Linux Audio

Check our new training course

Loading...
v4.6
   1/*
   2 * raid10.c : Multiple Devices driver for Linux
   3 *
   4 * Copyright (C) 2000-2004 Neil Brown
   5 *
   6 * RAID-10 support for md.
   7 *
   8 * Base on code in raid1.c.  See raid1.c for further copyright information.
   9 *
  10 *
  11 * This program is free software; you can redistribute it and/or modify
  12 * it under the terms of the GNU General Public License as published by
  13 * the Free Software Foundation; either version 2, or (at your option)
  14 * any later version.
  15 *
  16 * You should have received a copy of the GNU General Public License
  17 * (for example /usr/src/linux/COPYING); if not, write to the Free
  18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  19 */
  20
  21#include <linux/slab.h>
  22#include <linux/delay.h>
  23#include <linux/blkdev.h>
  24#include <linux/module.h>
  25#include <linux/seq_file.h>
  26#include <linux/ratelimit.h>
  27#include <linux/kthread.h>
  28#include "md.h"
  29#include "raid10.h"
  30#include "raid0.h"
  31#include "bitmap.h"
  32
  33/*
  34 * RAID10 provides a combination of RAID0 and RAID1 functionality.
  35 * The layout of data is defined by
  36 *    chunk_size
  37 *    raid_disks
  38 *    near_copies (stored in low byte of layout)
  39 *    far_copies (stored in second byte of layout)
  40 *    far_offset (stored in bit 16 of layout )
  41 *    use_far_sets (stored in bit 17 of layout )
  42 *    use_far_sets_bugfixed (stored in bit 18 of layout )
  43 *
  44 * The data to be stored is divided into chunks using chunksize.  Each device
  45 * is divided into far_copies sections.   In each section, chunks are laid out
  46 * in a style similar to raid0, but near_copies copies of each chunk is stored
  47 * (each on a different drive).  The starting device for each section is offset
  48 * near_copies from the starting device of the previous section.  Thus there
  49 * are (near_copies * far_copies) of each chunk, and each is on a different
  50 * drive.  near_copies and far_copies must be at least one, and their product
  51 * is at most raid_disks.
 
 
  52 *
  53 * If far_offset is true, then the far_copies are handled a bit differently.
  54 * The copies are still in different stripes, but instead of being very far
  55 * apart on disk, there are adjacent stripes.
  56 *
  57 * The far and offset algorithms are handled slightly differently if
  58 * 'use_far_sets' is true.  In this case, the array's devices are grouped into
  59 * sets that are (near_copies * far_copies) in size.  The far copied stripes
  60 * are still shifted by 'near_copies' devices, but this shifting stays confined
  61 * to the set rather than the entire array.  This is done to improve the number
  62 * of device combinations that can fail without causing the array to fail.
  63 * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
  64 * on a device):
  65 *    A B C D    A B C D E
  66 *      ...         ...
  67 *    D A B C    E A B C D
  68 * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
  69 *    [A B] [C D]    [A B] [C D E]
  70 *    |...| |...|    |...| | ... |
  71 *    [B A] [D C]    [B A] [E C D]
  72 */
  73
  74/*
  75 * Number of guaranteed r10bios in case of extreme VM load:
  76 */
  77#define	NR_RAID10_BIOS 256
  78
  79/* when we get a read error on a read-only array, we redirect to another
  80 * device without failing the first device, or trying to over-write to
  81 * correct the read error.  To keep track of bad blocks on a per-bio
  82 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
  83 */
  84#define IO_BLOCKED ((struct bio *)1)
  85/* When we successfully write to a known bad-block, we need to remove the
  86 * bad-block marking which must be done from process context.  So we record
  87 * the success by setting devs[n].bio to IO_MADE_GOOD
  88 */
  89#define IO_MADE_GOOD ((struct bio *)2)
  90
  91#define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
  92
  93/* When there are this many requests queued to be written by
  94 * the raid10 thread, we become 'congested' to provide back-pressure
  95 * for writeback.
  96 */
  97static int max_queued_requests = 1024;
  98
  99static void allow_barrier(struct r10conf *conf);
 100static void lower_barrier(struct r10conf *conf);
 101static int _enough(struct r10conf *conf, int previous, int ignore);
 102static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
 103				int *skipped);
 104static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
 105static void end_reshape_write(struct bio *bio);
 106static void end_reshape(struct r10conf *conf);
 107
 108static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
 109{
 110	struct r10conf *conf = data;
 111	int size = offsetof(struct r10bio, devs[conf->copies]);
 112
 113	/* allocate a r10bio with room for raid_disks entries in the
 114	 * bios array */
 115	return kzalloc(size, gfp_flags);
 116}
 117
 118static void r10bio_pool_free(void *r10_bio, void *data)
 119{
 120	kfree(r10_bio);
 121}
 122
 123/* Maximum size of each resync request */
 124#define RESYNC_BLOCK_SIZE (64*1024)
 125#define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
 126/* amount of memory to reserve for resync requests */
 127#define RESYNC_WINDOW (1024*1024)
 128/* maximum number of concurrent requests, memory permitting */
 129#define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
 130
 131/*
 132 * When performing a resync, we need to read and compare, so
 133 * we need as many pages are there are copies.
 134 * When performing a recovery, we need 2 bios, one for read,
 135 * one for write (we recover only one drive per r10buf)
 136 *
 137 */
 138static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
 139{
 140	struct r10conf *conf = data;
 141	struct page *page;
 142	struct r10bio *r10_bio;
 143	struct bio *bio;
 144	int i, j;
 145	int nalloc;
 146
 147	r10_bio = r10bio_pool_alloc(gfp_flags, conf);
 148	if (!r10_bio)
 149		return NULL;
 150
 151	if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
 152	    test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
 153		nalloc = conf->copies; /* resync */
 154	else
 155		nalloc = 2; /* recovery */
 156
 157	/*
 158	 * Allocate bios.
 159	 */
 160	for (j = nalloc ; j-- ; ) {
 161		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
 162		if (!bio)
 163			goto out_free_bio;
 164		r10_bio->devs[j].bio = bio;
 165		if (!conf->have_replacement)
 166			continue;
 167		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
 168		if (!bio)
 169			goto out_free_bio;
 170		r10_bio->devs[j].repl_bio = bio;
 171	}
 172	/*
 173	 * Allocate RESYNC_PAGES data pages and attach them
 174	 * where needed.
 175	 */
 176	for (j = 0 ; j < nalloc; j++) {
 177		struct bio *rbio = r10_bio->devs[j].repl_bio;
 178		bio = r10_bio->devs[j].bio;
 179		for (i = 0; i < RESYNC_PAGES; i++) {
 180			if (j > 0 && !test_bit(MD_RECOVERY_SYNC,
 181					       &conf->mddev->recovery)) {
 182				/* we can share bv_page's during recovery
 183				 * and reshape */
 184				struct bio *rbio = r10_bio->devs[0].bio;
 185				page = rbio->bi_io_vec[i].bv_page;
 186				get_page(page);
 187			} else
 188				page = alloc_page(gfp_flags);
 189			if (unlikely(!page))
 190				goto out_free_pages;
 191
 192			bio->bi_io_vec[i].bv_page = page;
 193			if (rbio)
 194				rbio->bi_io_vec[i].bv_page = page;
 195		}
 196	}
 197
 198	return r10_bio;
 199
 200out_free_pages:
 201	for ( ; i > 0 ; i--)
 202		safe_put_page(bio->bi_io_vec[i-1].bv_page);
 203	while (j--)
 204		for (i = 0; i < RESYNC_PAGES ; i++)
 205			safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
 206	j = 0;
 207out_free_bio:
 208	for ( ; j < nalloc; j++) {
 209		if (r10_bio->devs[j].bio)
 210			bio_put(r10_bio->devs[j].bio);
 211		if (r10_bio->devs[j].repl_bio)
 212			bio_put(r10_bio->devs[j].repl_bio);
 213	}
 214	r10bio_pool_free(r10_bio, conf);
 215	return NULL;
 216}
 217
 218static void r10buf_pool_free(void *__r10_bio, void *data)
 219{
 220	int i;
 221	struct r10conf *conf = data;
 222	struct r10bio *r10bio = __r10_bio;
 223	int j;
 224
 225	for (j=0; j < conf->copies; j++) {
 226		struct bio *bio = r10bio->devs[j].bio;
 227		if (bio) {
 228			for (i = 0; i < RESYNC_PAGES; i++) {
 229				safe_put_page(bio->bi_io_vec[i].bv_page);
 230				bio->bi_io_vec[i].bv_page = NULL;
 231			}
 232			bio_put(bio);
 233		}
 234		bio = r10bio->devs[j].repl_bio;
 235		if (bio)
 236			bio_put(bio);
 237	}
 238	r10bio_pool_free(r10bio, conf);
 239}
 240
 241static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
 242{
 243	int i;
 244
 245	for (i = 0; i < conf->copies; i++) {
 246		struct bio **bio = & r10_bio->devs[i].bio;
 247		if (!BIO_SPECIAL(*bio))
 248			bio_put(*bio);
 249		*bio = NULL;
 250		bio = &r10_bio->devs[i].repl_bio;
 251		if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
 252			bio_put(*bio);
 253		*bio = NULL;
 254	}
 255}
 256
 257static void free_r10bio(struct r10bio *r10_bio)
 258{
 259	struct r10conf *conf = r10_bio->mddev->private;
 260
 261	put_all_bios(conf, r10_bio);
 262	mempool_free(r10_bio, conf->r10bio_pool);
 263}
 264
 265static void put_buf(struct r10bio *r10_bio)
 266{
 267	struct r10conf *conf = r10_bio->mddev->private;
 268
 269	mempool_free(r10_bio, conf->r10buf_pool);
 270
 271	lower_barrier(conf);
 272}
 273
 274static void reschedule_retry(struct r10bio *r10_bio)
 275{
 276	unsigned long flags;
 277	struct mddev *mddev = r10_bio->mddev;
 278	struct r10conf *conf = mddev->private;
 279
 280	spin_lock_irqsave(&conf->device_lock, flags);
 281	list_add(&r10_bio->retry_list, &conf->retry_list);
 282	conf->nr_queued ++;
 283	spin_unlock_irqrestore(&conf->device_lock, flags);
 284
 285	/* wake up frozen array... */
 286	wake_up(&conf->wait_barrier);
 287
 288	md_wakeup_thread(mddev->thread);
 289}
 290
 291/*
 292 * raid_end_bio_io() is called when we have finished servicing a mirrored
 293 * operation and are ready to return a success/failure code to the buffer
 294 * cache layer.
 295 */
 296static void raid_end_bio_io(struct r10bio *r10_bio)
 297{
 298	struct bio *bio = r10_bio->master_bio;
 299	int done;
 300	struct r10conf *conf = r10_bio->mddev->private;
 301
 302	if (bio->bi_phys_segments) {
 303		unsigned long flags;
 304		spin_lock_irqsave(&conf->device_lock, flags);
 305		bio->bi_phys_segments--;
 306		done = (bio->bi_phys_segments == 0);
 307		spin_unlock_irqrestore(&conf->device_lock, flags);
 308	} else
 309		done = 1;
 310	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
 311		bio->bi_error = -EIO;
 312	if (done) {
 313		bio_endio(bio);
 314		/*
 315		 * Wake up any possible resync thread that waits for the device
 316		 * to go idle.
 317		 */
 318		allow_barrier(conf);
 319	}
 320	free_r10bio(r10_bio);
 321}
 322
 323/*
 324 * Update disk head position estimator based on IRQ completion info.
 325 */
 326static inline void update_head_pos(int slot, struct r10bio *r10_bio)
 327{
 328	struct r10conf *conf = r10_bio->mddev->private;
 329
 330	conf->mirrors[r10_bio->devs[slot].devnum].head_position =
 331		r10_bio->devs[slot].addr + (r10_bio->sectors);
 332}
 333
 334/*
 335 * Find the disk number which triggered given bio
 336 */
 337static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
 338			 struct bio *bio, int *slotp, int *replp)
 339{
 340	int slot;
 341	int repl = 0;
 342
 343	for (slot = 0; slot < conf->copies; slot++) {
 344		if (r10_bio->devs[slot].bio == bio)
 345			break;
 346		if (r10_bio->devs[slot].repl_bio == bio) {
 347			repl = 1;
 348			break;
 349		}
 350	}
 351
 352	BUG_ON(slot == conf->copies);
 353	update_head_pos(slot, r10_bio);
 354
 355	if (slotp)
 356		*slotp = slot;
 357	if (replp)
 358		*replp = repl;
 359	return r10_bio->devs[slot].devnum;
 360}
 361
 362static void raid10_end_read_request(struct bio *bio)
 363{
 364	int uptodate = !bio->bi_error;
 365	struct r10bio *r10_bio = bio->bi_private;
 366	int slot, dev;
 367	struct md_rdev *rdev;
 368	struct r10conf *conf = r10_bio->mddev->private;
 369
 370	slot = r10_bio->read_slot;
 371	dev = r10_bio->devs[slot].devnum;
 372	rdev = r10_bio->devs[slot].rdev;
 373	/*
 374	 * this branch is our 'one mirror IO has finished' event handler:
 375	 */
 376	update_head_pos(slot, r10_bio);
 377
 378	if (uptodate) {
 379		/*
 380		 * Set R10BIO_Uptodate in our master bio, so that
 381		 * we will return a good error code to the higher
 382		 * levels even if IO on some other mirrored buffer fails.
 383		 *
 384		 * The 'master' represents the composite IO operation to
 385		 * user-side. So if something waits for IO, then it will
 386		 * wait for the 'master' bio.
 387		 */
 388		set_bit(R10BIO_Uptodate, &r10_bio->state);
 389	} else {
 390		/* If all other devices that store this block have
 391		 * failed, we want to return the error upwards rather
 392		 * than fail the last device.  Here we redefine
 393		 * "uptodate" to mean "Don't want to retry"
 394		 */
 395		if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
 396			     rdev->raid_disk))
 397			uptodate = 1;
 398	}
 399	if (uptodate) {
 400		raid_end_bio_io(r10_bio);
 401		rdev_dec_pending(rdev, conf->mddev);
 402	} else {
 403		/*
 404		 * oops, read error - keep the refcount on the rdev
 405		 */
 406		char b[BDEVNAME_SIZE];
 407		printk_ratelimited(KERN_ERR
 408				   "md/raid10:%s: %s: rescheduling sector %llu\n",
 409				   mdname(conf->mddev),
 410				   bdevname(rdev->bdev, b),
 411				   (unsigned long long)r10_bio->sector);
 412		set_bit(R10BIO_ReadError, &r10_bio->state);
 413		reschedule_retry(r10_bio);
 414	}
 415}
 416
 417static void close_write(struct r10bio *r10_bio)
 418{
 419	/* clear the bitmap if all writes complete successfully */
 420	bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
 421			r10_bio->sectors,
 422			!test_bit(R10BIO_Degraded, &r10_bio->state),
 423			0);
 424	md_write_end(r10_bio->mddev);
 425}
 426
 427static void one_write_done(struct r10bio *r10_bio)
 428{
 429	if (atomic_dec_and_test(&r10_bio->remaining)) {
 430		if (test_bit(R10BIO_WriteError, &r10_bio->state))
 431			reschedule_retry(r10_bio);
 432		else {
 433			close_write(r10_bio);
 434			if (test_bit(R10BIO_MadeGood, &r10_bio->state))
 435				reschedule_retry(r10_bio);
 436			else
 437				raid_end_bio_io(r10_bio);
 438		}
 439	}
 440}
 441
 442static void raid10_end_write_request(struct bio *bio)
 443{
 444	struct r10bio *r10_bio = bio->bi_private;
 
 445	int dev;
 446	int dec_rdev = 1;
 447	struct r10conf *conf = r10_bio->mddev->private;
 448	int slot, repl;
 449	struct md_rdev *rdev = NULL;
 450
 451	dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
 452
 453	if (repl)
 454		rdev = conf->mirrors[dev].replacement;
 455	if (!rdev) {
 456		smp_rmb();
 457		repl = 0;
 458		rdev = conf->mirrors[dev].rdev;
 459	}
 460	/*
 461	 * this branch is our 'one mirror IO has finished' event handler:
 462	 */
 463	if (bio->bi_error) {
 464		if (repl)
 465			/* Never record new bad blocks to replacement,
 466			 * just fail it.
 467			 */
 468			md_error(rdev->mddev, rdev);
 469		else {
 470			set_bit(WriteErrorSeen,	&rdev->flags);
 471			if (!test_and_set_bit(WantReplacement, &rdev->flags))
 472				set_bit(MD_RECOVERY_NEEDED,
 473					&rdev->mddev->recovery);
 474			set_bit(R10BIO_WriteError, &r10_bio->state);
 475			dec_rdev = 0;
 476		}
 477	} else {
 478		/*
 479		 * Set R10BIO_Uptodate in our master bio, so that
 480		 * we will return a good error code for to the higher
 481		 * levels even if IO on some other mirrored buffer fails.
 482		 *
 483		 * The 'master' represents the composite IO operation to
 484		 * user-side. So if something waits for IO, then it will
 485		 * wait for the 'master' bio.
 486		 */
 487		sector_t first_bad;
 488		int bad_sectors;
 489
 490		/*
 491		 * Do not set R10BIO_Uptodate if the current device is
 492		 * rebuilding or Faulty. This is because we cannot use
 493		 * such device for properly reading the data back (we could
 494		 * potentially use it, if the current write would have felt
 495		 * before rdev->recovery_offset, but for simplicity we don't
 496		 * check this here.
 497		 */
 498		if (test_bit(In_sync, &rdev->flags) &&
 499		    !test_bit(Faulty, &rdev->flags))
 500			set_bit(R10BIO_Uptodate, &r10_bio->state);
 501
 502		/* Maybe we can clear some bad blocks. */
 503		if (is_badblock(rdev,
 504				r10_bio->devs[slot].addr,
 505				r10_bio->sectors,
 506				&first_bad, &bad_sectors)) {
 507			bio_put(bio);
 508			if (repl)
 509				r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
 510			else
 511				r10_bio->devs[slot].bio = IO_MADE_GOOD;
 512			dec_rdev = 0;
 513			set_bit(R10BIO_MadeGood, &r10_bio->state);
 514		}
 515	}
 516
 517	/*
 518	 *
 519	 * Let's see if all mirrored write operations have finished
 520	 * already.
 521	 */
 522	one_write_done(r10_bio);
 523	if (dec_rdev)
 524		rdev_dec_pending(rdev, conf->mddev);
 525}
 526
 
 527/*
 528 * RAID10 layout manager
 529 * As well as the chunksize and raid_disks count, there are two
 530 * parameters: near_copies and far_copies.
 531 * near_copies * far_copies must be <= raid_disks.
 532 * Normally one of these will be 1.
 533 * If both are 1, we get raid0.
 534 * If near_copies == raid_disks, we get raid1.
 535 *
 536 * Chunks are laid out in raid0 style with near_copies copies of the
 537 * first chunk, followed by near_copies copies of the next chunk and
 538 * so on.
 539 * If far_copies > 1, then after 1/far_copies of the array has been assigned
 540 * as described above, we start again with a device offset of near_copies.
 541 * So we effectively have another copy of the whole array further down all
 542 * the drives, but with blocks on different drives.
 543 * With this layout, and block is never stored twice on the one device.
 544 *
 545 * raid10_find_phys finds the sector offset of a given virtual sector
 546 * on each device that it is on.
 547 *
 548 * raid10_find_virt does the reverse mapping, from a device and a
 549 * sector offset to a virtual address
 550 */
 551
 552static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
 553{
 554	int n,f;
 555	sector_t sector;
 556	sector_t chunk;
 557	sector_t stripe;
 558	int dev;
 559	int slot = 0;
 560	int last_far_set_start, last_far_set_size;
 561
 562	last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
 563	last_far_set_start *= geo->far_set_size;
 564
 565	last_far_set_size = geo->far_set_size;
 566	last_far_set_size += (geo->raid_disks % geo->far_set_size);
 567
 568	/* now calculate first sector/dev */
 569	chunk = r10bio->sector >> geo->chunk_shift;
 570	sector = r10bio->sector & geo->chunk_mask;
 571
 572	chunk *= geo->near_copies;
 573	stripe = chunk;
 574	dev = sector_div(stripe, geo->raid_disks);
 575	if (geo->far_offset)
 576		stripe *= geo->far_copies;
 577
 578	sector += stripe << geo->chunk_shift;
 579
 580	/* and calculate all the others */
 581	for (n = 0; n < geo->near_copies; n++) {
 582		int d = dev;
 583		int set;
 584		sector_t s = sector;
 
 585		r10bio->devs[slot].devnum = d;
 586		r10bio->devs[slot].addr = s;
 587		slot++;
 588
 589		for (f = 1; f < geo->far_copies; f++) {
 590			set = d / geo->far_set_size;
 591			d += geo->near_copies;
 592
 593			if ((geo->raid_disks % geo->far_set_size) &&
 594			    (d > last_far_set_start)) {
 595				d -= last_far_set_start;
 596				d %= last_far_set_size;
 597				d += last_far_set_start;
 598			} else {
 599				d %= geo->far_set_size;
 600				d += geo->far_set_size * set;
 601			}
 602			s += geo->stride;
 603			r10bio->devs[slot].devnum = d;
 604			r10bio->devs[slot].addr = s;
 605			slot++;
 606		}
 607		dev++;
 608		if (dev >= geo->raid_disks) {
 609			dev = 0;
 610			sector += (geo->chunk_mask + 1);
 611		}
 612	}
 
 613}
 614
 615static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
 616{
 617	struct geom *geo = &conf->geo;
 618
 619	if (conf->reshape_progress != MaxSector &&
 620	    ((r10bio->sector >= conf->reshape_progress) !=
 621	     conf->mddev->reshape_backwards)) {
 622		set_bit(R10BIO_Previous, &r10bio->state);
 623		geo = &conf->prev;
 624	} else
 625		clear_bit(R10BIO_Previous, &r10bio->state);
 626
 627	__raid10_find_phys(geo, r10bio);
 628}
 629
 630static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
 631{
 632	sector_t offset, chunk, vchunk;
 633	/* Never use conf->prev as this is only called during resync
 634	 * or recovery, so reshape isn't happening
 635	 */
 636	struct geom *geo = &conf->geo;
 637	int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
 638	int far_set_size = geo->far_set_size;
 639	int last_far_set_start;
 640
 641	if (geo->raid_disks % geo->far_set_size) {
 642		last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
 643		last_far_set_start *= geo->far_set_size;
 644
 645		if (dev >= last_far_set_start) {
 646			far_set_size = geo->far_set_size;
 647			far_set_size += (geo->raid_disks % geo->far_set_size);
 648			far_set_start = last_far_set_start;
 649		}
 650	}
 651
 652	offset = sector & geo->chunk_mask;
 653	if (geo->far_offset) {
 654		int fc;
 655		chunk = sector >> geo->chunk_shift;
 656		fc = sector_div(chunk, geo->far_copies);
 657		dev -= fc * geo->near_copies;
 658		if (dev < far_set_start)
 659			dev += far_set_size;
 660	} else {
 661		while (sector >= geo->stride) {
 662			sector -= geo->stride;
 663			if (dev < (geo->near_copies + far_set_start))
 664				dev += far_set_size - geo->near_copies;
 665			else
 666				dev -= geo->near_copies;
 667		}
 668		chunk = sector >> geo->chunk_shift;
 669	}
 670	vchunk = chunk * geo->raid_disks + dev;
 671	sector_div(vchunk, geo->near_copies);
 672	return (vchunk << geo->chunk_shift) + offset;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 673}
 674
 675/*
 676 * This routine returns the disk from which the requested read should
 677 * be done. There is a per-array 'next expected sequential IO' sector
 678 * number - if this matches on the next IO then we use the last disk.
 679 * There is also a per-disk 'last know head position' sector that is
 680 * maintained from IRQ contexts, both the normal and the resync IO
 681 * completion handlers update this position correctly. If there is no
 682 * perfect sequential match then we pick the disk whose head is closest.
 683 *
 684 * If there are 2 mirrors in the same 2 devices, performance degrades
 685 * because position is mirror, not device based.
 686 *
 687 * The rdev for the device selected will have nr_pending incremented.
 688 */
 689
 690/*
 691 * FIXME: possibly should rethink readbalancing and do it differently
 692 * depending on near_copies / far_copies geometry.
 693 */
 694static struct md_rdev *read_balance(struct r10conf *conf,
 695				    struct r10bio *r10_bio,
 696				    int *max_sectors)
 697{
 698	const sector_t this_sector = r10_bio->sector;
 699	int disk, slot;
 700	int sectors = r10_bio->sectors;
 701	int best_good_sectors;
 702	sector_t new_distance, best_dist;
 703	struct md_rdev *best_rdev, *rdev = NULL;
 704	int do_balance;
 705	int best_slot;
 706	struct geom *geo = &conf->geo;
 707
 708	raid10_find_phys(conf, r10_bio);
 709	rcu_read_lock();
 710retry:
 711	sectors = r10_bio->sectors;
 712	best_slot = -1;
 713	best_rdev = NULL;
 714	best_dist = MaxSector;
 715	best_good_sectors = 0;
 716	do_balance = 1;
 717	/*
 718	 * Check if we can balance. We can balance on the whole
 719	 * device if no resync is going on (recovery is ok), or below
 720	 * the resync window. We take the first readable disk when
 721	 * above the resync window.
 722	 */
 723	if (conf->mddev->recovery_cp < MaxSector
 724	    && (this_sector + sectors >= conf->next_resync))
 725		do_balance = 0;
 726
 727	for (slot = 0; slot < conf->copies ; slot++) {
 728		sector_t first_bad;
 729		int bad_sectors;
 730		sector_t dev_sector;
 731
 732		if (r10_bio->devs[slot].bio == IO_BLOCKED)
 733			continue;
 734		disk = r10_bio->devs[slot].devnum;
 735		rdev = rcu_dereference(conf->mirrors[disk].replacement);
 736		if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
 737		    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
 738			rdev = rcu_dereference(conf->mirrors[disk].rdev);
 739		if (rdev == NULL ||
 740		    test_bit(Faulty, &rdev->flags))
 741			continue;
 742		if (!test_bit(In_sync, &rdev->flags) &&
 743		    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
 744			continue;
 745
 746		dev_sector = r10_bio->devs[slot].addr;
 747		if (is_badblock(rdev, dev_sector, sectors,
 748				&first_bad, &bad_sectors)) {
 749			if (best_dist < MaxSector)
 750				/* Already have a better slot */
 751				continue;
 752			if (first_bad <= dev_sector) {
 753				/* Cannot read here.  If this is the
 754				 * 'primary' device, then we must not read
 755				 * beyond 'bad_sectors' from another device.
 756				 */
 757				bad_sectors -= (dev_sector - first_bad);
 758				if (!do_balance && sectors > bad_sectors)
 759					sectors = bad_sectors;
 760				if (best_good_sectors > sectors)
 761					best_good_sectors = sectors;
 762			} else {
 763				sector_t good_sectors =
 764					first_bad - dev_sector;
 765				if (good_sectors > best_good_sectors) {
 766					best_good_sectors = good_sectors;
 767					best_slot = slot;
 768					best_rdev = rdev;
 769				}
 770				if (!do_balance)
 771					/* Must read from here */
 772					break;
 773			}
 774			continue;
 775		} else
 776			best_good_sectors = sectors;
 777
 778		if (!do_balance)
 779			break;
 780
 781		/* This optimisation is debatable, and completely destroys
 782		 * sequential read speed for 'far copies' arrays.  So only
 783		 * keep it for 'near' arrays, and review those later.
 784		 */
 785		if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending))
 786			break;
 787
 788		/* for far > 1 always use the lowest address */
 789		if (geo->far_copies > 1)
 790			new_distance = r10_bio->devs[slot].addr;
 791		else
 792			new_distance = abs(r10_bio->devs[slot].addr -
 793					   conf->mirrors[disk].head_position);
 794		if (new_distance < best_dist) {
 795			best_dist = new_distance;
 796			best_slot = slot;
 797			best_rdev = rdev;
 798		}
 799	}
 800	if (slot >= conf->copies) {
 801		slot = best_slot;
 802		rdev = best_rdev;
 803	}
 804
 805	if (slot >= 0) {
 
 
 
 
 806		atomic_inc(&rdev->nr_pending);
 807		if (test_bit(Faulty, &rdev->flags)) {
 808			/* Cannot risk returning a device that failed
 809			 * before we inc'ed nr_pending
 810			 */
 811			rdev_dec_pending(rdev, conf->mddev);
 812			goto retry;
 813		}
 814		r10_bio->read_slot = slot;
 815	} else
 816		rdev = NULL;
 817	rcu_read_unlock();
 818	*max_sectors = best_good_sectors;
 819
 820	return rdev;
 821}
 822
 823static int raid10_congested(struct mddev *mddev, int bits)
 824{
 825	struct r10conf *conf = mddev->private;
 
 826	int i, ret = 0;
 827
 828	if ((bits & (1 << WB_async_congested)) &&
 829	    conf->pending_count >= max_queued_requests)
 830		return 1;
 831
 832	rcu_read_lock();
 833	for (i = 0;
 834	     (i < conf->geo.raid_disks || i < conf->prev.raid_disks)
 835		     && ret == 0;
 836	     i++) {
 837		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
 838		if (rdev && !test_bit(Faulty, &rdev->flags)) {
 839			struct request_queue *q = bdev_get_queue(rdev->bdev);
 840
 841			ret |= bdi_congested(&q->backing_dev_info, bits);
 842		}
 843	}
 844	rcu_read_unlock();
 845	return ret;
 846}
 847
 848static void flush_pending_writes(struct r10conf *conf)
 849{
 850	/* Any writes that have been queued but are awaiting
 851	 * bitmap updates get flushed here.
 852	 */
 853	spin_lock_irq(&conf->device_lock);
 854
 855	if (conf->pending_bio_list.head) {
 856		struct bio *bio;
 857		bio = bio_list_get(&conf->pending_bio_list);
 858		conf->pending_count = 0;
 859		spin_unlock_irq(&conf->device_lock);
 860		/* flush any pending bitmap writes to disk
 861		 * before proceeding w/ I/O */
 862		bitmap_unplug(conf->mddev->bitmap);
 863		wake_up(&conf->wait_barrier);
 864
 865		while (bio) { /* submit pending writes */
 866			struct bio *next = bio->bi_next;
 867			bio->bi_next = NULL;
 868			if (unlikely((bio->bi_rw & REQ_DISCARD) &&
 869			    !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
 870				/* Just ignore it */
 871				bio_endio(bio);
 872			else
 873				generic_make_request(bio);
 874			bio = next;
 875		}
 876	} else
 877		spin_unlock_irq(&conf->device_lock);
 878}
 879
 880/* Barriers....
 881 * Sometimes we need to suspend IO while we do something else,
 882 * either some resync/recovery, or reconfigure the array.
 883 * To do this we raise a 'barrier'.
 884 * The 'barrier' is a counter that can be raised multiple times
 885 * to count how many activities are happening which preclude
 886 * normal IO.
 887 * We can only raise the barrier if there is no pending IO.
 888 * i.e. if nr_pending == 0.
 889 * We choose only to raise the barrier if no-one is waiting for the
 890 * barrier to go down.  This means that as soon as an IO request
 891 * is ready, no other operations which require a barrier will start
 892 * until the IO request has had a chance.
 893 *
 894 * So: regular IO calls 'wait_barrier'.  When that returns there
 895 *    is no backgroup IO happening,  It must arrange to call
 896 *    allow_barrier when it has finished its IO.
 897 * backgroup IO calls must call raise_barrier.  Once that returns
 898 *    there is no normal IO happeing.  It must arrange to call
 899 *    lower_barrier when the particular background IO completes.
 900 */
 901
 902static void raise_barrier(struct r10conf *conf, int force)
 903{
 904	BUG_ON(force && !conf->barrier);
 905	spin_lock_irq(&conf->resync_lock);
 906
 907	/* Wait until no block IO is waiting (unless 'force') */
 908	wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
 909			    conf->resync_lock);
 910
 911	/* block any new IO from starting */
 912	conf->barrier++;
 913
 914	/* Now wait for all pending IO to complete */
 915	wait_event_lock_irq(conf->wait_barrier,
 916			    !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
 917			    conf->resync_lock);
 918
 919	spin_unlock_irq(&conf->resync_lock);
 920}
 921
 922static void lower_barrier(struct r10conf *conf)
 923{
 924	unsigned long flags;
 925	spin_lock_irqsave(&conf->resync_lock, flags);
 926	conf->barrier--;
 927	spin_unlock_irqrestore(&conf->resync_lock, flags);
 928	wake_up(&conf->wait_barrier);
 929}
 930
 931static void wait_barrier(struct r10conf *conf)
 932{
 933	spin_lock_irq(&conf->resync_lock);
 934	if (conf->barrier) {
 935		conf->nr_waiting++;
 936		/* Wait for the barrier to drop.
 937		 * However if there are already pending
 938		 * requests (preventing the barrier from
 939		 * rising completely), and the
 940		 * pre-process bio queue isn't empty,
 941		 * then don't wait, as we need to empty
 942		 * that queue to get the nr_pending
 943		 * count down.
 944		 */
 945		wait_event_lock_irq(conf->wait_barrier,
 946				    !conf->barrier ||
 947				    (conf->nr_pending &&
 948				     current->bio_list &&
 949				     !bio_list_empty(current->bio_list)),
 950				    conf->resync_lock);
 951		conf->nr_waiting--;
 952	}
 953	conf->nr_pending++;
 954	spin_unlock_irq(&conf->resync_lock);
 955}
 956
 957static void allow_barrier(struct r10conf *conf)
 958{
 959	unsigned long flags;
 960	spin_lock_irqsave(&conf->resync_lock, flags);
 961	conf->nr_pending--;
 962	spin_unlock_irqrestore(&conf->resync_lock, flags);
 963	wake_up(&conf->wait_barrier);
 964}
 965
 966static void freeze_array(struct r10conf *conf, int extra)
 967{
 968	/* stop syncio and normal IO and wait for everything to
 969	 * go quiet.
 970	 * We increment barrier and nr_waiting, and then
 971	 * wait until nr_pending match nr_queued+extra
 972	 * This is called in the context of one normal IO request
 973	 * that has failed. Thus any sync request that might be pending
 974	 * will be blocked by nr_pending, and we need to wait for
 975	 * pending IO requests to complete or be queued for re-try.
 976	 * Thus the number queued (nr_queued) plus this request (extra)
 977	 * must match the number of pending IOs (nr_pending) before
 978	 * we continue.
 979	 */
 980	spin_lock_irq(&conf->resync_lock);
 981	conf->barrier++;
 982	conf->nr_waiting++;
 983	wait_event_lock_irq_cmd(conf->wait_barrier,
 984				conf->nr_pending == conf->nr_queued+extra,
 985				conf->resync_lock,
 986				flush_pending_writes(conf));
 987
 988	spin_unlock_irq(&conf->resync_lock);
 989}
 990
 991static void unfreeze_array(struct r10conf *conf)
 992{
 993	/* reverse the effect of the freeze */
 994	spin_lock_irq(&conf->resync_lock);
 995	conf->barrier--;
 996	conf->nr_waiting--;
 997	wake_up(&conf->wait_barrier);
 998	spin_unlock_irq(&conf->resync_lock);
 999}
1000
1001static sector_t choose_data_offset(struct r10bio *r10_bio,
1002				   struct md_rdev *rdev)
1003{
1004	if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1005	    test_bit(R10BIO_Previous, &r10_bio->state))
1006		return rdev->data_offset;
1007	else
1008		return rdev->new_data_offset;
1009}
1010
1011struct raid10_plug_cb {
1012	struct blk_plug_cb	cb;
1013	struct bio_list		pending;
1014	int			pending_cnt;
1015};
1016
1017static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1018{
1019	struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb,
1020						   cb);
1021	struct mddev *mddev = plug->cb.data;
1022	struct r10conf *conf = mddev->private;
1023	struct bio *bio;
1024
1025	if (from_schedule || current->bio_list) {
1026		spin_lock_irq(&conf->device_lock);
1027		bio_list_merge(&conf->pending_bio_list, &plug->pending);
1028		conf->pending_count += plug->pending_cnt;
1029		spin_unlock_irq(&conf->device_lock);
1030		wake_up(&conf->wait_barrier);
1031		md_wakeup_thread(mddev->thread);
1032		kfree(plug);
1033		return;
1034	}
1035
1036	/* we aren't scheduling, so we can do the write-out directly. */
1037	bio = bio_list_get(&plug->pending);
1038	bitmap_unplug(mddev->bitmap);
1039	wake_up(&conf->wait_barrier);
1040
1041	while (bio) { /* submit pending writes */
1042		struct bio *next = bio->bi_next;
1043		bio->bi_next = NULL;
1044		if (unlikely((bio->bi_rw & REQ_DISCARD) &&
1045		    !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1046			/* Just ignore it */
1047			bio_endio(bio);
1048		else
1049			generic_make_request(bio);
1050		bio = next;
1051	}
1052	kfree(plug);
1053}
1054
1055static void __make_request(struct mddev *mddev, struct bio *bio)
1056{
1057	struct r10conf *conf = mddev->private;
1058	struct r10bio *r10_bio;
 
1059	struct bio *read_bio;
1060	int i;
 
1061	const int rw = bio_data_dir(bio);
1062	const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
1063	const unsigned long do_fua = (bio->bi_rw & REQ_FUA);
1064	const unsigned long do_discard = (bio->bi_rw
1065					  & (REQ_DISCARD | REQ_SECURE));
1066	const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME);
1067	unsigned long flags;
1068	struct md_rdev *blocked_rdev;
1069	struct blk_plug_cb *cb;
1070	struct raid10_plug_cb *plug = NULL;
1071	int sectors_handled;
1072	int max_sectors;
1073	int sectors;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1074
1075	/*
1076	 * Register the new request and wait if the reconstruction
1077	 * thread has put up a bar for new requests.
1078	 * Continue immediately if no resync is active currently.
1079	 */
1080	wait_barrier(conf);
1081
1082	sectors = bio_sectors(bio);
1083	while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1084	    bio->bi_iter.bi_sector < conf->reshape_progress &&
1085	    bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1086		/* IO spans the reshape position.  Need to wait for
1087		 * reshape to pass
1088		 */
1089		allow_barrier(conf);
1090		wait_event(conf->wait_barrier,
1091			   conf->reshape_progress <= bio->bi_iter.bi_sector ||
1092			   conf->reshape_progress >= bio->bi_iter.bi_sector +
1093			   sectors);
1094		wait_barrier(conf);
1095	}
1096	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1097	    bio_data_dir(bio) == WRITE &&
1098	    (mddev->reshape_backwards
1099	     ? (bio->bi_iter.bi_sector < conf->reshape_safe &&
1100		bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
1101	     : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
1102		bio->bi_iter.bi_sector < conf->reshape_progress))) {
1103		/* Need to update reshape_position in metadata */
1104		mddev->reshape_position = conf->reshape_progress;
1105		set_bit(MD_CHANGE_DEVS, &mddev->flags);
1106		set_bit(MD_CHANGE_PENDING, &mddev->flags);
1107		md_wakeup_thread(mddev->thread);
1108		wait_event(mddev->sb_wait,
1109			   !test_bit(MD_CHANGE_PENDING, &mddev->flags));
1110
1111		conf->reshape_safe = mddev->reshape_position;
1112	}
1113
1114	r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1115
1116	r10_bio->master_bio = bio;
1117	r10_bio->sectors = sectors;
1118
1119	r10_bio->mddev = mddev;
1120	r10_bio->sector = bio->bi_iter.bi_sector;
1121	r10_bio->state = 0;
1122
1123	/* We might need to issue multiple reads to different
1124	 * devices if there are bad blocks around, so we keep
1125	 * track of the number of reads in bio->bi_phys_segments.
1126	 * If this is 0, there is only one r10_bio and no locking
1127	 * will be needed when the request completes.  If it is
1128	 * non-zero, then it is the number of not-completed requests.
1129	 */
1130	bio->bi_phys_segments = 0;
1131	bio_clear_flag(bio, BIO_SEG_VALID);
1132
1133	if (rw == READ) {
1134		/*
1135		 * read balancing logic:
1136		 */
1137		struct md_rdev *rdev;
1138		int slot;
1139
1140read_again:
1141		rdev = read_balance(conf, r10_bio, &max_sectors);
1142		if (!rdev) {
 
1143			raid_end_bio_io(r10_bio);
1144			return;
1145		}
1146		slot = r10_bio->read_slot;
1147
1148		read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1149		bio_trim(read_bio, r10_bio->sector - bio->bi_iter.bi_sector,
1150			 max_sectors);
1151
1152		r10_bio->devs[slot].bio = read_bio;
1153		r10_bio->devs[slot].rdev = rdev;
1154
1155		read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
1156			choose_data_offset(r10_bio, rdev);
1157		read_bio->bi_bdev = rdev->bdev;
1158		read_bio->bi_end_io = raid10_end_read_request;
1159		read_bio->bi_rw = READ | do_sync;
1160		read_bio->bi_private = r10_bio;
1161
1162		if (max_sectors < r10_bio->sectors) {
1163			/* Could not read all from this device, so we will
1164			 * need another r10_bio.
1165			 */
1166			sectors_handled = (r10_bio->sector + max_sectors
1167					   - bio->bi_iter.bi_sector);
1168			r10_bio->sectors = max_sectors;
1169			spin_lock_irq(&conf->device_lock);
1170			if (bio->bi_phys_segments == 0)
1171				bio->bi_phys_segments = 2;
1172			else
1173				bio->bi_phys_segments++;
1174			spin_unlock_irq(&conf->device_lock);
1175			/* Cannot call generic_make_request directly
1176			 * as that will be queued in __generic_make_request
1177			 * and subsequent mempool_alloc might block
1178			 * waiting for it.  so hand bio over to raid10d.
1179			 */
1180			reschedule_retry(r10_bio);
1181
1182			r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1183
1184			r10_bio->master_bio = bio;
1185			r10_bio->sectors = bio_sectors(bio) - sectors_handled;
 
1186			r10_bio->state = 0;
1187			r10_bio->mddev = mddev;
1188			r10_bio->sector = bio->bi_iter.bi_sector +
1189				sectors_handled;
1190			goto read_again;
1191		} else
1192			generic_make_request(read_bio);
1193		return;
1194	}
1195
1196	/*
1197	 * WRITE:
1198	 */
1199	if (conf->pending_count >= max_queued_requests) {
1200		md_wakeup_thread(mddev->thread);
1201		wait_event(conf->wait_barrier,
1202			   conf->pending_count < max_queued_requests);
1203	}
1204	/* first select target devices under rcu_lock and
1205	 * inc refcount on their rdev.  Record them by setting
1206	 * bios[x] to bio
1207	 * If there are known/acknowledged bad blocks on any device
1208	 * on which we have seen a write error, we want to avoid
1209	 * writing to those blocks.  This potentially requires several
1210	 * writes to write around the bad blocks.  Each set of writes
1211	 * gets its own r10_bio with a set of bios attached.  The number
1212	 * of r10_bios is recored in bio->bi_phys_segments just as with
1213	 * the read case.
1214	 */
 
1215
1216	r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1217	raid10_find_phys(conf, r10_bio);
1218retry_write:
1219	blocked_rdev = NULL;
1220	rcu_read_lock();
1221	max_sectors = r10_bio->sectors;
1222
1223	for (i = 0;  i < conf->copies; i++) {
1224		int d = r10_bio->devs[i].devnum;
1225		struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1226		struct md_rdev *rrdev = rcu_dereference(
1227			conf->mirrors[d].replacement);
1228		if (rdev == rrdev)
1229			rrdev = NULL;
1230		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1231			atomic_inc(&rdev->nr_pending);
1232			blocked_rdev = rdev;
1233			break;
1234		}
1235		if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1236			atomic_inc(&rrdev->nr_pending);
1237			blocked_rdev = rrdev;
1238			break;
1239		}
1240		if (rdev && (test_bit(Faulty, &rdev->flags)))
1241			rdev = NULL;
1242		if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1243			rrdev = NULL;
1244
1245		r10_bio->devs[i].bio = NULL;
1246		r10_bio->devs[i].repl_bio = NULL;
1247
1248		if (!rdev && !rrdev) {
1249			set_bit(R10BIO_Degraded, &r10_bio->state);
1250			continue;
1251		}
1252		if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1253			sector_t first_bad;
1254			sector_t dev_sector = r10_bio->devs[i].addr;
1255			int bad_sectors;
1256			int is_bad;
1257
1258			is_bad = is_badblock(rdev, dev_sector,
1259					     max_sectors,
1260					     &first_bad, &bad_sectors);
1261			if (is_bad < 0) {
1262				/* Mustn't write here until the bad block
1263				 * is acknowledged
1264				 */
1265				atomic_inc(&rdev->nr_pending);
1266				set_bit(BlockedBadBlocks, &rdev->flags);
1267				blocked_rdev = rdev;
1268				break;
1269			}
1270			if (is_bad && first_bad <= dev_sector) {
1271				/* Cannot write here at all */
1272				bad_sectors -= (dev_sector - first_bad);
1273				if (bad_sectors < max_sectors)
1274					/* Mustn't write more than bad_sectors
1275					 * to other devices yet
1276					 */
1277					max_sectors = bad_sectors;
1278				/* We don't set R10BIO_Degraded as that
1279				 * only applies if the disk is missing,
1280				 * so it might be re-added, and we want to
1281				 * know to recover this chunk.
1282				 * In this case the device is here, and the
1283				 * fact that this chunk is not in-sync is
1284				 * recorded in the bad block log.
1285				 */
1286				continue;
1287			}
1288			if (is_bad) {
1289				int good_sectors = first_bad - dev_sector;
1290				if (good_sectors < max_sectors)
1291					max_sectors = good_sectors;
1292			}
1293		}
1294		if (rdev) {
1295			r10_bio->devs[i].bio = bio;
1296			atomic_inc(&rdev->nr_pending);
1297		}
1298		if (rrdev) {
1299			r10_bio->devs[i].repl_bio = bio;
1300			atomic_inc(&rrdev->nr_pending);
1301		}
1302	}
1303	rcu_read_unlock();
1304
1305	if (unlikely(blocked_rdev)) {
1306		/* Have to wait for this device to get unblocked, then retry */
1307		int j;
1308		int d;
1309
1310		for (j = 0; j < i; j++) {
1311			if (r10_bio->devs[j].bio) {
1312				d = r10_bio->devs[j].devnum;
1313				rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1314			}
1315			if (r10_bio->devs[j].repl_bio) {
1316				struct md_rdev *rdev;
1317				d = r10_bio->devs[j].devnum;
1318				rdev = conf->mirrors[d].replacement;
1319				if (!rdev) {
1320					/* Race with remove_disk */
1321					smp_mb();
1322					rdev = conf->mirrors[d].rdev;
1323				}
1324				rdev_dec_pending(rdev, mddev);
1325			}
1326		}
1327		allow_barrier(conf);
1328		md_wait_for_blocked_rdev(blocked_rdev, mddev);
1329		wait_barrier(conf);
1330		goto retry_write;
1331	}
1332
1333	if (max_sectors < r10_bio->sectors) {
1334		/* We are splitting this into multiple parts, so
1335		 * we need to prepare for allocating another r10_bio.
1336		 */
1337		r10_bio->sectors = max_sectors;
1338		spin_lock_irq(&conf->device_lock);
1339		if (bio->bi_phys_segments == 0)
1340			bio->bi_phys_segments = 2;
1341		else
1342			bio->bi_phys_segments++;
1343		spin_unlock_irq(&conf->device_lock);
1344	}
1345	sectors_handled = r10_bio->sector + max_sectors -
1346		bio->bi_iter.bi_sector;
1347
1348	atomic_set(&r10_bio->remaining, 1);
1349	bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1350
1351	for (i = 0; i < conf->copies; i++) {
1352		struct bio *mbio;
1353		int d = r10_bio->devs[i].devnum;
1354		if (r10_bio->devs[i].bio) {
1355			struct md_rdev *rdev = conf->mirrors[d].rdev;
1356			mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1357			bio_trim(mbio, r10_bio->sector - bio->bi_iter.bi_sector,
1358				 max_sectors);
1359			r10_bio->devs[i].bio = mbio;
1360
1361			mbio->bi_iter.bi_sector	= (r10_bio->devs[i].addr+
1362					   choose_data_offset(r10_bio,
1363							      rdev));
1364			mbio->bi_bdev = rdev->bdev;
1365			mbio->bi_end_io	= raid10_end_write_request;
1366			mbio->bi_rw =
1367				WRITE | do_sync | do_fua | do_discard | do_same;
1368			mbio->bi_private = r10_bio;
1369
1370			atomic_inc(&r10_bio->remaining);
1371
1372			cb = blk_check_plugged(raid10_unplug, mddev,
1373					       sizeof(*plug));
1374			if (cb)
1375				plug = container_of(cb, struct raid10_plug_cb,
1376						    cb);
1377			else
1378				plug = NULL;
1379			spin_lock_irqsave(&conf->device_lock, flags);
1380			if (plug) {
1381				bio_list_add(&plug->pending, mbio);
1382				plug->pending_cnt++;
1383			} else {
1384				bio_list_add(&conf->pending_bio_list, mbio);
1385				conf->pending_count++;
1386			}
1387			spin_unlock_irqrestore(&conf->device_lock, flags);
1388			if (!plug)
1389				md_wakeup_thread(mddev->thread);
1390		}
1391
1392		if (r10_bio->devs[i].repl_bio) {
1393			struct md_rdev *rdev = conf->mirrors[d].replacement;
1394			if (rdev == NULL) {
1395				/* Replacement just got moved to main 'rdev' */
1396				smp_mb();
1397				rdev = conf->mirrors[d].rdev;
1398			}
1399			mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1400			bio_trim(mbio, r10_bio->sector - bio->bi_iter.bi_sector,
1401				 max_sectors);
1402			r10_bio->devs[i].repl_bio = mbio;
1403
1404			mbio->bi_iter.bi_sector	= (r10_bio->devs[i].addr +
1405					   choose_data_offset(
1406						   r10_bio, rdev));
1407			mbio->bi_bdev = rdev->bdev;
1408			mbio->bi_end_io	= raid10_end_write_request;
1409			mbio->bi_rw =
1410				WRITE | do_sync | do_fua | do_discard | do_same;
1411			mbio->bi_private = r10_bio;
1412
1413			atomic_inc(&r10_bio->remaining);
1414			spin_lock_irqsave(&conf->device_lock, flags);
1415			bio_list_add(&conf->pending_bio_list, mbio);
1416			conf->pending_count++;
1417			spin_unlock_irqrestore(&conf->device_lock, flags);
1418			if (!mddev_check_plugged(mddev))
1419				md_wakeup_thread(mddev->thread);
1420		}
1421	}
1422
1423	/* Don't remove the bias on 'remaining' (one_write_done) until
1424	 * after checking if we need to go around again.
1425	 */
1426
1427	if (sectors_handled < bio_sectors(bio)) {
1428		one_write_done(r10_bio);
1429		/* We need another r10_bio.  It has already been counted
1430		 * in bio->bi_phys_segments.
1431		 */
1432		r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1433
1434		r10_bio->master_bio = bio;
1435		r10_bio->sectors = bio_sectors(bio) - sectors_handled;
1436
1437		r10_bio->mddev = mddev;
1438		r10_bio->sector = bio->bi_iter.bi_sector + sectors_handled;
1439		r10_bio->state = 0;
1440		goto retry_write;
1441	}
1442	one_write_done(r10_bio);
1443}
1444
1445static void raid10_make_request(struct mddev *mddev, struct bio *bio)
1446{
1447	struct r10conf *conf = mddev->private;
1448	sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1449	int chunk_sects = chunk_mask + 1;
1450
1451	struct bio *split;
1452
1453	if (unlikely(bio->bi_rw & REQ_FLUSH)) {
1454		md_flush_request(mddev, bio);
1455		return;
1456	}
1457
1458	md_write_start(mddev, bio);
1459
1460	do {
1461
1462		/*
1463		 * If this request crosses a chunk boundary, we need to split
1464		 * it.
1465		 */
1466		if (unlikely((bio->bi_iter.bi_sector & chunk_mask) +
1467			     bio_sectors(bio) > chunk_sects
1468			     && (conf->geo.near_copies < conf->geo.raid_disks
1469				 || conf->prev.near_copies <
1470				 conf->prev.raid_disks))) {
1471			split = bio_split(bio, chunk_sects -
1472					  (bio->bi_iter.bi_sector &
1473					   (chunk_sects - 1)),
1474					  GFP_NOIO, fs_bio_set);
1475			bio_chain(split, bio);
1476		} else {
1477			split = bio;
1478		}
1479
1480		__make_request(mddev, split);
1481	} while (split != bio);
1482
1483	/* In case raid10d snuck in to freeze_array */
1484	wake_up(&conf->wait_barrier);
 
 
 
 
1485}
1486
1487static void raid10_status(struct seq_file *seq, struct mddev *mddev)
1488{
1489	struct r10conf *conf = mddev->private;
1490	int i;
1491
1492	if (conf->geo.near_copies < conf->geo.raid_disks)
1493		seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1494	if (conf->geo.near_copies > 1)
1495		seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1496	if (conf->geo.far_copies > 1) {
1497		if (conf->geo.far_offset)
1498			seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1499		else
1500			seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1501		if (conf->geo.far_set_size != conf->geo.raid_disks)
1502			seq_printf(seq, " %d devices per set", conf->geo.far_set_size);
1503	}
1504	seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1505					conf->geo.raid_disks - mddev->degraded);
1506	for (i = 0; i < conf->geo.raid_disks; i++)
1507		seq_printf(seq, "%s",
1508			      conf->mirrors[i].rdev &&
1509			      test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
1510	seq_printf(seq, "]");
1511}
1512
1513/* check if there are enough drives for
1514 * every block to appear on atleast one.
1515 * Don't consider the device numbered 'ignore'
1516 * as we might be about to remove it.
1517 */
1518static int _enough(struct r10conf *conf, int previous, int ignore)
1519{
1520	int first = 0;
1521	int has_enough = 0;
1522	int disks, ncopies;
1523	if (previous) {
1524		disks = conf->prev.raid_disks;
1525		ncopies = conf->prev.near_copies;
1526	} else {
1527		disks = conf->geo.raid_disks;
1528		ncopies = conf->geo.near_copies;
1529	}
1530
1531	rcu_read_lock();
1532	do {
1533		int n = conf->copies;
1534		int cnt = 0;
1535		int this = first;
1536		while (n--) {
1537			struct md_rdev *rdev;
1538			if (this != ignore &&
1539			    (rdev = rcu_dereference(conf->mirrors[this].rdev)) &&
1540			    test_bit(In_sync, &rdev->flags))
1541				cnt++;
1542			this = (this+1) % disks;
1543		}
1544		if (cnt == 0)
1545			goto out;
1546		first = (first + ncopies) % disks;
1547	} while (first != 0);
1548	has_enough = 1;
1549out:
1550	rcu_read_unlock();
1551	return has_enough;
1552}
1553
1554static int enough(struct r10conf *conf, int ignore)
1555{
1556	/* when calling 'enough', both 'prev' and 'geo' must
1557	 * be stable.
1558	 * This is ensured if ->reconfig_mutex or ->device_lock
1559	 * is held.
1560	 */
1561	return _enough(conf, 0, ignore) &&
1562		_enough(conf, 1, ignore);
1563}
1564
1565static void raid10_error(struct mddev *mddev, struct md_rdev *rdev)
1566{
1567	char b[BDEVNAME_SIZE];
1568	struct r10conf *conf = mddev->private;
1569	unsigned long flags;
1570
1571	/*
1572	 * If it is not operational, then we have already marked it as dead
1573	 * else if it is the last working disks, ignore the error, let the
1574	 * next level up know.
1575	 * else mark the drive as failed
1576	 */
1577	spin_lock_irqsave(&conf->device_lock, flags);
1578	if (test_bit(In_sync, &rdev->flags)
1579	    && !enough(conf, rdev->raid_disk)) {
1580		/*
1581		 * Don't fail the drive, just return an IO error.
1582		 */
1583		spin_unlock_irqrestore(&conf->device_lock, flags);
1584		return;
1585	}
1586	if (test_and_clear_bit(In_sync, &rdev->flags))
 
1587		mddev->degraded++;
1588	/*
1589	 * If recovery is running, make sure it aborts.
1590	 */
1591	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
 
 
1592	set_bit(Blocked, &rdev->flags);
1593	set_bit(Faulty, &rdev->flags);
1594	set_bit(MD_CHANGE_DEVS, &mddev->flags);
1595	set_bit(MD_CHANGE_PENDING, &mddev->flags);
1596	spin_unlock_irqrestore(&conf->device_lock, flags);
1597	printk(KERN_ALERT
1598	       "md/raid10:%s: Disk failure on %s, disabling device.\n"
1599	       "md/raid10:%s: Operation continuing on %d devices.\n",
1600	       mdname(mddev), bdevname(rdev->bdev, b),
1601	       mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1602}
1603
1604static void print_conf(struct r10conf *conf)
1605{
1606	int i;
1607	struct raid10_info *tmp;
1608
1609	printk(KERN_DEBUG "RAID10 conf printout:\n");
1610	if (!conf) {
1611		printk(KERN_DEBUG "(!conf)\n");
1612		return;
1613	}
1614	printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1615		conf->geo.raid_disks);
1616
1617	for (i = 0; i < conf->geo.raid_disks; i++) {
1618		char b[BDEVNAME_SIZE];
1619		tmp = conf->mirrors + i;
1620		if (tmp->rdev)
1621			printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1622				i, !test_bit(In_sync, &tmp->rdev->flags),
1623			        !test_bit(Faulty, &tmp->rdev->flags),
1624				bdevname(tmp->rdev->bdev,b));
1625	}
1626}
1627
1628static void close_sync(struct r10conf *conf)
1629{
1630	wait_barrier(conf);
1631	allow_barrier(conf);
1632
1633	mempool_destroy(conf->r10buf_pool);
1634	conf->r10buf_pool = NULL;
1635}
1636
1637static int raid10_spare_active(struct mddev *mddev)
1638{
1639	int i;
1640	struct r10conf *conf = mddev->private;
1641	struct raid10_info *tmp;
1642	int count = 0;
1643	unsigned long flags;
1644
1645	/*
1646	 * Find all non-in_sync disks within the RAID10 configuration
1647	 * and mark them in_sync
1648	 */
1649	for (i = 0; i < conf->geo.raid_disks; i++) {
1650		tmp = conf->mirrors + i;
1651		if (tmp->replacement
1652		    && tmp->replacement->recovery_offset == MaxSector
1653		    && !test_bit(Faulty, &tmp->replacement->flags)
1654		    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1655			/* Replacement has just become active */
1656			if (!tmp->rdev
1657			    || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1658				count++;
1659			if (tmp->rdev) {
1660				/* Replaced device not technically faulty,
1661				 * but we need to be sure it gets removed
1662				 * and never re-added.
1663				 */
1664				set_bit(Faulty, &tmp->rdev->flags);
1665				sysfs_notify_dirent_safe(
1666					tmp->rdev->sysfs_state);
1667			}
1668			sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1669		} else if (tmp->rdev
1670			   && tmp->rdev->recovery_offset == MaxSector
1671			   && !test_bit(Faulty, &tmp->rdev->flags)
1672			   && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1673			count++;
1674			sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1675		}
1676	}
1677	spin_lock_irqsave(&conf->device_lock, flags);
1678	mddev->degraded -= count;
1679	spin_unlock_irqrestore(&conf->device_lock, flags);
1680
1681	print_conf(conf);
1682	return count;
1683}
1684
1685static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
 
1686{
1687	struct r10conf *conf = mddev->private;
1688	int err = -EEXIST;
1689	int mirror;
1690	int first = 0;
1691	int last = conf->geo.raid_disks - 1;
1692
1693	if (mddev->recovery_cp < MaxSector)
1694		/* only hot-add to in-sync arrays, as recovery is
1695		 * very different from resync
1696		 */
1697		return -EBUSY;
1698	if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
1699		return -EINVAL;
1700
1701	if (md_integrity_add_rdev(rdev, mddev))
1702		return -ENXIO;
1703
1704	if (rdev->raid_disk >= 0)
1705		first = last = rdev->raid_disk;
1706
1707	if (rdev->saved_raid_disk >= first &&
1708	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1709		mirror = rdev->saved_raid_disk;
1710	else
1711		mirror = first;
1712	for ( ; mirror <= last ; mirror++) {
1713		struct raid10_info *p = &conf->mirrors[mirror];
1714		if (p->recovery_disabled == mddev->recovery_disabled)
1715			continue;
1716		if (p->rdev) {
1717			if (!test_bit(WantReplacement, &p->rdev->flags) ||
1718			    p->replacement != NULL)
1719				continue;
1720			clear_bit(In_sync, &rdev->flags);
1721			set_bit(Replacement, &rdev->flags);
1722			rdev->raid_disk = mirror;
1723			err = 0;
1724			if (mddev->gendisk)
1725				disk_stack_limits(mddev->gendisk, rdev->bdev,
1726						  rdev->data_offset << 9);
1727			conf->fullsync = 1;
1728			rcu_assign_pointer(p->replacement, rdev);
1729			break;
1730		}
1731
1732		if (mddev->gendisk)
1733			disk_stack_limits(mddev->gendisk, rdev->bdev,
1734					  rdev->data_offset << 9);
 
 
 
 
 
 
 
 
 
 
1735
1736		p->head_position = 0;
1737		p->recovery_disabled = mddev->recovery_disabled - 1;
1738		rdev->raid_disk = mirror;
1739		err = 0;
1740		if (rdev->saved_raid_disk != mirror)
1741			conf->fullsync = 1;
1742		rcu_assign_pointer(p->rdev, rdev);
1743		break;
1744	}
1745	if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1746		queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1747
 
1748	print_conf(conf);
1749	return err;
1750}
1751
1752static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1753{
1754	struct r10conf *conf = mddev->private;
1755	int err = 0;
1756	int number = rdev->raid_disk;
1757	struct md_rdev **rdevp;
1758	struct raid10_info *p = conf->mirrors + number;
1759
1760	print_conf(conf);
1761	if (rdev == p->rdev)
1762		rdevp = &p->rdev;
1763	else if (rdev == p->replacement)
1764		rdevp = &p->replacement;
1765	else
1766		return 0;
1767
1768	if (test_bit(In_sync, &rdev->flags) ||
1769	    atomic_read(&rdev->nr_pending)) {
1770		err = -EBUSY;
1771		goto abort;
1772	}
1773	/* Only remove faulty devices if recovery
1774	 * is not possible.
1775	 */
1776	if (!test_bit(Faulty, &rdev->flags) &&
1777	    mddev->recovery_disabled != p->recovery_disabled &&
1778	    (!p->replacement || p->replacement == rdev) &&
1779	    number < conf->geo.raid_disks &&
1780	    enough(conf, -1)) {
1781		err = -EBUSY;
1782		goto abort;
1783	}
1784	*rdevp = NULL;
1785	synchronize_rcu();
1786	if (atomic_read(&rdev->nr_pending)) {
1787		/* lost the race, try later */
1788		err = -EBUSY;
1789		*rdevp = rdev;
1790		goto abort;
1791	} else if (p->replacement) {
1792		/* We must have just cleared 'rdev' */
1793		p->rdev = p->replacement;
1794		clear_bit(Replacement, &p->replacement->flags);
1795		smp_mb(); /* Make sure other CPUs may see both as identical
1796			   * but will never see neither -- if they are careful.
1797			   */
1798		p->replacement = NULL;
1799		clear_bit(WantReplacement, &rdev->flags);
1800	} else
1801		/* We might have just remove the Replacement as faulty
1802		 * Clear the flag just in case
1803		 */
1804		clear_bit(WantReplacement, &rdev->flags);
1805
1806	err = md_integrity_register(mddev);
1807
 
 
 
 
 
 
 
 
 
 
 
 
1808abort:
1809
1810	print_conf(conf);
1811	return err;
1812}
1813
1814static void end_sync_read(struct bio *bio)
 
1815{
1816	struct r10bio *r10_bio = bio->bi_private;
1817	struct r10conf *conf = r10_bio->mddev->private;
1818	int d;
1819
1820	if (bio == r10_bio->master_bio) {
1821		/* this is a reshape read */
1822		d = r10_bio->read_slot; /* really the read dev */
1823	} else
1824		d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
1825
1826	if (!bio->bi_error)
1827		set_bit(R10BIO_Uptodate, &r10_bio->state);
1828	else
1829		/* The write handler will notice the lack of
1830		 * R10BIO_Uptodate and record any errors etc
1831		 */
1832		atomic_add(r10_bio->sectors,
1833			   &conf->mirrors[d].rdev->corrected_errors);
1834
1835	/* for reconstruct, we always reschedule after a read.
1836	 * for resync, only after all reads
1837	 */
1838	rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1839	if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1840	    atomic_dec_and_test(&r10_bio->remaining)) {
1841		/* we have read all the blocks,
1842		 * do the comparison in process context in raid10d
1843		 */
1844		reschedule_retry(r10_bio);
1845	}
1846}
1847
1848static void end_sync_request(struct r10bio *r10_bio)
1849{
1850	struct mddev *mddev = r10_bio->mddev;
1851
1852	while (atomic_dec_and_test(&r10_bio->remaining)) {
1853		if (r10_bio->master_bio == NULL) {
1854			/* the primary of several recovery bios */
1855			sector_t s = r10_bio->sectors;
1856			if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1857			    test_bit(R10BIO_WriteError, &r10_bio->state))
1858				reschedule_retry(r10_bio);
1859			else
1860				put_buf(r10_bio);
1861			md_done_sync(mddev, s, 1);
1862			break;
1863		} else {
1864			struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1865			if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1866			    test_bit(R10BIO_WriteError, &r10_bio->state))
1867				reschedule_retry(r10_bio);
1868			else
1869				put_buf(r10_bio);
1870			r10_bio = r10_bio2;
1871		}
1872	}
1873}
1874
1875static void end_sync_write(struct bio *bio)
1876{
1877	struct r10bio *r10_bio = bio->bi_private;
1878	struct mddev *mddev = r10_bio->mddev;
1879	struct r10conf *conf = mddev->private;
 
1880	int d;
1881	sector_t first_bad;
1882	int bad_sectors;
1883	int slot;
1884	int repl;
1885	struct md_rdev *rdev = NULL;
1886
1887	d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1888	if (repl)
1889		rdev = conf->mirrors[d].replacement;
1890	else
1891		rdev = conf->mirrors[d].rdev;
1892
1893	if (bio->bi_error) {
1894		if (repl)
1895			md_error(mddev, rdev);
1896		else {
1897			set_bit(WriteErrorSeen, &rdev->flags);
1898			if (!test_and_set_bit(WantReplacement, &rdev->flags))
1899				set_bit(MD_RECOVERY_NEEDED,
1900					&rdev->mddev->recovery);
1901			set_bit(R10BIO_WriteError, &r10_bio->state);
1902		}
1903	} else if (is_badblock(rdev,
1904			     r10_bio->devs[slot].addr,
1905			     r10_bio->sectors,
1906			     &first_bad, &bad_sectors))
1907		set_bit(R10BIO_MadeGood, &r10_bio->state);
1908
1909	rdev_dec_pending(rdev, mddev);
1910
1911	end_sync_request(r10_bio);
1912}
1913
1914/*
1915 * Note: sync and recover and handled very differently for raid10
1916 * This code is for resync.
1917 * For resync, we read through virtual addresses and read all blocks.
1918 * If there is any error, we schedule a write.  The lowest numbered
1919 * drive is authoritative.
1920 * However requests come for physical address, so we need to map.
1921 * For every physical address there are raid_disks/copies virtual addresses,
1922 * which is always are least one, but is not necessarly an integer.
1923 * This means that a physical address can span multiple chunks, so we may
1924 * have to submit multiple io requests for a single sync request.
1925 */
1926/*
1927 * We check if all blocks are in-sync and only write to blocks that
1928 * aren't in sync
1929 */
1930static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
1931{
1932	struct r10conf *conf = mddev->private;
1933	int i, first;
1934	struct bio *tbio, *fbio;
1935	int vcnt;
1936
1937	atomic_set(&r10_bio->remaining, 1);
1938
1939	/* find the first device with a block */
1940	for (i=0; i<conf->copies; i++)
1941		if (!r10_bio->devs[i].bio->bi_error)
1942			break;
1943
1944	if (i == conf->copies)
1945		goto done;
1946
1947	first = i;
1948	fbio = r10_bio->devs[i].bio;
1949	fbio->bi_iter.bi_size = r10_bio->sectors << 9;
1950	fbio->bi_iter.bi_idx = 0;
1951
1952	vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
1953	/* now find blocks with errors */
1954	for (i=0 ; i < conf->copies ; i++) {
1955		int  j, d;
 
1956
1957		tbio = r10_bio->devs[i].bio;
1958
1959		if (tbio->bi_end_io != end_sync_read)
1960			continue;
1961		if (i == first)
1962			continue;
1963		if (!r10_bio->devs[i].bio->bi_error) {
1964			/* We know that the bi_io_vec layout is the same for
1965			 * both 'first' and 'i', so we just compare them.
1966			 * All vec entries are PAGE_SIZE;
1967			 */
1968			int sectors = r10_bio->sectors;
1969			for (j = 0; j < vcnt; j++) {
1970				int len = PAGE_SIZE;
1971				if (sectors < (len / 512))
1972					len = sectors * 512;
1973				if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
1974					   page_address(tbio->bi_io_vec[j].bv_page),
1975					   len))
1976					break;
1977				sectors -= len/512;
1978			}
1979			if (j == vcnt)
1980				continue;
1981			atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
1982			if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
1983				/* Don't fix anything. */
1984				continue;
1985		}
1986		/* Ok, we need to write this bio, either to correct an
1987		 * inconsistency or to correct an unreadable block.
1988		 * First we need to fixup bv_offset, bv_len and
1989		 * bi_vecs, as the read request might have corrupted these
1990		 */
1991		bio_reset(tbio);
1992
1993		tbio->bi_vcnt = vcnt;
1994		tbio->bi_iter.bi_size = fbio->bi_iter.bi_size;
 
 
 
 
 
1995		tbio->bi_rw = WRITE;
1996		tbio->bi_private = r10_bio;
1997		tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
1998		tbio->bi_end_io = end_sync_write;
1999
2000		bio_copy_data(tbio, fbio);
 
 
 
 
 
 
 
 
2001
2002		d = r10_bio->devs[i].devnum;
2003		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2004		atomic_inc(&r10_bio->remaining);
2005		md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
2006
2007		tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
2008		tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
2009		generic_make_request(tbio);
2010	}
2011
2012	/* Now write out to any replacement devices
2013	 * that are active
2014	 */
2015	for (i = 0; i < conf->copies; i++) {
2016		int d;
2017
2018		tbio = r10_bio->devs[i].repl_bio;
2019		if (!tbio || !tbio->bi_end_io)
2020			continue;
2021		if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2022		    && r10_bio->devs[i].bio != fbio)
2023			bio_copy_data(tbio, fbio);
2024		d = r10_bio->devs[i].devnum;
2025		atomic_inc(&r10_bio->remaining);
2026		md_sync_acct(conf->mirrors[d].replacement->bdev,
2027			     bio_sectors(tbio));
2028		generic_make_request(tbio);
2029	}
2030
2031done:
2032	if (atomic_dec_and_test(&r10_bio->remaining)) {
2033		md_done_sync(mddev, r10_bio->sectors, 1);
2034		put_buf(r10_bio);
2035	}
2036}
2037
2038/*
2039 * Now for the recovery code.
2040 * Recovery happens across physical sectors.
2041 * We recover all non-is_sync drives by finding the virtual address of
2042 * each, and then choose a working drive that also has that virt address.
2043 * There is a separate r10_bio for each non-in_sync drive.
2044 * Only the first two slots are in use. The first for reading,
2045 * The second for writing.
2046 *
2047 */
2048static void fix_recovery_read_error(struct r10bio *r10_bio)
2049{
2050	/* We got a read error during recovery.
2051	 * We repeat the read in smaller page-sized sections.
2052	 * If a read succeeds, write it to the new device or record
2053	 * a bad block if we cannot.
2054	 * If a read fails, record a bad block on both old and
2055	 * new devices.
2056	 */
2057	struct mddev *mddev = r10_bio->mddev;
2058	struct r10conf *conf = mddev->private;
2059	struct bio *bio = r10_bio->devs[0].bio;
2060	sector_t sect = 0;
2061	int sectors = r10_bio->sectors;
2062	int idx = 0;
2063	int dr = r10_bio->devs[0].devnum;
2064	int dw = r10_bio->devs[1].devnum;
2065
2066	while (sectors) {
2067		int s = sectors;
2068		struct md_rdev *rdev;
2069		sector_t addr;
2070		int ok;
2071
2072		if (s > (PAGE_SIZE>>9))
2073			s = PAGE_SIZE >> 9;
2074
2075		rdev = conf->mirrors[dr].rdev;
2076		addr = r10_bio->devs[0].addr + sect,
2077		ok = sync_page_io(rdev,
2078				  addr,
2079				  s << 9,
2080				  bio->bi_io_vec[idx].bv_page,
2081				  READ, false);
2082		if (ok) {
2083			rdev = conf->mirrors[dw].rdev;
2084			addr = r10_bio->devs[1].addr + sect;
2085			ok = sync_page_io(rdev,
2086					  addr,
2087					  s << 9,
2088					  bio->bi_io_vec[idx].bv_page,
2089					  WRITE, false);
2090			if (!ok) {
2091				set_bit(WriteErrorSeen, &rdev->flags);
2092				if (!test_and_set_bit(WantReplacement,
2093						      &rdev->flags))
2094					set_bit(MD_RECOVERY_NEEDED,
2095						&rdev->mddev->recovery);
2096			}
2097		}
2098		if (!ok) {
2099			/* We don't worry if we cannot set a bad block -
2100			 * it really is bad so there is no loss in not
2101			 * recording it yet
2102			 */
2103			rdev_set_badblocks(rdev, addr, s, 0);
2104
2105			if (rdev != conf->mirrors[dw].rdev) {
2106				/* need bad block on destination too */
2107				struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2108				addr = r10_bio->devs[1].addr + sect;
2109				ok = rdev_set_badblocks(rdev2, addr, s, 0);
2110				if (!ok) {
2111					/* just abort the recovery */
2112					printk(KERN_NOTICE
2113					       "md/raid10:%s: recovery aborted"
2114					       " due to read error\n",
2115					       mdname(mddev));
2116
2117					conf->mirrors[dw].recovery_disabled
2118						= mddev->recovery_disabled;
2119					set_bit(MD_RECOVERY_INTR,
2120						&mddev->recovery);
2121					break;
2122				}
2123			}
2124		}
2125
2126		sectors -= s;
2127		sect += s;
2128		idx++;
2129	}
2130}
2131
2132static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2133{
2134	struct r10conf *conf = mddev->private;
2135	int d;
2136	struct bio *wbio, *wbio2;
2137
2138	if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2139		fix_recovery_read_error(r10_bio);
2140		end_sync_request(r10_bio);
2141		return;
2142	}
2143
2144	/*
2145	 * share the pages with the first bio
2146	 * and submit the write request
2147	 */
2148	d = r10_bio->devs[1].devnum;
2149	wbio = r10_bio->devs[1].bio;
2150	wbio2 = r10_bio->devs[1].repl_bio;
2151	/* Need to test wbio2->bi_end_io before we call
2152	 * generic_make_request as if the former is NULL,
2153	 * the latter is free to free wbio2.
2154	 */
2155	if (wbio2 && !wbio2->bi_end_io)
2156		wbio2 = NULL;
2157	if (wbio->bi_end_io) {
2158		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2159		md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
2160		generic_make_request(wbio);
2161	}
2162	if (wbio2) {
2163		atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2164		md_sync_acct(conf->mirrors[d].replacement->bdev,
2165			     bio_sectors(wbio2));
2166		generic_make_request(wbio2);
2167	}
2168}
2169
 
2170/*
2171 * Used by fix_read_error() to decay the per rdev read_errors.
2172 * We halve the read error count for every hour that has elapsed
2173 * since the last recorded read error.
2174 *
2175 */
2176static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2177{
2178	struct timespec cur_time_mon;
2179	unsigned long hours_since_last;
2180	unsigned int read_errors = atomic_read(&rdev->read_errors);
2181
2182	ktime_get_ts(&cur_time_mon);
2183
2184	if (rdev->last_read_error.tv_sec == 0 &&
2185	    rdev->last_read_error.tv_nsec == 0) {
2186		/* first time we've seen a read error */
2187		rdev->last_read_error = cur_time_mon;
2188		return;
2189	}
2190
2191	hours_since_last = (cur_time_mon.tv_sec -
2192			    rdev->last_read_error.tv_sec) / 3600;
2193
2194	rdev->last_read_error = cur_time_mon;
2195
2196	/*
2197	 * if hours_since_last is > the number of bits in read_errors
2198	 * just set read errors to 0. We do this to avoid
2199	 * overflowing the shift of read_errors by hours_since_last.
2200	 */
2201	if (hours_since_last >= 8 * sizeof(read_errors))
2202		atomic_set(&rdev->read_errors, 0);
2203	else
2204		atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2205}
2206
2207static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2208			    int sectors, struct page *page, int rw)
2209{
2210	sector_t first_bad;
2211	int bad_sectors;
2212
2213	if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2214	    && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2215		return -1;
2216	if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
2217		/* success */
2218		return 1;
2219	if (rw == WRITE) {
2220		set_bit(WriteErrorSeen, &rdev->flags);
2221		if (!test_and_set_bit(WantReplacement, &rdev->flags))
2222			set_bit(MD_RECOVERY_NEEDED,
2223				&rdev->mddev->recovery);
2224	}
2225	/* need to record an error - either for the block or the device */
2226	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2227		md_error(rdev->mddev, rdev);
2228	return 0;
2229}
2230
2231/*
2232 * This is a kernel thread which:
2233 *
2234 *	1.	Retries failed read operations on working mirrors.
2235 *	2.	Updates the raid superblock when problems encounter.
2236 *	3.	Performs writes following reads for array synchronising.
2237 */
2238
2239static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2240{
2241	int sect = 0; /* Offset from r10_bio->sector */
2242	int sectors = r10_bio->sectors;
2243	struct md_rdev*rdev;
2244	int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2245	int d = r10_bio->devs[r10_bio->read_slot].devnum;
2246
2247	/* still own a reference to this rdev, so it cannot
2248	 * have been cleared recently.
2249	 */
2250	rdev = conf->mirrors[d].rdev;
2251
2252	if (test_bit(Faulty, &rdev->flags))
2253		/* drive has already been failed, just ignore any
2254		   more fix_read_error() attempts */
2255		return;
2256
2257	check_decay_read_errors(mddev, rdev);
2258	atomic_inc(&rdev->read_errors);
2259	if (atomic_read(&rdev->read_errors) > max_read_errors) {
2260		char b[BDEVNAME_SIZE];
2261		bdevname(rdev->bdev, b);
2262
2263		printk(KERN_NOTICE
2264		       "md/raid10:%s: %s: Raid device exceeded "
2265		       "read_error threshold [cur %d:max %d]\n",
2266		       mdname(mddev), b,
2267		       atomic_read(&rdev->read_errors), max_read_errors);
2268		printk(KERN_NOTICE
2269		       "md/raid10:%s: %s: Failing raid device\n",
2270		       mdname(mddev), b);
2271		md_error(mddev, conf->mirrors[d].rdev);
2272		r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2273		return;
2274	}
2275
2276	while(sectors) {
2277		int s = sectors;
2278		int sl = r10_bio->read_slot;
2279		int success = 0;
2280		int start;
2281
2282		if (s > (PAGE_SIZE>>9))
2283			s = PAGE_SIZE >> 9;
2284
2285		rcu_read_lock();
2286		do {
2287			sector_t first_bad;
2288			int bad_sectors;
2289
2290			d = r10_bio->devs[sl].devnum;
2291			rdev = rcu_dereference(conf->mirrors[d].rdev);
2292			if (rdev &&
2293			    test_bit(In_sync, &rdev->flags) &&
2294			    is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2295					&first_bad, &bad_sectors) == 0) {
2296				atomic_inc(&rdev->nr_pending);
2297				rcu_read_unlock();
2298				success = sync_page_io(rdev,
2299						       r10_bio->devs[sl].addr +
2300						       sect,
2301						       s<<9,
2302						       conf->tmppage, READ, false);
2303				rdev_dec_pending(rdev, mddev);
2304				rcu_read_lock();
2305				if (success)
2306					break;
2307			}
2308			sl++;
2309			if (sl == conf->copies)
2310				sl = 0;
2311		} while (!success && sl != r10_bio->read_slot);
2312		rcu_read_unlock();
2313
2314		if (!success) {
2315			/* Cannot read from anywhere, just mark the block
2316			 * as bad on the first device to discourage future
2317			 * reads.
2318			 */
2319			int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2320			rdev = conf->mirrors[dn].rdev;
2321
2322			if (!rdev_set_badblocks(
2323				    rdev,
2324				    r10_bio->devs[r10_bio->read_slot].addr
2325				    + sect,
2326				    s, 0)) {
2327				md_error(mddev, rdev);
2328				r10_bio->devs[r10_bio->read_slot].bio
2329					= IO_BLOCKED;
2330			}
2331			break;
2332		}
2333
2334		start = sl;
2335		/* write it back and re-read */
2336		rcu_read_lock();
2337		while (sl != r10_bio->read_slot) {
2338			char b[BDEVNAME_SIZE];
2339
2340			if (sl==0)
2341				sl = conf->copies;
2342			sl--;
2343			d = r10_bio->devs[sl].devnum;
2344			rdev = rcu_dereference(conf->mirrors[d].rdev);
2345			if (!rdev ||
2346			    !test_bit(In_sync, &rdev->flags))
2347				continue;
2348
2349			atomic_inc(&rdev->nr_pending);
2350			rcu_read_unlock();
2351			if (r10_sync_page_io(rdev,
2352					     r10_bio->devs[sl].addr +
2353					     sect,
2354					     s, conf->tmppage, WRITE)
2355			    == 0) {
2356				/* Well, this device is dead */
2357				printk(KERN_NOTICE
2358				       "md/raid10:%s: read correction "
2359				       "write failed"
2360				       " (%d sectors at %llu on %s)\n",
2361				       mdname(mddev), s,
2362				       (unsigned long long)(
2363					       sect +
2364					       choose_data_offset(r10_bio,
2365								  rdev)),
2366				       bdevname(rdev->bdev, b));
2367				printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2368				       "drive\n",
2369				       mdname(mddev),
2370				       bdevname(rdev->bdev, b));
2371			}
2372			rdev_dec_pending(rdev, mddev);
2373			rcu_read_lock();
2374		}
2375		sl = start;
2376		while (sl != r10_bio->read_slot) {
2377			char b[BDEVNAME_SIZE];
2378
2379			if (sl==0)
2380				sl = conf->copies;
2381			sl--;
2382			d = r10_bio->devs[sl].devnum;
2383			rdev = rcu_dereference(conf->mirrors[d].rdev);
2384			if (!rdev ||
2385			    !test_bit(In_sync, &rdev->flags))
2386				continue;
2387
2388			atomic_inc(&rdev->nr_pending);
2389			rcu_read_unlock();
2390			switch (r10_sync_page_io(rdev,
2391					     r10_bio->devs[sl].addr +
2392					     sect,
2393					     s, conf->tmppage,
2394						 READ)) {
2395			case 0:
2396				/* Well, this device is dead */
2397				printk(KERN_NOTICE
2398				       "md/raid10:%s: unable to read back "
2399				       "corrected sectors"
2400				       " (%d sectors at %llu on %s)\n",
2401				       mdname(mddev), s,
2402				       (unsigned long long)(
2403					       sect +
2404					       choose_data_offset(r10_bio, rdev)),
2405				       bdevname(rdev->bdev, b));
2406				printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2407				       "drive\n",
2408				       mdname(mddev),
2409				       bdevname(rdev->bdev, b));
2410				break;
2411			case 1:
2412				printk(KERN_INFO
2413				       "md/raid10:%s: read error corrected"
2414				       " (%d sectors at %llu on %s)\n",
2415				       mdname(mddev), s,
2416				       (unsigned long long)(
2417					       sect +
2418					       choose_data_offset(r10_bio, rdev)),
2419				       bdevname(rdev->bdev, b));
2420				atomic_add(s, &rdev->corrected_errors);
2421			}
2422
2423			rdev_dec_pending(rdev, mddev);
2424			rcu_read_lock();
2425		}
2426		rcu_read_unlock();
2427
2428		sectors -= s;
2429		sect += s;
2430	}
2431}
2432
2433static int narrow_write_error(struct r10bio *r10_bio, int i)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2434{
2435	struct bio *bio = r10_bio->master_bio;
2436	struct mddev *mddev = r10_bio->mddev;
2437	struct r10conf *conf = mddev->private;
2438	struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2439	/* bio has the data to be written to slot 'i' where
2440	 * we just recently had a write error.
2441	 * We repeatedly clone the bio and trim down to one block,
2442	 * then try the write.  Where the write fails we record
2443	 * a bad block.
2444	 * It is conceivable that the bio doesn't exactly align with
2445	 * blocks.  We must handle this.
2446	 *
2447	 * We currently own a reference to the rdev.
2448	 */
2449
2450	int block_sectors;
2451	sector_t sector;
2452	int sectors;
2453	int sect_to_write = r10_bio->sectors;
2454	int ok = 1;
2455
2456	if (rdev->badblocks.shift < 0)
2457		return 0;
2458
2459	block_sectors = roundup(1 << rdev->badblocks.shift,
2460				bdev_logical_block_size(rdev->bdev) >> 9);
2461	sector = r10_bio->sector;
2462	sectors = ((r10_bio->sector + block_sectors)
2463		   & ~(sector_t)(block_sectors - 1))
2464		- sector;
2465
2466	while (sect_to_write) {
2467		struct bio *wbio;
2468		if (sectors > sect_to_write)
2469			sectors = sect_to_write;
2470		/* Write at 'sector' for 'sectors' */
2471		wbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
2472		bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
2473		wbio->bi_iter.bi_sector = (r10_bio->devs[i].addr+
2474				   choose_data_offset(r10_bio, rdev) +
2475				   (sector - r10_bio->sector));
2476		wbio->bi_bdev = rdev->bdev;
2477		if (submit_bio_wait(WRITE, wbio) < 0)
2478			/* Failure! */
2479			ok = rdev_set_badblocks(rdev, sector,
2480						sectors, 0)
2481				&& ok;
2482
2483		bio_put(wbio);
2484		sect_to_write -= sectors;
2485		sector += sectors;
2486		sectors = block_sectors;
2487	}
2488	return ok;
2489}
2490
2491static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2492{
2493	int slot = r10_bio->read_slot;
 
2494	struct bio *bio;
2495	struct r10conf *conf = mddev->private;
2496	struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2497	char b[BDEVNAME_SIZE];
2498	unsigned long do_sync;
2499	int max_sectors;
2500
2501	/* we got a read error. Maybe the drive is bad.  Maybe just
2502	 * the block and we can fix it.
2503	 * We freeze all other IO, and try reading the block from
2504	 * other devices.  When we find one, we re-write
2505	 * and check it that fixes the read error.
2506	 * This is all done synchronously while the array is
2507	 * frozen.
2508	 */
2509	bio = r10_bio->devs[slot].bio;
2510	bdevname(bio->bi_bdev, b);
2511	bio_put(bio);
2512	r10_bio->devs[slot].bio = NULL;
2513
2514	if (mddev->ro == 0) {
2515		freeze_array(conf, 1);
2516		fix_read_error(conf, mddev, r10_bio);
2517		unfreeze_array(conf);
2518	} else
2519		r10_bio->devs[slot].bio = IO_BLOCKED;
2520
2521	rdev_dec_pending(rdev, mddev);
2522
 
 
 
 
2523read_more:
2524	rdev = read_balance(conf, r10_bio, &max_sectors);
2525	if (rdev == NULL) {
2526		printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O"
2527		       " read error for block %llu\n",
2528		       mdname(mddev), b,
2529		       (unsigned long long)r10_bio->sector);
2530		raid_end_bio_io(r10_bio);
 
2531		return;
2532	}
2533
2534	do_sync = (r10_bio->master_bio->bi_rw & REQ_SYNC);
 
 
2535	slot = r10_bio->read_slot;
 
2536	printk_ratelimited(
2537		KERN_ERR
2538		"md/raid10:%s: %s: redirecting "
2539		"sector %llu to another mirror\n",
2540		mdname(mddev),
2541		bdevname(rdev->bdev, b),
2542		(unsigned long long)r10_bio->sector);
2543	bio = bio_clone_mddev(r10_bio->master_bio,
2544			      GFP_NOIO, mddev);
2545	bio_trim(bio, r10_bio->sector - bio->bi_iter.bi_sector, max_sectors);
 
 
2546	r10_bio->devs[slot].bio = bio;
2547	r10_bio->devs[slot].rdev = rdev;
2548	bio->bi_iter.bi_sector = r10_bio->devs[slot].addr
2549		+ choose_data_offset(r10_bio, rdev);
2550	bio->bi_bdev = rdev->bdev;
2551	bio->bi_rw = READ | do_sync;
2552	bio->bi_private = r10_bio;
2553	bio->bi_end_io = raid10_end_read_request;
2554	if (max_sectors < r10_bio->sectors) {
2555		/* Drat - have to split this up more */
2556		struct bio *mbio = r10_bio->master_bio;
2557		int sectors_handled =
2558			r10_bio->sector + max_sectors
2559			- mbio->bi_iter.bi_sector;
2560		r10_bio->sectors = max_sectors;
2561		spin_lock_irq(&conf->device_lock);
2562		if (mbio->bi_phys_segments == 0)
2563			mbio->bi_phys_segments = 2;
2564		else
2565			mbio->bi_phys_segments++;
2566		spin_unlock_irq(&conf->device_lock);
2567		generic_make_request(bio);
 
2568
2569		r10_bio = mempool_alloc(conf->r10bio_pool,
2570					GFP_NOIO);
2571		r10_bio->master_bio = mbio;
2572		r10_bio->sectors = bio_sectors(mbio) - sectors_handled;
 
2573		r10_bio->state = 0;
2574		set_bit(R10BIO_ReadError,
2575			&r10_bio->state);
2576		r10_bio->mddev = mddev;
2577		r10_bio->sector = mbio->bi_iter.bi_sector
2578			+ sectors_handled;
2579
2580		goto read_more;
2581	} else
2582		generic_make_request(bio);
2583}
2584
2585static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2586{
2587	/* Some sort of write request has finished and it
2588	 * succeeded in writing where we thought there was a
2589	 * bad block.  So forget the bad block.
2590	 * Or possibly if failed and we need to record
2591	 * a bad block.
2592	 */
2593	int m;
2594	struct md_rdev *rdev;
2595
2596	if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2597	    test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2598		for (m = 0; m < conf->copies; m++) {
2599			int dev = r10_bio->devs[m].devnum;
2600			rdev = conf->mirrors[dev].rdev;
2601			if (r10_bio->devs[m].bio == NULL)
2602				continue;
2603			if (!r10_bio->devs[m].bio->bi_error) {
 
2604				rdev_clear_badblocks(
2605					rdev,
2606					r10_bio->devs[m].addr,
2607					r10_bio->sectors, 0);
2608			} else {
2609				if (!rdev_set_badblocks(
2610					    rdev,
2611					    r10_bio->devs[m].addr,
2612					    r10_bio->sectors, 0))
2613					md_error(conf->mddev, rdev);
2614			}
2615			rdev = conf->mirrors[dev].replacement;
2616			if (r10_bio->devs[m].repl_bio == NULL)
2617				continue;
2618
2619			if (!r10_bio->devs[m].repl_bio->bi_error) {
2620				rdev_clear_badblocks(
2621					rdev,
2622					r10_bio->devs[m].addr,
2623					r10_bio->sectors, 0);
2624			} else {
2625				if (!rdev_set_badblocks(
2626					    rdev,
2627					    r10_bio->devs[m].addr,
2628					    r10_bio->sectors, 0))
2629					md_error(conf->mddev, rdev);
2630			}
2631		}
2632		put_buf(r10_bio);
2633	} else {
2634		bool fail = false;
2635		for (m = 0; m < conf->copies; m++) {
2636			int dev = r10_bio->devs[m].devnum;
2637			struct bio *bio = r10_bio->devs[m].bio;
2638			rdev = conf->mirrors[dev].rdev;
2639			if (bio == IO_MADE_GOOD) {
2640				rdev_clear_badblocks(
2641					rdev,
2642					r10_bio->devs[m].addr,
2643					r10_bio->sectors, 0);
2644				rdev_dec_pending(rdev, conf->mddev);
2645			} else if (bio != NULL && bio->bi_error) {
2646				fail = true;
2647				if (!narrow_write_error(r10_bio, m)) {
2648					md_error(conf->mddev, rdev);
2649					set_bit(R10BIO_Degraded,
2650						&r10_bio->state);
2651				}
2652				rdev_dec_pending(rdev, conf->mddev);
2653			}
2654			bio = r10_bio->devs[m].repl_bio;
2655			rdev = conf->mirrors[dev].replacement;
2656			if (rdev && bio == IO_MADE_GOOD) {
2657				rdev_clear_badblocks(
2658					rdev,
2659					r10_bio->devs[m].addr,
2660					r10_bio->sectors, 0);
2661				rdev_dec_pending(rdev, conf->mddev);
2662			}
2663		}
2664		if (fail) {
2665			spin_lock_irq(&conf->device_lock);
2666			list_add(&r10_bio->retry_list, &conf->bio_end_io_list);
2667			conf->nr_queued++;
2668			spin_unlock_irq(&conf->device_lock);
2669			md_wakeup_thread(conf->mddev->thread);
2670		} else {
2671			if (test_bit(R10BIO_WriteError,
2672				     &r10_bio->state))
2673				close_write(r10_bio);
2674			raid_end_bio_io(r10_bio);
2675		}
 
 
 
 
2676	}
2677}
2678
2679static void raid10d(struct md_thread *thread)
2680{
2681	struct mddev *mddev = thread->mddev;
2682	struct r10bio *r10_bio;
2683	unsigned long flags;
2684	struct r10conf *conf = mddev->private;
2685	struct list_head *head = &conf->retry_list;
2686	struct blk_plug plug;
2687
2688	md_check_recovery(mddev);
2689
2690	if (!list_empty_careful(&conf->bio_end_io_list) &&
2691	    !test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
2692		LIST_HEAD(tmp);
2693		spin_lock_irqsave(&conf->device_lock, flags);
2694		if (!test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
2695			while (!list_empty(&conf->bio_end_io_list)) {
2696				list_move(conf->bio_end_io_list.prev, &tmp);
2697				conf->nr_queued--;
2698			}
2699		}
2700		spin_unlock_irqrestore(&conf->device_lock, flags);
2701		while (!list_empty(&tmp)) {
2702			r10_bio = list_first_entry(&tmp, struct r10bio,
2703						   retry_list);
2704			list_del(&r10_bio->retry_list);
2705			if (mddev->degraded)
2706				set_bit(R10BIO_Degraded, &r10_bio->state);
2707
2708			if (test_bit(R10BIO_WriteError,
2709				     &r10_bio->state))
2710				close_write(r10_bio);
2711			raid_end_bio_io(r10_bio);
2712		}
2713	}
2714
2715	blk_start_plug(&plug);
2716	for (;;) {
2717
2718		flush_pending_writes(conf);
2719
2720		spin_lock_irqsave(&conf->device_lock, flags);
2721		if (list_empty(head)) {
2722			spin_unlock_irqrestore(&conf->device_lock, flags);
2723			break;
2724		}
2725		r10_bio = list_entry(head->prev, struct r10bio, retry_list);
2726		list_del(head->prev);
2727		conf->nr_queued--;
2728		spin_unlock_irqrestore(&conf->device_lock, flags);
2729
2730		mddev = r10_bio->mddev;
2731		conf = mddev->private;
2732		if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2733		    test_bit(R10BIO_WriteError, &r10_bio->state))
2734			handle_write_completed(conf, r10_bio);
2735		else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
2736			reshape_request_write(mddev, r10_bio);
2737		else if (test_bit(R10BIO_IsSync, &r10_bio->state))
2738			sync_request_write(mddev, r10_bio);
2739		else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
2740			recovery_request_write(mddev, r10_bio);
2741		else if (test_bit(R10BIO_ReadError, &r10_bio->state))
2742			handle_read_error(mddev, r10_bio);
2743		else {
2744			/* just a partial read to be scheduled from a
2745			 * separate context
2746			 */
2747			int slot = r10_bio->read_slot;
2748			generic_make_request(r10_bio->devs[slot].bio);
2749		}
2750
2751		cond_resched();
2752		if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2753			md_check_recovery(mddev);
2754	}
2755	blk_finish_plug(&plug);
2756}
2757
2758static int init_resync(struct r10conf *conf)
 
2759{
2760	int buffs;
2761	int i;
2762
2763	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2764	BUG_ON(conf->r10buf_pool);
2765	conf->have_replacement = 0;
2766	for (i = 0; i < conf->geo.raid_disks; i++)
2767		if (conf->mirrors[i].replacement)
2768			conf->have_replacement = 1;
2769	conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
2770	if (!conf->r10buf_pool)
2771		return -ENOMEM;
2772	conf->next_resync = 0;
2773	return 0;
2774}
2775
2776/*
2777 * perform a "sync" on one "block"
2778 *
2779 * We need to make sure that no normal I/O request - particularly write
2780 * requests - conflict with active sync requests.
2781 *
2782 * This is achieved by tracking pending requests and a 'barrier' concept
2783 * that can be installed to exclude normal IO requests.
2784 *
2785 * Resync and recovery are handled very differently.
2786 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2787 *
2788 * For resync, we iterate over virtual addresses, read all copies,
2789 * and update if there are differences.  If only one copy is live,
2790 * skip it.
2791 * For recovery, we iterate over physical addresses, read a good
2792 * value for each non-in_sync drive, and over-write.
2793 *
2794 * So, for recovery we may have several outstanding complex requests for a
2795 * given address, one for each out-of-sync device.  We model this by allocating
2796 * a number of r10_bio structures, one for each out-of-sync device.
2797 * As we setup these structures, we collect all bio's together into a list
2798 * which we then process collectively to add pages, and then process again
2799 * to pass to generic_make_request.
2800 *
2801 * The r10_bio structures are linked using a borrowed master_bio pointer.
2802 * This link is counted in ->remaining.  When the r10_bio that points to NULL
2803 * has its remaining count decremented to 0, the whole complex operation
2804 * is complete.
2805 *
2806 */
2807
2808static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr,
2809			     int *skipped)
2810{
2811	struct r10conf *conf = mddev->private;
2812	struct r10bio *r10_bio;
2813	struct bio *biolist = NULL, *bio;
2814	sector_t max_sector, nr_sectors;
2815	int i;
2816	int max_sync;
2817	sector_t sync_blocks;
2818	sector_t sectors_skipped = 0;
2819	int chunks_skipped = 0;
2820	sector_t chunk_mask = conf->geo.chunk_mask;
2821
2822	if (!conf->r10buf_pool)
2823		if (init_resync(conf))
2824			return 0;
2825
2826	/*
2827	 * Allow skipping a full rebuild for incremental assembly
2828	 * of a clean array, like RAID1 does.
2829	 */
2830	if (mddev->bitmap == NULL &&
2831	    mddev->recovery_cp == MaxSector &&
2832	    mddev->reshape_position == MaxSector &&
2833	    !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2834	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2835	    !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
2836	    conf->fullsync == 0) {
2837		*skipped = 1;
2838		return mddev->dev_sectors - sector_nr;
2839	}
2840
2841 skipped:
2842	max_sector = mddev->dev_sectors;
2843	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2844	    test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2845		max_sector = mddev->resync_max_sectors;
2846	if (sector_nr >= max_sector) {
2847		/* If we aborted, we need to abort the
2848		 * sync on the 'current' bitmap chucks (there can
2849		 * be several when recovering multiple devices).
2850		 * as we may have started syncing it but not finished.
2851		 * We can find the current address in
2852		 * mddev->curr_resync, but for recovery,
2853		 * we need to convert that to several
2854		 * virtual addresses.
2855		 */
2856		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2857			end_reshape(conf);
2858			close_sync(conf);
2859			return 0;
2860		}
2861
2862		if (mddev->curr_resync < max_sector) { /* aborted */
2863			if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2864				bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2865						&sync_blocks, 1);
2866			else for (i = 0; i < conf->geo.raid_disks; i++) {
2867				sector_t sect =
2868					raid10_find_virt(conf, mddev->curr_resync, i);
2869				bitmap_end_sync(mddev->bitmap, sect,
2870						&sync_blocks, 1);
2871			}
2872		} else {
2873			/* completed sync */
2874			if ((!mddev->bitmap || conf->fullsync)
2875			    && conf->have_replacement
2876			    && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2877				/* Completed a full sync so the replacements
2878				 * are now fully recovered.
2879				 */
2880				for (i = 0; i < conf->geo.raid_disks; i++)
2881					if (conf->mirrors[i].replacement)
2882						conf->mirrors[i].replacement
2883							->recovery_offset
2884							= MaxSector;
2885			}
2886			conf->fullsync = 0;
2887		}
2888		bitmap_close_sync(mddev->bitmap);
2889		close_sync(conf);
2890		*skipped = 1;
2891		return sectors_skipped;
2892	}
2893
2894	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2895		return reshape_request(mddev, sector_nr, skipped);
2896
2897	if (chunks_skipped >= conf->geo.raid_disks) {
2898		/* if there has been nothing to do on any drive,
2899		 * then there is nothing to do at all..
2900		 */
2901		*skipped = 1;
2902		return (max_sector - sector_nr) + sectors_skipped;
2903	}
2904
2905	if (max_sector > mddev->resync_max)
2906		max_sector = mddev->resync_max; /* Don't do IO beyond here */
2907
2908	/* make sure whole request will fit in a chunk - if chunks
2909	 * are meaningful
2910	 */
2911	if (conf->geo.near_copies < conf->geo.raid_disks &&
2912	    max_sector > (sector_nr | chunk_mask))
2913		max_sector = (sector_nr | chunk_mask) + 1;
 
 
 
 
 
 
2914
2915	/* Again, very different code for resync and recovery.
2916	 * Both must result in an r10bio with a list of bios that
2917	 * have bi_end_io, bi_sector, bi_bdev set,
2918	 * and bi_private set to the r10bio.
2919	 * For recovery, we may actually create several r10bios
2920	 * with 2 bios in each, that correspond to the bios in the main one.
2921	 * In this case, the subordinate r10bios link back through a
2922	 * borrowed master_bio pointer, and the counter in the master
2923	 * includes a ref from each subordinate.
2924	 */
2925	/* First, we decide what to do and set ->bi_end_io
2926	 * To end_sync_read if we want to read, and
2927	 * end_sync_write if we will want to write.
2928	 */
2929
2930	max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
2931	if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2932		/* recovery... the complicated one */
2933		int j;
2934		r10_bio = NULL;
2935
2936		for (i = 0 ; i < conf->geo.raid_disks; i++) {
2937			int still_degraded;
2938			struct r10bio *rb2;
2939			sector_t sect;
2940			int must_sync;
2941			int any_working;
2942			struct raid10_info *mirror = &conf->mirrors[i];
2943
2944			if ((mirror->rdev == NULL ||
2945			     test_bit(In_sync, &mirror->rdev->flags))
2946			    &&
2947			    (mirror->replacement == NULL ||
2948			     test_bit(Faulty,
2949				      &mirror->replacement->flags)))
2950				continue;
2951
2952			still_degraded = 0;
2953			/* want to reconstruct this device */
2954			rb2 = r10_bio;
2955			sect = raid10_find_virt(conf, sector_nr, i);
2956			if (sect >= mddev->resync_max_sectors) {
2957				/* last stripe is not complete - don't
2958				 * try to recover this sector.
2959				 */
2960				continue;
2961			}
2962			/* Unless we are doing a full sync, or a replacement
2963			 * we only need to recover the block if it is set in
2964			 * the bitmap
2965			 */
2966			must_sync = bitmap_start_sync(mddev->bitmap, sect,
2967						      &sync_blocks, 1);
2968			if (sync_blocks < max_sync)
2969				max_sync = sync_blocks;
2970			if (!must_sync &&
2971			    mirror->replacement == NULL &&
2972			    !conf->fullsync) {
2973				/* yep, skip the sync_blocks here, but don't assume
2974				 * that there will never be anything to do here
2975				 */
2976				chunks_skipped = -1;
2977				continue;
2978			}
2979
2980			r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
2981			r10_bio->state = 0;
2982			raise_barrier(conf, rb2 != NULL);
2983			atomic_set(&r10_bio->remaining, 0);
2984
2985			r10_bio->master_bio = (struct bio*)rb2;
2986			if (rb2)
2987				atomic_inc(&rb2->remaining);
2988			r10_bio->mddev = mddev;
2989			set_bit(R10BIO_IsRecover, &r10_bio->state);
2990			r10_bio->sector = sect;
2991
2992			raid10_find_phys(conf, r10_bio);
2993
2994			/* Need to check if the array will still be
2995			 * degraded
2996			 */
2997			for (j = 0; j < conf->geo.raid_disks; j++)
2998				if (conf->mirrors[j].rdev == NULL ||
2999				    test_bit(Faulty, &conf->mirrors[j].rdev->flags)) {
3000					still_degraded = 1;
3001					break;
3002				}
3003
3004			must_sync = bitmap_start_sync(mddev->bitmap, sect,
3005						      &sync_blocks, still_degraded);
3006
3007			any_working = 0;
3008			for (j=0; j<conf->copies;j++) {
3009				int k;
3010				int d = r10_bio->devs[j].devnum;
3011				sector_t from_addr, to_addr;
3012				struct md_rdev *rdev;
3013				sector_t sector, first_bad;
3014				int bad_sectors;
3015				if (!conf->mirrors[d].rdev ||
3016				    !test_bit(In_sync, &conf->mirrors[d].rdev->flags))
3017					continue;
3018				/* This is where we read from */
3019				any_working = 1;
3020				rdev = conf->mirrors[d].rdev;
3021				sector = r10_bio->devs[j].addr;
3022
3023				if (is_badblock(rdev, sector, max_sync,
3024						&first_bad, &bad_sectors)) {
3025					if (first_bad > sector)
3026						max_sync = first_bad - sector;
3027					else {
3028						bad_sectors -= (sector
3029								- first_bad);
3030						if (max_sync > bad_sectors)
3031							max_sync = bad_sectors;
3032						continue;
3033					}
3034				}
3035				bio = r10_bio->devs[0].bio;
3036				bio_reset(bio);
3037				bio->bi_next = biolist;
3038				biolist = bio;
3039				bio->bi_private = r10_bio;
3040				bio->bi_end_io = end_sync_read;
3041				bio->bi_rw = READ;
3042				from_addr = r10_bio->devs[j].addr;
3043				bio->bi_iter.bi_sector = from_addr +
3044					rdev->data_offset;
3045				bio->bi_bdev = rdev->bdev;
3046				atomic_inc(&rdev->nr_pending);
3047				/* and we write to 'i' (if not in_sync) */
 
3048
3049				for (k=0; k<conf->copies; k++)
3050					if (r10_bio->devs[k].devnum == i)
3051						break;
3052				BUG_ON(k == conf->copies);
 
 
 
 
 
 
3053				to_addr = r10_bio->devs[k].addr;
 
 
 
 
3054				r10_bio->devs[0].devnum = d;
3055				r10_bio->devs[0].addr = from_addr;
3056				r10_bio->devs[1].devnum = i;
3057				r10_bio->devs[1].addr = to_addr;
3058
3059				rdev = mirror->rdev;
3060				if (!test_bit(In_sync, &rdev->flags)) {
3061					bio = r10_bio->devs[1].bio;
3062					bio_reset(bio);
3063					bio->bi_next = biolist;
3064					biolist = bio;
3065					bio->bi_private = r10_bio;
3066					bio->bi_end_io = end_sync_write;
3067					bio->bi_rw = WRITE;
3068					bio->bi_iter.bi_sector = to_addr
3069						+ rdev->data_offset;
3070					bio->bi_bdev = rdev->bdev;
3071					atomic_inc(&r10_bio->remaining);
3072				} else
3073					r10_bio->devs[1].bio->bi_end_io = NULL;
3074
3075				/* and maybe write to replacement */
3076				bio = r10_bio->devs[1].repl_bio;
3077				if (bio)
3078					bio->bi_end_io = NULL;
3079				rdev = mirror->replacement;
3080				/* Note: if rdev != NULL, then bio
3081				 * cannot be NULL as r10buf_pool_alloc will
3082				 * have allocated it.
3083				 * So the second test here is pointless.
3084				 * But it keeps semantic-checkers happy, and
3085				 * this comment keeps human reviewers
3086				 * happy.
3087				 */
3088				if (rdev == NULL || bio == NULL ||
3089				    test_bit(Faulty, &rdev->flags))
3090					break;
3091				bio_reset(bio);
3092				bio->bi_next = biolist;
3093				biolist = bio;
3094				bio->bi_private = r10_bio;
3095				bio->bi_end_io = end_sync_write;
3096				bio->bi_rw = WRITE;
3097				bio->bi_iter.bi_sector = to_addr +
3098					rdev->data_offset;
3099				bio->bi_bdev = rdev->bdev;
3100				atomic_inc(&r10_bio->remaining);
3101				break;
3102			}
3103			if (j == conf->copies) {
3104				/* Cannot recover, so abort the recovery or
3105				 * record a bad block */
 
 
 
 
3106				if (any_working) {
3107					/* problem is that there are bad blocks
3108					 * on other device(s)
3109					 */
3110					int k;
3111					for (k = 0; k < conf->copies; k++)
3112						if (r10_bio->devs[k].devnum == i)
3113							break;
3114					if (!test_bit(In_sync,
3115						      &mirror->rdev->flags)
3116					    && !rdev_set_badblocks(
3117						    mirror->rdev,
3118						    r10_bio->devs[k].addr,
3119						    max_sync, 0))
3120						any_working = 0;
3121					if (mirror->replacement &&
3122					    !rdev_set_badblocks(
3123						    mirror->replacement,
3124						    r10_bio->devs[k].addr,
3125						    max_sync, 0))
3126						any_working = 0;
3127				}
3128				if (!any_working)  {
3129					if (!test_and_set_bit(MD_RECOVERY_INTR,
3130							      &mddev->recovery))
3131						printk(KERN_INFO "md/raid10:%s: insufficient "
3132						       "working devices for recovery.\n",
3133						       mdname(mddev));
3134					mirror->recovery_disabled
3135						= mddev->recovery_disabled;
3136				}
3137				put_buf(r10_bio);
3138				if (rb2)
3139					atomic_dec(&rb2->remaining);
3140				r10_bio = rb2;
3141				break;
3142			}
3143		}
3144		if (biolist == NULL) {
3145			while (r10_bio) {
3146				struct r10bio *rb2 = r10_bio;
3147				r10_bio = (struct r10bio*) rb2->master_bio;
3148				rb2->master_bio = NULL;
3149				put_buf(rb2);
3150			}
3151			goto giveup;
3152		}
3153	} else {
3154		/* resync. Schedule a read for every block at this virt offset */
3155		int count = 0;
3156
3157		bitmap_cond_end_sync(mddev->bitmap, sector_nr, 0);
3158
3159		if (!bitmap_start_sync(mddev->bitmap, sector_nr,
3160				       &sync_blocks, mddev->degraded) &&
3161		    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3162						 &mddev->recovery)) {
3163			/* We can skip this block */
3164			*skipped = 1;
3165			return sync_blocks + sectors_skipped;
3166		}
3167		if (sync_blocks < max_sync)
3168			max_sync = sync_blocks;
3169		r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3170		r10_bio->state = 0;
3171
3172		r10_bio->mddev = mddev;
3173		atomic_set(&r10_bio->remaining, 0);
3174		raise_barrier(conf, 0);
3175		conf->next_resync = sector_nr;
3176
3177		r10_bio->master_bio = NULL;
3178		r10_bio->sector = sector_nr;
3179		set_bit(R10BIO_IsSync, &r10_bio->state);
3180		raid10_find_phys(conf, r10_bio);
3181		r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3182
3183		for (i = 0; i < conf->copies; i++) {
3184			int d = r10_bio->devs[i].devnum;
3185			sector_t first_bad, sector;
3186			int bad_sectors;
3187
3188			if (r10_bio->devs[i].repl_bio)
3189				r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3190
3191			bio = r10_bio->devs[i].bio;
3192			bio_reset(bio);
3193			bio->bi_error = -EIO;
3194			if (conf->mirrors[d].rdev == NULL ||
3195			    test_bit(Faulty, &conf->mirrors[d].rdev->flags))
3196				continue;
3197			sector = r10_bio->devs[i].addr;
3198			if (is_badblock(conf->mirrors[d].rdev,
3199					sector, max_sync,
3200					&first_bad, &bad_sectors)) {
3201				if (first_bad > sector)
3202					max_sync = first_bad - sector;
3203				else {
3204					bad_sectors -= (sector - first_bad);
3205					if (max_sync > bad_sectors)
3206						max_sync = bad_sectors;
3207					continue;
3208				}
3209			}
3210			atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3211			atomic_inc(&r10_bio->remaining);
3212			bio->bi_next = biolist;
3213			biolist = bio;
3214			bio->bi_private = r10_bio;
3215			bio->bi_end_io = end_sync_read;
3216			bio->bi_rw = READ;
3217			bio->bi_iter.bi_sector = sector +
3218				conf->mirrors[d].rdev->data_offset;
3219			bio->bi_bdev = conf->mirrors[d].rdev->bdev;
3220			count++;
3221
3222			if (conf->mirrors[d].replacement == NULL ||
3223			    test_bit(Faulty,
3224				     &conf->mirrors[d].replacement->flags))
3225				continue;
3226
3227			/* Need to set up for writing to the replacement */
3228			bio = r10_bio->devs[i].repl_bio;
3229			bio_reset(bio);
3230			bio->bi_error = -EIO;
3231
3232			sector = r10_bio->devs[i].addr;
3233			atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3234			bio->bi_next = biolist;
3235			biolist = bio;
3236			bio->bi_private = r10_bio;
3237			bio->bi_end_io = end_sync_write;
3238			bio->bi_rw = WRITE;
3239			bio->bi_iter.bi_sector = sector +
3240				conf->mirrors[d].replacement->data_offset;
3241			bio->bi_bdev = conf->mirrors[d].replacement->bdev;
3242			count++;
3243		}
3244
3245		if (count < 2) {
3246			for (i=0; i<conf->copies; i++) {
3247				int d = r10_bio->devs[i].devnum;
3248				if (r10_bio->devs[i].bio->bi_end_io)
3249					rdev_dec_pending(conf->mirrors[d].rdev,
3250							 mddev);
3251				if (r10_bio->devs[i].repl_bio &&
3252				    r10_bio->devs[i].repl_bio->bi_end_io)
3253					rdev_dec_pending(
3254						conf->mirrors[d].replacement,
3255						mddev);
3256			}
3257			put_buf(r10_bio);
3258			biolist = NULL;
3259			goto giveup;
3260		}
3261	}
3262
 
 
 
 
 
 
 
 
 
 
 
3263	nr_sectors = 0;
3264	if (sector_nr + max_sync < max_sector)
3265		max_sector = sector_nr + max_sync;
3266	do {
3267		struct page *page;
3268		int len = PAGE_SIZE;
3269		if (sector_nr + (len>>9) > max_sector)
3270			len = (max_sector - sector_nr) << 9;
3271		if (len == 0)
3272			break;
3273		for (bio= biolist ; bio ; bio=bio->bi_next) {
3274			struct bio *bio2;
3275			page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
3276			if (bio_add_page(bio, page, len, 0))
3277				continue;
3278
3279			/* stop here */
3280			bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
3281			for (bio2 = biolist;
3282			     bio2 && bio2 != bio;
3283			     bio2 = bio2->bi_next) {
3284				/* remove last page from this bio */
3285				bio2->bi_vcnt--;
3286				bio2->bi_iter.bi_size -= len;
3287				bio_clear_flag(bio2, BIO_SEG_VALID);
3288			}
3289			goto bio_full;
3290		}
3291		nr_sectors += len>>9;
3292		sector_nr += len>>9;
3293	} while (biolist->bi_vcnt < RESYNC_PAGES);
3294 bio_full:
3295	r10_bio->sectors = nr_sectors;
3296
3297	while (biolist) {
3298		bio = biolist;
3299		biolist = biolist->bi_next;
3300
3301		bio->bi_next = NULL;
3302		r10_bio = bio->bi_private;
3303		r10_bio->sectors = nr_sectors;
3304
3305		if (bio->bi_end_io == end_sync_read) {
3306			md_sync_acct(bio->bi_bdev, nr_sectors);
3307			bio->bi_error = 0;
3308			generic_make_request(bio);
3309		}
3310	}
3311
3312	if (sectors_skipped)
3313		/* pretend they weren't skipped, it makes
3314		 * no important difference in this case
3315		 */
3316		md_done_sync(mddev, sectors_skipped, 1);
3317
3318	return sectors_skipped + nr_sectors;
3319 giveup:
3320	/* There is nowhere to write, so all non-sync
3321	 * drives must be failed or in resync, all drives
3322	 * have a bad block, so try the next chunk...
3323	 */
3324	if (sector_nr + max_sync < max_sector)
3325		max_sector = sector_nr + max_sync;
3326
3327	sectors_skipped += (max_sector - sector_nr);
3328	chunks_skipped ++;
3329	sector_nr = max_sector;
3330	goto skipped;
3331}
3332
3333static sector_t
3334raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3335{
3336	sector_t size;
3337	struct r10conf *conf = mddev->private;
3338
3339	if (!raid_disks)
3340		raid_disks = min(conf->geo.raid_disks,
3341				 conf->prev.raid_disks);
3342	if (!sectors)
3343		sectors = conf->dev_sectors;
3344
3345	size = sectors >> conf->geo.chunk_shift;
3346	sector_div(size, conf->geo.far_copies);
3347	size = size * raid_disks;
3348	sector_div(size, conf->geo.near_copies);
3349
3350	return size << conf->geo.chunk_shift;
3351}
3352
3353static void calc_sectors(struct r10conf *conf, sector_t size)
3354{
3355	/* Calculate the number of sectors-per-device that will
3356	 * actually be used, and set conf->dev_sectors and
3357	 * conf->stride
3358	 */
3359
3360	size = size >> conf->geo.chunk_shift;
3361	sector_div(size, conf->geo.far_copies);
3362	size = size * conf->geo.raid_disks;
3363	sector_div(size, conf->geo.near_copies);
3364	/* 'size' is now the number of chunks in the array */
3365	/* calculate "used chunks per device" */
3366	size = size * conf->copies;
3367
3368	/* We need to round up when dividing by raid_disks to
3369	 * get the stride size.
3370	 */
3371	size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3372
3373	conf->dev_sectors = size << conf->geo.chunk_shift;
3374
3375	if (conf->geo.far_offset)
3376		conf->geo.stride = 1 << conf->geo.chunk_shift;
3377	else {
3378		sector_div(size, conf->geo.far_copies);
3379		conf->geo.stride = size << conf->geo.chunk_shift;
3380	}
3381}
3382
3383enum geo_type {geo_new, geo_old, geo_start};
3384static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3385{
 
3386	int nc, fc, fo;
3387	int layout, chunk, disks;
3388	switch (new) {
3389	case geo_old:
3390		layout = mddev->layout;
3391		chunk = mddev->chunk_sectors;
3392		disks = mddev->raid_disks - mddev->delta_disks;
3393		break;
3394	case geo_new:
3395		layout = mddev->new_layout;
3396		chunk = mddev->new_chunk_sectors;
3397		disks = mddev->raid_disks;
3398		break;
3399	default: /* avoid 'may be unused' warnings */
3400	case geo_start: /* new when starting reshape - raid_disks not
3401			 * updated yet. */
3402		layout = mddev->new_layout;
3403		chunk = mddev->new_chunk_sectors;
3404		disks = mddev->raid_disks + mddev->delta_disks;
3405		break;
3406	}
3407	if (layout >> 19)
3408		return -1;
3409	if (chunk < (PAGE_SIZE >> 9) ||
3410	    !is_power_of_2(chunk))
3411		return -2;
3412	nc = layout & 255;
3413	fc = (layout >> 8) & 255;
3414	fo = layout & (1<<16);
3415	geo->raid_disks = disks;
3416	geo->near_copies = nc;
3417	geo->far_copies = fc;
3418	geo->far_offset = fo;
3419	switch (layout >> 17) {
3420	case 0:	/* original layout.  simple but not always optimal */
3421		geo->far_set_size = disks;
3422		break;
3423	case 1: /* "improved" layout which was buggy.  Hopefully no-one is
3424		 * actually using this, but leave code here just in case.*/
3425		geo->far_set_size = disks/fc;
3426		WARN(geo->far_set_size < fc,
3427		     "This RAID10 layout does not provide data safety - please backup and create new array\n");
3428		break;
3429	case 2: /* "improved" layout fixed to match documentation */
3430		geo->far_set_size = fc * nc;
3431		break;
3432	default: /* Not a valid layout */
3433		return -1;
3434	}
3435	geo->chunk_mask = chunk - 1;
3436	geo->chunk_shift = ffz(~chunk);
3437	return nc*fc;
3438}
3439
3440static struct r10conf *setup_conf(struct mddev *mddev)
3441{
3442	struct r10conf *conf = NULL;
3443	int err = -EINVAL;
3444	struct geom geo;
3445	int copies;
3446
3447	copies = setup_geo(&geo, mddev, geo_new);
3448
3449	if (copies == -2) {
 
3450		printk(KERN_ERR "md/raid10:%s: chunk size must be "
3451		       "at least PAGE_SIZE(%ld) and be a power of 2.\n",
3452		       mdname(mddev), PAGE_SIZE);
3453		goto out;
3454	}
3455
3456	if (copies < 2 || copies > mddev->raid_disks) {
 
 
 
 
 
3457		printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3458		       mdname(mddev), mddev->new_layout);
3459		goto out;
3460	}
3461
3462	err = -ENOMEM;
3463	conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3464	if (!conf)
3465		goto out;
3466
3467	/* FIXME calc properly */
3468	conf->mirrors = kzalloc(sizeof(struct raid10_info)*(mddev->raid_disks +
3469							    max(0,-mddev->delta_disks)),
3470				GFP_KERNEL);
3471	if (!conf->mirrors)
3472		goto out;
3473
3474	conf->tmppage = alloc_page(GFP_KERNEL);
3475	if (!conf->tmppage)
3476		goto out;
3477
3478	conf->geo = geo;
3479	conf->copies = copies;
 
 
 
 
 
 
 
3480	conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
3481					   r10bio_pool_free, conf);
3482	if (!conf->r10bio_pool)
3483		goto out;
3484
3485	calc_sectors(conf, mddev->dev_sectors);
3486	if (mddev->reshape_position == MaxSector) {
3487		conf->prev = conf->geo;
3488		conf->reshape_progress = MaxSector;
3489	} else {
3490		if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3491			err = -EINVAL;
3492			goto out;
3493		}
3494		conf->reshape_progress = mddev->reshape_position;
3495		if (conf->prev.far_offset)
3496			conf->prev.stride = 1 << conf->prev.chunk_shift;
3497		else
3498			/* far_copies must be 1 */
3499			conf->prev.stride = conf->dev_sectors;
3500	}
3501	conf->reshape_safe = conf->reshape_progress;
 
 
 
 
 
 
3502	spin_lock_init(&conf->device_lock);
3503	INIT_LIST_HEAD(&conf->retry_list);
3504	INIT_LIST_HEAD(&conf->bio_end_io_list);
3505
3506	spin_lock_init(&conf->resync_lock);
3507	init_waitqueue_head(&conf->wait_barrier);
3508
3509	conf->thread = md_register_thread(raid10d, mddev, "raid10");
3510	if (!conf->thread)
3511		goto out;
3512
3513	conf->mddev = mddev;
3514	return conf;
3515
3516 out:
3517	if (err == -ENOMEM)
3518		printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n",
3519		       mdname(mddev));
3520	if (conf) {
3521		mempool_destroy(conf->r10bio_pool);
 
3522		kfree(conf->mirrors);
3523		safe_put_page(conf->tmppage);
3524		kfree(conf);
3525	}
3526	return ERR_PTR(err);
3527}
3528
3529static int raid10_run(struct mddev *mddev)
3530{
3531	struct r10conf *conf;
3532	int i, disk_idx, chunk_size;
3533	struct raid10_info *disk;
3534	struct md_rdev *rdev;
3535	sector_t size;
3536	sector_t min_offset_diff = 0;
3537	int first = 1;
3538	bool discard_supported = false;
 
 
 
3539
3540	if (mddev->private == NULL) {
3541		conf = setup_conf(mddev);
3542		if (IS_ERR(conf))
3543			return PTR_ERR(conf);
3544		mddev->private = conf;
3545	}
3546	conf = mddev->private;
3547	if (!conf)
3548		goto out;
3549
3550	mddev->thread = conf->thread;
3551	conf->thread = NULL;
3552
3553	chunk_size = mddev->chunk_sectors << 9;
3554	if (mddev->queue) {
3555		blk_queue_max_discard_sectors(mddev->queue,
3556					      mddev->chunk_sectors);
3557		blk_queue_max_write_same_sectors(mddev->queue, 0);
3558		blk_queue_io_min(mddev->queue, chunk_size);
3559		if (conf->geo.raid_disks % conf->geo.near_copies)
3560			blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks);
3561		else
3562			blk_queue_io_opt(mddev->queue, chunk_size *
3563					 (conf->geo.raid_disks / conf->geo.near_copies));
3564	}
3565
3566	rdev_for_each(rdev, mddev) {
3567		long long diff;
3568		struct request_queue *q;
3569
3570		disk_idx = rdev->raid_disk;
3571		if (disk_idx < 0)
3572			continue;
3573		if (disk_idx >= conf->geo.raid_disks &&
3574		    disk_idx >= conf->prev.raid_disks)
3575			continue;
3576		disk = conf->mirrors + disk_idx;
3577
3578		if (test_bit(Replacement, &rdev->flags)) {
3579			if (disk->replacement)
3580				goto out_free_conf;
3581			disk->replacement = rdev;
3582		} else {
3583			if (disk->rdev)
3584				goto out_free_conf;
3585			disk->rdev = rdev;
 
 
 
3586		}
3587		q = bdev_get_queue(rdev->bdev);
3588		diff = (rdev->new_data_offset - rdev->data_offset);
3589		if (!mddev->reshape_backwards)
3590			diff = -diff;
3591		if (diff < 0)
3592			diff = 0;
3593		if (first || diff < min_offset_diff)
3594			min_offset_diff = diff;
3595
3596		if (mddev->gendisk)
3597			disk_stack_limits(mddev->gendisk, rdev->bdev,
3598					  rdev->data_offset << 9);
3599
3600		disk->head_position = 0;
3601
3602		if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3603			discard_supported = true;
3604	}
3605
3606	if (mddev->queue) {
3607		if (discard_supported)
3608			queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
3609						mddev->queue);
3610		else
3611			queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
3612						  mddev->queue);
3613	}
3614	/* need to check that every block has at least one working mirror */
3615	if (!enough(conf, -1)) {
3616		printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n",
3617		       mdname(mddev));
3618		goto out_free_conf;
3619	}
3620
3621	if (conf->reshape_progress != MaxSector) {
3622		/* must ensure that shape change is supported */
3623		if (conf->geo.far_copies != 1 &&
3624		    conf->geo.far_offset == 0)
3625			goto out_free_conf;
3626		if (conf->prev.far_copies != 1 &&
3627		    conf->prev.far_offset == 0)
3628			goto out_free_conf;
3629	}
3630
3631	mddev->degraded = 0;
3632	for (i = 0;
3633	     i < conf->geo.raid_disks
3634		     || i < conf->prev.raid_disks;
3635	     i++) {
3636
3637		disk = conf->mirrors + i;
3638
3639		if (!disk->rdev && disk->replacement) {
3640			/* The replacement is all we have - use it */
3641			disk->rdev = disk->replacement;
3642			disk->replacement = NULL;
3643			clear_bit(Replacement, &disk->rdev->flags);
3644		}
3645
3646		if (!disk->rdev ||
3647		    !test_bit(In_sync, &disk->rdev->flags)) {
3648			disk->head_position = 0;
3649			mddev->degraded++;
3650			if (disk->rdev &&
3651			    disk->rdev->saved_raid_disk < 0)
3652				conf->fullsync = 1;
3653		}
3654		disk->recovery_disabled = mddev->recovery_disabled - 1;
3655	}
3656
3657	if (mddev->recovery_cp != MaxSector)
3658		printk(KERN_NOTICE "md/raid10:%s: not clean"
3659		       " -- starting background reconstruction\n",
3660		       mdname(mddev));
3661	printk(KERN_INFO
3662		"md/raid10:%s: active with %d out of %d devices\n",
3663		mdname(mddev), conf->geo.raid_disks - mddev->degraded,
3664		conf->geo.raid_disks);
3665	/*
3666	 * Ok, everything is just fine now
3667	 */
3668	mddev->dev_sectors = conf->dev_sectors;
3669	size = raid10_size(mddev, 0, 0);
3670	md_set_array_sectors(mddev, size);
3671	mddev->resync_max_sectors = size;
3672
3673	if (mddev->queue) {
3674		int stripe = conf->geo.raid_disks *
3675			((mddev->chunk_sectors << 9) / PAGE_SIZE);
3676
3677		/* Calculate max read-ahead size.
3678		 * We need to readahead at least twice a whole stripe....
3679		 * maybe...
3680		 */
3681		stripe /= conf->geo.near_copies;
3682		if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
3683			mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
 
 
 
3684	}
3685
 
 
 
3686	if (md_integrity_register(mddev))
3687		goto out_free_conf;
3688
3689	if (conf->reshape_progress != MaxSector) {
3690		unsigned long before_length, after_length;
3691
3692		before_length = ((1 << conf->prev.chunk_shift) *
3693				 conf->prev.far_copies);
3694		after_length = ((1 << conf->geo.chunk_shift) *
3695				conf->geo.far_copies);
3696
3697		if (max(before_length, after_length) > min_offset_diff) {
3698			/* This cannot work */
3699			printk("md/raid10: offset difference not enough to continue reshape\n");
3700			goto out_free_conf;
3701		}
3702		conf->offset_diff = min_offset_diff;
3703
3704		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3705		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3706		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3707		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3708		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3709							"reshape");
3710	}
3711
3712	return 0;
3713
3714out_free_conf:
3715	md_unregister_thread(&mddev->thread);
3716	mempool_destroy(conf->r10bio_pool);
 
3717	safe_put_page(conf->tmppage);
3718	kfree(conf->mirrors);
3719	kfree(conf);
3720	mddev->private = NULL;
3721out:
3722	return -EIO;
3723}
3724
3725static void raid10_free(struct mddev *mddev, void *priv)
3726{
3727	struct r10conf *conf = priv;
3728
3729	mempool_destroy(conf->r10bio_pool);
3730	safe_put_page(conf->tmppage);
 
 
 
 
 
3731	kfree(conf->mirrors);
3732	kfree(conf->mirrors_old);
3733	kfree(conf->mirrors_new);
3734	kfree(conf);
 
 
3735}
3736
3737static void raid10_quiesce(struct mddev *mddev, int state)
3738{
3739	struct r10conf *conf = mddev->private;
3740
3741	switch(state) {
3742	case 1:
3743		raise_barrier(conf, 0);
3744		break;
3745	case 0:
3746		lower_barrier(conf);
3747		break;
3748	}
3749}
3750
3751static int raid10_resize(struct mddev *mddev, sector_t sectors)
3752{
3753	/* Resize of 'far' arrays is not supported.
3754	 * For 'near' and 'offset' arrays we can set the
3755	 * number of sectors used to be an appropriate multiple
3756	 * of the chunk size.
3757	 * For 'offset', this is far_copies*chunksize.
3758	 * For 'near' the multiplier is the LCM of
3759	 * near_copies and raid_disks.
3760	 * So if far_copies > 1 && !far_offset, fail.
3761	 * Else find LCM(raid_disks, near_copy)*far_copies and
3762	 * multiply by chunk_size.  Then round to this number.
3763	 * This is mostly done by raid10_size()
3764	 */
3765	struct r10conf *conf = mddev->private;
3766	sector_t oldsize, size;
3767
3768	if (mddev->reshape_position != MaxSector)
3769		return -EBUSY;
3770
3771	if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
3772		return -EINVAL;
3773
3774	oldsize = raid10_size(mddev, 0, 0);
3775	size = raid10_size(mddev, sectors, 0);
3776	if (mddev->external_size &&
3777	    mddev->array_sectors > size)
3778		return -EINVAL;
3779	if (mddev->bitmap) {
3780		int ret = bitmap_resize(mddev->bitmap, size, 0, 0);
3781		if (ret)
3782			return ret;
3783	}
3784	md_set_array_sectors(mddev, size);
3785	set_capacity(mddev->gendisk, mddev->array_sectors);
3786	revalidate_disk(mddev->gendisk);
3787	if (sectors > mddev->dev_sectors &&
3788	    mddev->recovery_cp > oldsize) {
3789		mddev->recovery_cp = oldsize;
3790		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3791	}
3792	calc_sectors(conf, sectors);
3793	mddev->dev_sectors = conf->dev_sectors;
3794	mddev->resync_max_sectors = size;
3795	return 0;
3796}
3797
3798static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs)
3799{
3800	struct md_rdev *rdev;
3801	struct r10conf *conf;
3802
3803	if (mddev->degraded > 0) {
3804		printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n",
3805		       mdname(mddev));
3806		return ERR_PTR(-EINVAL);
3807	}
3808	sector_div(size, devs);
3809
3810	/* Set new parameters */
3811	mddev->new_level = 10;
3812	/* new layout: far_copies = 1, near_copies = 2 */
3813	mddev->new_layout = (1<<8) + 2;
3814	mddev->new_chunk_sectors = mddev->chunk_sectors;
3815	mddev->delta_disks = mddev->raid_disks;
3816	mddev->raid_disks *= 2;
3817	/* make sure it will be not marked as dirty */
3818	mddev->recovery_cp = MaxSector;
3819	mddev->dev_sectors = size;
3820
3821	conf = setup_conf(mddev);
3822	if (!IS_ERR(conf)) {
3823		rdev_for_each(rdev, mddev)
3824			if (rdev->raid_disk >= 0) {
3825				rdev->new_raid_disk = rdev->raid_disk * 2;
3826				rdev->sectors = size;
3827			}
3828		conf->barrier = 1;
3829	}
3830
3831	return conf;
3832}
3833
3834static void *raid10_takeover(struct mddev *mddev)
3835{
3836	struct r0conf *raid0_conf;
3837
3838	/* raid10 can take over:
3839	 *  raid0 - providing it has only two drives
3840	 */
3841	if (mddev->level == 0) {
3842		/* for raid0 takeover only one zone is supported */
3843		raid0_conf = mddev->private;
3844		if (raid0_conf->nr_strip_zones > 1) {
3845			printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0"
3846			       " with more than one zone.\n",
3847			       mdname(mddev));
3848			return ERR_PTR(-EINVAL);
3849		}
3850		return raid10_takeover_raid0(mddev,
3851			raid0_conf->strip_zone->zone_end,
3852			raid0_conf->strip_zone->nb_dev);
3853	}
3854	return ERR_PTR(-EINVAL);
3855}
3856
3857static int raid10_check_reshape(struct mddev *mddev)
3858{
3859	/* Called when there is a request to change
3860	 * - layout (to ->new_layout)
3861	 * - chunk size (to ->new_chunk_sectors)
3862	 * - raid_disks (by delta_disks)
3863	 * or when trying to restart a reshape that was ongoing.
3864	 *
3865	 * We need to validate the request and possibly allocate
3866	 * space if that might be an issue later.
3867	 *
3868	 * Currently we reject any reshape of a 'far' mode array,
3869	 * allow chunk size to change if new is generally acceptable,
3870	 * allow raid_disks to increase, and allow
3871	 * a switch between 'near' mode and 'offset' mode.
3872	 */
3873	struct r10conf *conf = mddev->private;
3874	struct geom geo;
3875
3876	if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
3877		return -EINVAL;
3878
3879	if (setup_geo(&geo, mddev, geo_start) != conf->copies)
3880		/* mustn't change number of copies */
3881		return -EINVAL;
3882	if (geo.far_copies > 1 && !geo.far_offset)
3883		/* Cannot switch to 'far' mode */
3884		return -EINVAL;
3885
3886	if (mddev->array_sectors & geo.chunk_mask)
3887			/* not factor of array size */
3888			return -EINVAL;
3889
3890	if (!enough(conf, -1))
3891		return -EINVAL;
3892
3893	kfree(conf->mirrors_new);
3894	conf->mirrors_new = NULL;
3895	if (mddev->delta_disks > 0) {
3896		/* allocate new 'mirrors' list */
3897		conf->mirrors_new = kzalloc(
3898			sizeof(struct raid10_info)
3899			*(mddev->raid_disks +
3900			  mddev->delta_disks),
3901			GFP_KERNEL);
3902		if (!conf->mirrors_new)
3903			return -ENOMEM;
3904	}
3905	return 0;
3906}
3907
3908/*
3909 * Need to check if array has failed when deciding whether to:
3910 *  - start an array
3911 *  - remove non-faulty devices
3912 *  - add a spare
3913 *  - allow a reshape
3914 * This determination is simple when no reshape is happening.
3915 * However if there is a reshape, we need to carefully check
3916 * both the before and after sections.
3917 * This is because some failed devices may only affect one
3918 * of the two sections, and some non-in_sync devices may
3919 * be insync in the section most affected by failed devices.
3920 */
3921static int calc_degraded(struct r10conf *conf)
3922{
3923	int degraded, degraded2;
3924	int i;
3925
3926	rcu_read_lock();
3927	degraded = 0;
3928	/* 'prev' section first */
3929	for (i = 0; i < conf->prev.raid_disks; i++) {
3930		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
3931		if (!rdev || test_bit(Faulty, &rdev->flags))
3932			degraded++;
3933		else if (!test_bit(In_sync, &rdev->flags))
3934			/* When we can reduce the number of devices in
3935			 * an array, this might not contribute to
3936			 * 'degraded'.  It does now.
3937			 */
3938			degraded++;
3939	}
3940	rcu_read_unlock();
3941	if (conf->geo.raid_disks == conf->prev.raid_disks)
3942		return degraded;
3943	rcu_read_lock();
3944	degraded2 = 0;
3945	for (i = 0; i < conf->geo.raid_disks; i++) {
3946		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
3947		if (!rdev || test_bit(Faulty, &rdev->flags))
3948			degraded2++;
3949		else if (!test_bit(In_sync, &rdev->flags)) {
3950			/* If reshape is increasing the number of devices,
3951			 * this section has already been recovered, so
3952			 * it doesn't contribute to degraded.
3953			 * else it does.
3954			 */
3955			if (conf->geo.raid_disks <= conf->prev.raid_disks)
3956				degraded2++;
3957		}
3958	}
3959	rcu_read_unlock();
3960	if (degraded2 > degraded)
3961		return degraded2;
3962	return degraded;
3963}
3964
3965static int raid10_start_reshape(struct mddev *mddev)
3966{
3967	/* A 'reshape' has been requested. This commits
3968	 * the various 'new' fields and sets MD_RECOVER_RESHAPE
3969	 * This also checks if there are enough spares and adds them
3970	 * to the array.
3971	 * We currently require enough spares to make the final
3972	 * array non-degraded.  We also require that the difference
3973	 * between old and new data_offset - on each device - is
3974	 * enough that we never risk over-writing.
3975	 */
3976
3977	unsigned long before_length, after_length;
3978	sector_t min_offset_diff = 0;
3979	int first = 1;
3980	struct geom new;
3981	struct r10conf *conf = mddev->private;
3982	struct md_rdev *rdev;
3983	int spares = 0;
3984	int ret;
3985
3986	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3987		return -EBUSY;
3988
3989	if (setup_geo(&new, mddev, geo_start) != conf->copies)
3990		return -EINVAL;
3991
3992	before_length = ((1 << conf->prev.chunk_shift) *
3993			 conf->prev.far_copies);
3994	after_length = ((1 << conf->geo.chunk_shift) *
3995			conf->geo.far_copies);
3996
3997	rdev_for_each(rdev, mddev) {
3998		if (!test_bit(In_sync, &rdev->flags)
3999		    && !test_bit(Faulty, &rdev->flags))
4000			spares++;
4001		if (rdev->raid_disk >= 0) {
4002			long long diff = (rdev->new_data_offset
4003					  - rdev->data_offset);
4004			if (!mddev->reshape_backwards)
4005				diff = -diff;
4006			if (diff < 0)
4007				diff = 0;
4008			if (first || diff < min_offset_diff)
4009				min_offset_diff = diff;
4010		}
4011	}
4012
4013	if (max(before_length, after_length) > min_offset_diff)
4014		return -EINVAL;
4015
4016	if (spares < mddev->delta_disks)
4017		return -EINVAL;
4018
4019	conf->offset_diff = min_offset_diff;
4020	spin_lock_irq(&conf->device_lock);
4021	if (conf->mirrors_new) {
4022		memcpy(conf->mirrors_new, conf->mirrors,
4023		       sizeof(struct raid10_info)*conf->prev.raid_disks);
4024		smp_mb();
4025		kfree(conf->mirrors_old);
4026		conf->mirrors_old = conf->mirrors;
4027		conf->mirrors = conf->mirrors_new;
4028		conf->mirrors_new = NULL;
4029	}
4030	setup_geo(&conf->geo, mddev, geo_start);
4031	smp_mb();
4032	if (mddev->reshape_backwards) {
4033		sector_t size = raid10_size(mddev, 0, 0);
4034		if (size < mddev->array_sectors) {
4035			spin_unlock_irq(&conf->device_lock);
4036			printk(KERN_ERR "md/raid10:%s: array size must be reduce before number of disks\n",
4037			       mdname(mddev));
4038			return -EINVAL;
4039		}
4040		mddev->resync_max_sectors = size;
4041		conf->reshape_progress = size;
4042	} else
4043		conf->reshape_progress = 0;
4044	conf->reshape_safe = conf->reshape_progress;
4045	spin_unlock_irq(&conf->device_lock);
4046
4047	if (mddev->delta_disks && mddev->bitmap) {
4048		ret = bitmap_resize(mddev->bitmap,
4049				    raid10_size(mddev, 0,
4050						conf->geo.raid_disks),
4051				    0, 0);
4052		if (ret)
4053			goto abort;
4054	}
4055	if (mddev->delta_disks > 0) {
4056		rdev_for_each(rdev, mddev)
4057			if (rdev->raid_disk < 0 &&
4058			    !test_bit(Faulty, &rdev->flags)) {
4059				if (raid10_add_disk(mddev, rdev) == 0) {
4060					if (rdev->raid_disk >=
4061					    conf->prev.raid_disks)
4062						set_bit(In_sync, &rdev->flags);
4063					else
4064						rdev->recovery_offset = 0;
4065
4066					if (sysfs_link_rdev(mddev, rdev))
4067						/* Failure here  is OK */;
4068				}
4069			} else if (rdev->raid_disk >= conf->prev.raid_disks
4070				   && !test_bit(Faulty, &rdev->flags)) {
4071				/* This is a spare that was manually added */
4072				set_bit(In_sync, &rdev->flags);
4073			}
4074	}
4075	/* When a reshape changes the number of devices,
4076	 * ->degraded is measured against the larger of the
4077	 * pre and  post numbers.
4078	 */
4079	spin_lock_irq(&conf->device_lock);
4080	mddev->degraded = calc_degraded(conf);
4081	spin_unlock_irq(&conf->device_lock);
4082	mddev->raid_disks = conf->geo.raid_disks;
4083	mddev->reshape_position = conf->reshape_progress;
4084	set_bit(MD_CHANGE_DEVS, &mddev->flags);
4085
4086	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4087	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4088	clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
4089	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4090	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4091
4092	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4093						"reshape");
4094	if (!mddev->sync_thread) {
4095		ret = -EAGAIN;
4096		goto abort;
4097	}
4098	conf->reshape_checkpoint = jiffies;
4099	md_wakeup_thread(mddev->sync_thread);
4100	md_new_event(mddev);
4101	return 0;
4102
4103abort:
4104	mddev->recovery = 0;
4105	spin_lock_irq(&conf->device_lock);
4106	conf->geo = conf->prev;
4107	mddev->raid_disks = conf->geo.raid_disks;
4108	rdev_for_each(rdev, mddev)
4109		rdev->new_data_offset = rdev->data_offset;
4110	smp_wmb();
4111	conf->reshape_progress = MaxSector;
4112	conf->reshape_safe = MaxSector;
4113	mddev->reshape_position = MaxSector;
4114	spin_unlock_irq(&conf->device_lock);
4115	return ret;
4116}
4117
4118/* Calculate the last device-address that could contain
4119 * any block from the chunk that includes the array-address 's'
4120 * and report the next address.
4121 * i.e. the address returned will be chunk-aligned and after
4122 * any data that is in the chunk containing 's'.
4123 */
4124static sector_t last_dev_address(sector_t s, struct geom *geo)
4125{
4126	s = (s | geo->chunk_mask) + 1;
4127	s >>= geo->chunk_shift;
4128	s *= geo->near_copies;
4129	s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4130	s *= geo->far_copies;
4131	s <<= geo->chunk_shift;
4132	return s;
4133}
4134
4135/* Calculate the first device-address that could contain
4136 * any block from the chunk that includes the array-address 's'.
4137 * This too will be the start of a chunk
4138 */
4139static sector_t first_dev_address(sector_t s, struct geom *geo)
4140{
4141	s >>= geo->chunk_shift;
4142	s *= geo->near_copies;
4143	sector_div(s, geo->raid_disks);
4144	s *= geo->far_copies;
4145	s <<= geo->chunk_shift;
4146	return s;
4147}
4148
4149static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4150				int *skipped)
4151{
4152	/* We simply copy at most one chunk (smallest of old and new)
4153	 * at a time, possibly less if that exceeds RESYNC_PAGES,
4154	 * or we hit a bad block or something.
4155	 * This might mean we pause for normal IO in the middle of
4156	 * a chunk, but that is not a problem as mddev->reshape_position
4157	 * can record any location.
4158	 *
4159	 * If we will want to write to a location that isn't
4160	 * yet recorded as 'safe' (i.e. in metadata on disk) then
4161	 * we need to flush all reshape requests and update the metadata.
4162	 *
4163	 * When reshaping forwards (e.g. to more devices), we interpret
4164	 * 'safe' as the earliest block which might not have been copied
4165	 * down yet.  We divide this by previous stripe size and multiply
4166	 * by previous stripe length to get lowest device offset that we
4167	 * cannot write to yet.
4168	 * We interpret 'sector_nr' as an address that we want to write to.
4169	 * From this we use last_device_address() to find where we might
4170	 * write to, and first_device_address on the  'safe' position.
4171	 * If this 'next' write position is after the 'safe' position,
4172	 * we must update the metadata to increase the 'safe' position.
4173	 *
4174	 * When reshaping backwards, we round in the opposite direction
4175	 * and perform the reverse test:  next write position must not be
4176	 * less than current safe position.
4177	 *
4178	 * In all this the minimum difference in data offsets
4179	 * (conf->offset_diff - always positive) allows a bit of slack,
4180	 * so next can be after 'safe', but not by more than offset_diff
4181	 *
4182	 * We need to prepare all the bios here before we start any IO
4183	 * to ensure the size we choose is acceptable to all devices.
4184	 * The means one for each copy for write-out and an extra one for
4185	 * read-in.
4186	 * We store the read-in bio in ->master_bio and the others in
4187	 * ->devs[x].bio and ->devs[x].repl_bio.
4188	 */
4189	struct r10conf *conf = mddev->private;
4190	struct r10bio *r10_bio;
4191	sector_t next, safe, last;
4192	int max_sectors;
4193	int nr_sectors;
4194	int s;
4195	struct md_rdev *rdev;
4196	int need_flush = 0;
4197	struct bio *blist;
4198	struct bio *bio, *read_bio;
4199	int sectors_done = 0;
4200
4201	if (sector_nr == 0) {
4202		/* If restarting in the middle, skip the initial sectors */
4203		if (mddev->reshape_backwards &&
4204		    conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4205			sector_nr = (raid10_size(mddev, 0, 0)
4206				     - conf->reshape_progress);
4207		} else if (!mddev->reshape_backwards &&
4208			   conf->reshape_progress > 0)
4209			sector_nr = conf->reshape_progress;
4210		if (sector_nr) {
4211			mddev->curr_resync_completed = sector_nr;
4212			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4213			*skipped = 1;
4214			return sector_nr;
4215		}
4216	}
4217
4218	/* We don't use sector_nr to track where we are up to
4219	 * as that doesn't work well for ->reshape_backwards.
4220	 * So just use ->reshape_progress.
4221	 */
4222	if (mddev->reshape_backwards) {
4223		/* 'next' is the earliest device address that we might
4224		 * write to for this chunk in the new layout
4225		 */
4226		next = first_dev_address(conf->reshape_progress - 1,
4227					 &conf->geo);
4228
4229		/* 'safe' is the last device address that we might read from
4230		 * in the old layout after a restart
4231		 */
4232		safe = last_dev_address(conf->reshape_safe - 1,
4233					&conf->prev);
4234
4235		if (next + conf->offset_diff < safe)
4236			need_flush = 1;
4237
4238		last = conf->reshape_progress - 1;
4239		sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4240					       & conf->prev.chunk_mask);
4241		if (sector_nr + RESYNC_BLOCK_SIZE/512 < last)
4242			sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512;
4243	} else {
4244		/* 'next' is after the last device address that we
4245		 * might write to for this chunk in the new layout
4246		 */
4247		next = last_dev_address(conf->reshape_progress, &conf->geo);
4248
4249		/* 'safe' is the earliest device address that we might
4250		 * read from in the old layout after a restart
4251		 */
4252		safe = first_dev_address(conf->reshape_safe, &conf->prev);
4253
4254		/* Need to update metadata if 'next' might be beyond 'safe'
4255		 * as that would possibly corrupt data
4256		 */
4257		if (next > safe + conf->offset_diff)
4258			need_flush = 1;
4259
4260		sector_nr = conf->reshape_progress;
4261		last  = sector_nr | (conf->geo.chunk_mask
4262				     & conf->prev.chunk_mask);
4263
4264		if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last)
4265			last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1;
4266	}
4267
4268	if (need_flush ||
4269	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4270		/* Need to update reshape_position in metadata */
4271		wait_barrier(conf);
4272		mddev->reshape_position = conf->reshape_progress;
4273		if (mddev->reshape_backwards)
4274			mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4275				- conf->reshape_progress;
4276		else
4277			mddev->curr_resync_completed = conf->reshape_progress;
4278		conf->reshape_checkpoint = jiffies;
4279		set_bit(MD_CHANGE_DEVS, &mddev->flags);
4280		md_wakeup_thread(mddev->thread);
4281		wait_event(mddev->sb_wait, mddev->flags == 0 ||
4282			   test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4283		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4284			allow_barrier(conf);
4285			return sectors_done;
4286		}
4287		conf->reshape_safe = mddev->reshape_position;
4288		allow_barrier(conf);
4289	}
4290
4291read_more:
4292	/* Now schedule reads for blocks from sector_nr to last */
4293	r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
4294	r10_bio->state = 0;
4295	raise_barrier(conf, sectors_done != 0);
4296	atomic_set(&r10_bio->remaining, 0);
4297	r10_bio->mddev = mddev;
4298	r10_bio->sector = sector_nr;
4299	set_bit(R10BIO_IsReshape, &r10_bio->state);
4300	r10_bio->sectors = last - sector_nr + 1;
4301	rdev = read_balance(conf, r10_bio, &max_sectors);
4302	BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4303
4304	if (!rdev) {
4305		/* Cannot read from here, so need to record bad blocks
4306		 * on all the target devices.
4307		 */
4308		// FIXME
4309		mempool_free(r10_bio, conf->r10buf_pool);
4310		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4311		return sectors_done;
4312	}
4313
4314	read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev);
4315
4316	read_bio->bi_bdev = rdev->bdev;
4317	read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4318			       + rdev->data_offset);
4319	read_bio->bi_private = r10_bio;
4320	read_bio->bi_end_io = end_sync_read;
4321	read_bio->bi_rw = READ;
4322	read_bio->bi_flags &= (~0UL << BIO_RESET_BITS);
4323	read_bio->bi_error = 0;
4324	read_bio->bi_vcnt = 0;
4325	read_bio->bi_iter.bi_size = 0;
4326	r10_bio->master_bio = read_bio;
4327	r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4328
4329	/* Now find the locations in the new layout */
4330	__raid10_find_phys(&conf->geo, r10_bio);
4331
4332	blist = read_bio;
4333	read_bio->bi_next = NULL;
4334
4335	for (s = 0; s < conf->copies*2; s++) {
4336		struct bio *b;
4337		int d = r10_bio->devs[s/2].devnum;
4338		struct md_rdev *rdev2;
4339		if (s&1) {
4340			rdev2 = conf->mirrors[d].replacement;
4341			b = r10_bio->devs[s/2].repl_bio;
4342		} else {
4343			rdev2 = conf->mirrors[d].rdev;
4344			b = r10_bio->devs[s/2].bio;
4345		}
4346		if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4347			continue;
4348
4349		bio_reset(b);
4350		b->bi_bdev = rdev2->bdev;
4351		b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
4352			rdev2->new_data_offset;
4353		b->bi_private = r10_bio;
4354		b->bi_end_io = end_reshape_write;
4355		b->bi_rw = WRITE;
4356		b->bi_next = blist;
4357		blist = b;
4358	}
4359
4360	/* Now add as many pages as possible to all of these bios. */
4361
4362	nr_sectors = 0;
4363	for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4364		struct page *page = r10_bio->devs[0].bio->bi_io_vec[s/(PAGE_SIZE>>9)].bv_page;
4365		int len = (max_sectors - s) << 9;
4366		if (len > PAGE_SIZE)
4367			len = PAGE_SIZE;
4368		for (bio = blist; bio ; bio = bio->bi_next) {
4369			struct bio *bio2;
4370			if (bio_add_page(bio, page, len, 0))
4371				continue;
4372
4373			/* Didn't fit, must stop */
4374			for (bio2 = blist;
4375			     bio2 && bio2 != bio;
4376			     bio2 = bio2->bi_next) {
4377				/* Remove last page from this bio */
4378				bio2->bi_vcnt--;
4379				bio2->bi_iter.bi_size -= len;
4380				bio_clear_flag(bio2, BIO_SEG_VALID);
4381			}
4382			goto bio_full;
4383		}
4384		sector_nr += len >> 9;
4385		nr_sectors += len >> 9;
4386	}
4387bio_full:
4388	r10_bio->sectors = nr_sectors;
4389
4390	/* Now submit the read */
4391	md_sync_acct(read_bio->bi_bdev, r10_bio->sectors);
4392	atomic_inc(&r10_bio->remaining);
4393	read_bio->bi_next = NULL;
4394	generic_make_request(read_bio);
4395	sector_nr += nr_sectors;
4396	sectors_done += nr_sectors;
4397	if (sector_nr <= last)
4398		goto read_more;
4399
4400	/* Now that we have done the whole section we can
4401	 * update reshape_progress
4402	 */
4403	if (mddev->reshape_backwards)
4404		conf->reshape_progress -= sectors_done;
4405	else
4406		conf->reshape_progress += sectors_done;
4407
4408	return sectors_done;
4409}
4410
4411static void end_reshape_request(struct r10bio *r10_bio);
4412static int handle_reshape_read_error(struct mddev *mddev,
4413				     struct r10bio *r10_bio);
4414static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4415{
4416	/* Reshape read completed.  Hopefully we have a block
4417	 * to write out.
4418	 * If we got a read error then we do sync 1-page reads from
4419	 * elsewhere until we find the data - or give up.
4420	 */
4421	struct r10conf *conf = mddev->private;
4422	int s;
4423
4424	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4425		if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4426			/* Reshape has been aborted */
4427			md_done_sync(mddev, r10_bio->sectors, 0);
4428			return;
4429		}
4430
4431	/* We definitely have the data in the pages, schedule the
4432	 * writes.
4433	 */
4434	atomic_set(&r10_bio->remaining, 1);
4435	for (s = 0; s < conf->copies*2; s++) {
4436		struct bio *b;
4437		int d = r10_bio->devs[s/2].devnum;
4438		struct md_rdev *rdev;
4439		if (s&1) {
4440			rdev = conf->mirrors[d].replacement;
4441			b = r10_bio->devs[s/2].repl_bio;
4442		} else {
4443			rdev = conf->mirrors[d].rdev;
4444			b = r10_bio->devs[s/2].bio;
4445		}
4446		if (!rdev || test_bit(Faulty, &rdev->flags))
4447			continue;
4448		atomic_inc(&rdev->nr_pending);
4449		md_sync_acct(b->bi_bdev, r10_bio->sectors);
4450		atomic_inc(&r10_bio->remaining);
4451		b->bi_next = NULL;
4452		generic_make_request(b);
4453	}
4454	end_reshape_request(r10_bio);
4455}
4456
4457static void end_reshape(struct r10conf *conf)
4458{
4459	if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4460		return;
4461
4462	spin_lock_irq(&conf->device_lock);
4463	conf->prev = conf->geo;
4464	md_finish_reshape(conf->mddev);
4465	smp_wmb();
4466	conf->reshape_progress = MaxSector;
4467	conf->reshape_safe = MaxSector;
4468	spin_unlock_irq(&conf->device_lock);
4469
4470	/* read-ahead size must cover two whole stripes, which is
4471	 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4472	 */
4473	if (conf->mddev->queue) {
4474		int stripe = conf->geo.raid_disks *
4475			((conf->mddev->chunk_sectors << 9) / PAGE_SIZE);
4476		stripe /= conf->geo.near_copies;
4477		if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4478			conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4479	}
4480	conf->fullsync = 0;
4481}
4482
4483static int handle_reshape_read_error(struct mddev *mddev,
4484				     struct r10bio *r10_bio)
4485{
4486	/* Use sync reads to get the blocks from somewhere else */
4487	int sectors = r10_bio->sectors;
4488	struct r10conf *conf = mddev->private;
4489	struct {
4490		struct r10bio r10_bio;
4491		struct r10dev devs[conf->copies];
4492	} on_stack;
4493	struct r10bio *r10b = &on_stack.r10_bio;
4494	int slot = 0;
4495	int idx = 0;
4496	struct bio_vec *bvec = r10_bio->master_bio->bi_io_vec;
4497
4498	r10b->sector = r10_bio->sector;
4499	__raid10_find_phys(&conf->prev, r10b);
4500
4501	while (sectors) {
4502		int s = sectors;
4503		int success = 0;
4504		int first_slot = slot;
4505
4506		if (s > (PAGE_SIZE >> 9))
4507			s = PAGE_SIZE >> 9;
4508
4509		while (!success) {
4510			int d = r10b->devs[slot].devnum;
4511			struct md_rdev *rdev = conf->mirrors[d].rdev;
4512			sector_t addr;
4513			if (rdev == NULL ||
4514			    test_bit(Faulty, &rdev->flags) ||
4515			    !test_bit(In_sync, &rdev->flags))
4516				goto failed;
4517
4518			addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
4519			success = sync_page_io(rdev,
4520					       addr,
4521					       s << 9,
4522					       bvec[idx].bv_page,
4523					       READ, false);
4524			if (success)
4525				break;
4526		failed:
4527			slot++;
4528			if (slot >= conf->copies)
4529				slot = 0;
4530			if (slot == first_slot)
4531				break;
4532		}
4533		if (!success) {
4534			/* couldn't read this block, must give up */
4535			set_bit(MD_RECOVERY_INTR,
4536				&mddev->recovery);
4537			return -EIO;
4538		}
4539		sectors -= s;
4540		idx++;
4541	}
4542	return 0;
4543}
4544
4545static void end_reshape_write(struct bio *bio)
4546{
4547	struct r10bio *r10_bio = bio->bi_private;
4548	struct mddev *mddev = r10_bio->mddev;
4549	struct r10conf *conf = mddev->private;
4550	int d;
4551	int slot;
4552	int repl;
4553	struct md_rdev *rdev = NULL;
4554
4555	d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
4556	if (repl)
4557		rdev = conf->mirrors[d].replacement;
4558	if (!rdev) {
4559		smp_mb();
4560		rdev = conf->mirrors[d].rdev;
4561	}
4562
4563	if (bio->bi_error) {
4564		/* FIXME should record badblock */
4565		md_error(mddev, rdev);
4566	}
4567
4568	rdev_dec_pending(rdev, mddev);
4569	end_reshape_request(r10_bio);
4570}
4571
4572static void end_reshape_request(struct r10bio *r10_bio)
4573{
4574	if (!atomic_dec_and_test(&r10_bio->remaining))
4575		return;
4576	md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
4577	bio_put(r10_bio->master_bio);
4578	put_buf(r10_bio);
4579}
4580
4581static void raid10_finish_reshape(struct mddev *mddev)
4582{
4583	struct r10conf *conf = mddev->private;
4584
4585	if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4586		return;
4587
4588	if (mddev->delta_disks > 0) {
4589		sector_t size = raid10_size(mddev, 0, 0);
4590		md_set_array_sectors(mddev, size);
4591		if (mddev->recovery_cp > mddev->resync_max_sectors) {
4592			mddev->recovery_cp = mddev->resync_max_sectors;
4593			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4594		}
4595		mddev->resync_max_sectors = size;
4596		set_capacity(mddev->gendisk, mddev->array_sectors);
4597		revalidate_disk(mddev->gendisk);
4598	} else {
4599		int d;
4600		for (d = conf->geo.raid_disks ;
4601		     d < conf->geo.raid_disks - mddev->delta_disks;
4602		     d++) {
4603			struct md_rdev *rdev = conf->mirrors[d].rdev;
4604			if (rdev)
4605				clear_bit(In_sync, &rdev->flags);
4606			rdev = conf->mirrors[d].replacement;
4607			if (rdev)
4608				clear_bit(In_sync, &rdev->flags);
4609		}
4610	}
4611	mddev->layout = mddev->new_layout;
4612	mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
4613	mddev->reshape_position = MaxSector;
4614	mddev->delta_disks = 0;
4615	mddev->reshape_backwards = 0;
4616}
4617
4618static struct md_personality raid10_personality =
4619{
4620	.name		= "raid10",
4621	.level		= 10,
4622	.owner		= THIS_MODULE,
4623	.make_request	= raid10_make_request,
4624	.run		= raid10_run,
4625	.free		= raid10_free,
4626	.status		= raid10_status,
4627	.error_handler	= raid10_error,
4628	.hot_add_disk	= raid10_add_disk,
4629	.hot_remove_disk= raid10_remove_disk,
4630	.spare_active	= raid10_spare_active,
4631	.sync_request	= raid10_sync_request,
4632	.quiesce	= raid10_quiesce,
4633	.size		= raid10_size,
4634	.resize		= raid10_resize,
4635	.takeover	= raid10_takeover,
4636	.check_reshape	= raid10_check_reshape,
4637	.start_reshape	= raid10_start_reshape,
4638	.finish_reshape	= raid10_finish_reshape,
4639	.congested	= raid10_congested,
4640};
4641
4642static int __init raid_init(void)
4643{
4644	return register_md_personality(&raid10_personality);
4645}
4646
4647static void raid_exit(void)
4648{
4649	unregister_md_personality(&raid10_personality);
4650}
4651
4652module_init(raid_init);
4653module_exit(raid_exit);
4654MODULE_LICENSE("GPL");
4655MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
4656MODULE_ALIAS("md-personality-9"); /* RAID10 */
4657MODULE_ALIAS("md-raid10");
4658MODULE_ALIAS("md-level-10");
4659
4660module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
v3.1
   1/*
   2 * raid10.c : Multiple Devices driver for Linux
   3 *
   4 * Copyright (C) 2000-2004 Neil Brown
   5 *
   6 * RAID-10 support for md.
   7 *
   8 * Base on code in raid1.c.  See raid1.c for further copyright information.
   9 *
  10 *
  11 * This program is free software; you can redistribute it and/or modify
  12 * it under the terms of the GNU General Public License as published by
  13 * the Free Software Foundation; either version 2, or (at your option)
  14 * any later version.
  15 *
  16 * You should have received a copy of the GNU General Public License
  17 * (for example /usr/src/linux/COPYING); if not, write to the Free
  18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  19 */
  20
  21#include <linux/slab.h>
  22#include <linux/delay.h>
  23#include <linux/blkdev.h>
 
  24#include <linux/seq_file.h>
  25#include <linux/ratelimit.h>
 
  26#include "md.h"
  27#include "raid10.h"
  28#include "raid0.h"
  29#include "bitmap.h"
  30
  31/*
  32 * RAID10 provides a combination of RAID0 and RAID1 functionality.
  33 * The layout of data is defined by
  34 *    chunk_size
  35 *    raid_disks
  36 *    near_copies (stored in low byte of layout)
  37 *    far_copies (stored in second byte of layout)
  38 *    far_offset (stored in bit 16 of layout )
 
 
  39 *
  40 * The data to be stored is divided into chunks using chunksize.
  41 * Each device is divided into far_copies sections.
  42 * In each section, chunks are laid out in a style similar to raid0, but
  43 * near_copies copies of each chunk is stored (each on a different drive).
  44 * The starting device for each section is offset near_copies from the starting
  45 * device of the previous section.
  46 * Thus they are (near_copies*far_copies) of each chunk, and each is on a different
  47 * drive.
  48 * near_copies and far_copies must be at least one, and their product is at most
  49 * raid_disks.
  50 *
  51 * If far_offset is true, then the far_copies are handled a bit differently.
  52 * The copies are still in different stripes, but instead of be very far apart
  53 * on disk, there are adjacent stripes.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  54 */
  55
  56/*
  57 * Number of guaranteed r10bios in case of extreme VM load:
  58 */
  59#define	NR_RAID10_BIOS 256
  60
  61static void allow_barrier(conf_t *conf);
  62static void lower_barrier(conf_t *conf);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  63
  64static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
  65{
  66	conf_t *conf = data;
  67	int size = offsetof(struct r10bio_s, devs[conf->copies]);
  68
  69	/* allocate a r10bio with room for raid_disks entries in the bios array */
 
  70	return kzalloc(size, gfp_flags);
  71}
  72
  73static void r10bio_pool_free(void *r10_bio, void *data)
  74{
  75	kfree(r10_bio);
  76}
  77
  78/* Maximum size of each resync request */
  79#define RESYNC_BLOCK_SIZE (64*1024)
  80#define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
  81/* amount of memory to reserve for resync requests */
  82#define RESYNC_WINDOW (1024*1024)
  83/* maximum number of concurrent requests, memory permitting */
  84#define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
  85
  86/*
  87 * When performing a resync, we need to read and compare, so
  88 * we need as many pages are there are copies.
  89 * When performing a recovery, we need 2 bios, one for read,
  90 * one for write (we recover only one drive per r10buf)
  91 *
  92 */
  93static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
  94{
  95	conf_t *conf = data;
  96	struct page *page;
  97	r10bio_t *r10_bio;
  98	struct bio *bio;
  99	int i, j;
 100	int nalloc;
 101
 102	r10_bio = r10bio_pool_alloc(gfp_flags, conf);
 103	if (!r10_bio)
 104		return NULL;
 105
 106	if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery))
 
 107		nalloc = conf->copies; /* resync */
 108	else
 109		nalloc = 2; /* recovery */
 110
 111	/*
 112	 * Allocate bios.
 113	 */
 114	for (j = nalloc ; j-- ; ) {
 115		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
 116		if (!bio)
 117			goto out_free_bio;
 118		r10_bio->devs[j].bio = bio;
 
 
 
 
 
 
 119	}
 120	/*
 121	 * Allocate RESYNC_PAGES data pages and attach them
 122	 * where needed.
 123	 */
 124	for (j = 0 ; j < nalloc; j++) {
 
 125		bio = r10_bio->devs[j].bio;
 126		for (i = 0; i < RESYNC_PAGES; i++) {
 127			if (j == 1 && !test_bit(MD_RECOVERY_SYNC,
 128						&conf->mddev->recovery)) {
 129				/* we can share bv_page's during recovery */
 
 130				struct bio *rbio = r10_bio->devs[0].bio;
 131				page = rbio->bi_io_vec[i].bv_page;
 132				get_page(page);
 133			} else
 134				page = alloc_page(gfp_flags);
 135			if (unlikely(!page))
 136				goto out_free_pages;
 137
 138			bio->bi_io_vec[i].bv_page = page;
 
 
 139		}
 140	}
 141
 142	return r10_bio;
 143
 144out_free_pages:
 145	for ( ; i > 0 ; i--)
 146		safe_put_page(bio->bi_io_vec[i-1].bv_page);
 147	while (j--)
 148		for (i = 0; i < RESYNC_PAGES ; i++)
 149			safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
 150	j = -1;
 151out_free_bio:
 152	while ( ++j < nalloc )
 153		bio_put(r10_bio->devs[j].bio);
 
 
 
 
 154	r10bio_pool_free(r10_bio, conf);
 155	return NULL;
 156}
 157
 158static void r10buf_pool_free(void *__r10_bio, void *data)
 159{
 160	int i;
 161	conf_t *conf = data;
 162	r10bio_t *r10bio = __r10_bio;
 163	int j;
 164
 165	for (j=0; j < conf->copies; j++) {
 166		struct bio *bio = r10bio->devs[j].bio;
 167		if (bio) {
 168			for (i = 0; i < RESYNC_PAGES; i++) {
 169				safe_put_page(bio->bi_io_vec[i].bv_page);
 170				bio->bi_io_vec[i].bv_page = NULL;
 171			}
 172			bio_put(bio);
 173		}
 
 
 
 174	}
 175	r10bio_pool_free(r10bio, conf);
 176}
 177
 178static void put_all_bios(conf_t *conf, r10bio_t *r10_bio)
 179{
 180	int i;
 181
 182	for (i = 0; i < conf->copies; i++) {
 183		struct bio **bio = & r10_bio->devs[i].bio;
 184		if (!BIO_SPECIAL(*bio))
 185			bio_put(*bio);
 186		*bio = NULL;
 
 
 
 
 187	}
 188}
 189
 190static void free_r10bio(r10bio_t *r10_bio)
 191{
 192	conf_t *conf = r10_bio->mddev->private;
 193
 194	put_all_bios(conf, r10_bio);
 195	mempool_free(r10_bio, conf->r10bio_pool);
 196}
 197
 198static void put_buf(r10bio_t *r10_bio)
 199{
 200	conf_t *conf = r10_bio->mddev->private;
 201
 202	mempool_free(r10_bio, conf->r10buf_pool);
 203
 204	lower_barrier(conf);
 205}
 206
 207static void reschedule_retry(r10bio_t *r10_bio)
 208{
 209	unsigned long flags;
 210	mddev_t *mddev = r10_bio->mddev;
 211	conf_t *conf = mddev->private;
 212
 213	spin_lock_irqsave(&conf->device_lock, flags);
 214	list_add(&r10_bio->retry_list, &conf->retry_list);
 215	conf->nr_queued ++;
 216	spin_unlock_irqrestore(&conf->device_lock, flags);
 217
 218	/* wake up frozen array... */
 219	wake_up(&conf->wait_barrier);
 220
 221	md_wakeup_thread(mddev->thread);
 222}
 223
 224/*
 225 * raid_end_bio_io() is called when we have finished servicing a mirrored
 226 * operation and are ready to return a success/failure code to the buffer
 227 * cache layer.
 228 */
 229static void raid_end_bio_io(r10bio_t *r10_bio)
 230{
 231	struct bio *bio = r10_bio->master_bio;
 232	int done;
 233	conf_t *conf = r10_bio->mddev->private;
 234
 235	if (bio->bi_phys_segments) {
 236		unsigned long flags;
 237		spin_lock_irqsave(&conf->device_lock, flags);
 238		bio->bi_phys_segments--;
 239		done = (bio->bi_phys_segments == 0);
 240		spin_unlock_irqrestore(&conf->device_lock, flags);
 241	} else
 242		done = 1;
 243	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
 244		clear_bit(BIO_UPTODATE, &bio->bi_flags);
 245	if (done) {
 246		bio_endio(bio, 0);
 247		/*
 248		 * Wake up any possible resync thread that waits for the device
 249		 * to go idle.
 250		 */
 251		allow_barrier(conf);
 252	}
 253	free_r10bio(r10_bio);
 254}
 255
 256/*
 257 * Update disk head position estimator based on IRQ completion info.
 258 */
 259static inline void update_head_pos(int slot, r10bio_t *r10_bio)
 260{
 261	conf_t *conf = r10_bio->mddev->private;
 262
 263	conf->mirrors[r10_bio->devs[slot].devnum].head_position =
 264		r10_bio->devs[slot].addr + (r10_bio->sectors);
 265}
 266
 267/*
 268 * Find the disk number which triggered given bio
 269 */
 270static int find_bio_disk(conf_t *conf, r10bio_t *r10_bio,
 271			 struct bio *bio, int *slotp)
 272{
 273	int slot;
 
 274
 275	for (slot = 0; slot < conf->copies; slot++)
 276		if (r10_bio->devs[slot].bio == bio)
 277			break;
 
 
 
 
 
 278
 279	BUG_ON(slot == conf->copies);
 280	update_head_pos(slot, r10_bio);
 281
 282	if (slotp)
 283		*slotp = slot;
 
 
 284	return r10_bio->devs[slot].devnum;
 285}
 286
 287static void raid10_end_read_request(struct bio *bio, int error)
 288{
 289	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
 290	r10bio_t *r10_bio = bio->bi_private;
 291	int slot, dev;
 292	conf_t *conf = r10_bio->mddev->private;
 293
 294
 295	slot = r10_bio->read_slot;
 296	dev = r10_bio->devs[slot].devnum;
 
 297	/*
 298	 * this branch is our 'one mirror IO has finished' event handler:
 299	 */
 300	update_head_pos(slot, r10_bio);
 301
 302	if (uptodate) {
 303		/*
 304		 * Set R10BIO_Uptodate in our master bio, so that
 305		 * we will return a good error code to the higher
 306		 * levels even if IO on some other mirrored buffer fails.
 307		 *
 308		 * The 'master' represents the composite IO operation to
 309		 * user-side. So if something waits for IO, then it will
 310		 * wait for the 'master' bio.
 311		 */
 312		set_bit(R10BIO_Uptodate, &r10_bio->state);
 
 
 
 
 
 
 
 
 
 
 
 313		raid_end_bio_io(r10_bio);
 314		rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
 315	} else {
 316		/*
 317		 * oops, read error - keep the refcount on the rdev
 318		 */
 319		char b[BDEVNAME_SIZE];
 320		printk_ratelimited(KERN_ERR
 321				   "md/raid10:%s: %s: rescheduling sector %llu\n",
 322				   mdname(conf->mddev),
 323				   bdevname(conf->mirrors[dev].rdev->bdev, b),
 324				   (unsigned long long)r10_bio->sector);
 325		set_bit(R10BIO_ReadError, &r10_bio->state);
 326		reschedule_retry(r10_bio);
 327	}
 328}
 329
 330static void close_write(r10bio_t *r10_bio)
 331{
 332	/* clear the bitmap if all writes complete successfully */
 333	bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
 334			r10_bio->sectors,
 335			!test_bit(R10BIO_Degraded, &r10_bio->state),
 336			0);
 337	md_write_end(r10_bio->mddev);
 338}
 339
 340static void one_write_done(r10bio_t *r10_bio)
 341{
 342	if (atomic_dec_and_test(&r10_bio->remaining)) {
 343		if (test_bit(R10BIO_WriteError, &r10_bio->state))
 344			reschedule_retry(r10_bio);
 345		else {
 346			close_write(r10_bio);
 347			if (test_bit(R10BIO_MadeGood, &r10_bio->state))
 348				reschedule_retry(r10_bio);
 349			else
 350				raid_end_bio_io(r10_bio);
 351		}
 352	}
 353}
 354
 355static void raid10_end_write_request(struct bio *bio, int error)
 356{
 357	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
 358	r10bio_t *r10_bio = bio->bi_private;
 359	int dev;
 360	int dec_rdev = 1;
 361	conf_t *conf = r10_bio->mddev->private;
 362	int slot;
 363
 364	dev = find_bio_disk(conf, r10_bio, bio, &slot);
 365
 
 
 
 
 
 
 
 
 366	/*
 367	 * this branch is our 'one mirror IO has finished' event handler:
 368	 */
 369	if (!uptodate) {
 370		set_bit(WriteErrorSeen,	&conf->mirrors[dev].rdev->flags);
 371		set_bit(R10BIO_WriteError, &r10_bio->state);
 372		dec_rdev = 0;
 
 
 
 
 
 
 
 
 
 
 373	} else {
 374		/*
 375		 * Set R10BIO_Uptodate in our master bio, so that
 376		 * we will return a good error code for to the higher
 377		 * levels even if IO on some other mirrored buffer fails.
 378		 *
 379		 * The 'master' represents the composite IO operation to
 380		 * user-side. So if something waits for IO, then it will
 381		 * wait for the 'master' bio.
 382		 */
 383		sector_t first_bad;
 384		int bad_sectors;
 385
 386		set_bit(R10BIO_Uptodate, &r10_bio->state);
 
 
 
 
 
 
 
 
 
 
 387
 388		/* Maybe we can clear some bad blocks. */
 389		if (is_badblock(conf->mirrors[dev].rdev,
 390				r10_bio->devs[slot].addr,
 391				r10_bio->sectors,
 392				&first_bad, &bad_sectors)) {
 393			bio_put(bio);
 394			r10_bio->devs[slot].bio = IO_MADE_GOOD;
 
 
 
 395			dec_rdev = 0;
 396			set_bit(R10BIO_MadeGood, &r10_bio->state);
 397		}
 398	}
 399
 400	/*
 401	 *
 402	 * Let's see if all mirrored write operations have finished
 403	 * already.
 404	 */
 405	one_write_done(r10_bio);
 406	if (dec_rdev)
 407		rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
 408}
 409
 410
 411/*
 412 * RAID10 layout manager
 413 * As well as the chunksize and raid_disks count, there are two
 414 * parameters: near_copies and far_copies.
 415 * near_copies * far_copies must be <= raid_disks.
 416 * Normally one of these will be 1.
 417 * If both are 1, we get raid0.
 418 * If near_copies == raid_disks, we get raid1.
 419 *
 420 * Chunks are laid out in raid0 style with near_copies copies of the
 421 * first chunk, followed by near_copies copies of the next chunk and
 422 * so on.
 423 * If far_copies > 1, then after 1/far_copies of the array has been assigned
 424 * as described above, we start again with a device offset of near_copies.
 425 * So we effectively have another copy of the whole array further down all
 426 * the drives, but with blocks on different drives.
 427 * With this layout, and block is never stored twice on the one device.
 428 *
 429 * raid10_find_phys finds the sector offset of a given virtual sector
 430 * on each device that it is on.
 431 *
 432 * raid10_find_virt does the reverse mapping, from a device and a
 433 * sector offset to a virtual address
 434 */
 435
 436static void raid10_find_phys(conf_t *conf, r10bio_t *r10bio)
 437{
 438	int n,f;
 439	sector_t sector;
 440	sector_t chunk;
 441	sector_t stripe;
 442	int dev;
 
 
 
 
 
 443
 444	int slot = 0;
 
 445
 446	/* now calculate first sector/dev */
 447	chunk = r10bio->sector >> conf->chunk_shift;
 448	sector = r10bio->sector & conf->chunk_mask;
 449
 450	chunk *= conf->near_copies;
 451	stripe = chunk;
 452	dev = sector_div(stripe, conf->raid_disks);
 453	if (conf->far_offset)
 454		stripe *= conf->far_copies;
 455
 456	sector += stripe << conf->chunk_shift;
 457
 458	/* and calculate all the others */
 459	for (n=0; n < conf->near_copies; n++) {
 460		int d = dev;
 
 461		sector_t s = sector;
 462		r10bio->devs[slot].addr = sector;
 463		r10bio->devs[slot].devnum = d;
 
 464		slot++;
 465
 466		for (f = 1; f < conf->far_copies; f++) {
 467			d += conf->near_copies;
 468			if (d >= conf->raid_disks)
 469				d -= conf->raid_disks;
 470			s += conf->stride;
 
 
 
 
 
 
 
 
 
 471			r10bio->devs[slot].devnum = d;
 472			r10bio->devs[slot].addr = s;
 473			slot++;
 474		}
 475		dev++;
 476		if (dev >= conf->raid_disks) {
 477			dev = 0;
 478			sector += (conf->chunk_mask + 1);
 479		}
 480	}
 481	BUG_ON(slot != conf->copies);
 482}
 483
 484static sector_t raid10_find_virt(conf_t *conf, sector_t sector, int dev)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 485{
 486	sector_t offset, chunk, vchunk;
 
 
 
 
 
 
 
 
 
 
 
 487
 488	offset = sector & conf->chunk_mask;
 489	if (conf->far_offset) {
 
 
 
 
 
 
 
 490		int fc;
 491		chunk = sector >> conf->chunk_shift;
 492		fc = sector_div(chunk, conf->far_copies);
 493		dev -= fc * conf->near_copies;
 494		if (dev < 0)
 495			dev += conf->raid_disks;
 496	} else {
 497		while (sector >= conf->stride) {
 498			sector -= conf->stride;
 499			if (dev < conf->near_copies)
 500				dev += conf->raid_disks - conf->near_copies;
 501			else
 502				dev -= conf->near_copies;
 503		}
 504		chunk = sector >> conf->chunk_shift;
 505	}
 506	vchunk = chunk * conf->raid_disks + dev;
 507	sector_div(vchunk, conf->near_copies);
 508	return (vchunk << conf->chunk_shift) + offset;
 509}
 510
 511/**
 512 *	raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
 513 *	@q: request queue
 514 *	@bvm: properties of new bio
 515 *	@biovec: the request that could be merged to it.
 516 *
 517 *	Return amount of bytes we can accept at this offset
 518 *      If near_copies == raid_disk, there are no striping issues,
 519 *      but in that case, the function isn't called at all.
 520 */
 521static int raid10_mergeable_bvec(struct request_queue *q,
 522				 struct bvec_merge_data *bvm,
 523				 struct bio_vec *biovec)
 524{
 525	mddev_t *mddev = q->queuedata;
 526	sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
 527	int max;
 528	unsigned int chunk_sectors = mddev->chunk_sectors;
 529	unsigned int bio_sectors = bvm->bi_size >> 9;
 530
 531	max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
 532	if (max < 0) max = 0; /* bio_add cannot handle a negative return */
 533	if (max <= biovec->bv_len && bio_sectors == 0)
 534		return biovec->bv_len;
 535	else
 536		return max;
 537}
 538
 539/*
 540 * This routine returns the disk from which the requested read should
 541 * be done. There is a per-array 'next expected sequential IO' sector
 542 * number - if this matches on the next IO then we use the last disk.
 543 * There is also a per-disk 'last know head position' sector that is
 544 * maintained from IRQ contexts, both the normal and the resync IO
 545 * completion handlers update this position correctly. If there is no
 546 * perfect sequential match then we pick the disk whose head is closest.
 547 *
 548 * If there are 2 mirrors in the same 2 devices, performance degrades
 549 * because position is mirror, not device based.
 550 *
 551 * The rdev for the device selected will have nr_pending incremented.
 552 */
 553
 554/*
 555 * FIXME: possibly should rethink readbalancing and do it differently
 556 * depending on near_copies / far_copies geometry.
 557 */
 558static int read_balance(conf_t *conf, r10bio_t *r10_bio, int *max_sectors)
 
 
 559{
 560	const sector_t this_sector = r10_bio->sector;
 561	int disk, slot;
 562	int sectors = r10_bio->sectors;
 563	int best_good_sectors;
 564	sector_t new_distance, best_dist;
 565	mdk_rdev_t *rdev;
 566	int do_balance;
 567	int best_slot;
 
 568
 569	raid10_find_phys(conf, r10_bio);
 570	rcu_read_lock();
 571retry:
 572	sectors = r10_bio->sectors;
 573	best_slot = -1;
 
 574	best_dist = MaxSector;
 575	best_good_sectors = 0;
 576	do_balance = 1;
 577	/*
 578	 * Check if we can balance. We can balance on the whole
 579	 * device if no resync is going on (recovery is ok), or below
 580	 * the resync window. We take the first readable disk when
 581	 * above the resync window.
 582	 */
 583	if (conf->mddev->recovery_cp < MaxSector
 584	    && (this_sector + sectors >= conf->next_resync))
 585		do_balance = 0;
 586
 587	for (slot = 0; slot < conf->copies ; slot++) {
 588		sector_t first_bad;
 589		int bad_sectors;
 590		sector_t dev_sector;
 591
 592		if (r10_bio->devs[slot].bio == IO_BLOCKED)
 593			continue;
 594		disk = r10_bio->devs[slot].devnum;
 595		rdev = rcu_dereference(conf->mirrors[disk].rdev);
 596		if (rdev == NULL)
 
 
 
 
 597			continue;
 598		if (!test_bit(In_sync, &rdev->flags))
 
 599			continue;
 600
 601		dev_sector = r10_bio->devs[slot].addr;
 602		if (is_badblock(rdev, dev_sector, sectors,
 603				&first_bad, &bad_sectors)) {
 604			if (best_dist < MaxSector)
 605				/* Already have a better slot */
 606				continue;
 607			if (first_bad <= dev_sector) {
 608				/* Cannot read here.  If this is the
 609				 * 'primary' device, then we must not read
 610				 * beyond 'bad_sectors' from another device.
 611				 */
 612				bad_sectors -= (dev_sector - first_bad);
 613				if (!do_balance && sectors > bad_sectors)
 614					sectors = bad_sectors;
 615				if (best_good_sectors > sectors)
 616					best_good_sectors = sectors;
 617			} else {
 618				sector_t good_sectors =
 619					first_bad - dev_sector;
 620				if (good_sectors > best_good_sectors) {
 621					best_good_sectors = good_sectors;
 622					best_slot = slot;
 
 623				}
 624				if (!do_balance)
 625					/* Must read from here */
 626					break;
 627			}
 628			continue;
 629		} else
 630			best_good_sectors = sectors;
 631
 632		if (!do_balance)
 633			break;
 634
 635		/* This optimisation is debatable, and completely destroys
 636		 * sequential read speed for 'far copies' arrays.  So only
 637		 * keep it for 'near' arrays, and review those later.
 638		 */
 639		if (conf->near_copies > 1 && !atomic_read(&rdev->nr_pending))
 640			break;
 641
 642		/* for far > 1 always use the lowest address */
 643		if (conf->far_copies > 1)
 644			new_distance = r10_bio->devs[slot].addr;
 645		else
 646			new_distance = abs(r10_bio->devs[slot].addr -
 647					   conf->mirrors[disk].head_position);
 648		if (new_distance < best_dist) {
 649			best_dist = new_distance;
 650			best_slot = slot;
 
 651		}
 652	}
 653	if (slot == conf->copies)
 654		slot = best_slot;
 
 
 655
 656	if (slot >= 0) {
 657		disk = r10_bio->devs[slot].devnum;
 658		rdev = rcu_dereference(conf->mirrors[disk].rdev);
 659		if (!rdev)
 660			goto retry;
 661		atomic_inc(&rdev->nr_pending);
 662		if (test_bit(Faulty, &rdev->flags)) {
 663			/* Cannot risk returning a device that failed
 664			 * before we inc'ed nr_pending
 665			 */
 666			rdev_dec_pending(rdev, conf->mddev);
 667			goto retry;
 668		}
 669		r10_bio->read_slot = slot;
 670	} else
 671		disk = -1;
 672	rcu_read_unlock();
 673	*max_sectors = best_good_sectors;
 674
 675	return disk;
 676}
 677
 678static int raid10_congested(void *data, int bits)
 679{
 680	mddev_t *mddev = data;
 681	conf_t *conf = mddev->private;
 682	int i, ret = 0;
 683
 684	if (mddev_congested(mddev, bits))
 
 685		return 1;
 
 686	rcu_read_lock();
 687	for (i = 0; i < conf->raid_disks && ret == 0; i++) {
 688		mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
 
 
 
 689		if (rdev && !test_bit(Faulty, &rdev->flags)) {
 690			struct request_queue *q = bdev_get_queue(rdev->bdev);
 691
 692			ret |= bdi_congested(&q->backing_dev_info, bits);
 693		}
 694	}
 695	rcu_read_unlock();
 696	return ret;
 697}
 698
 699static void flush_pending_writes(conf_t *conf)
 700{
 701	/* Any writes that have been queued but are awaiting
 702	 * bitmap updates get flushed here.
 703	 */
 704	spin_lock_irq(&conf->device_lock);
 705
 706	if (conf->pending_bio_list.head) {
 707		struct bio *bio;
 708		bio = bio_list_get(&conf->pending_bio_list);
 
 709		spin_unlock_irq(&conf->device_lock);
 710		/* flush any pending bitmap writes to disk
 711		 * before proceeding w/ I/O */
 712		bitmap_unplug(conf->mddev->bitmap);
 
 713
 714		while (bio) { /* submit pending writes */
 715			struct bio *next = bio->bi_next;
 716			bio->bi_next = NULL;
 717			generic_make_request(bio);
 
 
 
 
 
 718			bio = next;
 719		}
 720	} else
 721		spin_unlock_irq(&conf->device_lock);
 722}
 723
 724/* Barriers....
 725 * Sometimes we need to suspend IO while we do something else,
 726 * either some resync/recovery, or reconfigure the array.
 727 * To do this we raise a 'barrier'.
 728 * The 'barrier' is a counter that can be raised multiple times
 729 * to count how many activities are happening which preclude
 730 * normal IO.
 731 * We can only raise the barrier if there is no pending IO.
 732 * i.e. if nr_pending == 0.
 733 * We choose only to raise the barrier if no-one is waiting for the
 734 * barrier to go down.  This means that as soon as an IO request
 735 * is ready, no other operations which require a barrier will start
 736 * until the IO request has had a chance.
 737 *
 738 * So: regular IO calls 'wait_barrier'.  When that returns there
 739 *    is no backgroup IO happening,  It must arrange to call
 740 *    allow_barrier when it has finished its IO.
 741 * backgroup IO calls must call raise_barrier.  Once that returns
 742 *    there is no normal IO happeing.  It must arrange to call
 743 *    lower_barrier when the particular background IO completes.
 744 */
 745
 746static void raise_barrier(conf_t *conf, int force)
 747{
 748	BUG_ON(force && !conf->barrier);
 749	spin_lock_irq(&conf->resync_lock);
 750
 751	/* Wait until no block IO is waiting (unless 'force') */
 752	wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
 753			    conf->resync_lock, );
 754
 755	/* block any new IO from starting */
 756	conf->barrier++;
 757
 758	/* Now wait for all pending IO to complete */
 759	wait_event_lock_irq(conf->wait_barrier,
 760			    !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
 761			    conf->resync_lock, );
 762
 763	spin_unlock_irq(&conf->resync_lock);
 764}
 765
 766static void lower_barrier(conf_t *conf)
 767{
 768	unsigned long flags;
 769	spin_lock_irqsave(&conf->resync_lock, flags);
 770	conf->barrier--;
 771	spin_unlock_irqrestore(&conf->resync_lock, flags);
 772	wake_up(&conf->wait_barrier);
 773}
 774
 775static void wait_barrier(conf_t *conf)
 776{
 777	spin_lock_irq(&conf->resync_lock);
 778	if (conf->barrier) {
 779		conf->nr_waiting++;
 780		wait_event_lock_irq(conf->wait_barrier, !conf->barrier,
 781				    conf->resync_lock,
 782				    );
 
 
 
 
 
 
 
 
 
 
 
 
 783		conf->nr_waiting--;
 784	}
 785	conf->nr_pending++;
 786	spin_unlock_irq(&conf->resync_lock);
 787}
 788
 789static void allow_barrier(conf_t *conf)
 790{
 791	unsigned long flags;
 792	spin_lock_irqsave(&conf->resync_lock, flags);
 793	conf->nr_pending--;
 794	spin_unlock_irqrestore(&conf->resync_lock, flags);
 795	wake_up(&conf->wait_barrier);
 796}
 797
 798static void freeze_array(conf_t *conf)
 799{
 800	/* stop syncio and normal IO and wait for everything to
 801	 * go quiet.
 802	 * We increment barrier and nr_waiting, and then
 803	 * wait until nr_pending match nr_queued+1
 804	 * This is called in the context of one normal IO request
 805	 * that has failed. Thus any sync request that might be pending
 806	 * will be blocked by nr_pending, and we need to wait for
 807	 * pending IO requests to complete or be queued for re-try.
 808	 * Thus the number queued (nr_queued) plus this request (1)
 809	 * must match the number of pending IOs (nr_pending) before
 810	 * we continue.
 811	 */
 812	spin_lock_irq(&conf->resync_lock);
 813	conf->barrier++;
 814	conf->nr_waiting++;
 815	wait_event_lock_irq(conf->wait_barrier,
 816			    conf->nr_pending == conf->nr_queued+1,
 817			    conf->resync_lock,
 818			    flush_pending_writes(conf));
 819
 820	spin_unlock_irq(&conf->resync_lock);
 821}
 822
 823static void unfreeze_array(conf_t *conf)
 824{
 825	/* reverse the effect of the freeze */
 826	spin_lock_irq(&conf->resync_lock);
 827	conf->barrier--;
 828	conf->nr_waiting--;
 829	wake_up(&conf->wait_barrier);
 830	spin_unlock_irq(&conf->resync_lock);
 831}
 832
 833static int make_request(mddev_t *mddev, struct bio * bio)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 834{
 835	conf_t *conf = mddev->private;
 836	mirror_info_t *mirror;
 837	r10bio_t *r10_bio;
 838	struct bio *read_bio;
 839	int i;
 840	int chunk_sects = conf->chunk_mask + 1;
 841	const int rw = bio_data_dir(bio);
 842	const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
 843	const unsigned long do_fua = (bio->bi_rw & REQ_FUA);
 
 
 
 844	unsigned long flags;
 845	mdk_rdev_t *blocked_rdev;
 846	int plugged;
 
 847	int sectors_handled;
 848	int max_sectors;
 849
 850	if (unlikely(bio->bi_rw & REQ_FLUSH)) {
 851		md_flush_request(mddev, bio);
 852		return 0;
 853	}
 854
 855	/* If this request crosses a chunk boundary, we need to
 856	 * split it.  This will only happen for 1 PAGE (or less) requests.
 857	 */
 858	if (unlikely( (bio->bi_sector & conf->chunk_mask) + (bio->bi_size >> 9)
 859		      > chunk_sects &&
 860		    conf->near_copies < conf->raid_disks)) {
 861		struct bio_pair *bp;
 862		/* Sanity check -- queue functions should prevent this happening */
 863		if (bio->bi_vcnt != 1 ||
 864		    bio->bi_idx != 0)
 865			goto bad_map;
 866		/* This is a one page bio that upper layers
 867		 * refuse to split for us, so we need to split it.
 868		 */
 869		bp = bio_split(bio,
 870			       chunk_sects - (bio->bi_sector & (chunk_sects - 1)) );
 871
 872		/* Each of these 'make_request' calls will call 'wait_barrier'.
 873		 * If the first succeeds but the second blocks due to the resync
 874		 * thread raising the barrier, we will deadlock because the
 875		 * IO to the underlying device will be queued in generic_make_request
 876		 * and will never complete, so will never reduce nr_pending.
 877		 * So increment nr_waiting here so no new raise_barriers will
 878		 * succeed, and so the second wait_barrier cannot block.
 879		 */
 880		spin_lock_irq(&conf->resync_lock);
 881		conf->nr_waiting++;
 882		spin_unlock_irq(&conf->resync_lock);
 883
 884		if (make_request(mddev, &bp->bio1))
 885			generic_make_request(&bp->bio1);
 886		if (make_request(mddev, &bp->bio2))
 887			generic_make_request(&bp->bio2);
 888
 889		spin_lock_irq(&conf->resync_lock);
 890		conf->nr_waiting--;
 891		wake_up(&conf->wait_barrier);
 892		spin_unlock_irq(&conf->resync_lock);
 893
 894		bio_pair_release(bp);
 895		return 0;
 896	bad_map:
 897		printk("md/raid10:%s: make_request bug: can't convert block across chunks"
 898		       " or bigger than %dk %llu %d\n", mdname(mddev), chunk_sects/2,
 899		       (unsigned long long)bio->bi_sector, bio->bi_size >> 10);
 900
 901		bio_io_error(bio);
 902		return 0;
 903	}
 904
 905	md_write_start(mddev, bio);
 906
 907	/*
 908	 * Register the new request and wait if the reconstruction
 909	 * thread has put up a bar for new requests.
 910	 * Continue immediately if no resync is active currently.
 911	 */
 912	wait_barrier(conf);
 913
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 914	r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
 915
 916	r10_bio->master_bio = bio;
 917	r10_bio->sectors = bio->bi_size >> 9;
 918
 919	r10_bio->mddev = mddev;
 920	r10_bio->sector = bio->bi_sector;
 921	r10_bio->state = 0;
 922
 923	/* We might need to issue multiple reads to different
 924	 * devices if there are bad blocks around, so we keep
 925	 * track of the number of reads in bio->bi_phys_segments.
 926	 * If this is 0, there is only one r10_bio and no locking
 927	 * will be needed when the request completes.  If it is
 928	 * non-zero, then it is the number of not-completed requests.
 929	 */
 930	bio->bi_phys_segments = 0;
 931	clear_bit(BIO_SEG_VALID, &bio->bi_flags);
 932
 933	if (rw == READ) {
 934		/*
 935		 * read balancing logic:
 936		 */
 937		int disk;
 938		int slot;
 939
 940read_again:
 941		disk = read_balance(conf, r10_bio, &max_sectors);
 942		slot = r10_bio->read_slot;
 943		if (disk < 0) {
 944			raid_end_bio_io(r10_bio);
 945			return 0;
 946		}
 947		mirror = conf->mirrors + disk;
 948
 949		read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
 950		md_trim_bio(read_bio, r10_bio->sector - bio->bi_sector,
 951			    max_sectors);
 952
 953		r10_bio->devs[slot].bio = read_bio;
 
 954
 955		read_bio->bi_sector = r10_bio->devs[slot].addr +
 956			mirror->rdev->data_offset;
 957		read_bio->bi_bdev = mirror->rdev->bdev;
 958		read_bio->bi_end_io = raid10_end_read_request;
 959		read_bio->bi_rw = READ | do_sync;
 960		read_bio->bi_private = r10_bio;
 961
 962		if (max_sectors < r10_bio->sectors) {
 963			/* Could not read all from this device, so we will
 964			 * need another r10_bio.
 965			 */
 966			sectors_handled = (r10_bio->sectors + max_sectors
 967					   - bio->bi_sector);
 968			r10_bio->sectors = max_sectors;
 969			spin_lock_irq(&conf->device_lock);
 970			if (bio->bi_phys_segments == 0)
 971				bio->bi_phys_segments = 2;
 972			else
 973				bio->bi_phys_segments++;
 974			spin_unlock(&conf->device_lock);
 975			/* Cannot call generic_make_request directly
 976			 * as that will be queued in __generic_make_request
 977			 * and subsequent mempool_alloc might block
 978			 * waiting for it.  so hand bio over to raid10d.
 979			 */
 980			reschedule_retry(r10_bio);
 981
 982			r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
 983
 984			r10_bio->master_bio = bio;
 985			r10_bio->sectors = ((bio->bi_size >> 9)
 986					    - sectors_handled);
 987			r10_bio->state = 0;
 988			r10_bio->mddev = mddev;
 989			r10_bio->sector = bio->bi_sector + sectors_handled;
 
 990			goto read_again;
 991		} else
 992			generic_make_request(read_bio);
 993		return 0;
 994	}
 995
 996	/*
 997	 * WRITE:
 998	 */
 
 
 
 
 
 999	/* first select target devices under rcu_lock and
1000	 * inc refcount on their rdev.  Record them by setting
1001	 * bios[x] to bio
1002	 * If there are known/acknowledged bad blocks on any device
1003	 * on which we have seen a write error, we want to avoid
1004	 * writing to those blocks.  This potentially requires several
1005	 * writes to write around the bad blocks.  Each set of writes
1006	 * gets its own r10_bio with a set of bios attached.  The number
1007	 * of r10_bios is recored in bio->bi_phys_segments just as with
1008	 * the read case.
1009	 */
1010	plugged = mddev_check_plugged(mddev);
1011
 
1012	raid10_find_phys(conf, r10_bio);
1013retry_write:
1014	blocked_rdev = NULL;
1015	rcu_read_lock();
1016	max_sectors = r10_bio->sectors;
1017
1018	for (i = 0;  i < conf->copies; i++) {
1019		int d = r10_bio->devs[i].devnum;
1020		mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[d].rdev);
 
 
 
 
1021		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1022			atomic_inc(&rdev->nr_pending);
1023			blocked_rdev = rdev;
1024			break;
1025		}
 
 
 
 
 
 
 
 
 
 
1026		r10_bio->devs[i].bio = NULL;
1027		if (!rdev || test_bit(Faulty, &rdev->flags)) {
 
 
1028			set_bit(R10BIO_Degraded, &r10_bio->state);
1029			continue;
1030		}
1031		if (test_bit(WriteErrorSeen, &rdev->flags)) {
1032			sector_t first_bad;
1033			sector_t dev_sector = r10_bio->devs[i].addr;
1034			int bad_sectors;
1035			int is_bad;
1036
1037			is_bad = is_badblock(rdev, dev_sector,
1038					     max_sectors,
1039					     &first_bad, &bad_sectors);
1040			if (is_bad < 0) {
1041				/* Mustn't write here until the bad block
1042				 * is acknowledged
1043				 */
1044				atomic_inc(&rdev->nr_pending);
1045				set_bit(BlockedBadBlocks, &rdev->flags);
1046				blocked_rdev = rdev;
1047				break;
1048			}
1049			if (is_bad && first_bad <= dev_sector) {
1050				/* Cannot write here at all */
1051				bad_sectors -= (dev_sector - first_bad);
1052				if (bad_sectors < max_sectors)
1053					/* Mustn't write more than bad_sectors
1054					 * to other devices yet
1055					 */
1056					max_sectors = bad_sectors;
1057				/* We don't set R10BIO_Degraded as that
1058				 * only applies if the disk is missing,
1059				 * so it might be re-added, and we want to
1060				 * know to recover this chunk.
1061				 * In this case the device is here, and the
1062				 * fact that this chunk is not in-sync is
1063				 * recorded in the bad block log.
1064				 */
1065				continue;
1066			}
1067			if (is_bad) {
1068				int good_sectors = first_bad - dev_sector;
1069				if (good_sectors < max_sectors)
1070					max_sectors = good_sectors;
1071			}
1072		}
1073		r10_bio->devs[i].bio = bio;
1074		atomic_inc(&rdev->nr_pending);
 
 
 
 
 
 
1075	}
1076	rcu_read_unlock();
1077
1078	if (unlikely(blocked_rdev)) {
1079		/* Have to wait for this device to get unblocked, then retry */
1080		int j;
1081		int d;
1082
1083		for (j = 0; j < i; j++)
1084			if (r10_bio->devs[j].bio) {
1085				d = r10_bio->devs[j].devnum;
1086				rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1087			}
 
 
 
 
 
 
 
 
 
 
 
 
1088		allow_barrier(conf);
1089		md_wait_for_blocked_rdev(blocked_rdev, mddev);
1090		wait_barrier(conf);
1091		goto retry_write;
1092	}
1093
1094	if (max_sectors < r10_bio->sectors) {
1095		/* We are splitting this into multiple parts, so
1096		 * we need to prepare for allocating another r10_bio.
1097		 */
1098		r10_bio->sectors = max_sectors;
1099		spin_lock_irq(&conf->device_lock);
1100		if (bio->bi_phys_segments == 0)
1101			bio->bi_phys_segments = 2;
1102		else
1103			bio->bi_phys_segments++;
1104		spin_unlock_irq(&conf->device_lock);
1105	}
1106	sectors_handled = r10_bio->sector + max_sectors - bio->bi_sector;
 
1107
1108	atomic_set(&r10_bio->remaining, 1);
1109	bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1110
1111	for (i = 0; i < conf->copies; i++) {
1112		struct bio *mbio;
1113		int d = r10_bio->devs[i].devnum;
1114		if (!r10_bio->devs[i].bio)
1115			continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1116
1117		mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1118		md_trim_bio(mbio, r10_bio->sector - bio->bi_sector,
1119			    max_sectors);
1120		r10_bio->devs[i].bio = mbio;
1121
1122		mbio->bi_sector	= (r10_bio->devs[i].addr+
1123				   conf->mirrors[d].rdev->data_offset);
1124		mbio->bi_bdev = conf->mirrors[d].rdev->bdev;
1125		mbio->bi_end_io	= raid10_end_write_request;
1126		mbio->bi_rw = WRITE | do_sync | do_fua;
1127		mbio->bi_private = r10_bio;
 
 
 
 
 
 
 
 
 
1128
1129		atomic_inc(&r10_bio->remaining);
1130		spin_lock_irqsave(&conf->device_lock, flags);
1131		bio_list_add(&conf->pending_bio_list, mbio);
1132		spin_unlock_irqrestore(&conf->device_lock, flags);
 
 
 
 
1133	}
1134
1135	/* Don't remove the bias on 'remaining' (one_write_done) until
1136	 * after checking if we need to go around again.
1137	 */
1138
1139	if (sectors_handled < (bio->bi_size >> 9)) {
1140		one_write_done(r10_bio);
1141		/* We need another r10_bio.  It has already been counted
1142		 * in bio->bi_phys_segments.
1143		 */
1144		r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1145
1146		r10_bio->master_bio = bio;
1147		r10_bio->sectors = (bio->bi_size >> 9) - sectors_handled;
1148
1149		r10_bio->mddev = mddev;
1150		r10_bio->sector = bio->bi_sector + sectors_handled;
1151		r10_bio->state = 0;
1152		goto retry_write;
1153	}
1154	one_write_done(r10_bio);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1155
1156	/* In case raid10d snuck in to freeze_array */
1157	wake_up(&conf->wait_barrier);
1158
1159	if (do_sync || !mddev->bitmap || !plugged)
1160		md_wakeup_thread(mddev->thread);
1161	return 0;
1162}
1163
1164static void status(struct seq_file *seq, mddev_t *mddev)
1165{
1166	conf_t *conf = mddev->private;
1167	int i;
1168
1169	if (conf->near_copies < conf->raid_disks)
1170		seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1171	if (conf->near_copies > 1)
1172		seq_printf(seq, " %d near-copies", conf->near_copies);
1173	if (conf->far_copies > 1) {
1174		if (conf->far_offset)
1175			seq_printf(seq, " %d offset-copies", conf->far_copies);
1176		else
1177			seq_printf(seq, " %d far-copies", conf->far_copies);
1178	}
1179	seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1180					conf->raid_disks - mddev->degraded);
1181	for (i = 0; i < conf->raid_disks; i++)
 
 
1182		seq_printf(seq, "%s",
1183			      conf->mirrors[i].rdev &&
1184			      test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
1185	seq_printf(seq, "]");
1186}
1187
1188/* check if there are enough drives for
1189 * every block to appear on atleast one.
1190 * Don't consider the device numbered 'ignore'
1191 * as we might be about to remove it.
1192 */
1193static int enough(conf_t *conf, int ignore)
1194{
1195	int first = 0;
 
 
 
 
 
 
 
 
 
1196
 
1197	do {
1198		int n = conf->copies;
1199		int cnt = 0;
 
1200		while (n--) {
1201			if (conf->mirrors[first].rdev &&
1202			    first != ignore)
 
 
1203				cnt++;
1204			first = (first+1) % conf->raid_disks;
1205		}
1206		if (cnt == 0)
1207			return 0;
 
1208	} while (first != 0);
1209	return 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1210}
1211
1212static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1213{
1214	char b[BDEVNAME_SIZE];
1215	conf_t *conf = mddev->private;
 
1216
1217	/*
1218	 * If it is not operational, then we have already marked it as dead
1219	 * else if it is the last working disks, ignore the error, let the
1220	 * next level up know.
1221	 * else mark the drive as failed
1222	 */
 
1223	if (test_bit(In_sync, &rdev->flags)
1224	    && !enough(conf, rdev->raid_disk))
1225		/*
1226		 * Don't fail the drive, just return an IO error.
1227		 */
 
1228		return;
1229	if (test_and_clear_bit(In_sync, &rdev->flags)) {
1230		unsigned long flags;
1231		spin_lock_irqsave(&conf->device_lock, flags);
1232		mddev->degraded++;
1233		spin_unlock_irqrestore(&conf->device_lock, flags);
1234		/*
1235		 * if recovery is running, make sure it aborts.
1236		 */
1237		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1238	}
1239	set_bit(Blocked, &rdev->flags);
1240	set_bit(Faulty, &rdev->flags);
1241	set_bit(MD_CHANGE_DEVS, &mddev->flags);
 
 
1242	printk(KERN_ALERT
1243	       "md/raid10:%s: Disk failure on %s, disabling device.\n"
1244	       "md/raid10:%s: Operation continuing on %d devices.\n",
1245	       mdname(mddev), bdevname(rdev->bdev, b),
1246	       mdname(mddev), conf->raid_disks - mddev->degraded);
1247}
1248
1249static void print_conf(conf_t *conf)
1250{
1251	int i;
1252	mirror_info_t *tmp;
1253
1254	printk(KERN_DEBUG "RAID10 conf printout:\n");
1255	if (!conf) {
1256		printk(KERN_DEBUG "(!conf)\n");
1257		return;
1258	}
1259	printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1260		conf->raid_disks);
1261
1262	for (i = 0; i < conf->raid_disks; i++) {
1263		char b[BDEVNAME_SIZE];
1264		tmp = conf->mirrors + i;
1265		if (tmp->rdev)
1266			printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1267				i, !test_bit(In_sync, &tmp->rdev->flags),
1268			        !test_bit(Faulty, &tmp->rdev->flags),
1269				bdevname(tmp->rdev->bdev,b));
1270	}
1271}
1272
1273static void close_sync(conf_t *conf)
1274{
1275	wait_barrier(conf);
1276	allow_barrier(conf);
1277
1278	mempool_destroy(conf->r10buf_pool);
1279	conf->r10buf_pool = NULL;
1280}
1281
1282static int raid10_spare_active(mddev_t *mddev)
1283{
1284	int i;
1285	conf_t *conf = mddev->private;
1286	mirror_info_t *tmp;
1287	int count = 0;
1288	unsigned long flags;
1289
1290	/*
1291	 * Find all non-in_sync disks within the RAID10 configuration
1292	 * and mark them in_sync
1293	 */
1294	for (i = 0; i < conf->raid_disks; i++) {
1295		tmp = conf->mirrors + i;
1296		if (tmp->rdev
1297		    && !test_bit(Faulty, &tmp->rdev->flags)
1298		    && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1299			count++;
1300			sysfs_notify_dirent(tmp->rdev->sysfs_state);
1301		}
1302	}
1303	spin_lock_irqsave(&conf->device_lock, flags);
1304	mddev->degraded -= count;
1305	spin_unlock_irqrestore(&conf->device_lock, flags);
1306
1307	print_conf(conf);
1308	return count;
1309}
1310
1311
1312static int raid10_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
1313{
1314	conf_t *conf = mddev->private;
1315	int err = -EEXIST;
1316	int mirror;
1317	int first = 0;
1318	int last = conf->raid_disks - 1;
1319
1320	if (mddev->recovery_cp < MaxSector)
1321		/* only hot-add to in-sync arrays, as recovery is
1322		 * very different from resync
1323		 */
1324		return -EBUSY;
1325	if (!enough(conf, -1))
1326		return -EINVAL;
1327
 
 
 
1328	if (rdev->raid_disk >= 0)
1329		first = last = rdev->raid_disk;
1330
1331	if (rdev->saved_raid_disk >= first &&
1332	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1333		mirror = rdev->saved_raid_disk;
1334	else
1335		mirror = first;
1336	for ( ; mirror <= last ; mirror++) {
1337		mirror_info_t *p = &conf->mirrors[mirror];
1338		if (p->recovery_disabled == mddev->recovery_disabled)
1339			continue;
1340		if (!p->rdev)
1341			continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
1342
1343		disk_stack_limits(mddev->gendisk, rdev->bdev,
1344				  rdev->data_offset << 9);
1345		/* as we don't honour merge_bvec_fn, we must
1346		 * never risk violating it, so limit
1347		 * ->max_segments to one lying with a single
1348		 * page, as a one page request is never in
1349		 * violation.
1350		 */
1351		if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
1352			blk_queue_max_segments(mddev->queue, 1);
1353			blk_queue_segment_boundary(mddev->queue,
1354						   PAGE_CACHE_SIZE - 1);
1355		}
1356
1357		p->head_position = 0;
 
1358		rdev->raid_disk = mirror;
1359		err = 0;
1360		if (rdev->saved_raid_disk != mirror)
1361			conf->fullsync = 1;
1362		rcu_assign_pointer(p->rdev, rdev);
1363		break;
1364	}
 
 
1365
1366	md_integrity_add_rdev(rdev, mddev);
1367	print_conf(conf);
1368	return err;
1369}
1370
1371static int raid10_remove_disk(mddev_t *mddev, int number)
1372{
1373	conf_t *conf = mddev->private;
1374	int err = 0;
1375	mdk_rdev_t *rdev;
1376	mirror_info_t *p = conf->mirrors+ number;
 
1377
1378	print_conf(conf);
1379	rdev = p->rdev;
1380	if (rdev) {
1381		if (test_bit(In_sync, &rdev->flags) ||
1382		    atomic_read(&rdev->nr_pending)) {
1383			err = -EBUSY;
1384			goto abort;
1385		}
1386		/* Only remove faulty devices in recovery
1387		 * is not possible.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1388		 */
1389		if (!test_bit(Faulty, &rdev->flags) &&
1390		    mddev->recovery_disabled != p->recovery_disabled &&
1391		    enough(conf, -1)) {
1392			err = -EBUSY;
1393			goto abort;
1394		}
1395		p->rdev = NULL;
1396		synchronize_rcu();
1397		if (atomic_read(&rdev->nr_pending)) {
1398			/* lost the race, try later */
1399			err = -EBUSY;
1400			p->rdev = rdev;
1401			goto abort;
1402		}
1403		err = md_integrity_register(mddev);
1404	}
1405abort:
1406
1407	print_conf(conf);
1408	return err;
1409}
1410
1411
1412static void end_sync_read(struct bio *bio, int error)
1413{
1414	r10bio_t *r10_bio = bio->bi_private;
1415	conf_t *conf = r10_bio->mddev->private;
1416	int d;
1417
1418	d = find_bio_disk(conf, r10_bio, bio, NULL);
 
 
 
 
1419
1420	if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1421		set_bit(R10BIO_Uptodate, &r10_bio->state);
1422	else
1423		/* The write handler will notice the lack of
1424		 * R10BIO_Uptodate and record any errors etc
1425		 */
1426		atomic_add(r10_bio->sectors,
1427			   &conf->mirrors[d].rdev->corrected_errors);
1428
1429	/* for reconstruct, we always reschedule after a read.
1430	 * for resync, only after all reads
1431	 */
1432	rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1433	if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1434	    atomic_dec_and_test(&r10_bio->remaining)) {
1435		/* we have read all the blocks,
1436		 * do the comparison in process context in raid10d
1437		 */
1438		reschedule_retry(r10_bio);
1439	}
1440}
1441
1442static void end_sync_request(r10bio_t *r10_bio)
1443{
1444	mddev_t *mddev = r10_bio->mddev;
1445
1446	while (atomic_dec_and_test(&r10_bio->remaining)) {
1447		if (r10_bio->master_bio == NULL) {
1448			/* the primary of several recovery bios */
1449			sector_t s = r10_bio->sectors;
1450			if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1451			    test_bit(R10BIO_WriteError, &r10_bio->state))
1452				reschedule_retry(r10_bio);
1453			else
1454				put_buf(r10_bio);
1455			md_done_sync(mddev, s, 1);
1456			break;
1457		} else {
1458			r10bio_t *r10_bio2 = (r10bio_t *)r10_bio->master_bio;
1459			if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1460			    test_bit(R10BIO_WriteError, &r10_bio->state))
1461				reschedule_retry(r10_bio);
1462			else
1463				put_buf(r10_bio);
1464			r10_bio = r10_bio2;
1465		}
1466	}
1467}
1468
1469static void end_sync_write(struct bio *bio, int error)
1470{
1471	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1472	r10bio_t *r10_bio = bio->bi_private;
1473	mddev_t *mddev = r10_bio->mddev;
1474	conf_t *conf = mddev->private;
1475	int d;
1476	sector_t first_bad;
1477	int bad_sectors;
1478	int slot;
 
 
1479
1480	d = find_bio_disk(conf, r10_bio, bio, &slot);
 
 
 
 
1481
1482	if (!uptodate) {
1483		set_bit(WriteErrorSeen, &conf->mirrors[d].rdev->flags);
1484		set_bit(R10BIO_WriteError, &r10_bio->state);
1485	} else if (is_badblock(conf->mirrors[d].rdev,
 
 
 
 
 
 
 
1486			     r10_bio->devs[slot].addr,
1487			     r10_bio->sectors,
1488			     &first_bad, &bad_sectors))
1489		set_bit(R10BIO_MadeGood, &r10_bio->state);
1490
1491	rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1492
1493	end_sync_request(r10_bio);
1494}
1495
1496/*
1497 * Note: sync and recover and handled very differently for raid10
1498 * This code is for resync.
1499 * For resync, we read through virtual addresses and read all blocks.
1500 * If there is any error, we schedule a write.  The lowest numbered
1501 * drive is authoritative.
1502 * However requests come for physical address, so we need to map.
1503 * For every physical address there are raid_disks/copies virtual addresses,
1504 * which is always are least one, but is not necessarly an integer.
1505 * This means that a physical address can span multiple chunks, so we may
1506 * have to submit multiple io requests for a single sync request.
1507 */
1508/*
1509 * We check if all blocks are in-sync and only write to blocks that
1510 * aren't in sync
1511 */
1512static void sync_request_write(mddev_t *mddev, r10bio_t *r10_bio)
1513{
1514	conf_t *conf = mddev->private;
1515	int i, first;
1516	struct bio *tbio, *fbio;
 
1517
1518	atomic_set(&r10_bio->remaining, 1);
1519
1520	/* find the first device with a block */
1521	for (i=0; i<conf->copies; i++)
1522		if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
1523			break;
1524
1525	if (i == conf->copies)
1526		goto done;
1527
1528	first = i;
1529	fbio = r10_bio->devs[i].bio;
 
 
1530
 
1531	/* now find blocks with errors */
1532	for (i=0 ; i < conf->copies ; i++) {
1533		int  j, d;
1534		int vcnt = r10_bio->sectors >> (PAGE_SHIFT-9);
1535
1536		tbio = r10_bio->devs[i].bio;
1537
1538		if (tbio->bi_end_io != end_sync_read)
1539			continue;
1540		if (i == first)
1541			continue;
1542		if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) {
1543			/* We know that the bi_io_vec layout is the same for
1544			 * both 'first' and 'i', so we just compare them.
1545			 * All vec entries are PAGE_SIZE;
1546			 */
1547			for (j = 0; j < vcnt; j++)
 
 
 
 
1548				if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
1549					   page_address(tbio->bi_io_vec[j].bv_page),
1550					   PAGE_SIZE))
1551					break;
 
 
1552			if (j == vcnt)
1553				continue;
1554			mddev->resync_mismatches += r10_bio->sectors;
1555			if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
1556				/* Don't fix anything. */
1557				continue;
1558		}
1559		/* Ok, we need to write this bio, either to correct an
1560		 * inconsistency or to correct an unreadable block.
1561		 * First we need to fixup bv_offset, bv_len and
1562		 * bi_vecs, as the read request might have corrupted these
1563		 */
 
 
1564		tbio->bi_vcnt = vcnt;
1565		tbio->bi_size = r10_bio->sectors << 9;
1566		tbio->bi_idx = 0;
1567		tbio->bi_phys_segments = 0;
1568		tbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1569		tbio->bi_flags |= 1 << BIO_UPTODATE;
1570		tbio->bi_next = NULL;
1571		tbio->bi_rw = WRITE;
1572		tbio->bi_private = r10_bio;
1573		tbio->bi_sector = r10_bio->devs[i].addr;
 
1574
1575		for (j=0; j < vcnt ; j++) {
1576			tbio->bi_io_vec[j].bv_offset = 0;
1577			tbio->bi_io_vec[j].bv_len = PAGE_SIZE;
1578
1579			memcpy(page_address(tbio->bi_io_vec[j].bv_page),
1580			       page_address(fbio->bi_io_vec[j].bv_page),
1581			       PAGE_SIZE);
1582		}
1583		tbio->bi_end_io = end_sync_write;
1584
1585		d = r10_bio->devs[i].devnum;
1586		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1587		atomic_inc(&r10_bio->remaining);
1588		md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9);
1589
1590		tbio->bi_sector += conf->mirrors[d].rdev->data_offset;
1591		tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
1592		generic_make_request(tbio);
1593	}
1594
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1595done:
1596	if (atomic_dec_and_test(&r10_bio->remaining)) {
1597		md_done_sync(mddev, r10_bio->sectors, 1);
1598		put_buf(r10_bio);
1599	}
1600}
1601
1602/*
1603 * Now for the recovery code.
1604 * Recovery happens across physical sectors.
1605 * We recover all non-is_sync drives by finding the virtual address of
1606 * each, and then choose a working drive that also has that virt address.
1607 * There is a separate r10_bio for each non-in_sync drive.
1608 * Only the first two slots are in use. The first for reading,
1609 * The second for writing.
1610 *
1611 */
1612static void fix_recovery_read_error(r10bio_t *r10_bio)
1613{
1614	/* We got a read error during recovery.
1615	 * We repeat the read in smaller page-sized sections.
1616	 * If a read succeeds, write it to the new device or record
1617	 * a bad block if we cannot.
1618	 * If a read fails, record a bad block on both old and
1619	 * new devices.
1620	 */
1621	mddev_t *mddev = r10_bio->mddev;
1622	conf_t *conf = mddev->private;
1623	struct bio *bio = r10_bio->devs[0].bio;
1624	sector_t sect = 0;
1625	int sectors = r10_bio->sectors;
1626	int idx = 0;
1627	int dr = r10_bio->devs[0].devnum;
1628	int dw = r10_bio->devs[1].devnum;
1629
1630	while (sectors) {
1631		int s = sectors;
1632		mdk_rdev_t *rdev;
1633		sector_t addr;
1634		int ok;
1635
1636		if (s > (PAGE_SIZE>>9))
1637			s = PAGE_SIZE >> 9;
1638
1639		rdev = conf->mirrors[dr].rdev;
1640		addr = r10_bio->devs[0].addr + sect,
1641		ok = sync_page_io(rdev,
1642				  addr,
1643				  s << 9,
1644				  bio->bi_io_vec[idx].bv_page,
1645				  READ, false);
1646		if (ok) {
1647			rdev = conf->mirrors[dw].rdev;
1648			addr = r10_bio->devs[1].addr + sect;
1649			ok = sync_page_io(rdev,
1650					  addr,
1651					  s << 9,
1652					  bio->bi_io_vec[idx].bv_page,
1653					  WRITE, false);
1654			if (!ok)
1655				set_bit(WriteErrorSeen, &rdev->flags);
 
 
 
 
 
1656		}
1657		if (!ok) {
1658			/* We don't worry if we cannot set a bad block -
1659			 * it really is bad so there is no loss in not
1660			 * recording it yet
1661			 */
1662			rdev_set_badblocks(rdev, addr, s, 0);
1663
1664			if (rdev != conf->mirrors[dw].rdev) {
1665				/* need bad block on destination too */
1666				mdk_rdev_t *rdev2 = conf->mirrors[dw].rdev;
1667				addr = r10_bio->devs[1].addr + sect;
1668				ok = rdev_set_badblocks(rdev2, addr, s, 0);
1669				if (!ok) {
1670					/* just abort the recovery */
1671					printk(KERN_NOTICE
1672					       "md/raid10:%s: recovery aborted"
1673					       " due to read error\n",
1674					       mdname(mddev));
1675
1676					conf->mirrors[dw].recovery_disabled
1677						= mddev->recovery_disabled;
1678					set_bit(MD_RECOVERY_INTR,
1679						&mddev->recovery);
1680					break;
1681				}
1682			}
1683		}
1684
1685		sectors -= s;
1686		sect += s;
1687		idx++;
1688	}
1689}
1690
1691static void recovery_request_write(mddev_t *mddev, r10bio_t *r10_bio)
1692{
1693	conf_t *conf = mddev->private;
1694	int d;
1695	struct bio *wbio;
1696
1697	if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
1698		fix_recovery_read_error(r10_bio);
1699		end_sync_request(r10_bio);
1700		return;
1701	}
1702
1703	/*
1704	 * share the pages with the first bio
1705	 * and submit the write request
1706	 */
 
1707	wbio = r10_bio->devs[1].bio;
1708	d = r10_bio->devs[1].devnum;
1709
1710	atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1711	md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9);
1712	generic_make_request(wbio);
 
 
 
 
 
 
 
 
 
 
 
 
 
1713}
1714
1715
1716/*
1717 * Used by fix_read_error() to decay the per rdev read_errors.
1718 * We halve the read error count for every hour that has elapsed
1719 * since the last recorded read error.
1720 *
1721 */
1722static void check_decay_read_errors(mddev_t *mddev, mdk_rdev_t *rdev)
1723{
1724	struct timespec cur_time_mon;
1725	unsigned long hours_since_last;
1726	unsigned int read_errors = atomic_read(&rdev->read_errors);
1727
1728	ktime_get_ts(&cur_time_mon);
1729
1730	if (rdev->last_read_error.tv_sec == 0 &&
1731	    rdev->last_read_error.tv_nsec == 0) {
1732		/* first time we've seen a read error */
1733		rdev->last_read_error = cur_time_mon;
1734		return;
1735	}
1736
1737	hours_since_last = (cur_time_mon.tv_sec -
1738			    rdev->last_read_error.tv_sec) / 3600;
1739
1740	rdev->last_read_error = cur_time_mon;
1741
1742	/*
1743	 * if hours_since_last is > the number of bits in read_errors
1744	 * just set read errors to 0. We do this to avoid
1745	 * overflowing the shift of read_errors by hours_since_last.
1746	 */
1747	if (hours_since_last >= 8 * sizeof(read_errors))
1748		atomic_set(&rdev->read_errors, 0);
1749	else
1750		atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
1751}
1752
1753static int r10_sync_page_io(mdk_rdev_t *rdev, sector_t sector,
1754			    int sectors, struct page *page, int rw)
1755{
1756	sector_t first_bad;
1757	int bad_sectors;
1758
1759	if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
1760	    && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
1761		return -1;
1762	if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
1763		/* success */
1764		return 1;
1765	if (rw == WRITE)
1766		set_bit(WriteErrorSeen, &rdev->flags);
 
 
 
 
1767	/* need to record an error - either for the block or the device */
1768	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1769		md_error(rdev->mddev, rdev);
1770	return 0;
1771}
1772
1773/*
1774 * This is a kernel thread which:
1775 *
1776 *	1.	Retries failed read operations on working mirrors.
1777 *	2.	Updates the raid superblock when problems encounter.
1778 *	3.	Performs writes following reads for array synchronising.
1779 */
1780
1781static void fix_read_error(conf_t *conf, mddev_t *mddev, r10bio_t *r10_bio)
1782{
1783	int sect = 0; /* Offset from r10_bio->sector */
1784	int sectors = r10_bio->sectors;
1785	mdk_rdev_t*rdev;
1786	int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
1787	int d = r10_bio->devs[r10_bio->read_slot].devnum;
1788
1789	/* still own a reference to this rdev, so it cannot
1790	 * have been cleared recently.
1791	 */
1792	rdev = conf->mirrors[d].rdev;
1793
1794	if (test_bit(Faulty, &rdev->flags))
1795		/* drive has already been failed, just ignore any
1796		   more fix_read_error() attempts */
1797		return;
1798
1799	check_decay_read_errors(mddev, rdev);
1800	atomic_inc(&rdev->read_errors);
1801	if (atomic_read(&rdev->read_errors) > max_read_errors) {
1802		char b[BDEVNAME_SIZE];
1803		bdevname(rdev->bdev, b);
1804
1805		printk(KERN_NOTICE
1806		       "md/raid10:%s: %s: Raid device exceeded "
1807		       "read_error threshold [cur %d:max %d]\n",
1808		       mdname(mddev), b,
1809		       atomic_read(&rdev->read_errors), max_read_errors);
1810		printk(KERN_NOTICE
1811		       "md/raid10:%s: %s: Failing raid device\n",
1812		       mdname(mddev), b);
1813		md_error(mddev, conf->mirrors[d].rdev);
 
1814		return;
1815	}
1816
1817	while(sectors) {
1818		int s = sectors;
1819		int sl = r10_bio->read_slot;
1820		int success = 0;
1821		int start;
1822
1823		if (s > (PAGE_SIZE>>9))
1824			s = PAGE_SIZE >> 9;
1825
1826		rcu_read_lock();
1827		do {
1828			sector_t first_bad;
1829			int bad_sectors;
1830
1831			d = r10_bio->devs[sl].devnum;
1832			rdev = rcu_dereference(conf->mirrors[d].rdev);
1833			if (rdev &&
1834			    test_bit(In_sync, &rdev->flags) &&
1835			    is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
1836					&first_bad, &bad_sectors) == 0) {
1837				atomic_inc(&rdev->nr_pending);
1838				rcu_read_unlock();
1839				success = sync_page_io(rdev,
1840						       r10_bio->devs[sl].addr +
1841						       sect,
1842						       s<<9,
1843						       conf->tmppage, READ, false);
1844				rdev_dec_pending(rdev, mddev);
1845				rcu_read_lock();
1846				if (success)
1847					break;
1848			}
1849			sl++;
1850			if (sl == conf->copies)
1851				sl = 0;
1852		} while (!success && sl != r10_bio->read_slot);
1853		rcu_read_unlock();
1854
1855		if (!success) {
1856			/* Cannot read from anywhere, just mark the block
1857			 * as bad on the first device to discourage future
1858			 * reads.
1859			 */
1860			int dn = r10_bio->devs[r10_bio->read_slot].devnum;
1861			rdev = conf->mirrors[dn].rdev;
1862
1863			if (!rdev_set_badblocks(
1864				    rdev,
1865				    r10_bio->devs[r10_bio->read_slot].addr
1866				    + sect,
1867				    s, 0))
1868				md_error(mddev, rdev);
 
 
 
1869			break;
1870		}
1871
1872		start = sl;
1873		/* write it back and re-read */
1874		rcu_read_lock();
1875		while (sl != r10_bio->read_slot) {
1876			char b[BDEVNAME_SIZE];
1877
1878			if (sl==0)
1879				sl = conf->copies;
1880			sl--;
1881			d = r10_bio->devs[sl].devnum;
1882			rdev = rcu_dereference(conf->mirrors[d].rdev);
1883			if (!rdev ||
1884			    !test_bit(In_sync, &rdev->flags))
1885				continue;
1886
1887			atomic_inc(&rdev->nr_pending);
1888			rcu_read_unlock();
1889			if (r10_sync_page_io(rdev,
1890					     r10_bio->devs[sl].addr +
1891					     sect,
1892					     s<<9, conf->tmppage, WRITE)
1893			    == 0) {
1894				/* Well, this device is dead */
1895				printk(KERN_NOTICE
1896				       "md/raid10:%s: read correction "
1897				       "write failed"
1898				       " (%d sectors at %llu on %s)\n",
1899				       mdname(mddev), s,
1900				       (unsigned long long)(
1901					       sect + rdev->data_offset),
 
 
1902				       bdevname(rdev->bdev, b));
1903				printk(KERN_NOTICE "md/raid10:%s: %s: failing "
1904				       "drive\n",
1905				       mdname(mddev),
1906				       bdevname(rdev->bdev, b));
1907			}
1908			rdev_dec_pending(rdev, mddev);
1909			rcu_read_lock();
1910		}
1911		sl = start;
1912		while (sl != r10_bio->read_slot) {
1913			char b[BDEVNAME_SIZE];
1914
1915			if (sl==0)
1916				sl = conf->copies;
1917			sl--;
1918			d = r10_bio->devs[sl].devnum;
1919			rdev = rcu_dereference(conf->mirrors[d].rdev);
1920			if (!rdev ||
1921			    !test_bit(In_sync, &rdev->flags))
1922				continue;
1923
1924			atomic_inc(&rdev->nr_pending);
1925			rcu_read_unlock();
1926			switch (r10_sync_page_io(rdev,
1927					     r10_bio->devs[sl].addr +
1928					     sect,
1929					     s<<9, conf->tmppage,
1930						 READ)) {
1931			case 0:
1932				/* Well, this device is dead */
1933				printk(KERN_NOTICE
1934				       "md/raid10:%s: unable to read back "
1935				       "corrected sectors"
1936				       " (%d sectors at %llu on %s)\n",
1937				       mdname(mddev), s,
1938				       (unsigned long long)(
1939					       sect + rdev->data_offset),
 
1940				       bdevname(rdev->bdev, b));
1941				printk(KERN_NOTICE "md/raid10:%s: %s: failing "
1942				       "drive\n",
1943				       mdname(mddev),
1944				       bdevname(rdev->bdev, b));
1945				break;
1946			case 1:
1947				printk(KERN_INFO
1948				       "md/raid10:%s: read error corrected"
1949				       " (%d sectors at %llu on %s)\n",
1950				       mdname(mddev), s,
1951				       (unsigned long long)(
1952					       sect + rdev->data_offset),
 
1953				       bdevname(rdev->bdev, b));
1954				atomic_add(s, &rdev->corrected_errors);
1955			}
1956
1957			rdev_dec_pending(rdev, mddev);
1958			rcu_read_lock();
1959		}
1960		rcu_read_unlock();
1961
1962		sectors -= s;
1963		sect += s;
1964	}
1965}
1966
1967static void bi_complete(struct bio *bio, int error)
1968{
1969	complete((struct completion *)bio->bi_private);
1970}
1971
1972static int submit_bio_wait(int rw, struct bio *bio)
1973{
1974	struct completion event;
1975	rw |= REQ_SYNC;
1976
1977	init_completion(&event);
1978	bio->bi_private = &event;
1979	bio->bi_end_io = bi_complete;
1980	submit_bio(rw, bio);
1981	wait_for_completion(&event);
1982
1983	return test_bit(BIO_UPTODATE, &bio->bi_flags);
1984}
1985
1986static int narrow_write_error(r10bio_t *r10_bio, int i)
1987{
1988	struct bio *bio = r10_bio->master_bio;
1989	mddev_t *mddev = r10_bio->mddev;
1990	conf_t *conf = mddev->private;
1991	mdk_rdev_t *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
1992	/* bio has the data to be written to slot 'i' where
1993	 * we just recently had a write error.
1994	 * We repeatedly clone the bio and trim down to one block,
1995	 * then try the write.  Where the write fails we record
1996	 * a bad block.
1997	 * It is conceivable that the bio doesn't exactly align with
1998	 * blocks.  We must handle this.
1999	 *
2000	 * We currently own a reference to the rdev.
2001	 */
2002
2003	int block_sectors;
2004	sector_t sector;
2005	int sectors;
2006	int sect_to_write = r10_bio->sectors;
2007	int ok = 1;
2008
2009	if (rdev->badblocks.shift < 0)
2010		return 0;
2011
2012	block_sectors = 1 << rdev->badblocks.shift;
 
2013	sector = r10_bio->sector;
2014	sectors = ((r10_bio->sector + block_sectors)
2015		   & ~(sector_t)(block_sectors - 1))
2016		- sector;
2017
2018	while (sect_to_write) {
2019		struct bio *wbio;
2020		if (sectors > sect_to_write)
2021			sectors = sect_to_write;
2022		/* Write at 'sector' for 'sectors' */
2023		wbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
2024		md_trim_bio(wbio, sector - bio->bi_sector, sectors);
2025		wbio->bi_sector = (r10_bio->devs[i].addr+
2026				   rdev->data_offset+
2027				   (sector - r10_bio->sector));
2028		wbio->bi_bdev = rdev->bdev;
2029		if (submit_bio_wait(WRITE, wbio) == 0)
2030			/* Failure! */
2031			ok = rdev_set_badblocks(rdev, sector,
2032						sectors, 0)
2033				&& ok;
2034
2035		bio_put(wbio);
2036		sect_to_write -= sectors;
2037		sector += sectors;
2038		sectors = block_sectors;
2039	}
2040	return ok;
2041}
2042
2043static void handle_read_error(mddev_t *mddev, r10bio_t *r10_bio)
2044{
2045	int slot = r10_bio->read_slot;
2046	int mirror = r10_bio->devs[slot].devnum;
2047	struct bio *bio;
2048	conf_t *conf = mddev->private;
2049	mdk_rdev_t *rdev;
2050	char b[BDEVNAME_SIZE];
2051	unsigned long do_sync;
2052	int max_sectors;
2053
2054	/* we got a read error. Maybe the drive is bad.  Maybe just
2055	 * the block and we can fix it.
2056	 * We freeze all other IO, and try reading the block from
2057	 * other devices.  When we find one, we re-write
2058	 * and check it that fixes the read error.
2059	 * This is all done synchronously while the array is
2060	 * frozen.
2061	 */
 
 
 
 
 
2062	if (mddev->ro == 0) {
2063		freeze_array(conf);
2064		fix_read_error(conf, mddev, r10_bio);
2065		unfreeze_array(conf);
2066	}
2067	rdev_dec_pending(conf->mirrors[mirror].rdev, mddev);
 
 
2068
2069	bio = r10_bio->devs[slot].bio;
2070	bdevname(bio->bi_bdev, b);
2071	r10_bio->devs[slot].bio =
2072		mddev->ro ? IO_BLOCKED : NULL;
2073read_more:
2074	mirror = read_balance(conf, r10_bio, &max_sectors);
2075	if (mirror == -1) {
2076		printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O"
2077		       " read error for block %llu\n",
2078		       mdname(mddev), b,
2079		       (unsigned long long)r10_bio->sector);
2080		raid_end_bio_io(r10_bio);
2081		bio_put(bio);
2082		return;
2083	}
2084
2085	do_sync = (r10_bio->master_bio->bi_rw & REQ_SYNC);
2086	if (bio)
2087		bio_put(bio);
2088	slot = r10_bio->read_slot;
2089	rdev = conf->mirrors[mirror].rdev;
2090	printk_ratelimited(
2091		KERN_ERR
2092		"md/raid10:%s: %s: redirecting"
2093		"sector %llu to another mirror\n",
2094		mdname(mddev),
2095		bdevname(rdev->bdev, b),
2096		(unsigned long long)r10_bio->sector);
2097	bio = bio_clone_mddev(r10_bio->master_bio,
2098			      GFP_NOIO, mddev);
2099	md_trim_bio(bio,
2100		    r10_bio->sector - bio->bi_sector,
2101		    max_sectors);
2102	r10_bio->devs[slot].bio = bio;
2103	bio->bi_sector = r10_bio->devs[slot].addr
2104		+ rdev->data_offset;
 
2105	bio->bi_bdev = rdev->bdev;
2106	bio->bi_rw = READ | do_sync;
2107	bio->bi_private = r10_bio;
2108	bio->bi_end_io = raid10_end_read_request;
2109	if (max_sectors < r10_bio->sectors) {
2110		/* Drat - have to split this up more */
2111		struct bio *mbio = r10_bio->master_bio;
2112		int sectors_handled =
2113			r10_bio->sector + max_sectors
2114			- mbio->bi_sector;
2115		r10_bio->sectors = max_sectors;
2116		spin_lock_irq(&conf->device_lock);
2117		if (mbio->bi_phys_segments == 0)
2118			mbio->bi_phys_segments = 2;
2119		else
2120			mbio->bi_phys_segments++;
2121		spin_unlock_irq(&conf->device_lock);
2122		generic_make_request(bio);
2123		bio = NULL;
2124
2125		r10_bio = mempool_alloc(conf->r10bio_pool,
2126					GFP_NOIO);
2127		r10_bio->master_bio = mbio;
2128		r10_bio->sectors = (mbio->bi_size >> 9)
2129			- sectors_handled;
2130		r10_bio->state = 0;
2131		set_bit(R10BIO_ReadError,
2132			&r10_bio->state);
2133		r10_bio->mddev = mddev;
2134		r10_bio->sector = mbio->bi_sector
2135			+ sectors_handled;
2136
2137		goto read_more;
2138	} else
2139		generic_make_request(bio);
2140}
2141
2142static void handle_write_completed(conf_t *conf, r10bio_t *r10_bio)
2143{
2144	/* Some sort of write request has finished and it
2145	 * succeeded in writing where we thought there was a
2146	 * bad block.  So forget the bad block.
2147	 * Or possibly if failed and we need to record
2148	 * a bad block.
2149	 */
2150	int m;
2151	mdk_rdev_t *rdev;
2152
2153	if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2154	    test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2155		for (m = 0; m < conf->copies; m++) {
2156			int dev = r10_bio->devs[m].devnum;
2157			rdev = conf->mirrors[dev].rdev;
2158			if (r10_bio->devs[m].bio == NULL)
2159				continue;
2160			if (test_bit(BIO_UPTODATE,
2161				     &r10_bio->devs[m].bio->bi_flags)) {
2162				rdev_clear_badblocks(
2163					rdev,
2164					r10_bio->devs[m].addr,
2165					r10_bio->sectors);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2166			} else {
2167				if (!rdev_set_badblocks(
2168					    rdev,
2169					    r10_bio->devs[m].addr,
2170					    r10_bio->sectors, 0))
2171					md_error(conf->mddev, rdev);
2172			}
2173		}
2174		put_buf(r10_bio);
2175	} else {
 
2176		for (m = 0; m < conf->copies; m++) {
2177			int dev = r10_bio->devs[m].devnum;
2178			struct bio *bio = r10_bio->devs[m].bio;
2179			rdev = conf->mirrors[dev].rdev;
2180			if (bio == IO_MADE_GOOD) {
2181				rdev_clear_badblocks(
2182					rdev,
2183					r10_bio->devs[m].addr,
2184					r10_bio->sectors);
2185				rdev_dec_pending(rdev, conf->mddev);
2186			} else if (bio != NULL &&
2187				   !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
2188				if (!narrow_write_error(r10_bio, m)) {
2189					md_error(conf->mddev, rdev);
2190					set_bit(R10BIO_Degraded,
2191						&r10_bio->state);
2192				}
2193				rdev_dec_pending(rdev, conf->mddev);
2194			}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2195		}
2196		if (test_bit(R10BIO_WriteError,
2197			     &r10_bio->state))
2198			close_write(r10_bio);
2199		raid_end_bio_io(r10_bio);
2200	}
2201}
2202
2203static void raid10d(mddev_t *mddev)
2204{
2205	r10bio_t *r10_bio;
 
2206	unsigned long flags;
2207	conf_t *conf = mddev->private;
2208	struct list_head *head = &conf->retry_list;
2209	struct blk_plug plug;
2210
2211	md_check_recovery(mddev);
2212
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2213	blk_start_plug(&plug);
2214	for (;;) {
2215
2216		flush_pending_writes(conf);
2217
2218		spin_lock_irqsave(&conf->device_lock, flags);
2219		if (list_empty(head)) {
2220			spin_unlock_irqrestore(&conf->device_lock, flags);
2221			break;
2222		}
2223		r10_bio = list_entry(head->prev, r10bio_t, retry_list);
2224		list_del(head->prev);
2225		conf->nr_queued--;
2226		spin_unlock_irqrestore(&conf->device_lock, flags);
2227
2228		mddev = r10_bio->mddev;
2229		conf = mddev->private;
2230		if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2231		    test_bit(R10BIO_WriteError, &r10_bio->state))
2232			handle_write_completed(conf, r10_bio);
 
 
2233		else if (test_bit(R10BIO_IsSync, &r10_bio->state))
2234			sync_request_write(mddev, r10_bio);
2235		else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
2236			recovery_request_write(mddev, r10_bio);
2237		else if (test_bit(R10BIO_ReadError, &r10_bio->state))
2238			handle_read_error(mddev, r10_bio);
2239		else {
2240			/* just a partial read to be scheduled from a
2241			 * separate context
2242			 */
2243			int slot = r10_bio->read_slot;
2244			generic_make_request(r10_bio->devs[slot].bio);
2245		}
2246
2247		cond_resched();
2248		if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2249			md_check_recovery(mddev);
2250	}
2251	blk_finish_plug(&plug);
2252}
2253
2254
2255static int init_resync(conf_t *conf)
2256{
2257	int buffs;
 
2258
2259	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2260	BUG_ON(conf->r10buf_pool);
 
 
 
 
2261	conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
2262	if (!conf->r10buf_pool)
2263		return -ENOMEM;
2264	conf->next_resync = 0;
2265	return 0;
2266}
2267
2268/*
2269 * perform a "sync" on one "block"
2270 *
2271 * We need to make sure that no normal I/O request - particularly write
2272 * requests - conflict with active sync requests.
2273 *
2274 * This is achieved by tracking pending requests and a 'barrier' concept
2275 * that can be installed to exclude normal IO requests.
2276 *
2277 * Resync and recovery are handled very differently.
2278 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2279 *
2280 * For resync, we iterate over virtual addresses, read all copies,
2281 * and update if there are differences.  If only one copy is live,
2282 * skip it.
2283 * For recovery, we iterate over physical addresses, read a good
2284 * value for each non-in_sync drive, and over-write.
2285 *
2286 * So, for recovery we may have several outstanding complex requests for a
2287 * given address, one for each out-of-sync device.  We model this by allocating
2288 * a number of r10_bio structures, one for each out-of-sync device.
2289 * As we setup these structures, we collect all bio's together into a list
2290 * which we then process collectively to add pages, and then process again
2291 * to pass to generic_make_request.
2292 *
2293 * The r10_bio structures are linked using a borrowed master_bio pointer.
2294 * This link is counted in ->remaining.  When the r10_bio that points to NULL
2295 * has its remaining count decremented to 0, the whole complex operation
2296 * is complete.
2297 *
2298 */
2299
2300static sector_t sync_request(mddev_t *mddev, sector_t sector_nr,
2301			     int *skipped, int go_faster)
2302{
2303	conf_t *conf = mddev->private;
2304	r10bio_t *r10_bio;
2305	struct bio *biolist = NULL, *bio;
2306	sector_t max_sector, nr_sectors;
2307	int i;
2308	int max_sync;
2309	sector_t sync_blocks;
2310	sector_t sectors_skipped = 0;
2311	int chunks_skipped = 0;
 
2312
2313	if (!conf->r10buf_pool)
2314		if (init_resync(conf))
2315			return 0;
2316
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2317 skipped:
2318	max_sector = mddev->dev_sectors;
2319	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
 
2320		max_sector = mddev->resync_max_sectors;
2321	if (sector_nr >= max_sector) {
2322		/* If we aborted, we need to abort the
2323		 * sync on the 'current' bitmap chucks (there can
2324		 * be several when recovering multiple devices).
2325		 * as we may have started syncing it but not finished.
2326		 * We can find the current address in
2327		 * mddev->curr_resync, but for recovery,
2328		 * we need to convert that to several
2329		 * virtual addresses.
2330		 */
 
 
 
 
 
 
2331		if (mddev->curr_resync < max_sector) { /* aborted */
2332			if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2333				bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2334						&sync_blocks, 1);
2335			else for (i=0; i<conf->raid_disks; i++) {
2336				sector_t sect =
2337					raid10_find_virt(conf, mddev->curr_resync, i);
2338				bitmap_end_sync(mddev->bitmap, sect,
2339						&sync_blocks, 1);
2340			}
2341		} else /* completed sync */
 
 
 
 
 
 
 
 
 
 
 
 
 
2342			conf->fullsync = 0;
2343
2344		bitmap_close_sync(mddev->bitmap);
2345		close_sync(conf);
2346		*skipped = 1;
2347		return sectors_skipped;
2348	}
2349	if (chunks_skipped >= conf->raid_disks) {
 
 
 
 
2350		/* if there has been nothing to do on any drive,
2351		 * then there is nothing to do at all..
2352		 */
2353		*skipped = 1;
2354		return (max_sector - sector_nr) + sectors_skipped;
2355	}
2356
2357	if (max_sector > mddev->resync_max)
2358		max_sector = mddev->resync_max; /* Don't do IO beyond here */
2359
2360	/* make sure whole request will fit in a chunk - if chunks
2361	 * are meaningful
2362	 */
2363	if (conf->near_copies < conf->raid_disks &&
2364	    max_sector > (sector_nr | conf->chunk_mask))
2365		max_sector = (sector_nr | conf->chunk_mask) + 1;
2366	/*
2367	 * If there is non-resync activity waiting for us then
2368	 * put in a delay to throttle resync.
2369	 */
2370	if (!go_faster && conf->nr_waiting)
2371		msleep_interruptible(1000);
2372
2373	/* Again, very different code for resync and recovery.
2374	 * Both must result in an r10bio with a list of bios that
2375	 * have bi_end_io, bi_sector, bi_bdev set,
2376	 * and bi_private set to the r10bio.
2377	 * For recovery, we may actually create several r10bios
2378	 * with 2 bios in each, that correspond to the bios in the main one.
2379	 * In this case, the subordinate r10bios link back through a
2380	 * borrowed master_bio pointer, and the counter in the master
2381	 * includes a ref from each subordinate.
2382	 */
2383	/* First, we decide what to do and set ->bi_end_io
2384	 * To end_sync_read if we want to read, and
2385	 * end_sync_write if we will want to write.
2386	 */
2387
2388	max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
2389	if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2390		/* recovery... the complicated one */
2391		int j;
2392		r10_bio = NULL;
2393
2394		for (i=0 ; i<conf->raid_disks; i++) {
2395			int still_degraded;
2396			r10bio_t *rb2;
2397			sector_t sect;
2398			int must_sync;
2399			int any_working;
 
2400
2401			if (conf->mirrors[i].rdev == NULL ||
2402			    test_bit(In_sync, &conf->mirrors[i].rdev->flags)) 
 
 
 
 
2403				continue;
2404
2405			still_degraded = 0;
2406			/* want to reconstruct this device */
2407			rb2 = r10_bio;
2408			sect = raid10_find_virt(conf, sector_nr, i);
2409			/* Unless we are doing a full sync, we only need
2410			 * to recover the block if it is set in the bitmap
 
 
 
 
 
 
 
2411			 */
2412			must_sync = bitmap_start_sync(mddev->bitmap, sect,
2413						      &sync_blocks, 1);
2414			if (sync_blocks < max_sync)
2415				max_sync = sync_blocks;
2416			if (!must_sync &&
 
2417			    !conf->fullsync) {
2418				/* yep, skip the sync_blocks here, but don't assume
2419				 * that there will never be anything to do here
2420				 */
2421				chunks_skipped = -1;
2422				continue;
2423			}
2424
2425			r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
 
2426			raise_barrier(conf, rb2 != NULL);
2427			atomic_set(&r10_bio->remaining, 0);
2428
2429			r10_bio->master_bio = (struct bio*)rb2;
2430			if (rb2)
2431				atomic_inc(&rb2->remaining);
2432			r10_bio->mddev = mddev;
2433			set_bit(R10BIO_IsRecover, &r10_bio->state);
2434			r10_bio->sector = sect;
2435
2436			raid10_find_phys(conf, r10_bio);
2437
2438			/* Need to check if the array will still be
2439			 * degraded
2440			 */
2441			for (j=0; j<conf->raid_disks; j++)
2442				if (conf->mirrors[j].rdev == NULL ||
2443				    test_bit(Faulty, &conf->mirrors[j].rdev->flags)) {
2444					still_degraded = 1;
2445					break;
2446				}
2447
2448			must_sync = bitmap_start_sync(mddev->bitmap, sect,
2449						      &sync_blocks, still_degraded);
2450
2451			any_working = 0;
2452			for (j=0; j<conf->copies;j++) {
2453				int k;
2454				int d = r10_bio->devs[j].devnum;
2455				sector_t from_addr, to_addr;
2456				mdk_rdev_t *rdev;
2457				sector_t sector, first_bad;
2458				int bad_sectors;
2459				if (!conf->mirrors[d].rdev ||
2460				    !test_bit(In_sync, &conf->mirrors[d].rdev->flags))
2461					continue;
2462				/* This is where we read from */
2463				any_working = 1;
2464				rdev = conf->mirrors[d].rdev;
2465				sector = r10_bio->devs[j].addr;
2466
2467				if (is_badblock(rdev, sector, max_sync,
2468						&first_bad, &bad_sectors)) {
2469					if (first_bad > sector)
2470						max_sync = first_bad - sector;
2471					else {
2472						bad_sectors -= (sector
2473								- first_bad);
2474						if (max_sync > bad_sectors)
2475							max_sync = bad_sectors;
2476						continue;
2477					}
2478				}
2479				bio = r10_bio->devs[0].bio;
 
2480				bio->bi_next = biolist;
2481				biolist = bio;
2482				bio->bi_private = r10_bio;
2483				bio->bi_end_io = end_sync_read;
2484				bio->bi_rw = READ;
2485				from_addr = r10_bio->devs[j].addr;
2486				bio->bi_sector = from_addr +
2487					conf->mirrors[d].rdev->data_offset;
2488				bio->bi_bdev = conf->mirrors[d].rdev->bdev;
2489				atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2490				atomic_inc(&r10_bio->remaining);
2491				/* and we write to 'i' */
2492
2493				for (k=0; k<conf->copies; k++)
2494					if (r10_bio->devs[k].devnum == i)
2495						break;
2496				BUG_ON(k == conf->copies);
2497				bio = r10_bio->devs[1].bio;
2498				bio->bi_next = biolist;
2499				biolist = bio;
2500				bio->bi_private = r10_bio;
2501				bio->bi_end_io = end_sync_write;
2502				bio->bi_rw = WRITE;
2503				to_addr = r10_bio->devs[k].addr;
2504				bio->bi_sector = to_addr +
2505					conf->mirrors[i].rdev->data_offset;
2506				bio->bi_bdev = conf->mirrors[i].rdev->bdev;
2507
2508				r10_bio->devs[0].devnum = d;
2509				r10_bio->devs[0].addr = from_addr;
2510				r10_bio->devs[1].devnum = i;
2511				r10_bio->devs[1].addr = to_addr;
2512
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2513				break;
2514			}
2515			if (j == conf->copies) {
2516				/* Cannot recover, so abort the recovery or
2517				 * record a bad block */
2518				put_buf(r10_bio);
2519				if (rb2)
2520					atomic_dec(&rb2->remaining);
2521				r10_bio = rb2;
2522				if (any_working) {
2523					/* problem is that there are bad blocks
2524					 * on other device(s)
2525					 */
2526					int k;
2527					for (k = 0; k < conf->copies; k++)
2528						if (r10_bio->devs[k].devnum == i)
2529							break;
2530					if (!rdev_set_badblocks(
2531						    conf->mirrors[i].rdev,
 
 
 
 
 
 
 
 
2532						    r10_bio->devs[k].addr,
2533						    max_sync, 0))
2534						any_working = 0;
2535				}
2536				if (!any_working)  {
2537					if (!test_and_set_bit(MD_RECOVERY_INTR,
2538							      &mddev->recovery))
2539						printk(KERN_INFO "md/raid10:%s: insufficient "
2540						       "working devices for recovery.\n",
2541						       mdname(mddev));
2542					conf->mirrors[i].recovery_disabled
2543						= mddev->recovery_disabled;
2544				}
 
 
 
 
2545				break;
2546			}
2547		}
2548		if (biolist == NULL) {
2549			while (r10_bio) {
2550				r10bio_t *rb2 = r10_bio;
2551				r10_bio = (r10bio_t*) rb2->master_bio;
2552				rb2->master_bio = NULL;
2553				put_buf(rb2);
2554			}
2555			goto giveup;
2556		}
2557	} else {
2558		/* resync. Schedule a read for every block at this virt offset */
2559		int count = 0;
2560
2561		bitmap_cond_end_sync(mddev->bitmap, sector_nr);
2562
2563		if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2564				       &sync_blocks, mddev->degraded) &&
2565		    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
2566						 &mddev->recovery)) {
2567			/* We can skip this block */
2568			*skipped = 1;
2569			return sync_blocks + sectors_skipped;
2570		}
2571		if (sync_blocks < max_sync)
2572			max_sync = sync_blocks;
2573		r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
 
2574
2575		r10_bio->mddev = mddev;
2576		atomic_set(&r10_bio->remaining, 0);
2577		raise_barrier(conf, 0);
2578		conf->next_resync = sector_nr;
2579
2580		r10_bio->master_bio = NULL;
2581		r10_bio->sector = sector_nr;
2582		set_bit(R10BIO_IsSync, &r10_bio->state);
2583		raid10_find_phys(conf, r10_bio);
2584		r10_bio->sectors = (sector_nr | conf->chunk_mask) - sector_nr +1;
2585
2586		for (i=0; i<conf->copies; i++) {
2587			int d = r10_bio->devs[i].devnum;
2588			sector_t first_bad, sector;
2589			int bad_sectors;
2590
 
 
 
2591			bio = r10_bio->devs[i].bio;
2592			bio->bi_end_io = NULL;
2593			clear_bit(BIO_UPTODATE, &bio->bi_flags);
2594			if (conf->mirrors[d].rdev == NULL ||
2595			    test_bit(Faulty, &conf->mirrors[d].rdev->flags))
2596				continue;
2597			sector = r10_bio->devs[i].addr;
2598			if (is_badblock(conf->mirrors[d].rdev,
2599					sector, max_sync,
2600					&first_bad, &bad_sectors)) {
2601				if (first_bad > sector)
2602					max_sync = first_bad - sector;
2603				else {
2604					bad_sectors -= (sector - first_bad);
2605					if (max_sync > bad_sectors)
2606						max_sync = max_sync;
2607					continue;
2608				}
2609			}
2610			atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2611			atomic_inc(&r10_bio->remaining);
2612			bio->bi_next = biolist;
2613			biolist = bio;
2614			bio->bi_private = r10_bio;
2615			bio->bi_end_io = end_sync_read;
2616			bio->bi_rw = READ;
2617			bio->bi_sector = sector +
2618				conf->mirrors[d].rdev->data_offset;
2619			bio->bi_bdev = conf->mirrors[d].rdev->bdev;
2620			count++;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2621		}
2622
2623		if (count < 2) {
2624			for (i=0; i<conf->copies; i++) {
2625				int d = r10_bio->devs[i].devnum;
2626				if (r10_bio->devs[i].bio->bi_end_io)
2627					rdev_dec_pending(conf->mirrors[d].rdev,
2628							 mddev);
 
 
 
 
 
2629			}
2630			put_buf(r10_bio);
2631			biolist = NULL;
2632			goto giveup;
2633		}
2634	}
2635
2636	for (bio = biolist; bio ; bio=bio->bi_next) {
2637
2638		bio->bi_flags &= ~(BIO_POOL_MASK - 1);
2639		if (bio->bi_end_io)
2640			bio->bi_flags |= 1 << BIO_UPTODATE;
2641		bio->bi_vcnt = 0;
2642		bio->bi_idx = 0;
2643		bio->bi_phys_segments = 0;
2644		bio->bi_size = 0;
2645	}
2646
2647	nr_sectors = 0;
2648	if (sector_nr + max_sync < max_sector)
2649		max_sector = sector_nr + max_sync;
2650	do {
2651		struct page *page;
2652		int len = PAGE_SIZE;
2653		if (sector_nr + (len>>9) > max_sector)
2654			len = (max_sector - sector_nr) << 9;
2655		if (len == 0)
2656			break;
2657		for (bio= biolist ; bio ; bio=bio->bi_next) {
2658			struct bio *bio2;
2659			page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
2660			if (bio_add_page(bio, page, len, 0))
2661				continue;
2662
2663			/* stop here */
2664			bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
2665			for (bio2 = biolist;
2666			     bio2 && bio2 != bio;
2667			     bio2 = bio2->bi_next) {
2668				/* remove last page from this bio */
2669				bio2->bi_vcnt--;
2670				bio2->bi_size -= len;
2671				bio2->bi_flags &= ~(1<< BIO_SEG_VALID);
2672			}
2673			goto bio_full;
2674		}
2675		nr_sectors += len>>9;
2676		sector_nr += len>>9;
2677	} while (biolist->bi_vcnt < RESYNC_PAGES);
2678 bio_full:
2679	r10_bio->sectors = nr_sectors;
2680
2681	while (biolist) {
2682		bio = biolist;
2683		biolist = biolist->bi_next;
2684
2685		bio->bi_next = NULL;
2686		r10_bio = bio->bi_private;
2687		r10_bio->sectors = nr_sectors;
2688
2689		if (bio->bi_end_io == end_sync_read) {
2690			md_sync_acct(bio->bi_bdev, nr_sectors);
 
2691			generic_make_request(bio);
2692		}
2693	}
2694
2695	if (sectors_skipped)
2696		/* pretend they weren't skipped, it makes
2697		 * no important difference in this case
2698		 */
2699		md_done_sync(mddev, sectors_skipped, 1);
2700
2701	return sectors_skipped + nr_sectors;
2702 giveup:
2703	/* There is nowhere to write, so all non-sync
2704	 * drives must be failed or in resync, all drives
2705	 * have a bad block, so try the next chunk...
2706	 */
2707	if (sector_nr + max_sync < max_sector)
2708		max_sector = sector_nr + max_sync;
2709
2710	sectors_skipped += (max_sector - sector_nr);
2711	chunks_skipped ++;
2712	sector_nr = max_sector;
2713	goto skipped;
2714}
2715
2716static sector_t
2717raid10_size(mddev_t *mddev, sector_t sectors, int raid_disks)
2718{
2719	sector_t size;
2720	conf_t *conf = mddev->private;
2721
2722	if (!raid_disks)
2723		raid_disks = conf->raid_disks;
 
2724	if (!sectors)
2725		sectors = conf->dev_sectors;
2726
2727	size = sectors >> conf->chunk_shift;
2728	sector_div(size, conf->far_copies);
2729	size = size * raid_disks;
2730	sector_div(size, conf->near_copies);
2731
2732	return size << conf->chunk_shift;
2733}
2734
 
 
 
 
 
 
2735
2736static conf_t *setup_conf(mddev_t *mddev)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2737{
2738	conf_t *conf = NULL;
2739	int nc, fc, fo;
2740	sector_t stride, size;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2741	int err = -EINVAL;
 
 
 
 
2742
2743	if (mddev->new_chunk_sectors < (PAGE_SIZE >> 9) ||
2744	    !is_power_of_2(mddev->new_chunk_sectors)) {
2745		printk(KERN_ERR "md/raid10:%s: chunk size must be "
2746		       "at least PAGE_SIZE(%ld) and be a power of 2.\n",
2747		       mdname(mddev), PAGE_SIZE);
2748		goto out;
2749	}
2750
2751	nc = mddev->new_layout & 255;
2752	fc = (mddev->new_layout >> 8) & 255;
2753	fo = mddev->new_layout & (1<<16);
2754
2755	if ((nc*fc) <2 || (nc*fc) > mddev->raid_disks ||
2756	    (mddev->new_layout >> 17)) {
2757		printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
2758		       mdname(mddev), mddev->new_layout);
2759		goto out;
2760	}
2761
2762	err = -ENOMEM;
2763	conf = kzalloc(sizeof(conf_t), GFP_KERNEL);
2764	if (!conf)
2765		goto out;
2766
2767	conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks,
 
 
2768				GFP_KERNEL);
2769	if (!conf->mirrors)
2770		goto out;
2771
2772	conf->tmppage = alloc_page(GFP_KERNEL);
2773	if (!conf->tmppage)
2774		goto out;
2775
2776
2777	conf->raid_disks = mddev->raid_disks;
2778	conf->near_copies = nc;
2779	conf->far_copies = fc;
2780	conf->copies = nc*fc;
2781	conf->far_offset = fo;
2782	conf->chunk_mask = mddev->new_chunk_sectors - 1;
2783	conf->chunk_shift = ffz(~mddev->new_chunk_sectors);
2784
2785	conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
2786					   r10bio_pool_free, conf);
2787	if (!conf->r10bio_pool)
2788		goto out;
2789
2790	size = mddev->dev_sectors >> conf->chunk_shift;
2791	sector_div(size, fc);
2792	size = size * conf->raid_disks;
2793	sector_div(size, nc);
2794	/* 'size' is now the number of chunks in the array */
2795	/* calculate "used chunks per device" in 'stride' */
2796	stride = size * conf->copies;
2797
2798	/* We need to round up when dividing by raid_disks to
2799	 * get the stride size.
2800	 */
2801	stride += conf->raid_disks - 1;
2802	sector_div(stride, conf->raid_disks);
2803
2804	conf->dev_sectors = stride << conf->chunk_shift;
2805
2806	if (fo)
2807		stride = 1;
2808	else
2809		sector_div(stride, fc);
2810	conf->stride = stride << conf->chunk_shift;
2811
2812
2813	spin_lock_init(&conf->device_lock);
2814	INIT_LIST_HEAD(&conf->retry_list);
 
2815
2816	spin_lock_init(&conf->resync_lock);
2817	init_waitqueue_head(&conf->wait_barrier);
2818
2819	conf->thread = md_register_thread(raid10d, mddev, NULL);
2820	if (!conf->thread)
2821		goto out;
2822
2823	conf->mddev = mddev;
2824	return conf;
2825
2826 out:
2827	printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n",
2828	       mdname(mddev));
 
2829	if (conf) {
2830		if (conf->r10bio_pool)
2831			mempool_destroy(conf->r10bio_pool);
2832		kfree(conf->mirrors);
2833		safe_put_page(conf->tmppage);
2834		kfree(conf);
2835	}
2836	return ERR_PTR(err);
2837}
2838
2839static int run(mddev_t *mddev)
2840{
2841	conf_t *conf;
2842	int i, disk_idx, chunk_size;
2843	mirror_info_t *disk;
2844	mdk_rdev_t *rdev;
2845	sector_t size;
2846
2847	/*
2848	 * copy the already verified devices into our private RAID10
2849	 * bookkeeping area. [whatever we allocate in run(),
2850	 * should be freed in stop()]
2851	 */
2852
2853	if (mddev->private == NULL) {
2854		conf = setup_conf(mddev);
2855		if (IS_ERR(conf))
2856			return PTR_ERR(conf);
2857		mddev->private = conf;
2858	}
2859	conf = mddev->private;
2860	if (!conf)
2861		goto out;
2862
2863	mddev->thread = conf->thread;
2864	conf->thread = NULL;
2865
2866	chunk_size = mddev->chunk_sectors << 9;
2867	blk_queue_io_min(mddev->queue, chunk_size);
2868	if (conf->raid_disks % conf->near_copies)
2869		blk_queue_io_opt(mddev->queue, chunk_size * conf->raid_disks);
2870	else
2871		blk_queue_io_opt(mddev->queue, chunk_size *
2872				 (conf->raid_disks / conf->near_copies));
 
 
 
 
 
2873
2874	list_for_each_entry(rdev, &mddev->disks, same_set) {
 
 
2875
2876		disk_idx = rdev->raid_disk;
2877		if (disk_idx >= conf->raid_disks
2878		    || disk_idx < 0)
 
 
2879			continue;
2880		disk = conf->mirrors + disk_idx;
2881
2882		disk->rdev = rdev;
2883		disk_stack_limits(mddev->gendisk, rdev->bdev,
2884				  rdev->data_offset << 9);
2885		/* as we don't honour merge_bvec_fn, we must never risk
2886		 * violating it, so limit max_segments to 1 lying
2887		 * within a single page.
2888		 */
2889		if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
2890			blk_queue_max_segments(mddev->queue, 1);
2891			blk_queue_segment_boundary(mddev->queue,
2892						   PAGE_CACHE_SIZE - 1);
2893		}
 
 
 
 
 
 
 
 
 
 
 
 
2894
2895		disk->head_position = 0;
 
 
 
 
 
 
 
 
 
 
 
 
2896	}
2897	/* need to check that every block has at least one working mirror */
2898	if (!enough(conf, -1)) {
2899		printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n",
2900		       mdname(mddev));
2901		goto out_free_conf;
2902	}
2903
 
 
 
 
 
 
 
 
 
 
2904	mddev->degraded = 0;
2905	for (i = 0; i < conf->raid_disks; i++) {
 
 
 
2906
2907		disk = conf->mirrors + i;
2908
 
 
 
 
 
 
 
2909		if (!disk->rdev ||
2910		    !test_bit(In_sync, &disk->rdev->flags)) {
2911			disk->head_position = 0;
2912			mddev->degraded++;
2913			if (disk->rdev)
 
2914				conf->fullsync = 1;
2915		}
 
2916	}
2917
2918	if (mddev->recovery_cp != MaxSector)
2919		printk(KERN_NOTICE "md/raid10:%s: not clean"
2920		       " -- starting background reconstruction\n",
2921		       mdname(mddev));
2922	printk(KERN_INFO
2923		"md/raid10:%s: active with %d out of %d devices\n",
2924		mdname(mddev), conf->raid_disks - mddev->degraded,
2925		conf->raid_disks);
2926	/*
2927	 * Ok, everything is just fine now
2928	 */
2929	mddev->dev_sectors = conf->dev_sectors;
2930	size = raid10_size(mddev, 0, 0);
2931	md_set_array_sectors(mddev, size);
2932	mddev->resync_max_sectors = size;
2933
2934	mddev->queue->backing_dev_info.congested_fn = raid10_congested;
2935	mddev->queue->backing_dev_info.congested_data = mddev;
 
2936
2937	/* Calculate max read-ahead size.
2938	 * We need to readahead at least twice a whole stripe....
2939	 * maybe...
2940	 */
2941	{
2942		int stripe = conf->raid_disks *
2943			((mddev->chunk_sectors << 9) / PAGE_SIZE);
2944		stripe /= conf->near_copies;
2945		if (mddev->queue->backing_dev_info.ra_pages < 2* stripe)
2946			mddev->queue->backing_dev_info.ra_pages = 2* stripe;
2947	}
2948
2949	if (conf->near_copies < conf->raid_disks)
2950		blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec);
2951
2952	if (md_integrity_register(mddev))
2953		goto out_free_conf;
2954
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2955	return 0;
2956
2957out_free_conf:
2958	md_unregister_thread(&mddev->thread);
2959	if (conf->r10bio_pool)
2960		mempool_destroy(conf->r10bio_pool);
2961	safe_put_page(conf->tmppage);
2962	kfree(conf->mirrors);
2963	kfree(conf);
2964	mddev->private = NULL;
2965out:
2966	return -EIO;
2967}
2968
2969static int stop(mddev_t *mddev)
2970{
2971	conf_t *conf = mddev->private;
2972
2973	raise_barrier(conf, 0);
2974	lower_barrier(conf);
2975
2976	md_unregister_thread(&mddev->thread);
2977	blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
2978	if (conf->r10bio_pool)
2979		mempool_destroy(conf->r10bio_pool);
2980	kfree(conf->mirrors);
 
 
2981	kfree(conf);
2982	mddev->private = NULL;
2983	return 0;
2984}
2985
2986static void raid10_quiesce(mddev_t *mddev, int state)
2987{
2988	conf_t *conf = mddev->private;
2989
2990	switch(state) {
2991	case 1:
2992		raise_barrier(conf, 0);
2993		break;
2994	case 0:
2995		lower_barrier(conf);
2996		break;
2997	}
2998}
2999
3000static void *raid10_takeover_raid0(mddev_t *mddev)
3001{
3002	mdk_rdev_t *rdev;
3003	conf_t *conf;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3004
3005	if (mddev->degraded > 0) {
3006		printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n",
3007		       mdname(mddev));
3008		return ERR_PTR(-EINVAL);
3009	}
 
3010
3011	/* Set new parameters */
3012	mddev->new_level = 10;
3013	/* new layout: far_copies = 1, near_copies = 2 */
3014	mddev->new_layout = (1<<8) + 2;
3015	mddev->new_chunk_sectors = mddev->chunk_sectors;
3016	mddev->delta_disks = mddev->raid_disks;
3017	mddev->raid_disks *= 2;
3018	/* make sure it will be not marked as dirty */
3019	mddev->recovery_cp = MaxSector;
 
3020
3021	conf = setup_conf(mddev);
3022	if (!IS_ERR(conf)) {
3023		list_for_each_entry(rdev, &mddev->disks, same_set)
3024			if (rdev->raid_disk >= 0)
3025				rdev->new_raid_disk = rdev->raid_disk * 2;
 
 
3026		conf->barrier = 1;
3027	}
3028
3029	return conf;
3030}
3031
3032static void *raid10_takeover(mddev_t *mddev)
3033{
3034	struct raid0_private_data *raid0_priv;
3035
3036	/* raid10 can take over:
3037	 *  raid0 - providing it has only two drives
3038	 */
3039	if (mddev->level == 0) {
3040		/* for raid0 takeover only one zone is supported */
3041		raid0_priv = mddev->private;
3042		if (raid0_priv->nr_strip_zones > 1) {
3043			printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0"
3044			       " with more than one zone.\n",
3045			       mdname(mddev));
3046			return ERR_PTR(-EINVAL);
3047		}
3048		return raid10_takeover_raid0(mddev);
 
 
3049	}
3050	return ERR_PTR(-EINVAL);
3051}
3052
3053static struct mdk_personality raid10_personality =
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3054{
3055	.name		= "raid10",
3056	.level		= 10,
3057	.owner		= THIS_MODULE,
3058	.make_request	= make_request,
3059	.run		= run,
3060	.stop		= stop,
3061	.status		= status,
3062	.error_handler	= error,
3063	.hot_add_disk	= raid10_add_disk,
3064	.hot_remove_disk= raid10_remove_disk,
3065	.spare_active	= raid10_spare_active,
3066	.sync_request	= sync_request,
3067	.quiesce	= raid10_quiesce,
3068	.size		= raid10_size,
 
3069	.takeover	= raid10_takeover,
 
 
 
 
3070};
3071
3072static int __init raid_init(void)
3073{
3074	return register_md_personality(&raid10_personality);
3075}
3076
3077static void raid_exit(void)
3078{
3079	unregister_md_personality(&raid10_personality);
3080}
3081
3082module_init(raid_init);
3083module_exit(raid_exit);
3084MODULE_LICENSE("GPL");
3085MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
3086MODULE_ALIAS("md-personality-9"); /* RAID10 */
3087MODULE_ALIAS("md-raid10");
3088MODULE_ALIAS("md-level-10");