb, path,
1253 0 /*size is unknown */ );
1254
1255 while (1) {
1256 removed = 0;
1257
1258#ifdef CONFIG_REISERFS_CHECK
1259 iter++;
1260 mode =
1261#endif
1262 prepare_for_delete_or_cut(th, inode, path,
1263 item_key, &removed,
1264 &del_size,
1265 max_reiserfs_offset(inode));
1266
1267 RFALSE(mode != M_DELETE, "PAP-5320: mode must be M_DELETE");
1268
1269 copy_item_head(&s_ih, tp_item_head(path));
1270 s_del_balance.insert_size[0] = del_size;
1271
1272 ret_value = fix_nodes(M_DELETE, &s_del_balance, NULL, NULL);
1273 if (ret_value != REPEAT_SEARCH)
1274 break;
1275
1276 PROC_INFO_INC(sb, delete_item_restarted);
1277
1278 /* file system changed, repeat search */
1279 ret_value =
1280 search_for_position_by_key(sb, item_key, path);
1281 if (ret_value == IO_ERROR)
1282 break;
1283 if (ret_value == FILE_NOT_FOUND) {
1284 reiserfs_warning(sb, "vs-5340",
1285 "no items of the file %K found",
1286 item_key);
1287 break;
1288 }
1289 } /* while (1) */
1290
1291 if (ret_value != CARRY_ON) {
1292 unfix_nodes(&s_del_balance);
1293 return 0;
1294 }
1295
1296 /* reiserfs_delete_item returns item length when success */
1297 ret_value = calc_deleted_bytes_number(&s_del_balance, M_DELETE);
1298 q_ih = tp_item_head(path);
1299 quota_cut_bytes = ih_item_len(q_ih);
1300
1301 /*
1302 * hack so the quota code doesn't have to guess if the file has a
1303 * tail. On tail insert, we allocate quota for 1 unformatted node.
1304 * We test the offset because the tail might have been
1305 * split into multiple items, and we only want to decrement for
1306 * the unfm node once
1307 */
1308 if (!S_ISLNK(inode->i_mode) && is_direct_le_ih(q_ih)) {
1309 if ((le_ih_k_offset(q_ih) & (sb->s_blocksize - 1)) == 1) {
1310 quota_cut_bytes = sb->s_blocksize + UNFM_P_SIZE;
1311 } else {
1312 quota_cut_bytes = 0;
1313 }
1314 }
1315
1316 if (un_bh) {
1317 int off;
1318 char *data;
1319
1320 /*
1321 * We are in direct2indirect conversion, so move tail contents
1322 * to the unformatted node
1323 */
1324 /*
1325 * note, we do the copy before preparing the buffer because we
1326 * don't care about the contents of the unformatted node yet.
1327 * the only thing we really care about is the direct item's
1328 * data is in the unformatted node.
1329 *
1330 * Otherwise, we would have to call
1331 * reiserfs_prepare_for_journal on the unformatted node,
1332 * which might schedule, meaning we'd have to loop all the
1333 * way back up to the start of the while loop.
1334 *
1335 * The unformatted node must be dirtied later on. We can't be
1336 * sure here if the entire tail has been deleted yet.
1337 *
1338 * un_bh is from the page cache (all unformatted nodes are
1339 * from the page cache) and might be a highmem page. So, we
1340 * can't use un_bh->b_data.
1341 * -clm
1342 */
1343
1344 data = kmap_atomic(un_bh->b_page);
1345 off = ((le_ih_k_offset(&s_ih) - 1) & (PAGE_SIZE - 1));
1346 memcpy(data + off,
1347 ih_item_body(PATH_PLAST_BUFFER(path), &s_ih),
1348 ret_value);
1349 kunmap_atomic(data);
1350 }
1351
1352 /* Perform balancing after all resources have been collected at once. */
1353 do_balance(&s_del_balance, NULL, NULL, M_DELETE);
1354
1355#ifdef REISERQUOTA_DEBUG
1356 reiserfs_debug(sb, REISERFS_DEBUG_CODE,
1357 "reiserquota delete_item(): freeing %u, id=%u type=%c",
1358 quota_cut_bytes, inode->i_uid, head2type(&s_ih));
1359#endif
1360 depth = reiserfs_write_unlock_nested(inode->i_sb);
1361 dquot_free_space_nodirty(inode, quota_cut_bytes);
1362 reiserfs_write_lock_nested(inode->i_sb, depth);
1363
1364 /* Return deleted body length */
1365 return ret_value;
1366}
1367
1368/*
1369 * Summary Of Mechanisms For Handling Collisions Between Processes:
1370 *
1371 * deletion of the body of the object is performed by iput(), with the
1372 * result that if multiple processes are operating on a file, the
1373 * deletion of the body of the file is deferred until the last process
1374 * that has an open inode performs its iput().
1375 *
1376 * writes and truncates are protected from collisions by use of
1377 * semaphores.
1378 *
1379 * creates, linking, and mknod are protected from collisions with other
1380 * processes by making the reiserfs_add_entry() the last step in the
1381 * creation, and then rolling back all changes if there was a collision.
1382 * - Hans
1383*/
1384
1385/* this deletes item which never gets split */
1386void reiserfs_delete_solid_item(struct reiserfs_transaction_handle *th,
1387 struct inode *inode, struct reiserfs_key *key)
1388{
1389 struct super_block *sb = th->t_super;
1390 struct tree_balance tb;
1391 INITIALIZE_PATH(path);
1392 int item_len = 0;
1393 int tb_init = 0;
1394 struct cpu_key cpu_key;
1395 int retval;
1396 int quota_cut_bytes = 0;
1397
1398 BUG_ON(!th->t_trans_id);
1399
1400 le_key2cpu_key(&cpu_key, key);
1401
1402 while (1) {
1403 retval = search_item(th->t_super, &cpu_key, &path);
1404 if (retval == IO_ERROR) {
1405 reiserfs_error(th->t_super, "vs-5350",
1406 "i/o failure occurred trying "
1407 "to delete %K", &cpu_key);
1408 break;
1409 }
1410 if (retval != ITEM_FOUND) {
1411 pathrelse(&path);
1412 /*
1413 * No need for a warning, if there is just no free
1414 * space to insert '..' item into the
1415 * newly-created subdir
1416 */
1417 if (!
1418 ((unsigned long long)
1419 GET_HASH_VALUE(le_key_k_offset
1420 (le_key_version(key), key)) == 0
1421 && (unsigned long long)
1422 GET_GENERATION_NUMBER(le_key_k_offset
1423 (le_key_version(key),
1424 key)) == 1))
1425 reiserfs_warning(th->t_super, "vs-5355",
1426 "%k not found", key);
1427 break;
1428 }
1429 if (!tb_init) {
1430 tb_init = 1;
1431 item_len = ih_item_len(tp_item_head(&path));
1432 init_tb_struct(th, &tb, th->t_super, &path,
1433 -(IH_SIZE + item_len));
1434 }
1435 quota_cut_bytes = ih_item_len(tp_item_head(&path));
1436
1437 retval = fix_nodes(M_DELETE, &tb, NULL, NULL);
1438 if (retval == REPEAT_SEARCH) {
1439 PROC_INFO_INC(th->t_super, delete_solid_item_restarted);
1440 continue;
1441 }
1442
1443 if (retval == CARRY_ON) {
1444 do_balance(&tb, NULL, NULL, M_DELETE);
1445 /*
1446 * Should we count quota for item? (we don't
1447 * count quotas for save-links)
1448 */
1449 if (inode) {
1450 int depth;
1451#ifdef REISERQUOTA_DEBUG
1452 reiserfs_debug(th->t_super, REISERFS_DEBUG_CODE,
1453 "reiserquota delete_solid_item(): freeing %u id=%u type=%c",
1454 quota_cut_bytes, inode->i_uid,
1455 key2type(key));
1456#endif
1457 depth = reiserfs_write_unlock_nested(sb);
1458 dquot_free_space_nodirty(inode,
1459 quota_cut_bytes);
1460 reiserfs_write_lock_nested(sb, depth);
1461 }
1462 break;
1463 }
1464
1465 /* IO_ERROR, NO_DISK_SPACE, etc */
1466 reiserfs_warning(th->t_super, "vs-5360",
1467 "could not delete %K due to fix_nodes failure",
1468 &cpu_key);
1469 unfix_nodes(&tb);
1470 break;
1471 }
1472
1473 reiserfs_check_path(&path);
1474}
1475
1476int reiserfs_delete_object(struct reiserfs_transaction_handle *th,
1477 struct inode *inode)
1478{
1479 int err;
1480 inode->i_size = 0;
1481 BUG_ON(!th->t_trans_id);
1482
1483 /* for directory this deletes item containing "." and ".." */
1484 err =
1485 reiserfs_do_truncate(th, inode, NULL, 0 /*no timestamp updates */ );
1486 if (err)
1487 return err;
1488
1489#if defined( USE_INODE_GENERATION_COUNTER )
1490 if (!old_format_only(th->t_super)) {
1491 __le32 *inode_generation;
1492
1493 inode_generation =
1494 &REISERFS_SB(th->t_super)->s_rs->s_inode_generation;
1495 le32_add_cpu(inode_generation, 1);
1496 }
1497/* USE_INODE_GENERATION_COUNTER */
1498#endif
1499 reiserfs_delete_solid_item(th, inode, INODE_PKEY(inode));
1500
1501 return err;
1502}
1503
1504static void unmap_buffers(struct page *page, loff_t pos)
1505{
1506 struct buffer_head *bh;
1507 struct buffer_head *head;
1508 struct buffer_head *next;
1509 unsigned long tail_index;
1510 unsigned long cur_index;
1511
1512 if (page) {
1513 if (page_has_buffers(page)) {
1514 tail_index = pos & (PAGE_SIZE - 1);
1515 cur_index = 0;
1516 head = page_buffers(page);
1517 bh = head;
1518 do {
1519 next = bh->b_this_page;
1520
1521 /*
1522 * we want to unmap the buffers that contain
1523 * the tail, and all the buffers after it
1524 * (since the tail must be at the end of the
1525 * file). We don't want to unmap file data
1526 * before the tail, since it might be dirty
1527 * and waiting to reach disk
1528 */
1529 cur_index += bh->b_size;
1530 if (cur_index > tail_index) {
1531 reiserfs_unmap_buffer(bh);
1532 }
1533 bh = next;
1534 } while (bh != head);
1535 }
1536 }
1537}
1538
1539static int maybe_indirect_to_direct(struct reiserfs_transaction_handle *th,
1540 struct inode *inode,
1541 struct page *page,
1542 struct treepath *path,
1543 const struct cpu_key *item_key,
1544 loff_t new_file_size, char *mode)
1545{
1546 struct super_block *sb = inode->i_sb;
1547 int block_size = sb->s_blocksize;
1548 int cut_bytes;
1549 BUG_ON(!th->t_trans_id);
1550 BUG_ON(new_file_size != inode->i_size);
1551
1552 /*
1553 * the page being sent in could be NULL if there was an i/o error
1554 * reading in the last block. The user will hit problems trying to
1555 * read the file, but for now we just skip the indirect2direct
1556 */
1557 if (atomic_read(&inode->i_count) > 1 ||
1558 !tail_has_to_be_packed(inode) ||
1559 !page || (REISERFS_I(inode)->i_flags & i_nopack_mask)) {
1560 /* leave tail in an unformatted node */
1561 *mode = M_SKIP_BALANCING;
1562 cut_bytes =
1563 block_size - (new_file_size & (block_size - 1));
1564 pathrelse(path);
1565 return cut_bytes;
1566 }
1567
1568 /* Perform the conversion to a direct_item. */
1569 return indirect2direct(th, inode, page, path, item_key,
1570 new_file_size, mode);
1571}
1572
1573/*
1574 * we did indirect_to_direct conversion. And we have inserted direct
1575 * item successesfully, but there were no disk space to cut unfm
1576 * pointer being converted. Therefore we have to delete inserted
1577 * direct item(s)
1578 */
1579static void indirect_to_direct_roll_back(struct reiserfs_transaction_handle *th,
1580 struct inode *inode, struct treepath *path)
1581{
1582 struct cpu_key tail_key;
1583 int tail_len;
1584 int removed;
1585 BUG_ON(!th->t_trans_id);
1586
1587 make_cpu_key(&tail_key, inode, inode->i_size + 1, TYPE_DIRECT, 4);
1588 tail_key.key_length = 4;
1589
1590 tail_len =
1591 (cpu_key_k_offset(&tail_key) & (inode->i_sb->s_blocksize - 1)) - 1;
1592 while (tail_len) {
1593 /* look for the last byte of the tail */
1594 if (search_for_position_by_key(inode->i_sb, &tail_key, path) ==
1595 POSITION_NOT_FOUND)
1596 reiserfs_panic(inode->i_sb, "vs-5615",
1597 "found invalid item");
1598 RFALSE(path->pos_in_item !=
1599 ih_item_len(tp_item_head(path)) - 1,
1600 "vs-5616: appended bytes found");
1601 PATH_LAST_POSITION(path)--;
1602
1603 removed =
1604 reiserfs_delete_item(th, path, &tail_key, inode,
1605 NULL /*unbh not needed */ );
1606 RFALSE(removed <= 0
1607 || removed > tail_len,
1608 "vs-5617: there was tail %d bytes, removed item length %d bytes",
1609 tail_len, removed);
1610 tail_len -= removed;
1611 set_cpu_key_k_offset(&tail_key,
1612 cpu_key_k_offset(&tail_key) - removed);
1613 }
1614 reiserfs_warning(inode->i_sb, "reiserfs-5091", "indirect_to_direct "
1615 "conversion has been rolled back due to "
1616 "lack of disk space");
1617 mark_inode_dirty(inode);
1618}
1619
1620/* (Truncate or cut entry) or delete object item. Returns < 0 on failure */
1621int reiserfs_cut_from_item(struct reiserfs_transaction_handle *th,
1622 struct treepath *path,
1623 struct cpu_key *item_key,
1624 struct inode *inode,
1625 struct page *page, loff_t new_file_size)
1626{
1627 struct super_block *sb = inode->i_sb;
1628 /*
1629 * Every function which is going to call do_balance must first
1630 * create a tree_balance structure. Then it must fill up this
1631 * structure by using the init_tb_struct and fix_nodes functions.
1632 * After that we can make tree balancing.
1633 */
1634 struct tree_balance s_cut_balance;
1635 struct item_head *p_le_ih;
1636 int cut_size = 0; /* Amount to be cut. */
1637 int ret_value = CARRY_ON;
1638 int removed = 0; /* Number of the removed unformatted nodes. */
1639 int is_inode_locked = 0;
1640 char mode; /* Mode of the balance. */
1641 int retval2 = -1;
1642 int quota_cut_bytes;
1643 loff_t tail_pos = 0;
1644 int depth;
1645
1646 BUG_ON(!th->t_trans_id);
1647
1648 init_tb_struct(th, &s_cut_balance, inode->i_sb, path,
1649 cut_size);
1650
1651 /*
1652 * Repeat this loop until we either cut the item without needing
1653 * to balance, or we fix_nodes without schedule occurring
1654 */
1655 while (1) {
1656 /*
1657 * Determine the balance mode, position of the first byte to
1658 * be cut, and size to be cut. In case of the indirect item
1659 * free unformatted nodes which are pointed to by the cut
1660 * pointers.
1661 */
1662
1663 mode =
1664 prepare_for_delete_or_cut(th, inode, path,
1665 item_key, &removed,
1666 &cut_size, new_file_size);
1667 if (mode == M_CONVERT) {
1668 /*
1669 * convert last unformatted node to direct item or
1670 * leave tail in the unformatted node
1671 */
1672 RFALSE(ret_value != CARRY_ON,
1673 "PAP-5570: can not convert twice");
1674
1675 ret_value =
1676 maybe_indirect_to_direct(th, inode, page,
1677 path, item_key,
1678 new_file_size, &mode);
1679 if (mode == M_SKIP_BALANCING)
1680 /* tail has been left in the unformatted node */
1681 return ret_value;
1682
1683 is_inode_locked = 1;
1684
1685 /*
1686 * removing of last unformatted node will
1687 * change value we have to return to truncate.
1688 * Save it
1689 */
1690 retval2 = ret_value;
1691
1692 /*
1693 * So, we have performed the first part of the
1694 * conversion:
1695 * inserting the new direct item. Now we are
1696 * removing the last unformatted node pointer.
1697 * Set key to search for it.
1698 */
1699 set_cpu_key_k_type(item_key, TYPE_INDIRECT);
1700 item_key->key_length = 4;
1701 new_file_size -=
1702 (new_file_size & (sb->s_blocksize - 1));
1703 tail_pos = new_file_size;
1704 set_cpu_key_k_offset(item_key, new_file_size + 1);
1705 if (search_for_position_by_key
1706 (sb, item_key,
1707 path) == POSITION_NOT_FOUND) {
1708 print_block(PATH_PLAST_BUFFER(path), 3,
1709 PATH_LAST_POSITION(path) - 1,
1710 PATH_LAST_POSITION(path) + 1);
1711 reiserfs_panic(sb, "PAP-5580", "item to "
1712 "convert does not exist (%K)",
1713 item_key);
1714 }
1715 continue;
1716 }
1717 if (cut_size == 0) {
1718 pathrelse(path);
1719 return 0;
1720 }
1721
1722 s_cut_balance.insert_size[0] = cut_size;
1723
1724 ret_value = fix_nodes(mode, &s_cut_balance, NULL, NULL);
1725 if (ret_value != REPEAT_SEARCH)
1726 break;
1727
1728 PROC_INFO_INC(sb, cut_from_item_restarted);
1729
1730 ret_value =
1731 search_for_position_by_key(sb, item_key, path);
1732 if (ret_value == POSITION_FOUND)
1733 continue;
1734
1735 reiserfs_warning(sb, "PAP-5610", "item %K not found",
1736 item_key);
1737 unfix_nodes(&s_cut_balance);
1738 return (ret_value == IO_ERROR) ? -EIO : -ENOENT;
1739 } /* while */
1740
1741 /* check fix_nodes results (IO_ERROR or NO_DISK_SPACE) */
1742 if (ret_value != CARRY_ON) {
1743 if (is_inode_locked) {
1744 /*
1745 * FIXME: this seems to be not needed: we are always
1746 * able to cut item
1747 */
1748 indirect_to_direct_roll_back(th, inode, path);
1749 }
1750 if (ret_value == NO_DISK_SPACE)
1751 reiserfs_warning(sb, "reiserfs-5092",
1752 "NO_DISK_SPACE");
1753 unfix_nodes(&s_cut_balance);
1754 return -EIO;
1755 }
1756
1757 /* go ahead and perform balancing */
1758
1759 RFALSE(mode == M_PASTE || mode == M_INSERT, "invalid mode");
1760
1761 /* Calculate number of bytes that need to be cut from the item. */
1762 quota_cut_bytes =
1763 (mode ==
1764 M_DELETE) ? ih_item_len(tp_item_head(path)) : -s_cut_balance.
1765 insert_size[0];
1766 if (retval2 == -1)
1767 ret_value = calc_deleted_bytes_number(&s_cut_balance, mode);
1768 else
1769 ret_value = retval2;
1770
1771 /*
1772 * For direct items, we only change the quota when deleting the last
1773 * item.
1774 */
1775 p_le_ih = tp_item_head(s_cut_balance.tb_path);
1776 if (!S_ISLNK(inode->i_mode) && is_direct_le_ih(p_le_ih)) {
1777 if (mode == M_DELETE &&
1778 (le_ih_k_offset(p_le_ih) & (sb->s_blocksize - 1)) ==
1779 1) {
1780 /* FIXME: this is to keep 3.5 happy */
1781 REISERFS_I(inode)->i_first_direct_byte = U32_MAX;
1782 quota_cut_bytes = sb->s_blocksize + UNFM_P_SIZE;
1783 } else {
1784 quota_cut_bytes = 0;
1785 }
1786 }
1787#ifdef CONFIG_REISERFS_CHECK
1788 if (is_inode_locked) {
1789 struct item_head *le_ih =
1790 tp_item_head(s_cut_balance.tb_path);
1791 /*
1792 * we are going to complete indirect2direct conversion. Make
1793 * sure, that we exactly remove last unformatted node pointer
1794 * of the item
1795 */
1796 if (!is_indirect_le_ih(le_ih))
1797 reiserfs_panic(sb, "vs-5652",
1798 "item must be indirect %h", le_ih);
1799
1800 if (mode == M_DELETE && ih_item_len(le_ih) != UNFM_P_SIZE)
1801 reiserfs_panic(sb, "vs-5653", "completing "
1802 "indirect2direct conversion indirect "
1803 "item %h being deleted must be of "
1804 "4 byte long", le_ih);
1805
1806 if (mode == M_CUT
1807 && s_cut_balance.insert_size[0] != -UNFM_P_SIZE) {
1808 reiserfs_panic(sb, "vs-5654", "can not complete "
1809 "indirect2direct conversion of %h "
1810 "(CUT, insert_size==%d)",
1811 le_ih, s_cut_balance.insert_size[0]);
1812 }
1813 /*
1814 * it would be useful to make sure, that right neighboring
1815 * item is direct item of this file
1816 */
1817 }
1818#endif
1819
1820 do_balance(&s_cut_balance, NULL, NULL, mode);
1821 if (is_inode_locked) {
1822 /*
1823 * we've done an indirect->direct conversion. when the
1824 * data block was freed, it was removed from the list of
1825 * blocks that must be flushed before the transaction
1826 * commits, make sure to unmap and invalidate it
1827 */
1828 unmap_buffers(page, tail_pos);
1829 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
1830 }
1831#ifdef REISERQUOTA_DEBUG
1832 reiserfs_debug(inode->i_sb, REISERFS_DEBUG_CODE,
1833 "reiserquota cut_from_item(): freeing %u id=%u type=%c",
1834 quota_cut_bytes, inode->i_uid, '?');
1835#endif
1836 depth = reiserfs_write_unlock_nested(sb);
1837 dquot_free_space_nodirty(inode, quota_cut_bytes);
1838 reiserfs_write_lock_nested(sb, depth);
1839 return ret_value;
1840}
1841
1842static void truncate_directory(struct reiserfs_transaction_handle *th,
1843 struct inode *inode)
1844{
1845 BUG_ON(!th->t_trans_id);
1846 if (inode->i_nlink)
1847 reiserfs_error(inode->i_sb, "vs-5655", "link count != 0");
1848
1849 set_le_key_k_offset(KEY_FORMAT_3_5, INODE_PKEY(inode), DOT_OFFSET);
1850 set_le_key_k_type(KEY_FORMAT_3_5, INODE_PKEY(inode), TYPE_DIRENTRY);
1851 reiserfs_delete_solid_item(th, inode, INODE_PKEY(inode));
1852 reiserfs_update_sd(th, inode);
1853 set_le_key_k_offset(KEY_FORMAT_3_5, INODE_PKEY(inode), SD_OFFSET);
1854 set_le_key_k_type(KEY_FORMAT_3_5, INODE_PKEY(inode), TYPE_STAT_DATA);
1855}
1856
1857/*
1858 * Truncate file to the new size. Note, this must be called with a
1859 * transaction already started
1860 */
1861int reiserfs_do_truncate(struct reiserfs_transaction_handle *th,
1862 struct inode *inode, /* ->i_size contains new size */
1863 struct page *page, /* up to date for last block */
1864 /*
1865 * when it is called by file_release to convert
1866 * the tail - no timestamps should be updated
1867 */
1868 int update_timestamps
1869 )
1870{
1871 INITIALIZE_PATH(s_search_path); /* Path to the current object item. */
1872 struct item_head *p_le_ih; /* Pointer to an item header. */
1873
1874 /* Key to search for a previous file item. */
1875 struct cpu_key s_item_key;
1876 loff_t file_size, /* Old file size. */
1877 new_file_size; /* New file size. */
1878 int deleted; /* Number of deleted or truncated bytes. */
1879 int retval;
1880 int err = 0;
1881
1882 BUG_ON(!th->t_trans_id);
1883 if (!
1884 (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode)
1885 || S_ISLNK(inode->i_mode)))
1886 return 0;
1887
1888 /* deletion of directory - no need to update timestamps */
1889 if (S_ISDIR(inode->i_mode)) {
1890 truncate_directory(th, inode);
1891 return 0;
1892 }
1893
1894 /* Get new file size. */
1895 new_file_size = inode->i_size;
1896
1897 /* FIXME: note, that key type is unimportant here */
1898 make_cpu_key(&s_item_key, inode, max_reiserfs_offset(inode),
1899 TYPE_DIRECT, 3);
1900
1901 retval =
1902 search_for_position_by_key(inode->i_sb, &s_item_key,
1903 &s_search_path);
1904 if (retval == IO_ERROR) {
1905 reiserfs_error(inode->i_sb, "vs-5657",
1906 "i/o failure occurred trying to truncate %K",
1907 &s_item_key);
1908 err = -EIO;
1909 goto out;
1910 }
1911 if (retval == POSITION_FOUND || retval == FILE_NOT_FOUND) {
1912 reiserfs_error(inode->i_sb, "PAP-5660",
1913 "wrong result %d of search for %K", retval,
1914 &s_item_key);
1915
1916 err = -EIO;
1917 goto out;
1918 }
1919
1920 s_search_path.pos_in_item--;
1921
1922 /* Get real file size (total length of all file items) */
1923 p_le_ih = tp_item_head(&s_search_path);
1924 if (is_statdata_le_ih(p_le_ih))
1925 file_size = 0;
1926 else {
1927 loff_t offset = le_ih_k_offset(p_le_ih);
1928 int bytes =
1929 op_bytes_number(p_le_ih, inode->i_sb->s_blocksize);
1930
1931 /*
1932 * this may mismatch with real file size: if last direct item
1933 * had no padding zeros and last unformatted node had no free
1934 * space, this file would have this file size
1935 */
1936 file_size = offset + bytes - 1;
1937 }
1938 /*
1939 * are we doing a full truncate or delete, if so
1940 * kick in the reada code
1941 */
1942 if (new_file_size == 0)
1943 s_search_path.reada = PATH_READA | PATH_READA_BACK;
1944
1945 if (file_size == 0 || file_size < new_file_size) {
1946 goto update_and_out;
1947 }
1948
1949 /* Update key to search for the last file item. */
1950 set_cpu_key_k_offset(&s_item_key, file_size);
1951
1952 do {
1953 /* Cut or delete file item. */
1954 deleted =
1955 reiserfs_cut_from_item(th, &s_search_path, &s_item_key,
1956 inode, page, new_file_size);
1957 if (deleted < 0) {
1958 reiserfs_warning(inode->i_sb, "vs-5665",
1959 "reiserfs_cut_from_item failed");
1960 reiserfs_check_path(&s_search_path);
1961 return 0;
1962 }
1963
1964 RFALSE(deleted > file_size,
1965 "PAP-5670: reiserfs_cut_from_item: too many bytes deleted: deleted %d, file_size %lu, item_key %K",
1966 deleted, file_size, &s_item_key);
1967
1968 /* Change key to search the last file item. */
1969 file_size -= deleted;
1970
1971 set_cpu_key_k_offset(&s_item_key, file_size);
1972
1973 /*
1974 * While there are bytes to truncate and previous
1975 * file item is presented in the tree.
1976 */
1977
1978 /*
1979 * This loop could take a really long time, and could log
1980 * many more blocks than a transaction can hold. So, we do
1981 * a polite journal end here, and if the transaction needs
1982 * ending, we make sure the file is consistent before ending
1983 * the current trans and starting a new one
1984 */
1985 if (journal_transaction_should_end(th, 0) ||
1986 reiserfs_transaction_free_space(th) <= JOURNAL_FOR_FREE_BLOCK_AND_UPDATE_SD) {
1987 pathrelse(&s_search_path);
1988
1989 if (update_timestamps) {
1990 inode->i_mtime = CURRENT_TIME_SEC;
1991 inode->i_ctime = CURRENT_TIME_SEC;
1992 }
1993 reiserfs_update_sd(th, inode);
1994
1995 err = journal_end(th);
1996 if (err)
1997 goto out;
1998 err = journal_begin(th, inode->i_sb,
1999 JOURNAL_FOR_FREE_BLOCK_AND_UPDATE_SD + JOURNAL_PER_BALANCE_CNT * 4) ;
2000 if (err)
2001 goto out;
2002 reiserfs_update_inode_transaction(inode);
2003 }
2004 } while (file_size > ROUND_UP(new_file_size) &&
2005 search_for_position_by_key(inode->i_sb, &s_item_key,
2006 &s_search_path) == POSITION_FOUND);
2007
2008 RFALSE(file_size > ROUND_UP(new_file_size),
2009 "PAP-5680: truncate did not finish: new_file_size %lld, current %lld, oid %d",
2010 new_file_size, file_size, s_item_key.on_disk_key.k_objectid);
2011
2012update_and_out:
2013 if (update_timestamps) {
2014 /* this is truncate, not file closing */
2015 inode->i_mtime = CURRENT_TIME_SEC;
2016 inode->i_ctime = CURRENT_TIME_SEC;
2017 }
2018 reiserfs_update_sd(th, inode);
2019
2020out:
2021 pathrelse(&s_search_path);
2022 return err;
2023}
2024
2025#ifdef CONFIG_REISERFS_CHECK
2026/* this makes sure, that we __append__, not overwrite or add holes */
2027static void check_research_for_paste(struct treepath *path,
2028 const struct cpu_key *key)
2029{
2030 struct item_head *found_ih = tp_item_head(path);
2031
2032 if (is_direct_le_ih(found_ih)) {
2033 if (le_ih_k_offset(found_ih) +
2034 op_bytes_number(found_ih,
2035 get_last_bh(path)->b_size) !=
2036 cpu_key_k_offset(key)
2037 || op_bytes_number(found_ih,
2038 get_last_bh(path)->b_size) !=
2039 pos_in_item(path))
2040 reiserfs_panic(NULL, "PAP-5720", "found direct item "
2041 "%h or position (%d) does not match "
2042 "to key %K", found_ih,
2043 pos_in_item(path), key);
2044 }
2045 if (is_indirect_le_ih(found_ih)) {
2046 if (le_ih_k_offset(found_ih) +
2047 op_bytes_number(found_ih,
2048 get_last_bh(path)->b_size) !=
2049 cpu_key_k_offset(key)
2050 || I_UNFM_NUM(found_ih) != pos_in_item(path)
2051 || get_ih_free_space(found_ih) != 0)
2052 reiserfs_panic(NULL, "PAP-5730", "found indirect "
2053 "item (%h) or position (%d) does not "
2054 "match to key (%K)",
2055 found_ih, pos_in_item(path), key);
2056 }
2057}
2058#endif /* config reiserfs check */
2059
2060/*
2061 * Paste bytes to the existing item.
2062 * Returns bytes number pasted into the item.
2063 */
2064int reiserfs_paste_into_item(struct reiserfs_transaction_handle *th,
2065 /* Path to the pasted item. */
2066 struct treepath *search_path,
2067 /* Key to search for the needed item. */
2068 const struct cpu_key *key,
2069 /* Inode item belongs to */
2070 struct inode *inode,
2071 /* Pointer to the bytes to paste. */
2072 const char *body,
2073 /* Size of pasted bytes. */
2074 int pasted_size)
2075{
2076 struct super_block *sb = inode->i_sb;
2077 struct tree_balance s_paste_balance;
2078 int retval;
2079 int fs_gen;
2080 int depth;
2081
2082 BUG_ON(!th->t_trans_id);
2083
2084 fs_gen = get_generation(inode->i_sb);
2085
2086#ifdef REISERQUOTA_DEBUG
2087 reiserfs_debug(inode->i_sb, REISERFS_DEBUG_CODE,
2088 "reiserquota paste_into_item(): allocating %u id=%u type=%c",
2089 pasted_size, inode->i_uid,
2090 key2type(&key->on_disk_key));
2091#endif
2092
2093 depth = reiserfs_write_unlock_nested(sb);
2094 retval = dquot_alloc_space_nodirty(inode, pasted_size);
2095 reiserfs_write_lock_nested(sb, depth);
2096 if (retval) {
2097 pathrelse(search_path);
2098 return retval;
2099 }
2100 init_tb_struct(th, &s_paste_balance, th->t_super, search_path,
2101 pasted_size);
2102#ifdef DISPLACE_NEW_PACKING_LOCALITIES
2103 s_paste_balance.key = key->on_disk_key;
2104#endif
2105
2106 /* DQUOT_* can schedule, must check before the fix_nodes */
2107 if (fs_changed(fs_gen, inode->i_sb)) {
2108 goto search_again;
2109 }
2110
2111 while ((retval =
2112 fix_nodes(M_PASTE, &s_paste_balance, NULL,
2113 body)) == REPEAT_SEARCH) {
2114search_again:
2115 /* file system changed while we were in the fix_nodes */
2116 PROC_INFO_INC(th->t_super, paste_into_item_restarted);
2117 retval =
2118 search_for_position_by_key(th->t_super, key,
2119 search_path);
2120 if (retval == IO_ERROR) {
2121 retval = -EIO;
2122 goto error_out;
2123 }
2124 if (retval == POSITION_FOUND) {
2125 reiserfs_warning(inode->i_sb, "PAP-5710",
2126 "entry or pasted byte (%K) exists",
2127 key);
2128 retval = -EEXIST;
2129 goto error_out;
2130 }
2131#ifdef CONFIG_REISERFS_CHECK
2132 check_research_for_paste(search_path, key);
2133#endif
2134 }
2135
2136 /*
2137 * Perform balancing after all resources are collected by fix_nodes,
2138 * and accessing them will not risk triggering schedule.
2139 */
2140 if (retval == CARRY_ON) {
2141 do_balance(&s_paste_balance, NULL /*ih */ , body, M_PASTE);
2142 return 0;
2143 }
2144 retval = (retval == NO_DISK_SPACE) ? -ENOSPC : -EIO;
2145error_out:
2146 /* this also releases the path */
2147 unfix_nodes(&s_paste_balance);
2148#ifdef REISERQUOTA_DEBUG
2149 reiserfs_debug(inode->i_sb, REISERFS_DEBUG_CODE,
2150 "reiserquota paste_into_item(): freeing %u id=%u type=%c",
2151 pasted_size, inode->i_uid,
2152 key2type(&key->on_disk_key));
2153#endif
2154 depth = reiserfs_write_unlock_nested(sb);
2155 dquot_free_space_nodirty(inode, pasted_size);
2156 reiserfs_write_lock_nested(sb, depth);
2157 return retval;
2158}
2159
2160/*
2161 * Insert new item into the buffer at the path.
2162 * th - active transaction handle
2163 * path - path to the inserted item
2164 * ih - pointer to the item header to insert
2165 * body - pointer to the bytes to insert
2166 */
2167int reiserfs_insert_item(struct reiserfs_transaction_handle *th,
2168 struct treepath *path, const struct cpu_key *key,
2169 struct item_head *ih, struct inode *inode,
2170 const char *body)
2171{
2172 struct tree_balance s_ins_balance;
2173 int retval;
2174 int fs_gen = 0;
2175 int quota_bytes = 0;
2176
2177 BUG_ON(!th->t_trans_id);
2178
2179 if (inode) { /* Do we count quotas for item? */
2180 int depth;
2181 fs_gen = get_generation(inode->i_sb);
2182 quota_bytes = ih_item_len(ih);
2183
2184 /*
2185 * hack so the quota code doesn't have to guess
2186 * if the file has a tail, links are always tails,
2187 * so there's no guessing needed
2188 */
2189 if (!S_ISLNK(inode->i_mode) && is_direct_le_ih(ih))
2190 quota_bytes = inode->i_sb->s_blocksize + UNFM_P_SIZE;
2191#ifdef REISERQUOTA_DEBUG
2192 reiserfs_debug(inode->i_sb, REISERFS_DEBUG_CODE,
2193 "reiserquota insert_item(): allocating %u id=%u type=%c",
2194 quota_bytes, inode->i_uid, head2type(ih));
2195#endif
2196 /*
2197 * We can't dirty inode here. It would be immediately
2198 * written but appropriate stat item isn't inserted yet...
2199 */
2200 depth = reiserfs_write_unlock_nested(inode->i_sb);
2201 retval = dquot_alloc_space_nodirty(inode, quota_bytes);
2202 reiserfs_write_lock_nested(inode->i_sb, depth);
2203 if (retval) {
2204 pathrelse(path);
2205 return retval;
2206 }
2207 }
2208 init_tb_struct(th, &s_ins_balance, th->t_super, path,
2209 IH_SIZE + ih_item_len(ih));
2210#ifdef DISPLACE_NEW_PACKING_LOCALITIES
2211 s_ins_balance.key = key->on_disk_key;
2212#endif
2213 /*
2214 * DQUOT_* can schedule, must check to be sure calling
2215 * fix_nodes is safe
2216 */
2217 if (inode && fs_changed(fs_gen, inode->i_sb)) {
2218 goto search_again;
2219 }
2220
2221 while ((retval =
2222 fix_nodes(M_INSERT, &s_ins_balance, ih,
2223 body)) == REPEAT_SEARCH) {
2224search_again:
2225 /* file system changed while we were in the fix_nodes */
2226 PROC_INFO_INC(th->t_super, insert_item_restarted);
2227 retval = search_item(th->t_super, key, path);
2228 if (retval == IO_ERROR) {
2229 retval = -EIO;
2230 goto error_out;
2231 }
2232 if (retval == ITEM_FOUND) {
2233 reiserfs_warning(th->t_super, "PAP-5760",
2234 "key %K already exists in the tree",
2235 key);
2236 retval = -EEXIST;
2237 goto error_out;
2238 }
2239 }
2240
2241 /* make balancing after all resources will be collected at a time */
2242 if (retval == CARRY_ON) {
2243 do_balance(&s_ins_balance, ih, body, M_INSERT);
2244 return 0;
2245 }
2246
2247 retval = (retval == NO_DISK_SPACE) ? -ENOSPC : -EIO;
2248error_out:
2249 /* also releases the path */
2250 unfix_nodes(&s_ins_balance);
2251#ifdef REISERQUOTA_DEBUG
2252 reiserfs_debug(th->t_super, REISERFS_DEBUG_CODE,
2253 "reiserquota insert_item(): freeing %u id=%u type=%c",
2254 quota_bytes, inode->i_uid, head2type(ih));
2255#endif
2256 if (inode) {
2257 int depth = reiserfs_write_unlock_nested(inode->i_sb);
2258 dquot_free_space_nodirty(inode, quota_bytes);
2259 reiserfs_write_lock_nested(inode->i_sb, depth);
2260 }
2261 return retval;
2262}
1/*
2 * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
3 */
4
5/*
6 * Written by Anatoly P. Pinchuk pap@namesys.botik.ru
7 * Programm System Institute
8 * Pereslavl-Zalessky Russia
9 */
10
11/*
12 * This file contains functions dealing with S+tree
13 *
14 * B_IS_IN_TREE
15 * copy_item_head
16 * comp_short_keys
17 * comp_keys
18 * comp_short_le_keys
19 * le_key2cpu_key
20 * comp_le_keys
21 * bin_search
22 * get_lkey
23 * get_rkey
24 * key_in_buffer
25 * decrement_bcount
26 * reiserfs_check_path
27 * pathrelse_and_restore
28 * pathrelse
29 * search_by_key_reada
30 * search_by_key
31 * search_for_position_by_key
32 * comp_items
33 * prepare_for_direct_item
34 * prepare_for_direntry_item
35 * prepare_for_delete_or_cut
36 * calc_deleted_bytes_number
37 * init_tb_struct
38 * padd_item
39 * reiserfs_delete_item
40 * reiserfs_delete_solid_item
41 * reiserfs_delete_object
42 * maybe_indirect_to_direct
43 * indirect_to_direct_roll_back
44 * reiserfs_cut_from_item
45 * truncate_directory
46 * reiserfs_do_truncate
47 * reiserfs_paste_into_item
48 * reiserfs_insert_item
49 */
50
51#include <linux/time.h>
52#include <linux/string.h>
53#include <linux/pagemap.h>
54#include <linux/reiserfs_fs.h>
55#include <linux/buffer_head.h>
56#include <linux/quotaops.h>
57
58/* Does the buffer contain a disk block which is in the tree. */
59inline int B_IS_IN_TREE(const struct buffer_head *bh)
60{
61
62 RFALSE(B_LEVEL(bh) > MAX_HEIGHT,
63 "PAP-1010: block (%b) has too big level (%z)", bh, bh);
64
65 return (B_LEVEL(bh) != FREE_LEVEL);
66}
67
68//
69// to gets item head in le form
70//
71inline void copy_item_head(struct item_head *to,
72 const struct item_head *from)
73{
74 memcpy(to, from, IH_SIZE);
75}
76
77/* k1 is pointer to on-disk structure which is stored in little-endian
78 form. k2 is pointer to cpu variable. For key of items of the same
79 object this returns 0.
80 Returns: -1 if key1 < key2
81 0 if key1 == key2
82 1 if key1 > key2 */
83inline int comp_short_keys(const struct reiserfs_key *le_key,
84 const struct cpu_key *cpu_key)
85{
86 __u32 n;
87 n = le32_to_cpu(le_key->k_dir_id);
88 if (n < cpu_key->on_disk_key.k_dir_id)
89 return -1;
90 if (n > cpu_key->on_disk_key.k_dir_id)
91 return 1;
92 n = le32_to_cpu(le_key->k_objectid);
93 if (n < cpu_key->on_disk_key.k_objectid)
94 return -1;
95 if (n > cpu_key->on_disk_key.k_objectid)
96 return 1;
97 return 0;
98}
99
100/* k1 is pointer to on-disk structure which is stored in little-endian
101 form. k2 is pointer to cpu variable.
102 Compare keys using all 4 key fields.
103 Returns: -1 if key1 < key2 0
104 if key1 = key2 1 if key1 > key2 */
105static inline int comp_keys(const struct reiserfs_key *le_key,
106 const struct cpu_key *cpu_key)
107{
108 int retval;
109
110 retval = comp_short_keys(le_key, cpu_key);
111 if (retval)
112 return retval;
113 if (le_key_k_offset(le_key_version(le_key), le_key) <
114 cpu_key_k_offset(cpu_key))
115 return -1;
116 if (le_key_k_offset(le_key_version(le_key), le_key) >
117 cpu_key_k_offset(cpu_key))
118 return 1;
119
120 if (cpu_key->key_length == 3)
121 return 0;
122
123 /* this part is needed only when tail conversion is in progress */
124 if (le_key_k_type(le_key_version(le_key), le_key) <
125 cpu_key_k_type(cpu_key))
126 return -1;
127
128 if (le_key_k_type(le_key_version(le_key), le_key) >
129 cpu_key_k_type(cpu_key))
130 return 1;
131
132 return 0;
133}
134
135inline int comp_short_le_keys(const struct reiserfs_key *key1,
136 const struct reiserfs_key *key2)
137{
138 __u32 *k1_u32, *k2_u32;
139 int key_length = REISERFS_SHORT_KEY_LEN;
140
141 k1_u32 = (__u32 *) key1;
142 k2_u32 = (__u32 *) key2;
143 for (; key_length--; ++k1_u32, ++k2_u32) {
144 if (le32_to_cpu(*k1_u32) < le32_to_cpu(*k2_u32))
145 return -1;
146 if (le32_to_cpu(*k1_u32) > le32_to_cpu(*k2_u32))
147 return 1;
148 }
149 return 0;
150}
151
152inline void le_key2cpu_key(struct cpu_key *to, const struct reiserfs_key *from)
153{
154 int version;
155 to->on_disk_key.k_dir_id = le32_to_cpu(from->k_dir_id);
156 to->on_disk_key.k_objectid = le32_to_cpu(from->k_objectid);
157
158 // find out version of the key
159 version = le_key_version(from);
160 to->version = version;
161 to->on_disk_key.k_offset = le_key_k_offset(version, from);
162 to->on_disk_key.k_type = le_key_k_type(version, from);
163}
164
165// this does not say which one is bigger, it only returns 1 if keys
166// are not equal, 0 otherwise
167inline int comp_le_keys(const struct reiserfs_key *k1,
168 const struct reiserfs_key *k2)
169{
170 return memcmp(k1, k2, sizeof(struct reiserfs_key));
171}
172
173/**************************************************************************
174 * Binary search toolkit function *
175 * Search for an item in the array by the item key *
176 * Returns: 1 if found, 0 if not found; *
177 * *pos = number of the searched element if found, else the *
178 * number of the first element that is larger than key. *
179 **************************************************************************/
180/* For those not familiar with binary search: lbound is the leftmost item that it
181 could be, rbound the rightmost item that it could be. We examine the item
182 halfway between lbound and rbound, and that tells us either that we can increase
183 lbound, or decrease rbound, or that we have found it, or if lbound <= rbound that
184 there are no possible items, and we have not found it. With each examination we
185 cut the number of possible items it could be by one more than half rounded down,
186 or we find it. */
187static inline int bin_search(const void *key, /* Key to search for. */
188 const void *base, /* First item in the array. */
189 int num, /* Number of items in the array. */
190 int width, /* Item size in the array.
191 searched. Lest the reader be
192 confused, note that this is crafted
193 as a general function, and when it
194 is applied specifically to the array
195 of item headers in a node, width
196 is actually the item header size not
197 the item size. */
198 int *pos /* Number of the searched for element. */
199 )
200{
201 int rbound, lbound, j;
202
203 for (j = ((rbound = num - 1) + (lbound = 0)) / 2;
204 lbound <= rbound; j = (rbound + lbound) / 2)
205 switch (comp_keys
206 ((struct reiserfs_key *)((char *)base + j * width),
207 (struct cpu_key *)key)) {
208 case -1:
209 lbound = j + 1;
210 continue;
211 case 1:
212 rbound = j - 1;
213 continue;
214 case 0:
215 *pos = j;
216 return ITEM_FOUND; /* Key found in the array. */
217 }
218
219 /* bin_search did not find given key, it returns position of key,
220 that is minimal and greater than the given one. */
221 *pos = lbound;
222 return ITEM_NOT_FOUND;
223}
224
225
226/* Minimal possible key. It is never in the tree. */
227const struct reiserfs_key MIN_KEY = { 0, 0, {{0, 0},} };
228
229/* Maximal possible key. It is never in the tree. */
230static const struct reiserfs_key MAX_KEY = {
231 __constant_cpu_to_le32(0xffffffff),
232 __constant_cpu_to_le32(0xffffffff),
233 {{__constant_cpu_to_le32(0xffffffff),
234 __constant_cpu_to_le32(0xffffffff)},}
235};
236
237/* Get delimiting key of the buffer by looking for it in the buffers in the path, starting from the bottom
238 of the path, and going upwards. We must check the path's validity at each step. If the key is not in
239 the path, there is no delimiting key in the tree (buffer is first or last buffer in tree), and in this
240 case we return a special key, either MIN_KEY or MAX_KEY. */
241static inline const struct reiserfs_key *get_lkey(const struct treepath *chk_path,
242 const struct super_block *sb)
243{
244 int position, path_offset = chk_path->path_length;
245 struct buffer_head *parent;
246
247 RFALSE(path_offset < FIRST_PATH_ELEMENT_OFFSET,
248 "PAP-5010: invalid offset in the path");
249
250 /* While not higher in path than first element. */
251 while (path_offset-- > FIRST_PATH_ELEMENT_OFFSET) {
252
253 RFALSE(!buffer_uptodate
254 (PATH_OFFSET_PBUFFER(chk_path, path_offset)),
255 "PAP-5020: parent is not uptodate");
256
257 /* Parent at the path is not in the tree now. */
258 if (!B_IS_IN_TREE
259 (parent =
260 PATH_OFFSET_PBUFFER(chk_path, path_offset)))
261 return &MAX_KEY;
262 /* Check whether position in the parent is correct. */
263 if ((position =
264 PATH_OFFSET_POSITION(chk_path,
265 path_offset)) >
266 B_NR_ITEMS(parent))
267 return &MAX_KEY;
268 /* Check whether parent at the path really points to the child. */
269 if (B_N_CHILD_NUM(parent, position) !=
270 PATH_OFFSET_PBUFFER(chk_path,
271 path_offset + 1)->b_blocknr)
272 return &MAX_KEY;
273 /* Return delimiting key if position in the parent is not equal to zero. */
274 if (position)
275 return B_N_PDELIM_KEY(parent, position - 1);
276 }
277 /* Return MIN_KEY if we are in the root of the buffer tree. */
278 if (PATH_OFFSET_PBUFFER(chk_path, FIRST_PATH_ELEMENT_OFFSET)->
279 b_blocknr == SB_ROOT_BLOCK(sb))
280 return &MIN_KEY;
281 return &MAX_KEY;
282}
283
284/* Get delimiting key of the buffer at the path and its right neighbor. */
285inline const struct reiserfs_key *get_rkey(const struct treepath *chk_path,
286 const struct super_block *sb)
287{
288 int position, path_offset = chk_path->path_length;
289 struct buffer_head *parent;
290
291 RFALSE(path_offset < FIRST_PATH_ELEMENT_OFFSET,
292 "PAP-5030: invalid offset in the path");
293
294 while (path_offset-- > FIRST_PATH_ELEMENT_OFFSET) {
295
296 RFALSE(!buffer_uptodate
297 (PATH_OFFSET_PBUFFER(chk_path, path_offset)),
298 "PAP-5040: parent is not uptodate");
299
300 /* Parent at the path is not in the tree now. */
301 if (!B_IS_IN_TREE
302 (parent =
303 PATH_OFFSET_PBUFFER(chk_path, path_offset)))
304 return &MIN_KEY;
305 /* Check whether position in the parent is correct. */
306 if ((position =
307 PATH_OFFSET_POSITION(chk_path,
308 path_offset)) >
309 B_NR_ITEMS(parent))
310 return &MIN_KEY;
311 /* Check whether parent at the path really points to the child. */
312 if (B_N_CHILD_NUM(parent, position) !=
313 PATH_OFFSET_PBUFFER(chk_path,
314 path_offset + 1)->b_blocknr)
315 return &MIN_KEY;
316 /* Return delimiting key if position in the parent is not the last one. */
317 if (position != B_NR_ITEMS(parent))
318 return B_N_PDELIM_KEY(parent, position);
319 }
320 /* Return MAX_KEY if we are in the root of the buffer tree. */
321 if (PATH_OFFSET_PBUFFER(chk_path, FIRST_PATH_ELEMENT_OFFSET)->
322 b_blocknr == SB_ROOT_BLOCK(sb))
323 return &MAX_KEY;
324 return &MIN_KEY;
325}
326
327/* Check whether a key is contained in the tree rooted from a buffer at a path. */
328/* This works by looking at the left and right delimiting keys for the buffer in the last path_element in
329 the path. These delimiting keys are stored at least one level above that buffer in the tree. If the
330 buffer is the first or last node in the tree order then one of the delimiting keys may be absent, and in
331 this case get_lkey and get_rkey return a special key which is MIN_KEY or MAX_KEY. */
332static inline int key_in_buffer(struct treepath *chk_path, /* Path which should be checked. */
333 const struct cpu_key *key, /* Key which should be checked. */
334 struct super_block *sb
335 )
336{
337
338 RFALSE(!key || chk_path->path_length < FIRST_PATH_ELEMENT_OFFSET
339 || chk_path->path_length > MAX_HEIGHT,
340 "PAP-5050: pointer to the key(%p) is NULL or invalid path length(%d)",
341 key, chk_path->path_length);
342 RFALSE(!PATH_PLAST_BUFFER(chk_path)->b_bdev,
343 "PAP-5060: device must not be NODEV");
344
345 if (comp_keys(get_lkey(chk_path, sb), key) == 1)
346 /* left delimiting key is bigger, that the key we look for */
347 return 0;
348 /* if ( comp_keys(key, get_rkey(chk_path, sb)) != -1 ) */
349 if (comp_keys(get_rkey(chk_path, sb), key) != 1)
350 /* key must be less than right delimitiing key */
351 return 0;
352 return 1;
353}
354
355int reiserfs_check_path(struct treepath *p)
356{
357 RFALSE(p->path_length != ILLEGAL_PATH_ELEMENT_OFFSET,
358 "path not properly relsed");
359 return 0;
360}
361
362/* Drop the reference to each buffer in a path and restore
363 * dirty bits clean when preparing the buffer for the log.
364 * This version should only be called from fix_nodes() */
365void pathrelse_and_restore(struct super_block *sb,
366 struct treepath *search_path)
367{
368 int path_offset = search_path->path_length;
369
370 RFALSE(path_offset < ILLEGAL_PATH_ELEMENT_OFFSET,
371 "clm-4000: invalid path offset");
372
373 while (path_offset > ILLEGAL_PATH_ELEMENT_OFFSET) {
374 struct buffer_head *bh;
375 bh = PATH_OFFSET_PBUFFER(search_path, path_offset--);
376 reiserfs_restore_prepared_buffer(sb, bh);
377 brelse(bh);
378 }
379 search_path->path_length = ILLEGAL_PATH_ELEMENT_OFFSET;
380}
381
382/* Drop the reference to each buffer in a path */
383void pathrelse(struct treepath *search_path)
384{
385 int path_offset = search_path->path_length;
386
387 RFALSE(path_offset < ILLEGAL_PATH_ELEMENT_OFFSET,
388 "PAP-5090: invalid path offset");
389
390 while (path_offset > ILLEGAL_PATH_ELEMENT_OFFSET)
391 brelse(PATH_OFFSET_PBUFFER(search_path, path_offset--));
392
393 search_path->path_length = ILLEGAL_PATH_ELEMENT_OFFSET;
394}
395
396static int is_leaf(char *buf, int blocksize, struct buffer_head *bh)
397{
398 struct block_head *blkh;
399 struct item_head *ih;
400 int used_space;
401 int prev_location;
402 int i;
403 int nr;
404
405 blkh = (struct block_head *)buf;
406 if (blkh_level(blkh) != DISK_LEAF_NODE_LEVEL) {
407 reiserfs_warning(NULL, "reiserfs-5080",
408 "this should be caught earlier");
409 return 0;
410 }
411
412 nr = blkh_nr_item(blkh);
413 if (nr < 1 || nr > ((blocksize - BLKH_SIZE) / (IH_SIZE + MIN_ITEM_LEN))) {
414 /* item number is too big or too small */
415 reiserfs_warning(NULL, "reiserfs-5081",
416 "nr_item seems wrong: %z", bh);
417 return 0;
418 }
419 ih = (struct item_head *)(buf + BLKH_SIZE) + nr - 1;
420 used_space = BLKH_SIZE + IH_SIZE * nr + (blocksize - ih_location(ih));
421 if (used_space != blocksize - blkh_free_space(blkh)) {
422 /* free space does not match to calculated amount of use space */
423 reiserfs_warning(NULL, "reiserfs-5082",
424 "free space seems wrong: %z", bh);
425 return 0;
426 }
427 // FIXME: it is_leaf will hit performance too much - we may have
428 // return 1 here
429
430 /* check tables of item heads */
431 ih = (struct item_head *)(buf + BLKH_SIZE);
432 prev_location = blocksize;
433 for (i = 0; i < nr; i++, ih++) {
434 if (le_ih_k_type(ih) == TYPE_ANY) {
435 reiserfs_warning(NULL, "reiserfs-5083",
436 "wrong item type for item %h",
437 ih);
438 return 0;
439 }
440 if (ih_location(ih) >= blocksize
441 || ih_location(ih) < IH_SIZE * nr) {
442 reiserfs_warning(NULL, "reiserfs-5084",
443 "item location seems wrong: %h",
444 ih);
445 return 0;
446 }
447 if (ih_item_len(ih) < 1
448 || ih_item_len(ih) > MAX_ITEM_LEN(blocksize)) {
449 reiserfs_warning(NULL, "reiserfs-5085",
450 "item length seems wrong: %h",
451 ih);
452 return 0;
453 }
454 if (prev_location - ih_location(ih) != ih_item_len(ih)) {
455 reiserfs_warning(NULL, "reiserfs-5086",
456 "item location seems wrong "
457 "(second one): %h", ih);
458 return 0;
459 }
460 prev_location = ih_location(ih);
461 }
462
463 // one may imagine much more checks
464 return 1;
465}
466
467/* returns 1 if buf looks like an internal node, 0 otherwise */
468static int is_internal(char *buf, int blocksize, struct buffer_head *bh)
469{
470 struct block_head *blkh;
471 int nr;
472 int used_space;
473
474 blkh = (struct block_head *)buf;
475 nr = blkh_level(blkh);
476 if (nr <= DISK_LEAF_NODE_LEVEL || nr > MAX_HEIGHT) {
477 /* this level is not possible for internal nodes */
478 reiserfs_warning(NULL, "reiserfs-5087",
479 "this should be caught earlier");
480 return 0;
481 }
482
483 nr = blkh_nr_item(blkh);
484 if (nr > (blocksize - BLKH_SIZE - DC_SIZE) / (KEY_SIZE + DC_SIZE)) {
485 /* for internal which is not root we might check min number of keys */
486 reiserfs_warning(NULL, "reiserfs-5088",
487 "number of key seems wrong: %z", bh);
488 return 0;
489 }
490
491 used_space = BLKH_SIZE + KEY_SIZE * nr + DC_SIZE * (nr + 1);
492 if (used_space != blocksize - blkh_free_space(blkh)) {
493 reiserfs_warning(NULL, "reiserfs-5089",
494 "free space seems wrong: %z", bh);
495 return 0;
496 }
497 // one may imagine much more checks
498 return 1;
499}
500
501// make sure that bh contains formatted node of reiserfs tree of
502// 'level'-th level
503static int is_tree_node(struct buffer_head *bh, int level)
504{
505 if (B_LEVEL(bh) != level) {
506 reiserfs_warning(NULL, "reiserfs-5090", "node level %d does "
507 "not match to the expected one %d",
508 B_LEVEL(bh), level);
509 return 0;
510 }
511 if (level == DISK_LEAF_NODE_LEVEL)
512 return is_leaf(bh->b_data, bh->b_size, bh);
513
514 return is_internal(bh->b_data, bh->b_size, bh);
515}
516
517#define SEARCH_BY_KEY_READA 16
518
519/*
520 * The function is NOT SCHEDULE-SAFE!
521 * It might unlock the write lock if we needed to wait for a block
522 * to be read. Note that in this case it won't recover the lock to avoid
523 * high contention resulting from too much lock requests, especially
524 * the caller (search_by_key) will perform other schedule-unsafe
525 * operations just after calling this function.
526 *
527 * @return true if we have unlocked
528 */
529static bool search_by_key_reada(struct super_block *s,
530 struct buffer_head **bh,
531 b_blocknr_t *b, int num)
532{
533 int i, j;
534 bool unlocked = false;
535
536 for (i = 0; i < num; i++) {
537 bh[i] = sb_getblk(s, b[i]);
538 }
539 /*
540 * We are going to read some blocks on which we
541 * have a reference. It's safe, though we might be
542 * reading blocks concurrently changed if we release
543 * the lock. But it's still fine because we check later
544 * if the tree changed
545 */
546 for (j = 0; j < i; j++) {
547 /*
548 * note, this needs attention if we are getting rid of the BKL
549 * you have to make sure the prepared bit isn't set on this buffer
550 */
551 if (!buffer_uptodate(bh[j])) {
552 if (!unlocked) {
553 reiserfs_write_unlock(s);
554 unlocked = true;
555 }
556 ll_rw_block(READA, 1, bh + j);
557 }
558 brelse(bh[j]);
559 }
560 return unlocked;
561}
562
563/**************************************************************************
564 * Algorithm SearchByKey *
565 * look for item in the Disk S+Tree by its key *
566 * Input: sb - super block *
567 * key - pointer to the key to search *
568 * Output: ITEM_FOUND, ITEM_NOT_FOUND or IO_ERROR *
569 * search_path - path from the root to the needed leaf *
570 **************************************************************************/
571
572/* This function fills up the path from the root to the leaf as it
573 descends the tree looking for the key. It uses reiserfs_bread to
574 try to find buffers in the cache given their block number. If it
575 does not find them in the cache it reads them from disk. For each
576 node search_by_key finds using reiserfs_bread it then uses
577 bin_search to look through that node. bin_search will find the
578 position of the block_number of the next node if it is looking
579 through an internal node. If it is looking through a leaf node
580 bin_search will find the position of the item which has key either
581 equal to given key, or which is the maximal key less than the given
582 key. search_by_key returns a path that must be checked for the
583 correctness of the top of the path but need not be checked for the
584 correctness of the bottom of the path */
585/* The function is NOT SCHEDULE-SAFE! */
586int search_by_key(struct super_block *sb, const struct cpu_key *key, /* Key to search. */
587 struct treepath *search_path,/* This structure was
588 allocated and initialized
589 by the calling
590 function. It is filled up
591 by this function. */
592 int stop_level /* How far down the tree to search. To
593 stop at leaf level - set to
594 DISK_LEAF_NODE_LEVEL */
595 )
596{
597 b_blocknr_t block_number;
598 int expected_level;
599 struct buffer_head *bh;
600 struct path_element *last_element;
601 int node_level, retval;
602 int right_neighbor_of_leaf_node;
603 int fs_gen;
604 struct buffer_head *reada_bh[SEARCH_BY_KEY_READA];
605 b_blocknr_t reada_blocks[SEARCH_BY_KEY_READA];
606 int reada_count = 0;
607
608#ifdef CONFIG_REISERFS_CHECK
609 int repeat_counter = 0;
610#endif
611
612 PROC_INFO_INC(sb, search_by_key);
613
614 /* As we add each node to a path we increase its count. This means that
615 we must be careful to release all nodes in a path before we either
616 discard the path struct or re-use the path struct, as we do here. */
617
618 pathrelse(search_path);
619
620 right_neighbor_of_leaf_node = 0;
621
622 /* With each iteration of this loop we search through the items in the
623 current node, and calculate the next current node(next path element)
624 for the next iteration of this loop.. */
625 block_number = SB_ROOT_BLOCK(sb);
626 expected_level = -1;
627 while (1) {
628
629#ifdef CONFIG_REISERFS_CHECK
630 if (!(++repeat_counter % 50000))
631 reiserfs_warning(sb, "PAP-5100",
632 "%s: there were %d iterations of "
633 "while loop looking for key %K",
634 current->comm, repeat_counter,
635 key);
636#endif
637
638 /* prep path to have another element added to it. */
639 last_element =
640 PATH_OFFSET_PELEMENT(search_path,
641 ++search_path->path_length);
642 fs_gen = get_generation(sb);
643
644 /* Read the next tree node, and set the last element in the path to
645 have a pointer to it. */
646 if ((bh = last_element->pe_buffer =
647 sb_getblk(sb, block_number))) {
648 bool unlocked = false;
649
650 if (!buffer_uptodate(bh) && reada_count > 1)
651 /* may unlock the write lock */
652 unlocked = search_by_key_reada(sb, reada_bh,
653 reada_blocks, reada_count);
654 /*
655 * If we haven't already unlocked the write lock,
656 * then we need to do that here before reading
657 * the current block
658 */
659 if (!buffer_uptodate(bh) && !unlocked) {
660 reiserfs_write_unlock(sb);
661 unlocked = true;
662 }
663 ll_rw_block(READ, 1, &bh);
664 wait_on_buffer(bh);
665
666 if (unlocked)
667 reiserfs_write_lock(sb);
668 if (!buffer_uptodate(bh))
669 goto io_error;
670 } else {
671 io_error:
672 search_path->path_length--;
673 pathrelse(search_path);
674 return IO_ERROR;
675 }
676 reada_count = 0;
677 if (expected_level == -1)
678 expected_level = SB_TREE_HEIGHT(sb);
679 expected_level--;
680
681 /* It is possible that schedule occurred. We must check whether the key
682 to search is still in the tree rooted from the current buffer. If
683 not then repeat search from the root. */
684 if (fs_changed(fs_gen, sb) &&
685 (!B_IS_IN_TREE(bh) ||
686 B_LEVEL(bh) != expected_level ||
687 !key_in_buffer(search_path, key, sb))) {
688 PROC_INFO_INC(sb, search_by_key_fs_changed);
689 PROC_INFO_INC(sb, search_by_key_restarted);
690 PROC_INFO_INC(sb,
691 sbk_restarted[expected_level - 1]);
692 pathrelse(search_path);
693
694 /* Get the root block number so that we can repeat the search
695 starting from the root. */
696 block_number = SB_ROOT_BLOCK(sb);
697 expected_level = -1;
698 right_neighbor_of_leaf_node = 0;
699
700 /* repeat search from the root */
701 continue;
702 }
703
704 /* only check that the key is in the buffer if key is not
705 equal to the MAX_KEY. Latter case is only possible in
706 "finish_unfinished()" processing during mount. */
707 RFALSE(comp_keys(&MAX_KEY, key) &&
708 !key_in_buffer(search_path, key, sb),
709 "PAP-5130: key is not in the buffer");
710#ifdef CONFIG_REISERFS_CHECK
711 if (REISERFS_SB(sb)->cur_tb) {
712 print_cur_tb("5140");
713 reiserfs_panic(sb, "PAP-5140",
714 "schedule occurred in do_balance!");
715 }
716#endif
717
718 // make sure, that the node contents look like a node of
719 // certain level
720 if (!is_tree_node(bh, expected_level)) {
721 reiserfs_error(sb, "vs-5150",
722 "invalid format found in block %ld. "
723 "Fsck?", bh->b_blocknr);
724 pathrelse(search_path);
725 return IO_ERROR;
726 }
727
728 /* ok, we have acquired next formatted node in the tree */
729 node_level = B_LEVEL(bh);
730
731 PROC_INFO_BH_STAT(sb, bh, node_level - 1);
732
733 RFALSE(node_level < stop_level,
734 "vs-5152: tree level (%d) is less than stop level (%d)",
735 node_level, stop_level);
736
737 retval = bin_search(key, B_N_PITEM_HEAD(bh, 0),
738 B_NR_ITEMS(bh),
739 (node_level ==
740 DISK_LEAF_NODE_LEVEL) ? IH_SIZE :
741 KEY_SIZE,
742 &(last_element->pe_position));
743 if (node_level == stop_level) {
744 return retval;
745 }
746
747 /* we are not in the stop level */
748 if (retval == ITEM_FOUND)
749 /* item has been found, so we choose the pointer which is to the right of the found one */
750 last_element->pe_position++;
751
752 /* if item was not found we choose the position which is to
753 the left of the found item. This requires no code,
754 bin_search did it already. */
755
756 /* So we have chosen a position in the current node which is
757 an internal node. Now we calculate child block number by
758 position in the node. */
759 block_number =
760 B_N_CHILD_NUM(bh, last_element->pe_position);
761
762 /* if we are going to read leaf nodes, try for read ahead as well */
763 if ((search_path->reada & PATH_READA) &&
764 node_level == DISK_LEAF_NODE_LEVEL + 1) {
765 int pos = last_element->pe_position;
766 int limit = B_NR_ITEMS(bh);
767 struct reiserfs_key *le_key;
768
769 if (search_path->reada & PATH_READA_BACK)
770 limit = 0;
771 while (reada_count < SEARCH_BY_KEY_READA) {
772 if (pos == limit)
773 break;
774 reada_blocks[reada_count++] =
775 B_N_CHILD_NUM(bh, pos);
776 if (search_path->reada & PATH_READA_BACK)
777 pos--;
778 else
779 pos++;
780
781 /*
782 * check to make sure we're in the same object
783 */
784 le_key = B_N_PDELIM_KEY(bh, pos);
785 if (le32_to_cpu(le_key->k_objectid) !=
786 key->on_disk_key.k_objectid) {
787 break;
788 }
789 }
790 }
791 }
792}
793
794/* Form the path to an item and position in this item which contains
795 file byte defined by key. If there is no such item
796 corresponding to the key, we point the path to the item with
797 maximal key less than key, and *pos_in_item is set to one
798 past the last entry/byte in the item. If searching for entry in a
799 directory item, and it is not found, *pos_in_item is set to one
800 entry more than the entry with maximal key which is less than the
801 sought key.
802
803 Note that if there is no entry in this same node which is one more,
804 then we point to an imaginary entry. for direct items, the
805 position is in units of bytes, for indirect items the position is
806 in units of blocknr entries, for directory items the position is in
807 units of directory entries. */
808
809/* The function is NOT SCHEDULE-SAFE! */
810int search_for_position_by_key(struct super_block *sb, /* Pointer to the super block. */
811 const struct cpu_key *p_cpu_key, /* Key to search (cpu variable) */
812 struct treepath *search_path /* Filled up by this function. */
813 )
814{
815 struct item_head *p_le_ih; /* pointer to on-disk structure */
816 int blk_size;
817 loff_t item_offset, offset;
818 struct reiserfs_dir_entry de;
819 int retval;
820
821 /* If searching for directory entry. */
822 if (is_direntry_cpu_key(p_cpu_key))
823 return search_by_entry_key(sb, p_cpu_key, search_path,
824 &de);
825
826 /* If not searching for directory entry. */
827
828 /* If item is found. */
829 retval = search_item(sb, p_cpu_key, search_path);
830 if (retval == IO_ERROR)
831 return retval;
832 if (retval == ITEM_FOUND) {
833
834 RFALSE(!ih_item_len
835 (B_N_PITEM_HEAD
836 (PATH_PLAST_BUFFER(search_path),
837 PATH_LAST_POSITION(search_path))),
838 "PAP-5165: item length equals zero");
839
840 pos_in_item(search_path) = 0;
841 return POSITION_FOUND;
842 }
843
844 RFALSE(!PATH_LAST_POSITION(search_path),
845 "PAP-5170: position equals zero");
846
847 /* Item is not found. Set path to the previous item. */
848 p_le_ih =
849 B_N_PITEM_HEAD(PATH_PLAST_BUFFER(search_path),
850 --PATH_LAST_POSITION(search_path));
851 blk_size = sb->s_blocksize;
852
853 if (comp_short_keys(&(p_le_ih->ih_key), p_cpu_key)) {
854 return FILE_NOT_FOUND;
855 }
856 // FIXME: quite ugly this far
857
858 item_offset = le_ih_k_offset(p_le_ih);
859 offset = cpu_key_k_offset(p_cpu_key);
860
861 /* Needed byte is contained in the item pointed to by the path. */
862 if (item_offset <= offset &&
863 item_offset + op_bytes_number(p_le_ih, blk_size) > offset) {
864 pos_in_item(search_path) = offset - item_offset;
865 if (is_indirect_le_ih(p_le_ih)) {
866 pos_in_item(search_path) /= blk_size;
867 }
868 return POSITION_FOUND;
869 }
870
871 /* Needed byte is not contained in the item pointed to by the
872 path. Set pos_in_item out of the item. */
873 if (is_indirect_le_ih(p_le_ih))
874 pos_in_item(search_path) =
875 ih_item_len(p_le_ih) / UNFM_P_SIZE;
876 else
877 pos_in_item(search_path) = ih_item_len(p_le_ih);
878
879 return POSITION_NOT_FOUND;
880}
881
882/* Compare given item and item pointed to by the path. */
883int comp_items(const struct item_head *stored_ih, const struct treepath *path)
884{
885 struct buffer_head *bh = PATH_PLAST_BUFFER(path);
886 struct item_head *ih;
887
888 /* Last buffer at the path is not in the tree. */
889 if (!B_IS_IN_TREE(bh))
890 return 1;
891
892 /* Last path position is invalid. */
893 if (PATH_LAST_POSITION(path) >= B_NR_ITEMS(bh))
894 return 1;
895
896 /* we need only to know, whether it is the same item */
897 ih = get_ih(path);
898 return memcmp(stored_ih, ih, IH_SIZE);
899}
900
901/* unformatted nodes are not logged anymore, ever. This is safe
902** now
903*/
904#define held_by_others(bh) (atomic_read(&(bh)->b_count) > 1)
905
906// block can not be forgotten as it is in I/O or held by someone
907#define block_in_use(bh) (buffer_locked(bh) || (held_by_others(bh)))
908
909// prepare for delete or cut of direct item
910static inline int prepare_for_direct_item(struct treepath *path,
911 struct item_head *le_ih,
912 struct inode *inode,
913 loff_t new_file_length, int *cut_size)
914{
915 loff_t round_len;
916
917 if (new_file_length == max_reiserfs_offset(inode)) {
918 /* item has to be deleted */
919 *cut_size = -(IH_SIZE + ih_item_len(le_ih));
920 return M_DELETE;
921 }
922 // new file gets truncated
923 if (get_inode_item_key_version(inode) == KEY_FORMAT_3_6) {
924 //
925 round_len = ROUND_UP(new_file_length);
926 /* this was new_file_length < le_ih ... */
927 if (round_len < le_ih_k_offset(le_ih)) {
928 *cut_size = -(IH_SIZE + ih_item_len(le_ih));
929 return M_DELETE; /* Delete this item. */
930 }
931 /* Calculate first position and size for cutting from item. */
932 pos_in_item(path) = round_len - (le_ih_k_offset(le_ih) - 1);
933 *cut_size = -(ih_item_len(le_ih) - pos_in_item(path));
934
935 return M_CUT; /* Cut from this item. */
936 }
937
938 // old file: items may have any length
939
940 if (new_file_length < le_ih_k_offset(le_ih)) {
941 *cut_size = -(IH_SIZE + ih_item_len(le_ih));
942 return M_DELETE; /* Delete this item. */
943 }
944 /* Calculate first position and size for cutting from item. */
945 *cut_size = -(ih_item_len(le_ih) -
946 (pos_in_item(path) =
947 new_file_length + 1 - le_ih_k_offset(le_ih)));
948 return M_CUT; /* Cut from this item. */
949}
950
951static inline int prepare_for_direntry_item(struct treepath *path,
952 struct item_head *le_ih,
953 struct inode *inode,
954 loff_t new_file_length,
955 int *cut_size)
956{
957 if (le_ih_k_offset(le_ih) == DOT_OFFSET &&
958 new_file_length == max_reiserfs_offset(inode)) {
959 RFALSE(ih_entry_count(le_ih) != 2,
960 "PAP-5220: incorrect empty directory item (%h)", le_ih);
961 *cut_size = -(IH_SIZE + ih_item_len(le_ih));
962 return M_DELETE; /* Delete the directory item containing "." and ".." entry. */
963 }
964
965 if (ih_entry_count(le_ih) == 1) {
966 /* Delete the directory item such as there is one record only
967 in this item */
968 *cut_size = -(IH_SIZE + ih_item_len(le_ih));
969 return M_DELETE;
970 }
971
972 /* Cut one record from the directory item. */
973 *cut_size =
974 -(DEH_SIZE +
975 entry_length(get_last_bh(path), le_ih, pos_in_item(path)));
976 return M_CUT;
977}
978
979#define JOURNAL_FOR_FREE_BLOCK_AND_UPDATE_SD (2 * JOURNAL_PER_BALANCE_CNT + 1)
980
981/* If the path points to a directory or direct item, calculate mode and the size cut, for balance.
982 If the path points to an indirect item, remove some number of its unformatted nodes.
983 In case of file truncate calculate whether this item must be deleted/truncated or last
984 unformatted node of this item will be converted to a direct item.
985 This function returns a determination of what balance mode the calling function should employ. */
986static char prepare_for_delete_or_cut(struct reiserfs_transaction_handle *th, struct inode *inode, struct treepath *path, const struct cpu_key *item_key, int *removed, /* Number of unformatted nodes which were removed
987 from end of the file. */
988 int *cut_size, unsigned long long new_file_length /* MAX_KEY_OFFSET in case of delete. */
989 )
990{
991 struct super_block *sb = inode->i_sb;
992 struct item_head *p_le_ih = PATH_PITEM_HEAD(path);
993 struct buffer_head *bh = PATH_PLAST_BUFFER(path);
994
995 BUG_ON(!th->t_trans_id);
996
997 /* Stat_data item. */
998 if (is_statdata_le_ih(p_le_ih)) {
999
1000 RFALSE(new_file_length != max_reiserfs_offset(inode),
1001 "PAP-5210: mode must be M_DELETE");
1002
1003 *cut_size = -(IH_SIZE + ih_item_len(p_le_ih));
1004 return M_DELETE;
1005 }
1006
1007 /* Directory item. */
1008 if (is_direntry_le_ih(p_le_ih))
1009 return prepare_for_direntry_item(path, p_le_ih, inode,
1010 new_file_length,
1011 cut_size);
1012
1013 /* Direct item. */
1014 if (is_direct_le_ih(p_le_ih))
1015 return prepare_for_direct_item(path, p_le_ih, inode,
1016 new_file_length, cut_size);
1017
1018 /* Case of an indirect item. */
1019 {
1020 int blk_size = sb->s_blocksize;
1021 struct item_head s_ih;
1022 int need_re_search;
1023 int delete = 0;
1024 int result = M_CUT;
1025 int pos = 0;
1026
1027 if ( new_file_length == max_reiserfs_offset (inode) ) {
1028 /* prepare_for_delete_or_cut() is called by
1029 * reiserfs_delete_item() */
1030 new_file_length = 0;
1031 delete = 1;
1032 }
1033
1034 do {
1035 need_re_search = 0;
1036 *cut_size = 0;
1037 bh = PATH_PLAST_BUFFER(path);
1038 copy_item_head(&s_ih, PATH_PITEM_HEAD(path));
1039 pos = I_UNFM_NUM(&s_ih);
1040
1041 while (le_ih_k_offset (&s_ih) + (pos - 1) * blk_size > new_file_length) {
1042 __le32 *unfm;
1043 __u32 block;
1044
1045 /* Each unformatted block deletion may involve one additional
1046 * bitmap block into the transaction, thereby the initial
1047 * journal space reservation might not be enough. */
1048 if (!delete && (*cut_size) != 0 &&
1049 reiserfs_transaction_free_space(th) < JOURNAL_FOR_FREE_BLOCK_AND_UPDATE_SD)
1050 break;
1051
1052 unfm = (__le32 *)B_I_PITEM(bh, &s_ih) + pos - 1;
1053 block = get_block_num(unfm, 0);
1054
1055 if (block != 0) {
1056 reiserfs_prepare_for_journal(sb, bh, 1);
1057 put_block_num(unfm, 0, 0);
1058 journal_mark_dirty(th, sb, bh);
1059 reiserfs_free_block(th, inode, block, 1);
1060 }
1061
1062 reiserfs_write_unlock(sb);
1063 cond_resched();
1064 reiserfs_write_lock(sb);
1065
1066 if (item_moved (&s_ih, path)) {
1067 need_re_search = 1;
1068 break;
1069 }
1070
1071 pos --;
1072 (*removed)++;
1073 (*cut_size) -= UNFM_P_SIZE;
1074
1075 if (pos == 0) {
1076 (*cut_size) -= IH_SIZE;
1077 result = M_DELETE;
1078 break;
1079 }
1080 }
1081 /* a trick. If the buffer has been logged, this will do nothing. If
1082 ** we've broken the loop without logging it, it will restore the
1083 ** buffer */
1084 reiserfs_restore_prepared_buffer(sb, bh);
1085 } while (need_re_search &&
1086 search_for_position_by_key(sb, item_key, path) == POSITION_FOUND);
1087 pos_in_item(path) = pos * UNFM_P_SIZE;
1088
1089 if (*cut_size == 0) {
1090 /* Nothing were cut. maybe convert last unformatted node to the
1091 * direct item? */
1092 result = M_CONVERT;
1093 }
1094 return result;
1095 }
1096}
1097
1098/* Calculate number of bytes which will be deleted or cut during balance */
1099static int calc_deleted_bytes_number(struct tree_balance *tb, char mode)
1100{
1101 int del_size;
1102 struct item_head *p_le_ih = PATH_PITEM_HEAD(tb->tb_path);
1103
1104 if (is_statdata_le_ih(p_le_ih))
1105 return 0;
1106
1107 del_size =
1108 (mode ==
1109 M_DELETE) ? ih_item_len(p_le_ih) : -tb->insert_size[0];
1110 if (is_direntry_le_ih(p_le_ih)) {
1111 /* return EMPTY_DIR_SIZE; We delete emty directoris only.
1112 * we can't use EMPTY_DIR_SIZE, as old format dirs have a different
1113 * empty size. ick. FIXME, is this right? */
1114 return del_size;
1115 }
1116
1117 if (is_indirect_le_ih(p_le_ih))
1118 del_size = (del_size / UNFM_P_SIZE) *
1119 (PATH_PLAST_BUFFER(tb->tb_path)->b_size);
1120 return del_size;
1121}
1122
1123static void init_tb_struct(struct reiserfs_transaction_handle *th,
1124 struct tree_balance *tb,
1125 struct super_block *sb,
1126 struct treepath *path, int size)
1127{
1128
1129 BUG_ON(!th->t_trans_id);
1130
1131 memset(tb, '\0', sizeof(struct tree_balance));
1132 tb->transaction_handle = th;
1133 tb->tb_sb = sb;
1134 tb->tb_path = path;
1135 PATH_OFFSET_PBUFFER(path, ILLEGAL_PATH_ELEMENT_OFFSET) = NULL;
1136 PATH_OFFSET_POSITION(path, ILLEGAL_PATH_ELEMENT_OFFSET) = 0;
1137 tb->insert_size[0] = size;
1138}
1139
1140void padd_item(char *item, int total_length, int length)
1141{
1142 int i;
1143
1144 for (i = total_length; i > length;)
1145 item[--i] = 0;
1146}
1147
1148#ifdef REISERQUOTA_DEBUG
1149char key2type(struct reiserfs_key *ih)
1150{
1151 if (is_direntry_le_key(2, ih))
1152 return 'd';
1153 if (is_direct_le_key(2, ih))
1154 return 'D';
1155 if (is_indirect_le_key(2, ih))
1156 return 'i';
1157 if (is_statdata_le_key(2, ih))
1158 return 's';
1159 return 'u';
1160}
1161
1162char head2type(struct item_head *ih)
1163{
1164 if (is_direntry_le_ih(ih))
1165 return 'd';
1166 if (is_direct_le_ih(ih))
1167 return 'D';
1168 if (is_indirect_le_ih(ih))
1169 return 'i';
1170 if (is_statdata_le_ih(ih))
1171 return 's';
1172 return 'u';
1173}
1174#endif
1175
1176/* Delete object item.
1177 * th - active transaction handle
1178 * path - path to the deleted item
1179 * item_key - key to search for the deleted item
1180 * indode - used for updating i_blocks and quotas
1181 * un_bh - NULL or unformatted node pointer
1182 */
1183int reiserfs_delete_item(struct reiserfs_transaction_handle *th,
1184 struct treepath *path, const struct cpu_key *item_key,
1185 struct inode *inode, struct buffer_head *un_bh)
1186{
1187 struct super_block *sb = inode->i_sb;
1188 struct tree_balance s_del_balance;
1189 struct item_head s_ih;
1190 struct item_head *q_ih;
1191 int quota_cut_bytes;
1192 int ret_value, del_size, removed;
1193
1194#ifdef CONFIG_REISERFS_CHECK
1195 char mode;
1196 int iter = 0;
1197#endif
1198
1199 BUG_ON(!th->t_trans_id);
1200
1201 init_tb_struct(th, &s_del_balance, sb, path,
1202 0 /*size is unknown */ );
1203
1204 while (1) {
1205 removed = 0;
1206
1207#ifdef CONFIG_REISERFS_CHECK
1208 iter++;
1209 mode =
1210#endif
1211 prepare_for_delete_or_cut(th, inode, path,
1212 item_key, &removed,
1213 &del_size,
1214 max_reiserfs_offset(inode));
1215
1216 RFALSE(mode != M_DELETE, "PAP-5320: mode must be M_DELETE");
1217
1218 copy_item_head(&s_ih, PATH_PITEM_HEAD(path));
1219 s_del_balance.insert_size[0] = del_size;
1220
1221 ret_value = fix_nodes(M_DELETE, &s_del_balance, NULL, NULL);
1222 if (ret_value != REPEAT_SEARCH)
1223 break;
1224
1225 PROC_INFO_INC(sb, delete_item_restarted);
1226
1227 // file system changed, repeat search
1228 ret_value =
1229 search_for_position_by_key(sb, item_key, path);
1230 if (ret_value == IO_ERROR)
1231 break;
1232 if (ret_value == FILE_NOT_FOUND) {
1233 reiserfs_warning(sb, "vs-5340",
1234 "no items of the file %K found",
1235 item_key);
1236 break;
1237 }
1238 } /* while (1) */
1239
1240 if (ret_value != CARRY_ON) {
1241 unfix_nodes(&s_del_balance);
1242 return 0;
1243 }
1244 // reiserfs_delete_item returns item length when success
1245 ret_value = calc_deleted_bytes_number(&s_del_balance, M_DELETE);
1246 q_ih = get_ih(path);
1247 quota_cut_bytes = ih_item_len(q_ih);
1248
1249 /* hack so the quota code doesn't have to guess if the file
1250 ** has a tail. On tail insert, we allocate quota for 1 unformatted node.
1251 ** We test the offset because the tail might have been
1252 ** split into multiple items, and we only want to decrement for
1253 ** the unfm node once
1254 */
1255 if (!S_ISLNK(inode->i_mode) && is_direct_le_ih(q_ih)) {
1256 if ((le_ih_k_offset(q_ih) & (sb->s_blocksize - 1)) == 1) {
1257 quota_cut_bytes = sb->s_blocksize + UNFM_P_SIZE;
1258 } else {
1259 quota_cut_bytes = 0;
1260 }
1261 }
1262
1263 if (un_bh) {
1264 int off;
1265 char *data;
1266
1267 /* We are in direct2indirect conversion, so move tail contents
1268 to the unformatted node */
1269 /* note, we do the copy before preparing the buffer because we
1270 ** don't care about the contents of the unformatted node yet.
1271 ** the only thing we really care about is the direct item's data
1272 ** is in the unformatted node.
1273 **
1274 ** Otherwise, we would have to call reiserfs_prepare_for_journal on
1275 ** the unformatted node, which might schedule, meaning we'd have to
1276 ** loop all the way back up to the start of the while loop.
1277 **
1278 ** The unformatted node must be dirtied later on. We can't be
1279 ** sure here if the entire tail has been deleted yet.
1280 **
1281 ** un_bh is from the page cache (all unformatted nodes are
1282 ** from the page cache) and might be a highmem page. So, we
1283 ** can't use un_bh->b_data.
1284 ** -clm
1285 */
1286
1287 data = kmap_atomic(un_bh->b_page, KM_USER0);
1288 off = ((le_ih_k_offset(&s_ih) - 1) & (PAGE_CACHE_SIZE - 1));
1289 memcpy(data + off,
1290 B_I_PITEM(PATH_PLAST_BUFFER(path), &s_ih),
1291 ret_value);
1292 kunmap_atomic(data, KM_USER0);
1293 }
1294 /* Perform balancing after all resources have been collected at once. */
1295 do_balance(&s_del_balance, NULL, NULL, M_DELETE);
1296
1297#ifdef REISERQUOTA_DEBUG
1298 reiserfs_debug(sb, REISERFS_DEBUG_CODE,
1299 "reiserquota delete_item(): freeing %u, id=%u type=%c",
1300 quota_cut_bytes, inode->i_uid, head2type(&s_ih));
1301#endif
1302 dquot_free_space_nodirty(inode, quota_cut_bytes);
1303
1304 /* Return deleted body length */
1305 return ret_value;
1306}
1307
1308/* Summary Of Mechanisms For Handling Collisions Between Processes:
1309
1310 deletion of the body of the object is performed by iput(), with the
1311 result that if multiple processes are operating on a file, the
1312 deletion of the body of the file is deferred until the last process
1313 that has an open inode performs its iput().
1314
1315 writes and truncates are protected from collisions by use of
1316 semaphores.
1317
1318 creates, linking, and mknod are protected from collisions with other
1319 processes by making the reiserfs_add_entry() the last step in the
1320 creation, and then rolling back all changes if there was a collision.
1321 - Hans
1322*/
1323
1324/* this deletes item which never gets split */
1325void reiserfs_delete_solid_item(struct reiserfs_transaction_handle *th,
1326 struct inode *inode, struct reiserfs_key *key)
1327{
1328 struct tree_balance tb;
1329 INITIALIZE_PATH(path);
1330 int item_len = 0;
1331 int tb_init = 0;
1332 struct cpu_key cpu_key;
1333 int retval;
1334 int quota_cut_bytes = 0;
1335
1336 BUG_ON(!th->t_trans_id);
1337
1338 le_key2cpu_key(&cpu_key, key);
1339
1340 while (1) {
1341 retval = search_item(th->t_super, &cpu_key, &path);
1342 if (retval == IO_ERROR) {
1343 reiserfs_error(th->t_super, "vs-5350",
1344 "i/o failure occurred trying "
1345 "to delete %K", &cpu_key);
1346 break;
1347 }
1348 if (retval != ITEM_FOUND) {
1349 pathrelse(&path);
1350 // No need for a warning, if there is just no free space to insert '..' item into the newly-created subdir
1351 if (!
1352 ((unsigned long long)
1353 GET_HASH_VALUE(le_key_k_offset
1354 (le_key_version(key), key)) == 0
1355 && (unsigned long long)
1356 GET_GENERATION_NUMBER(le_key_k_offset
1357 (le_key_version(key),
1358 key)) == 1))
1359 reiserfs_warning(th->t_super, "vs-5355",
1360 "%k not found", key);
1361 break;
1362 }
1363 if (!tb_init) {
1364 tb_init = 1;
1365 item_len = ih_item_len(PATH_PITEM_HEAD(&path));
1366 init_tb_struct(th, &tb, th->t_super, &path,
1367 -(IH_SIZE + item_len));
1368 }
1369 quota_cut_bytes = ih_item_len(PATH_PITEM_HEAD(&path));
1370
1371 retval = fix_nodes(M_DELETE, &tb, NULL, NULL);
1372 if (retval == REPEAT_SEARCH) {
1373 PROC_INFO_INC(th->t_super, delete_solid_item_restarted);
1374 continue;
1375 }
1376
1377 if (retval == CARRY_ON) {
1378 do_balance(&tb, NULL, NULL, M_DELETE);
1379 if (inode) { /* Should we count quota for item? (we don't count quotas for save-links) */
1380#ifdef REISERQUOTA_DEBUG
1381 reiserfs_debug(th->t_super, REISERFS_DEBUG_CODE,
1382 "reiserquota delete_solid_item(): freeing %u id=%u type=%c",
1383 quota_cut_bytes, inode->i_uid,
1384 key2type(key));
1385#endif
1386 dquot_free_space_nodirty(inode,
1387 quota_cut_bytes);
1388 }
1389 break;
1390 }
1391 // IO_ERROR, NO_DISK_SPACE, etc
1392 reiserfs_warning(th->t_super, "vs-5360",
1393 "could not delete %K due to fix_nodes failure",
1394 &cpu_key);
1395 unfix_nodes(&tb);
1396 break;
1397 }
1398
1399 reiserfs_check_path(&path);
1400}
1401
1402int reiserfs_delete_object(struct reiserfs_transaction_handle *th,
1403 struct inode *inode)
1404{
1405 int err;
1406 inode->i_size = 0;
1407 BUG_ON(!th->t_trans_id);
1408
1409 /* for directory this deletes item containing "." and ".." */
1410 err =
1411 reiserfs_do_truncate(th, inode, NULL, 0 /*no timestamp updates */ );
1412 if (err)
1413 return err;
1414
1415#if defined( USE_INODE_GENERATION_COUNTER )
1416 if (!old_format_only(th->t_super)) {
1417 __le32 *inode_generation;
1418
1419 inode_generation =
1420 &REISERFS_SB(th->t_super)->s_rs->s_inode_generation;
1421 le32_add_cpu(inode_generation, 1);
1422 }
1423/* USE_INODE_GENERATION_COUNTER */
1424#endif
1425 reiserfs_delete_solid_item(th, inode, INODE_PKEY(inode));
1426
1427 return err;
1428}
1429
1430static void unmap_buffers(struct page *page, loff_t pos)
1431{
1432 struct buffer_head *bh;
1433 struct buffer_head *head;
1434 struct buffer_head *next;
1435 unsigned long tail_index;
1436 unsigned long cur_index;
1437
1438 if (page) {
1439 if (page_has_buffers(page)) {
1440 tail_index = pos & (PAGE_CACHE_SIZE - 1);
1441 cur_index = 0;
1442 head = page_buffers(page);
1443 bh = head;
1444 do {
1445 next = bh->b_this_page;
1446
1447 /* we want to unmap the buffers that contain the tail, and
1448 ** all the buffers after it (since the tail must be at the
1449 ** end of the file). We don't want to unmap file data
1450 ** before the tail, since it might be dirty and waiting to
1451 ** reach disk
1452 */
1453 cur_index += bh->b_size;
1454 if (cur_index > tail_index) {
1455 reiserfs_unmap_buffer(bh);
1456 }
1457 bh = next;
1458 } while (bh != head);
1459 }
1460 }
1461}
1462
1463static int maybe_indirect_to_direct(struct reiserfs_transaction_handle *th,
1464 struct inode *inode,
1465 struct page *page,
1466 struct treepath *path,
1467 const struct cpu_key *item_key,
1468 loff_t new_file_size, char *mode)
1469{
1470 struct super_block *sb = inode->i_sb;
1471 int block_size = sb->s_blocksize;
1472 int cut_bytes;
1473 BUG_ON(!th->t_trans_id);
1474 BUG_ON(new_file_size != inode->i_size);
1475
1476 /* the page being sent in could be NULL if there was an i/o error
1477 ** reading in the last block. The user will hit problems trying to
1478 ** read the file, but for now we just skip the indirect2direct
1479 */
1480 if (atomic_read(&inode->i_count) > 1 ||
1481 !tail_has_to_be_packed(inode) ||
1482 !page || (REISERFS_I(inode)->i_flags & i_nopack_mask)) {
1483 /* leave tail in an unformatted node */
1484 *mode = M_SKIP_BALANCING;
1485 cut_bytes =
1486 block_size - (new_file_size & (block_size - 1));
1487 pathrelse(path);
1488 return cut_bytes;
1489 }
1490 /* Perform the conversion to a direct_item. */
1491 /* return indirect_to_direct(inode, path, item_key,
1492 new_file_size, mode); */
1493 return indirect2direct(th, inode, page, path, item_key,
1494 new_file_size, mode);
1495}
1496
1497/* we did indirect_to_direct conversion. And we have inserted direct
1498 item successesfully, but there were no disk space to cut unfm
1499 pointer being converted. Therefore we have to delete inserted
1500 direct item(s) */
1501static void indirect_to_direct_roll_back(struct reiserfs_transaction_handle *th,
1502 struct inode *inode, struct treepath *path)
1503{
1504 struct cpu_key tail_key;
1505 int tail_len;
1506 int removed;
1507 BUG_ON(!th->t_trans_id);
1508
1509 make_cpu_key(&tail_key, inode, inode->i_size + 1, TYPE_DIRECT, 4); // !!!!
1510 tail_key.key_length = 4;
1511
1512 tail_len =
1513 (cpu_key_k_offset(&tail_key) & (inode->i_sb->s_blocksize - 1)) - 1;
1514 while (tail_len) {
1515 /* look for the last byte of the tail */
1516 if (search_for_position_by_key(inode->i_sb, &tail_key, path) ==
1517 POSITION_NOT_FOUND)
1518 reiserfs_panic(inode->i_sb, "vs-5615",
1519 "found invalid item");
1520 RFALSE(path->pos_in_item !=
1521 ih_item_len(PATH_PITEM_HEAD(path)) - 1,
1522 "vs-5616: appended bytes found");
1523 PATH_LAST_POSITION(path)--;
1524
1525 removed =
1526 reiserfs_delete_item(th, path, &tail_key, inode,
1527 NULL /*unbh not needed */ );
1528 RFALSE(removed <= 0
1529 || removed > tail_len,
1530 "vs-5617: there was tail %d bytes, removed item length %d bytes",
1531 tail_len, removed);
1532 tail_len -= removed;
1533 set_cpu_key_k_offset(&tail_key,
1534 cpu_key_k_offset(&tail_key) - removed);
1535 }
1536 reiserfs_warning(inode->i_sb, "reiserfs-5091", "indirect_to_direct "
1537 "conversion has been rolled back due to "
1538 "lack of disk space");
1539 //mark_file_without_tail (inode);
1540 mark_inode_dirty(inode);
1541}
1542
1543/* (Truncate or cut entry) or delete object item. Returns < 0 on failure */
1544int reiserfs_cut_from_item(struct reiserfs_transaction_handle *th,
1545 struct treepath *path,
1546 struct cpu_key *item_key,
1547 struct inode *inode,
1548 struct page *page, loff_t new_file_size)
1549{
1550 struct super_block *sb = inode->i_sb;
1551 /* Every function which is going to call do_balance must first
1552 create a tree_balance structure. Then it must fill up this
1553 structure by using the init_tb_struct and fix_nodes functions.
1554 After that we can make tree balancing. */
1555 struct tree_balance s_cut_balance;
1556 struct item_head *p_le_ih;
1557 int cut_size = 0, /* Amount to be cut. */
1558 ret_value = CARRY_ON, removed = 0, /* Number of the removed unformatted nodes. */
1559 is_inode_locked = 0;
1560 char mode; /* Mode of the balance. */
1561 int retval2 = -1;
1562 int quota_cut_bytes;
1563 loff_t tail_pos = 0;
1564
1565 BUG_ON(!th->t_trans_id);
1566
1567 init_tb_struct(th, &s_cut_balance, inode->i_sb, path,
1568 cut_size);
1569
1570 /* Repeat this loop until we either cut the item without needing
1571 to balance, or we fix_nodes without schedule occurring */
1572 while (1) {
1573 /* Determine the balance mode, position of the first byte to
1574 be cut, and size to be cut. In case of the indirect item
1575 free unformatted nodes which are pointed to by the cut
1576 pointers. */
1577
1578 mode =
1579 prepare_for_delete_or_cut(th, inode, path,
1580 item_key, &removed,
1581 &cut_size, new_file_size);
1582 if (mode == M_CONVERT) {
1583 /* convert last unformatted node to direct item or leave
1584 tail in the unformatted node */
1585 RFALSE(ret_value != CARRY_ON,
1586 "PAP-5570: can not convert twice");
1587
1588 ret_value =
1589 maybe_indirect_to_direct(th, inode, page,
1590 path, item_key,
1591 new_file_size, &mode);
1592 if (mode == M_SKIP_BALANCING)
1593 /* tail has been left in the unformatted node */
1594 return ret_value;
1595
1596 is_inode_locked = 1;
1597
1598 /* removing of last unformatted node will change value we
1599 have to return to truncate. Save it */
1600 retval2 = ret_value;
1601 /*retval2 = sb->s_blocksize - (new_file_size & (sb->s_blocksize - 1)); */
1602
1603 /* So, we have performed the first part of the conversion:
1604 inserting the new direct item. Now we are removing the
1605 last unformatted node pointer. Set key to search for
1606 it. */
1607 set_cpu_key_k_type(item_key, TYPE_INDIRECT);
1608 item_key->key_length = 4;
1609 new_file_size -=
1610 (new_file_size & (sb->s_blocksize - 1));
1611 tail_pos = new_file_size;
1612 set_cpu_key_k_offset(item_key, new_file_size + 1);
1613 if (search_for_position_by_key
1614 (sb, item_key,
1615 path) == POSITION_NOT_FOUND) {
1616 print_block(PATH_PLAST_BUFFER(path), 3,
1617 PATH_LAST_POSITION(path) - 1,
1618 PATH_LAST_POSITION(path) + 1);
1619 reiserfs_panic(sb, "PAP-5580", "item to "
1620 "convert does not exist (%K)",
1621 item_key);
1622 }
1623 continue;
1624 }
1625 if (cut_size == 0) {
1626 pathrelse(path);
1627 return 0;
1628 }
1629
1630 s_cut_balance.insert_size[0] = cut_size;
1631
1632 ret_value = fix_nodes(mode, &s_cut_balance, NULL, NULL);
1633 if (ret_value != REPEAT_SEARCH)
1634 break;
1635
1636 PROC_INFO_INC(sb, cut_from_item_restarted);
1637
1638 ret_value =
1639 search_for_position_by_key(sb, item_key, path);
1640 if (ret_value == POSITION_FOUND)
1641 continue;
1642
1643 reiserfs_warning(sb, "PAP-5610", "item %K not found",
1644 item_key);
1645 unfix_nodes(&s_cut_balance);
1646 return (ret_value == IO_ERROR) ? -EIO : -ENOENT;
1647 } /* while */
1648
1649 // check fix_nodes results (IO_ERROR or NO_DISK_SPACE)
1650 if (ret_value != CARRY_ON) {
1651 if (is_inode_locked) {
1652 // FIXME: this seems to be not needed: we are always able
1653 // to cut item
1654 indirect_to_direct_roll_back(th, inode, path);
1655 }
1656 if (ret_value == NO_DISK_SPACE)
1657 reiserfs_warning(sb, "reiserfs-5092",
1658 "NO_DISK_SPACE");
1659 unfix_nodes(&s_cut_balance);
1660 return -EIO;
1661 }
1662
1663 /* go ahead and perform balancing */
1664
1665 RFALSE(mode == M_PASTE || mode == M_INSERT, "invalid mode");
1666
1667 /* Calculate number of bytes that need to be cut from the item. */
1668 quota_cut_bytes =
1669 (mode ==
1670 M_DELETE) ? ih_item_len(get_ih(path)) : -s_cut_balance.
1671 insert_size[0];
1672 if (retval2 == -1)
1673 ret_value = calc_deleted_bytes_number(&s_cut_balance, mode);
1674 else
1675 ret_value = retval2;
1676
1677 /* For direct items, we only change the quota when deleting the last
1678 ** item.
1679 */
1680 p_le_ih = PATH_PITEM_HEAD(s_cut_balance.tb_path);
1681 if (!S_ISLNK(inode->i_mode) && is_direct_le_ih(p_le_ih)) {
1682 if (mode == M_DELETE &&
1683 (le_ih_k_offset(p_le_ih) & (sb->s_blocksize - 1)) ==
1684 1) {
1685 // FIXME: this is to keep 3.5 happy
1686 REISERFS_I(inode)->i_first_direct_byte = U32_MAX;
1687 quota_cut_bytes = sb->s_blocksize + UNFM_P_SIZE;
1688 } else {
1689 quota_cut_bytes = 0;
1690 }
1691 }
1692#ifdef CONFIG_REISERFS_CHECK
1693 if (is_inode_locked) {
1694 struct item_head *le_ih =
1695 PATH_PITEM_HEAD(s_cut_balance.tb_path);
1696 /* we are going to complete indirect2direct conversion. Make
1697 sure, that we exactly remove last unformatted node pointer
1698 of the item */
1699 if (!is_indirect_le_ih(le_ih))
1700 reiserfs_panic(sb, "vs-5652",
1701 "item must be indirect %h", le_ih);
1702
1703 if (mode == M_DELETE && ih_item_len(le_ih) != UNFM_P_SIZE)
1704 reiserfs_panic(sb, "vs-5653", "completing "
1705 "indirect2direct conversion indirect "
1706 "item %h being deleted must be of "
1707 "4 byte long", le_ih);
1708
1709 if (mode == M_CUT
1710 && s_cut_balance.insert_size[0] != -UNFM_P_SIZE) {
1711 reiserfs_panic(sb, "vs-5654", "can not complete "
1712 "indirect2direct conversion of %h "
1713 "(CUT, insert_size==%d)",
1714 le_ih, s_cut_balance.insert_size[0]);
1715 }
1716 /* it would be useful to make sure, that right neighboring
1717 item is direct item of this file */
1718 }
1719#endif
1720
1721 do_balance(&s_cut_balance, NULL, NULL, mode);
1722 if (is_inode_locked) {
1723 /* we've done an indirect->direct conversion. when the data block
1724 ** was freed, it was removed from the list of blocks that must
1725 ** be flushed before the transaction commits, make sure to
1726 ** unmap and invalidate it
1727 */
1728 unmap_buffers(page, tail_pos);
1729 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
1730 }
1731#ifdef REISERQUOTA_DEBUG
1732 reiserfs_debug(inode->i_sb, REISERFS_DEBUG_CODE,
1733 "reiserquota cut_from_item(): freeing %u id=%u type=%c",
1734 quota_cut_bytes, inode->i_uid, '?');
1735#endif
1736 dquot_free_space_nodirty(inode, quota_cut_bytes);
1737 return ret_value;
1738}
1739
1740static void truncate_directory(struct reiserfs_transaction_handle *th,
1741 struct inode *inode)
1742{
1743 BUG_ON(!th->t_trans_id);
1744 if (inode->i_nlink)
1745 reiserfs_error(inode->i_sb, "vs-5655", "link count != 0");
1746
1747 set_le_key_k_offset(KEY_FORMAT_3_5, INODE_PKEY(inode), DOT_OFFSET);
1748 set_le_key_k_type(KEY_FORMAT_3_5, INODE_PKEY(inode), TYPE_DIRENTRY);
1749 reiserfs_delete_solid_item(th, inode, INODE_PKEY(inode));
1750 reiserfs_update_sd(th, inode);
1751 set_le_key_k_offset(KEY_FORMAT_3_5, INODE_PKEY(inode), SD_OFFSET);
1752 set_le_key_k_type(KEY_FORMAT_3_5, INODE_PKEY(inode), TYPE_STAT_DATA);
1753}
1754
1755/* Truncate file to the new size. Note, this must be called with a transaction
1756 already started */
1757int reiserfs_do_truncate(struct reiserfs_transaction_handle *th,
1758 struct inode *inode, /* ->i_size contains new size */
1759 struct page *page, /* up to date for last block */
1760 int update_timestamps /* when it is called by
1761 file_release to convert
1762 the tail - no timestamps
1763 should be updated */
1764 )
1765{
1766 INITIALIZE_PATH(s_search_path); /* Path to the current object item. */
1767 struct item_head *p_le_ih; /* Pointer to an item header. */
1768 struct cpu_key s_item_key; /* Key to search for a previous file item. */
1769 loff_t file_size, /* Old file size. */
1770 new_file_size; /* New file size. */
1771 int deleted; /* Number of deleted or truncated bytes. */
1772 int retval;
1773 int err = 0;
1774
1775 BUG_ON(!th->t_trans_id);
1776 if (!
1777 (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode)
1778 || S_ISLNK(inode->i_mode)))
1779 return 0;
1780
1781 if (S_ISDIR(inode->i_mode)) {
1782 // deletion of directory - no need to update timestamps
1783 truncate_directory(th, inode);
1784 return 0;
1785 }
1786
1787 /* Get new file size. */
1788 new_file_size = inode->i_size;
1789
1790 // FIXME: note, that key type is unimportant here
1791 make_cpu_key(&s_item_key, inode, max_reiserfs_offset(inode),
1792 TYPE_DIRECT, 3);
1793
1794 retval =
1795 search_for_position_by_key(inode->i_sb, &s_item_key,
1796 &s_search_path);
1797 if (retval == IO_ERROR) {
1798 reiserfs_error(inode->i_sb, "vs-5657",
1799 "i/o failure occurred trying to truncate %K",
1800 &s_item_key);
1801 err = -EIO;
1802 goto out;
1803 }
1804 if (retval == POSITION_FOUND || retval == FILE_NOT_FOUND) {
1805 reiserfs_error(inode->i_sb, "PAP-5660",
1806 "wrong result %d of search for %K", retval,
1807 &s_item_key);
1808
1809 err = -EIO;
1810 goto out;
1811 }
1812
1813 s_search_path.pos_in_item--;
1814
1815 /* Get real file size (total length of all file items) */
1816 p_le_ih = PATH_PITEM_HEAD(&s_search_path);
1817 if (is_statdata_le_ih(p_le_ih))
1818 file_size = 0;
1819 else {
1820 loff_t offset = le_ih_k_offset(p_le_ih);
1821 int bytes =
1822 op_bytes_number(p_le_ih, inode->i_sb->s_blocksize);
1823
1824 /* this may mismatch with real file size: if last direct item
1825 had no padding zeros and last unformatted node had no free
1826 space, this file would have this file size */
1827 file_size = offset + bytes - 1;
1828 }
1829 /*
1830 * are we doing a full truncate or delete, if so
1831 * kick in the reada code
1832 */
1833 if (new_file_size == 0)
1834 s_search_path.reada = PATH_READA | PATH_READA_BACK;
1835
1836 if (file_size == 0 || file_size < new_file_size) {
1837 goto update_and_out;
1838 }
1839
1840 /* Update key to search for the last file item. */
1841 set_cpu_key_k_offset(&s_item_key, file_size);
1842
1843 do {
1844 /* Cut or delete file item. */
1845 deleted =
1846 reiserfs_cut_from_item(th, &s_search_path, &s_item_key,
1847 inode, page, new_file_size);
1848 if (deleted < 0) {
1849 reiserfs_warning(inode->i_sb, "vs-5665",
1850 "reiserfs_cut_from_item failed");
1851 reiserfs_check_path(&s_search_path);
1852 return 0;
1853 }
1854
1855 RFALSE(deleted > file_size,
1856 "PAP-5670: reiserfs_cut_from_item: too many bytes deleted: deleted %d, file_size %lu, item_key %K",
1857 deleted, file_size, &s_item_key);
1858
1859 /* Change key to search the last file item. */
1860 file_size -= deleted;
1861
1862 set_cpu_key_k_offset(&s_item_key, file_size);
1863
1864 /* While there are bytes to truncate and previous file item is presented in the tree. */
1865
1866 /*
1867 ** This loop could take a really long time, and could log
1868 ** many more blocks than a transaction can hold. So, we do a polite
1869 ** journal end here, and if the transaction needs ending, we make
1870 ** sure the file is consistent before ending the current trans
1871 ** and starting a new one
1872 */
1873 if (journal_transaction_should_end(th, 0) ||
1874 reiserfs_transaction_free_space(th) <= JOURNAL_FOR_FREE_BLOCK_AND_UPDATE_SD) {
1875 int orig_len_alloc = th->t_blocks_allocated;
1876 pathrelse(&s_search_path);
1877
1878 if (update_timestamps) {
1879 inode->i_mtime = CURRENT_TIME_SEC;
1880 inode->i_ctime = CURRENT_TIME_SEC;
1881 }
1882 reiserfs_update_sd(th, inode);
1883
1884 err = journal_end(th, inode->i_sb, orig_len_alloc);
1885 if (err)
1886 goto out;
1887 err = journal_begin(th, inode->i_sb,
1888 JOURNAL_FOR_FREE_BLOCK_AND_UPDATE_SD + JOURNAL_PER_BALANCE_CNT * 4) ;
1889 if (err)
1890 goto out;
1891 reiserfs_update_inode_transaction(inode);
1892 }
1893 } while (file_size > ROUND_UP(new_file_size) &&
1894 search_for_position_by_key(inode->i_sb, &s_item_key,
1895 &s_search_path) == POSITION_FOUND);
1896
1897 RFALSE(file_size > ROUND_UP(new_file_size),
1898 "PAP-5680: truncate did not finish: new_file_size %Ld, current %Ld, oid %d",
1899 new_file_size, file_size, s_item_key.on_disk_key.k_objectid);
1900
1901 update_and_out:
1902 if (update_timestamps) {
1903 // this is truncate, not file closing
1904 inode->i_mtime = CURRENT_TIME_SEC;
1905 inode->i_ctime = CURRENT_TIME_SEC;
1906 }
1907 reiserfs_update_sd(th, inode);
1908
1909 out:
1910 pathrelse(&s_search_path);
1911 return err;
1912}
1913
1914#ifdef CONFIG_REISERFS_CHECK
1915// this makes sure, that we __append__, not overwrite or add holes
1916static void check_research_for_paste(struct treepath *path,
1917 const struct cpu_key *key)
1918{
1919 struct item_head *found_ih = get_ih(path);
1920
1921 if (is_direct_le_ih(found_ih)) {
1922 if (le_ih_k_offset(found_ih) +
1923 op_bytes_number(found_ih,
1924 get_last_bh(path)->b_size) !=
1925 cpu_key_k_offset(key)
1926 || op_bytes_number(found_ih,
1927 get_last_bh(path)->b_size) !=
1928 pos_in_item(path))
1929 reiserfs_panic(NULL, "PAP-5720", "found direct item "
1930 "%h or position (%d) does not match "
1931 "to key %K", found_ih,
1932 pos_in_item(path), key);
1933 }
1934 if (is_indirect_le_ih(found_ih)) {
1935 if (le_ih_k_offset(found_ih) +
1936 op_bytes_number(found_ih,
1937 get_last_bh(path)->b_size) !=
1938 cpu_key_k_offset(key)
1939 || I_UNFM_NUM(found_ih) != pos_in_item(path)
1940 || get_ih_free_space(found_ih) != 0)
1941 reiserfs_panic(NULL, "PAP-5730", "found indirect "
1942 "item (%h) or position (%d) does not "
1943 "match to key (%K)",
1944 found_ih, pos_in_item(path), key);
1945 }
1946}
1947#endif /* config reiserfs check */
1948
1949/* Paste bytes to the existing item. Returns bytes number pasted into the item. */
1950int reiserfs_paste_into_item(struct reiserfs_transaction_handle *th, struct treepath *search_path, /* Path to the pasted item. */
1951 const struct cpu_key *key, /* Key to search for the needed item. */
1952 struct inode *inode, /* Inode item belongs to */
1953 const char *body, /* Pointer to the bytes to paste. */
1954 int pasted_size)
1955{ /* Size of pasted bytes. */
1956 struct tree_balance s_paste_balance;
1957 int retval;
1958 int fs_gen;
1959
1960 BUG_ON(!th->t_trans_id);
1961
1962 fs_gen = get_generation(inode->i_sb);
1963
1964#ifdef REISERQUOTA_DEBUG
1965 reiserfs_debug(inode->i_sb, REISERFS_DEBUG_CODE,
1966 "reiserquota paste_into_item(): allocating %u id=%u type=%c",
1967 pasted_size, inode->i_uid,
1968 key2type(&(key->on_disk_key)));
1969#endif
1970
1971 retval = dquot_alloc_space_nodirty(inode, pasted_size);
1972 if (retval) {
1973 pathrelse(search_path);
1974 return retval;
1975 }
1976 init_tb_struct(th, &s_paste_balance, th->t_super, search_path,
1977 pasted_size);
1978#ifdef DISPLACE_NEW_PACKING_LOCALITIES
1979 s_paste_balance.key = key->on_disk_key;
1980#endif
1981
1982 /* DQUOT_* can schedule, must check before the fix_nodes */
1983 if (fs_changed(fs_gen, inode->i_sb)) {
1984 goto search_again;
1985 }
1986
1987 while ((retval =
1988 fix_nodes(M_PASTE, &s_paste_balance, NULL,
1989 body)) == REPEAT_SEARCH) {
1990 search_again:
1991 /* file system changed while we were in the fix_nodes */
1992 PROC_INFO_INC(th->t_super, paste_into_item_restarted);
1993 retval =
1994 search_for_position_by_key(th->t_super, key,
1995 search_path);
1996 if (retval == IO_ERROR) {
1997 retval = -EIO;
1998 goto error_out;
1999 }
2000 if (retval == POSITION_FOUND) {
2001 reiserfs_warning(inode->i_sb, "PAP-5710",
2002 "entry or pasted byte (%K) exists",
2003 key);
2004 retval = -EEXIST;
2005 goto error_out;
2006 }
2007#ifdef CONFIG_REISERFS_CHECK
2008 check_research_for_paste(search_path, key);
2009#endif
2010 }
2011
2012 /* Perform balancing after all resources are collected by fix_nodes, and
2013 accessing them will not risk triggering schedule. */
2014 if (retval == CARRY_ON) {
2015 do_balance(&s_paste_balance, NULL /*ih */ , body, M_PASTE);
2016 return 0;
2017 }
2018 retval = (retval == NO_DISK_SPACE) ? -ENOSPC : -EIO;
2019 error_out:
2020 /* this also releases the path */
2021 unfix_nodes(&s_paste_balance);
2022#ifdef REISERQUOTA_DEBUG
2023 reiserfs_debug(inode->i_sb, REISERFS_DEBUG_CODE,
2024 "reiserquota paste_into_item(): freeing %u id=%u type=%c",
2025 pasted_size, inode->i_uid,
2026 key2type(&(key->on_disk_key)));
2027#endif
2028 dquot_free_space_nodirty(inode, pasted_size);
2029 return retval;
2030}
2031
2032/* Insert new item into the buffer at the path.
2033 * th - active transaction handle
2034 * path - path to the inserted item
2035 * ih - pointer to the item header to insert
2036 * body - pointer to the bytes to insert
2037 */
2038int reiserfs_insert_item(struct reiserfs_transaction_handle *th,
2039 struct treepath *path, const struct cpu_key *key,
2040 struct item_head *ih, struct inode *inode,
2041 const char *body)
2042{
2043 struct tree_balance s_ins_balance;
2044 int retval;
2045 int fs_gen = 0;
2046 int quota_bytes = 0;
2047
2048 BUG_ON(!th->t_trans_id);
2049
2050 if (inode) { /* Do we count quotas for item? */
2051 fs_gen = get_generation(inode->i_sb);
2052 quota_bytes = ih_item_len(ih);
2053
2054 /* hack so the quota code doesn't have to guess if the file has
2055 ** a tail, links are always tails, so there's no guessing needed
2056 */
2057 if (!S_ISLNK(inode->i_mode) && is_direct_le_ih(ih))
2058 quota_bytes = inode->i_sb->s_blocksize + UNFM_P_SIZE;
2059#ifdef REISERQUOTA_DEBUG
2060 reiserfs_debug(inode->i_sb, REISERFS_DEBUG_CODE,
2061 "reiserquota insert_item(): allocating %u id=%u type=%c",
2062 quota_bytes, inode->i_uid, head2type(ih));
2063#endif
2064 /* We can't dirty inode here. It would be immediately written but
2065 * appropriate stat item isn't inserted yet... */
2066 retval = dquot_alloc_space_nodirty(inode, quota_bytes);
2067 if (retval) {
2068 pathrelse(path);
2069 return retval;
2070 }
2071 }
2072 init_tb_struct(th, &s_ins_balance, th->t_super, path,
2073 IH_SIZE + ih_item_len(ih));
2074#ifdef DISPLACE_NEW_PACKING_LOCALITIES
2075 s_ins_balance.key = key->on_disk_key;
2076#endif
2077 /* DQUOT_* can schedule, must check to be sure calling fix_nodes is safe */
2078 if (inode && fs_changed(fs_gen, inode->i_sb)) {
2079 goto search_again;
2080 }
2081
2082 while ((retval =
2083 fix_nodes(M_INSERT, &s_ins_balance, ih,
2084 body)) == REPEAT_SEARCH) {
2085 search_again:
2086 /* file system changed while we were in the fix_nodes */
2087 PROC_INFO_INC(th->t_super, insert_item_restarted);
2088 retval = search_item(th->t_super, key, path);
2089 if (retval == IO_ERROR) {
2090 retval = -EIO;
2091 goto error_out;
2092 }
2093 if (retval == ITEM_FOUND) {
2094 reiserfs_warning(th->t_super, "PAP-5760",
2095 "key %K already exists in the tree",
2096 key);
2097 retval = -EEXIST;
2098 goto error_out;
2099 }
2100 }
2101
2102 /* make balancing after all resources will be collected at a time */
2103 if (retval == CARRY_ON) {
2104 do_balance(&s_ins_balance, ih, body, M_INSERT);
2105 return 0;
2106 }
2107
2108 retval = (retval == NO_DISK_SPACE) ? -ENOSPC : -EIO;
2109 error_out:
2110 /* also releases the path */
2111 unfix_nodes(&s_ins_balance);
2112#ifdef REISERQUOTA_DEBUG
2113 reiserfs_debug(th->t_super, REISERFS_DEBUG_CODE,
2114 "reiserquota insert_item(): freeing %u id=%u type=%c",
2115 quota_bytes, inode->i_uid, head2type(ih));
2116#endif
2117 if (inode)
2118 dquot_free_space_nodirty(inode, quota_bytes);
2119 return retval;
2120}