Linux Audio

Check our new training course

Loading...
v4.6
   1/*
   2 * lm85.c - Part of lm_sensors, Linux kernel modules for hardware
   3 *	    monitoring
   4 * Copyright (c) 1998, 1999  Frodo Looijaard <frodol@dds.nl>
   5 * Copyright (c) 2002, 2003  Philip Pokorny <ppokorny@penguincomputing.com>
   6 * Copyright (c) 2003        Margit Schubert-While <margitsw@t-online.de>
   7 * Copyright (c) 2004        Justin Thiessen <jthiessen@penguincomputing.com>
   8 * Copyright (C) 2007--2014  Jean Delvare <jdelvare@suse.de>
   9 *
  10 * Chip details at	      <http://www.national.com/ds/LM/LM85.pdf>
  11 *
  12 * This program is free software; you can redistribute it and/or modify
  13 * it under the terms of the GNU General Public License as published by
  14 * the Free Software Foundation; either version 2 of the License, or
  15 * (at your option) any later version.
  16 *
  17 * This program is distributed in the hope that it will be useful,
  18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  20 * GNU General Public License for more details.
  21 *
  22 * You should have received a copy of the GNU General Public License
  23 * along with this program; if not, write to the Free Software
  24 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  25 */
  26
  27#include <linux/module.h>
  28#include <linux/init.h>
  29#include <linux/slab.h>
  30#include <linux/jiffies.h>
  31#include <linux/i2c.h>
  32#include <linux/hwmon.h>
  33#include <linux/hwmon-vid.h>
  34#include <linux/hwmon-sysfs.h>
  35#include <linux/err.h>
  36#include <linux/mutex.h>
  37#include <linux/util_macros.h>
  38
  39/* Addresses to scan */
  40static const unsigned short normal_i2c[] = { 0x2c, 0x2d, 0x2e, I2C_CLIENT_END };
  41
  42enum chips {
  43	lm85,
  44	adm1027, adt7463, adt7468,
  45	emc6d100, emc6d102, emc6d103, emc6d103s
  46};
  47
  48/* The LM85 registers */
  49
  50#define LM85_REG_IN(nr)			(0x20 + (nr))
  51#define LM85_REG_IN_MIN(nr)		(0x44 + (nr) * 2)
  52#define LM85_REG_IN_MAX(nr)		(0x45 + (nr) * 2)
  53
  54#define LM85_REG_TEMP(nr)		(0x25 + (nr))
  55#define LM85_REG_TEMP_MIN(nr)		(0x4e + (nr) * 2)
  56#define LM85_REG_TEMP_MAX(nr)		(0x4f + (nr) * 2)
  57
  58/* Fan speeds are LSB, MSB (2 bytes) */
  59#define LM85_REG_FAN(nr)		(0x28 + (nr) * 2)
  60#define LM85_REG_FAN_MIN(nr)		(0x54 + (nr) * 2)
  61
  62#define LM85_REG_PWM(nr)		(0x30 + (nr))
  63
  64#define LM85_REG_COMPANY		0x3e
  65#define LM85_REG_VERSTEP		0x3f
  66
  67#define ADT7468_REG_CFG5		0x7c
  68#define ADT7468_OFF64			(1 << 0)
  69#define ADT7468_HFPWM			(1 << 1)
  70#define IS_ADT7468_OFF64(data)		\
  71	((data)->type == adt7468 && !((data)->cfg5 & ADT7468_OFF64))
  72#define IS_ADT7468_HFPWM(data)		\
  73	((data)->type == adt7468 && !((data)->cfg5 & ADT7468_HFPWM))
  74
  75/* These are the recognized values for the above regs */
  76#define LM85_COMPANY_NATIONAL		0x01
  77#define LM85_COMPANY_ANALOG_DEV		0x41
  78#define LM85_COMPANY_SMSC		0x5c
  79#define LM85_VERSTEP_LM85C		0x60
  80#define LM85_VERSTEP_LM85B		0x62
  81#define LM85_VERSTEP_LM96000_1		0x68
  82#define LM85_VERSTEP_LM96000_2		0x69
  83#define LM85_VERSTEP_ADM1027		0x60
  84#define LM85_VERSTEP_ADT7463		0x62
  85#define LM85_VERSTEP_ADT7463C		0x6A
  86#define LM85_VERSTEP_ADT7468_1		0x71
  87#define LM85_VERSTEP_ADT7468_2		0x72
  88#define LM85_VERSTEP_EMC6D100_A0        0x60
  89#define LM85_VERSTEP_EMC6D100_A1        0x61
  90#define LM85_VERSTEP_EMC6D102		0x65
  91#define LM85_VERSTEP_EMC6D103_A0	0x68
  92#define LM85_VERSTEP_EMC6D103_A1	0x69
  93#define LM85_VERSTEP_EMC6D103S		0x6A	/* Also known as EMC6D103:A2 */
 
 
 
  94
  95#define LM85_REG_CONFIG			0x40
  96
  97#define LM85_REG_ALARM1			0x41
  98#define LM85_REG_ALARM2			0x42
  99
 100#define LM85_REG_VID			0x43
 101
 102/* Automated FAN control */
 103#define LM85_REG_AFAN_CONFIG(nr)	(0x5c + (nr))
 104#define LM85_REG_AFAN_RANGE(nr)		(0x5f + (nr))
 105#define LM85_REG_AFAN_SPIKE1		0x62
 106#define LM85_REG_AFAN_MINPWM(nr)	(0x64 + (nr))
 107#define LM85_REG_AFAN_LIMIT(nr)		(0x67 + (nr))
 108#define LM85_REG_AFAN_CRITICAL(nr)	(0x6a + (nr))
 109#define LM85_REG_AFAN_HYST1		0x6d
 110#define LM85_REG_AFAN_HYST2		0x6e
 111
 112#define ADM1027_REG_EXTEND_ADC1		0x76
 113#define ADM1027_REG_EXTEND_ADC2		0x77
 114
 115#define EMC6D100_REG_ALARM3             0x7d
 116/* IN5, IN6 and IN7 */
 117#define EMC6D100_REG_IN(nr)             (0x70 + ((nr) - 5))
 118#define EMC6D100_REG_IN_MIN(nr)         (0x73 + ((nr) - 5) * 2)
 119#define EMC6D100_REG_IN_MAX(nr)         (0x74 + ((nr) - 5) * 2)
 120#define EMC6D102_REG_EXTEND_ADC1	0x85
 121#define EMC6D102_REG_EXTEND_ADC2	0x86
 122#define EMC6D102_REG_EXTEND_ADC3	0x87
 123#define EMC6D102_REG_EXTEND_ADC4	0x88
 124
 125/*
 126 * Conversions. Rounding and limit checking is only done on the TO_REG
 127 * variants. Note that you should be a bit careful with which arguments
 128 * these macros are called: arguments may be evaluated more than once.
 129 */
 130
 131/* IN are scaled according to built-in resistors */
 132static const int lm85_scaling[] = {  /* .001 Volts */
 133	2500, 2250, 3300, 5000, 12000,
 134	3300, 1500, 1800 /*EMC6D100*/
 135};
 136#define SCALE(val, from, to)	(((val) * (to) + ((from) / 2)) / (from))
 137
 138#define INS_TO_REG(n, val)	\
 139		clamp_val(SCALE(val, lm85_scaling[n], 192), 0, 255)
 140
 141#define INSEXT_FROM_REG(n, val, ext)	\
 142		SCALE(((val) << 4) + (ext), 192 << 4, lm85_scaling[n])
 143
 144#define INS_FROM_REG(n, val)	SCALE((val), 192, lm85_scaling[n])
 145
 146/* FAN speed is measured using 90kHz clock */
 147static inline u16 FAN_TO_REG(unsigned long val)
 148{
 149	if (!val)
 150		return 0xffff;
 151	return clamp_val(5400000 / val, 1, 0xfffe);
 152}
 153#define FAN_FROM_REG(val)	((val) == 0 ? -1 : (val) == 0xffff ? 0 : \
 154				 5400000 / (val))
 155
 156/* Temperature is reported in .001 degC increments */
 157#define TEMP_TO_REG(val)	\
 158		DIV_ROUND_CLOSEST(clamp_val((val), -127000, 127000), 1000)
 159#define TEMPEXT_FROM_REG(val, ext)	\
 160		SCALE(((val) << 4) + (ext), 16, 1000)
 161#define TEMP_FROM_REG(val)	((val) * 1000)
 162
 163#define PWM_TO_REG(val)			clamp_val(val, 0, 255)
 164#define PWM_FROM_REG(val)		(val)
 165
 166
 167/*
 168 * ZONEs have the following parameters:
 169 *    Limit (low) temp,           1. degC
 170 *    Hysteresis (below limit),   1. degC (0-15)
 171 *    Range of speed control,     .1 degC (2-80)
 172 *    Critical (high) temp,       1. degC
 173 *
 174 * FAN PWMs have the following parameters:
 175 *    Reference Zone,                 1, 2, 3, etc.
 176 *    Spinup time,                    .05 sec
 177 *    PWM value at limit/low temp,    1 count
 178 *    PWM Frequency,                  1. Hz
 179 *    PWM is Min or OFF below limit,  flag
 180 *    Invert PWM output,              flag
 181 *
 182 * Some chips filter the temp, others the fan.
 183 *    Filter constant (or disabled)   .1 seconds
 184 */
 185
 186/* These are the zone temperature range encodings in .001 degree C */
 187static const int lm85_range_map[] = {
 188	2000, 2500, 3300, 4000, 5000, 6600, 8000, 10000,
 189	13300, 16000, 20000, 26600, 32000, 40000, 53300, 80000
 190};
 191
 192static int RANGE_TO_REG(long range)
 193{
 194	return find_closest(range, lm85_range_map, ARRAY_SIZE(lm85_range_map));
 
 
 
 
 
 
 
 
 195}
 196#define RANGE_FROM_REG(val)	lm85_range_map[(val) & 0x0f]
 197
 198/* These are the PWM frequency encodings */
 199static const int lm85_freq_map[8] = { /* 1 Hz */
 200	10, 15, 23, 30, 38, 47, 61, 94
 201};
 202static const int adm1027_freq_map[8] = { /* 1 Hz */
 203	11, 15, 22, 29, 35, 44, 59, 88
 204};
 205#define FREQ_MAP_LEN	8
 206
 207static int FREQ_TO_REG(const int *map,
 208		       unsigned int map_size, unsigned long freq)
 209{
 210	return find_closest(freq, map, map_size);
 
 
 
 
 
 
 211}
 212
 213static int FREQ_FROM_REG(const int *map, u8 reg)
 214{
 215	return map[reg & 0x07];
 216}
 217
 218/*
 219 * Since we can't use strings, I'm abusing these numbers
 220 *   to stand in for the following meanings:
 221 *      1 -- PWM responds to Zone 1
 222 *      2 -- PWM responds to Zone 2
 223 *      3 -- PWM responds to Zone 3
 224 *     23 -- PWM responds to the higher temp of Zone 2 or 3
 225 *    123 -- PWM responds to highest of Zone 1, 2, or 3
 226 *      0 -- PWM is always at 0% (ie, off)
 227 *     -1 -- PWM is always at 100%
 228 *     -2 -- PWM responds to manual control
 229 */
 230
 231static const int lm85_zone_map[] = { 1, 2, 3, -1, 0, 23, 123, -2 };
 232#define ZONE_FROM_REG(val)	lm85_zone_map[(val) >> 5]
 233
 234static int ZONE_TO_REG(int zone)
 235{
 236	int i;
 237
 238	for (i = 0; i <= 7; ++i)
 239		if (zone == lm85_zone_map[i])
 240			break;
 241	if (i > 7)   /* Not found. */
 242		i = 3;  /* Always 100% */
 243	return i << 5;
 244}
 245
 246#define HYST_TO_REG(val)	clamp_val(((val) + 500) / 1000, 0, 15)
 247#define HYST_FROM_REG(val)	((val) * 1000)
 248
 249/*
 250 * Chip sampling rates
 251 *
 252 * Some sensors are not updated more frequently than once per second
 253 *    so it doesn't make sense to read them more often than that.
 254 *    We cache the results and return the saved data if the driver
 255 *    is called again before a second has elapsed.
 256 *
 257 * Also, there is significant configuration data for this chip
 258 *    given the automatic PWM fan control that is possible.  There
 259 *    are about 47 bytes of config data to only 22 bytes of actual
 260 *    readings.  So, we keep the config data up to date in the cache
 261 *    when it is written and only sample it once every 1 *minute*
 262 */
 263#define LM85_DATA_INTERVAL  (HZ + HZ / 2)
 264#define LM85_CONFIG_INTERVAL  (1 * 60 * HZ)
 265
 266/*
 267 * LM85 can automatically adjust fan speeds based on temperature
 268 * This structure encapsulates an entire Zone config.  There are
 269 * three zones (one for each temperature input) on the lm85
 270 */
 271struct lm85_zone {
 272	s8 limit;	/* Low temp limit */
 273	u8 hyst;	/* Low limit hysteresis. (0-15) */
 274	u8 range;	/* Temp range, encoded */
 275	s8 critical;	/* "All fans ON" temp limit */
 276	u8 max_desired; /*
 277			 * Actual "max" temperature specified.  Preserved
 278			 * to prevent "drift" as other autofan control
 279			 * values change.
 280			 */
 281};
 282
 283struct lm85_autofan {
 284	u8 config;	/* Register value */
 285	u8 min_pwm;	/* Minimum PWM value, encoded */
 286	u8 min_off;	/* Min PWM or OFF below "limit", flag */
 287};
 288
 289/*
 290 * For each registered chip, we need to keep some data in memory.
 291 * The structure is dynamically allocated.
 292 */
 293struct lm85_data {
 294	struct i2c_client *client;
 295	const struct attribute_group *groups[6];
 296	const int *freq_map;
 297	enum chips type;
 298
 299	bool has_vid5;	/* true if VID5 is configured for ADT7463 or ADT7468 */
 300
 301	struct mutex update_lock;
 302	int valid;		/* !=0 if following fields are valid */
 303	unsigned long last_reading;	/* In jiffies */
 304	unsigned long last_config;	/* In jiffies */
 305
 306	u8 in[8];		/* Register value */
 307	u8 in_max[8];		/* Register value */
 308	u8 in_min[8];		/* Register value */
 309	s8 temp[3];		/* Register value */
 310	s8 temp_min[3];		/* Register value */
 311	s8 temp_max[3];		/* Register value */
 312	u16 fan[4];		/* Register value */
 313	u16 fan_min[4];		/* Register value */
 314	u8 pwm[3];		/* Register value */
 315	u8 pwm_freq[3];		/* Register encoding */
 316	u8 temp_ext[3];		/* Decoded values */
 317	u8 in_ext[8];		/* Decoded values */
 318	u8 vid;			/* Register value */
 319	u8 vrm;			/* VRM version */
 320	u32 alarms;		/* Register encoding, combined */
 321	u8 cfg5;		/* Config Register 5 on ADT7468 */
 322	struct lm85_autofan autofan[3];
 323	struct lm85_zone zone[3];
 324};
 325
 326static int lm85_read_value(struct i2c_client *client, u8 reg)
 327{
 328	int res;
 329
 330	/* What size location is it? */
 331	switch (reg) {
 332	case LM85_REG_FAN(0):  /* Read WORD data */
 333	case LM85_REG_FAN(1):
 334	case LM85_REG_FAN(2):
 335	case LM85_REG_FAN(3):
 336	case LM85_REG_FAN_MIN(0):
 337	case LM85_REG_FAN_MIN(1):
 338	case LM85_REG_FAN_MIN(2):
 339	case LM85_REG_FAN_MIN(3):
 340	case LM85_REG_ALARM1:	/* Read both bytes at once */
 341		res = i2c_smbus_read_byte_data(client, reg) & 0xff;
 342		res |= i2c_smbus_read_byte_data(client, reg + 1) << 8;
 343		break;
 344	default:	/* Read BYTE data */
 345		res = i2c_smbus_read_byte_data(client, reg);
 346		break;
 347	}
 348
 349	return res;
 350}
 351
 352static void lm85_write_value(struct i2c_client *client, u8 reg, int value)
 353{
 354	switch (reg) {
 355	case LM85_REG_FAN(0):  /* Write WORD data */
 356	case LM85_REG_FAN(1):
 357	case LM85_REG_FAN(2):
 358	case LM85_REG_FAN(3):
 359	case LM85_REG_FAN_MIN(0):
 360	case LM85_REG_FAN_MIN(1):
 361	case LM85_REG_FAN_MIN(2):
 362	case LM85_REG_FAN_MIN(3):
 363	/* NOTE: ALARM is read only, so not included here */
 364		i2c_smbus_write_byte_data(client, reg, value & 0xff);
 365		i2c_smbus_write_byte_data(client, reg + 1, value >> 8);
 366		break;
 367	default:	/* Write BYTE data */
 368		i2c_smbus_write_byte_data(client, reg, value);
 369		break;
 370	}
 371}
 372
 373static struct lm85_data *lm85_update_device(struct device *dev)
 374{
 375	struct lm85_data *data = dev_get_drvdata(dev);
 376	struct i2c_client *client = data->client;
 377	int i;
 378
 379	mutex_lock(&data->update_lock);
 380
 381	if (!data->valid ||
 382	     time_after(jiffies, data->last_reading + LM85_DATA_INTERVAL)) {
 383		/* Things that change quickly */
 384		dev_dbg(&client->dev, "Reading sensor values\n");
 385
 386		/*
 387		 * Have to read extended bits first to "freeze" the
 388		 * more significant bits that are read later.
 389		 * There are 2 additional resolution bits per channel and we
 390		 * have room for 4, so we shift them to the left.
 391		 */
 392		if (data->type == adm1027 || data->type == adt7463 ||
 393		    data->type == adt7468) {
 394			int ext1 = lm85_read_value(client,
 395						   ADM1027_REG_EXTEND_ADC1);
 396			int ext2 =  lm85_read_value(client,
 397						    ADM1027_REG_EXTEND_ADC2);
 398			int val = (ext1 << 8) + ext2;
 399
 400			for (i = 0; i <= 4; i++)
 401				data->in_ext[i] =
 402					((val >> (i * 2)) & 0x03) << 2;
 403
 404			for (i = 0; i <= 2; i++)
 405				data->temp_ext[i] =
 406					(val >> ((i + 4) * 2)) & 0x0c;
 407		}
 408
 409		data->vid = lm85_read_value(client, LM85_REG_VID);
 410
 411		for (i = 0; i <= 3; ++i) {
 412			data->in[i] =
 413			    lm85_read_value(client, LM85_REG_IN(i));
 414			data->fan[i] =
 415			    lm85_read_value(client, LM85_REG_FAN(i));
 416		}
 417
 418		if (!data->has_vid5)
 419			data->in[4] = lm85_read_value(client, LM85_REG_IN(4));
 420
 421		if (data->type == adt7468)
 422			data->cfg5 = lm85_read_value(client, ADT7468_REG_CFG5);
 423
 424		for (i = 0; i <= 2; ++i) {
 425			data->temp[i] =
 426			    lm85_read_value(client, LM85_REG_TEMP(i));
 427			data->pwm[i] =
 428			    lm85_read_value(client, LM85_REG_PWM(i));
 429
 430			if (IS_ADT7468_OFF64(data))
 431				data->temp[i] -= 64;
 432		}
 433
 434		data->alarms = lm85_read_value(client, LM85_REG_ALARM1);
 435
 436		if (data->type == emc6d100) {
 437			/* Three more voltage sensors */
 438			for (i = 5; i <= 7; ++i) {
 439				data->in[i] = lm85_read_value(client,
 440							EMC6D100_REG_IN(i));
 441			}
 442			/* More alarm bits */
 443			data->alarms |= lm85_read_value(client,
 444						EMC6D100_REG_ALARM3) << 16;
 445		} else if (data->type == emc6d102 || data->type == emc6d103 ||
 446			   data->type == emc6d103s) {
 447			/*
 448			 * Have to read LSB bits after the MSB ones because
 449			 * the reading of the MSB bits has frozen the
 450			 * LSBs (backward from the ADM1027).
 451			 */
 452			int ext1 = lm85_read_value(client,
 453						   EMC6D102_REG_EXTEND_ADC1);
 454			int ext2 = lm85_read_value(client,
 455						   EMC6D102_REG_EXTEND_ADC2);
 456			int ext3 = lm85_read_value(client,
 457						   EMC6D102_REG_EXTEND_ADC3);
 458			int ext4 = lm85_read_value(client,
 459						   EMC6D102_REG_EXTEND_ADC4);
 460			data->in_ext[0] = ext3 & 0x0f;
 461			data->in_ext[1] = ext4 & 0x0f;
 462			data->in_ext[2] = ext4 >> 4;
 463			data->in_ext[3] = ext3 >> 4;
 464			data->in_ext[4] = ext2 >> 4;
 465
 466			data->temp_ext[0] = ext1 & 0x0f;
 467			data->temp_ext[1] = ext2 & 0x0f;
 468			data->temp_ext[2] = ext1 >> 4;
 469		}
 470
 471		data->last_reading = jiffies;
 472	}  /* last_reading */
 473
 474	if (!data->valid ||
 475	     time_after(jiffies, data->last_config + LM85_CONFIG_INTERVAL)) {
 476		/* Things that don't change often */
 477		dev_dbg(&client->dev, "Reading config values\n");
 478
 479		for (i = 0; i <= 3; ++i) {
 480			data->in_min[i] =
 481			    lm85_read_value(client, LM85_REG_IN_MIN(i));
 482			data->in_max[i] =
 483			    lm85_read_value(client, LM85_REG_IN_MAX(i));
 484			data->fan_min[i] =
 485			    lm85_read_value(client, LM85_REG_FAN_MIN(i));
 486		}
 487
 488		if (!data->has_vid5)  {
 489			data->in_min[4] = lm85_read_value(client,
 490					  LM85_REG_IN_MIN(4));
 491			data->in_max[4] = lm85_read_value(client,
 492					  LM85_REG_IN_MAX(4));
 493		}
 494
 495		if (data->type == emc6d100) {
 496			for (i = 5; i <= 7; ++i) {
 497				data->in_min[i] = lm85_read_value(client,
 498						EMC6D100_REG_IN_MIN(i));
 499				data->in_max[i] = lm85_read_value(client,
 500						EMC6D100_REG_IN_MAX(i));
 501			}
 502		}
 503
 504		for (i = 0; i <= 2; ++i) {
 505			int val;
 506
 507			data->temp_min[i] =
 508			    lm85_read_value(client, LM85_REG_TEMP_MIN(i));
 509			data->temp_max[i] =
 510			    lm85_read_value(client, LM85_REG_TEMP_MAX(i));
 511
 512			data->autofan[i].config =
 513			    lm85_read_value(client, LM85_REG_AFAN_CONFIG(i));
 514			val = lm85_read_value(client, LM85_REG_AFAN_RANGE(i));
 515			data->pwm_freq[i] = val & 0x07;
 516			data->zone[i].range = val >> 4;
 517			data->autofan[i].min_pwm =
 518			    lm85_read_value(client, LM85_REG_AFAN_MINPWM(i));
 519			data->zone[i].limit =
 520			    lm85_read_value(client, LM85_REG_AFAN_LIMIT(i));
 521			data->zone[i].critical =
 522			    lm85_read_value(client, LM85_REG_AFAN_CRITICAL(i));
 523
 524			if (IS_ADT7468_OFF64(data)) {
 525				data->temp_min[i] -= 64;
 526				data->temp_max[i] -= 64;
 527				data->zone[i].limit -= 64;
 528				data->zone[i].critical -= 64;
 529			}
 530		}
 531
 532		if (data->type != emc6d103s) {
 533			i = lm85_read_value(client, LM85_REG_AFAN_SPIKE1);
 534			data->autofan[0].min_off = (i & 0x20) != 0;
 535			data->autofan[1].min_off = (i & 0x40) != 0;
 536			data->autofan[2].min_off = (i & 0x80) != 0;
 537
 538			i = lm85_read_value(client, LM85_REG_AFAN_HYST1);
 539			data->zone[0].hyst = i >> 4;
 540			data->zone[1].hyst = i & 0x0f;
 541
 542			i = lm85_read_value(client, LM85_REG_AFAN_HYST2);
 543			data->zone[2].hyst = i >> 4;
 544		}
 545
 546		data->last_config = jiffies;
 547	}  /* last_config */
 548
 549	data->valid = 1;
 550
 551	mutex_unlock(&data->update_lock);
 
 
 
 
 
 
 
 
 
 
 552
 553	return data;
 554}
 555
 556/* 4 Fans */
 557static ssize_t show_fan(struct device *dev, struct device_attribute *attr,
 558		char *buf)
 559{
 560	int nr = to_sensor_dev_attr(attr)->index;
 561	struct lm85_data *data = lm85_update_device(dev);
 562	return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan[nr]));
 563}
 564
 565static ssize_t show_fan_min(struct device *dev, struct device_attribute *attr,
 566		char *buf)
 567{
 568	int nr = to_sensor_dev_attr(attr)->index;
 569	struct lm85_data *data = lm85_update_device(dev);
 570	return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan_min[nr]));
 571}
 572
 573static ssize_t set_fan_min(struct device *dev, struct device_attribute *attr,
 574		const char *buf, size_t count)
 575{
 576	int nr = to_sensor_dev_attr(attr)->index;
 577	struct lm85_data *data = dev_get_drvdata(dev);
 578	struct i2c_client *client = data->client;
 579	unsigned long val;
 580	int err;
 581
 582	err = kstrtoul(buf, 10, &val);
 583	if (err)
 584		return err;
 585
 586	mutex_lock(&data->update_lock);
 587	data->fan_min[nr] = FAN_TO_REG(val);
 588	lm85_write_value(client, LM85_REG_FAN_MIN(nr), data->fan_min[nr]);
 589	mutex_unlock(&data->update_lock);
 590	return count;
 591}
 592
 593#define show_fan_offset(offset)						\
 594static SENSOR_DEVICE_ATTR(fan##offset##_input, S_IRUGO,			\
 595		show_fan, NULL, offset - 1);				\
 596static SENSOR_DEVICE_ATTR(fan##offset##_min, S_IRUGO | S_IWUSR,		\
 597		show_fan_min, set_fan_min, offset - 1)
 598
 599show_fan_offset(1);
 600show_fan_offset(2);
 601show_fan_offset(3);
 602show_fan_offset(4);
 603
 604/* vid, vrm, alarms */
 605
 606static ssize_t show_vid_reg(struct device *dev, struct device_attribute *attr,
 607		char *buf)
 608{
 609	struct lm85_data *data = lm85_update_device(dev);
 610	int vid;
 611
 612	if (data->has_vid5) {
 613		/* 6-pin VID (VRM 10) */
 614		vid = vid_from_reg(data->vid & 0x3f, data->vrm);
 615	} else {
 616		/* 5-pin VID (VRM 9) */
 617		vid = vid_from_reg(data->vid & 0x1f, data->vrm);
 618	}
 619
 620	return sprintf(buf, "%d\n", vid);
 621}
 622
 623static DEVICE_ATTR(cpu0_vid, S_IRUGO, show_vid_reg, NULL);
 624
 625static ssize_t show_vrm_reg(struct device *dev, struct device_attribute *attr,
 626		char *buf)
 627{
 628	struct lm85_data *data = dev_get_drvdata(dev);
 629	return sprintf(buf, "%ld\n", (long) data->vrm);
 630}
 631
 632static ssize_t store_vrm_reg(struct device *dev, struct device_attribute *attr,
 633		const char *buf, size_t count)
 634{
 635	struct lm85_data *data = dev_get_drvdata(dev);
 636	unsigned long val;
 637	int err;
 638
 639	err = kstrtoul(buf, 10, &val);
 640	if (err)
 641		return err;
 642
 643	if (val > 255)
 644		return -EINVAL;
 645
 646	data->vrm = val;
 647	return count;
 648}
 649
 650static DEVICE_ATTR(vrm, S_IRUGO | S_IWUSR, show_vrm_reg, store_vrm_reg);
 651
 652static ssize_t show_alarms_reg(struct device *dev, struct device_attribute
 653		*attr, char *buf)
 654{
 655	struct lm85_data *data = lm85_update_device(dev);
 656	return sprintf(buf, "%u\n", data->alarms);
 657}
 658
 659static DEVICE_ATTR(alarms, S_IRUGO, show_alarms_reg, NULL);
 660
 661static ssize_t show_alarm(struct device *dev, struct device_attribute *attr,
 662		char *buf)
 663{
 664	int nr = to_sensor_dev_attr(attr)->index;
 665	struct lm85_data *data = lm85_update_device(dev);
 666	return sprintf(buf, "%u\n", (data->alarms >> nr) & 1);
 667}
 668
 669static SENSOR_DEVICE_ATTR(in0_alarm, S_IRUGO, show_alarm, NULL, 0);
 670static SENSOR_DEVICE_ATTR(in1_alarm, S_IRUGO, show_alarm, NULL, 1);
 671static SENSOR_DEVICE_ATTR(in2_alarm, S_IRUGO, show_alarm, NULL, 2);
 672static SENSOR_DEVICE_ATTR(in3_alarm, S_IRUGO, show_alarm, NULL, 3);
 673static SENSOR_DEVICE_ATTR(in4_alarm, S_IRUGO, show_alarm, NULL, 8);
 674static SENSOR_DEVICE_ATTR(in5_alarm, S_IRUGO, show_alarm, NULL, 18);
 675static SENSOR_DEVICE_ATTR(in6_alarm, S_IRUGO, show_alarm, NULL, 16);
 676static SENSOR_DEVICE_ATTR(in7_alarm, S_IRUGO, show_alarm, NULL, 17);
 677static SENSOR_DEVICE_ATTR(temp1_alarm, S_IRUGO, show_alarm, NULL, 4);
 678static SENSOR_DEVICE_ATTR(temp1_fault, S_IRUGO, show_alarm, NULL, 14);
 679static SENSOR_DEVICE_ATTR(temp2_alarm, S_IRUGO, show_alarm, NULL, 5);
 680static SENSOR_DEVICE_ATTR(temp3_alarm, S_IRUGO, show_alarm, NULL, 6);
 681static SENSOR_DEVICE_ATTR(temp3_fault, S_IRUGO, show_alarm, NULL, 15);
 682static SENSOR_DEVICE_ATTR(fan1_alarm, S_IRUGO, show_alarm, NULL, 10);
 683static SENSOR_DEVICE_ATTR(fan2_alarm, S_IRUGO, show_alarm, NULL, 11);
 684static SENSOR_DEVICE_ATTR(fan3_alarm, S_IRUGO, show_alarm, NULL, 12);
 685static SENSOR_DEVICE_ATTR(fan4_alarm, S_IRUGO, show_alarm, NULL, 13);
 686
 687/* pwm */
 688
 689static ssize_t show_pwm(struct device *dev, struct device_attribute *attr,
 690		char *buf)
 691{
 692	int nr = to_sensor_dev_attr(attr)->index;
 693	struct lm85_data *data = lm85_update_device(dev);
 694	return sprintf(buf, "%d\n", PWM_FROM_REG(data->pwm[nr]));
 695}
 696
 697static ssize_t set_pwm(struct device *dev, struct device_attribute *attr,
 698		const char *buf, size_t count)
 699{
 700	int nr = to_sensor_dev_attr(attr)->index;
 701	struct lm85_data *data = dev_get_drvdata(dev);
 702	struct i2c_client *client = data->client;
 703	unsigned long val;
 704	int err;
 705
 706	err = kstrtoul(buf, 10, &val);
 707	if (err)
 708		return err;
 709
 710	mutex_lock(&data->update_lock);
 711	data->pwm[nr] = PWM_TO_REG(val);
 712	lm85_write_value(client, LM85_REG_PWM(nr), data->pwm[nr]);
 713	mutex_unlock(&data->update_lock);
 714	return count;
 715}
 716
 717static ssize_t show_pwm_enable(struct device *dev, struct device_attribute
 718		*attr, char *buf)
 719{
 720	int nr = to_sensor_dev_attr(attr)->index;
 721	struct lm85_data *data = lm85_update_device(dev);
 722	int pwm_zone, enable;
 723
 724	pwm_zone = ZONE_FROM_REG(data->autofan[nr].config);
 725	switch (pwm_zone) {
 726	case -1:	/* PWM is always at 100% */
 727		enable = 0;
 728		break;
 729	case 0:		/* PWM is always at 0% */
 730	case -2:	/* PWM responds to manual control */
 731		enable = 1;
 732		break;
 733	default:	/* PWM in automatic mode */
 734		enable = 2;
 735	}
 736	return sprintf(buf, "%d\n", enable);
 737}
 738
 739static ssize_t set_pwm_enable(struct device *dev, struct device_attribute
 740		*attr, const char *buf, size_t count)
 741{
 742	int nr = to_sensor_dev_attr(attr)->index;
 743	struct lm85_data *data = dev_get_drvdata(dev);
 744	struct i2c_client *client = data->client;
 
 745	u8 config;
 746	unsigned long val;
 747	int err;
 748
 749	err = kstrtoul(buf, 10, &val);
 750	if (err)
 751		return err;
 752
 753	switch (val) {
 754	case 0:
 755		config = 3;
 756		break;
 757	case 1:
 758		config = 7;
 759		break;
 760	case 2:
 761		/*
 762		 * Here we have to choose arbitrarily one of the 5 possible
 763		 * configurations; I go for the safest
 764		 */
 765		config = 6;
 766		break;
 767	default:
 768		return -EINVAL;
 769	}
 770
 771	mutex_lock(&data->update_lock);
 772	data->autofan[nr].config = lm85_read_value(client,
 773		LM85_REG_AFAN_CONFIG(nr));
 774	data->autofan[nr].config = (data->autofan[nr].config & ~0xe0)
 775		| (config << 5);
 776	lm85_write_value(client, LM85_REG_AFAN_CONFIG(nr),
 777		data->autofan[nr].config);
 778	mutex_unlock(&data->update_lock);
 779	return count;
 780}
 781
 782static ssize_t show_pwm_freq(struct device *dev,
 783		struct device_attribute *attr, char *buf)
 784{
 785	int nr = to_sensor_dev_attr(attr)->index;
 786	struct lm85_data *data = lm85_update_device(dev);
 787	int freq;
 788
 789	if (IS_ADT7468_HFPWM(data))
 790		freq = 22500;
 791	else
 792		freq = FREQ_FROM_REG(data->freq_map, data->pwm_freq[nr]);
 793
 794	return sprintf(buf, "%d\n", freq);
 795}
 796
 797static ssize_t set_pwm_freq(struct device *dev,
 798		struct device_attribute *attr, const char *buf, size_t count)
 799{
 800	int nr = to_sensor_dev_attr(attr)->index;
 801	struct lm85_data *data = dev_get_drvdata(dev);
 802	struct i2c_client *client = data->client;
 803	unsigned long val;
 804	int err;
 805
 806	err = kstrtoul(buf, 10, &val);
 807	if (err)
 808		return err;
 809
 810	mutex_lock(&data->update_lock);
 811	/*
 812	 * The ADT7468 has a special high-frequency PWM output mode,
 813	 * where all PWM outputs are driven by a 22.5 kHz clock.
 814	 * This might confuse the user, but there's not much we can do.
 815	 */
 816	if (data->type == adt7468 && val >= 11300) {	/* High freq. mode */
 817		data->cfg5 &= ~ADT7468_HFPWM;
 818		lm85_write_value(client, ADT7468_REG_CFG5, data->cfg5);
 819	} else {					/* Low freq. mode */
 820		data->pwm_freq[nr] = FREQ_TO_REG(data->freq_map,
 821						 FREQ_MAP_LEN, val);
 822		lm85_write_value(client, LM85_REG_AFAN_RANGE(nr),
 823				 (data->zone[nr].range << 4)
 824				 | data->pwm_freq[nr]);
 825		if (data->type == adt7468) {
 826			data->cfg5 |= ADT7468_HFPWM;
 827			lm85_write_value(client, ADT7468_REG_CFG5, data->cfg5);
 828		}
 829	}
 830	mutex_unlock(&data->update_lock);
 831	return count;
 832}
 833
 834#define show_pwm_reg(offset)						\
 835static SENSOR_DEVICE_ATTR(pwm##offset, S_IRUGO | S_IWUSR,		\
 836		show_pwm, set_pwm, offset - 1);				\
 837static SENSOR_DEVICE_ATTR(pwm##offset##_enable, S_IRUGO | S_IWUSR,	\
 838		show_pwm_enable, set_pwm_enable, offset - 1);		\
 839static SENSOR_DEVICE_ATTR(pwm##offset##_freq, S_IRUGO | S_IWUSR,	\
 840		show_pwm_freq, set_pwm_freq, offset - 1)
 841
 842show_pwm_reg(1);
 843show_pwm_reg(2);
 844show_pwm_reg(3);
 845
 846/* Voltages */
 847
 848static ssize_t show_in(struct device *dev, struct device_attribute *attr,
 849		char *buf)
 850{
 851	int nr = to_sensor_dev_attr(attr)->index;
 852	struct lm85_data *data = lm85_update_device(dev);
 853	return sprintf(buf, "%d\n", INSEXT_FROM_REG(nr, data->in[nr],
 854						    data->in_ext[nr]));
 855}
 856
 857static ssize_t show_in_min(struct device *dev, struct device_attribute *attr,
 858		char *buf)
 859{
 860	int nr = to_sensor_dev_attr(attr)->index;
 861	struct lm85_data *data = lm85_update_device(dev);
 862	return sprintf(buf, "%d\n", INS_FROM_REG(nr, data->in_min[nr]));
 863}
 864
 865static ssize_t set_in_min(struct device *dev, struct device_attribute *attr,
 866		const char *buf, size_t count)
 867{
 868	int nr = to_sensor_dev_attr(attr)->index;
 869	struct lm85_data *data = dev_get_drvdata(dev);
 870	struct i2c_client *client = data->client;
 871	long val;
 872	int err;
 873
 874	err = kstrtol(buf, 10, &val);
 875	if (err)
 876		return err;
 877
 878	mutex_lock(&data->update_lock);
 879	data->in_min[nr] = INS_TO_REG(nr, val);
 880	lm85_write_value(client, LM85_REG_IN_MIN(nr), data->in_min[nr]);
 881	mutex_unlock(&data->update_lock);
 882	return count;
 883}
 884
 885static ssize_t show_in_max(struct device *dev, struct device_attribute *attr,
 886		char *buf)
 887{
 888	int nr = to_sensor_dev_attr(attr)->index;
 889	struct lm85_data *data = lm85_update_device(dev);
 890	return sprintf(buf, "%d\n", INS_FROM_REG(nr, data->in_max[nr]));
 891}
 892
 893static ssize_t set_in_max(struct device *dev, struct device_attribute *attr,
 894		const char *buf, size_t count)
 895{
 896	int nr = to_sensor_dev_attr(attr)->index;
 897	struct lm85_data *data = dev_get_drvdata(dev);
 898	struct i2c_client *client = data->client;
 899	long val;
 900	int err;
 901
 902	err = kstrtol(buf, 10, &val);
 903	if (err)
 904		return err;
 905
 906	mutex_lock(&data->update_lock);
 907	data->in_max[nr] = INS_TO_REG(nr, val);
 908	lm85_write_value(client, LM85_REG_IN_MAX(nr), data->in_max[nr]);
 909	mutex_unlock(&data->update_lock);
 910	return count;
 911}
 912
 913#define show_in_reg(offset)						\
 914static SENSOR_DEVICE_ATTR(in##offset##_input, S_IRUGO,			\
 915		show_in, NULL, offset);					\
 916static SENSOR_DEVICE_ATTR(in##offset##_min, S_IRUGO | S_IWUSR,		\
 917		show_in_min, set_in_min, offset);			\
 918static SENSOR_DEVICE_ATTR(in##offset##_max, S_IRUGO | S_IWUSR,		\
 919		show_in_max, set_in_max, offset)
 920
 921show_in_reg(0);
 922show_in_reg(1);
 923show_in_reg(2);
 924show_in_reg(3);
 925show_in_reg(4);
 926show_in_reg(5);
 927show_in_reg(6);
 928show_in_reg(7);
 929
 930/* Temps */
 931
 932static ssize_t show_temp(struct device *dev, struct device_attribute *attr,
 933		char *buf)
 934{
 935	int nr = to_sensor_dev_attr(attr)->index;
 936	struct lm85_data *data = lm85_update_device(dev);
 937	return sprintf(buf, "%d\n", TEMPEXT_FROM_REG(data->temp[nr],
 938						     data->temp_ext[nr]));
 939}
 940
 941static ssize_t show_temp_min(struct device *dev, struct device_attribute *attr,
 942		char *buf)
 943{
 944	int nr = to_sensor_dev_attr(attr)->index;
 945	struct lm85_data *data = lm85_update_device(dev);
 946	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_min[nr]));
 947}
 948
 949static ssize_t set_temp_min(struct device *dev, struct device_attribute *attr,
 950		const char *buf, size_t count)
 951{
 952	int nr = to_sensor_dev_attr(attr)->index;
 953	struct lm85_data *data = dev_get_drvdata(dev);
 954	struct i2c_client *client = data->client;
 955	long val;
 956	int err;
 957
 958	err = kstrtol(buf, 10, &val);
 959	if (err)
 960		return err;
 961
 962	if (IS_ADT7468_OFF64(data))
 963		val += 64;
 964
 965	mutex_lock(&data->update_lock);
 966	data->temp_min[nr] = TEMP_TO_REG(val);
 967	lm85_write_value(client, LM85_REG_TEMP_MIN(nr), data->temp_min[nr]);
 968	mutex_unlock(&data->update_lock);
 969	return count;
 970}
 971
 972static ssize_t show_temp_max(struct device *dev, struct device_attribute *attr,
 973		char *buf)
 974{
 975	int nr = to_sensor_dev_attr(attr)->index;
 976	struct lm85_data *data = lm85_update_device(dev);
 977	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_max[nr]));
 978}
 979
 980static ssize_t set_temp_max(struct device *dev, struct device_attribute *attr,
 981		const char *buf, size_t count)
 982{
 983	int nr = to_sensor_dev_attr(attr)->index;
 984	struct lm85_data *data = dev_get_drvdata(dev);
 985	struct i2c_client *client = data->client;
 986	long val;
 987	int err;
 988
 989	err = kstrtol(buf, 10, &val);
 990	if (err)
 991		return err;
 992
 993	if (IS_ADT7468_OFF64(data))
 994		val += 64;
 995
 996	mutex_lock(&data->update_lock);
 997	data->temp_max[nr] = TEMP_TO_REG(val);
 998	lm85_write_value(client, LM85_REG_TEMP_MAX(nr), data->temp_max[nr]);
 999	mutex_unlock(&data->update_lock);
1000	return count;
1001}
1002
1003#define show_temp_reg(offset)						\
1004static SENSOR_DEVICE_ATTR(temp##offset##_input, S_IRUGO,		\
1005		show_temp, NULL, offset - 1);				\
1006static SENSOR_DEVICE_ATTR(temp##offset##_min, S_IRUGO | S_IWUSR,	\
1007		show_temp_min, set_temp_min, offset - 1);		\
1008static SENSOR_DEVICE_ATTR(temp##offset##_max, S_IRUGO | S_IWUSR,	\
1009		show_temp_max, set_temp_max, offset - 1);
1010
1011show_temp_reg(1);
1012show_temp_reg(2);
1013show_temp_reg(3);
1014
1015
1016/* Automatic PWM control */
1017
1018static ssize_t show_pwm_auto_channels(struct device *dev,
1019		struct device_attribute *attr, char *buf)
1020{
1021	int nr = to_sensor_dev_attr(attr)->index;
1022	struct lm85_data *data = lm85_update_device(dev);
1023	return sprintf(buf, "%d\n", ZONE_FROM_REG(data->autofan[nr].config));
1024}
1025
1026static ssize_t set_pwm_auto_channels(struct device *dev,
1027		struct device_attribute *attr, const char *buf, size_t count)
1028{
1029	int nr = to_sensor_dev_attr(attr)->index;
1030	struct lm85_data *data = dev_get_drvdata(dev);
1031	struct i2c_client *client = data->client;
1032	long val;
1033	int err;
1034
1035	err = kstrtol(buf, 10, &val);
1036	if (err)
1037		return err;
1038
1039	mutex_lock(&data->update_lock);
1040	data->autofan[nr].config = (data->autofan[nr].config & (~0xe0))
1041		| ZONE_TO_REG(val);
1042	lm85_write_value(client, LM85_REG_AFAN_CONFIG(nr),
1043		data->autofan[nr].config);
1044	mutex_unlock(&data->update_lock);
1045	return count;
1046}
1047
1048static ssize_t show_pwm_auto_pwm_min(struct device *dev,
1049		struct device_attribute *attr, char *buf)
1050{
1051	int nr = to_sensor_dev_attr(attr)->index;
1052	struct lm85_data *data = lm85_update_device(dev);
1053	return sprintf(buf, "%d\n", PWM_FROM_REG(data->autofan[nr].min_pwm));
1054}
1055
1056static ssize_t set_pwm_auto_pwm_min(struct device *dev,
1057		struct device_attribute *attr, const char *buf, size_t count)
1058{
1059	int nr = to_sensor_dev_attr(attr)->index;
1060	struct lm85_data *data = dev_get_drvdata(dev);
1061	struct i2c_client *client = data->client;
1062	unsigned long val;
1063	int err;
1064
1065	err = kstrtoul(buf, 10, &val);
1066	if (err)
1067		return err;
1068
1069	mutex_lock(&data->update_lock);
1070	data->autofan[nr].min_pwm = PWM_TO_REG(val);
1071	lm85_write_value(client, LM85_REG_AFAN_MINPWM(nr),
1072		data->autofan[nr].min_pwm);
1073	mutex_unlock(&data->update_lock);
1074	return count;
1075}
1076
1077static ssize_t show_pwm_auto_pwm_minctl(struct device *dev,
1078		struct device_attribute *attr, char *buf)
1079{
1080	int nr = to_sensor_dev_attr(attr)->index;
1081	struct lm85_data *data = lm85_update_device(dev);
1082	return sprintf(buf, "%d\n", data->autofan[nr].min_off);
1083}
1084
1085static ssize_t set_pwm_auto_pwm_minctl(struct device *dev,
1086		struct device_attribute *attr, const char *buf, size_t count)
1087{
1088	int nr = to_sensor_dev_attr(attr)->index;
1089	struct lm85_data *data = dev_get_drvdata(dev);
1090	struct i2c_client *client = data->client;
 
1091	u8 tmp;
1092	long val;
1093	int err;
1094
1095	err = kstrtol(buf, 10, &val);
1096	if (err)
1097		return err;
1098
1099	mutex_lock(&data->update_lock);
1100	data->autofan[nr].min_off = val;
1101	tmp = lm85_read_value(client, LM85_REG_AFAN_SPIKE1);
1102	tmp &= ~(0x20 << nr);
1103	if (data->autofan[nr].min_off)
1104		tmp |= 0x20 << nr;
1105	lm85_write_value(client, LM85_REG_AFAN_SPIKE1, tmp);
1106	mutex_unlock(&data->update_lock);
1107	return count;
1108}
1109
1110#define pwm_auto(offset)						\
1111static SENSOR_DEVICE_ATTR(pwm##offset##_auto_channels,			\
1112		S_IRUGO | S_IWUSR, show_pwm_auto_channels,		\
1113		set_pwm_auto_channels, offset - 1);			\
1114static SENSOR_DEVICE_ATTR(pwm##offset##_auto_pwm_min,			\
1115		S_IRUGO | S_IWUSR, show_pwm_auto_pwm_min,		\
1116		set_pwm_auto_pwm_min, offset - 1);			\
1117static SENSOR_DEVICE_ATTR(pwm##offset##_auto_pwm_minctl,		\
1118		S_IRUGO | S_IWUSR, show_pwm_auto_pwm_minctl,		\
1119		set_pwm_auto_pwm_minctl, offset - 1)
1120
1121pwm_auto(1);
1122pwm_auto(2);
1123pwm_auto(3);
1124
1125/* Temperature settings for automatic PWM control */
1126
1127static ssize_t show_temp_auto_temp_off(struct device *dev,
1128		struct device_attribute *attr, char *buf)
1129{
1130	int nr = to_sensor_dev_attr(attr)->index;
1131	struct lm85_data *data = lm85_update_device(dev);
1132	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].limit) -
1133		HYST_FROM_REG(data->zone[nr].hyst));
1134}
1135
1136static ssize_t set_temp_auto_temp_off(struct device *dev,
1137		struct device_attribute *attr, const char *buf, size_t count)
1138{
1139	int nr = to_sensor_dev_attr(attr)->index;
1140	struct lm85_data *data = dev_get_drvdata(dev);
1141	struct i2c_client *client = data->client;
1142	int min;
1143	long val;
1144	int err;
1145
1146	err = kstrtol(buf, 10, &val);
1147	if (err)
1148		return err;
1149
1150	mutex_lock(&data->update_lock);
1151	min = TEMP_FROM_REG(data->zone[nr].limit);
1152	data->zone[nr].hyst = HYST_TO_REG(min - val);
1153	if (nr == 0 || nr == 1) {
1154		lm85_write_value(client, LM85_REG_AFAN_HYST1,
1155			(data->zone[0].hyst << 4)
1156			| data->zone[1].hyst);
1157	} else {
1158		lm85_write_value(client, LM85_REG_AFAN_HYST2,
1159			(data->zone[2].hyst << 4));
1160	}
1161	mutex_unlock(&data->update_lock);
1162	return count;
1163}
1164
1165static ssize_t show_temp_auto_temp_min(struct device *dev,
1166		struct device_attribute *attr, char *buf)
1167{
1168	int nr = to_sensor_dev_attr(attr)->index;
1169	struct lm85_data *data = lm85_update_device(dev);
1170	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].limit));
1171}
1172
1173static ssize_t set_temp_auto_temp_min(struct device *dev,
1174		struct device_attribute *attr, const char *buf, size_t count)
1175{
1176	int nr = to_sensor_dev_attr(attr)->index;
1177	struct lm85_data *data = dev_get_drvdata(dev);
1178	struct i2c_client *client = data->client;
1179	long val;
1180	int err;
1181
1182	err = kstrtol(buf, 10, &val);
1183	if (err)
1184		return err;
1185
1186	mutex_lock(&data->update_lock);
1187	data->zone[nr].limit = TEMP_TO_REG(val);
1188	lm85_write_value(client, LM85_REG_AFAN_LIMIT(nr),
1189		data->zone[nr].limit);
1190
1191/* Update temp_auto_max and temp_auto_range */
1192	data->zone[nr].range = RANGE_TO_REG(
1193		TEMP_FROM_REG(data->zone[nr].max_desired) -
1194		TEMP_FROM_REG(data->zone[nr].limit));
1195	lm85_write_value(client, LM85_REG_AFAN_RANGE(nr),
1196		((data->zone[nr].range & 0x0f) << 4)
1197		| (data->pwm_freq[nr] & 0x07));
1198
1199	mutex_unlock(&data->update_lock);
1200	return count;
1201}
1202
1203static ssize_t show_temp_auto_temp_max(struct device *dev,
1204		struct device_attribute *attr, char *buf)
1205{
1206	int nr = to_sensor_dev_attr(attr)->index;
1207	struct lm85_data *data = lm85_update_device(dev);
1208	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].limit) +
1209		RANGE_FROM_REG(data->zone[nr].range));
1210}
1211
1212static ssize_t set_temp_auto_temp_max(struct device *dev,
1213		struct device_attribute *attr, const char *buf, size_t count)
1214{
1215	int nr = to_sensor_dev_attr(attr)->index;
1216	struct lm85_data *data = dev_get_drvdata(dev);
1217	struct i2c_client *client = data->client;
1218	int min;
1219	long val;
1220	int err;
1221
1222	err = kstrtol(buf, 10, &val);
1223	if (err)
1224		return err;
1225
1226	mutex_lock(&data->update_lock);
1227	min = TEMP_FROM_REG(data->zone[nr].limit);
1228	data->zone[nr].max_desired = TEMP_TO_REG(val);
1229	data->zone[nr].range = RANGE_TO_REG(
1230		val - min);
1231	lm85_write_value(client, LM85_REG_AFAN_RANGE(nr),
1232		((data->zone[nr].range & 0x0f) << 4)
1233		| (data->pwm_freq[nr] & 0x07));
1234	mutex_unlock(&data->update_lock);
1235	return count;
1236}
1237
1238static ssize_t show_temp_auto_temp_crit(struct device *dev,
1239		struct device_attribute *attr, char *buf)
1240{
1241	int nr = to_sensor_dev_attr(attr)->index;
1242	struct lm85_data *data = lm85_update_device(dev);
1243	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].critical));
1244}
1245
1246static ssize_t set_temp_auto_temp_crit(struct device *dev,
1247		struct device_attribute *attr, const char *buf, size_t count)
1248{
1249	int nr = to_sensor_dev_attr(attr)->index;
1250	struct lm85_data *data = dev_get_drvdata(dev);
1251	struct i2c_client *client = data->client;
1252	long val;
1253	int err;
1254
1255	err = kstrtol(buf, 10, &val);
1256	if (err)
1257		return err;
1258
1259	mutex_lock(&data->update_lock);
1260	data->zone[nr].critical = TEMP_TO_REG(val);
1261	lm85_write_value(client, LM85_REG_AFAN_CRITICAL(nr),
1262		data->zone[nr].critical);
1263	mutex_unlock(&data->update_lock);
1264	return count;
1265}
1266
1267#define temp_auto(offset)						\
1268static SENSOR_DEVICE_ATTR(temp##offset##_auto_temp_off,			\
1269		S_IRUGO | S_IWUSR, show_temp_auto_temp_off,		\
1270		set_temp_auto_temp_off, offset - 1);			\
1271static SENSOR_DEVICE_ATTR(temp##offset##_auto_temp_min,			\
1272		S_IRUGO | S_IWUSR, show_temp_auto_temp_min,		\
1273		set_temp_auto_temp_min, offset - 1);			\
1274static SENSOR_DEVICE_ATTR(temp##offset##_auto_temp_max,			\
1275		S_IRUGO | S_IWUSR, show_temp_auto_temp_max,		\
1276		set_temp_auto_temp_max, offset - 1);			\
1277static SENSOR_DEVICE_ATTR(temp##offset##_auto_temp_crit,		\
1278		S_IRUGO | S_IWUSR, show_temp_auto_temp_crit,		\
1279		set_temp_auto_temp_crit, offset - 1);
1280
1281temp_auto(1);
1282temp_auto(2);
1283temp_auto(3);
1284
1285static struct attribute *lm85_attributes[] = {
1286	&sensor_dev_attr_fan1_input.dev_attr.attr,
1287	&sensor_dev_attr_fan2_input.dev_attr.attr,
1288	&sensor_dev_attr_fan3_input.dev_attr.attr,
1289	&sensor_dev_attr_fan4_input.dev_attr.attr,
1290	&sensor_dev_attr_fan1_min.dev_attr.attr,
1291	&sensor_dev_attr_fan2_min.dev_attr.attr,
1292	&sensor_dev_attr_fan3_min.dev_attr.attr,
1293	&sensor_dev_attr_fan4_min.dev_attr.attr,
1294	&sensor_dev_attr_fan1_alarm.dev_attr.attr,
1295	&sensor_dev_attr_fan2_alarm.dev_attr.attr,
1296	&sensor_dev_attr_fan3_alarm.dev_attr.attr,
1297	&sensor_dev_attr_fan4_alarm.dev_attr.attr,
1298
1299	&sensor_dev_attr_pwm1.dev_attr.attr,
1300	&sensor_dev_attr_pwm2.dev_attr.attr,
1301	&sensor_dev_attr_pwm3.dev_attr.attr,
1302	&sensor_dev_attr_pwm1_enable.dev_attr.attr,
1303	&sensor_dev_attr_pwm2_enable.dev_attr.attr,
1304	&sensor_dev_attr_pwm3_enable.dev_attr.attr,
1305	&sensor_dev_attr_pwm1_freq.dev_attr.attr,
1306	&sensor_dev_attr_pwm2_freq.dev_attr.attr,
1307	&sensor_dev_attr_pwm3_freq.dev_attr.attr,
1308
1309	&sensor_dev_attr_in0_input.dev_attr.attr,
1310	&sensor_dev_attr_in1_input.dev_attr.attr,
1311	&sensor_dev_attr_in2_input.dev_attr.attr,
1312	&sensor_dev_attr_in3_input.dev_attr.attr,
1313	&sensor_dev_attr_in0_min.dev_attr.attr,
1314	&sensor_dev_attr_in1_min.dev_attr.attr,
1315	&sensor_dev_attr_in2_min.dev_attr.attr,
1316	&sensor_dev_attr_in3_min.dev_attr.attr,
1317	&sensor_dev_attr_in0_max.dev_attr.attr,
1318	&sensor_dev_attr_in1_max.dev_attr.attr,
1319	&sensor_dev_attr_in2_max.dev_attr.attr,
1320	&sensor_dev_attr_in3_max.dev_attr.attr,
1321	&sensor_dev_attr_in0_alarm.dev_attr.attr,
1322	&sensor_dev_attr_in1_alarm.dev_attr.attr,
1323	&sensor_dev_attr_in2_alarm.dev_attr.attr,
1324	&sensor_dev_attr_in3_alarm.dev_attr.attr,
1325
1326	&sensor_dev_attr_temp1_input.dev_attr.attr,
1327	&sensor_dev_attr_temp2_input.dev_attr.attr,
1328	&sensor_dev_attr_temp3_input.dev_attr.attr,
1329	&sensor_dev_attr_temp1_min.dev_attr.attr,
1330	&sensor_dev_attr_temp2_min.dev_attr.attr,
1331	&sensor_dev_attr_temp3_min.dev_attr.attr,
1332	&sensor_dev_attr_temp1_max.dev_attr.attr,
1333	&sensor_dev_attr_temp2_max.dev_attr.attr,
1334	&sensor_dev_attr_temp3_max.dev_attr.attr,
1335	&sensor_dev_attr_temp1_alarm.dev_attr.attr,
1336	&sensor_dev_attr_temp2_alarm.dev_attr.attr,
1337	&sensor_dev_attr_temp3_alarm.dev_attr.attr,
1338	&sensor_dev_attr_temp1_fault.dev_attr.attr,
1339	&sensor_dev_attr_temp3_fault.dev_attr.attr,
1340
1341	&sensor_dev_attr_pwm1_auto_channels.dev_attr.attr,
1342	&sensor_dev_attr_pwm2_auto_channels.dev_attr.attr,
1343	&sensor_dev_attr_pwm3_auto_channels.dev_attr.attr,
1344	&sensor_dev_attr_pwm1_auto_pwm_min.dev_attr.attr,
1345	&sensor_dev_attr_pwm2_auto_pwm_min.dev_attr.attr,
1346	&sensor_dev_attr_pwm3_auto_pwm_min.dev_attr.attr,
1347
1348	&sensor_dev_attr_temp1_auto_temp_min.dev_attr.attr,
1349	&sensor_dev_attr_temp2_auto_temp_min.dev_attr.attr,
1350	&sensor_dev_attr_temp3_auto_temp_min.dev_attr.attr,
1351	&sensor_dev_attr_temp1_auto_temp_max.dev_attr.attr,
1352	&sensor_dev_attr_temp2_auto_temp_max.dev_attr.attr,
1353	&sensor_dev_attr_temp3_auto_temp_max.dev_attr.attr,
1354	&sensor_dev_attr_temp1_auto_temp_crit.dev_attr.attr,
1355	&sensor_dev_attr_temp2_auto_temp_crit.dev_attr.attr,
1356	&sensor_dev_attr_temp3_auto_temp_crit.dev_attr.attr,
1357
1358	&dev_attr_vrm.attr,
1359	&dev_attr_cpu0_vid.attr,
1360	&dev_attr_alarms.attr,
1361	NULL
1362};
1363
1364static const struct attribute_group lm85_group = {
1365	.attrs = lm85_attributes,
1366};
1367
1368static struct attribute *lm85_attributes_minctl[] = {
1369	&sensor_dev_attr_pwm1_auto_pwm_minctl.dev_attr.attr,
1370	&sensor_dev_attr_pwm2_auto_pwm_minctl.dev_attr.attr,
1371	&sensor_dev_attr_pwm3_auto_pwm_minctl.dev_attr.attr,
1372	NULL
1373};
1374
1375static const struct attribute_group lm85_group_minctl = {
1376	.attrs = lm85_attributes_minctl,
1377};
1378
1379static struct attribute *lm85_attributes_temp_off[] = {
1380	&sensor_dev_attr_temp1_auto_temp_off.dev_attr.attr,
1381	&sensor_dev_attr_temp2_auto_temp_off.dev_attr.attr,
1382	&sensor_dev_attr_temp3_auto_temp_off.dev_attr.attr,
1383	NULL
1384};
1385
1386static const struct attribute_group lm85_group_temp_off = {
1387	.attrs = lm85_attributes_temp_off,
1388};
1389
1390static struct attribute *lm85_attributes_in4[] = {
1391	&sensor_dev_attr_in4_input.dev_attr.attr,
1392	&sensor_dev_attr_in4_min.dev_attr.attr,
1393	&sensor_dev_attr_in4_max.dev_attr.attr,
1394	&sensor_dev_attr_in4_alarm.dev_attr.attr,
1395	NULL
1396};
1397
1398static const struct attribute_group lm85_group_in4 = {
1399	.attrs = lm85_attributes_in4,
1400};
1401
1402static struct attribute *lm85_attributes_in567[] = {
1403	&sensor_dev_attr_in5_input.dev_attr.attr,
1404	&sensor_dev_attr_in6_input.dev_attr.attr,
1405	&sensor_dev_attr_in7_input.dev_attr.attr,
1406	&sensor_dev_attr_in5_min.dev_attr.attr,
1407	&sensor_dev_attr_in6_min.dev_attr.attr,
1408	&sensor_dev_attr_in7_min.dev_attr.attr,
1409	&sensor_dev_attr_in5_max.dev_attr.attr,
1410	&sensor_dev_attr_in6_max.dev_attr.attr,
1411	&sensor_dev_attr_in7_max.dev_attr.attr,
1412	&sensor_dev_attr_in5_alarm.dev_attr.attr,
1413	&sensor_dev_attr_in6_alarm.dev_attr.attr,
1414	&sensor_dev_attr_in7_alarm.dev_attr.attr,
1415	NULL
1416};
1417
1418static const struct attribute_group lm85_group_in567 = {
1419	.attrs = lm85_attributes_in567,
1420};
1421
1422static void lm85_init_client(struct i2c_client *client)
1423{
1424	int value;
1425
1426	/* Start monitoring if needed */
1427	value = lm85_read_value(client, LM85_REG_CONFIG);
1428	if (!(value & 0x01)) {
1429		dev_info(&client->dev, "Starting monitoring\n");
1430		lm85_write_value(client, LM85_REG_CONFIG, value | 0x01);
1431	}
1432
1433	/* Warn about unusual configuration bits */
1434	if (value & 0x02)
1435		dev_warn(&client->dev, "Device configuration is locked\n");
1436	if (!(value & 0x04))
1437		dev_warn(&client->dev, "Device is not ready\n");
1438}
1439
1440static int lm85_is_fake(struct i2c_client *client)
1441{
1442	/*
1443	 * Differenciate between real LM96000 and Winbond WPCD377I. The latter
1444	 * emulate the former except that it has no hardware monitoring function
1445	 * so the readings are always 0.
1446	 */
1447	int i;
1448	u8 in_temp, fan;
1449
1450	for (i = 0; i < 8; i++) {
1451		in_temp = i2c_smbus_read_byte_data(client, 0x20 + i);
1452		fan = i2c_smbus_read_byte_data(client, 0x28 + i);
1453		if (in_temp != 0x00 || fan != 0xff)
1454			return 0;
1455	}
1456
1457	return 1;
1458}
1459
1460/* Return 0 if detection is successful, -ENODEV otherwise */
1461static int lm85_detect(struct i2c_client *client, struct i2c_board_info *info)
1462{
1463	struct i2c_adapter *adapter = client->adapter;
1464	int address = client->addr;
1465	const char *type_name = NULL;
1466	int company, verstep;
1467
1468	if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA)) {
1469		/* We need to be able to do byte I/O */
1470		return -ENODEV;
1471	}
1472
1473	/* Determine the chip type */
1474	company = lm85_read_value(client, LM85_REG_COMPANY);
1475	verstep = lm85_read_value(client, LM85_REG_VERSTEP);
1476
1477	dev_dbg(&adapter->dev,
1478		"Detecting device at 0x%02x with COMPANY: 0x%02x and VERSTEP: 0x%02x\n",
1479		address, company, verstep);
1480
 
 
 
 
 
 
 
 
 
 
1481	if (company == LM85_COMPANY_NATIONAL) {
1482		switch (verstep) {
1483		case LM85_VERSTEP_LM85C:
1484			type_name = "lm85c";
1485			break;
1486		case LM85_VERSTEP_LM85B:
1487			type_name = "lm85b";
1488			break;
1489		case LM85_VERSTEP_LM96000_1:
1490		case LM85_VERSTEP_LM96000_2:
1491			/* Check for Winbond WPCD377I */
1492			if (lm85_is_fake(client)) {
1493				dev_dbg(&adapter->dev,
1494					"Found Winbond WPCD377I, ignoring\n");
1495				return -ENODEV;
1496			}
1497			type_name = "lm85";
1498			break;
1499		}
1500	} else if (company == LM85_COMPANY_ANALOG_DEV) {
1501		switch (verstep) {
1502		case LM85_VERSTEP_ADM1027:
1503			type_name = "adm1027";
1504			break;
1505		case LM85_VERSTEP_ADT7463:
1506		case LM85_VERSTEP_ADT7463C:
1507			type_name = "adt7463";
1508			break;
1509		case LM85_VERSTEP_ADT7468_1:
1510		case LM85_VERSTEP_ADT7468_2:
1511			type_name = "adt7468";
1512			break;
1513		}
1514	} else if (company == LM85_COMPANY_SMSC) {
1515		switch (verstep) {
1516		case LM85_VERSTEP_EMC6D100_A0:
1517		case LM85_VERSTEP_EMC6D100_A1:
1518			/* Note: we can't tell a '100 from a '101 */
1519			type_name = "emc6d100";
1520			break;
1521		case LM85_VERSTEP_EMC6D102:
1522			type_name = "emc6d102";
1523			break;
1524		case LM85_VERSTEP_EMC6D103_A0:
1525		case LM85_VERSTEP_EMC6D103_A1:
1526			type_name = "emc6d103";
1527			break;
1528		case LM85_VERSTEP_EMC6D103S:
1529			type_name = "emc6d103s";
1530			break;
1531		}
1532	}
1533
1534	if (!type_name)
1535		return -ENODEV;
 
1536
1537	strlcpy(info->type, type_name, I2C_NAME_SIZE);
1538
1539	return 0;
1540}
1541
1542static int lm85_probe(struct i2c_client *client, const struct i2c_device_id *id)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1543{
1544	struct device *dev = &client->dev;
1545	struct device *hwmon_dev;
1546	struct lm85_data *data;
1547	int idx = 0;
1548
1549	data = devm_kzalloc(dev, sizeof(struct lm85_data), GFP_KERNEL);
1550	if (!data)
1551		return -ENOMEM;
1552
1553	data->client = client;
1554	data->type = id->driver_data;
1555	mutex_init(&data->update_lock);
1556
1557	/* Fill in the chip specific driver values */
1558	switch (data->type) {
1559	case adm1027:
1560	case adt7463:
1561	case adt7468:
1562	case emc6d100:
1563	case emc6d102:
1564	case emc6d103:
1565	case emc6d103s:
1566		data->freq_map = adm1027_freq_map;
1567		break;
1568	default:
1569		data->freq_map = lm85_freq_map;
1570	}
1571
1572	/* Set the VRM version */
1573	data->vrm = vid_which_vrm();
1574
1575	/* Initialize the LM85 chip */
1576	lm85_init_client(client);
1577
1578	/* sysfs hooks */
1579	data->groups[idx++] = &lm85_group;
 
 
1580
1581	/* minctl and temp_off exist on all chips except emc6d103s */
1582	if (data->type != emc6d103s) {
1583		data->groups[idx++] = &lm85_group_minctl;
1584		data->groups[idx++] = &lm85_group_temp_off;
 
 
 
 
 
1585	}
1586
1587	/*
1588	 * The ADT7463/68 have an optional VRM 10 mode where pin 21 is used
1589	 * as a sixth digital VID input rather than an analog input.
1590	 */
1591	if (data->type == adt7463 || data->type == adt7468) {
1592		u8 vid = lm85_read_value(client, LM85_REG_VID);
1593		if (vid & 0x80)
1594			data->has_vid5 = true;
1595	}
1596
1597	if (!data->has_vid5)
1598		data->groups[idx++] = &lm85_group_in4;
 
 
1599
1600	/* The EMC6D100 has 3 additional voltage inputs */
1601	if (data->type == emc6d100)
1602		data->groups[idx++] = &lm85_group_in567;
 
 
 
 
 
 
 
 
1603
1604	hwmon_dev = devm_hwmon_device_register_with_groups(dev, client->name,
1605							   data, data->groups);
1606	return PTR_ERR_OR_ZERO(hwmon_dev);
 
 
 
 
 
1607}
1608
1609static const struct i2c_device_id lm85_id[] = {
1610	{ "adm1027", adm1027 },
1611	{ "adt7463", adt7463 },
1612	{ "adt7468", adt7468 },
1613	{ "lm85", lm85 },
1614	{ "lm85b", lm85 },
1615	{ "lm85c", lm85 },
1616	{ "emc6d100", emc6d100 },
1617	{ "emc6d101", emc6d100 },
1618	{ "emc6d102", emc6d102 },
1619	{ "emc6d103", emc6d103 },
1620	{ "emc6d103s", emc6d103s },
1621	{ }
1622};
1623MODULE_DEVICE_TABLE(i2c, lm85_id);
1624
1625static struct i2c_driver lm85_driver = {
1626	.class		= I2C_CLASS_HWMON,
1627	.driver = {
1628		.name   = "lm85",
1629	},
1630	.probe		= lm85_probe,
1631	.id_table	= lm85_id,
1632	.detect		= lm85_detect,
1633	.address_list	= normal_i2c,
1634};
1635
1636module_i2c_driver(lm85_driver);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1637
1638MODULE_LICENSE("GPL");
1639MODULE_AUTHOR("Philip Pokorny <ppokorny@penguincomputing.com>, "
1640	"Margit Schubert-While <margitsw@t-online.de>, "
1641	"Justin Thiessen <jthiessen@penguincomputing.com>");
1642MODULE_DESCRIPTION("LM85-B, LM85-C driver");
v3.1
   1/*
   2    lm85.c - Part of lm_sensors, Linux kernel modules for hardware
   3             monitoring
   4    Copyright (c) 1998, 1999  Frodo Looijaard <frodol@dds.nl>
   5    Copyright (c) 2002, 2003  Philip Pokorny <ppokorny@penguincomputing.com>
   6    Copyright (c) 2003        Margit Schubert-While <margitsw@t-online.de>
   7    Copyright (c) 2004        Justin Thiessen <jthiessen@penguincomputing.com>
   8    Copyright (C) 2007--2009  Jean Delvare <khali@linux-fr.org>
   9
  10    Chip details at	      <http://www.national.com/ds/LM/LM85.pdf>
  11
  12    This program is free software; you can redistribute it and/or modify
  13    it under the terms of the GNU General Public License as published by
  14    the Free Software Foundation; either version 2 of the License, or
  15    (at your option) any later version.
  16
  17    This program is distributed in the hope that it will be useful,
  18    but WITHOUT ANY WARRANTY; without even the implied warranty of
  19    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  20    GNU General Public License for more details.
  21
  22    You should have received a copy of the GNU General Public License
  23    along with this program; if not, write to the Free Software
  24    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  25*/
  26
  27#include <linux/module.h>
  28#include <linux/init.h>
  29#include <linux/slab.h>
  30#include <linux/jiffies.h>
  31#include <linux/i2c.h>
  32#include <linux/hwmon.h>
  33#include <linux/hwmon-vid.h>
  34#include <linux/hwmon-sysfs.h>
  35#include <linux/err.h>
  36#include <linux/mutex.h>
 
  37
  38/* Addresses to scan */
  39static const unsigned short normal_i2c[] = { 0x2c, 0x2d, 0x2e, I2C_CLIENT_END };
  40
  41enum chips {
  42	any_chip, lm85b, lm85c,
  43	adm1027, adt7463, adt7468,
  44	emc6d100, emc6d102, emc6d103, emc6d103s
  45};
  46
  47/* The LM85 registers */
  48
  49#define	LM85_REG_IN(nr)			(0x20 + (nr))
  50#define	LM85_REG_IN_MIN(nr)		(0x44 + (nr) * 2)
  51#define	LM85_REG_IN_MAX(nr)		(0x45 + (nr) * 2)
  52
  53#define	LM85_REG_TEMP(nr)		(0x25 + (nr))
  54#define	LM85_REG_TEMP_MIN(nr)		(0x4e + (nr) * 2)
  55#define	LM85_REG_TEMP_MAX(nr)		(0x4f + (nr) * 2)
  56
  57/* Fan speeds are LSB, MSB (2 bytes) */
  58#define	LM85_REG_FAN(nr)		(0x28 + (nr) * 2)
  59#define	LM85_REG_FAN_MIN(nr)		(0x54 + (nr) * 2)
  60
  61#define	LM85_REG_PWM(nr)		(0x30 + (nr))
  62
  63#define	LM85_REG_COMPANY		0x3e
  64#define	LM85_REG_VERSTEP		0x3f
  65
  66#define	ADT7468_REG_CFG5		0x7c
  67#define		ADT7468_OFF64		(1 << 0)
  68#define		ADT7468_HFPWM		(1 << 1)
  69#define	IS_ADT7468_OFF64(data)		\
  70	((data)->type == adt7468 && !((data)->cfg5 & ADT7468_OFF64))
  71#define	IS_ADT7468_HFPWM(data)		\
  72	((data)->type == adt7468 && !((data)->cfg5 & ADT7468_HFPWM))
  73
  74/* These are the recognized values for the above regs */
  75#define	LM85_COMPANY_NATIONAL		0x01
  76#define	LM85_COMPANY_ANALOG_DEV		0x41
  77#define	LM85_COMPANY_SMSC		0x5c
  78#define	LM85_VERSTEP_VMASK              0xf0
  79#define	LM85_VERSTEP_GENERIC		0x60
  80#define	LM85_VERSTEP_GENERIC2		0x70
  81#define	LM85_VERSTEP_LM85C		0x60
  82#define	LM85_VERSTEP_LM85B		0x62
  83#define	LM85_VERSTEP_LM96000_1		0x68
  84#define	LM85_VERSTEP_LM96000_2		0x69
  85#define	LM85_VERSTEP_ADM1027		0x60
  86#define	LM85_VERSTEP_ADT7463		0x62
  87#define	LM85_VERSTEP_ADT7463C		0x6A
  88#define	LM85_VERSTEP_ADT7468_1		0x71
  89#define	LM85_VERSTEP_ADT7468_2		0x72
  90#define	LM85_VERSTEP_EMC6D100_A0        0x60
  91#define	LM85_VERSTEP_EMC6D100_A1        0x61
  92#define	LM85_VERSTEP_EMC6D102		0x65
  93#define	LM85_VERSTEP_EMC6D103_A0	0x68
  94#define	LM85_VERSTEP_EMC6D103_A1	0x69
  95#define	LM85_VERSTEP_EMC6D103S		0x6A	/* Also known as EMC6D103:A2 */
  96
  97#define	LM85_REG_CONFIG			0x40
  98
  99#define	LM85_REG_ALARM1			0x41
 100#define	LM85_REG_ALARM2			0x42
 101
 102#define	LM85_REG_VID			0x43
 103
 104/* Automated FAN control */
 105#define	LM85_REG_AFAN_CONFIG(nr)	(0x5c + (nr))
 106#define	LM85_REG_AFAN_RANGE(nr)		(0x5f + (nr))
 107#define	LM85_REG_AFAN_SPIKE1		0x62
 108#define	LM85_REG_AFAN_MINPWM(nr)	(0x64 + (nr))
 109#define	LM85_REG_AFAN_LIMIT(nr)		(0x67 + (nr))
 110#define	LM85_REG_AFAN_CRITICAL(nr)	(0x6a + (nr))
 111#define	LM85_REG_AFAN_HYST1		0x6d
 112#define	LM85_REG_AFAN_HYST2		0x6e
 113
 114#define	ADM1027_REG_EXTEND_ADC1		0x76
 115#define	ADM1027_REG_EXTEND_ADC2		0x77
 116
 117#define EMC6D100_REG_ALARM3             0x7d
 118/* IN5, IN6 and IN7 */
 119#define	EMC6D100_REG_IN(nr)             (0x70 + ((nr) - 5))
 120#define	EMC6D100_REG_IN_MIN(nr)         (0x73 + ((nr) - 5) * 2)
 121#define	EMC6D100_REG_IN_MAX(nr)         (0x74 + ((nr) - 5) * 2)
 122#define	EMC6D102_REG_EXTEND_ADC1	0x85
 123#define	EMC6D102_REG_EXTEND_ADC2	0x86
 124#define	EMC6D102_REG_EXTEND_ADC3	0x87
 125#define	EMC6D102_REG_EXTEND_ADC4	0x88
 126
 127
 128/* Conversions. Rounding and limit checking is only done on the TO_REG
 129   variants. Note that you should be a bit careful with which arguments
 130   these macros are called: arguments may be evaluated more than once.
 131 */
 132
 133/* IN are scaled according to built-in resistors */
 134static const int lm85_scaling[] = {  /* .001 Volts */
 135	2500, 2250, 3300, 5000, 12000,
 136	3300, 1500, 1800 /*EMC6D100*/
 137};
 138#define SCALE(val, from, to)	(((val) * (to) + ((from) / 2)) / (from))
 139
 140#define INS_TO_REG(n, val)	\
 141		SENSORS_LIMIT(SCALE(val, lm85_scaling[n], 192), 0, 255)
 142
 143#define INSEXT_FROM_REG(n, val, ext)	\
 144		SCALE(((val) << 4) + (ext), 192 << 4, lm85_scaling[n])
 145
 146#define INS_FROM_REG(n, val)	SCALE((val), 192, lm85_scaling[n])
 147
 148/* FAN speed is measured using 90kHz clock */
 149static inline u16 FAN_TO_REG(unsigned long val)
 150{
 151	if (!val)
 152		return 0xffff;
 153	return SENSORS_LIMIT(5400000 / val, 1, 0xfffe);
 154}
 155#define FAN_FROM_REG(val)	((val) == 0 ? -1 : (val) == 0xffff ? 0 : \
 156				 5400000 / (val))
 157
 158/* Temperature is reported in .001 degC increments */
 159#define TEMP_TO_REG(val)	\
 160		SENSORS_LIMIT(SCALE(val, 1000, 1), -127, 127)
 161#define TEMPEXT_FROM_REG(val, ext)	\
 162		SCALE(((val) << 4) + (ext), 16, 1000)
 163#define TEMP_FROM_REG(val)	((val) * 1000)
 164
 165#define PWM_TO_REG(val)			SENSORS_LIMIT(val, 0, 255)
 166#define PWM_FROM_REG(val)		(val)
 167
 168
 169/* ZONEs have the following parameters:
 
 170 *    Limit (low) temp,           1. degC
 171 *    Hysteresis (below limit),   1. degC (0-15)
 172 *    Range of speed control,     .1 degC (2-80)
 173 *    Critical (high) temp,       1. degC
 174 *
 175 * FAN PWMs have the following parameters:
 176 *    Reference Zone,                 1, 2, 3, etc.
 177 *    Spinup time,                    .05 sec
 178 *    PWM value at limit/low temp,    1 count
 179 *    PWM Frequency,                  1. Hz
 180 *    PWM is Min or OFF below limit,  flag
 181 *    Invert PWM output,              flag
 182 *
 183 * Some chips filter the temp, others the fan.
 184 *    Filter constant (or disabled)   .1 seconds
 185 */
 186
 187/* These are the zone temperature range encodings in .001 degree C */
 188static const int lm85_range_map[] = {
 189	2000, 2500, 3300, 4000, 5000, 6600, 8000, 10000,
 190	13300, 16000, 20000, 26600, 32000, 40000, 53300, 80000
 191};
 192
 193static int RANGE_TO_REG(int range)
 194{
 195	int i;
 196
 197	/* Find the closest match */
 198	for (i = 0; i < 15; ++i) {
 199		if (range <= (lm85_range_map[i] + lm85_range_map[i + 1]) / 2)
 200			break;
 201	}
 202
 203	return i;
 204}
 205#define RANGE_FROM_REG(val)	lm85_range_map[(val) & 0x0f]
 206
 207/* These are the PWM frequency encodings */
 208static const int lm85_freq_map[8] = { /* 1 Hz */
 209	10, 15, 23, 30, 38, 47, 61, 94
 210};
 211static const int adm1027_freq_map[8] = { /* 1 Hz */
 212	11, 15, 22, 29, 35, 44, 59, 88
 213};
 
 214
 215static int FREQ_TO_REG(const int *map, int freq)
 
 216{
 217	int i;
 218
 219	/* Find the closest match */
 220	for (i = 0; i < 7; ++i)
 221		if (freq <= (map[i] + map[i + 1]) / 2)
 222			break;
 223	return i;
 224}
 225
 226static int FREQ_FROM_REG(const int *map, u8 reg)
 227{
 228	return map[reg & 0x07];
 229}
 230
 231/* Since we can't use strings, I'm abusing these numbers
 
 232 *   to stand in for the following meanings:
 233 *      1 -- PWM responds to Zone 1
 234 *      2 -- PWM responds to Zone 2
 235 *      3 -- PWM responds to Zone 3
 236 *     23 -- PWM responds to the higher temp of Zone 2 or 3
 237 *    123 -- PWM responds to highest of Zone 1, 2, or 3
 238 *      0 -- PWM is always at 0% (ie, off)
 239 *     -1 -- PWM is always at 100%
 240 *     -2 -- PWM responds to manual control
 241 */
 242
 243static const int lm85_zone_map[] = { 1, 2, 3, -1, 0, 23, 123, -2 };
 244#define ZONE_FROM_REG(val)	lm85_zone_map[(val) >> 5]
 245
 246static int ZONE_TO_REG(int zone)
 247{
 248	int i;
 249
 250	for (i = 0; i <= 7; ++i)
 251		if (zone == lm85_zone_map[i])
 252			break;
 253	if (i > 7)   /* Not found. */
 254		i = 3;  /* Always 100% */
 255	return i << 5;
 256}
 257
 258#define HYST_TO_REG(val)	SENSORS_LIMIT(((val) + 500) / 1000, 0, 15)
 259#define HYST_FROM_REG(val)	((val) * 1000)
 260
 261/* Chip sampling rates
 
 262 *
 263 * Some sensors are not updated more frequently than once per second
 264 *    so it doesn't make sense to read them more often than that.
 265 *    We cache the results and return the saved data if the driver
 266 *    is called again before a second has elapsed.
 267 *
 268 * Also, there is significant configuration data for this chip
 269 *    given the automatic PWM fan control that is possible.  There
 270 *    are about 47 bytes of config data to only 22 bytes of actual
 271 *    readings.  So, we keep the config data up to date in the cache
 272 *    when it is written and only sample it once every 1 *minute*
 273 */
 274#define LM85_DATA_INTERVAL  (HZ + HZ / 2)
 275#define LM85_CONFIG_INTERVAL  (1 * 60 * HZ)
 276
 277/* LM85 can automatically adjust fan speeds based on temperature
 
 278 * This structure encapsulates an entire Zone config.  There are
 279 * three zones (one for each temperature input) on the lm85
 280 */
 281struct lm85_zone {
 282	s8 limit;	/* Low temp limit */
 283	u8 hyst;	/* Low limit hysteresis. (0-15) */
 284	u8 range;	/* Temp range, encoded */
 285	s8 critical;	/* "All fans ON" temp limit */
 286	u8 max_desired; /* Actual "max" temperature specified.  Preserved
 
 287			 * to prevent "drift" as other autofan control
 288			 * values change.
 289			 */
 290};
 291
 292struct lm85_autofan {
 293	u8 config;	/* Register value */
 294	u8 min_pwm;	/* Minimum PWM value, encoded */
 295	u8 min_off;	/* Min PWM or OFF below "limit", flag */
 296};
 297
 298/* For each registered chip, we need to keep some data in memory.
 299   The structure is dynamically allocated. */
 
 
 300struct lm85_data {
 301	struct device *hwmon_dev;
 
 302	const int *freq_map;
 303	enum chips type;
 304
 305	bool has_vid5;	/* true if VID5 is configured for ADT7463 or ADT7468 */
 306
 307	struct mutex update_lock;
 308	int valid;		/* !=0 if following fields are valid */
 309	unsigned long last_reading;	/* In jiffies */
 310	unsigned long last_config;	/* In jiffies */
 311
 312	u8 in[8];		/* Register value */
 313	u8 in_max[8];		/* Register value */
 314	u8 in_min[8];		/* Register value */
 315	s8 temp[3];		/* Register value */
 316	s8 temp_min[3];		/* Register value */
 317	s8 temp_max[3];		/* Register value */
 318	u16 fan[4];		/* Register value */
 319	u16 fan_min[4];		/* Register value */
 320	u8 pwm[3];		/* Register value */
 321	u8 pwm_freq[3];		/* Register encoding */
 322	u8 temp_ext[3];		/* Decoded values */
 323	u8 in_ext[8];		/* Decoded values */
 324	u8 vid;			/* Register value */
 325	u8 vrm;			/* VRM version */
 326	u32 alarms;		/* Register encoding, combined */
 327	u8 cfg5;		/* Config Register 5 on ADT7468 */
 328	struct lm85_autofan autofan[3];
 329	struct lm85_zone zone[3];
 330};
 331
 332static int lm85_detect(struct i2c_client *client, struct i2c_board_info *info);
 333static int lm85_probe(struct i2c_client *client,
 334		      const struct i2c_device_id *id);
 335static int lm85_remove(struct i2c_client *client);
 336
 337static int lm85_read_value(struct i2c_client *client, u8 reg);
 338static void lm85_write_value(struct i2c_client *client, u8 reg, int value);
 339static struct lm85_data *lm85_update_device(struct device *dev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 340
 
 341
 342static const struct i2c_device_id lm85_id[] = {
 343	{ "adm1027", adm1027 },
 344	{ "adt7463", adt7463 },
 345	{ "adt7468", adt7468 },
 346	{ "lm85", any_chip },
 347	{ "lm85b", lm85b },
 348	{ "lm85c", lm85c },
 349	{ "emc6d100", emc6d100 },
 350	{ "emc6d101", emc6d100 },
 351	{ "emc6d102", emc6d102 },
 352	{ "emc6d103", emc6d103 },
 353	{ "emc6d103s", emc6d103s },
 354	{ }
 355};
 356MODULE_DEVICE_TABLE(i2c, lm85_id);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 357
 358static struct i2c_driver lm85_driver = {
 359	.class		= I2C_CLASS_HWMON,
 360	.driver = {
 361		.name   = "lm85",
 362	},
 363	.probe		= lm85_probe,
 364	.remove		= lm85_remove,
 365	.id_table	= lm85_id,
 366	.detect		= lm85_detect,
 367	.address_list	= normal_i2c,
 368};
 369
 
 
 370
 371/* 4 Fans */
 372static ssize_t show_fan(struct device *dev, struct device_attribute *attr,
 373		char *buf)
 374{
 375	int nr = to_sensor_dev_attr(attr)->index;
 376	struct lm85_data *data = lm85_update_device(dev);
 377	return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan[nr]));
 378}
 379
 380static ssize_t show_fan_min(struct device *dev, struct device_attribute *attr,
 381		char *buf)
 382{
 383	int nr = to_sensor_dev_attr(attr)->index;
 384	struct lm85_data *data = lm85_update_device(dev);
 385	return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan_min[nr]));
 386}
 387
 388static ssize_t set_fan_min(struct device *dev, struct device_attribute *attr,
 389		const char *buf, size_t count)
 390{
 391	int nr = to_sensor_dev_attr(attr)->index;
 392	struct i2c_client *client = to_i2c_client(dev);
 393	struct lm85_data *data = i2c_get_clientdata(client);
 394	unsigned long val = simple_strtoul(buf, NULL, 10);
 
 
 
 
 
 395
 396	mutex_lock(&data->update_lock);
 397	data->fan_min[nr] = FAN_TO_REG(val);
 398	lm85_write_value(client, LM85_REG_FAN_MIN(nr), data->fan_min[nr]);
 399	mutex_unlock(&data->update_lock);
 400	return count;
 401}
 402
 403#define show_fan_offset(offset)						\
 404static SENSOR_DEVICE_ATTR(fan##offset##_input, S_IRUGO,			\
 405		show_fan, NULL, offset - 1);				\
 406static SENSOR_DEVICE_ATTR(fan##offset##_min, S_IRUGO | S_IWUSR,		\
 407		show_fan_min, set_fan_min, offset - 1)
 408
 409show_fan_offset(1);
 410show_fan_offset(2);
 411show_fan_offset(3);
 412show_fan_offset(4);
 413
 414/* vid, vrm, alarms */
 415
 416static ssize_t show_vid_reg(struct device *dev, struct device_attribute *attr,
 417		char *buf)
 418{
 419	struct lm85_data *data = lm85_update_device(dev);
 420	int vid;
 421
 422	if (data->has_vid5) {
 423		/* 6-pin VID (VRM 10) */
 424		vid = vid_from_reg(data->vid & 0x3f, data->vrm);
 425	} else {
 426		/* 5-pin VID (VRM 9) */
 427		vid = vid_from_reg(data->vid & 0x1f, data->vrm);
 428	}
 429
 430	return sprintf(buf, "%d\n", vid);
 431}
 432
 433static DEVICE_ATTR(cpu0_vid, S_IRUGO, show_vid_reg, NULL);
 434
 435static ssize_t show_vrm_reg(struct device *dev, struct device_attribute *attr,
 436		char *buf)
 437{
 438	struct lm85_data *data = dev_get_drvdata(dev);
 439	return sprintf(buf, "%ld\n", (long) data->vrm);
 440}
 441
 442static ssize_t store_vrm_reg(struct device *dev, struct device_attribute *attr,
 443		const char *buf, size_t count)
 444{
 445	struct lm85_data *data = dev_get_drvdata(dev);
 446	data->vrm = simple_strtoul(buf, NULL, 10);
 
 
 
 
 
 
 
 
 
 
 447	return count;
 448}
 449
 450static DEVICE_ATTR(vrm, S_IRUGO | S_IWUSR, show_vrm_reg, store_vrm_reg);
 451
 452static ssize_t show_alarms_reg(struct device *dev, struct device_attribute
 453		*attr, char *buf)
 454{
 455	struct lm85_data *data = lm85_update_device(dev);
 456	return sprintf(buf, "%u\n", data->alarms);
 457}
 458
 459static DEVICE_ATTR(alarms, S_IRUGO, show_alarms_reg, NULL);
 460
 461static ssize_t show_alarm(struct device *dev, struct device_attribute *attr,
 462		char *buf)
 463{
 464	int nr = to_sensor_dev_attr(attr)->index;
 465	struct lm85_data *data = lm85_update_device(dev);
 466	return sprintf(buf, "%u\n", (data->alarms >> nr) & 1);
 467}
 468
 469static SENSOR_DEVICE_ATTR(in0_alarm, S_IRUGO, show_alarm, NULL, 0);
 470static SENSOR_DEVICE_ATTR(in1_alarm, S_IRUGO, show_alarm, NULL, 1);
 471static SENSOR_DEVICE_ATTR(in2_alarm, S_IRUGO, show_alarm, NULL, 2);
 472static SENSOR_DEVICE_ATTR(in3_alarm, S_IRUGO, show_alarm, NULL, 3);
 473static SENSOR_DEVICE_ATTR(in4_alarm, S_IRUGO, show_alarm, NULL, 8);
 474static SENSOR_DEVICE_ATTR(in5_alarm, S_IRUGO, show_alarm, NULL, 18);
 475static SENSOR_DEVICE_ATTR(in6_alarm, S_IRUGO, show_alarm, NULL, 16);
 476static SENSOR_DEVICE_ATTR(in7_alarm, S_IRUGO, show_alarm, NULL, 17);
 477static SENSOR_DEVICE_ATTR(temp1_alarm, S_IRUGO, show_alarm, NULL, 4);
 478static SENSOR_DEVICE_ATTR(temp1_fault, S_IRUGO, show_alarm, NULL, 14);
 479static SENSOR_DEVICE_ATTR(temp2_alarm, S_IRUGO, show_alarm, NULL, 5);
 480static SENSOR_DEVICE_ATTR(temp3_alarm, S_IRUGO, show_alarm, NULL, 6);
 481static SENSOR_DEVICE_ATTR(temp3_fault, S_IRUGO, show_alarm, NULL, 15);
 482static SENSOR_DEVICE_ATTR(fan1_alarm, S_IRUGO, show_alarm, NULL, 10);
 483static SENSOR_DEVICE_ATTR(fan2_alarm, S_IRUGO, show_alarm, NULL, 11);
 484static SENSOR_DEVICE_ATTR(fan3_alarm, S_IRUGO, show_alarm, NULL, 12);
 485static SENSOR_DEVICE_ATTR(fan4_alarm, S_IRUGO, show_alarm, NULL, 13);
 486
 487/* pwm */
 488
 489static ssize_t show_pwm(struct device *dev, struct device_attribute *attr,
 490		char *buf)
 491{
 492	int nr = to_sensor_dev_attr(attr)->index;
 493	struct lm85_data *data = lm85_update_device(dev);
 494	return sprintf(buf, "%d\n", PWM_FROM_REG(data->pwm[nr]));
 495}
 496
 497static ssize_t set_pwm(struct device *dev, struct device_attribute *attr,
 498		const char *buf, size_t count)
 499{
 500	int nr = to_sensor_dev_attr(attr)->index;
 501	struct i2c_client *client = to_i2c_client(dev);
 502	struct lm85_data *data = i2c_get_clientdata(client);
 503	long val = simple_strtol(buf, NULL, 10);
 
 
 
 
 
 504
 505	mutex_lock(&data->update_lock);
 506	data->pwm[nr] = PWM_TO_REG(val);
 507	lm85_write_value(client, LM85_REG_PWM(nr), data->pwm[nr]);
 508	mutex_unlock(&data->update_lock);
 509	return count;
 510}
 511
 512static ssize_t show_pwm_enable(struct device *dev, struct device_attribute
 513		*attr, char *buf)
 514{
 515	int nr = to_sensor_dev_attr(attr)->index;
 516	struct lm85_data *data = lm85_update_device(dev);
 517	int pwm_zone, enable;
 518
 519	pwm_zone = ZONE_FROM_REG(data->autofan[nr].config);
 520	switch (pwm_zone) {
 521	case -1:	/* PWM is always at 100% */
 522		enable = 0;
 523		break;
 524	case 0:		/* PWM is always at 0% */
 525	case -2:	/* PWM responds to manual control */
 526		enable = 1;
 527		break;
 528	default:	/* PWM in automatic mode */
 529		enable = 2;
 530	}
 531	return sprintf(buf, "%d\n", enable);
 532}
 533
 534static ssize_t set_pwm_enable(struct device *dev, struct device_attribute
 535		*attr, const char *buf, size_t count)
 536{
 537	int nr = to_sensor_dev_attr(attr)->index;
 538	struct i2c_client *client = to_i2c_client(dev);
 539	struct lm85_data *data = i2c_get_clientdata(client);
 540	long val = simple_strtol(buf, NULL, 10);
 541	u8 config;
 
 
 
 
 
 
 542
 543	switch (val) {
 544	case 0:
 545		config = 3;
 546		break;
 547	case 1:
 548		config = 7;
 549		break;
 550	case 2:
 551		/* Here we have to choose arbitrarily one of the 5 possible
 552		   configurations; I go for the safest */
 
 
 553		config = 6;
 554		break;
 555	default:
 556		return -EINVAL;
 557	}
 558
 559	mutex_lock(&data->update_lock);
 560	data->autofan[nr].config = lm85_read_value(client,
 561		LM85_REG_AFAN_CONFIG(nr));
 562	data->autofan[nr].config = (data->autofan[nr].config & ~0xe0)
 563		| (config << 5);
 564	lm85_write_value(client, LM85_REG_AFAN_CONFIG(nr),
 565		data->autofan[nr].config);
 566	mutex_unlock(&data->update_lock);
 567	return count;
 568}
 569
 570static ssize_t show_pwm_freq(struct device *dev,
 571		struct device_attribute *attr, char *buf)
 572{
 573	int nr = to_sensor_dev_attr(attr)->index;
 574	struct lm85_data *data = lm85_update_device(dev);
 575	int freq;
 576
 577	if (IS_ADT7468_HFPWM(data))
 578		freq = 22500;
 579	else
 580		freq = FREQ_FROM_REG(data->freq_map, data->pwm_freq[nr]);
 581
 582	return sprintf(buf, "%d\n", freq);
 583}
 584
 585static ssize_t set_pwm_freq(struct device *dev,
 586		struct device_attribute *attr, const char *buf, size_t count)
 587{
 588	int nr = to_sensor_dev_attr(attr)->index;
 589	struct i2c_client *client = to_i2c_client(dev);
 590	struct lm85_data *data = i2c_get_clientdata(client);
 591	long val = simple_strtol(buf, NULL, 10);
 
 
 
 
 
 592
 593	mutex_lock(&data->update_lock);
 594	/* The ADT7468 has a special high-frequency PWM output mode,
 
 595	 * where all PWM outputs are driven by a 22.5 kHz clock.
 596	 * This might confuse the user, but there's not much we can do. */
 
 597	if (data->type == adt7468 && val >= 11300) {	/* High freq. mode */
 598		data->cfg5 &= ~ADT7468_HFPWM;
 599		lm85_write_value(client, ADT7468_REG_CFG5, data->cfg5);
 600	} else {					/* Low freq. mode */
 601		data->pwm_freq[nr] = FREQ_TO_REG(data->freq_map, val);
 
 602		lm85_write_value(client, LM85_REG_AFAN_RANGE(nr),
 603				 (data->zone[nr].range << 4)
 604				 | data->pwm_freq[nr]);
 605		if (data->type == adt7468) {
 606			data->cfg5 |= ADT7468_HFPWM;
 607			lm85_write_value(client, ADT7468_REG_CFG5, data->cfg5);
 608		}
 609	}
 610	mutex_unlock(&data->update_lock);
 611	return count;
 612}
 613
 614#define show_pwm_reg(offset)						\
 615static SENSOR_DEVICE_ATTR(pwm##offset, S_IRUGO | S_IWUSR,		\
 616		show_pwm, set_pwm, offset - 1);				\
 617static SENSOR_DEVICE_ATTR(pwm##offset##_enable, S_IRUGO | S_IWUSR,	\
 618		show_pwm_enable, set_pwm_enable, offset - 1);		\
 619static SENSOR_DEVICE_ATTR(pwm##offset##_freq, S_IRUGO | S_IWUSR,	\
 620		show_pwm_freq, set_pwm_freq, offset - 1)
 621
 622show_pwm_reg(1);
 623show_pwm_reg(2);
 624show_pwm_reg(3);
 625
 626/* Voltages */
 627
 628static ssize_t show_in(struct device *dev, struct device_attribute *attr,
 629		char *buf)
 630{
 631	int nr = to_sensor_dev_attr(attr)->index;
 632	struct lm85_data *data = lm85_update_device(dev);
 633	return sprintf(buf, "%d\n", INSEXT_FROM_REG(nr, data->in[nr],
 634						    data->in_ext[nr]));
 635}
 636
 637static ssize_t show_in_min(struct device *dev, struct device_attribute *attr,
 638		char *buf)
 639{
 640	int nr = to_sensor_dev_attr(attr)->index;
 641	struct lm85_data *data = lm85_update_device(dev);
 642	return sprintf(buf, "%d\n", INS_FROM_REG(nr, data->in_min[nr]));
 643}
 644
 645static ssize_t set_in_min(struct device *dev, struct device_attribute *attr,
 646		const char *buf, size_t count)
 647{
 648	int nr = to_sensor_dev_attr(attr)->index;
 649	struct i2c_client *client = to_i2c_client(dev);
 650	struct lm85_data *data = i2c_get_clientdata(client);
 651	long val = simple_strtol(buf, NULL, 10);
 
 
 
 
 
 652
 653	mutex_lock(&data->update_lock);
 654	data->in_min[nr] = INS_TO_REG(nr, val);
 655	lm85_write_value(client, LM85_REG_IN_MIN(nr), data->in_min[nr]);
 656	mutex_unlock(&data->update_lock);
 657	return count;
 658}
 659
 660static ssize_t show_in_max(struct device *dev, struct device_attribute *attr,
 661		char *buf)
 662{
 663	int nr = to_sensor_dev_attr(attr)->index;
 664	struct lm85_data *data = lm85_update_device(dev);
 665	return sprintf(buf, "%d\n", INS_FROM_REG(nr, data->in_max[nr]));
 666}
 667
 668static ssize_t set_in_max(struct device *dev, struct device_attribute *attr,
 669		const char *buf, size_t count)
 670{
 671	int nr = to_sensor_dev_attr(attr)->index;
 672	struct i2c_client *client = to_i2c_client(dev);
 673	struct lm85_data *data = i2c_get_clientdata(client);
 674	long val = simple_strtol(buf, NULL, 10);
 
 
 
 
 
 675
 676	mutex_lock(&data->update_lock);
 677	data->in_max[nr] = INS_TO_REG(nr, val);
 678	lm85_write_value(client, LM85_REG_IN_MAX(nr), data->in_max[nr]);
 679	mutex_unlock(&data->update_lock);
 680	return count;
 681}
 682
 683#define show_in_reg(offset)						\
 684static SENSOR_DEVICE_ATTR(in##offset##_input, S_IRUGO,			\
 685		show_in, NULL, offset);					\
 686static SENSOR_DEVICE_ATTR(in##offset##_min, S_IRUGO | S_IWUSR,		\
 687		show_in_min, set_in_min, offset);			\
 688static SENSOR_DEVICE_ATTR(in##offset##_max, S_IRUGO | S_IWUSR,		\
 689		show_in_max, set_in_max, offset)
 690
 691show_in_reg(0);
 692show_in_reg(1);
 693show_in_reg(2);
 694show_in_reg(3);
 695show_in_reg(4);
 696show_in_reg(5);
 697show_in_reg(6);
 698show_in_reg(7);
 699
 700/* Temps */
 701
 702static ssize_t show_temp(struct device *dev, struct device_attribute *attr,
 703		char *buf)
 704{
 705	int nr = to_sensor_dev_attr(attr)->index;
 706	struct lm85_data *data = lm85_update_device(dev);
 707	return sprintf(buf, "%d\n", TEMPEXT_FROM_REG(data->temp[nr],
 708						     data->temp_ext[nr]));
 709}
 710
 711static ssize_t show_temp_min(struct device *dev, struct device_attribute *attr,
 712		char *buf)
 713{
 714	int nr = to_sensor_dev_attr(attr)->index;
 715	struct lm85_data *data = lm85_update_device(dev);
 716	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_min[nr]));
 717}
 718
 719static ssize_t set_temp_min(struct device *dev, struct device_attribute *attr,
 720		const char *buf, size_t count)
 721{
 722	int nr = to_sensor_dev_attr(attr)->index;
 723	struct i2c_client *client = to_i2c_client(dev);
 724	struct lm85_data *data = i2c_get_clientdata(client);
 725	long val = simple_strtol(buf, NULL, 10);
 
 
 
 
 
 726
 727	if (IS_ADT7468_OFF64(data))
 728		val += 64;
 729
 730	mutex_lock(&data->update_lock);
 731	data->temp_min[nr] = TEMP_TO_REG(val);
 732	lm85_write_value(client, LM85_REG_TEMP_MIN(nr), data->temp_min[nr]);
 733	mutex_unlock(&data->update_lock);
 734	return count;
 735}
 736
 737static ssize_t show_temp_max(struct device *dev, struct device_attribute *attr,
 738		char *buf)
 739{
 740	int nr = to_sensor_dev_attr(attr)->index;
 741	struct lm85_data *data = lm85_update_device(dev);
 742	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_max[nr]));
 743}
 744
 745static ssize_t set_temp_max(struct device *dev, struct device_attribute *attr,
 746		const char *buf, size_t count)
 747{
 748	int nr = to_sensor_dev_attr(attr)->index;
 749	struct i2c_client *client = to_i2c_client(dev);
 750	struct lm85_data *data = i2c_get_clientdata(client);
 751	long val = simple_strtol(buf, NULL, 10);
 
 
 
 
 
 752
 753	if (IS_ADT7468_OFF64(data))
 754		val += 64;
 755
 756	mutex_lock(&data->update_lock);
 757	data->temp_max[nr] = TEMP_TO_REG(val);
 758	lm85_write_value(client, LM85_REG_TEMP_MAX(nr), data->temp_max[nr]);
 759	mutex_unlock(&data->update_lock);
 760	return count;
 761}
 762
 763#define show_temp_reg(offset)						\
 764static SENSOR_DEVICE_ATTR(temp##offset##_input, S_IRUGO,		\
 765		show_temp, NULL, offset - 1);				\
 766static SENSOR_DEVICE_ATTR(temp##offset##_min, S_IRUGO | S_IWUSR,	\
 767		show_temp_min, set_temp_min, offset - 1);		\
 768static SENSOR_DEVICE_ATTR(temp##offset##_max, S_IRUGO | S_IWUSR,	\
 769		show_temp_max, set_temp_max, offset - 1);
 770
 771show_temp_reg(1);
 772show_temp_reg(2);
 773show_temp_reg(3);
 774
 775
 776/* Automatic PWM control */
 777
 778static ssize_t show_pwm_auto_channels(struct device *dev,
 779		struct device_attribute *attr, char *buf)
 780{
 781	int nr = to_sensor_dev_attr(attr)->index;
 782	struct lm85_data *data = lm85_update_device(dev);
 783	return sprintf(buf, "%d\n", ZONE_FROM_REG(data->autofan[nr].config));
 784}
 785
 786static ssize_t set_pwm_auto_channels(struct device *dev,
 787		struct device_attribute *attr, const char *buf, size_t count)
 788{
 789	int nr = to_sensor_dev_attr(attr)->index;
 790	struct i2c_client *client = to_i2c_client(dev);
 791	struct lm85_data *data = i2c_get_clientdata(client);
 792	long val = simple_strtol(buf, NULL, 10);
 
 
 
 
 
 793
 794	mutex_lock(&data->update_lock);
 795	data->autofan[nr].config = (data->autofan[nr].config & (~0xe0))
 796		| ZONE_TO_REG(val);
 797	lm85_write_value(client, LM85_REG_AFAN_CONFIG(nr),
 798		data->autofan[nr].config);
 799	mutex_unlock(&data->update_lock);
 800	return count;
 801}
 802
 803static ssize_t show_pwm_auto_pwm_min(struct device *dev,
 804		struct device_attribute *attr, char *buf)
 805{
 806	int nr = to_sensor_dev_attr(attr)->index;
 807	struct lm85_data *data = lm85_update_device(dev);
 808	return sprintf(buf, "%d\n", PWM_FROM_REG(data->autofan[nr].min_pwm));
 809}
 810
 811static ssize_t set_pwm_auto_pwm_min(struct device *dev,
 812		struct device_attribute *attr, const char *buf, size_t count)
 813{
 814	int nr = to_sensor_dev_attr(attr)->index;
 815	struct i2c_client *client = to_i2c_client(dev);
 816	struct lm85_data *data = i2c_get_clientdata(client);
 817	long val = simple_strtol(buf, NULL, 10);
 
 
 
 
 
 818
 819	mutex_lock(&data->update_lock);
 820	data->autofan[nr].min_pwm = PWM_TO_REG(val);
 821	lm85_write_value(client, LM85_REG_AFAN_MINPWM(nr),
 822		data->autofan[nr].min_pwm);
 823	mutex_unlock(&data->update_lock);
 824	return count;
 825}
 826
 827static ssize_t show_pwm_auto_pwm_minctl(struct device *dev,
 828		struct device_attribute *attr, char *buf)
 829{
 830	int nr = to_sensor_dev_attr(attr)->index;
 831	struct lm85_data *data = lm85_update_device(dev);
 832	return sprintf(buf, "%d\n", data->autofan[nr].min_off);
 833}
 834
 835static ssize_t set_pwm_auto_pwm_minctl(struct device *dev,
 836		struct device_attribute *attr, const char *buf, size_t count)
 837{
 838	int nr = to_sensor_dev_attr(attr)->index;
 839	struct i2c_client *client = to_i2c_client(dev);
 840	struct lm85_data *data = i2c_get_clientdata(client);
 841	long val = simple_strtol(buf, NULL, 10);
 842	u8 tmp;
 
 
 
 
 
 
 843
 844	mutex_lock(&data->update_lock);
 845	data->autofan[nr].min_off = val;
 846	tmp = lm85_read_value(client, LM85_REG_AFAN_SPIKE1);
 847	tmp &= ~(0x20 << nr);
 848	if (data->autofan[nr].min_off)
 849		tmp |= 0x20 << nr;
 850	lm85_write_value(client, LM85_REG_AFAN_SPIKE1, tmp);
 851	mutex_unlock(&data->update_lock);
 852	return count;
 853}
 854
 855#define pwm_auto(offset)						\
 856static SENSOR_DEVICE_ATTR(pwm##offset##_auto_channels,			\
 857		S_IRUGO | S_IWUSR, show_pwm_auto_channels,		\
 858		set_pwm_auto_channels, offset - 1);			\
 859static SENSOR_DEVICE_ATTR(pwm##offset##_auto_pwm_min,			\
 860		S_IRUGO | S_IWUSR, show_pwm_auto_pwm_min,		\
 861		set_pwm_auto_pwm_min, offset - 1);			\
 862static SENSOR_DEVICE_ATTR(pwm##offset##_auto_pwm_minctl,		\
 863		S_IRUGO | S_IWUSR, show_pwm_auto_pwm_minctl,		\
 864		set_pwm_auto_pwm_minctl, offset - 1)
 865
 866pwm_auto(1);
 867pwm_auto(2);
 868pwm_auto(3);
 869
 870/* Temperature settings for automatic PWM control */
 871
 872static ssize_t show_temp_auto_temp_off(struct device *dev,
 873		struct device_attribute *attr, char *buf)
 874{
 875	int nr = to_sensor_dev_attr(attr)->index;
 876	struct lm85_data *data = lm85_update_device(dev);
 877	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].limit) -
 878		HYST_FROM_REG(data->zone[nr].hyst));
 879}
 880
 881static ssize_t set_temp_auto_temp_off(struct device *dev,
 882		struct device_attribute *attr, const char *buf, size_t count)
 883{
 884	int nr = to_sensor_dev_attr(attr)->index;
 885	struct i2c_client *client = to_i2c_client(dev);
 886	struct lm85_data *data = i2c_get_clientdata(client);
 887	int min;
 888	long val = simple_strtol(buf, NULL, 10);
 
 
 
 
 
 889
 890	mutex_lock(&data->update_lock);
 891	min = TEMP_FROM_REG(data->zone[nr].limit);
 892	data->zone[nr].hyst = HYST_TO_REG(min - val);
 893	if (nr == 0 || nr == 1) {
 894		lm85_write_value(client, LM85_REG_AFAN_HYST1,
 895			(data->zone[0].hyst << 4)
 896			| data->zone[1].hyst);
 897	} else {
 898		lm85_write_value(client, LM85_REG_AFAN_HYST2,
 899			(data->zone[2].hyst << 4));
 900	}
 901	mutex_unlock(&data->update_lock);
 902	return count;
 903}
 904
 905static ssize_t show_temp_auto_temp_min(struct device *dev,
 906		struct device_attribute *attr, char *buf)
 907{
 908	int nr = to_sensor_dev_attr(attr)->index;
 909	struct lm85_data *data = lm85_update_device(dev);
 910	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].limit));
 911}
 912
 913static ssize_t set_temp_auto_temp_min(struct device *dev,
 914		struct device_attribute *attr, const char *buf, size_t count)
 915{
 916	int nr = to_sensor_dev_attr(attr)->index;
 917	struct i2c_client *client = to_i2c_client(dev);
 918	struct lm85_data *data = i2c_get_clientdata(client);
 919	long val = simple_strtol(buf, NULL, 10);
 
 
 
 
 
 920
 921	mutex_lock(&data->update_lock);
 922	data->zone[nr].limit = TEMP_TO_REG(val);
 923	lm85_write_value(client, LM85_REG_AFAN_LIMIT(nr),
 924		data->zone[nr].limit);
 925
 926/* Update temp_auto_max and temp_auto_range */
 927	data->zone[nr].range = RANGE_TO_REG(
 928		TEMP_FROM_REG(data->zone[nr].max_desired) -
 929		TEMP_FROM_REG(data->zone[nr].limit));
 930	lm85_write_value(client, LM85_REG_AFAN_RANGE(nr),
 931		((data->zone[nr].range & 0x0f) << 4)
 932		| (data->pwm_freq[nr] & 0x07));
 933
 934	mutex_unlock(&data->update_lock);
 935	return count;
 936}
 937
 938static ssize_t show_temp_auto_temp_max(struct device *dev,
 939		struct device_attribute *attr, char *buf)
 940{
 941	int nr = to_sensor_dev_attr(attr)->index;
 942	struct lm85_data *data = lm85_update_device(dev);
 943	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].limit) +
 944		RANGE_FROM_REG(data->zone[nr].range));
 945}
 946
 947static ssize_t set_temp_auto_temp_max(struct device *dev,
 948		struct device_attribute *attr, const char *buf, size_t count)
 949{
 950	int nr = to_sensor_dev_attr(attr)->index;
 951	struct i2c_client *client = to_i2c_client(dev);
 952	struct lm85_data *data = i2c_get_clientdata(client);
 953	int min;
 954	long val = simple_strtol(buf, NULL, 10);
 
 
 
 
 
 955
 956	mutex_lock(&data->update_lock);
 957	min = TEMP_FROM_REG(data->zone[nr].limit);
 958	data->zone[nr].max_desired = TEMP_TO_REG(val);
 959	data->zone[nr].range = RANGE_TO_REG(
 960		val - min);
 961	lm85_write_value(client, LM85_REG_AFAN_RANGE(nr),
 962		((data->zone[nr].range & 0x0f) << 4)
 963		| (data->pwm_freq[nr] & 0x07));
 964	mutex_unlock(&data->update_lock);
 965	return count;
 966}
 967
 968static ssize_t show_temp_auto_temp_crit(struct device *dev,
 969		struct device_attribute *attr, char *buf)
 970{
 971	int nr = to_sensor_dev_attr(attr)->index;
 972	struct lm85_data *data = lm85_update_device(dev);
 973	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].critical));
 974}
 975
 976static ssize_t set_temp_auto_temp_crit(struct device *dev,
 977		struct device_attribute *attr, const char *buf, size_t count)
 978{
 979	int nr = to_sensor_dev_attr(attr)->index;
 980	struct i2c_client *client = to_i2c_client(dev);
 981	struct lm85_data *data = i2c_get_clientdata(client);
 982	long val = simple_strtol(buf, NULL, 10);
 
 
 
 
 
 983
 984	mutex_lock(&data->update_lock);
 985	data->zone[nr].critical = TEMP_TO_REG(val);
 986	lm85_write_value(client, LM85_REG_AFAN_CRITICAL(nr),
 987		data->zone[nr].critical);
 988	mutex_unlock(&data->update_lock);
 989	return count;
 990}
 991
 992#define temp_auto(offset)						\
 993static SENSOR_DEVICE_ATTR(temp##offset##_auto_temp_off,			\
 994		S_IRUGO | S_IWUSR, show_temp_auto_temp_off,		\
 995		set_temp_auto_temp_off, offset - 1);			\
 996static SENSOR_DEVICE_ATTR(temp##offset##_auto_temp_min,			\
 997		S_IRUGO | S_IWUSR, show_temp_auto_temp_min,		\
 998		set_temp_auto_temp_min, offset - 1);			\
 999static SENSOR_DEVICE_ATTR(temp##offset##_auto_temp_max,			\
1000		S_IRUGO | S_IWUSR, show_temp_auto_temp_max,		\
1001		set_temp_auto_temp_max, offset - 1);			\
1002static SENSOR_DEVICE_ATTR(temp##offset##_auto_temp_crit,		\
1003		S_IRUGO | S_IWUSR, show_temp_auto_temp_crit,		\
1004		set_temp_auto_temp_crit, offset - 1);
1005
1006temp_auto(1);
1007temp_auto(2);
1008temp_auto(3);
1009
1010static struct attribute *lm85_attributes[] = {
1011	&sensor_dev_attr_fan1_input.dev_attr.attr,
1012	&sensor_dev_attr_fan2_input.dev_attr.attr,
1013	&sensor_dev_attr_fan3_input.dev_attr.attr,
1014	&sensor_dev_attr_fan4_input.dev_attr.attr,
1015	&sensor_dev_attr_fan1_min.dev_attr.attr,
1016	&sensor_dev_attr_fan2_min.dev_attr.attr,
1017	&sensor_dev_attr_fan3_min.dev_attr.attr,
1018	&sensor_dev_attr_fan4_min.dev_attr.attr,
1019	&sensor_dev_attr_fan1_alarm.dev_attr.attr,
1020	&sensor_dev_attr_fan2_alarm.dev_attr.attr,
1021	&sensor_dev_attr_fan3_alarm.dev_attr.attr,
1022	&sensor_dev_attr_fan4_alarm.dev_attr.attr,
1023
1024	&sensor_dev_attr_pwm1.dev_attr.attr,
1025	&sensor_dev_attr_pwm2.dev_attr.attr,
1026	&sensor_dev_attr_pwm3.dev_attr.attr,
1027	&sensor_dev_attr_pwm1_enable.dev_attr.attr,
1028	&sensor_dev_attr_pwm2_enable.dev_attr.attr,
1029	&sensor_dev_attr_pwm3_enable.dev_attr.attr,
1030	&sensor_dev_attr_pwm1_freq.dev_attr.attr,
1031	&sensor_dev_attr_pwm2_freq.dev_attr.attr,
1032	&sensor_dev_attr_pwm3_freq.dev_attr.attr,
1033
1034	&sensor_dev_attr_in0_input.dev_attr.attr,
1035	&sensor_dev_attr_in1_input.dev_attr.attr,
1036	&sensor_dev_attr_in2_input.dev_attr.attr,
1037	&sensor_dev_attr_in3_input.dev_attr.attr,
1038	&sensor_dev_attr_in0_min.dev_attr.attr,
1039	&sensor_dev_attr_in1_min.dev_attr.attr,
1040	&sensor_dev_attr_in2_min.dev_attr.attr,
1041	&sensor_dev_attr_in3_min.dev_attr.attr,
1042	&sensor_dev_attr_in0_max.dev_attr.attr,
1043	&sensor_dev_attr_in1_max.dev_attr.attr,
1044	&sensor_dev_attr_in2_max.dev_attr.attr,
1045	&sensor_dev_attr_in3_max.dev_attr.attr,
1046	&sensor_dev_attr_in0_alarm.dev_attr.attr,
1047	&sensor_dev_attr_in1_alarm.dev_attr.attr,
1048	&sensor_dev_attr_in2_alarm.dev_attr.attr,
1049	&sensor_dev_attr_in3_alarm.dev_attr.attr,
1050
1051	&sensor_dev_attr_temp1_input.dev_attr.attr,
1052	&sensor_dev_attr_temp2_input.dev_attr.attr,
1053	&sensor_dev_attr_temp3_input.dev_attr.attr,
1054	&sensor_dev_attr_temp1_min.dev_attr.attr,
1055	&sensor_dev_attr_temp2_min.dev_attr.attr,
1056	&sensor_dev_attr_temp3_min.dev_attr.attr,
1057	&sensor_dev_attr_temp1_max.dev_attr.attr,
1058	&sensor_dev_attr_temp2_max.dev_attr.attr,
1059	&sensor_dev_attr_temp3_max.dev_attr.attr,
1060	&sensor_dev_attr_temp1_alarm.dev_attr.attr,
1061	&sensor_dev_attr_temp2_alarm.dev_attr.attr,
1062	&sensor_dev_attr_temp3_alarm.dev_attr.attr,
1063	&sensor_dev_attr_temp1_fault.dev_attr.attr,
1064	&sensor_dev_attr_temp3_fault.dev_attr.attr,
1065
1066	&sensor_dev_attr_pwm1_auto_channels.dev_attr.attr,
1067	&sensor_dev_attr_pwm2_auto_channels.dev_attr.attr,
1068	&sensor_dev_attr_pwm3_auto_channels.dev_attr.attr,
1069	&sensor_dev_attr_pwm1_auto_pwm_min.dev_attr.attr,
1070	&sensor_dev_attr_pwm2_auto_pwm_min.dev_attr.attr,
1071	&sensor_dev_attr_pwm3_auto_pwm_min.dev_attr.attr,
1072
1073	&sensor_dev_attr_temp1_auto_temp_min.dev_attr.attr,
1074	&sensor_dev_attr_temp2_auto_temp_min.dev_attr.attr,
1075	&sensor_dev_attr_temp3_auto_temp_min.dev_attr.attr,
1076	&sensor_dev_attr_temp1_auto_temp_max.dev_attr.attr,
1077	&sensor_dev_attr_temp2_auto_temp_max.dev_attr.attr,
1078	&sensor_dev_attr_temp3_auto_temp_max.dev_attr.attr,
1079	&sensor_dev_attr_temp1_auto_temp_crit.dev_attr.attr,
1080	&sensor_dev_attr_temp2_auto_temp_crit.dev_attr.attr,
1081	&sensor_dev_attr_temp3_auto_temp_crit.dev_attr.attr,
1082
1083	&dev_attr_vrm.attr,
1084	&dev_attr_cpu0_vid.attr,
1085	&dev_attr_alarms.attr,
1086	NULL
1087};
1088
1089static const struct attribute_group lm85_group = {
1090	.attrs = lm85_attributes,
1091};
1092
1093static struct attribute *lm85_attributes_minctl[] = {
1094	&sensor_dev_attr_pwm1_auto_pwm_minctl.dev_attr.attr,
1095	&sensor_dev_attr_pwm2_auto_pwm_minctl.dev_attr.attr,
1096	&sensor_dev_attr_pwm3_auto_pwm_minctl.dev_attr.attr,
1097	NULL
1098};
1099
1100static const struct attribute_group lm85_group_minctl = {
1101	.attrs = lm85_attributes_minctl,
1102};
1103
1104static struct attribute *lm85_attributes_temp_off[] = {
1105	&sensor_dev_attr_temp1_auto_temp_off.dev_attr.attr,
1106	&sensor_dev_attr_temp2_auto_temp_off.dev_attr.attr,
1107	&sensor_dev_attr_temp3_auto_temp_off.dev_attr.attr,
1108	NULL
1109};
1110
1111static const struct attribute_group lm85_group_temp_off = {
1112	.attrs = lm85_attributes_temp_off,
1113};
1114
1115static struct attribute *lm85_attributes_in4[] = {
1116	&sensor_dev_attr_in4_input.dev_attr.attr,
1117	&sensor_dev_attr_in4_min.dev_attr.attr,
1118	&sensor_dev_attr_in4_max.dev_attr.attr,
1119	&sensor_dev_attr_in4_alarm.dev_attr.attr,
1120	NULL
1121};
1122
1123static const struct attribute_group lm85_group_in4 = {
1124	.attrs = lm85_attributes_in4,
1125};
1126
1127static struct attribute *lm85_attributes_in567[] = {
1128	&sensor_dev_attr_in5_input.dev_attr.attr,
1129	&sensor_dev_attr_in6_input.dev_attr.attr,
1130	&sensor_dev_attr_in7_input.dev_attr.attr,
1131	&sensor_dev_attr_in5_min.dev_attr.attr,
1132	&sensor_dev_attr_in6_min.dev_attr.attr,
1133	&sensor_dev_attr_in7_min.dev_attr.attr,
1134	&sensor_dev_attr_in5_max.dev_attr.attr,
1135	&sensor_dev_attr_in6_max.dev_attr.attr,
1136	&sensor_dev_attr_in7_max.dev_attr.attr,
1137	&sensor_dev_attr_in5_alarm.dev_attr.attr,
1138	&sensor_dev_attr_in6_alarm.dev_attr.attr,
1139	&sensor_dev_attr_in7_alarm.dev_attr.attr,
1140	NULL
1141};
1142
1143static const struct attribute_group lm85_group_in567 = {
1144	.attrs = lm85_attributes_in567,
1145};
1146
1147static void lm85_init_client(struct i2c_client *client)
1148{
1149	int value;
1150
1151	/* Start monitoring if needed */
1152	value = lm85_read_value(client, LM85_REG_CONFIG);
1153	if (!(value & 0x01)) {
1154		dev_info(&client->dev, "Starting monitoring\n");
1155		lm85_write_value(client, LM85_REG_CONFIG, value | 0x01);
1156	}
1157
1158	/* Warn about unusual configuration bits */
1159	if (value & 0x02)
1160		dev_warn(&client->dev, "Device configuration is locked\n");
1161	if (!(value & 0x04))
1162		dev_warn(&client->dev, "Device is not ready\n");
1163}
1164
1165static int lm85_is_fake(struct i2c_client *client)
1166{
1167	/*
1168	 * Differenciate between real LM96000 and Winbond WPCD377I. The latter
1169	 * emulate the former except that it has no hardware monitoring function
1170	 * so the readings are always 0.
1171	 */
1172	int i;
1173	u8 in_temp, fan;
1174
1175	for (i = 0; i < 8; i++) {
1176		in_temp = i2c_smbus_read_byte_data(client, 0x20 + i);
1177		fan = i2c_smbus_read_byte_data(client, 0x28 + i);
1178		if (in_temp != 0x00 || fan != 0xff)
1179			return 0;
1180	}
1181
1182	return 1;
1183}
1184
1185/* Return 0 if detection is successful, -ENODEV otherwise */
1186static int lm85_detect(struct i2c_client *client, struct i2c_board_info *info)
1187{
1188	struct i2c_adapter *adapter = client->adapter;
1189	int address = client->addr;
1190	const char *type_name;
1191	int company, verstep;
1192
1193	if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA)) {
1194		/* We need to be able to do byte I/O */
1195		return -ENODEV;
1196	}
1197
1198	/* Determine the chip type */
1199	company = lm85_read_value(client, LM85_REG_COMPANY);
1200	verstep = lm85_read_value(client, LM85_REG_VERSTEP);
1201
1202	dev_dbg(&adapter->dev, "Detecting device at 0x%02x with "
1203		"COMPANY: 0x%02x and VERSTEP: 0x%02x\n",
1204		address, company, verstep);
1205
1206	/* All supported chips have the version in common */
1207	if ((verstep & LM85_VERSTEP_VMASK) != LM85_VERSTEP_GENERIC &&
1208	    (verstep & LM85_VERSTEP_VMASK) != LM85_VERSTEP_GENERIC2) {
1209		dev_dbg(&adapter->dev,
1210			"Autodetection failed: unsupported version\n");
1211		return -ENODEV;
1212	}
1213	type_name = "lm85";
1214
1215	/* Now, refine the detection */
1216	if (company == LM85_COMPANY_NATIONAL) {
1217		switch (verstep) {
1218		case LM85_VERSTEP_LM85C:
1219			type_name = "lm85c";
1220			break;
1221		case LM85_VERSTEP_LM85B:
1222			type_name = "lm85b";
1223			break;
1224		case LM85_VERSTEP_LM96000_1:
1225		case LM85_VERSTEP_LM96000_2:
1226			/* Check for Winbond WPCD377I */
1227			if (lm85_is_fake(client)) {
1228				dev_dbg(&adapter->dev,
1229					"Found Winbond WPCD377I, ignoring\n");
1230				return -ENODEV;
1231			}
 
1232			break;
1233		}
1234	} else if (company == LM85_COMPANY_ANALOG_DEV) {
1235		switch (verstep) {
1236		case LM85_VERSTEP_ADM1027:
1237			type_name = "adm1027";
1238			break;
1239		case LM85_VERSTEP_ADT7463:
1240		case LM85_VERSTEP_ADT7463C:
1241			type_name = "adt7463";
1242			break;
1243		case LM85_VERSTEP_ADT7468_1:
1244		case LM85_VERSTEP_ADT7468_2:
1245			type_name = "adt7468";
1246			break;
1247		}
1248	} else if (company == LM85_COMPANY_SMSC) {
1249		switch (verstep) {
1250		case LM85_VERSTEP_EMC6D100_A0:
1251		case LM85_VERSTEP_EMC6D100_A1:
1252			/* Note: we can't tell a '100 from a '101 */
1253			type_name = "emc6d100";
1254			break;
1255		case LM85_VERSTEP_EMC6D102:
1256			type_name = "emc6d102";
1257			break;
1258		case LM85_VERSTEP_EMC6D103_A0:
1259		case LM85_VERSTEP_EMC6D103_A1:
1260			type_name = "emc6d103";
1261			break;
1262		case LM85_VERSTEP_EMC6D103S:
1263			type_name = "emc6d103s";
1264			break;
1265		}
1266	} else {
1267		dev_dbg(&adapter->dev,
1268			"Autodetection failed: unknown vendor\n");
1269		return -ENODEV;
1270	}
1271
1272	strlcpy(info->type, type_name, I2C_NAME_SIZE);
1273
1274	return 0;
1275}
1276
1277static void lm85_remove_files(struct i2c_client *client, struct lm85_data *data)
1278{
1279	sysfs_remove_group(&client->dev.kobj, &lm85_group);
1280	if (data->type != emc6d103s) {
1281		sysfs_remove_group(&client->dev.kobj, &lm85_group_minctl);
1282		sysfs_remove_group(&client->dev.kobj, &lm85_group_temp_off);
1283	}
1284	if (!data->has_vid5)
1285		sysfs_remove_group(&client->dev.kobj, &lm85_group_in4);
1286	if (data->type == emc6d100)
1287		sysfs_remove_group(&client->dev.kobj, &lm85_group_in567);
1288}
1289
1290static int lm85_probe(struct i2c_client *client,
1291		      const struct i2c_device_id *id)
1292{
 
 
1293	struct lm85_data *data;
1294	int err;
1295
1296	data = kzalloc(sizeof(struct lm85_data), GFP_KERNEL);
1297	if (!data)
1298		return -ENOMEM;
1299
1300	i2c_set_clientdata(client, data);
1301	data->type = id->driver_data;
1302	mutex_init(&data->update_lock);
1303
1304	/* Fill in the chip specific driver values */
1305	switch (data->type) {
1306	case adm1027:
1307	case adt7463:
1308	case adt7468:
1309	case emc6d100:
1310	case emc6d102:
1311	case emc6d103:
1312	case emc6d103s:
1313		data->freq_map = adm1027_freq_map;
1314		break;
1315	default:
1316		data->freq_map = lm85_freq_map;
1317	}
1318
1319	/* Set the VRM version */
1320	data->vrm = vid_which_vrm();
1321
1322	/* Initialize the LM85 chip */
1323	lm85_init_client(client);
1324
1325	/* Register sysfs hooks */
1326	err = sysfs_create_group(&client->dev.kobj, &lm85_group);
1327	if (err)
1328		goto err_kfree;
1329
1330	/* minctl and temp_off exist on all chips except emc6d103s */
1331	if (data->type != emc6d103s) {
1332		err = sysfs_create_group(&client->dev.kobj, &lm85_group_minctl);
1333		if (err)
1334			goto err_remove_files;
1335		err = sysfs_create_group(&client->dev.kobj,
1336					 &lm85_group_temp_off);
1337		if (err)
1338			goto err_remove_files;
1339	}
1340
1341	/* The ADT7463/68 have an optional VRM 10 mode where pin 21 is used
1342	   as a sixth digital VID input rather than an analog input. */
 
 
1343	if (data->type == adt7463 || data->type == adt7468) {
1344		u8 vid = lm85_read_value(client, LM85_REG_VID);
1345		if (vid & 0x80)
1346			data->has_vid5 = true;
1347	}
1348
1349	if (!data->has_vid5)
1350		if ((err = sysfs_create_group(&client->dev.kobj,
1351					&lm85_group_in4)))
1352			goto err_remove_files;
1353
1354	/* The EMC6D100 has 3 additional voltage inputs */
1355	if (data->type == emc6d100)
1356		if ((err = sysfs_create_group(&client->dev.kobj,
1357					&lm85_group_in567)))
1358			goto err_remove_files;
1359
1360	data->hwmon_dev = hwmon_device_register(&client->dev);
1361	if (IS_ERR(data->hwmon_dev)) {
1362		err = PTR_ERR(data->hwmon_dev);
1363		goto err_remove_files;
1364	}
1365
1366	return 0;
1367
1368	/* Error out and cleanup code */
1369 err_remove_files:
1370	lm85_remove_files(client, data);
1371 err_kfree:
1372	kfree(data);
1373	return err;
1374}
1375
1376static int lm85_remove(struct i2c_client *client)
1377{
1378	struct lm85_data *data = i2c_get_clientdata(client);
1379	hwmon_device_unregister(data->hwmon_dev);
1380	lm85_remove_files(client, data);
1381	kfree(data);
1382	return 0;
1383}
 
 
 
 
 
 
 
1384
 
 
 
 
 
 
 
 
 
 
1385
1386static int lm85_read_value(struct i2c_client *client, u8 reg)
1387{
1388	int res;
1389
1390	/* What size location is it? */
1391	switch (reg) {
1392	case LM85_REG_FAN(0):  /* Read WORD data */
1393	case LM85_REG_FAN(1):
1394	case LM85_REG_FAN(2):
1395	case LM85_REG_FAN(3):
1396	case LM85_REG_FAN_MIN(0):
1397	case LM85_REG_FAN_MIN(1):
1398	case LM85_REG_FAN_MIN(2):
1399	case LM85_REG_FAN_MIN(3):
1400	case LM85_REG_ALARM1:	/* Read both bytes at once */
1401		res = i2c_smbus_read_byte_data(client, reg) & 0xff;
1402		res |= i2c_smbus_read_byte_data(client, reg + 1) << 8;
1403		break;
1404	default:	/* Read BYTE data */
1405		res = i2c_smbus_read_byte_data(client, reg);
1406		break;
1407	}
1408
1409	return res;
1410}
1411
1412static void lm85_write_value(struct i2c_client *client, u8 reg, int value)
1413{
1414	switch (reg) {
1415	case LM85_REG_FAN(0):  /* Write WORD data */
1416	case LM85_REG_FAN(1):
1417	case LM85_REG_FAN(2):
1418	case LM85_REG_FAN(3):
1419	case LM85_REG_FAN_MIN(0):
1420	case LM85_REG_FAN_MIN(1):
1421	case LM85_REG_FAN_MIN(2):
1422	case LM85_REG_FAN_MIN(3):
1423	/* NOTE: ALARM is read only, so not included here */
1424		i2c_smbus_write_byte_data(client, reg, value & 0xff);
1425		i2c_smbus_write_byte_data(client, reg + 1, value >> 8);
1426		break;
1427	default:	/* Write BYTE data */
1428		i2c_smbus_write_byte_data(client, reg, value);
1429		break;
1430	}
1431}
1432
1433static struct lm85_data *lm85_update_device(struct device *dev)
1434{
1435	struct i2c_client *client = to_i2c_client(dev);
1436	struct lm85_data *data = i2c_get_clientdata(client);
1437	int i;
1438
1439	mutex_lock(&data->update_lock);
1440
1441	if (!data->valid ||
1442	     time_after(jiffies, data->last_reading + LM85_DATA_INTERVAL)) {
1443		/* Things that change quickly */
1444		dev_dbg(&client->dev, "Reading sensor values\n");
1445
1446		/* Have to read extended bits first to "freeze" the
1447		 * more significant bits that are read later.
1448		 * There are 2 additional resolution bits per channel and we
1449		 * have room for 4, so we shift them to the left.
1450		 */
1451		if (data->type == adm1027 || data->type == adt7463 ||
1452		    data->type == adt7468) {
1453			int ext1 = lm85_read_value(client,
1454						   ADM1027_REG_EXTEND_ADC1);
1455			int ext2 =  lm85_read_value(client,
1456						    ADM1027_REG_EXTEND_ADC2);
1457			int val = (ext1 << 8) + ext2;
1458
1459			for (i = 0; i <= 4; i++)
1460				data->in_ext[i] =
1461					((val >> (i * 2)) & 0x03) << 2;
1462
1463			for (i = 0; i <= 2; i++)
1464				data->temp_ext[i] =
1465					(val >> ((i + 4) * 2)) & 0x0c;
1466		}
1467
1468		data->vid = lm85_read_value(client, LM85_REG_VID);
1469
1470		for (i = 0; i <= 3; ++i) {
1471			data->in[i] =
1472			    lm85_read_value(client, LM85_REG_IN(i));
1473			data->fan[i] =
1474			    lm85_read_value(client, LM85_REG_FAN(i));
1475		}
1476
1477		if (!data->has_vid5)
1478			data->in[4] = lm85_read_value(client, LM85_REG_IN(4));
1479
1480		if (data->type == adt7468)
1481			data->cfg5 = lm85_read_value(client, ADT7468_REG_CFG5);
1482
1483		for (i = 0; i <= 2; ++i) {
1484			data->temp[i] =
1485			    lm85_read_value(client, LM85_REG_TEMP(i));
1486			data->pwm[i] =
1487			    lm85_read_value(client, LM85_REG_PWM(i));
1488
1489			if (IS_ADT7468_OFF64(data))
1490				data->temp[i] -= 64;
1491		}
1492
1493		data->alarms = lm85_read_value(client, LM85_REG_ALARM1);
1494
1495		if (data->type == emc6d100) {
1496			/* Three more voltage sensors */
1497			for (i = 5; i <= 7; ++i) {
1498				data->in[i] = lm85_read_value(client,
1499							EMC6D100_REG_IN(i));
1500			}
1501			/* More alarm bits */
1502			data->alarms |= lm85_read_value(client,
1503						EMC6D100_REG_ALARM3) << 16;
1504		} else if (data->type == emc6d102 || data->type == emc6d103 ||
1505			   data->type == emc6d103s) {
1506			/* Have to read LSB bits after the MSB ones because
1507			   the reading of the MSB bits has frozen the
1508			   LSBs (backward from the ADM1027).
1509			 */
1510			int ext1 = lm85_read_value(client,
1511						   EMC6D102_REG_EXTEND_ADC1);
1512			int ext2 = lm85_read_value(client,
1513						   EMC6D102_REG_EXTEND_ADC2);
1514			int ext3 = lm85_read_value(client,
1515						   EMC6D102_REG_EXTEND_ADC3);
1516			int ext4 = lm85_read_value(client,
1517						   EMC6D102_REG_EXTEND_ADC4);
1518			data->in_ext[0] = ext3 & 0x0f;
1519			data->in_ext[1] = ext4 & 0x0f;
1520			data->in_ext[2] = ext4 >> 4;
1521			data->in_ext[3] = ext3 >> 4;
1522			data->in_ext[4] = ext2 >> 4;
1523
1524			data->temp_ext[0] = ext1 & 0x0f;
1525			data->temp_ext[1] = ext2 & 0x0f;
1526			data->temp_ext[2] = ext1 >> 4;
1527		}
1528
1529		data->last_reading = jiffies;
1530	}  /* last_reading */
1531
1532	if (!data->valid ||
1533	     time_after(jiffies, data->last_config + LM85_CONFIG_INTERVAL)) {
1534		/* Things that don't change often */
1535		dev_dbg(&client->dev, "Reading config values\n");
1536
1537		for (i = 0; i <= 3; ++i) {
1538			data->in_min[i] =
1539			    lm85_read_value(client, LM85_REG_IN_MIN(i));
1540			data->in_max[i] =
1541			    lm85_read_value(client, LM85_REG_IN_MAX(i));
1542			data->fan_min[i] =
1543			    lm85_read_value(client, LM85_REG_FAN_MIN(i));
1544		}
1545
1546		if (!data->has_vid5)  {
1547			data->in_min[4] = lm85_read_value(client,
1548					  LM85_REG_IN_MIN(4));
1549			data->in_max[4] = lm85_read_value(client,
1550					  LM85_REG_IN_MAX(4));
1551		}
1552
1553		if (data->type == emc6d100) {
1554			for (i = 5; i <= 7; ++i) {
1555				data->in_min[i] = lm85_read_value(client,
1556						EMC6D100_REG_IN_MIN(i));
1557				data->in_max[i] = lm85_read_value(client,
1558						EMC6D100_REG_IN_MAX(i));
1559			}
1560		}
1561
1562		for (i = 0; i <= 2; ++i) {
1563			int val;
1564
1565			data->temp_min[i] =
1566			    lm85_read_value(client, LM85_REG_TEMP_MIN(i));
1567			data->temp_max[i] =
1568			    lm85_read_value(client, LM85_REG_TEMP_MAX(i));
1569
1570			data->autofan[i].config =
1571			    lm85_read_value(client, LM85_REG_AFAN_CONFIG(i));
1572			val = lm85_read_value(client, LM85_REG_AFAN_RANGE(i));
1573			data->pwm_freq[i] = val & 0x07;
1574			data->zone[i].range = val >> 4;
1575			data->autofan[i].min_pwm =
1576			    lm85_read_value(client, LM85_REG_AFAN_MINPWM(i));
1577			data->zone[i].limit =
1578			    lm85_read_value(client, LM85_REG_AFAN_LIMIT(i));
1579			data->zone[i].critical =
1580			    lm85_read_value(client, LM85_REG_AFAN_CRITICAL(i));
1581
1582			if (IS_ADT7468_OFF64(data)) {
1583				data->temp_min[i] -= 64;
1584				data->temp_max[i] -= 64;
1585				data->zone[i].limit -= 64;
1586				data->zone[i].critical -= 64;
1587			}
1588		}
1589
1590		if (data->type != emc6d103s) {
1591			i = lm85_read_value(client, LM85_REG_AFAN_SPIKE1);
1592			data->autofan[0].min_off = (i & 0x20) != 0;
1593			data->autofan[1].min_off = (i & 0x40) != 0;
1594			data->autofan[2].min_off = (i & 0x80) != 0;
1595
1596			i = lm85_read_value(client, LM85_REG_AFAN_HYST1);
1597			data->zone[0].hyst = i >> 4;
1598			data->zone[1].hyst = i & 0x0f;
1599
1600			i = lm85_read_value(client, LM85_REG_AFAN_HYST2);
1601			data->zone[2].hyst = i >> 4;
1602		}
1603
1604		data->last_config = jiffies;
1605	}  /* last_config */
1606
1607	data->valid = 1;
1608
1609	mutex_unlock(&data->update_lock);
1610
1611	return data;
1612}
1613
1614
1615static int __init sm_lm85_init(void)
1616{
1617	return i2c_add_driver(&lm85_driver);
1618}
1619
1620static void __exit sm_lm85_exit(void)
1621{
1622	i2c_del_driver(&lm85_driver);
1623}
1624
1625MODULE_LICENSE("GPL");
1626MODULE_AUTHOR("Philip Pokorny <ppokorny@penguincomputing.com>, "
1627	"Margit Schubert-While <margitsw@t-online.de>, "
1628	"Justin Thiessen <jthiessen@penguincomputing.com>");
1629MODULE_DESCRIPTION("LM85-B, LM85-C driver");
1630
1631module_init(sm_lm85_init);
1632module_exit(sm_lm85_exit);