Linux Audio

Check our new training course

Loading...
v4.6
   1/*
   2 * (C) 1997 Linus Torvalds
   3 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
   4 */
   5#include <linux/export.h>
   6#include <linux/fs.h>
   7#include <linux/mm.h>
 
 
 
 
 
   8#include <linux/backing-dev.h>
 
 
   9#include <linux/hash.h>
  10#include <linux/swap.h>
  11#include <linux/security.h>
 
  12#include <linux/cdev.h>
  13#include <linux/bootmem.h>
  14#include <linux/fsnotify.h>
  15#include <linux/mount.h>
 
  16#include <linux/posix_acl.h>
  17#include <linux/prefetch.h>
 
 
  18#include <linux/buffer_head.h> /* for inode_has_buffers */
  19#include <linux/ratelimit.h>
  20#include <linux/list_lru.h>
  21#include <trace/events/writeback.h>
  22#include "internal.h"
  23
  24/*
  25 * Inode locking rules:
  26 *
  27 * inode->i_lock protects:
  28 *   inode->i_state, inode->i_hash, __iget()
  29 * Inode LRU list locks protect:
  30 *   inode->i_sb->s_inode_lru, inode->i_lru
  31 * inode->i_sb->s_inode_list_lock protects:
  32 *   inode->i_sb->s_inodes, inode->i_sb_list
  33 * bdi->wb.list_lock protects:
  34 *   bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list
  35 * inode_hash_lock protects:
  36 *   inode_hashtable, inode->i_hash
  37 *
  38 * Lock ordering:
  39 *
  40 * inode->i_sb->s_inode_list_lock
  41 *   inode->i_lock
  42 *     Inode LRU list locks
  43 *
  44 * bdi->wb.list_lock
  45 *   inode->i_lock
  46 *
  47 * inode_hash_lock
  48 *   inode->i_sb->s_inode_list_lock
  49 *   inode->i_lock
  50 *
  51 * iunique_lock
  52 *   inode_hash_lock
  53 */
  54
  55static unsigned int i_hash_mask __read_mostly;
  56static unsigned int i_hash_shift __read_mostly;
  57static struct hlist_head *inode_hashtable __read_mostly;
  58static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
  59
 
 
  60/*
  61 * Empty aops. Can be used for the cases where the user does not
  62 * define any of the address_space operations.
  63 */
  64const struct address_space_operations empty_aops = {
  65};
  66EXPORT_SYMBOL(empty_aops);
  67
  68/*
  69 * Statistics gathering..
  70 */
  71struct inodes_stat_t inodes_stat;
  72
  73static DEFINE_PER_CPU(unsigned long, nr_inodes);
  74static DEFINE_PER_CPU(unsigned long, nr_unused);
  75
  76static struct kmem_cache *inode_cachep __read_mostly;
  77
  78static long get_nr_inodes(void)
  79{
  80	int i;
  81	long sum = 0;
  82	for_each_possible_cpu(i)
  83		sum += per_cpu(nr_inodes, i);
  84	return sum < 0 ? 0 : sum;
  85}
  86
  87static inline long get_nr_inodes_unused(void)
  88{
  89	int i;
  90	long sum = 0;
  91	for_each_possible_cpu(i)
  92		sum += per_cpu(nr_unused, i);
  93	return sum < 0 ? 0 : sum;
  94}
  95
  96long get_nr_dirty_inodes(void)
  97{
  98	/* not actually dirty inodes, but a wild approximation */
  99	long nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
 100	return nr_dirty > 0 ? nr_dirty : 0;
 101}
 102
 103/*
 104 * Handle nr_inode sysctl
 105 */
 106#ifdef CONFIG_SYSCTL
 107int proc_nr_inodes(struct ctl_table *table, int write,
 108		   void __user *buffer, size_t *lenp, loff_t *ppos)
 109{
 110	inodes_stat.nr_inodes = get_nr_inodes();
 111	inodes_stat.nr_unused = get_nr_inodes_unused();
 112	return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
 113}
 114#endif
 115
 116static int no_open(struct inode *inode, struct file *file)
 117{
 118	return -ENXIO;
 119}
 120
 121/**
 122 * inode_init_always - perform inode structure intialisation
 123 * @sb: superblock inode belongs to
 124 * @inode: inode to initialise
 125 *
 126 * These are initializations that need to be done on every inode
 127 * allocation as the fields are not initialised by slab allocation.
 128 */
 129int inode_init_always(struct super_block *sb, struct inode *inode)
 130{
 131	static const struct inode_operations empty_iops;
 132	static const struct file_operations no_open_fops = {.open = no_open};
 133	struct address_space *const mapping = &inode->i_data;
 134
 135	inode->i_sb = sb;
 136	inode->i_blkbits = sb->s_blocksize_bits;
 137	inode->i_flags = 0;
 138	atomic_set(&inode->i_count, 1);
 139	inode->i_op = &empty_iops;
 140	inode->i_fop = &no_open_fops;
 141	inode->__i_nlink = 1;
 142	inode->i_opflags = 0;
 143	i_uid_write(inode, 0);
 144	i_gid_write(inode, 0);
 145	atomic_set(&inode->i_writecount, 0);
 146	inode->i_size = 0;
 147	inode->i_blocks = 0;
 148	inode->i_bytes = 0;
 149	inode->i_generation = 0;
 
 
 
 150	inode->i_pipe = NULL;
 151	inode->i_bdev = NULL;
 152	inode->i_cdev = NULL;
 153	inode->i_link = NULL;
 154	inode->i_rdev = 0;
 155	inode->dirtied_when = 0;
 156
 157#ifdef CONFIG_CGROUP_WRITEBACK
 158	inode->i_wb_frn_winner = 0;
 159	inode->i_wb_frn_avg_time = 0;
 160	inode->i_wb_frn_history = 0;
 161#endif
 162
 163	if (security_inode_alloc(inode))
 164		goto out;
 165	spin_lock_init(&inode->i_lock);
 166	lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
 167
 168	mutex_init(&inode->i_mutex);
 169	lockdep_set_class(&inode->i_mutex, &sb->s_type->i_mutex_key);
 170
 171	atomic_set(&inode->i_dio_count, 0);
 172
 173	mapping->a_ops = &empty_aops;
 174	mapping->host = inode;
 175	mapping->flags = 0;
 176	atomic_set(&mapping->i_mmap_writable, 0);
 177	mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
 178	mapping->private_data = NULL;
 
 179	mapping->writeback_index = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 180	inode->i_private = NULL;
 181	inode->i_mapping = mapping;
 182	INIT_HLIST_HEAD(&inode->i_dentry);	/* buggered by rcu freeing */
 183#ifdef CONFIG_FS_POSIX_ACL
 184	inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
 185#endif
 186
 187#ifdef CONFIG_FSNOTIFY
 188	inode->i_fsnotify_mask = 0;
 189#endif
 190	inode->i_flctx = NULL;
 191	this_cpu_inc(nr_inodes);
 192
 193	return 0;
 194out:
 195	return -ENOMEM;
 196}
 197EXPORT_SYMBOL(inode_init_always);
 198
 199static struct inode *alloc_inode(struct super_block *sb)
 200{
 201	struct inode *inode;
 202
 203	if (sb->s_op->alloc_inode)
 204		inode = sb->s_op->alloc_inode(sb);
 205	else
 206		inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
 207
 208	if (!inode)
 209		return NULL;
 210
 211	if (unlikely(inode_init_always(sb, inode))) {
 212		if (inode->i_sb->s_op->destroy_inode)
 213			inode->i_sb->s_op->destroy_inode(inode);
 214		else
 215			kmem_cache_free(inode_cachep, inode);
 216		return NULL;
 217	}
 218
 219	return inode;
 220}
 221
 222void free_inode_nonrcu(struct inode *inode)
 223{
 224	kmem_cache_free(inode_cachep, inode);
 225}
 226EXPORT_SYMBOL(free_inode_nonrcu);
 227
 228void __destroy_inode(struct inode *inode)
 229{
 230	BUG_ON(inode_has_buffers(inode));
 231	inode_detach_wb(inode);
 232	security_inode_free(inode);
 233	fsnotify_inode_delete(inode);
 234	locks_free_lock_context(inode);
 235	if (!inode->i_nlink) {
 236		WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
 237		atomic_long_dec(&inode->i_sb->s_remove_count);
 238	}
 239
 240#ifdef CONFIG_FS_POSIX_ACL
 241	if (inode->i_acl && inode->i_acl != ACL_NOT_CACHED)
 242		posix_acl_release(inode->i_acl);
 243	if (inode->i_default_acl && inode->i_default_acl != ACL_NOT_CACHED)
 244		posix_acl_release(inode->i_default_acl);
 245#endif
 246	this_cpu_dec(nr_inodes);
 247}
 248EXPORT_SYMBOL(__destroy_inode);
 249
 250static void i_callback(struct rcu_head *head)
 251{
 252	struct inode *inode = container_of(head, struct inode, i_rcu);
 
 253	kmem_cache_free(inode_cachep, inode);
 254}
 255
 256static void destroy_inode(struct inode *inode)
 257{
 258	BUG_ON(!list_empty(&inode->i_lru));
 259	__destroy_inode(inode);
 260	if (inode->i_sb->s_op->destroy_inode)
 261		inode->i_sb->s_op->destroy_inode(inode);
 262	else
 263		call_rcu(&inode->i_rcu, i_callback);
 264}
 265
 266/**
 267 * drop_nlink - directly drop an inode's link count
 268 * @inode: inode
 269 *
 270 * This is a low-level filesystem helper to replace any
 271 * direct filesystem manipulation of i_nlink.  In cases
 272 * where we are attempting to track writes to the
 273 * filesystem, a decrement to zero means an imminent
 274 * write when the file is truncated and actually unlinked
 275 * on the filesystem.
 276 */
 277void drop_nlink(struct inode *inode)
 278{
 279	WARN_ON(inode->i_nlink == 0);
 280	inode->__i_nlink--;
 281	if (!inode->i_nlink)
 282		atomic_long_inc(&inode->i_sb->s_remove_count);
 283}
 284EXPORT_SYMBOL(drop_nlink);
 285
 286/**
 287 * clear_nlink - directly zero an inode's link count
 288 * @inode: inode
 289 *
 290 * This is a low-level filesystem helper to replace any
 291 * direct filesystem manipulation of i_nlink.  See
 292 * drop_nlink() for why we care about i_nlink hitting zero.
 293 */
 294void clear_nlink(struct inode *inode)
 295{
 296	if (inode->i_nlink) {
 297		inode->__i_nlink = 0;
 298		atomic_long_inc(&inode->i_sb->s_remove_count);
 299	}
 300}
 301EXPORT_SYMBOL(clear_nlink);
 302
 303/**
 304 * set_nlink - directly set an inode's link count
 305 * @inode: inode
 306 * @nlink: new nlink (should be non-zero)
 307 *
 308 * This is a low-level filesystem helper to replace any
 309 * direct filesystem manipulation of i_nlink.
 310 */
 311void set_nlink(struct inode *inode, unsigned int nlink)
 312{
 313	if (!nlink) {
 314		clear_nlink(inode);
 315	} else {
 316		/* Yes, some filesystems do change nlink from zero to one */
 317		if (inode->i_nlink == 0)
 318			atomic_long_dec(&inode->i_sb->s_remove_count);
 319
 320		inode->__i_nlink = nlink;
 321	}
 322}
 323EXPORT_SYMBOL(set_nlink);
 324
 325/**
 326 * inc_nlink - directly increment an inode's link count
 327 * @inode: inode
 328 *
 329 * This is a low-level filesystem helper to replace any
 330 * direct filesystem manipulation of i_nlink.  Currently,
 331 * it is only here for parity with dec_nlink().
 332 */
 333void inc_nlink(struct inode *inode)
 334{
 335	if (unlikely(inode->i_nlink == 0)) {
 336		WARN_ON(!(inode->i_state & I_LINKABLE));
 337		atomic_long_dec(&inode->i_sb->s_remove_count);
 338	}
 339
 340	inode->__i_nlink++;
 341}
 342EXPORT_SYMBOL(inc_nlink);
 343
 344void address_space_init_once(struct address_space *mapping)
 345{
 346	memset(mapping, 0, sizeof(*mapping));
 347	INIT_RADIX_TREE(&mapping->page_tree, GFP_ATOMIC);
 348	spin_lock_init(&mapping->tree_lock);
 349	init_rwsem(&mapping->i_mmap_rwsem);
 350	INIT_LIST_HEAD(&mapping->private_list);
 351	spin_lock_init(&mapping->private_lock);
 352	mapping->i_mmap = RB_ROOT;
 
 353}
 354EXPORT_SYMBOL(address_space_init_once);
 355
 356/*
 357 * These are initializations that only need to be done
 358 * once, because the fields are idempotent across use
 359 * of the inode, so let the slab aware of that.
 360 */
 361void inode_init_once(struct inode *inode)
 362{
 363	memset(inode, 0, sizeof(*inode));
 364	INIT_HLIST_NODE(&inode->i_hash);
 
 365	INIT_LIST_HEAD(&inode->i_devices);
 366	INIT_LIST_HEAD(&inode->i_io_list);
 367	INIT_LIST_HEAD(&inode->i_lru);
 368	address_space_init_once(&inode->i_data);
 369	i_size_ordered_init(inode);
 370#ifdef CONFIG_FSNOTIFY
 371	INIT_HLIST_HEAD(&inode->i_fsnotify_marks);
 372#endif
 373}
 374EXPORT_SYMBOL(inode_init_once);
 375
 376static void init_once(void *foo)
 377{
 378	struct inode *inode = (struct inode *) foo;
 379
 380	inode_init_once(inode);
 381}
 382
 383/*
 384 * inode->i_lock must be held
 385 */
 386void __iget(struct inode *inode)
 387{
 388	atomic_inc(&inode->i_count);
 389}
 390
 391/*
 392 * get additional reference to inode; caller must already hold one.
 393 */
 394void ihold(struct inode *inode)
 395{
 396	WARN_ON(atomic_inc_return(&inode->i_count) < 2);
 397}
 398EXPORT_SYMBOL(ihold);
 399
 400static void inode_lru_list_add(struct inode *inode)
 401{
 402	if (list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru))
 
 
 
 403		this_cpu_inc(nr_unused);
 
 
 404}
 405
 406/*
 407 * Add inode to LRU if needed (inode is unused and clean).
 408 *
 409 * Needs inode->i_lock held.
 410 */
 411void inode_add_lru(struct inode *inode)
 412{
 413	if (!(inode->i_state & (I_DIRTY_ALL | I_SYNC |
 414				I_FREEING | I_WILL_FREE)) &&
 415	    !atomic_read(&inode->i_count) && inode->i_sb->s_flags & MS_ACTIVE)
 416		inode_lru_list_add(inode);
 417}
 418
 419
 420static void inode_lru_list_del(struct inode *inode)
 421{
 422
 423	if (list_lru_del(&inode->i_sb->s_inode_lru, &inode->i_lru))
 
 
 424		this_cpu_dec(nr_unused);
 
 
 425}
 426
 427/**
 428 * inode_sb_list_add - add inode to the superblock list of inodes
 429 * @inode: inode to add
 430 */
 431void inode_sb_list_add(struct inode *inode)
 432{
 433	spin_lock(&inode->i_sb->s_inode_list_lock);
 434	list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
 435	spin_unlock(&inode->i_sb->s_inode_list_lock);
 436}
 437EXPORT_SYMBOL_GPL(inode_sb_list_add);
 438
 439static inline void inode_sb_list_del(struct inode *inode)
 440{
 441	if (!list_empty(&inode->i_sb_list)) {
 442		spin_lock(&inode->i_sb->s_inode_list_lock);
 443		list_del_init(&inode->i_sb_list);
 444		spin_unlock(&inode->i_sb->s_inode_list_lock);
 445	}
 446}
 447
 448static unsigned long hash(struct super_block *sb, unsigned long hashval)
 449{
 450	unsigned long tmp;
 451
 452	tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
 453			L1_CACHE_BYTES;
 454	tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
 455	return tmp & i_hash_mask;
 456}
 457
 458/**
 459 *	__insert_inode_hash - hash an inode
 460 *	@inode: unhashed inode
 461 *	@hashval: unsigned long value used to locate this object in the
 462 *		inode_hashtable.
 463 *
 464 *	Add an inode to the inode hash for this superblock.
 465 */
 466void __insert_inode_hash(struct inode *inode, unsigned long hashval)
 467{
 468	struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
 469
 470	spin_lock(&inode_hash_lock);
 471	spin_lock(&inode->i_lock);
 472	hlist_add_head(&inode->i_hash, b);
 473	spin_unlock(&inode->i_lock);
 474	spin_unlock(&inode_hash_lock);
 475}
 476EXPORT_SYMBOL(__insert_inode_hash);
 477
 478/**
 479 *	__remove_inode_hash - remove an inode from the hash
 480 *	@inode: inode to unhash
 481 *
 482 *	Remove an inode from the superblock.
 483 */
 484void __remove_inode_hash(struct inode *inode)
 485{
 486	spin_lock(&inode_hash_lock);
 487	spin_lock(&inode->i_lock);
 488	hlist_del_init(&inode->i_hash);
 489	spin_unlock(&inode->i_lock);
 490	spin_unlock(&inode_hash_lock);
 491}
 492EXPORT_SYMBOL(__remove_inode_hash);
 493
 494void clear_inode(struct inode *inode)
 495{
 496	might_sleep();
 497	/*
 498	 * We have to cycle tree_lock here because reclaim can be still in the
 499	 * process of removing the last page (in __delete_from_page_cache())
 500	 * and we must not free mapping under it.
 501	 */
 502	spin_lock_irq(&inode->i_data.tree_lock);
 503	BUG_ON(inode->i_data.nrpages);
 504	BUG_ON(inode->i_data.nrexceptional);
 505	spin_unlock_irq(&inode->i_data.tree_lock);
 506	BUG_ON(!list_empty(&inode->i_data.private_list));
 507	BUG_ON(!(inode->i_state & I_FREEING));
 508	BUG_ON(inode->i_state & I_CLEAR);
 
 509	/* don't need i_lock here, no concurrent mods to i_state */
 510	inode->i_state = I_FREEING | I_CLEAR;
 511}
 512EXPORT_SYMBOL(clear_inode);
 513
 514/*
 515 * Free the inode passed in, removing it from the lists it is still connected
 516 * to. We remove any pages still attached to the inode and wait for any IO that
 517 * is still in progress before finally destroying the inode.
 518 *
 519 * An inode must already be marked I_FREEING so that we avoid the inode being
 520 * moved back onto lists if we race with other code that manipulates the lists
 521 * (e.g. writeback_single_inode). The caller is responsible for setting this.
 522 *
 523 * An inode must already be removed from the LRU list before being evicted from
 524 * the cache. This should occur atomically with setting the I_FREEING state
 525 * flag, so no inodes here should ever be on the LRU when being evicted.
 526 */
 527static void evict(struct inode *inode)
 528{
 529	const struct super_operations *op = inode->i_sb->s_op;
 530
 531	BUG_ON(!(inode->i_state & I_FREEING));
 532	BUG_ON(!list_empty(&inode->i_lru));
 533
 534	if (!list_empty(&inode->i_io_list))
 535		inode_io_list_del(inode);
 536
 537	inode_sb_list_del(inode);
 538
 539	/*
 540	 * Wait for flusher thread to be done with the inode so that filesystem
 541	 * does not start destroying it while writeback is still running. Since
 542	 * the inode has I_FREEING set, flusher thread won't start new work on
 543	 * the inode.  We just have to wait for running writeback to finish.
 544	 */
 545	inode_wait_for_writeback(inode);
 546
 547	if (op->evict_inode) {
 548		op->evict_inode(inode);
 549	} else {
 550		truncate_inode_pages_final(&inode->i_data);
 551		clear_inode(inode);
 
 552	}
 553	if (S_ISBLK(inode->i_mode) && inode->i_bdev)
 554		bd_forget(inode);
 555	if (S_ISCHR(inode->i_mode) && inode->i_cdev)
 556		cd_forget(inode);
 557
 558	remove_inode_hash(inode);
 559
 560	spin_lock(&inode->i_lock);
 561	wake_up_bit(&inode->i_state, __I_NEW);
 562	BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
 563	spin_unlock(&inode->i_lock);
 564
 565	destroy_inode(inode);
 566}
 567
 568/*
 569 * dispose_list - dispose of the contents of a local list
 570 * @head: the head of the list to free
 571 *
 572 * Dispose-list gets a local list with local inodes in it, so it doesn't
 573 * need to worry about list corruption and SMP locks.
 574 */
 575static void dispose_list(struct list_head *head)
 576{
 577	while (!list_empty(head)) {
 578		struct inode *inode;
 579
 580		inode = list_first_entry(head, struct inode, i_lru);
 581		list_del_init(&inode->i_lru);
 582
 583		evict(inode);
 584		cond_resched();
 585	}
 586}
 587
 588/**
 589 * evict_inodes	- evict all evictable inodes for a superblock
 590 * @sb:		superblock to operate on
 591 *
 592 * Make sure that no inodes with zero refcount are retained.  This is
 593 * called by superblock shutdown after having MS_ACTIVE flag removed,
 594 * so any inode reaching zero refcount during or after that call will
 595 * be immediately evicted.
 596 */
 597void evict_inodes(struct super_block *sb)
 598{
 599	struct inode *inode, *next;
 600	LIST_HEAD(dispose);
 601
 602again:
 603	spin_lock(&sb->s_inode_list_lock);
 604	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
 605		if (atomic_read(&inode->i_count))
 606			continue;
 607
 608		spin_lock(&inode->i_lock);
 609		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
 610			spin_unlock(&inode->i_lock);
 611			continue;
 612		}
 613
 614		inode->i_state |= I_FREEING;
 615		inode_lru_list_del(inode);
 616		spin_unlock(&inode->i_lock);
 617		list_add(&inode->i_lru, &dispose);
 618
 619		/*
 620		 * We can have a ton of inodes to evict at unmount time given
 621		 * enough memory, check to see if we need to go to sleep for a
 622		 * bit so we don't livelock.
 623		 */
 624		if (need_resched()) {
 625			spin_unlock(&sb->s_inode_list_lock);
 626			cond_resched();
 627			dispose_list(&dispose);
 628			goto again;
 629		}
 630	}
 631	spin_unlock(&sb->s_inode_list_lock);
 632
 633	dispose_list(&dispose);
 634}
 635
 636/**
 637 * invalidate_inodes	- attempt to free all inodes on a superblock
 638 * @sb:		superblock to operate on
 639 * @kill_dirty: flag to guide handling of dirty inodes
 640 *
 641 * Attempts to free all inodes for a given superblock.  If there were any
 642 * busy inodes return a non-zero value, else zero.
 643 * If @kill_dirty is set, discard dirty inodes too, otherwise treat
 644 * them as busy.
 645 */
 646int invalidate_inodes(struct super_block *sb, bool kill_dirty)
 647{
 648	int busy = 0;
 649	struct inode *inode, *next;
 650	LIST_HEAD(dispose);
 651
 652	spin_lock(&sb->s_inode_list_lock);
 653	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
 654		spin_lock(&inode->i_lock);
 655		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
 656			spin_unlock(&inode->i_lock);
 657			continue;
 658		}
 659		if (inode->i_state & I_DIRTY_ALL && !kill_dirty) {
 660			spin_unlock(&inode->i_lock);
 661			busy = 1;
 662			continue;
 663		}
 664		if (atomic_read(&inode->i_count)) {
 665			spin_unlock(&inode->i_lock);
 666			busy = 1;
 667			continue;
 668		}
 669
 670		inode->i_state |= I_FREEING;
 671		inode_lru_list_del(inode);
 672		spin_unlock(&inode->i_lock);
 673		list_add(&inode->i_lru, &dispose);
 674	}
 675	spin_unlock(&sb->s_inode_list_lock);
 676
 677	dispose_list(&dispose);
 678
 679	return busy;
 680}
 681
 
 
 
 
 
 
 
 
 
 
 
 
 
 682/*
 683 * Isolate the inode from the LRU in preparation for freeing it.
 
 
 
 684 *
 685 * Any inodes which are pinned purely because of attached pagecache have their
 686 * pagecache removed.  If the inode has metadata buffers attached to
 687 * mapping->private_list then try to remove them.
 688 *
 689 * If the inode has the I_REFERENCED flag set, then it means that it has been
 690 * used recently - the flag is set in iput_final(). When we encounter such an
 691 * inode, clear the flag and move it to the back of the LRU so it gets another
 692 * pass through the LRU before it gets reclaimed. This is necessary because of
 693 * the fact we are doing lazy LRU updates to minimise lock contention so the
 694 * LRU does not have strict ordering. Hence we don't want to reclaim inodes
 695 * with this flag set because they are the inodes that are out of order.
 696 */
 697static enum lru_status inode_lru_isolate(struct list_head *item,
 698		struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
 699{
 700	struct list_head *freeable = arg;
 701	struct inode	*inode = container_of(item, struct inode, i_lru);
 
 702
 703	/*
 704	 * we are inverting the lru lock/inode->i_lock here, so use a trylock.
 705	 * If we fail to get the lock, just skip it.
 706	 */
 707	if (!spin_trylock(&inode->i_lock))
 708		return LRU_SKIP;
 709
 710	/*
 711	 * Referenced or dirty inodes are still in use. Give them another pass
 712	 * through the LRU as we canot reclaim them now.
 713	 */
 714	if (atomic_read(&inode->i_count) ||
 715	    (inode->i_state & ~I_REFERENCED)) {
 716		list_lru_isolate(lru, &inode->i_lru);
 717		spin_unlock(&inode->i_lock);
 718		this_cpu_dec(nr_unused);
 719		return LRU_REMOVED;
 720	}
 721
 722	/* recently referenced inodes get one more pass */
 723	if (inode->i_state & I_REFERENCED) {
 724		inode->i_state &= ~I_REFERENCED;
 725		spin_unlock(&inode->i_lock);
 726		return LRU_ROTATE;
 727	}
 728
 729	if (inode_has_buffers(inode) || inode->i_data.nrpages) {
 730		__iget(inode);
 731		spin_unlock(&inode->i_lock);
 732		spin_unlock(lru_lock);
 733		if (remove_inode_buffers(inode)) {
 734			unsigned long reap;
 735			reap = invalidate_mapping_pages(&inode->i_data, 0, -1);
 736			if (current_is_kswapd())
 737				__count_vm_events(KSWAPD_INODESTEAL, reap);
 738			else
 739				__count_vm_events(PGINODESTEAL, reap);
 740			if (current->reclaim_state)
 741				current->reclaim_state->reclaimed_slab += reap;
 742		}
 743		iput(inode);
 744		spin_lock(lru_lock);
 745		return LRU_RETRY;
 746	}
 747
 748	WARN_ON(inode->i_state & I_NEW);
 749	inode->i_state |= I_FREEING;
 750	list_lru_isolate_move(lru, &inode->i_lru, freeable);
 751	spin_unlock(&inode->i_lock);
 
 
 
 
 
 
 
 
 752
 753	this_cpu_dec(nr_unused);
 754	return LRU_REMOVED;
 755}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 756
 757/*
 758 * Walk the superblock inode LRU for freeable inodes and attempt to free them.
 759 * This is called from the superblock shrinker function with a number of inodes
 760 * to trim from the LRU. Inodes to be freed are moved to a temporary list and
 761 * then are freed outside inode_lock by dispose_list().
 762 */
 763long prune_icache_sb(struct super_block *sb, struct shrink_control *sc)
 764{
 765	LIST_HEAD(freeable);
 766	long freed;
 767
 768	freed = list_lru_shrink_walk(&sb->s_inode_lru, sc,
 769				     inode_lru_isolate, &freeable);
 770	dispose_list(&freeable);
 771	return freed;
 772}
 773
 774static void __wait_on_freeing_inode(struct inode *inode);
 775/*
 776 * Called with the inode lock held.
 777 */
 778static struct inode *find_inode(struct super_block *sb,
 779				struct hlist_head *head,
 780				int (*test)(struct inode *, void *),
 781				void *data)
 782{
 
 783	struct inode *inode = NULL;
 784
 785repeat:
 786	hlist_for_each_entry(inode, head, i_hash) {
 787		if (inode->i_sb != sb)
 
 
 788			continue;
 789		if (!test(inode, data))
 
 
 790			continue;
 791		spin_lock(&inode->i_lock);
 792		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
 793			__wait_on_freeing_inode(inode);
 794			goto repeat;
 795		}
 796		__iget(inode);
 797		spin_unlock(&inode->i_lock);
 798		return inode;
 799	}
 800	return NULL;
 801}
 802
 803/*
 804 * find_inode_fast is the fast path version of find_inode, see the comment at
 805 * iget_locked for details.
 806 */
 807static struct inode *find_inode_fast(struct super_block *sb,
 808				struct hlist_head *head, unsigned long ino)
 809{
 
 810	struct inode *inode = NULL;
 811
 812repeat:
 813	hlist_for_each_entry(inode, head, i_hash) {
 814		if (inode->i_ino != ino)
 
 
 815			continue;
 816		if (inode->i_sb != sb)
 
 
 817			continue;
 818		spin_lock(&inode->i_lock);
 819		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
 820			__wait_on_freeing_inode(inode);
 821			goto repeat;
 822		}
 823		__iget(inode);
 824		spin_unlock(&inode->i_lock);
 825		return inode;
 826	}
 827	return NULL;
 828}
 829
 830/*
 831 * Each cpu owns a range of LAST_INO_BATCH numbers.
 832 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
 833 * to renew the exhausted range.
 834 *
 835 * This does not significantly increase overflow rate because every CPU can
 836 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
 837 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
 838 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
 839 * overflow rate by 2x, which does not seem too significant.
 840 *
 841 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
 842 * error if st_ino won't fit in target struct field. Use 32bit counter
 843 * here to attempt to avoid that.
 844 */
 845#define LAST_INO_BATCH 1024
 846static DEFINE_PER_CPU(unsigned int, last_ino);
 847
 848unsigned int get_next_ino(void)
 849{
 850	unsigned int *p = &get_cpu_var(last_ino);
 851	unsigned int res = *p;
 852
 853#ifdef CONFIG_SMP
 854	if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
 855		static atomic_t shared_last_ino;
 856		int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
 857
 858		res = next - LAST_INO_BATCH;
 859	}
 860#endif
 861
 862	res++;
 863	/* get_next_ino should not provide a 0 inode number */
 864	if (unlikely(!res))
 865		res++;
 866	*p = res;
 867	put_cpu_var(last_ino);
 868	return res;
 869}
 870EXPORT_SYMBOL(get_next_ino);
 871
 872/**
 873 *	new_inode_pseudo 	- obtain an inode
 874 *	@sb: superblock
 875 *
 876 *	Allocates a new inode for given superblock.
 877 *	Inode wont be chained in superblock s_inodes list
 878 *	This means :
 879 *	- fs can't be unmount
 880 *	- quotas, fsnotify, writeback can't work
 881 */
 882struct inode *new_inode_pseudo(struct super_block *sb)
 883{
 884	struct inode *inode = alloc_inode(sb);
 885
 886	if (inode) {
 887		spin_lock(&inode->i_lock);
 888		inode->i_state = 0;
 889		spin_unlock(&inode->i_lock);
 890		INIT_LIST_HEAD(&inode->i_sb_list);
 891	}
 892	return inode;
 893}
 894
 895/**
 896 *	new_inode 	- obtain an inode
 897 *	@sb: superblock
 898 *
 899 *	Allocates a new inode for given superblock. The default gfp_mask
 900 *	for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
 901 *	If HIGHMEM pages are unsuitable or it is known that pages allocated
 902 *	for the page cache are not reclaimable or migratable,
 903 *	mapping_set_gfp_mask() must be called with suitable flags on the
 904 *	newly created inode's mapping
 905 *
 906 */
 907struct inode *new_inode(struct super_block *sb)
 908{
 909	struct inode *inode;
 910
 911	spin_lock_prefetch(&sb->s_inode_list_lock);
 912
 913	inode = new_inode_pseudo(sb);
 914	if (inode)
 915		inode_sb_list_add(inode);
 916	return inode;
 917}
 918EXPORT_SYMBOL(new_inode);
 919
 920#ifdef CONFIG_DEBUG_LOCK_ALLOC
 921void lockdep_annotate_inode_mutex_key(struct inode *inode)
 922{
 923	if (S_ISDIR(inode->i_mode)) {
 924		struct file_system_type *type = inode->i_sb->s_type;
 925
 926		/* Set new key only if filesystem hasn't already changed it */
 927		if (lockdep_match_class(&inode->i_mutex, &type->i_mutex_key)) {
 
 928			/*
 929			 * ensure nobody is actually holding i_mutex
 930			 */
 931			mutex_destroy(&inode->i_mutex);
 932			mutex_init(&inode->i_mutex);
 933			lockdep_set_class(&inode->i_mutex,
 934					  &type->i_mutex_dir_key);
 935		}
 936	}
 937}
 938EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
 939#endif
 940
 941/**
 942 * unlock_new_inode - clear the I_NEW state and wake up any waiters
 943 * @inode:	new inode to unlock
 944 *
 945 * Called when the inode is fully initialised to clear the new state of the
 946 * inode and wake up anyone waiting for the inode to finish initialisation.
 947 */
 948void unlock_new_inode(struct inode *inode)
 949{
 950	lockdep_annotate_inode_mutex_key(inode);
 951	spin_lock(&inode->i_lock);
 952	WARN_ON(!(inode->i_state & I_NEW));
 953	inode->i_state &= ~I_NEW;
 954	smp_mb();
 955	wake_up_bit(&inode->i_state, __I_NEW);
 956	spin_unlock(&inode->i_lock);
 957}
 958EXPORT_SYMBOL(unlock_new_inode);
 959
 960/**
 961 * lock_two_nondirectories - take two i_mutexes on non-directory objects
 962 *
 963 * Lock any non-NULL argument that is not a directory.
 964 * Zero, one or two objects may be locked by this function.
 965 *
 966 * @inode1: first inode to lock
 967 * @inode2: second inode to lock
 968 */
 969void lock_two_nondirectories(struct inode *inode1, struct inode *inode2)
 970{
 971	if (inode1 > inode2)
 972		swap(inode1, inode2);
 973
 974	if (inode1 && !S_ISDIR(inode1->i_mode))
 975		inode_lock(inode1);
 976	if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
 977		inode_lock_nested(inode2, I_MUTEX_NONDIR2);
 978}
 979EXPORT_SYMBOL(lock_two_nondirectories);
 980
 981/**
 982 * unlock_two_nondirectories - release locks from lock_two_nondirectories()
 983 * @inode1: first inode to unlock
 984 * @inode2: second inode to unlock
 985 */
 986void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2)
 987{
 988	if (inode1 && !S_ISDIR(inode1->i_mode))
 989		inode_unlock(inode1);
 990	if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
 991		inode_unlock(inode2);
 992}
 993EXPORT_SYMBOL(unlock_two_nondirectories);
 994
 995/**
 996 * iget5_locked - obtain an inode from a mounted file system
 997 * @sb:		super block of file system
 998 * @hashval:	hash value (usually inode number) to get
 999 * @test:	callback used for comparisons between inodes
1000 * @set:	callback used to initialize a new struct inode
1001 * @data:	opaque data pointer to pass to @test and @set
1002 *
1003 * Search for the inode specified by @hashval and @data in the inode cache,
1004 * and if present it is return it with an increased reference count. This is
1005 * a generalized version of iget_locked() for file systems where the inode
1006 * number is not sufficient for unique identification of an inode.
1007 *
1008 * If the inode is not in cache, allocate a new inode and return it locked,
1009 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1010 * before unlocking it via unlock_new_inode().
1011 *
1012 * Note both @test and @set are called with the inode_hash_lock held, so can't
1013 * sleep.
1014 */
1015struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1016		int (*test)(struct inode *, void *),
1017		int (*set)(struct inode *, void *), void *data)
1018{
1019	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1020	struct inode *inode;
1021
1022	spin_lock(&inode_hash_lock);
1023	inode = find_inode(sb, head, test, data);
1024	spin_unlock(&inode_hash_lock);
1025
1026	if (inode) {
1027		wait_on_inode(inode);
1028		return inode;
1029	}
1030
1031	inode = alloc_inode(sb);
1032	if (inode) {
1033		struct inode *old;
1034
1035		spin_lock(&inode_hash_lock);
1036		/* We released the lock, so.. */
1037		old = find_inode(sb, head, test, data);
1038		if (!old) {
1039			if (set(inode, data))
1040				goto set_failed;
1041
1042			spin_lock(&inode->i_lock);
1043			inode->i_state = I_NEW;
1044			hlist_add_head(&inode->i_hash, head);
1045			spin_unlock(&inode->i_lock);
1046			inode_sb_list_add(inode);
1047			spin_unlock(&inode_hash_lock);
1048
1049			/* Return the locked inode with I_NEW set, the
1050			 * caller is responsible for filling in the contents
1051			 */
1052			return inode;
1053		}
1054
1055		/*
1056		 * Uhhuh, somebody else created the same inode under
1057		 * us. Use the old inode instead of the one we just
1058		 * allocated.
1059		 */
1060		spin_unlock(&inode_hash_lock);
1061		destroy_inode(inode);
1062		inode = old;
1063		wait_on_inode(inode);
1064	}
1065	return inode;
1066
1067set_failed:
1068	spin_unlock(&inode_hash_lock);
1069	destroy_inode(inode);
1070	return NULL;
1071}
1072EXPORT_SYMBOL(iget5_locked);
1073
1074/**
1075 * iget_locked - obtain an inode from a mounted file system
1076 * @sb:		super block of file system
1077 * @ino:	inode number to get
1078 *
1079 * Search for the inode specified by @ino in the inode cache and if present
1080 * return it with an increased reference count. This is for file systems
1081 * where the inode number is sufficient for unique identification of an inode.
1082 *
1083 * If the inode is not in cache, allocate a new inode and return it locked,
1084 * hashed, and with the I_NEW flag set.  The file system gets to fill it in
1085 * before unlocking it via unlock_new_inode().
1086 */
1087struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1088{
1089	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1090	struct inode *inode;
1091
1092	spin_lock(&inode_hash_lock);
1093	inode = find_inode_fast(sb, head, ino);
1094	spin_unlock(&inode_hash_lock);
1095	if (inode) {
1096		wait_on_inode(inode);
1097		return inode;
1098	}
1099
1100	inode = alloc_inode(sb);
1101	if (inode) {
1102		struct inode *old;
1103
1104		spin_lock(&inode_hash_lock);
1105		/* We released the lock, so.. */
1106		old = find_inode_fast(sb, head, ino);
1107		if (!old) {
1108			inode->i_ino = ino;
1109			spin_lock(&inode->i_lock);
1110			inode->i_state = I_NEW;
1111			hlist_add_head(&inode->i_hash, head);
1112			spin_unlock(&inode->i_lock);
1113			inode_sb_list_add(inode);
1114			spin_unlock(&inode_hash_lock);
1115
1116			/* Return the locked inode with I_NEW set, the
1117			 * caller is responsible for filling in the contents
1118			 */
1119			return inode;
1120		}
1121
1122		/*
1123		 * Uhhuh, somebody else created the same inode under
1124		 * us. Use the old inode instead of the one we just
1125		 * allocated.
1126		 */
1127		spin_unlock(&inode_hash_lock);
1128		destroy_inode(inode);
1129		inode = old;
1130		wait_on_inode(inode);
1131	}
1132	return inode;
1133}
1134EXPORT_SYMBOL(iget_locked);
1135
1136/*
1137 * search the inode cache for a matching inode number.
1138 * If we find one, then the inode number we are trying to
1139 * allocate is not unique and so we should not use it.
1140 *
1141 * Returns 1 if the inode number is unique, 0 if it is not.
1142 */
1143static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1144{
1145	struct hlist_head *b = inode_hashtable + hash(sb, ino);
 
1146	struct inode *inode;
1147
1148	spin_lock(&inode_hash_lock);
1149	hlist_for_each_entry(inode, b, i_hash) {
1150		if (inode->i_ino == ino && inode->i_sb == sb) {
1151			spin_unlock(&inode_hash_lock);
1152			return 0;
1153		}
1154	}
1155	spin_unlock(&inode_hash_lock);
1156
1157	return 1;
1158}
1159
1160/**
1161 *	iunique - get a unique inode number
1162 *	@sb: superblock
1163 *	@max_reserved: highest reserved inode number
1164 *
1165 *	Obtain an inode number that is unique on the system for a given
1166 *	superblock. This is used by file systems that have no natural
1167 *	permanent inode numbering system. An inode number is returned that
1168 *	is higher than the reserved limit but unique.
1169 *
1170 *	BUGS:
1171 *	With a large number of inodes live on the file system this function
1172 *	currently becomes quite slow.
1173 */
1174ino_t iunique(struct super_block *sb, ino_t max_reserved)
1175{
1176	/*
1177	 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1178	 * error if st_ino won't fit in target struct field. Use 32bit counter
1179	 * here to attempt to avoid that.
1180	 */
1181	static DEFINE_SPINLOCK(iunique_lock);
1182	static unsigned int counter;
1183	ino_t res;
1184
1185	spin_lock(&iunique_lock);
1186	do {
1187		if (counter <= max_reserved)
1188			counter = max_reserved + 1;
1189		res = counter++;
1190	} while (!test_inode_iunique(sb, res));
1191	spin_unlock(&iunique_lock);
1192
1193	return res;
1194}
1195EXPORT_SYMBOL(iunique);
1196
1197struct inode *igrab(struct inode *inode)
1198{
1199	spin_lock(&inode->i_lock);
1200	if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1201		__iget(inode);
1202		spin_unlock(&inode->i_lock);
1203	} else {
1204		spin_unlock(&inode->i_lock);
1205		/*
1206		 * Handle the case where s_op->clear_inode is not been
1207		 * called yet, and somebody is calling igrab
1208		 * while the inode is getting freed.
1209		 */
1210		inode = NULL;
1211	}
1212	return inode;
1213}
1214EXPORT_SYMBOL(igrab);
1215
1216/**
1217 * ilookup5_nowait - search for an inode in the inode cache
1218 * @sb:		super block of file system to search
1219 * @hashval:	hash value (usually inode number) to search for
1220 * @test:	callback used for comparisons between inodes
1221 * @data:	opaque data pointer to pass to @test
1222 *
1223 * Search for the inode specified by @hashval and @data in the inode cache.
1224 * If the inode is in the cache, the inode is returned with an incremented
1225 * reference count.
1226 *
1227 * Note: I_NEW is not waited upon so you have to be very careful what you do
1228 * with the returned inode.  You probably should be using ilookup5() instead.
1229 *
1230 * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1231 */
1232struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1233		int (*test)(struct inode *, void *), void *data)
1234{
1235	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1236	struct inode *inode;
1237
1238	spin_lock(&inode_hash_lock);
1239	inode = find_inode(sb, head, test, data);
1240	spin_unlock(&inode_hash_lock);
1241
1242	return inode;
1243}
1244EXPORT_SYMBOL(ilookup5_nowait);
1245
1246/**
1247 * ilookup5 - search for an inode in the inode cache
1248 * @sb:		super block of file system to search
1249 * @hashval:	hash value (usually inode number) to search for
1250 * @test:	callback used for comparisons between inodes
1251 * @data:	opaque data pointer to pass to @test
1252 *
1253 * Search for the inode specified by @hashval and @data in the inode cache,
1254 * and if the inode is in the cache, return the inode with an incremented
1255 * reference count.  Waits on I_NEW before returning the inode.
1256 * returned with an incremented reference count.
1257 *
1258 * This is a generalized version of ilookup() for file systems where the
1259 * inode number is not sufficient for unique identification of an inode.
1260 *
1261 * Note: @test is called with the inode_hash_lock held, so can't sleep.
1262 */
1263struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1264		int (*test)(struct inode *, void *), void *data)
1265{
1266	struct inode *inode = ilookup5_nowait(sb, hashval, test, data);
1267
1268	if (inode)
1269		wait_on_inode(inode);
1270	return inode;
1271}
1272EXPORT_SYMBOL(ilookup5);
1273
1274/**
1275 * ilookup - search for an inode in the inode cache
1276 * @sb:		super block of file system to search
1277 * @ino:	inode number to search for
1278 *
1279 * Search for the inode @ino in the inode cache, and if the inode is in the
1280 * cache, the inode is returned with an incremented reference count.
1281 */
1282struct inode *ilookup(struct super_block *sb, unsigned long ino)
1283{
1284	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1285	struct inode *inode;
1286
1287	spin_lock(&inode_hash_lock);
1288	inode = find_inode_fast(sb, head, ino);
1289	spin_unlock(&inode_hash_lock);
1290
1291	if (inode)
1292		wait_on_inode(inode);
1293	return inode;
1294}
1295EXPORT_SYMBOL(ilookup);
1296
1297/**
1298 * find_inode_nowait - find an inode in the inode cache
1299 * @sb:		super block of file system to search
1300 * @hashval:	hash value (usually inode number) to search for
1301 * @match:	callback used for comparisons between inodes
1302 * @data:	opaque data pointer to pass to @match
1303 *
1304 * Search for the inode specified by @hashval and @data in the inode
1305 * cache, where the helper function @match will return 0 if the inode
1306 * does not match, 1 if the inode does match, and -1 if the search
1307 * should be stopped.  The @match function must be responsible for
1308 * taking the i_lock spin_lock and checking i_state for an inode being
1309 * freed or being initialized, and incrementing the reference count
1310 * before returning 1.  It also must not sleep, since it is called with
1311 * the inode_hash_lock spinlock held.
1312 *
1313 * This is a even more generalized version of ilookup5() when the
1314 * function must never block --- find_inode() can block in
1315 * __wait_on_freeing_inode() --- or when the caller can not increment
1316 * the reference count because the resulting iput() might cause an
1317 * inode eviction.  The tradeoff is that the @match funtion must be
1318 * very carefully implemented.
1319 */
1320struct inode *find_inode_nowait(struct super_block *sb,
1321				unsigned long hashval,
1322				int (*match)(struct inode *, unsigned long,
1323					     void *),
1324				void *data)
1325{
1326	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1327	struct inode *inode, *ret_inode = NULL;
1328	int mval;
1329
1330	spin_lock(&inode_hash_lock);
1331	hlist_for_each_entry(inode, head, i_hash) {
1332		if (inode->i_sb != sb)
1333			continue;
1334		mval = match(inode, hashval, data);
1335		if (mval == 0)
1336			continue;
1337		if (mval == 1)
1338			ret_inode = inode;
1339		goto out;
1340	}
1341out:
1342	spin_unlock(&inode_hash_lock);
1343	return ret_inode;
1344}
1345EXPORT_SYMBOL(find_inode_nowait);
1346
1347int insert_inode_locked(struct inode *inode)
1348{
1349	struct super_block *sb = inode->i_sb;
1350	ino_t ino = inode->i_ino;
1351	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1352
1353	while (1) {
 
1354		struct inode *old = NULL;
1355		spin_lock(&inode_hash_lock);
1356		hlist_for_each_entry(old, head, i_hash) {
1357			if (old->i_ino != ino)
1358				continue;
1359			if (old->i_sb != sb)
1360				continue;
1361			spin_lock(&old->i_lock);
1362			if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1363				spin_unlock(&old->i_lock);
1364				continue;
1365			}
1366			break;
1367		}
1368		if (likely(!old)) {
1369			spin_lock(&inode->i_lock);
1370			inode->i_state |= I_NEW;
1371			hlist_add_head(&inode->i_hash, head);
1372			spin_unlock(&inode->i_lock);
1373			spin_unlock(&inode_hash_lock);
1374			return 0;
1375		}
1376		__iget(old);
1377		spin_unlock(&old->i_lock);
1378		spin_unlock(&inode_hash_lock);
1379		wait_on_inode(old);
1380		if (unlikely(!inode_unhashed(old))) {
1381			iput(old);
1382			return -EBUSY;
1383		}
1384		iput(old);
1385	}
1386}
1387EXPORT_SYMBOL(insert_inode_locked);
1388
1389int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1390		int (*test)(struct inode *, void *), void *data)
1391{
1392	struct super_block *sb = inode->i_sb;
1393	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1394
1395	while (1) {
 
1396		struct inode *old = NULL;
1397
1398		spin_lock(&inode_hash_lock);
1399		hlist_for_each_entry(old, head, i_hash) {
1400			if (old->i_sb != sb)
1401				continue;
1402			if (!test(old, data))
1403				continue;
1404			spin_lock(&old->i_lock);
1405			if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1406				spin_unlock(&old->i_lock);
1407				continue;
1408			}
1409			break;
1410		}
1411		if (likely(!old)) {
1412			spin_lock(&inode->i_lock);
1413			inode->i_state |= I_NEW;
1414			hlist_add_head(&inode->i_hash, head);
1415			spin_unlock(&inode->i_lock);
1416			spin_unlock(&inode_hash_lock);
1417			return 0;
1418		}
1419		__iget(old);
1420		spin_unlock(&old->i_lock);
1421		spin_unlock(&inode_hash_lock);
1422		wait_on_inode(old);
1423		if (unlikely(!inode_unhashed(old))) {
1424			iput(old);
1425			return -EBUSY;
1426		}
1427		iput(old);
1428	}
1429}
1430EXPORT_SYMBOL(insert_inode_locked4);
1431
1432
1433int generic_delete_inode(struct inode *inode)
1434{
1435	return 1;
1436}
1437EXPORT_SYMBOL(generic_delete_inode);
1438
1439/*
 
 
 
 
 
 
 
 
 
 
 
1440 * Called when we're dropping the last reference
1441 * to an inode.
1442 *
1443 * Call the FS "drop_inode()" function, defaulting to
1444 * the legacy UNIX filesystem behaviour.  If it tells
1445 * us to evict inode, do so.  Otherwise, retain inode
1446 * in cache if fs is alive, sync and evict if fs is
1447 * shutting down.
1448 */
1449static void iput_final(struct inode *inode)
1450{
1451	struct super_block *sb = inode->i_sb;
1452	const struct super_operations *op = inode->i_sb->s_op;
1453	int drop;
1454
1455	WARN_ON(inode->i_state & I_NEW);
1456
1457	if (op->drop_inode)
1458		drop = op->drop_inode(inode);
1459	else
1460		drop = generic_drop_inode(inode);
1461
1462	if (!drop && (sb->s_flags & MS_ACTIVE)) {
1463		inode->i_state |= I_REFERENCED;
1464		inode_add_lru(inode);
 
1465		spin_unlock(&inode->i_lock);
1466		return;
1467	}
1468
1469	if (!drop) {
1470		inode->i_state |= I_WILL_FREE;
1471		spin_unlock(&inode->i_lock);
1472		write_inode_now(inode, 1);
1473		spin_lock(&inode->i_lock);
1474		WARN_ON(inode->i_state & I_NEW);
1475		inode->i_state &= ~I_WILL_FREE;
1476	}
1477
1478	inode->i_state |= I_FREEING;
1479	if (!list_empty(&inode->i_lru))
1480		inode_lru_list_del(inode);
1481	spin_unlock(&inode->i_lock);
1482
1483	evict(inode);
1484}
1485
1486/**
1487 *	iput	- put an inode
1488 *	@inode: inode to put
1489 *
1490 *	Puts an inode, dropping its usage count. If the inode use count hits
1491 *	zero, the inode is then freed and may also be destroyed.
1492 *
1493 *	Consequently, iput() can sleep.
1494 */
1495void iput(struct inode *inode)
1496{
1497	if (!inode)
1498		return;
1499	BUG_ON(inode->i_state & I_CLEAR);
1500retry:
1501	if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) {
1502		if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) {
1503			atomic_inc(&inode->i_count);
1504			inode->i_state &= ~I_DIRTY_TIME;
1505			spin_unlock(&inode->i_lock);
1506			trace_writeback_lazytime_iput(inode);
1507			mark_inode_dirty_sync(inode);
1508			goto retry;
1509		}
1510		iput_final(inode);
1511	}
1512}
1513EXPORT_SYMBOL(iput);
1514
1515/**
1516 *	bmap	- find a block number in a file
1517 *	@inode: inode of file
1518 *	@block: block to find
1519 *
1520 *	Returns the block number on the device holding the inode that
1521 *	is the disk block number for the block of the file requested.
1522 *	That is, asked for block 4 of inode 1 the function will return the
1523 *	disk block relative to the disk start that holds that block of the
1524 *	file.
1525 */
1526sector_t bmap(struct inode *inode, sector_t block)
1527{
1528	sector_t res = 0;
1529	if (inode->i_mapping->a_ops->bmap)
1530		res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
1531	return res;
1532}
1533EXPORT_SYMBOL(bmap);
1534
1535/*
1536 * With relative atime, only update atime if the previous atime is
1537 * earlier than either the ctime or mtime or if at least a day has
1538 * passed since the last atime update.
1539 */
1540static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1541			     struct timespec now)
1542{
1543
1544	if (!(mnt->mnt_flags & MNT_RELATIME))
1545		return 1;
1546	/*
1547	 * Is mtime younger than atime? If yes, update atime:
1548	 */
1549	if (timespec_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1550		return 1;
1551	/*
1552	 * Is ctime younger than atime? If yes, update atime:
1553	 */
1554	if (timespec_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1555		return 1;
1556
1557	/*
1558	 * Is the previous atime value older than a day? If yes,
1559	 * update atime:
1560	 */
1561	if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1562		return 1;
1563	/*
1564	 * Good, we can skip the atime update:
1565	 */
1566	return 0;
1567}
1568
1569int generic_update_time(struct inode *inode, struct timespec *time, int flags)
1570{
1571	int iflags = I_DIRTY_TIME;
1572
1573	if (flags & S_ATIME)
1574		inode->i_atime = *time;
1575	if (flags & S_VERSION)
1576		inode_inc_iversion(inode);
1577	if (flags & S_CTIME)
1578		inode->i_ctime = *time;
1579	if (flags & S_MTIME)
1580		inode->i_mtime = *time;
1581
1582	if (!(inode->i_sb->s_flags & MS_LAZYTIME) || (flags & S_VERSION))
1583		iflags |= I_DIRTY_SYNC;
1584	__mark_inode_dirty(inode, iflags);
1585	return 0;
1586}
1587EXPORT_SYMBOL(generic_update_time);
1588
1589/*
1590 * This does the actual work of updating an inodes time or version.  Must have
1591 * had called mnt_want_write() before calling this.
1592 */
1593static int update_time(struct inode *inode, struct timespec *time, int flags)
1594{
1595	int (*update_time)(struct inode *, struct timespec *, int);
1596
1597	update_time = inode->i_op->update_time ? inode->i_op->update_time :
1598		generic_update_time;
1599
1600	return update_time(inode, time, flags);
1601}
1602
1603/**
1604 *	touch_atime	-	update the access time
1605 *	@path: the &struct path to update
1606 *	@inode: inode to update
1607 *
1608 *	Update the accessed time on an inode and mark it for writeback.
1609 *	This function automatically handles read only file systems and media,
1610 *	as well as the "noatime" flag and inode specific "noatime" markers.
1611 */
1612bool atime_needs_update(const struct path *path, struct inode *inode)
1613{
1614	struct vfsmount *mnt = path->mnt;
1615	struct timespec now;
1616
1617	if (inode->i_flags & S_NOATIME)
1618		return false;
1619	if (IS_NOATIME(inode))
1620		return false;
1621	if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode))
1622		return false;
1623
1624	if (mnt->mnt_flags & MNT_NOATIME)
1625		return false;
1626	if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1627		return false;
1628
1629	now = current_fs_time(inode->i_sb);
1630
1631	if (!relatime_need_update(mnt, inode, now))
1632		return false;
1633
1634	if (timespec_equal(&inode->i_atime, &now))
1635		return false;
1636
1637	return true;
1638}
1639
1640void touch_atime(const struct path *path)
1641{
1642	struct vfsmount *mnt = path->mnt;
1643	struct inode *inode = d_inode(path->dentry);
1644	struct timespec now;
1645
1646	if (!atime_needs_update(path, inode))
1647		return;
1648
1649	if (!sb_start_write_trylock(inode->i_sb))
1650		return;
1651
1652	if (__mnt_want_write(mnt) != 0)
1653		goto skip_update;
1654	/*
1655	 * File systems can error out when updating inodes if they need to
1656	 * allocate new space to modify an inode (such is the case for
1657	 * Btrfs), but since we touch atime while walking down the path we
1658	 * really don't care if we failed to update the atime of the file,
1659	 * so just ignore the return value.
1660	 * We may also fail on filesystems that have the ability to make parts
1661	 * of the fs read only, e.g. subvolumes in Btrfs.
1662	 */
1663	now = current_fs_time(inode->i_sb);
1664	update_time(inode, &now, S_ATIME);
1665	__mnt_drop_write(mnt);
1666skip_update:
1667	sb_end_write(inode->i_sb);
1668}
1669EXPORT_SYMBOL(touch_atime);
1670
1671/*
1672 * The logic we want is
1673 *
1674 *	if suid or (sgid and xgrp)
1675 *		remove privs
1676 */
1677int should_remove_suid(struct dentry *dentry)
1678{
1679	umode_t mode = d_inode(dentry)->i_mode;
1680	int kill = 0;
1681
1682	/* suid always must be killed */
1683	if (unlikely(mode & S_ISUID))
1684		kill = ATTR_KILL_SUID;
1685
1686	/*
1687	 * sgid without any exec bits is just a mandatory locking mark; leave
1688	 * it alone.  If some exec bits are set, it's a real sgid; kill it.
1689	 */
1690	if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1691		kill |= ATTR_KILL_SGID;
1692
1693	if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1694		return kill;
1695
1696	return 0;
1697}
1698EXPORT_SYMBOL(should_remove_suid);
1699
1700/*
1701 * Return mask of changes for notify_change() that need to be done as a
1702 * response to write or truncate. Return 0 if nothing has to be changed.
1703 * Negative value on error (change should be denied).
1704 */
1705int dentry_needs_remove_privs(struct dentry *dentry)
1706{
1707	struct inode *inode = d_inode(dentry);
1708	int mask = 0;
1709	int ret;
1710
1711	if (IS_NOSEC(inode))
1712		return 0;
1713
1714	mask = should_remove_suid(dentry);
1715	ret = security_inode_need_killpriv(dentry);
1716	if (ret < 0)
1717		return ret;
1718	if (ret)
1719		mask |= ATTR_KILL_PRIV;
1720	return mask;
1721}
1722EXPORT_SYMBOL(dentry_needs_remove_privs);
1723
1724static int __remove_privs(struct dentry *dentry, int kill)
1725{
1726	struct iattr newattrs;
1727
1728	newattrs.ia_valid = ATTR_FORCE | kill;
1729	/*
1730	 * Note we call this on write, so notify_change will not
1731	 * encounter any conflicting delegations:
1732	 */
1733	return notify_change(dentry, &newattrs, NULL);
1734}
1735
1736/*
1737 * Remove special file priviledges (suid, capabilities) when file is written
1738 * to or truncated.
1739 */
1740int file_remove_privs(struct file *file)
1741{
1742	struct dentry *dentry = file->f_path.dentry;
1743	struct inode *inode = d_inode(dentry);
1744	int kill;
1745	int error = 0;
1746
1747	/* Fast path for nothing security related */
1748	if (IS_NOSEC(inode))
1749		return 0;
1750
1751	kill = file_needs_remove_privs(file);
1752	if (kill < 0)
1753		return kill;
1754	if (kill)
1755		error = __remove_privs(dentry, kill);
1756	if (!error)
1757		inode_has_no_xattr(inode);
1758
1759	return error;
1760}
1761EXPORT_SYMBOL(file_remove_privs);
1762
1763/**
1764 *	file_update_time	-	update mtime and ctime time
1765 *	@file: file accessed
1766 *
1767 *	Update the mtime and ctime members of an inode and mark the inode
1768 *	for writeback.  Note that this function is meant exclusively for
1769 *	usage in the file write path of filesystems, and filesystems may
1770 *	choose to explicitly ignore update via this function with the
1771 *	S_NOCMTIME inode flag, e.g. for network filesystem where these
1772 *	timestamps are handled by the server.  This can return an error for
1773 *	file systems who need to allocate space in order to update an inode.
1774 */
1775
1776int file_update_time(struct file *file)
1777{
1778	struct inode *inode = file_inode(file);
1779	struct timespec now;
1780	int sync_it = 0;
1781	int ret;
1782
1783	/* First try to exhaust all avenues to not sync */
1784	if (IS_NOCMTIME(inode))
1785		return 0;
1786
1787	now = current_fs_time(inode->i_sb);
1788	if (!timespec_equal(&inode->i_mtime, &now))
1789		sync_it = S_MTIME;
1790
1791	if (!timespec_equal(&inode->i_ctime, &now))
1792		sync_it |= S_CTIME;
1793
1794	if (IS_I_VERSION(inode))
1795		sync_it |= S_VERSION;
1796
1797	if (!sync_it)
1798		return 0;
1799
1800	/* Finally allowed to write? Takes lock. */
1801	if (__mnt_want_write_file(file))
1802		return 0;
1803
1804	ret = update_time(inode, &now, sync_it);
1805	__mnt_drop_write_file(file);
1806
1807	return ret;
 
 
 
 
 
 
 
 
1808}
1809EXPORT_SYMBOL(file_update_time);
1810
1811int inode_needs_sync(struct inode *inode)
1812{
1813	if (IS_SYNC(inode))
1814		return 1;
1815	if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1816		return 1;
1817	return 0;
1818}
1819EXPORT_SYMBOL(inode_needs_sync);
1820
 
 
 
 
 
 
 
1821/*
1822 * If we try to find an inode in the inode hash while it is being
1823 * deleted, we have to wait until the filesystem completes its
1824 * deletion before reporting that it isn't found.  This function waits
1825 * until the deletion _might_ have completed.  Callers are responsible
1826 * to recheck inode state.
1827 *
1828 * It doesn't matter if I_NEW is not set initially, a call to
1829 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
1830 * will DTRT.
1831 */
1832static void __wait_on_freeing_inode(struct inode *inode)
1833{
1834	wait_queue_head_t *wq;
1835	DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
1836	wq = bit_waitqueue(&inode->i_state, __I_NEW);
1837	prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
1838	spin_unlock(&inode->i_lock);
1839	spin_unlock(&inode_hash_lock);
1840	schedule();
1841	finish_wait(wq, &wait.wait);
1842	spin_lock(&inode_hash_lock);
1843}
1844
1845static __initdata unsigned long ihash_entries;
1846static int __init set_ihash_entries(char *str)
1847{
1848	if (!str)
1849		return 0;
1850	ihash_entries = simple_strtoul(str, &str, 0);
1851	return 1;
1852}
1853__setup("ihash_entries=", set_ihash_entries);
1854
1855/*
1856 * Initialize the waitqueues and inode hash table.
1857 */
1858void __init inode_init_early(void)
1859{
1860	unsigned int loop;
1861
1862	/* If hashes are distributed across NUMA nodes, defer
1863	 * hash allocation until vmalloc space is available.
1864	 */
1865	if (hashdist)
1866		return;
1867
1868	inode_hashtable =
1869		alloc_large_system_hash("Inode-cache",
1870					sizeof(struct hlist_head),
1871					ihash_entries,
1872					14,
1873					HASH_EARLY,
1874					&i_hash_shift,
1875					&i_hash_mask,
1876					0,
1877					0);
1878
1879	for (loop = 0; loop < (1U << i_hash_shift); loop++)
1880		INIT_HLIST_HEAD(&inode_hashtable[loop]);
1881}
1882
1883void __init inode_init(void)
1884{
1885	unsigned int loop;
1886
1887	/* inode slab cache */
1888	inode_cachep = kmem_cache_create("inode_cache",
1889					 sizeof(struct inode),
1890					 0,
1891					 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
1892					 SLAB_MEM_SPREAD|SLAB_ACCOUNT),
1893					 init_once);
1894
1895	/* Hash may have been set up in inode_init_early */
1896	if (!hashdist)
1897		return;
1898
1899	inode_hashtable =
1900		alloc_large_system_hash("Inode-cache",
1901					sizeof(struct hlist_head),
1902					ihash_entries,
1903					14,
1904					0,
1905					&i_hash_shift,
1906					&i_hash_mask,
1907					0,
1908					0);
1909
1910	for (loop = 0; loop < (1U << i_hash_shift); loop++)
1911		INIT_HLIST_HEAD(&inode_hashtable[loop]);
1912}
1913
1914void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
1915{
1916	inode->i_mode = mode;
1917	if (S_ISCHR(mode)) {
1918		inode->i_fop = &def_chr_fops;
1919		inode->i_rdev = rdev;
1920	} else if (S_ISBLK(mode)) {
1921		inode->i_fop = &def_blk_fops;
1922		inode->i_rdev = rdev;
1923	} else if (S_ISFIFO(mode))
1924		inode->i_fop = &pipefifo_fops;
1925	else if (S_ISSOCK(mode))
1926		;	/* leave it no_open_fops */
1927	else
1928		printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
1929				  " inode %s:%lu\n", mode, inode->i_sb->s_id,
1930				  inode->i_ino);
1931}
1932EXPORT_SYMBOL(init_special_inode);
1933
1934/**
1935 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
1936 * @inode: New inode
1937 * @dir: Directory inode
1938 * @mode: mode of the new inode
1939 */
1940void inode_init_owner(struct inode *inode, const struct inode *dir,
1941			umode_t mode)
1942{
1943	inode->i_uid = current_fsuid();
1944	if (dir && dir->i_mode & S_ISGID) {
1945		inode->i_gid = dir->i_gid;
1946		if (S_ISDIR(mode))
1947			mode |= S_ISGID;
1948	} else
1949		inode->i_gid = current_fsgid();
1950	inode->i_mode = mode;
1951}
1952EXPORT_SYMBOL(inode_init_owner);
1953
1954/**
1955 * inode_owner_or_capable - check current task permissions to inode
1956 * @inode: inode being checked
1957 *
1958 * Return true if current either has CAP_FOWNER in a namespace with the
1959 * inode owner uid mapped, or owns the file.
1960 */
1961bool inode_owner_or_capable(const struct inode *inode)
1962{
1963	struct user_namespace *ns;
1964
1965	if (uid_eq(current_fsuid(), inode->i_uid))
1966		return true;
1967
1968	ns = current_user_ns();
1969	if (ns_capable(ns, CAP_FOWNER) && kuid_has_mapping(ns, inode->i_uid))
1970		return true;
1971	return false;
1972}
1973EXPORT_SYMBOL(inode_owner_or_capable);
1974
1975/*
1976 * Direct i/o helper functions
1977 */
1978static void __inode_dio_wait(struct inode *inode)
1979{
1980	wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP);
1981	DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP);
1982
1983	do {
1984		prepare_to_wait(wq, &q.wait, TASK_UNINTERRUPTIBLE);
1985		if (atomic_read(&inode->i_dio_count))
1986			schedule();
1987	} while (atomic_read(&inode->i_dio_count));
1988	finish_wait(wq, &q.wait);
1989}
1990
1991/**
1992 * inode_dio_wait - wait for outstanding DIO requests to finish
1993 * @inode: inode to wait for
1994 *
1995 * Waits for all pending direct I/O requests to finish so that we can
1996 * proceed with a truncate or equivalent operation.
1997 *
1998 * Must be called under a lock that serializes taking new references
1999 * to i_dio_count, usually by inode->i_mutex.
2000 */
2001void inode_dio_wait(struct inode *inode)
2002{
2003	if (atomic_read(&inode->i_dio_count))
2004		__inode_dio_wait(inode);
2005}
2006EXPORT_SYMBOL(inode_dio_wait);
2007
2008/*
2009 * inode_set_flags - atomically set some inode flags
2010 *
2011 * Note: the caller should be holding i_mutex, or else be sure that
2012 * they have exclusive access to the inode structure (i.e., while the
2013 * inode is being instantiated).  The reason for the cmpxchg() loop
2014 * --- which wouldn't be necessary if all code paths which modify
2015 * i_flags actually followed this rule, is that there is at least one
2016 * code path which doesn't today so we use cmpxchg() out of an abundance
2017 * of caution.
2018 *
2019 * In the long run, i_mutex is overkill, and we should probably look
2020 * at using the i_lock spinlock to protect i_flags, and then make sure
2021 * it is so documented in include/linux/fs.h and that all code follows
2022 * the locking convention!!
2023 */
2024void inode_set_flags(struct inode *inode, unsigned int flags,
2025		     unsigned int mask)
2026{
2027	unsigned int old_flags, new_flags;
2028
2029	WARN_ON_ONCE(flags & ~mask);
2030	do {
2031		old_flags = ACCESS_ONCE(inode->i_flags);
2032		new_flags = (old_flags & ~mask) | flags;
2033	} while (unlikely(cmpxchg(&inode->i_flags, old_flags,
2034				  new_flags) != old_flags));
2035}
2036EXPORT_SYMBOL(inode_set_flags);
2037
2038void inode_nohighmem(struct inode *inode)
2039{
2040	mapping_set_gfp_mask(inode->i_mapping, GFP_USER);
2041}
2042EXPORT_SYMBOL(inode_nohighmem);
v3.1
   1/*
   2 * (C) 1997 Linus Torvalds
   3 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
   4 */
 
   5#include <linux/fs.h>
   6#include <linux/mm.h>
   7#include <linux/dcache.h>
   8#include <linux/init.h>
   9#include <linux/slab.h>
  10#include <linux/writeback.h>
  11#include <linux/module.h>
  12#include <linux/backing-dev.h>
  13#include <linux/wait.h>
  14#include <linux/rwsem.h>
  15#include <linux/hash.h>
  16#include <linux/swap.h>
  17#include <linux/security.h>
  18#include <linux/pagemap.h>
  19#include <linux/cdev.h>
  20#include <linux/bootmem.h>
  21#include <linux/fsnotify.h>
  22#include <linux/mount.h>
  23#include <linux/async.h>
  24#include <linux/posix_acl.h>
  25#include <linux/prefetch.h>
  26#include <linux/ima.h>
  27#include <linux/cred.h>
  28#include <linux/buffer_head.h> /* for inode_has_buffers */
 
 
 
  29#include "internal.h"
  30
  31/*
  32 * Inode locking rules:
  33 *
  34 * inode->i_lock protects:
  35 *   inode->i_state, inode->i_hash, __iget()
  36 * inode->i_sb->s_inode_lru_lock protects:
  37 *   inode->i_sb->s_inode_lru, inode->i_lru
  38 * inode_sb_list_lock protects:
  39 *   sb->s_inodes, inode->i_sb_list
  40 * bdi->wb.list_lock protects:
  41 *   bdi->wb.b_{dirty,io,more_io}, inode->i_wb_list
  42 * inode_hash_lock protects:
  43 *   inode_hashtable, inode->i_hash
  44 *
  45 * Lock ordering:
  46 *
  47 * inode_sb_list_lock
  48 *   inode->i_lock
  49 *     inode->i_sb->s_inode_lru_lock
  50 *
  51 * bdi->wb.list_lock
  52 *   inode->i_lock
  53 *
  54 * inode_hash_lock
  55 *   inode_sb_list_lock
  56 *   inode->i_lock
  57 *
  58 * iunique_lock
  59 *   inode_hash_lock
  60 */
  61
  62static unsigned int i_hash_mask __read_mostly;
  63static unsigned int i_hash_shift __read_mostly;
  64static struct hlist_head *inode_hashtable __read_mostly;
  65static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
  66
  67__cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_sb_list_lock);
  68
  69/*
  70 * Empty aops. Can be used for the cases where the user does not
  71 * define any of the address_space operations.
  72 */
  73const struct address_space_operations empty_aops = {
  74};
  75EXPORT_SYMBOL(empty_aops);
  76
  77/*
  78 * Statistics gathering..
  79 */
  80struct inodes_stat_t inodes_stat;
  81
  82static DEFINE_PER_CPU(unsigned int, nr_inodes);
  83static DEFINE_PER_CPU(unsigned int, nr_unused);
  84
  85static struct kmem_cache *inode_cachep __read_mostly;
  86
  87static int get_nr_inodes(void)
  88{
  89	int i;
  90	int sum = 0;
  91	for_each_possible_cpu(i)
  92		sum += per_cpu(nr_inodes, i);
  93	return sum < 0 ? 0 : sum;
  94}
  95
  96static inline int get_nr_inodes_unused(void)
  97{
  98	int i;
  99	int sum = 0;
 100	for_each_possible_cpu(i)
 101		sum += per_cpu(nr_unused, i);
 102	return sum < 0 ? 0 : sum;
 103}
 104
 105int get_nr_dirty_inodes(void)
 106{
 107	/* not actually dirty inodes, but a wild approximation */
 108	int nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
 109	return nr_dirty > 0 ? nr_dirty : 0;
 110}
 111
 112/*
 113 * Handle nr_inode sysctl
 114 */
 115#ifdef CONFIG_SYSCTL
 116int proc_nr_inodes(ctl_table *table, int write,
 117		   void __user *buffer, size_t *lenp, loff_t *ppos)
 118{
 119	inodes_stat.nr_inodes = get_nr_inodes();
 120	inodes_stat.nr_unused = get_nr_inodes_unused();
 121	return proc_dointvec(table, write, buffer, lenp, ppos);
 122}
 123#endif
 124
 
 
 
 
 
 125/**
 126 * inode_init_always - perform inode structure intialisation
 127 * @sb: superblock inode belongs to
 128 * @inode: inode to initialise
 129 *
 130 * These are initializations that need to be done on every inode
 131 * allocation as the fields are not initialised by slab allocation.
 132 */
 133int inode_init_always(struct super_block *sb, struct inode *inode)
 134{
 135	static const struct inode_operations empty_iops;
 136	static const struct file_operations empty_fops;
 137	struct address_space *const mapping = &inode->i_data;
 138
 139	inode->i_sb = sb;
 140	inode->i_blkbits = sb->s_blocksize_bits;
 141	inode->i_flags = 0;
 142	atomic_set(&inode->i_count, 1);
 143	inode->i_op = &empty_iops;
 144	inode->i_fop = &empty_fops;
 145	inode->i_nlink = 1;
 146	inode->i_opflags = 0;
 147	inode->i_uid = 0;
 148	inode->i_gid = 0;
 149	atomic_set(&inode->i_writecount, 0);
 150	inode->i_size = 0;
 151	inode->i_blocks = 0;
 152	inode->i_bytes = 0;
 153	inode->i_generation = 0;
 154#ifdef CONFIG_QUOTA
 155	memset(&inode->i_dquot, 0, sizeof(inode->i_dquot));
 156#endif
 157	inode->i_pipe = NULL;
 158	inode->i_bdev = NULL;
 159	inode->i_cdev = NULL;
 
 160	inode->i_rdev = 0;
 161	inode->dirtied_when = 0;
 162
 
 
 
 
 
 
 163	if (security_inode_alloc(inode))
 164		goto out;
 165	spin_lock_init(&inode->i_lock);
 166	lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
 167
 168	mutex_init(&inode->i_mutex);
 169	lockdep_set_class(&inode->i_mutex, &sb->s_type->i_mutex_key);
 170
 171	atomic_set(&inode->i_dio_count, 0);
 172
 173	mapping->a_ops = &empty_aops;
 174	mapping->host = inode;
 175	mapping->flags = 0;
 
 176	mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
 177	mapping->assoc_mapping = NULL;
 178	mapping->backing_dev_info = &default_backing_dev_info;
 179	mapping->writeback_index = 0;
 180
 181	/*
 182	 * If the block_device provides a backing_dev_info for client
 183	 * inodes then use that.  Otherwise the inode share the bdev's
 184	 * backing_dev_info.
 185	 */
 186	if (sb->s_bdev) {
 187		struct backing_dev_info *bdi;
 188
 189		bdi = sb->s_bdev->bd_inode->i_mapping->backing_dev_info;
 190		mapping->backing_dev_info = bdi;
 191	}
 192	inode->i_private = NULL;
 193	inode->i_mapping = mapping;
 
 194#ifdef CONFIG_FS_POSIX_ACL
 195	inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
 196#endif
 197
 198#ifdef CONFIG_FSNOTIFY
 199	inode->i_fsnotify_mask = 0;
 200#endif
 201
 202	this_cpu_inc(nr_inodes);
 203
 204	return 0;
 205out:
 206	return -ENOMEM;
 207}
 208EXPORT_SYMBOL(inode_init_always);
 209
 210static struct inode *alloc_inode(struct super_block *sb)
 211{
 212	struct inode *inode;
 213
 214	if (sb->s_op->alloc_inode)
 215		inode = sb->s_op->alloc_inode(sb);
 216	else
 217		inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
 218
 219	if (!inode)
 220		return NULL;
 221
 222	if (unlikely(inode_init_always(sb, inode))) {
 223		if (inode->i_sb->s_op->destroy_inode)
 224			inode->i_sb->s_op->destroy_inode(inode);
 225		else
 226			kmem_cache_free(inode_cachep, inode);
 227		return NULL;
 228	}
 229
 230	return inode;
 231}
 232
 233void free_inode_nonrcu(struct inode *inode)
 234{
 235	kmem_cache_free(inode_cachep, inode);
 236}
 237EXPORT_SYMBOL(free_inode_nonrcu);
 238
 239void __destroy_inode(struct inode *inode)
 240{
 241	BUG_ON(inode_has_buffers(inode));
 
 242	security_inode_free(inode);
 243	fsnotify_inode_delete(inode);
 
 
 
 
 
 
 244#ifdef CONFIG_FS_POSIX_ACL
 245	if (inode->i_acl && inode->i_acl != ACL_NOT_CACHED)
 246		posix_acl_release(inode->i_acl);
 247	if (inode->i_default_acl && inode->i_default_acl != ACL_NOT_CACHED)
 248		posix_acl_release(inode->i_default_acl);
 249#endif
 250	this_cpu_dec(nr_inodes);
 251}
 252EXPORT_SYMBOL(__destroy_inode);
 253
 254static void i_callback(struct rcu_head *head)
 255{
 256	struct inode *inode = container_of(head, struct inode, i_rcu);
 257	INIT_LIST_HEAD(&inode->i_dentry);
 258	kmem_cache_free(inode_cachep, inode);
 259}
 260
 261static void destroy_inode(struct inode *inode)
 262{
 263	BUG_ON(!list_empty(&inode->i_lru));
 264	__destroy_inode(inode);
 265	if (inode->i_sb->s_op->destroy_inode)
 266		inode->i_sb->s_op->destroy_inode(inode);
 267	else
 268		call_rcu(&inode->i_rcu, i_callback);
 269}
 270
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 271void address_space_init_once(struct address_space *mapping)
 272{
 273	memset(mapping, 0, sizeof(*mapping));
 274	INIT_RADIX_TREE(&mapping->page_tree, GFP_ATOMIC);
 275	spin_lock_init(&mapping->tree_lock);
 276	mutex_init(&mapping->i_mmap_mutex);
 277	INIT_LIST_HEAD(&mapping->private_list);
 278	spin_lock_init(&mapping->private_lock);
 279	INIT_RAW_PRIO_TREE_ROOT(&mapping->i_mmap);
 280	INIT_LIST_HEAD(&mapping->i_mmap_nonlinear);
 281}
 282EXPORT_SYMBOL(address_space_init_once);
 283
 284/*
 285 * These are initializations that only need to be done
 286 * once, because the fields are idempotent across use
 287 * of the inode, so let the slab aware of that.
 288 */
 289void inode_init_once(struct inode *inode)
 290{
 291	memset(inode, 0, sizeof(*inode));
 292	INIT_HLIST_NODE(&inode->i_hash);
 293	INIT_LIST_HEAD(&inode->i_dentry);
 294	INIT_LIST_HEAD(&inode->i_devices);
 295	INIT_LIST_HEAD(&inode->i_wb_list);
 296	INIT_LIST_HEAD(&inode->i_lru);
 297	address_space_init_once(&inode->i_data);
 298	i_size_ordered_init(inode);
 299#ifdef CONFIG_FSNOTIFY
 300	INIT_HLIST_HEAD(&inode->i_fsnotify_marks);
 301#endif
 302}
 303EXPORT_SYMBOL(inode_init_once);
 304
 305static void init_once(void *foo)
 306{
 307	struct inode *inode = (struct inode *) foo;
 308
 309	inode_init_once(inode);
 310}
 311
 312/*
 313 * inode->i_lock must be held
 314 */
 315void __iget(struct inode *inode)
 316{
 317	atomic_inc(&inode->i_count);
 318}
 319
 320/*
 321 * get additional reference to inode; caller must already hold one.
 322 */
 323void ihold(struct inode *inode)
 324{
 325	WARN_ON(atomic_inc_return(&inode->i_count) < 2);
 326}
 327EXPORT_SYMBOL(ihold);
 328
 329static void inode_lru_list_add(struct inode *inode)
 330{
 331	spin_lock(&inode->i_sb->s_inode_lru_lock);
 332	if (list_empty(&inode->i_lru)) {
 333		list_add(&inode->i_lru, &inode->i_sb->s_inode_lru);
 334		inode->i_sb->s_nr_inodes_unused++;
 335		this_cpu_inc(nr_unused);
 336	}
 337	spin_unlock(&inode->i_sb->s_inode_lru_lock);
 338}
 339
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 340static void inode_lru_list_del(struct inode *inode)
 341{
 342	spin_lock(&inode->i_sb->s_inode_lru_lock);
 343	if (!list_empty(&inode->i_lru)) {
 344		list_del_init(&inode->i_lru);
 345		inode->i_sb->s_nr_inodes_unused--;
 346		this_cpu_dec(nr_unused);
 347	}
 348	spin_unlock(&inode->i_sb->s_inode_lru_lock);
 349}
 350
 351/**
 352 * inode_sb_list_add - add inode to the superblock list of inodes
 353 * @inode: inode to add
 354 */
 355void inode_sb_list_add(struct inode *inode)
 356{
 357	spin_lock(&inode_sb_list_lock);
 358	list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
 359	spin_unlock(&inode_sb_list_lock);
 360}
 361EXPORT_SYMBOL_GPL(inode_sb_list_add);
 362
 363static inline void inode_sb_list_del(struct inode *inode)
 364{
 365	if (!list_empty(&inode->i_sb_list)) {
 366		spin_lock(&inode_sb_list_lock);
 367		list_del_init(&inode->i_sb_list);
 368		spin_unlock(&inode_sb_list_lock);
 369	}
 370}
 371
 372static unsigned long hash(struct super_block *sb, unsigned long hashval)
 373{
 374	unsigned long tmp;
 375
 376	tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
 377			L1_CACHE_BYTES;
 378	tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
 379	return tmp & i_hash_mask;
 380}
 381
 382/**
 383 *	__insert_inode_hash - hash an inode
 384 *	@inode: unhashed inode
 385 *	@hashval: unsigned long value used to locate this object in the
 386 *		inode_hashtable.
 387 *
 388 *	Add an inode to the inode hash for this superblock.
 389 */
 390void __insert_inode_hash(struct inode *inode, unsigned long hashval)
 391{
 392	struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
 393
 394	spin_lock(&inode_hash_lock);
 395	spin_lock(&inode->i_lock);
 396	hlist_add_head(&inode->i_hash, b);
 397	spin_unlock(&inode->i_lock);
 398	spin_unlock(&inode_hash_lock);
 399}
 400EXPORT_SYMBOL(__insert_inode_hash);
 401
 402/**
 403 *	__remove_inode_hash - remove an inode from the hash
 404 *	@inode: inode to unhash
 405 *
 406 *	Remove an inode from the superblock.
 407 */
 408void __remove_inode_hash(struct inode *inode)
 409{
 410	spin_lock(&inode_hash_lock);
 411	spin_lock(&inode->i_lock);
 412	hlist_del_init(&inode->i_hash);
 413	spin_unlock(&inode->i_lock);
 414	spin_unlock(&inode_hash_lock);
 415}
 416EXPORT_SYMBOL(__remove_inode_hash);
 417
 418void end_writeback(struct inode *inode)
 419{
 420	might_sleep();
 421	/*
 422	 * We have to cycle tree_lock here because reclaim can be still in the
 423	 * process of removing the last page (in __delete_from_page_cache())
 424	 * and we must not free mapping under it.
 425	 */
 426	spin_lock_irq(&inode->i_data.tree_lock);
 427	BUG_ON(inode->i_data.nrpages);
 
 428	spin_unlock_irq(&inode->i_data.tree_lock);
 429	BUG_ON(!list_empty(&inode->i_data.private_list));
 430	BUG_ON(!(inode->i_state & I_FREEING));
 431	BUG_ON(inode->i_state & I_CLEAR);
 432	inode_sync_wait(inode);
 433	/* don't need i_lock here, no concurrent mods to i_state */
 434	inode->i_state = I_FREEING | I_CLEAR;
 435}
 436EXPORT_SYMBOL(end_writeback);
 437
 438/*
 439 * Free the inode passed in, removing it from the lists it is still connected
 440 * to. We remove any pages still attached to the inode and wait for any IO that
 441 * is still in progress before finally destroying the inode.
 442 *
 443 * An inode must already be marked I_FREEING so that we avoid the inode being
 444 * moved back onto lists if we race with other code that manipulates the lists
 445 * (e.g. writeback_single_inode). The caller is responsible for setting this.
 446 *
 447 * An inode must already be removed from the LRU list before being evicted from
 448 * the cache. This should occur atomically with setting the I_FREEING state
 449 * flag, so no inodes here should ever be on the LRU when being evicted.
 450 */
 451static void evict(struct inode *inode)
 452{
 453	const struct super_operations *op = inode->i_sb->s_op;
 454
 455	BUG_ON(!(inode->i_state & I_FREEING));
 456	BUG_ON(!list_empty(&inode->i_lru));
 457
 458	if (!list_empty(&inode->i_wb_list))
 459		inode_wb_list_del(inode);
 460
 461	inode_sb_list_del(inode);
 462
 
 
 
 
 
 
 
 
 463	if (op->evict_inode) {
 464		op->evict_inode(inode);
 465	} else {
 466		if (inode->i_data.nrpages)
 467			truncate_inode_pages(&inode->i_data, 0);
 468		end_writeback(inode);
 469	}
 470	if (S_ISBLK(inode->i_mode) && inode->i_bdev)
 471		bd_forget(inode);
 472	if (S_ISCHR(inode->i_mode) && inode->i_cdev)
 473		cd_forget(inode);
 474
 475	remove_inode_hash(inode);
 476
 477	spin_lock(&inode->i_lock);
 478	wake_up_bit(&inode->i_state, __I_NEW);
 479	BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
 480	spin_unlock(&inode->i_lock);
 481
 482	destroy_inode(inode);
 483}
 484
 485/*
 486 * dispose_list - dispose of the contents of a local list
 487 * @head: the head of the list to free
 488 *
 489 * Dispose-list gets a local list with local inodes in it, so it doesn't
 490 * need to worry about list corruption and SMP locks.
 491 */
 492static void dispose_list(struct list_head *head)
 493{
 494	while (!list_empty(head)) {
 495		struct inode *inode;
 496
 497		inode = list_first_entry(head, struct inode, i_lru);
 498		list_del_init(&inode->i_lru);
 499
 500		evict(inode);
 
 501	}
 502}
 503
 504/**
 505 * evict_inodes	- evict all evictable inodes for a superblock
 506 * @sb:		superblock to operate on
 507 *
 508 * Make sure that no inodes with zero refcount are retained.  This is
 509 * called by superblock shutdown after having MS_ACTIVE flag removed,
 510 * so any inode reaching zero refcount during or after that call will
 511 * be immediately evicted.
 512 */
 513void evict_inodes(struct super_block *sb)
 514{
 515	struct inode *inode, *next;
 516	LIST_HEAD(dispose);
 517
 518	spin_lock(&inode_sb_list_lock);
 
 519	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
 520		if (atomic_read(&inode->i_count))
 521			continue;
 522
 523		spin_lock(&inode->i_lock);
 524		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
 525			spin_unlock(&inode->i_lock);
 526			continue;
 527		}
 528
 529		inode->i_state |= I_FREEING;
 530		inode_lru_list_del(inode);
 531		spin_unlock(&inode->i_lock);
 532		list_add(&inode->i_lru, &dispose);
 
 
 
 
 
 
 
 
 
 
 
 
 533	}
 534	spin_unlock(&inode_sb_list_lock);
 535
 536	dispose_list(&dispose);
 537}
 538
 539/**
 540 * invalidate_inodes	- attempt to free all inodes on a superblock
 541 * @sb:		superblock to operate on
 542 * @kill_dirty: flag to guide handling of dirty inodes
 543 *
 544 * Attempts to free all inodes for a given superblock.  If there were any
 545 * busy inodes return a non-zero value, else zero.
 546 * If @kill_dirty is set, discard dirty inodes too, otherwise treat
 547 * them as busy.
 548 */
 549int invalidate_inodes(struct super_block *sb, bool kill_dirty)
 550{
 551	int busy = 0;
 552	struct inode *inode, *next;
 553	LIST_HEAD(dispose);
 554
 555	spin_lock(&inode_sb_list_lock);
 556	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
 557		spin_lock(&inode->i_lock);
 558		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
 559			spin_unlock(&inode->i_lock);
 560			continue;
 561		}
 562		if (inode->i_state & I_DIRTY && !kill_dirty) {
 563			spin_unlock(&inode->i_lock);
 564			busy = 1;
 565			continue;
 566		}
 567		if (atomic_read(&inode->i_count)) {
 568			spin_unlock(&inode->i_lock);
 569			busy = 1;
 570			continue;
 571		}
 572
 573		inode->i_state |= I_FREEING;
 574		inode_lru_list_del(inode);
 575		spin_unlock(&inode->i_lock);
 576		list_add(&inode->i_lru, &dispose);
 577	}
 578	spin_unlock(&inode_sb_list_lock);
 579
 580	dispose_list(&dispose);
 581
 582	return busy;
 583}
 584
 585static int can_unuse(struct inode *inode)
 586{
 587	if (inode->i_state & ~I_REFERENCED)
 588		return 0;
 589	if (inode_has_buffers(inode))
 590		return 0;
 591	if (atomic_read(&inode->i_count))
 592		return 0;
 593	if (inode->i_data.nrpages)
 594		return 0;
 595	return 1;
 596}
 597
 598/*
 599 * Walk the superblock inode LRU for freeable inodes and attempt to free them.
 600 * This is called from the superblock shrinker function with a number of inodes
 601 * to trim from the LRU. Inodes to be freed are moved to a temporary list and
 602 * then are freed outside inode_lock by dispose_list().
 603 *
 604 * Any inodes which are pinned purely because of attached pagecache have their
 605 * pagecache removed.  If the inode has metadata buffers attached to
 606 * mapping->private_list then try to remove them.
 607 *
 608 * If the inode has the I_REFERENCED flag set, then it means that it has been
 609 * used recently - the flag is set in iput_final(). When we encounter such an
 610 * inode, clear the flag and move it to the back of the LRU so it gets another
 611 * pass through the LRU before it gets reclaimed. This is necessary because of
 612 * the fact we are doing lazy LRU updates to minimise lock contention so the
 613 * LRU does not have strict ordering. Hence we don't want to reclaim inodes
 614 * with this flag set because they are the inodes that are out of order.
 615 */
 616void prune_icache_sb(struct super_block *sb, int nr_to_scan)
 
 617{
 618	LIST_HEAD(freeable);
 619	int nr_scanned;
 620	unsigned long reap = 0;
 621
 622	spin_lock(&sb->s_inode_lru_lock);
 623	for (nr_scanned = nr_to_scan; nr_scanned >= 0; nr_scanned--) {
 624		struct inode *inode;
 
 
 
 625
 626		if (list_empty(&sb->s_inode_lru))
 627			break;
 
 
 
 
 
 
 
 
 
 628
 629		inode = list_entry(sb->s_inode_lru.prev, struct inode, i_lru);
 
 
 
 
 
 630
 631		/*
 632		 * we are inverting the sb->s_inode_lru_lock/inode->i_lock here,
 633		 * so use a trylock. If we fail to get the lock, just move the
 634		 * inode to the back of the list so we don't spin on it.
 635		 */
 636		if (!spin_trylock(&inode->i_lock)) {
 637			list_move(&inode->i_lru, &sb->s_inode_lru);
 638			continue;
 639		}
 
 
 
 
 
 
 
 
 
 640
 641		/*
 642		 * Referenced or dirty inodes are still in use. Give them
 643		 * another pass through the LRU as we canot reclaim them now.
 644		 */
 645		if (atomic_read(&inode->i_count) ||
 646		    (inode->i_state & ~I_REFERENCED)) {
 647			list_del_init(&inode->i_lru);
 648			spin_unlock(&inode->i_lock);
 649			sb->s_nr_inodes_unused--;
 650			this_cpu_dec(nr_unused);
 651			continue;
 652		}
 653
 654		/* recently referenced inodes get one more pass */
 655		if (inode->i_state & I_REFERENCED) {
 656			inode->i_state &= ~I_REFERENCED;
 657			list_move(&inode->i_lru, &sb->s_inode_lru);
 658			spin_unlock(&inode->i_lock);
 659			continue;
 660		}
 661		if (inode_has_buffers(inode) || inode->i_data.nrpages) {
 662			__iget(inode);
 663			spin_unlock(&inode->i_lock);
 664			spin_unlock(&sb->s_inode_lru_lock);
 665			if (remove_inode_buffers(inode))
 666				reap += invalidate_mapping_pages(&inode->i_data,
 667								0, -1);
 668			iput(inode);
 669			spin_lock(&sb->s_inode_lru_lock);
 670
 671			if (inode != list_entry(sb->s_inode_lru.next,
 672						struct inode, i_lru))
 673				continue;	/* wrong inode or list_empty */
 674			/* avoid lock inversions with trylock */
 675			if (!spin_trylock(&inode->i_lock))
 676				continue;
 677			if (!can_unuse(inode)) {
 678				spin_unlock(&inode->i_lock);
 679				continue;
 680			}
 681		}
 682		WARN_ON(inode->i_state & I_NEW);
 683		inode->i_state |= I_FREEING;
 684		spin_unlock(&inode->i_lock);
 685
 686		list_move(&inode->i_lru, &freeable);
 687		sb->s_nr_inodes_unused--;
 688		this_cpu_dec(nr_unused);
 689	}
 690	if (current_is_kswapd())
 691		__count_vm_events(KSWAPD_INODESTEAL, reap);
 692	else
 693		__count_vm_events(PGINODESTEAL, reap);
 694	spin_unlock(&sb->s_inode_lru_lock);
 
 695
 
 
 696	dispose_list(&freeable);
 
 697}
 698
 699static void __wait_on_freeing_inode(struct inode *inode);
 700/*
 701 * Called with the inode lock held.
 702 */
 703static struct inode *find_inode(struct super_block *sb,
 704				struct hlist_head *head,
 705				int (*test)(struct inode *, void *),
 706				void *data)
 707{
 708	struct hlist_node *node;
 709	struct inode *inode = NULL;
 710
 711repeat:
 712	hlist_for_each_entry(inode, node, head, i_hash) {
 713		spin_lock(&inode->i_lock);
 714		if (inode->i_sb != sb) {
 715			spin_unlock(&inode->i_lock);
 716			continue;
 717		}
 718		if (!test(inode, data)) {
 719			spin_unlock(&inode->i_lock);
 720			continue;
 721		}
 722		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
 723			__wait_on_freeing_inode(inode);
 724			goto repeat;
 725		}
 726		__iget(inode);
 727		spin_unlock(&inode->i_lock);
 728		return inode;
 729	}
 730	return NULL;
 731}
 732
 733/*
 734 * find_inode_fast is the fast path version of find_inode, see the comment at
 735 * iget_locked for details.
 736 */
 737static struct inode *find_inode_fast(struct super_block *sb,
 738				struct hlist_head *head, unsigned long ino)
 739{
 740	struct hlist_node *node;
 741	struct inode *inode = NULL;
 742
 743repeat:
 744	hlist_for_each_entry(inode, node, head, i_hash) {
 745		spin_lock(&inode->i_lock);
 746		if (inode->i_ino != ino) {
 747			spin_unlock(&inode->i_lock);
 748			continue;
 749		}
 750		if (inode->i_sb != sb) {
 751			spin_unlock(&inode->i_lock);
 752			continue;
 753		}
 754		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
 755			__wait_on_freeing_inode(inode);
 756			goto repeat;
 757		}
 758		__iget(inode);
 759		spin_unlock(&inode->i_lock);
 760		return inode;
 761	}
 762	return NULL;
 763}
 764
 765/*
 766 * Each cpu owns a range of LAST_INO_BATCH numbers.
 767 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
 768 * to renew the exhausted range.
 769 *
 770 * This does not significantly increase overflow rate because every CPU can
 771 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
 772 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
 773 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
 774 * overflow rate by 2x, which does not seem too significant.
 775 *
 776 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
 777 * error if st_ino won't fit in target struct field. Use 32bit counter
 778 * here to attempt to avoid that.
 779 */
 780#define LAST_INO_BATCH 1024
 781static DEFINE_PER_CPU(unsigned int, last_ino);
 782
 783unsigned int get_next_ino(void)
 784{
 785	unsigned int *p = &get_cpu_var(last_ino);
 786	unsigned int res = *p;
 787
 788#ifdef CONFIG_SMP
 789	if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
 790		static atomic_t shared_last_ino;
 791		int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
 792
 793		res = next - LAST_INO_BATCH;
 794	}
 795#endif
 796
 797	*p = ++res;
 
 
 
 
 798	put_cpu_var(last_ino);
 799	return res;
 800}
 801EXPORT_SYMBOL(get_next_ino);
 802
 803/**
 804 *	new_inode_pseudo 	- obtain an inode
 805 *	@sb: superblock
 806 *
 807 *	Allocates a new inode for given superblock.
 808 *	Inode wont be chained in superblock s_inodes list
 809 *	This means :
 810 *	- fs can't be unmount
 811 *	- quotas, fsnotify, writeback can't work
 812 */
 813struct inode *new_inode_pseudo(struct super_block *sb)
 814{
 815	struct inode *inode = alloc_inode(sb);
 816
 817	if (inode) {
 818		spin_lock(&inode->i_lock);
 819		inode->i_state = 0;
 820		spin_unlock(&inode->i_lock);
 821		INIT_LIST_HEAD(&inode->i_sb_list);
 822	}
 823	return inode;
 824}
 825
 826/**
 827 *	new_inode 	- obtain an inode
 828 *	@sb: superblock
 829 *
 830 *	Allocates a new inode for given superblock. The default gfp_mask
 831 *	for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
 832 *	If HIGHMEM pages are unsuitable or it is known that pages allocated
 833 *	for the page cache are not reclaimable or migratable,
 834 *	mapping_set_gfp_mask() must be called with suitable flags on the
 835 *	newly created inode's mapping
 836 *
 837 */
 838struct inode *new_inode(struct super_block *sb)
 839{
 840	struct inode *inode;
 841
 842	spin_lock_prefetch(&inode_sb_list_lock);
 843
 844	inode = new_inode_pseudo(sb);
 845	if (inode)
 846		inode_sb_list_add(inode);
 847	return inode;
 848}
 849EXPORT_SYMBOL(new_inode);
 850
 851#ifdef CONFIG_DEBUG_LOCK_ALLOC
 852void lockdep_annotate_inode_mutex_key(struct inode *inode)
 853{
 854	if (S_ISDIR(inode->i_mode)) {
 855		struct file_system_type *type = inode->i_sb->s_type;
 856
 857		/* Set new key only if filesystem hasn't already changed it */
 858		if (!lockdep_match_class(&inode->i_mutex,
 859		    &type->i_mutex_key)) {
 860			/*
 861			 * ensure nobody is actually holding i_mutex
 862			 */
 863			mutex_destroy(&inode->i_mutex);
 864			mutex_init(&inode->i_mutex);
 865			lockdep_set_class(&inode->i_mutex,
 866					  &type->i_mutex_dir_key);
 867		}
 868	}
 869}
 870EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
 871#endif
 872
 873/**
 874 * unlock_new_inode - clear the I_NEW state and wake up any waiters
 875 * @inode:	new inode to unlock
 876 *
 877 * Called when the inode is fully initialised to clear the new state of the
 878 * inode and wake up anyone waiting for the inode to finish initialisation.
 879 */
 880void unlock_new_inode(struct inode *inode)
 881{
 882	lockdep_annotate_inode_mutex_key(inode);
 883	spin_lock(&inode->i_lock);
 884	WARN_ON(!(inode->i_state & I_NEW));
 885	inode->i_state &= ~I_NEW;
 
 886	wake_up_bit(&inode->i_state, __I_NEW);
 887	spin_unlock(&inode->i_lock);
 888}
 889EXPORT_SYMBOL(unlock_new_inode);
 890
 891/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 892 * iget5_locked - obtain an inode from a mounted file system
 893 * @sb:		super block of file system
 894 * @hashval:	hash value (usually inode number) to get
 895 * @test:	callback used for comparisons between inodes
 896 * @set:	callback used to initialize a new struct inode
 897 * @data:	opaque data pointer to pass to @test and @set
 898 *
 899 * Search for the inode specified by @hashval and @data in the inode cache,
 900 * and if present it is return it with an increased reference count. This is
 901 * a generalized version of iget_locked() for file systems where the inode
 902 * number is not sufficient for unique identification of an inode.
 903 *
 904 * If the inode is not in cache, allocate a new inode and return it locked,
 905 * hashed, and with the I_NEW flag set. The file system gets to fill it in
 906 * before unlocking it via unlock_new_inode().
 907 *
 908 * Note both @test and @set are called with the inode_hash_lock held, so can't
 909 * sleep.
 910 */
 911struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
 912		int (*test)(struct inode *, void *),
 913		int (*set)(struct inode *, void *), void *data)
 914{
 915	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
 916	struct inode *inode;
 917
 918	spin_lock(&inode_hash_lock);
 919	inode = find_inode(sb, head, test, data);
 920	spin_unlock(&inode_hash_lock);
 921
 922	if (inode) {
 923		wait_on_inode(inode);
 924		return inode;
 925	}
 926
 927	inode = alloc_inode(sb);
 928	if (inode) {
 929		struct inode *old;
 930
 931		spin_lock(&inode_hash_lock);
 932		/* We released the lock, so.. */
 933		old = find_inode(sb, head, test, data);
 934		if (!old) {
 935			if (set(inode, data))
 936				goto set_failed;
 937
 938			spin_lock(&inode->i_lock);
 939			inode->i_state = I_NEW;
 940			hlist_add_head(&inode->i_hash, head);
 941			spin_unlock(&inode->i_lock);
 942			inode_sb_list_add(inode);
 943			spin_unlock(&inode_hash_lock);
 944
 945			/* Return the locked inode with I_NEW set, the
 946			 * caller is responsible for filling in the contents
 947			 */
 948			return inode;
 949		}
 950
 951		/*
 952		 * Uhhuh, somebody else created the same inode under
 953		 * us. Use the old inode instead of the one we just
 954		 * allocated.
 955		 */
 956		spin_unlock(&inode_hash_lock);
 957		destroy_inode(inode);
 958		inode = old;
 959		wait_on_inode(inode);
 960	}
 961	return inode;
 962
 963set_failed:
 964	spin_unlock(&inode_hash_lock);
 965	destroy_inode(inode);
 966	return NULL;
 967}
 968EXPORT_SYMBOL(iget5_locked);
 969
 970/**
 971 * iget_locked - obtain an inode from a mounted file system
 972 * @sb:		super block of file system
 973 * @ino:	inode number to get
 974 *
 975 * Search for the inode specified by @ino in the inode cache and if present
 976 * return it with an increased reference count. This is for file systems
 977 * where the inode number is sufficient for unique identification of an inode.
 978 *
 979 * If the inode is not in cache, allocate a new inode and return it locked,
 980 * hashed, and with the I_NEW flag set.  The file system gets to fill it in
 981 * before unlocking it via unlock_new_inode().
 982 */
 983struct inode *iget_locked(struct super_block *sb, unsigned long ino)
 984{
 985	struct hlist_head *head = inode_hashtable + hash(sb, ino);
 986	struct inode *inode;
 987
 988	spin_lock(&inode_hash_lock);
 989	inode = find_inode_fast(sb, head, ino);
 990	spin_unlock(&inode_hash_lock);
 991	if (inode) {
 992		wait_on_inode(inode);
 993		return inode;
 994	}
 995
 996	inode = alloc_inode(sb);
 997	if (inode) {
 998		struct inode *old;
 999
1000		spin_lock(&inode_hash_lock);
1001		/* We released the lock, so.. */
1002		old = find_inode_fast(sb, head, ino);
1003		if (!old) {
1004			inode->i_ino = ino;
1005			spin_lock(&inode->i_lock);
1006			inode->i_state = I_NEW;
1007			hlist_add_head(&inode->i_hash, head);
1008			spin_unlock(&inode->i_lock);
1009			inode_sb_list_add(inode);
1010			spin_unlock(&inode_hash_lock);
1011
1012			/* Return the locked inode with I_NEW set, the
1013			 * caller is responsible for filling in the contents
1014			 */
1015			return inode;
1016		}
1017
1018		/*
1019		 * Uhhuh, somebody else created the same inode under
1020		 * us. Use the old inode instead of the one we just
1021		 * allocated.
1022		 */
1023		spin_unlock(&inode_hash_lock);
1024		destroy_inode(inode);
1025		inode = old;
1026		wait_on_inode(inode);
1027	}
1028	return inode;
1029}
1030EXPORT_SYMBOL(iget_locked);
1031
1032/*
1033 * search the inode cache for a matching inode number.
1034 * If we find one, then the inode number we are trying to
1035 * allocate is not unique and so we should not use it.
1036 *
1037 * Returns 1 if the inode number is unique, 0 if it is not.
1038 */
1039static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1040{
1041	struct hlist_head *b = inode_hashtable + hash(sb, ino);
1042	struct hlist_node *node;
1043	struct inode *inode;
1044
1045	spin_lock(&inode_hash_lock);
1046	hlist_for_each_entry(inode, node, b, i_hash) {
1047		if (inode->i_ino == ino && inode->i_sb == sb) {
1048			spin_unlock(&inode_hash_lock);
1049			return 0;
1050		}
1051	}
1052	spin_unlock(&inode_hash_lock);
1053
1054	return 1;
1055}
1056
1057/**
1058 *	iunique - get a unique inode number
1059 *	@sb: superblock
1060 *	@max_reserved: highest reserved inode number
1061 *
1062 *	Obtain an inode number that is unique on the system for a given
1063 *	superblock. This is used by file systems that have no natural
1064 *	permanent inode numbering system. An inode number is returned that
1065 *	is higher than the reserved limit but unique.
1066 *
1067 *	BUGS:
1068 *	With a large number of inodes live on the file system this function
1069 *	currently becomes quite slow.
1070 */
1071ino_t iunique(struct super_block *sb, ino_t max_reserved)
1072{
1073	/*
1074	 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1075	 * error if st_ino won't fit in target struct field. Use 32bit counter
1076	 * here to attempt to avoid that.
1077	 */
1078	static DEFINE_SPINLOCK(iunique_lock);
1079	static unsigned int counter;
1080	ino_t res;
1081
1082	spin_lock(&iunique_lock);
1083	do {
1084		if (counter <= max_reserved)
1085			counter = max_reserved + 1;
1086		res = counter++;
1087	} while (!test_inode_iunique(sb, res));
1088	spin_unlock(&iunique_lock);
1089
1090	return res;
1091}
1092EXPORT_SYMBOL(iunique);
1093
1094struct inode *igrab(struct inode *inode)
1095{
1096	spin_lock(&inode->i_lock);
1097	if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1098		__iget(inode);
1099		spin_unlock(&inode->i_lock);
1100	} else {
1101		spin_unlock(&inode->i_lock);
1102		/*
1103		 * Handle the case where s_op->clear_inode is not been
1104		 * called yet, and somebody is calling igrab
1105		 * while the inode is getting freed.
1106		 */
1107		inode = NULL;
1108	}
1109	return inode;
1110}
1111EXPORT_SYMBOL(igrab);
1112
1113/**
1114 * ilookup5_nowait - search for an inode in the inode cache
1115 * @sb:		super block of file system to search
1116 * @hashval:	hash value (usually inode number) to search for
1117 * @test:	callback used for comparisons between inodes
1118 * @data:	opaque data pointer to pass to @test
1119 *
1120 * Search for the inode specified by @hashval and @data in the inode cache.
1121 * If the inode is in the cache, the inode is returned with an incremented
1122 * reference count.
1123 *
1124 * Note: I_NEW is not waited upon so you have to be very careful what you do
1125 * with the returned inode.  You probably should be using ilookup5() instead.
1126 *
1127 * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1128 */
1129struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1130		int (*test)(struct inode *, void *), void *data)
1131{
1132	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1133	struct inode *inode;
1134
1135	spin_lock(&inode_hash_lock);
1136	inode = find_inode(sb, head, test, data);
1137	spin_unlock(&inode_hash_lock);
1138
1139	return inode;
1140}
1141EXPORT_SYMBOL(ilookup5_nowait);
1142
1143/**
1144 * ilookup5 - search for an inode in the inode cache
1145 * @sb:		super block of file system to search
1146 * @hashval:	hash value (usually inode number) to search for
1147 * @test:	callback used for comparisons between inodes
1148 * @data:	opaque data pointer to pass to @test
1149 *
1150 * Search for the inode specified by @hashval and @data in the inode cache,
1151 * and if the inode is in the cache, return the inode with an incremented
1152 * reference count.  Waits on I_NEW before returning the inode.
1153 * returned with an incremented reference count.
1154 *
1155 * This is a generalized version of ilookup() for file systems where the
1156 * inode number is not sufficient for unique identification of an inode.
1157 *
1158 * Note: @test is called with the inode_hash_lock held, so can't sleep.
1159 */
1160struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1161		int (*test)(struct inode *, void *), void *data)
1162{
1163	struct inode *inode = ilookup5_nowait(sb, hashval, test, data);
1164
1165	if (inode)
1166		wait_on_inode(inode);
1167	return inode;
1168}
1169EXPORT_SYMBOL(ilookup5);
1170
1171/**
1172 * ilookup - search for an inode in the inode cache
1173 * @sb:		super block of file system to search
1174 * @ino:	inode number to search for
1175 *
1176 * Search for the inode @ino in the inode cache, and if the inode is in the
1177 * cache, the inode is returned with an incremented reference count.
1178 */
1179struct inode *ilookup(struct super_block *sb, unsigned long ino)
1180{
1181	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1182	struct inode *inode;
1183
1184	spin_lock(&inode_hash_lock);
1185	inode = find_inode_fast(sb, head, ino);
1186	spin_unlock(&inode_hash_lock);
1187
1188	if (inode)
1189		wait_on_inode(inode);
1190	return inode;
1191}
1192EXPORT_SYMBOL(ilookup);
1193
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1194int insert_inode_locked(struct inode *inode)
1195{
1196	struct super_block *sb = inode->i_sb;
1197	ino_t ino = inode->i_ino;
1198	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1199
1200	while (1) {
1201		struct hlist_node *node;
1202		struct inode *old = NULL;
1203		spin_lock(&inode_hash_lock);
1204		hlist_for_each_entry(old, node, head, i_hash) {
1205			if (old->i_ino != ino)
1206				continue;
1207			if (old->i_sb != sb)
1208				continue;
1209			spin_lock(&old->i_lock);
1210			if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1211				spin_unlock(&old->i_lock);
1212				continue;
1213			}
1214			break;
1215		}
1216		if (likely(!node)) {
1217			spin_lock(&inode->i_lock);
1218			inode->i_state |= I_NEW;
1219			hlist_add_head(&inode->i_hash, head);
1220			spin_unlock(&inode->i_lock);
1221			spin_unlock(&inode_hash_lock);
1222			return 0;
1223		}
1224		__iget(old);
1225		spin_unlock(&old->i_lock);
1226		spin_unlock(&inode_hash_lock);
1227		wait_on_inode(old);
1228		if (unlikely(!inode_unhashed(old))) {
1229			iput(old);
1230			return -EBUSY;
1231		}
1232		iput(old);
1233	}
1234}
1235EXPORT_SYMBOL(insert_inode_locked);
1236
1237int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1238		int (*test)(struct inode *, void *), void *data)
1239{
1240	struct super_block *sb = inode->i_sb;
1241	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1242
1243	while (1) {
1244		struct hlist_node *node;
1245		struct inode *old = NULL;
1246
1247		spin_lock(&inode_hash_lock);
1248		hlist_for_each_entry(old, node, head, i_hash) {
1249			if (old->i_sb != sb)
1250				continue;
1251			if (!test(old, data))
1252				continue;
1253			spin_lock(&old->i_lock);
1254			if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1255				spin_unlock(&old->i_lock);
1256				continue;
1257			}
1258			break;
1259		}
1260		if (likely(!node)) {
1261			spin_lock(&inode->i_lock);
1262			inode->i_state |= I_NEW;
1263			hlist_add_head(&inode->i_hash, head);
1264			spin_unlock(&inode->i_lock);
1265			spin_unlock(&inode_hash_lock);
1266			return 0;
1267		}
1268		__iget(old);
1269		spin_unlock(&old->i_lock);
1270		spin_unlock(&inode_hash_lock);
1271		wait_on_inode(old);
1272		if (unlikely(!inode_unhashed(old))) {
1273			iput(old);
1274			return -EBUSY;
1275		}
1276		iput(old);
1277	}
1278}
1279EXPORT_SYMBOL(insert_inode_locked4);
1280
1281
1282int generic_delete_inode(struct inode *inode)
1283{
1284	return 1;
1285}
1286EXPORT_SYMBOL(generic_delete_inode);
1287
1288/*
1289 * Normal UNIX filesystem behaviour: delete the
1290 * inode when the usage count drops to zero, and
1291 * i_nlink is zero.
1292 */
1293int generic_drop_inode(struct inode *inode)
1294{
1295	return !inode->i_nlink || inode_unhashed(inode);
1296}
1297EXPORT_SYMBOL_GPL(generic_drop_inode);
1298
1299/*
1300 * Called when we're dropping the last reference
1301 * to an inode.
1302 *
1303 * Call the FS "drop_inode()" function, defaulting to
1304 * the legacy UNIX filesystem behaviour.  If it tells
1305 * us to evict inode, do so.  Otherwise, retain inode
1306 * in cache if fs is alive, sync and evict if fs is
1307 * shutting down.
1308 */
1309static void iput_final(struct inode *inode)
1310{
1311	struct super_block *sb = inode->i_sb;
1312	const struct super_operations *op = inode->i_sb->s_op;
1313	int drop;
1314
1315	WARN_ON(inode->i_state & I_NEW);
1316
1317	if (op->drop_inode)
1318		drop = op->drop_inode(inode);
1319	else
1320		drop = generic_drop_inode(inode);
1321
1322	if (!drop && (sb->s_flags & MS_ACTIVE)) {
1323		inode->i_state |= I_REFERENCED;
1324		if (!(inode->i_state & (I_DIRTY|I_SYNC)))
1325			inode_lru_list_add(inode);
1326		spin_unlock(&inode->i_lock);
1327		return;
1328	}
1329
1330	if (!drop) {
1331		inode->i_state |= I_WILL_FREE;
1332		spin_unlock(&inode->i_lock);
1333		write_inode_now(inode, 1);
1334		spin_lock(&inode->i_lock);
1335		WARN_ON(inode->i_state & I_NEW);
1336		inode->i_state &= ~I_WILL_FREE;
1337	}
1338
1339	inode->i_state |= I_FREEING;
1340	if (!list_empty(&inode->i_lru))
1341		inode_lru_list_del(inode);
1342	spin_unlock(&inode->i_lock);
1343
1344	evict(inode);
1345}
1346
1347/**
1348 *	iput	- put an inode
1349 *	@inode: inode to put
1350 *
1351 *	Puts an inode, dropping its usage count. If the inode use count hits
1352 *	zero, the inode is then freed and may also be destroyed.
1353 *
1354 *	Consequently, iput() can sleep.
1355 */
1356void iput(struct inode *inode)
1357{
1358	if (inode) {
1359		BUG_ON(inode->i_state & I_CLEAR);
1360
1361		if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock))
1362			iput_final(inode);
 
 
 
 
 
 
 
 
 
1363	}
1364}
1365EXPORT_SYMBOL(iput);
1366
1367/**
1368 *	bmap	- find a block number in a file
1369 *	@inode: inode of file
1370 *	@block: block to find
1371 *
1372 *	Returns the block number on the device holding the inode that
1373 *	is the disk block number for the block of the file requested.
1374 *	That is, asked for block 4 of inode 1 the function will return the
1375 *	disk block relative to the disk start that holds that block of the
1376 *	file.
1377 */
1378sector_t bmap(struct inode *inode, sector_t block)
1379{
1380	sector_t res = 0;
1381	if (inode->i_mapping->a_ops->bmap)
1382		res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
1383	return res;
1384}
1385EXPORT_SYMBOL(bmap);
1386
1387/*
1388 * With relative atime, only update atime if the previous atime is
1389 * earlier than either the ctime or mtime or if at least a day has
1390 * passed since the last atime update.
1391 */
1392static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1393			     struct timespec now)
1394{
1395
1396	if (!(mnt->mnt_flags & MNT_RELATIME))
1397		return 1;
1398	/*
1399	 * Is mtime younger than atime? If yes, update atime:
1400	 */
1401	if (timespec_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1402		return 1;
1403	/*
1404	 * Is ctime younger than atime? If yes, update atime:
1405	 */
1406	if (timespec_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1407		return 1;
1408
1409	/*
1410	 * Is the previous atime value older than a day? If yes,
1411	 * update atime:
1412	 */
1413	if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1414		return 1;
1415	/*
1416	 * Good, we can skip the atime update:
1417	 */
1418	return 0;
1419}
1420
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1421/**
1422 *	touch_atime	-	update the access time
1423 *	@mnt: mount the inode is accessed on
1424 *	@dentry: dentry accessed
1425 *
1426 *	Update the accessed time on an inode and mark it for writeback.
1427 *	This function automatically handles read only file systems and media,
1428 *	as well as the "noatime" flag and inode specific "noatime" markers.
1429 */
1430void touch_atime(struct vfsmount *mnt, struct dentry *dentry)
1431{
1432	struct inode *inode = dentry->d_inode;
1433	struct timespec now;
1434
1435	if (inode->i_flags & S_NOATIME)
1436		return;
1437	if (IS_NOATIME(inode))
1438		return;
1439	if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode))
1440		return;
1441
1442	if (mnt->mnt_flags & MNT_NOATIME)
1443		return;
1444	if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1445		return;
1446
1447	now = current_fs_time(inode->i_sb);
1448
1449	if (!relatime_need_update(mnt, inode, now))
1450		return;
1451
1452	if (timespec_equal(&inode->i_atime, &now))
 
 
 
 
 
 
 
 
 
 
 
 
1453		return;
1454
1455	if (mnt_want_write(mnt))
1456		return;
1457
1458	inode->i_atime = now;
1459	mark_inode_dirty_sync(inode);
1460	mnt_drop_write(mnt);
 
 
 
 
 
 
 
 
 
 
 
 
 
1461}
1462EXPORT_SYMBOL(touch_atime);
1463
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1464/**
1465 *	file_update_time	-	update mtime and ctime time
1466 *	@file: file accessed
1467 *
1468 *	Update the mtime and ctime members of an inode and mark the inode
1469 *	for writeback.  Note that this function is meant exclusively for
1470 *	usage in the file write path of filesystems, and filesystems may
1471 *	choose to explicitly ignore update via this function with the
1472 *	S_NOCMTIME inode flag, e.g. for network filesystem where these
1473 *	timestamps are handled by the server.
 
1474 */
1475
1476void file_update_time(struct file *file)
1477{
1478	struct inode *inode = file->f_path.dentry->d_inode;
1479	struct timespec now;
1480	enum { S_MTIME = 1, S_CTIME = 2, S_VERSION = 4 } sync_it = 0;
 
1481
1482	/* First try to exhaust all avenues to not sync */
1483	if (IS_NOCMTIME(inode))
1484		return;
1485
1486	now = current_fs_time(inode->i_sb);
1487	if (!timespec_equal(&inode->i_mtime, &now))
1488		sync_it = S_MTIME;
1489
1490	if (!timespec_equal(&inode->i_ctime, &now))
1491		sync_it |= S_CTIME;
1492
1493	if (IS_I_VERSION(inode))
1494		sync_it |= S_VERSION;
1495
1496	if (!sync_it)
1497		return;
1498
1499	/* Finally allowed to write? Takes lock. */
1500	if (mnt_want_write_file(file))
1501		return;
 
 
 
1502
1503	/* Only change inode inside the lock region */
1504	if (sync_it & S_VERSION)
1505		inode_inc_iversion(inode);
1506	if (sync_it & S_CTIME)
1507		inode->i_ctime = now;
1508	if (sync_it & S_MTIME)
1509		inode->i_mtime = now;
1510	mark_inode_dirty_sync(inode);
1511	mnt_drop_write(file->f_path.mnt);
1512}
1513EXPORT_SYMBOL(file_update_time);
1514
1515int inode_needs_sync(struct inode *inode)
1516{
1517	if (IS_SYNC(inode))
1518		return 1;
1519	if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1520		return 1;
1521	return 0;
1522}
1523EXPORT_SYMBOL(inode_needs_sync);
1524
1525int inode_wait(void *word)
1526{
1527	schedule();
1528	return 0;
1529}
1530EXPORT_SYMBOL(inode_wait);
1531
1532/*
1533 * If we try to find an inode in the inode hash while it is being
1534 * deleted, we have to wait until the filesystem completes its
1535 * deletion before reporting that it isn't found.  This function waits
1536 * until the deletion _might_ have completed.  Callers are responsible
1537 * to recheck inode state.
1538 *
1539 * It doesn't matter if I_NEW is not set initially, a call to
1540 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
1541 * will DTRT.
1542 */
1543static void __wait_on_freeing_inode(struct inode *inode)
1544{
1545	wait_queue_head_t *wq;
1546	DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
1547	wq = bit_waitqueue(&inode->i_state, __I_NEW);
1548	prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
1549	spin_unlock(&inode->i_lock);
1550	spin_unlock(&inode_hash_lock);
1551	schedule();
1552	finish_wait(wq, &wait.wait);
1553	spin_lock(&inode_hash_lock);
1554}
1555
1556static __initdata unsigned long ihash_entries;
1557static int __init set_ihash_entries(char *str)
1558{
1559	if (!str)
1560		return 0;
1561	ihash_entries = simple_strtoul(str, &str, 0);
1562	return 1;
1563}
1564__setup("ihash_entries=", set_ihash_entries);
1565
1566/*
1567 * Initialize the waitqueues and inode hash table.
1568 */
1569void __init inode_init_early(void)
1570{
1571	int loop;
1572
1573	/* If hashes are distributed across NUMA nodes, defer
1574	 * hash allocation until vmalloc space is available.
1575	 */
1576	if (hashdist)
1577		return;
1578
1579	inode_hashtable =
1580		alloc_large_system_hash("Inode-cache",
1581					sizeof(struct hlist_head),
1582					ihash_entries,
1583					14,
1584					HASH_EARLY,
1585					&i_hash_shift,
1586					&i_hash_mask,
 
1587					0);
1588
1589	for (loop = 0; loop < (1 << i_hash_shift); loop++)
1590		INIT_HLIST_HEAD(&inode_hashtable[loop]);
1591}
1592
1593void __init inode_init(void)
1594{
1595	int loop;
1596
1597	/* inode slab cache */
1598	inode_cachep = kmem_cache_create("inode_cache",
1599					 sizeof(struct inode),
1600					 0,
1601					 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
1602					 SLAB_MEM_SPREAD),
1603					 init_once);
1604
1605	/* Hash may have been set up in inode_init_early */
1606	if (!hashdist)
1607		return;
1608
1609	inode_hashtable =
1610		alloc_large_system_hash("Inode-cache",
1611					sizeof(struct hlist_head),
1612					ihash_entries,
1613					14,
1614					0,
1615					&i_hash_shift,
1616					&i_hash_mask,
 
1617					0);
1618
1619	for (loop = 0; loop < (1 << i_hash_shift); loop++)
1620		INIT_HLIST_HEAD(&inode_hashtable[loop]);
1621}
1622
1623void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
1624{
1625	inode->i_mode = mode;
1626	if (S_ISCHR(mode)) {
1627		inode->i_fop = &def_chr_fops;
1628		inode->i_rdev = rdev;
1629	} else if (S_ISBLK(mode)) {
1630		inode->i_fop = &def_blk_fops;
1631		inode->i_rdev = rdev;
1632	} else if (S_ISFIFO(mode))
1633		inode->i_fop = &def_fifo_fops;
1634	else if (S_ISSOCK(mode))
1635		inode->i_fop = &bad_sock_fops;
1636	else
1637		printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
1638				  " inode %s:%lu\n", mode, inode->i_sb->s_id,
1639				  inode->i_ino);
1640}
1641EXPORT_SYMBOL(init_special_inode);
1642
1643/**
1644 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
1645 * @inode: New inode
1646 * @dir: Directory inode
1647 * @mode: mode of the new inode
1648 */
1649void inode_init_owner(struct inode *inode, const struct inode *dir,
1650			mode_t mode)
1651{
1652	inode->i_uid = current_fsuid();
1653	if (dir && dir->i_mode & S_ISGID) {
1654		inode->i_gid = dir->i_gid;
1655		if (S_ISDIR(mode))
1656			mode |= S_ISGID;
1657	} else
1658		inode->i_gid = current_fsgid();
1659	inode->i_mode = mode;
1660}
1661EXPORT_SYMBOL(inode_init_owner);
1662
1663/**
1664 * inode_owner_or_capable - check current task permissions to inode
1665 * @inode: inode being checked
1666 *
1667 * Return true if current either has CAP_FOWNER to the inode, or
1668 * owns the file.
1669 */
1670bool inode_owner_or_capable(const struct inode *inode)
1671{
1672	struct user_namespace *ns = inode_userns(inode);
1673
1674	if (current_user_ns() == ns && current_fsuid() == inode->i_uid)
1675		return true;
1676	if (ns_capable(ns, CAP_FOWNER))
 
 
1677		return true;
1678	return false;
1679}
1680EXPORT_SYMBOL(inode_owner_or_capable);