Linux Audio

Check our new training course

Loading...
v4.6
  1/*
  2 *  linux/fs/pnode.c
  3 *
  4 * (C) Copyright IBM Corporation 2005.
  5 *	Released under GPL v2.
  6 *	Author : Ram Pai (linuxram@us.ibm.com)
  7 *
  8 */
  9#include <linux/mnt_namespace.h>
 10#include <linux/mount.h>
 11#include <linux/fs.h>
 12#include <linux/nsproxy.h>
 13#include "internal.h"
 14#include "pnode.h"
 15
 16/* return the next shared peer mount of @p */
 17static inline struct mount *next_peer(struct mount *p)
 18{
 19	return list_entry(p->mnt_share.next, struct mount, mnt_share);
 20}
 21
 22static inline struct mount *first_slave(struct mount *p)
 23{
 24	return list_entry(p->mnt_slave_list.next, struct mount, mnt_slave);
 25}
 26
 27static inline struct mount *next_slave(struct mount *p)
 28{
 29	return list_entry(p->mnt_slave.next, struct mount, mnt_slave);
 30}
 31
 32static struct mount *get_peer_under_root(struct mount *mnt,
 33					 struct mnt_namespace *ns,
 34					 const struct path *root)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 35{
 36	struct mount *m = mnt;
 37
 38	do {
 39		/* Check the namespace first for optimization */
 40		if (m->mnt_ns == ns && is_path_reachable(m, m->mnt.mnt_root, root))
 41			return m;
 42
 43		m = next_peer(m);
 44	} while (m != mnt);
 45
 46	return NULL;
 47}
 48
 49/*
 50 * Get ID of closest dominating peer group having a representative
 51 * under the given root.
 52 *
 53 * Caller must hold namespace_sem
 54 */
 55int get_dominating_id(struct mount *mnt, const struct path *root)
 56{
 57	struct mount *m;
 58
 59	for (m = mnt->mnt_master; m != NULL; m = m->mnt_master) {
 60		struct mount *d = get_peer_under_root(m, mnt->mnt_ns, root);
 61		if (d)
 62			return d->mnt_group_id;
 63	}
 64
 65	return 0;
 66}
 67
 68static int do_make_slave(struct mount *mnt)
 69{
 70	struct mount *peer_mnt = mnt, *master = mnt->mnt_master;
 71	struct mount *slave_mnt;
 72
 73	/*
 74	 * slave 'mnt' to a peer mount that has the
 75	 * same root dentry. If none is available then
 76	 * slave it to anything that is available.
 77	 */
 78	while ((peer_mnt = next_peer(peer_mnt)) != mnt &&
 79	       peer_mnt->mnt.mnt_root != mnt->mnt.mnt_root) ;
 80
 81	if (peer_mnt == mnt) {
 82		peer_mnt = next_peer(mnt);
 83		if (peer_mnt == mnt)
 84			peer_mnt = NULL;
 85	}
 86	if (mnt->mnt_group_id && IS_MNT_SHARED(mnt) &&
 87	    list_empty(&mnt->mnt_share))
 88		mnt_release_group_id(mnt);
 89
 90	list_del_init(&mnt->mnt_share);
 91	mnt->mnt_group_id = 0;
 92
 93	if (peer_mnt)
 94		master = peer_mnt;
 95
 96	if (master) {
 97		list_for_each_entry(slave_mnt, &mnt->mnt_slave_list, mnt_slave)
 98			slave_mnt->mnt_master = master;
 99		list_move(&mnt->mnt_slave, &master->mnt_slave_list);
100		list_splice(&mnt->mnt_slave_list, master->mnt_slave_list.prev);
101		INIT_LIST_HEAD(&mnt->mnt_slave_list);
102	} else {
103		struct list_head *p = &mnt->mnt_slave_list;
104		while (!list_empty(p)) {
105                        slave_mnt = list_first_entry(p,
106					struct mount, mnt_slave);
107			list_del_init(&slave_mnt->mnt_slave);
108			slave_mnt->mnt_master = NULL;
109		}
110	}
111	mnt->mnt_master = master;
112	CLEAR_MNT_SHARED(mnt);
113	return 0;
114}
115
116/*
117 * vfsmount lock must be held for write
118 */
119void change_mnt_propagation(struct mount *mnt, int type)
120{
121	if (type == MS_SHARED) {
122		set_mnt_shared(mnt);
123		return;
124	}
125	do_make_slave(mnt);
126	if (type != MS_SLAVE) {
127		list_del_init(&mnt->mnt_slave);
128		mnt->mnt_master = NULL;
129		if (type == MS_UNBINDABLE)
130			mnt->mnt.mnt_flags |= MNT_UNBINDABLE;
131		else
132			mnt->mnt.mnt_flags &= ~MNT_UNBINDABLE;
133	}
134}
135
136/*
137 * get the next mount in the propagation tree.
138 * @m: the mount seen last
139 * @origin: the original mount from where the tree walk initiated
140 *
141 * Note that peer groups form contiguous segments of slave lists.
142 * We rely on that in get_source() to be able to find out if
143 * vfsmount found while iterating with propagation_next() is
144 * a peer of one we'd found earlier.
145 */
146static struct mount *propagation_next(struct mount *m,
147					 struct mount *origin)
148{
149	/* are there any slaves of this mount? */
150	if (!IS_MNT_NEW(m) && !list_empty(&m->mnt_slave_list))
151		return first_slave(m);
152
153	while (1) {
154		struct mount *master = m->mnt_master;
 
155
156		if (master == origin->mnt_master) {
157			struct mount *next = next_peer(m);
158			return (next == origin) ? NULL : next;
159		} else if (m->mnt_slave.next != &master->mnt_slave_list)
160			return next_slave(m);
161
162		/* back at master */
163		m = master;
164	}
165}
166
167static struct mount *next_group(struct mount *m, struct mount *origin)
168{
169	while (1) {
170		while (1) {
171			struct mount *next;
172			if (!IS_MNT_NEW(m) && !list_empty(&m->mnt_slave_list))
173				return first_slave(m);
174			next = next_peer(m);
175			if (m->mnt_group_id == origin->mnt_group_id) {
176				if (next == origin)
177					return NULL;
178			} else if (m->mnt_slave.next != &next->mnt_slave)
179				break;
180			m = next;
181		}
182		/* m is the last peer */
183		while (1) {
184			struct mount *master = m->mnt_master;
185			if (m->mnt_slave.next != &master->mnt_slave_list)
186				return next_slave(m);
187			m = next_peer(master);
188			if (master->mnt_group_id == origin->mnt_group_id)
189				break;
190			if (master->mnt_slave.next == &m->mnt_slave)
191				break;
192			m = master;
193		}
194		if (m == origin)
195			return NULL;
196	}
197}
198
199/* all accesses are serialized by namespace_sem */
200static struct user_namespace *user_ns;
201static struct mount *last_dest, *first_source, *last_source, *dest_master;
202static struct mountpoint *mp;
203static struct hlist_head *list;
204
205static inline bool peers(struct mount *m1, struct mount *m2)
206{
207	return m1->mnt_group_id == m2->mnt_group_id && m1->mnt_group_id;
208}
209
210static int propagate_one(struct mount *m)
211{
212	struct mount *child;
213	int type;
214	/* skip ones added by this propagate_mnt() */
215	if (IS_MNT_NEW(m))
216		return 0;
217	/* skip if mountpoint isn't covered by it */
218	if (!is_subdir(mp->m_dentry, m->mnt.mnt_root))
219		return 0;
220	if (peers(m, last_dest)) {
221		type = CL_MAKE_SHARED;
222	} else {
223		struct mount *n, *p;
224		bool done;
225		for (n = m; ; n = p) {
226			p = n->mnt_master;
227			if (p == dest_master || IS_MNT_MARKED(p))
228				break;
229		}
230		do {
231			struct mount *parent = last_source->mnt_parent;
232			if (last_source == first_source)
233				break;
234			done = parent->mnt_master == p;
235			if (done && peers(n, parent))
236				break;
237			last_source = last_source->mnt_master;
238		} while (!done);
239
240		type = CL_SLAVE;
241		/* beginning of peer group among the slaves? */
242		if (IS_MNT_SHARED(m))
243			type |= CL_MAKE_SHARED;
244	}
245		
246	/* Notice when we are propagating across user namespaces */
247	if (m->mnt_ns->user_ns != user_ns)
248		type |= CL_UNPRIVILEGED;
249	child = copy_tree(last_source, last_source->mnt.mnt_root, type);
250	if (IS_ERR(child))
251		return PTR_ERR(child);
252	child->mnt.mnt_flags &= ~MNT_LOCKED;
253	mnt_set_mountpoint(m, mp, child);
254	last_dest = m;
255	last_source = child;
256	if (m->mnt_master != dest_master) {
257		read_seqlock_excl(&mount_lock);
258		SET_MNT_MARK(m->mnt_master);
259		read_sequnlock_excl(&mount_lock);
260	}
261	hlist_add_head(&child->mnt_hash, list);
262	return 0;
 
 
 
 
263}
264
265/*
266 * mount 'source_mnt' under the destination 'dest_mnt' at
267 * dentry 'dest_dentry'. And propagate that mount to
268 * all the peer and slave mounts of 'dest_mnt'.
269 * Link all the new mounts into a propagation tree headed at
270 * source_mnt. Also link all the new mounts using ->mnt_list
271 * headed at source_mnt's ->mnt_list
272 *
273 * @dest_mnt: destination mount.
274 * @dest_dentry: destination dentry.
275 * @source_mnt: source mount.
276 * @tree_list : list of heads of trees to be attached.
277 */
278int propagate_mnt(struct mount *dest_mnt, struct mountpoint *dest_mp,
279		    struct mount *source_mnt, struct hlist_head *tree_list)
280{
281	struct mount *m, *n;
282	int ret = 0;
 
 
 
 
 
 
 
 
 
283
284	/*
285	 * we don't want to bother passing tons of arguments to
286	 * propagate_one(); everything is serialized by namespace_sem,
287	 * so globals will do just fine.
288	 */
289	user_ns = current->nsproxy->mnt_ns->user_ns;
290	last_dest = dest_mnt;
291	first_source = source_mnt;
292	last_source = source_mnt;
293	mp = dest_mp;
294	list = tree_list;
295	dest_master = dest_mnt->mnt_master;
296
297	/* all peers of dest_mnt, except dest_mnt itself */
298	for (n = next_peer(dest_mnt); n != dest_mnt; n = next_peer(n)) {
299		ret = propagate_one(n);
300		if (ret)
301			goto out;
302	}
303
304	/* all slave groups */
305	for (m = next_group(dest_mnt, dest_mnt); m;
306			m = next_group(m, dest_mnt)) {
307		/* everything in that slave group */
308		n = m;
309		do {
310			ret = propagate_one(n);
311			if (ret)
312				goto out;
313			n = next_peer(n);
314		} while (n != m);
 
315	}
316out:
317	read_seqlock_excl(&mount_lock);
318	hlist_for_each_entry(n, tree_list, mnt_hash) {
319		m = n->mnt_parent;
320		if (m->mnt_master != dest_mnt->mnt_master)
321			CLEAR_MNT_MARK(m->mnt_master);
322	}
323	read_sequnlock_excl(&mount_lock);
 
324	return ret;
325}
326
327/*
328 * return true if the refcount is greater than count
329 */
330static inline int do_refcount_check(struct mount *mnt, int count)
331{
332	return mnt_get_count(mnt) > count;
 
333}
334
335/*
336 * check if the mount 'mnt' can be unmounted successfully.
337 * @mnt: the mount to be checked for unmount
338 * NOTE: unmounting 'mnt' would naturally propagate to all
339 * other mounts its parent propagates to.
340 * Check if any of these mounts that **do not have submounts**
341 * have more references than 'refcnt'. If so return busy.
342 *
343 * vfsmount lock must be held for write
344 */
345int propagate_mount_busy(struct mount *mnt, int refcnt)
346{
347	struct mount *m, *child;
348	struct mount *parent = mnt->mnt_parent;
349	int ret = 0;
350
351	if (mnt == parent)
352		return do_refcount_check(mnt, refcnt);
353
354	/*
355	 * quickly check if the current mount can be unmounted.
356	 * If not, we don't have to go checking for all other
357	 * mounts
358	 */
359	if (!list_empty(&mnt->mnt_mounts) || do_refcount_check(mnt, refcnt))
360		return 1;
361
362	for (m = propagation_next(parent, parent); m;
363	     		m = propagation_next(m, parent)) {
364		child = __lookup_mnt_last(&m->mnt, mnt->mnt_mountpoint);
365		if (child && list_empty(&child->mnt_mounts) &&
366		    (ret = do_refcount_check(child, 1)))
367			break;
368	}
369	return ret;
370}
371
372/*
373 * Clear MNT_LOCKED when it can be shown to be safe.
374 *
375 * mount_lock lock must be held for write
376 */
377void propagate_mount_unlock(struct mount *mnt)
378{
379	struct mount *parent = mnt->mnt_parent;
380	struct mount *m, *child;
381
382	BUG_ON(parent == mnt);
383
384	for (m = propagation_next(parent, parent); m;
385			m = propagation_next(m, parent)) {
386		child = __lookup_mnt_last(&m->mnt, mnt->mnt_mountpoint);
387		if (child)
388			child->mnt.mnt_flags &= ~MNT_LOCKED;
389	}
390}
391
392/*
393 * Mark all mounts that the MNT_LOCKED logic will allow to be unmounted.
394 */
395static void mark_umount_candidates(struct mount *mnt)
396{
397	struct mount *parent = mnt->mnt_parent;
398	struct mount *m;
399
400	BUG_ON(parent == mnt);
401
402	for (m = propagation_next(parent, parent); m;
403			m = propagation_next(m, parent)) {
404		struct mount *child = __lookup_mnt_last(&m->mnt,
405						mnt->mnt_mountpoint);
406		if (child && (!IS_MNT_LOCKED(child) || IS_MNT_MARKED(m))) {
407			SET_MNT_MARK(child);
408		}
409	}
410}
411
412/*
413 * NOTE: unmounting 'mnt' naturally propagates to all other mounts its
414 * parent propagates to.
415 */
416static void __propagate_umount(struct mount *mnt)
417{
418	struct mount *parent = mnt->mnt_parent;
419	struct mount *m;
420
421	BUG_ON(parent == mnt);
422
423	for (m = propagation_next(parent, parent); m;
424			m = propagation_next(m, parent)) {
425
426		struct mount *child = __lookup_mnt_last(&m->mnt,
427						mnt->mnt_mountpoint);
428		/*
429		 * umount the child only if the child has no children
430		 * and the child is marked safe to unmount.
431		 */
432		if (!child || !IS_MNT_MARKED(child))
433			continue;
434		CLEAR_MNT_MARK(child);
435		if (list_empty(&child->mnt_mounts)) {
436			list_del_init(&child->mnt_child);
437			child->mnt.mnt_flags |= MNT_UMOUNT;
438			list_move_tail(&child->mnt_list, &mnt->mnt_list);
439		}
440	}
441}
442
443/*
444 * collect all mounts that receive propagation from the mount in @list,
445 * and return these additional mounts in the same list.
446 * @list: the list of mounts to be unmounted.
447 *
448 * vfsmount lock must be held for write
449 */
450int propagate_umount(struct list_head *list)
451{
452	struct mount *mnt;
453
454	list_for_each_entry_reverse(mnt, list, mnt_list)
455		mark_umount_candidates(mnt);
456
457	list_for_each_entry(mnt, list, mnt_list)
458		__propagate_umount(mnt);
459	return 0;
460}
v3.1
  1/*
  2 *  linux/fs/pnode.c
  3 *
  4 * (C) Copyright IBM Corporation 2005.
  5 *	Released under GPL v2.
  6 *	Author : Ram Pai (linuxram@us.ibm.com)
  7 *
  8 */
  9#include <linux/mnt_namespace.h>
 10#include <linux/mount.h>
 11#include <linux/fs.h>
 
 12#include "internal.h"
 13#include "pnode.h"
 14
 15/* return the next shared peer mount of @p */
 16static inline struct vfsmount *next_peer(struct vfsmount *p)
 17{
 18	return list_entry(p->mnt_share.next, struct vfsmount, mnt_share);
 19}
 20
 21static inline struct vfsmount *first_slave(struct vfsmount *p)
 22{
 23	return list_entry(p->mnt_slave_list.next, struct vfsmount, mnt_slave);
 24}
 25
 26static inline struct vfsmount *next_slave(struct vfsmount *p)
 27{
 28	return list_entry(p->mnt_slave.next, struct vfsmount, mnt_slave);
 29}
 30
 31/*
 32 * Return true if path is reachable from root
 33 *
 34 * namespace_sem is held, and mnt is attached
 35 */
 36static bool is_path_reachable(struct vfsmount *mnt, struct dentry *dentry,
 37			 const struct path *root)
 38{
 39	while (mnt != root->mnt && mnt->mnt_parent != mnt) {
 40		dentry = mnt->mnt_mountpoint;
 41		mnt = mnt->mnt_parent;
 42	}
 43	return mnt == root->mnt && is_subdir(dentry, root->dentry);
 44}
 45
 46static struct vfsmount *get_peer_under_root(struct vfsmount *mnt,
 47					    struct mnt_namespace *ns,
 48					    const struct path *root)
 49{
 50	struct vfsmount *m = mnt;
 51
 52	do {
 53		/* Check the namespace first for optimization */
 54		if (m->mnt_ns == ns && is_path_reachable(m, m->mnt_root, root))
 55			return m;
 56
 57		m = next_peer(m);
 58	} while (m != mnt);
 59
 60	return NULL;
 61}
 62
 63/*
 64 * Get ID of closest dominating peer group having a representative
 65 * under the given root.
 66 *
 67 * Caller must hold namespace_sem
 68 */
 69int get_dominating_id(struct vfsmount *mnt, const struct path *root)
 70{
 71	struct vfsmount *m;
 72
 73	for (m = mnt->mnt_master; m != NULL; m = m->mnt_master) {
 74		struct vfsmount *d = get_peer_under_root(m, mnt->mnt_ns, root);
 75		if (d)
 76			return d->mnt_group_id;
 77	}
 78
 79	return 0;
 80}
 81
 82static int do_make_slave(struct vfsmount *mnt)
 83{
 84	struct vfsmount *peer_mnt = mnt, *master = mnt->mnt_master;
 85	struct vfsmount *slave_mnt;
 86
 87	/*
 88	 * slave 'mnt' to a peer mount that has the
 89	 * same root dentry. If none is available then
 90	 * slave it to anything that is available.
 91	 */
 92	while ((peer_mnt = next_peer(peer_mnt)) != mnt &&
 93	       peer_mnt->mnt_root != mnt->mnt_root) ;
 94
 95	if (peer_mnt == mnt) {
 96		peer_mnt = next_peer(mnt);
 97		if (peer_mnt == mnt)
 98			peer_mnt = NULL;
 99	}
100	if (IS_MNT_SHARED(mnt) && list_empty(&mnt->mnt_share))
 
101		mnt_release_group_id(mnt);
102
103	list_del_init(&mnt->mnt_share);
104	mnt->mnt_group_id = 0;
105
106	if (peer_mnt)
107		master = peer_mnt;
108
109	if (master) {
110		list_for_each_entry(slave_mnt, &mnt->mnt_slave_list, mnt_slave)
111			slave_mnt->mnt_master = master;
112		list_move(&mnt->mnt_slave, &master->mnt_slave_list);
113		list_splice(&mnt->mnt_slave_list, master->mnt_slave_list.prev);
114		INIT_LIST_HEAD(&mnt->mnt_slave_list);
115	} else {
116		struct list_head *p = &mnt->mnt_slave_list;
117		while (!list_empty(p)) {
118                        slave_mnt = list_first_entry(p,
119					struct vfsmount, mnt_slave);
120			list_del_init(&slave_mnt->mnt_slave);
121			slave_mnt->mnt_master = NULL;
122		}
123	}
124	mnt->mnt_master = master;
125	CLEAR_MNT_SHARED(mnt);
126	return 0;
127}
128
129/*
130 * vfsmount lock must be held for write
131 */
132void change_mnt_propagation(struct vfsmount *mnt, int type)
133{
134	if (type == MS_SHARED) {
135		set_mnt_shared(mnt);
136		return;
137	}
138	do_make_slave(mnt);
139	if (type != MS_SLAVE) {
140		list_del_init(&mnt->mnt_slave);
141		mnt->mnt_master = NULL;
142		if (type == MS_UNBINDABLE)
143			mnt->mnt_flags |= MNT_UNBINDABLE;
144		else
145			mnt->mnt_flags &= ~MNT_UNBINDABLE;
146	}
147}
148
149/*
150 * get the next mount in the propagation tree.
151 * @m: the mount seen last
152 * @origin: the original mount from where the tree walk initiated
153 *
154 * Note that peer groups form contiguous segments of slave lists.
155 * We rely on that in get_source() to be able to find out if
156 * vfsmount found while iterating with propagation_next() is
157 * a peer of one we'd found earlier.
158 */
159static struct vfsmount *propagation_next(struct vfsmount *m,
160					 struct vfsmount *origin)
161{
162	/* are there any slaves of this mount? */
163	if (!IS_MNT_NEW(m) && !list_empty(&m->mnt_slave_list))
164		return first_slave(m);
165
166	while (1) {
167		struct vfsmount *next;
168		struct vfsmount *master = m->mnt_master;
169
170		if (master == origin->mnt_master) {
171			next = next_peer(m);
172			return ((next == origin) ? NULL : next);
173		} else if (m->mnt_slave.next != &master->mnt_slave_list)
174			return next_slave(m);
175
176		/* back at master */
177		m = master;
178	}
179}
180
181/*
182 * return the source mount to be used for cloning
183 *
184 * @dest 	the current destination mount
185 * @last_dest  	the last seen destination mount
186 * @last_src  	the last seen source mount
187 * @type	return CL_SLAVE if the new mount has to be
188 * 		cloned as a slave.
189 */
190static struct vfsmount *get_source(struct vfsmount *dest,
191					struct vfsmount *last_dest,
192					struct vfsmount *last_src,
193					int *type)
194{
195	struct vfsmount *p_last_src = NULL;
196	struct vfsmount *p_last_dest = NULL;
197
198	while (last_dest != dest->mnt_master) {
199		p_last_dest = last_dest;
200		p_last_src = last_src;
201		last_dest = last_dest->mnt_master;
202		last_src = last_src->mnt_master;
 
 
 
 
 
 
 
203	}
 
 
 
 
 
 
 
 
 
 
 
 
204
205	if (p_last_dest) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
206		do {
207			p_last_dest = next_peer(p_last_dest);
208		} while (IS_MNT_NEW(p_last_dest));
209		/* is that a peer of the earlier? */
210		if (dest == p_last_dest) {
211			*type = CL_MAKE_SHARED;
212			return p_last_src;
213		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
214	}
215	/* slave of the earlier, then */
216	*type = CL_SLAVE;
217	/* beginning of peer group among the slaves? */
218	if (IS_MNT_SHARED(dest))
219		*type |= CL_MAKE_SHARED;
220	return last_src;
221}
222
223/*
224 * mount 'source_mnt' under the destination 'dest_mnt' at
225 * dentry 'dest_dentry'. And propagate that mount to
226 * all the peer and slave mounts of 'dest_mnt'.
227 * Link all the new mounts into a propagation tree headed at
228 * source_mnt. Also link all the new mounts using ->mnt_list
229 * headed at source_mnt's ->mnt_list
230 *
231 * @dest_mnt: destination mount.
232 * @dest_dentry: destination dentry.
233 * @source_mnt: source mount.
234 * @tree_list : list of heads of trees to be attached.
235 */
236int propagate_mnt(struct vfsmount *dest_mnt, struct dentry *dest_dentry,
237		    struct vfsmount *source_mnt, struct list_head *tree_list)
238{
239	struct vfsmount *m, *child;
240	int ret = 0;
241	struct vfsmount *prev_dest_mnt = dest_mnt;
242	struct vfsmount *prev_src_mnt  = source_mnt;
243	LIST_HEAD(tmp_list);
244	LIST_HEAD(umount_list);
245
246	for (m = propagation_next(dest_mnt, dest_mnt); m;
247			m = propagation_next(m, dest_mnt)) {
248		int type;
249		struct vfsmount *source;
250
251		if (IS_MNT_NEW(m))
252			continue;
253
254		source =  get_source(m, prev_dest_mnt, prev_src_mnt, &type);
255
256		if (!(child = copy_tree(source, source->mnt_root, type))) {
257			ret = -ENOMEM;
258			list_splice(tree_list, tmp_list.prev);
 
 
 
 
 
 
 
 
 
259			goto out;
260		}
261
262		if (is_subdir(dest_dentry, m->mnt_root)) {
263			mnt_set_mountpoint(m, dest_dentry, child);
264			list_add_tail(&child->mnt_hash, tree_list);
265		} else {
266			/*
267			 * This can happen if the parent mount was bind mounted
268			 * on some subdirectory of a shared/slave mount.
269			 */
270			list_add_tail(&child->mnt_hash, &tmp_list);
271		}
272		prev_dest_mnt = m;
273		prev_src_mnt  = child;
274	}
275out:
276	br_write_lock(vfsmount_lock);
277	while (!list_empty(&tmp_list)) {
278		child = list_first_entry(&tmp_list, struct vfsmount, mnt_hash);
279		umount_tree(child, 0, &umount_list);
 
280	}
281	br_write_unlock(vfsmount_lock);
282	release_mounts(&umount_list);
283	return ret;
284}
285
286/*
287 * return true if the refcount is greater than count
288 */
289static inline int do_refcount_check(struct vfsmount *mnt, int count)
290{
291	int mycount = mnt_get_count(mnt) - mnt->mnt_ghosts;
292	return (mycount > count);
293}
294
295/*
296 * check if the mount 'mnt' can be unmounted successfully.
297 * @mnt: the mount to be checked for unmount
298 * NOTE: unmounting 'mnt' would naturally propagate to all
299 * other mounts its parent propagates to.
300 * Check if any of these mounts that **do not have submounts**
301 * have more references than 'refcnt'. If so return busy.
302 *
303 * vfsmount lock must be held for write
304 */
305int propagate_mount_busy(struct vfsmount *mnt, int refcnt)
306{
307	struct vfsmount *m, *child;
308	struct vfsmount *parent = mnt->mnt_parent;
309	int ret = 0;
310
311	if (mnt == parent)
312		return do_refcount_check(mnt, refcnt);
313
314	/*
315	 * quickly check if the current mount can be unmounted.
316	 * If not, we don't have to go checking for all other
317	 * mounts
318	 */
319	if (!list_empty(&mnt->mnt_mounts) || do_refcount_check(mnt, refcnt))
320		return 1;
321
322	for (m = propagation_next(parent, parent); m;
323	     		m = propagation_next(m, parent)) {
324		child = __lookup_mnt(m, mnt->mnt_mountpoint, 0);
325		if (child && list_empty(&child->mnt_mounts) &&
326		    (ret = do_refcount_check(child, 1)))
327			break;
328	}
329	return ret;
330}
331
332/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
333 * NOTE: unmounting 'mnt' naturally propagates to all other mounts its
334 * parent propagates to.
335 */
336static void __propagate_umount(struct vfsmount *mnt)
337{
338	struct vfsmount *parent = mnt->mnt_parent;
339	struct vfsmount *m;
340
341	BUG_ON(parent == mnt);
342
343	for (m = propagation_next(parent, parent); m;
344			m = propagation_next(m, parent)) {
345
346		struct vfsmount *child = __lookup_mnt(m,
347					mnt->mnt_mountpoint, 0);
348		/*
349		 * umount the child only if the child has no
350		 * other children
351		 */
352		if (child && list_empty(&child->mnt_mounts))
353			list_move_tail(&child->mnt_hash, &mnt->mnt_hash);
 
 
 
 
 
 
354	}
355}
356
357/*
358 * collect all mounts that receive propagation from the mount in @list,
359 * and return these additional mounts in the same list.
360 * @list: the list of mounts to be unmounted.
361 *
362 * vfsmount lock must be held for write
363 */
364int propagate_umount(struct list_head *list)
365{
366	struct vfsmount *mnt;
 
 
 
367
368	list_for_each_entry(mnt, list, mnt_hash)
369		__propagate_umount(mnt);
370	return 0;
371}