Loading...
1/*
2 * Copyright (c) 2006 ARM Ltd.
3 * Copyright (c) 2010 ST-Ericsson SA
4 *
5 * Author: Peter Pearse <peter.pearse@arm.com>
6 * Author: Linus Walleij <linus.walleij@stericsson.com>
7 *
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License as published by the Free
10 * Software Foundation; either version 2 of the License, or (at your option)
11 * any later version.
12 *
13 * This program is distributed in the hope that it will be useful, but WITHOUT
14 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
16 * more details.
17 *
18 * The full GNU General Public License is in this distribution in the file
19 * called COPYING.
20 *
21 * Documentation: ARM DDI 0196G == PL080
22 * Documentation: ARM DDI 0218E == PL081
23 * Documentation: S3C6410 User's Manual == PL080S
24 *
25 * PL080 & PL081 both have 16 sets of DMA signals that can be routed to any
26 * channel.
27 *
28 * The PL080 has 8 channels available for simultaneous use, and the PL081
29 * has only two channels. So on these DMA controllers the number of channels
30 * and the number of incoming DMA signals are two totally different things.
31 * It is usually not possible to theoretically handle all physical signals,
32 * so a multiplexing scheme with possible denial of use is necessary.
33 *
34 * The PL080 has a dual bus master, PL081 has a single master.
35 *
36 * PL080S is a version modified by Samsung and used in S3C64xx SoCs.
37 * It differs in following aspects:
38 * - CH_CONFIG register at different offset,
39 * - separate CH_CONTROL2 register for transfer size,
40 * - bigger maximum transfer size,
41 * - 8-word aligned LLI, instead of 4-word, due to extra CCTL2 word,
42 * - no support for peripheral flow control.
43 *
44 * Memory to peripheral transfer may be visualized as
45 * Get data from memory to DMAC
46 * Until no data left
47 * On burst request from peripheral
48 * Destination burst from DMAC to peripheral
49 * Clear burst request
50 * Raise terminal count interrupt
51 *
52 * For peripherals with a FIFO:
53 * Source burst size == half the depth of the peripheral FIFO
54 * Destination burst size == the depth of the peripheral FIFO
55 *
56 * (Bursts are irrelevant for mem to mem transfers - there are no burst
57 * signals, the DMA controller will simply facilitate its AHB master.)
58 *
59 * ASSUMES default (little) endianness for DMA transfers
60 *
61 * The PL08x has two flow control settings:
62 * - DMAC flow control: the transfer size defines the number of transfers
63 * which occur for the current LLI entry, and the DMAC raises TC at the
64 * end of every LLI entry. Observed behaviour shows the DMAC listening
65 * to both the BREQ and SREQ signals (contrary to documented),
66 * transferring data if either is active. The LBREQ and LSREQ signals
67 * are ignored.
68 *
69 * - Peripheral flow control: the transfer size is ignored (and should be
70 * zero). The data is transferred from the current LLI entry, until
71 * after the final transfer signalled by LBREQ or LSREQ. The DMAC
72 * will then move to the next LLI entry. Unsupported by PL080S.
73 */
74#include <linux/amba/bus.h>
75#include <linux/amba/pl08x.h>
76#include <linux/debugfs.h>
77#include <linux/delay.h>
78#include <linux/device.h>
79#include <linux/dmaengine.h>
80#include <linux/dmapool.h>
81#include <linux/dma-mapping.h>
82#include <linux/export.h>
83#include <linux/init.h>
84#include <linux/interrupt.h>
85#include <linux/module.h>
86#include <linux/of.h>
87#include <linux/of_dma.h>
88#include <linux/pm_runtime.h>
89#include <linux/seq_file.h>
90#include <linux/slab.h>
91#include <linux/amba/pl080.h>
92
93#include "dmaengine.h"
94#include "virt-dma.h"
95
96#define DRIVER_NAME "pl08xdmac"
97
98#define PL80X_DMA_BUSWIDTHS \
99 BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) | \
100 BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
101 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
102 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES)
103
104static struct amba_driver pl08x_amba_driver;
105struct pl08x_driver_data;
106
107/**
108 * struct vendor_data - vendor-specific config parameters for PL08x derivatives
109 * @channels: the number of channels available in this variant
110 * @dualmaster: whether this version supports dual AHB masters or not.
111 * @nomadik: whether the channels have Nomadik security extension bits
112 * that need to be checked for permission before use and some registers are
113 * missing
114 * @pl080s: whether this version is a PL080S, which has separate register and
115 * LLI word for transfer size.
116 */
117struct vendor_data {
118 u8 config_offset;
119 u8 channels;
120 bool dualmaster;
121 bool nomadik;
122 bool pl080s;
123 u32 max_transfer_size;
124};
125
126/**
127 * struct pl08x_bus_data - information of source or destination
128 * busses for a transfer
129 * @addr: current address
130 * @maxwidth: the maximum width of a transfer on this bus
131 * @buswidth: the width of this bus in bytes: 1, 2 or 4
132 */
133struct pl08x_bus_data {
134 dma_addr_t addr;
135 u8 maxwidth;
136 u8 buswidth;
137};
138
139#define IS_BUS_ALIGNED(bus) IS_ALIGNED((bus)->addr, (bus)->buswidth)
140
141/**
142 * struct pl08x_phy_chan - holder for the physical channels
143 * @id: physical index to this channel
144 * @lock: a lock to use when altering an instance of this struct
145 * @serving: the virtual channel currently being served by this physical
146 * channel
147 * @locked: channel unavailable for the system, e.g. dedicated to secure
148 * world
149 */
150struct pl08x_phy_chan {
151 unsigned int id;
152 void __iomem *base;
153 void __iomem *reg_config;
154 spinlock_t lock;
155 struct pl08x_dma_chan *serving;
156 bool locked;
157};
158
159/**
160 * struct pl08x_sg - structure containing data per sg
161 * @src_addr: src address of sg
162 * @dst_addr: dst address of sg
163 * @len: transfer len in bytes
164 * @node: node for txd's dsg_list
165 */
166struct pl08x_sg {
167 dma_addr_t src_addr;
168 dma_addr_t dst_addr;
169 size_t len;
170 struct list_head node;
171};
172
173/**
174 * struct pl08x_txd - wrapper for struct dma_async_tx_descriptor
175 * @vd: virtual DMA descriptor
176 * @dsg_list: list of children sg's
177 * @llis_bus: DMA memory address (physical) start for the LLIs
178 * @llis_va: virtual memory address start for the LLIs
179 * @cctl: control reg values for current txd
180 * @ccfg: config reg values for current txd
181 * @done: this marks completed descriptors, which should not have their
182 * mux released.
183 * @cyclic: indicate cyclic transfers
184 */
185struct pl08x_txd {
186 struct virt_dma_desc vd;
187 struct list_head dsg_list;
188 dma_addr_t llis_bus;
189 u32 *llis_va;
190 /* Default cctl value for LLIs */
191 u32 cctl;
192 /*
193 * Settings to be put into the physical channel when we
194 * trigger this txd. Other registers are in llis_va[0].
195 */
196 u32 ccfg;
197 bool done;
198 bool cyclic;
199};
200
201/**
202 * struct pl08x_dma_chan_state - holds the PL08x specific virtual channel
203 * states
204 * @PL08X_CHAN_IDLE: the channel is idle
205 * @PL08X_CHAN_RUNNING: the channel has allocated a physical transport
206 * channel and is running a transfer on it
207 * @PL08X_CHAN_PAUSED: the channel has allocated a physical transport
208 * channel, but the transfer is currently paused
209 * @PL08X_CHAN_WAITING: the channel is waiting for a physical transport
210 * channel to become available (only pertains to memcpy channels)
211 */
212enum pl08x_dma_chan_state {
213 PL08X_CHAN_IDLE,
214 PL08X_CHAN_RUNNING,
215 PL08X_CHAN_PAUSED,
216 PL08X_CHAN_WAITING,
217};
218
219/**
220 * struct pl08x_dma_chan - this structure wraps a DMA ENGINE channel
221 * @vc: wrappped virtual channel
222 * @phychan: the physical channel utilized by this channel, if there is one
223 * @name: name of channel
224 * @cd: channel platform data
225 * @runtime_addr: address for RX/TX according to the runtime config
226 * @at: active transaction on this channel
227 * @lock: a lock for this channel data
228 * @host: a pointer to the host (internal use)
229 * @state: whether the channel is idle, paused, running etc
230 * @slave: whether this channel is a device (slave) or for memcpy
231 * @signal: the physical DMA request signal which this channel is using
232 * @mux_use: count of descriptors using this DMA request signal setting
233 */
234struct pl08x_dma_chan {
235 struct virt_dma_chan vc;
236 struct pl08x_phy_chan *phychan;
237 const char *name;
238 const struct pl08x_channel_data *cd;
239 struct dma_slave_config cfg;
240 struct pl08x_txd *at;
241 struct pl08x_driver_data *host;
242 enum pl08x_dma_chan_state state;
243 bool slave;
244 int signal;
245 unsigned mux_use;
246};
247
248/**
249 * struct pl08x_driver_data - the local state holder for the PL08x
250 * @slave: slave engine for this instance
251 * @memcpy: memcpy engine for this instance
252 * @base: virtual memory base (remapped) for the PL08x
253 * @adev: the corresponding AMBA (PrimeCell) bus entry
254 * @vd: vendor data for this PL08x variant
255 * @pd: platform data passed in from the platform/machine
256 * @phy_chans: array of data for the physical channels
257 * @pool: a pool for the LLI descriptors
258 * @lli_buses: bitmask to or in to LLI pointer selecting AHB port for LLI
259 * fetches
260 * @mem_buses: set to indicate memory transfers on AHB2.
261 * @lock: a spinlock for this struct
262 */
263struct pl08x_driver_data {
264 struct dma_device slave;
265 struct dma_device memcpy;
266 void __iomem *base;
267 struct amba_device *adev;
268 const struct vendor_data *vd;
269 struct pl08x_platform_data *pd;
270 struct pl08x_phy_chan *phy_chans;
271 struct dma_pool *pool;
272 u8 lli_buses;
273 u8 mem_buses;
274 u8 lli_words;
275};
276
277/*
278 * PL08X specific defines
279 */
280
281/* The order of words in an LLI. */
282#define PL080_LLI_SRC 0
283#define PL080_LLI_DST 1
284#define PL080_LLI_LLI 2
285#define PL080_LLI_CCTL 3
286#define PL080S_LLI_CCTL2 4
287
288/* Total words in an LLI. */
289#define PL080_LLI_WORDS 4
290#define PL080S_LLI_WORDS 8
291
292/*
293 * Number of LLIs in each LLI buffer allocated for one transfer
294 * (maximum times we call dma_pool_alloc on this pool without freeing)
295 */
296#define MAX_NUM_TSFR_LLIS 512
297#define PL08X_ALIGN 8
298
299static inline struct pl08x_dma_chan *to_pl08x_chan(struct dma_chan *chan)
300{
301 return container_of(chan, struct pl08x_dma_chan, vc.chan);
302}
303
304static inline struct pl08x_txd *to_pl08x_txd(struct dma_async_tx_descriptor *tx)
305{
306 return container_of(tx, struct pl08x_txd, vd.tx);
307}
308
309/*
310 * Mux handling.
311 *
312 * This gives us the DMA request input to the PL08x primecell which the
313 * peripheral described by the channel data will be routed to, possibly
314 * via a board/SoC specific external MUX. One important point to note
315 * here is that this does not depend on the physical channel.
316 */
317static int pl08x_request_mux(struct pl08x_dma_chan *plchan)
318{
319 const struct pl08x_platform_data *pd = plchan->host->pd;
320 int ret;
321
322 if (plchan->mux_use++ == 0 && pd->get_xfer_signal) {
323 ret = pd->get_xfer_signal(plchan->cd);
324 if (ret < 0) {
325 plchan->mux_use = 0;
326 return ret;
327 }
328
329 plchan->signal = ret;
330 }
331 return 0;
332}
333
334static void pl08x_release_mux(struct pl08x_dma_chan *plchan)
335{
336 const struct pl08x_platform_data *pd = plchan->host->pd;
337
338 if (plchan->signal >= 0) {
339 WARN_ON(plchan->mux_use == 0);
340
341 if (--plchan->mux_use == 0 && pd->put_xfer_signal) {
342 pd->put_xfer_signal(plchan->cd, plchan->signal);
343 plchan->signal = -1;
344 }
345 }
346}
347
348/*
349 * Physical channel handling
350 */
351
352/* Whether a certain channel is busy or not */
353static int pl08x_phy_channel_busy(struct pl08x_phy_chan *ch)
354{
355 unsigned int val;
356
357 val = readl(ch->reg_config);
358 return val & PL080_CONFIG_ACTIVE;
359}
360
361static void pl08x_write_lli(struct pl08x_driver_data *pl08x,
362 struct pl08x_phy_chan *phychan, const u32 *lli, u32 ccfg)
363{
364 if (pl08x->vd->pl080s)
365 dev_vdbg(&pl08x->adev->dev,
366 "WRITE channel %d: csrc=0x%08x, cdst=0x%08x, "
367 "clli=0x%08x, cctl=0x%08x, cctl2=0x%08x, ccfg=0x%08x\n",
368 phychan->id, lli[PL080_LLI_SRC], lli[PL080_LLI_DST],
369 lli[PL080_LLI_LLI], lli[PL080_LLI_CCTL],
370 lli[PL080S_LLI_CCTL2], ccfg);
371 else
372 dev_vdbg(&pl08x->adev->dev,
373 "WRITE channel %d: csrc=0x%08x, cdst=0x%08x, "
374 "clli=0x%08x, cctl=0x%08x, ccfg=0x%08x\n",
375 phychan->id, lli[PL080_LLI_SRC], lli[PL080_LLI_DST],
376 lli[PL080_LLI_LLI], lli[PL080_LLI_CCTL], ccfg);
377
378 writel_relaxed(lli[PL080_LLI_SRC], phychan->base + PL080_CH_SRC_ADDR);
379 writel_relaxed(lli[PL080_LLI_DST], phychan->base + PL080_CH_DST_ADDR);
380 writel_relaxed(lli[PL080_LLI_LLI], phychan->base + PL080_CH_LLI);
381 writel_relaxed(lli[PL080_LLI_CCTL], phychan->base + PL080_CH_CONTROL);
382
383 if (pl08x->vd->pl080s)
384 writel_relaxed(lli[PL080S_LLI_CCTL2],
385 phychan->base + PL080S_CH_CONTROL2);
386
387 writel(ccfg, phychan->reg_config);
388}
389
390/*
391 * Set the initial DMA register values i.e. those for the first LLI
392 * The next LLI pointer and the configuration interrupt bit have
393 * been set when the LLIs were constructed. Poke them into the hardware
394 * and start the transfer.
395 */
396static void pl08x_start_next_txd(struct pl08x_dma_chan *plchan)
397{
398 struct pl08x_driver_data *pl08x = plchan->host;
399 struct pl08x_phy_chan *phychan = plchan->phychan;
400 struct virt_dma_desc *vd = vchan_next_desc(&plchan->vc);
401 struct pl08x_txd *txd = to_pl08x_txd(&vd->tx);
402 u32 val;
403
404 list_del(&txd->vd.node);
405
406 plchan->at = txd;
407
408 /* Wait for channel inactive */
409 while (pl08x_phy_channel_busy(phychan))
410 cpu_relax();
411
412 pl08x_write_lli(pl08x, phychan, &txd->llis_va[0], txd->ccfg);
413
414 /* Enable the DMA channel */
415 /* Do not access config register until channel shows as disabled */
416 while (readl(pl08x->base + PL080_EN_CHAN) & (1 << phychan->id))
417 cpu_relax();
418
419 /* Do not access config register until channel shows as inactive */
420 val = readl(phychan->reg_config);
421 while ((val & PL080_CONFIG_ACTIVE) || (val & PL080_CONFIG_ENABLE))
422 val = readl(phychan->reg_config);
423
424 writel(val | PL080_CONFIG_ENABLE, phychan->reg_config);
425}
426
427/*
428 * Pause the channel by setting the HALT bit.
429 *
430 * For M->P transfers, pause the DMAC first and then stop the peripheral -
431 * the FIFO can only drain if the peripheral is still requesting data.
432 * (note: this can still timeout if the DMAC FIFO never drains of data.)
433 *
434 * For P->M transfers, disable the peripheral first to stop it filling
435 * the DMAC FIFO, and then pause the DMAC.
436 */
437static void pl08x_pause_phy_chan(struct pl08x_phy_chan *ch)
438{
439 u32 val;
440 int timeout;
441
442 /* Set the HALT bit and wait for the FIFO to drain */
443 val = readl(ch->reg_config);
444 val |= PL080_CONFIG_HALT;
445 writel(val, ch->reg_config);
446
447 /* Wait for channel inactive */
448 for (timeout = 1000; timeout; timeout--) {
449 if (!pl08x_phy_channel_busy(ch))
450 break;
451 udelay(1);
452 }
453 if (pl08x_phy_channel_busy(ch))
454 pr_err("pl08x: channel%u timeout waiting for pause\n", ch->id);
455}
456
457static void pl08x_resume_phy_chan(struct pl08x_phy_chan *ch)
458{
459 u32 val;
460
461 /* Clear the HALT bit */
462 val = readl(ch->reg_config);
463 val &= ~PL080_CONFIG_HALT;
464 writel(val, ch->reg_config);
465}
466
467/*
468 * pl08x_terminate_phy_chan() stops the channel, clears the FIFO and
469 * clears any pending interrupt status. This should not be used for
470 * an on-going transfer, but as a method of shutting down a channel
471 * (eg, when it's no longer used) or terminating a transfer.
472 */
473static void pl08x_terminate_phy_chan(struct pl08x_driver_data *pl08x,
474 struct pl08x_phy_chan *ch)
475{
476 u32 val = readl(ch->reg_config);
477
478 val &= ~(PL080_CONFIG_ENABLE | PL080_CONFIG_ERR_IRQ_MASK |
479 PL080_CONFIG_TC_IRQ_MASK);
480
481 writel(val, ch->reg_config);
482
483 writel(1 << ch->id, pl08x->base + PL080_ERR_CLEAR);
484 writel(1 << ch->id, pl08x->base + PL080_TC_CLEAR);
485}
486
487static inline u32 get_bytes_in_cctl(u32 cctl)
488{
489 /* The source width defines the number of bytes */
490 u32 bytes = cctl & PL080_CONTROL_TRANSFER_SIZE_MASK;
491
492 cctl &= PL080_CONTROL_SWIDTH_MASK;
493
494 switch (cctl >> PL080_CONTROL_SWIDTH_SHIFT) {
495 case PL080_WIDTH_8BIT:
496 break;
497 case PL080_WIDTH_16BIT:
498 bytes *= 2;
499 break;
500 case PL080_WIDTH_32BIT:
501 bytes *= 4;
502 break;
503 }
504 return bytes;
505}
506
507static inline u32 get_bytes_in_cctl_pl080s(u32 cctl, u32 cctl1)
508{
509 /* The source width defines the number of bytes */
510 u32 bytes = cctl1 & PL080S_CONTROL_TRANSFER_SIZE_MASK;
511
512 cctl &= PL080_CONTROL_SWIDTH_MASK;
513
514 switch (cctl >> PL080_CONTROL_SWIDTH_SHIFT) {
515 case PL080_WIDTH_8BIT:
516 break;
517 case PL080_WIDTH_16BIT:
518 bytes *= 2;
519 break;
520 case PL080_WIDTH_32BIT:
521 bytes *= 4;
522 break;
523 }
524 return bytes;
525}
526
527/* The channel should be paused when calling this */
528static u32 pl08x_getbytes_chan(struct pl08x_dma_chan *plchan)
529{
530 struct pl08x_driver_data *pl08x = plchan->host;
531 const u32 *llis_va, *llis_va_limit;
532 struct pl08x_phy_chan *ch;
533 dma_addr_t llis_bus;
534 struct pl08x_txd *txd;
535 u32 llis_max_words;
536 size_t bytes;
537 u32 clli;
538
539 ch = plchan->phychan;
540 txd = plchan->at;
541
542 if (!ch || !txd)
543 return 0;
544
545 /*
546 * Follow the LLIs to get the number of remaining
547 * bytes in the currently active transaction.
548 */
549 clli = readl(ch->base + PL080_CH_LLI) & ~PL080_LLI_LM_AHB2;
550
551 /* First get the remaining bytes in the active transfer */
552 if (pl08x->vd->pl080s)
553 bytes = get_bytes_in_cctl_pl080s(
554 readl(ch->base + PL080_CH_CONTROL),
555 readl(ch->base + PL080S_CH_CONTROL2));
556 else
557 bytes = get_bytes_in_cctl(readl(ch->base + PL080_CH_CONTROL));
558
559 if (!clli)
560 return bytes;
561
562 llis_va = txd->llis_va;
563 llis_bus = txd->llis_bus;
564
565 llis_max_words = pl08x->lli_words * MAX_NUM_TSFR_LLIS;
566 BUG_ON(clli < llis_bus || clli >= llis_bus +
567 sizeof(u32) * llis_max_words);
568
569 /*
570 * Locate the next LLI - as this is an array,
571 * it's simple maths to find.
572 */
573 llis_va += (clli - llis_bus) / sizeof(u32);
574
575 llis_va_limit = llis_va + llis_max_words;
576
577 for (; llis_va < llis_va_limit; llis_va += pl08x->lli_words) {
578 if (pl08x->vd->pl080s)
579 bytes += get_bytes_in_cctl_pl080s(
580 llis_va[PL080_LLI_CCTL],
581 llis_va[PL080S_LLI_CCTL2]);
582 else
583 bytes += get_bytes_in_cctl(llis_va[PL080_LLI_CCTL]);
584
585 /*
586 * A LLI pointer going backward terminates the LLI list
587 */
588 if (llis_va[PL080_LLI_LLI] <= clli)
589 break;
590 }
591
592 return bytes;
593}
594
595/*
596 * Allocate a physical channel for a virtual channel
597 *
598 * Try to locate a physical channel to be used for this transfer. If all
599 * are taken return NULL and the requester will have to cope by using
600 * some fallback PIO mode or retrying later.
601 */
602static struct pl08x_phy_chan *
603pl08x_get_phy_channel(struct pl08x_driver_data *pl08x,
604 struct pl08x_dma_chan *virt_chan)
605{
606 struct pl08x_phy_chan *ch = NULL;
607 unsigned long flags;
608 int i;
609
610 for (i = 0; i < pl08x->vd->channels; i++) {
611 ch = &pl08x->phy_chans[i];
612
613 spin_lock_irqsave(&ch->lock, flags);
614
615 if (!ch->locked && !ch->serving) {
616 ch->serving = virt_chan;
617 spin_unlock_irqrestore(&ch->lock, flags);
618 break;
619 }
620
621 spin_unlock_irqrestore(&ch->lock, flags);
622 }
623
624 if (i == pl08x->vd->channels) {
625 /* No physical channel available, cope with it */
626 return NULL;
627 }
628
629 return ch;
630}
631
632/* Mark the physical channel as free. Note, this write is atomic. */
633static inline void pl08x_put_phy_channel(struct pl08x_driver_data *pl08x,
634 struct pl08x_phy_chan *ch)
635{
636 ch->serving = NULL;
637}
638
639/*
640 * Try to allocate a physical channel. When successful, assign it to
641 * this virtual channel, and initiate the next descriptor. The
642 * virtual channel lock must be held at this point.
643 */
644static void pl08x_phy_alloc_and_start(struct pl08x_dma_chan *plchan)
645{
646 struct pl08x_driver_data *pl08x = plchan->host;
647 struct pl08x_phy_chan *ch;
648
649 ch = pl08x_get_phy_channel(pl08x, plchan);
650 if (!ch) {
651 dev_dbg(&pl08x->adev->dev, "no physical channel available for xfer on %s\n", plchan->name);
652 plchan->state = PL08X_CHAN_WAITING;
653 return;
654 }
655
656 dev_dbg(&pl08x->adev->dev, "allocated physical channel %d for xfer on %s\n",
657 ch->id, plchan->name);
658
659 plchan->phychan = ch;
660 plchan->state = PL08X_CHAN_RUNNING;
661 pl08x_start_next_txd(plchan);
662}
663
664static void pl08x_phy_reassign_start(struct pl08x_phy_chan *ch,
665 struct pl08x_dma_chan *plchan)
666{
667 struct pl08x_driver_data *pl08x = plchan->host;
668
669 dev_dbg(&pl08x->adev->dev, "reassigned physical channel %d for xfer on %s\n",
670 ch->id, plchan->name);
671
672 /*
673 * We do this without taking the lock; we're really only concerned
674 * about whether this pointer is NULL or not, and we're guaranteed
675 * that this will only be called when it _already_ is non-NULL.
676 */
677 ch->serving = plchan;
678 plchan->phychan = ch;
679 plchan->state = PL08X_CHAN_RUNNING;
680 pl08x_start_next_txd(plchan);
681}
682
683/*
684 * Free a physical DMA channel, potentially reallocating it to another
685 * virtual channel if we have any pending.
686 */
687static void pl08x_phy_free(struct pl08x_dma_chan *plchan)
688{
689 struct pl08x_driver_data *pl08x = plchan->host;
690 struct pl08x_dma_chan *p, *next;
691
692 retry:
693 next = NULL;
694
695 /* Find a waiting virtual channel for the next transfer. */
696 list_for_each_entry(p, &pl08x->memcpy.channels, vc.chan.device_node)
697 if (p->state == PL08X_CHAN_WAITING) {
698 next = p;
699 break;
700 }
701
702 if (!next) {
703 list_for_each_entry(p, &pl08x->slave.channels, vc.chan.device_node)
704 if (p->state == PL08X_CHAN_WAITING) {
705 next = p;
706 break;
707 }
708 }
709
710 /* Ensure that the physical channel is stopped */
711 pl08x_terminate_phy_chan(pl08x, plchan->phychan);
712
713 if (next) {
714 bool success;
715
716 /*
717 * Eww. We know this isn't going to deadlock
718 * but lockdep probably doesn't.
719 */
720 spin_lock(&next->vc.lock);
721 /* Re-check the state now that we have the lock */
722 success = next->state == PL08X_CHAN_WAITING;
723 if (success)
724 pl08x_phy_reassign_start(plchan->phychan, next);
725 spin_unlock(&next->vc.lock);
726
727 /* If the state changed, try to find another channel */
728 if (!success)
729 goto retry;
730 } else {
731 /* No more jobs, so free up the physical channel */
732 pl08x_put_phy_channel(pl08x, plchan->phychan);
733 }
734
735 plchan->phychan = NULL;
736 plchan->state = PL08X_CHAN_IDLE;
737}
738
739/*
740 * LLI handling
741 */
742
743static inline unsigned int pl08x_get_bytes_for_cctl(unsigned int coded)
744{
745 switch (coded) {
746 case PL080_WIDTH_8BIT:
747 return 1;
748 case PL080_WIDTH_16BIT:
749 return 2;
750 case PL080_WIDTH_32BIT:
751 return 4;
752 default:
753 break;
754 }
755 BUG();
756 return 0;
757}
758
759static inline u32 pl08x_cctl_bits(u32 cctl, u8 srcwidth, u8 dstwidth,
760 size_t tsize)
761{
762 u32 retbits = cctl;
763
764 /* Remove all src, dst and transfer size bits */
765 retbits &= ~PL080_CONTROL_DWIDTH_MASK;
766 retbits &= ~PL080_CONTROL_SWIDTH_MASK;
767 retbits &= ~PL080_CONTROL_TRANSFER_SIZE_MASK;
768
769 /* Then set the bits according to the parameters */
770 switch (srcwidth) {
771 case 1:
772 retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_SWIDTH_SHIFT;
773 break;
774 case 2:
775 retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_SWIDTH_SHIFT;
776 break;
777 case 4:
778 retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_SWIDTH_SHIFT;
779 break;
780 default:
781 BUG();
782 break;
783 }
784
785 switch (dstwidth) {
786 case 1:
787 retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_DWIDTH_SHIFT;
788 break;
789 case 2:
790 retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_DWIDTH_SHIFT;
791 break;
792 case 4:
793 retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_DWIDTH_SHIFT;
794 break;
795 default:
796 BUG();
797 break;
798 }
799
800 tsize &= PL080_CONTROL_TRANSFER_SIZE_MASK;
801 retbits |= tsize << PL080_CONTROL_TRANSFER_SIZE_SHIFT;
802 return retbits;
803}
804
805struct pl08x_lli_build_data {
806 struct pl08x_txd *txd;
807 struct pl08x_bus_data srcbus;
808 struct pl08x_bus_data dstbus;
809 size_t remainder;
810 u32 lli_bus;
811};
812
813/*
814 * Autoselect a master bus to use for the transfer. Slave will be the chosen as
815 * victim in case src & dest are not similarly aligned. i.e. If after aligning
816 * masters address with width requirements of transfer (by sending few byte by
817 * byte data), slave is still not aligned, then its width will be reduced to
818 * BYTE.
819 * - prefers the destination bus if both available
820 * - prefers bus with fixed address (i.e. peripheral)
821 */
822static void pl08x_choose_master_bus(struct pl08x_lli_build_data *bd,
823 struct pl08x_bus_data **mbus, struct pl08x_bus_data **sbus, u32 cctl)
824{
825 if (!(cctl & PL080_CONTROL_DST_INCR)) {
826 *mbus = &bd->dstbus;
827 *sbus = &bd->srcbus;
828 } else if (!(cctl & PL080_CONTROL_SRC_INCR)) {
829 *mbus = &bd->srcbus;
830 *sbus = &bd->dstbus;
831 } else {
832 if (bd->dstbus.buswidth >= bd->srcbus.buswidth) {
833 *mbus = &bd->dstbus;
834 *sbus = &bd->srcbus;
835 } else {
836 *mbus = &bd->srcbus;
837 *sbus = &bd->dstbus;
838 }
839 }
840}
841
842/*
843 * Fills in one LLI for a certain transfer descriptor and advance the counter
844 */
845static void pl08x_fill_lli_for_desc(struct pl08x_driver_data *pl08x,
846 struct pl08x_lli_build_data *bd,
847 int num_llis, int len, u32 cctl, u32 cctl2)
848{
849 u32 offset = num_llis * pl08x->lli_words;
850 u32 *llis_va = bd->txd->llis_va + offset;
851 dma_addr_t llis_bus = bd->txd->llis_bus;
852
853 BUG_ON(num_llis >= MAX_NUM_TSFR_LLIS);
854
855 /* Advance the offset to next LLI. */
856 offset += pl08x->lli_words;
857
858 llis_va[PL080_LLI_SRC] = bd->srcbus.addr;
859 llis_va[PL080_LLI_DST] = bd->dstbus.addr;
860 llis_va[PL080_LLI_LLI] = (llis_bus + sizeof(u32) * offset);
861 llis_va[PL080_LLI_LLI] |= bd->lli_bus;
862 llis_va[PL080_LLI_CCTL] = cctl;
863 if (pl08x->vd->pl080s)
864 llis_va[PL080S_LLI_CCTL2] = cctl2;
865
866 if (cctl & PL080_CONTROL_SRC_INCR)
867 bd->srcbus.addr += len;
868 if (cctl & PL080_CONTROL_DST_INCR)
869 bd->dstbus.addr += len;
870
871 BUG_ON(bd->remainder < len);
872
873 bd->remainder -= len;
874}
875
876static inline void prep_byte_width_lli(struct pl08x_driver_data *pl08x,
877 struct pl08x_lli_build_data *bd, u32 *cctl, u32 len,
878 int num_llis, size_t *total_bytes)
879{
880 *cctl = pl08x_cctl_bits(*cctl, 1, 1, len);
881 pl08x_fill_lli_for_desc(pl08x, bd, num_llis, len, *cctl, len);
882 (*total_bytes) += len;
883}
884
885#ifdef VERBOSE_DEBUG
886static void pl08x_dump_lli(struct pl08x_driver_data *pl08x,
887 const u32 *llis_va, int num_llis)
888{
889 int i;
890
891 if (pl08x->vd->pl080s) {
892 dev_vdbg(&pl08x->adev->dev,
893 "%-3s %-9s %-10s %-10s %-10s %-10s %s\n",
894 "lli", "", "csrc", "cdst", "clli", "cctl", "cctl2");
895 for (i = 0; i < num_llis; i++) {
896 dev_vdbg(&pl08x->adev->dev,
897 "%3d @%p: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n",
898 i, llis_va, llis_va[PL080_LLI_SRC],
899 llis_va[PL080_LLI_DST], llis_va[PL080_LLI_LLI],
900 llis_va[PL080_LLI_CCTL],
901 llis_va[PL080S_LLI_CCTL2]);
902 llis_va += pl08x->lli_words;
903 }
904 } else {
905 dev_vdbg(&pl08x->adev->dev,
906 "%-3s %-9s %-10s %-10s %-10s %s\n",
907 "lli", "", "csrc", "cdst", "clli", "cctl");
908 for (i = 0; i < num_llis; i++) {
909 dev_vdbg(&pl08x->adev->dev,
910 "%3d @%p: 0x%08x 0x%08x 0x%08x 0x%08x\n",
911 i, llis_va, llis_va[PL080_LLI_SRC],
912 llis_va[PL080_LLI_DST], llis_va[PL080_LLI_LLI],
913 llis_va[PL080_LLI_CCTL]);
914 llis_va += pl08x->lli_words;
915 }
916 }
917}
918#else
919static inline void pl08x_dump_lli(struct pl08x_driver_data *pl08x,
920 const u32 *llis_va, int num_llis) {}
921#endif
922
923/*
924 * This fills in the table of LLIs for the transfer descriptor
925 * Note that we assume we never have to change the burst sizes
926 * Return 0 for error
927 */
928static int pl08x_fill_llis_for_desc(struct pl08x_driver_data *pl08x,
929 struct pl08x_txd *txd)
930{
931 struct pl08x_bus_data *mbus, *sbus;
932 struct pl08x_lli_build_data bd;
933 int num_llis = 0;
934 u32 cctl, early_bytes = 0;
935 size_t max_bytes_per_lli, total_bytes;
936 u32 *llis_va, *last_lli;
937 struct pl08x_sg *dsg;
938
939 txd->llis_va = dma_pool_alloc(pl08x->pool, GFP_NOWAIT, &txd->llis_bus);
940 if (!txd->llis_va) {
941 dev_err(&pl08x->adev->dev, "%s no memory for llis\n", __func__);
942 return 0;
943 }
944
945 bd.txd = txd;
946 bd.lli_bus = (pl08x->lli_buses & PL08X_AHB2) ? PL080_LLI_LM_AHB2 : 0;
947 cctl = txd->cctl;
948
949 /* Find maximum width of the source bus */
950 bd.srcbus.maxwidth =
951 pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_SWIDTH_MASK) >>
952 PL080_CONTROL_SWIDTH_SHIFT);
953
954 /* Find maximum width of the destination bus */
955 bd.dstbus.maxwidth =
956 pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_DWIDTH_MASK) >>
957 PL080_CONTROL_DWIDTH_SHIFT);
958
959 list_for_each_entry(dsg, &txd->dsg_list, node) {
960 total_bytes = 0;
961 cctl = txd->cctl;
962
963 bd.srcbus.addr = dsg->src_addr;
964 bd.dstbus.addr = dsg->dst_addr;
965 bd.remainder = dsg->len;
966 bd.srcbus.buswidth = bd.srcbus.maxwidth;
967 bd.dstbus.buswidth = bd.dstbus.maxwidth;
968
969 pl08x_choose_master_bus(&bd, &mbus, &sbus, cctl);
970
971 dev_vdbg(&pl08x->adev->dev,
972 "src=0x%08llx%s/%u dst=0x%08llx%s/%u len=%zu\n",
973 (u64)bd.srcbus.addr,
974 cctl & PL080_CONTROL_SRC_INCR ? "+" : "",
975 bd.srcbus.buswidth,
976 (u64)bd.dstbus.addr,
977 cctl & PL080_CONTROL_DST_INCR ? "+" : "",
978 bd.dstbus.buswidth,
979 bd.remainder);
980 dev_vdbg(&pl08x->adev->dev, "mbus=%s sbus=%s\n",
981 mbus == &bd.srcbus ? "src" : "dst",
982 sbus == &bd.srcbus ? "src" : "dst");
983
984 /*
985 * Zero length is only allowed if all these requirements are
986 * met:
987 * - flow controller is peripheral.
988 * - src.addr is aligned to src.width
989 * - dst.addr is aligned to dst.width
990 *
991 * sg_len == 1 should be true, as there can be two cases here:
992 *
993 * - Memory addresses are contiguous and are not scattered.
994 * Here, Only one sg will be passed by user driver, with
995 * memory address and zero length. We pass this to controller
996 * and after the transfer it will receive the last burst
997 * request from peripheral and so transfer finishes.
998 *
999 * - Memory addresses are scattered and are not contiguous.
1000 * Here, Obviously as DMA controller doesn't know when a lli's
1001 * transfer gets over, it can't load next lli. So in this
1002 * case, there has to be an assumption that only one lli is
1003 * supported. Thus, we can't have scattered addresses.
1004 */
1005 if (!bd.remainder) {
1006 u32 fc = (txd->ccfg & PL080_CONFIG_FLOW_CONTROL_MASK) >>
1007 PL080_CONFIG_FLOW_CONTROL_SHIFT;
1008 if (!((fc >= PL080_FLOW_SRC2DST_DST) &&
1009 (fc <= PL080_FLOW_SRC2DST_SRC))) {
1010 dev_err(&pl08x->adev->dev, "%s sg len can't be zero",
1011 __func__);
1012 return 0;
1013 }
1014
1015 if (!IS_BUS_ALIGNED(&bd.srcbus) ||
1016 !IS_BUS_ALIGNED(&bd.dstbus)) {
1017 dev_err(&pl08x->adev->dev,
1018 "%s src & dst address must be aligned to src"
1019 " & dst width if peripheral is flow controller",
1020 __func__);
1021 return 0;
1022 }
1023
1024 cctl = pl08x_cctl_bits(cctl, bd.srcbus.buswidth,
1025 bd.dstbus.buswidth, 0);
1026 pl08x_fill_lli_for_desc(pl08x, &bd, num_llis++,
1027 0, cctl, 0);
1028 break;
1029 }
1030
1031 /*
1032 * Send byte by byte for following cases
1033 * - Less than a bus width available
1034 * - until master bus is aligned
1035 */
1036 if (bd.remainder < mbus->buswidth)
1037 early_bytes = bd.remainder;
1038 else if (!IS_BUS_ALIGNED(mbus)) {
1039 early_bytes = mbus->buswidth -
1040 (mbus->addr & (mbus->buswidth - 1));
1041 if ((bd.remainder - early_bytes) < mbus->buswidth)
1042 early_bytes = bd.remainder;
1043 }
1044
1045 if (early_bytes) {
1046 dev_vdbg(&pl08x->adev->dev,
1047 "%s byte width LLIs (remain 0x%08zx)\n",
1048 __func__, bd.remainder);
1049 prep_byte_width_lli(pl08x, &bd, &cctl, early_bytes,
1050 num_llis++, &total_bytes);
1051 }
1052
1053 if (bd.remainder) {
1054 /*
1055 * Master now aligned
1056 * - if slave is not then we must set its width down
1057 */
1058 if (!IS_BUS_ALIGNED(sbus)) {
1059 dev_dbg(&pl08x->adev->dev,
1060 "%s set down bus width to one byte\n",
1061 __func__);
1062
1063 sbus->buswidth = 1;
1064 }
1065
1066 /*
1067 * Bytes transferred = tsize * src width, not
1068 * MIN(buswidths)
1069 */
1070 max_bytes_per_lli = bd.srcbus.buswidth *
1071 pl08x->vd->max_transfer_size;
1072 dev_vdbg(&pl08x->adev->dev,
1073 "%s max bytes per lli = %zu\n",
1074 __func__, max_bytes_per_lli);
1075
1076 /*
1077 * Make largest possible LLIs until less than one bus
1078 * width left
1079 */
1080 while (bd.remainder > (mbus->buswidth - 1)) {
1081 size_t lli_len, tsize, width;
1082
1083 /*
1084 * If enough left try to send max possible,
1085 * otherwise try to send the remainder
1086 */
1087 lli_len = min(bd.remainder, max_bytes_per_lli);
1088
1089 /*
1090 * Check against maximum bus alignment:
1091 * Calculate actual transfer size in relation to
1092 * bus width an get a maximum remainder of the
1093 * highest bus width - 1
1094 */
1095 width = max(mbus->buswidth, sbus->buswidth);
1096 lli_len = (lli_len / width) * width;
1097 tsize = lli_len / bd.srcbus.buswidth;
1098
1099 dev_vdbg(&pl08x->adev->dev,
1100 "%s fill lli with single lli chunk of "
1101 "size 0x%08zx (remainder 0x%08zx)\n",
1102 __func__, lli_len, bd.remainder);
1103
1104 cctl = pl08x_cctl_bits(cctl, bd.srcbus.buswidth,
1105 bd.dstbus.buswidth, tsize);
1106 pl08x_fill_lli_for_desc(pl08x, &bd, num_llis++,
1107 lli_len, cctl, tsize);
1108 total_bytes += lli_len;
1109 }
1110
1111 /*
1112 * Send any odd bytes
1113 */
1114 if (bd.remainder) {
1115 dev_vdbg(&pl08x->adev->dev,
1116 "%s align with boundary, send odd bytes (remain %zu)\n",
1117 __func__, bd.remainder);
1118 prep_byte_width_lli(pl08x, &bd, &cctl,
1119 bd.remainder, num_llis++, &total_bytes);
1120 }
1121 }
1122
1123 if (total_bytes != dsg->len) {
1124 dev_err(&pl08x->adev->dev,
1125 "%s size of encoded lli:s don't match total txd, transferred 0x%08zx from size 0x%08zx\n",
1126 __func__, total_bytes, dsg->len);
1127 return 0;
1128 }
1129
1130 if (num_llis >= MAX_NUM_TSFR_LLIS) {
1131 dev_err(&pl08x->adev->dev,
1132 "%s need to increase MAX_NUM_TSFR_LLIS from 0x%08x\n",
1133 __func__, MAX_NUM_TSFR_LLIS);
1134 return 0;
1135 }
1136 }
1137
1138 llis_va = txd->llis_va;
1139 last_lli = llis_va + (num_llis - 1) * pl08x->lli_words;
1140
1141 if (txd->cyclic) {
1142 /* Link back to the first LLI. */
1143 last_lli[PL080_LLI_LLI] = txd->llis_bus | bd.lli_bus;
1144 } else {
1145 /* The final LLI terminates the LLI. */
1146 last_lli[PL080_LLI_LLI] = 0;
1147 /* The final LLI element shall also fire an interrupt. */
1148 last_lli[PL080_LLI_CCTL] |= PL080_CONTROL_TC_IRQ_EN;
1149 }
1150
1151 pl08x_dump_lli(pl08x, llis_va, num_llis);
1152
1153 return num_llis;
1154}
1155
1156static void pl08x_free_txd(struct pl08x_driver_data *pl08x,
1157 struct pl08x_txd *txd)
1158{
1159 struct pl08x_sg *dsg, *_dsg;
1160
1161 if (txd->llis_va)
1162 dma_pool_free(pl08x->pool, txd->llis_va, txd->llis_bus);
1163
1164 list_for_each_entry_safe(dsg, _dsg, &txd->dsg_list, node) {
1165 list_del(&dsg->node);
1166 kfree(dsg);
1167 }
1168
1169 kfree(txd);
1170}
1171
1172static void pl08x_desc_free(struct virt_dma_desc *vd)
1173{
1174 struct pl08x_txd *txd = to_pl08x_txd(&vd->tx);
1175 struct pl08x_dma_chan *plchan = to_pl08x_chan(vd->tx.chan);
1176
1177 dma_descriptor_unmap(&vd->tx);
1178 if (!txd->done)
1179 pl08x_release_mux(plchan);
1180
1181 pl08x_free_txd(plchan->host, txd);
1182}
1183
1184static void pl08x_free_txd_list(struct pl08x_driver_data *pl08x,
1185 struct pl08x_dma_chan *plchan)
1186{
1187 LIST_HEAD(head);
1188
1189 vchan_get_all_descriptors(&plchan->vc, &head);
1190 vchan_dma_desc_free_list(&plchan->vc, &head);
1191}
1192
1193/*
1194 * The DMA ENGINE API
1195 */
1196static void pl08x_free_chan_resources(struct dma_chan *chan)
1197{
1198 /* Ensure all queued descriptors are freed */
1199 vchan_free_chan_resources(to_virt_chan(chan));
1200}
1201
1202static struct dma_async_tx_descriptor *pl08x_prep_dma_interrupt(
1203 struct dma_chan *chan, unsigned long flags)
1204{
1205 struct dma_async_tx_descriptor *retval = NULL;
1206
1207 return retval;
1208}
1209
1210/*
1211 * Code accessing dma_async_is_complete() in a tight loop may give problems.
1212 * If slaves are relying on interrupts to signal completion this function
1213 * must not be called with interrupts disabled.
1214 */
1215static enum dma_status pl08x_dma_tx_status(struct dma_chan *chan,
1216 dma_cookie_t cookie, struct dma_tx_state *txstate)
1217{
1218 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1219 struct virt_dma_desc *vd;
1220 unsigned long flags;
1221 enum dma_status ret;
1222 size_t bytes = 0;
1223
1224 ret = dma_cookie_status(chan, cookie, txstate);
1225 if (ret == DMA_COMPLETE)
1226 return ret;
1227
1228 /*
1229 * There's no point calculating the residue if there's
1230 * no txstate to store the value.
1231 */
1232 if (!txstate) {
1233 if (plchan->state == PL08X_CHAN_PAUSED)
1234 ret = DMA_PAUSED;
1235 return ret;
1236 }
1237
1238 spin_lock_irqsave(&plchan->vc.lock, flags);
1239 ret = dma_cookie_status(chan, cookie, txstate);
1240 if (ret != DMA_COMPLETE) {
1241 vd = vchan_find_desc(&plchan->vc, cookie);
1242 if (vd) {
1243 /* On the issued list, so hasn't been processed yet */
1244 struct pl08x_txd *txd = to_pl08x_txd(&vd->tx);
1245 struct pl08x_sg *dsg;
1246
1247 list_for_each_entry(dsg, &txd->dsg_list, node)
1248 bytes += dsg->len;
1249 } else {
1250 bytes = pl08x_getbytes_chan(plchan);
1251 }
1252 }
1253 spin_unlock_irqrestore(&plchan->vc.lock, flags);
1254
1255 /*
1256 * This cookie not complete yet
1257 * Get number of bytes left in the active transactions and queue
1258 */
1259 dma_set_residue(txstate, bytes);
1260
1261 if (plchan->state == PL08X_CHAN_PAUSED && ret == DMA_IN_PROGRESS)
1262 ret = DMA_PAUSED;
1263
1264 /* Whether waiting or running, we're in progress */
1265 return ret;
1266}
1267
1268/* PrimeCell DMA extension */
1269struct burst_table {
1270 u32 burstwords;
1271 u32 reg;
1272};
1273
1274static const struct burst_table burst_sizes[] = {
1275 {
1276 .burstwords = 256,
1277 .reg = PL080_BSIZE_256,
1278 },
1279 {
1280 .burstwords = 128,
1281 .reg = PL080_BSIZE_128,
1282 },
1283 {
1284 .burstwords = 64,
1285 .reg = PL080_BSIZE_64,
1286 },
1287 {
1288 .burstwords = 32,
1289 .reg = PL080_BSIZE_32,
1290 },
1291 {
1292 .burstwords = 16,
1293 .reg = PL080_BSIZE_16,
1294 },
1295 {
1296 .burstwords = 8,
1297 .reg = PL080_BSIZE_8,
1298 },
1299 {
1300 .burstwords = 4,
1301 .reg = PL080_BSIZE_4,
1302 },
1303 {
1304 .burstwords = 0,
1305 .reg = PL080_BSIZE_1,
1306 },
1307};
1308
1309/*
1310 * Given the source and destination available bus masks, select which
1311 * will be routed to each port. We try to have source and destination
1312 * on separate ports, but always respect the allowable settings.
1313 */
1314static u32 pl08x_select_bus(u8 src, u8 dst)
1315{
1316 u32 cctl = 0;
1317
1318 if (!(dst & PL08X_AHB1) || ((dst & PL08X_AHB2) && (src & PL08X_AHB1)))
1319 cctl |= PL080_CONTROL_DST_AHB2;
1320 if (!(src & PL08X_AHB1) || ((src & PL08X_AHB2) && !(dst & PL08X_AHB2)))
1321 cctl |= PL080_CONTROL_SRC_AHB2;
1322
1323 return cctl;
1324}
1325
1326static u32 pl08x_cctl(u32 cctl)
1327{
1328 cctl &= ~(PL080_CONTROL_SRC_AHB2 | PL080_CONTROL_DST_AHB2 |
1329 PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR |
1330 PL080_CONTROL_PROT_MASK);
1331
1332 /* Access the cell in privileged mode, non-bufferable, non-cacheable */
1333 return cctl | PL080_CONTROL_PROT_SYS;
1334}
1335
1336static u32 pl08x_width(enum dma_slave_buswidth width)
1337{
1338 switch (width) {
1339 case DMA_SLAVE_BUSWIDTH_1_BYTE:
1340 return PL080_WIDTH_8BIT;
1341 case DMA_SLAVE_BUSWIDTH_2_BYTES:
1342 return PL080_WIDTH_16BIT;
1343 case DMA_SLAVE_BUSWIDTH_4_BYTES:
1344 return PL080_WIDTH_32BIT;
1345 default:
1346 return ~0;
1347 }
1348}
1349
1350static u32 pl08x_burst(u32 maxburst)
1351{
1352 int i;
1353
1354 for (i = 0; i < ARRAY_SIZE(burst_sizes); i++)
1355 if (burst_sizes[i].burstwords <= maxburst)
1356 break;
1357
1358 return burst_sizes[i].reg;
1359}
1360
1361static u32 pl08x_get_cctl(struct pl08x_dma_chan *plchan,
1362 enum dma_slave_buswidth addr_width, u32 maxburst)
1363{
1364 u32 width, burst, cctl = 0;
1365
1366 width = pl08x_width(addr_width);
1367 if (width == ~0)
1368 return ~0;
1369
1370 cctl |= width << PL080_CONTROL_SWIDTH_SHIFT;
1371 cctl |= width << PL080_CONTROL_DWIDTH_SHIFT;
1372
1373 /*
1374 * If this channel will only request single transfers, set this
1375 * down to ONE element. Also select one element if no maxburst
1376 * is specified.
1377 */
1378 if (plchan->cd->single)
1379 maxburst = 1;
1380
1381 burst = pl08x_burst(maxburst);
1382 cctl |= burst << PL080_CONTROL_SB_SIZE_SHIFT;
1383 cctl |= burst << PL080_CONTROL_DB_SIZE_SHIFT;
1384
1385 return pl08x_cctl(cctl);
1386}
1387
1388/*
1389 * Slave transactions callback to the slave device to allow
1390 * synchronization of slave DMA signals with the DMAC enable
1391 */
1392static void pl08x_issue_pending(struct dma_chan *chan)
1393{
1394 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1395 unsigned long flags;
1396
1397 spin_lock_irqsave(&plchan->vc.lock, flags);
1398 if (vchan_issue_pending(&plchan->vc)) {
1399 if (!plchan->phychan && plchan->state != PL08X_CHAN_WAITING)
1400 pl08x_phy_alloc_and_start(plchan);
1401 }
1402 spin_unlock_irqrestore(&plchan->vc.lock, flags);
1403}
1404
1405static struct pl08x_txd *pl08x_get_txd(struct pl08x_dma_chan *plchan)
1406{
1407 struct pl08x_txd *txd = kzalloc(sizeof(*txd), GFP_NOWAIT);
1408
1409 if (txd) {
1410 INIT_LIST_HEAD(&txd->dsg_list);
1411
1412 /* Always enable error and terminal interrupts */
1413 txd->ccfg = PL080_CONFIG_ERR_IRQ_MASK |
1414 PL080_CONFIG_TC_IRQ_MASK;
1415 }
1416 return txd;
1417}
1418
1419/*
1420 * Initialize a descriptor to be used by memcpy submit
1421 */
1422static struct dma_async_tx_descriptor *pl08x_prep_dma_memcpy(
1423 struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
1424 size_t len, unsigned long flags)
1425{
1426 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1427 struct pl08x_driver_data *pl08x = plchan->host;
1428 struct pl08x_txd *txd;
1429 struct pl08x_sg *dsg;
1430 int ret;
1431
1432 txd = pl08x_get_txd(plchan);
1433 if (!txd) {
1434 dev_err(&pl08x->adev->dev,
1435 "%s no memory for descriptor\n", __func__);
1436 return NULL;
1437 }
1438
1439 dsg = kzalloc(sizeof(struct pl08x_sg), GFP_NOWAIT);
1440 if (!dsg) {
1441 pl08x_free_txd(pl08x, txd);
1442 dev_err(&pl08x->adev->dev, "%s no memory for pl080 sg\n",
1443 __func__);
1444 return NULL;
1445 }
1446 list_add_tail(&dsg->node, &txd->dsg_list);
1447
1448 dsg->src_addr = src;
1449 dsg->dst_addr = dest;
1450 dsg->len = len;
1451
1452 /* Set platform data for m2m */
1453 txd->ccfg |= PL080_FLOW_MEM2MEM << PL080_CONFIG_FLOW_CONTROL_SHIFT;
1454 txd->cctl = pl08x->pd->memcpy_channel.cctl_memcpy &
1455 ~(PL080_CONTROL_DST_AHB2 | PL080_CONTROL_SRC_AHB2);
1456
1457 /* Both to be incremented or the code will break */
1458 txd->cctl |= PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR;
1459
1460 if (pl08x->vd->dualmaster)
1461 txd->cctl |= pl08x_select_bus(pl08x->mem_buses,
1462 pl08x->mem_buses);
1463
1464 ret = pl08x_fill_llis_for_desc(plchan->host, txd);
1465 if (!ret) {
1466 pl08x_free_txd(pl08x, txd);
1467 return NULL;
1468 }
1469
1470 return vchan_tx_prep(&plchan->vc, &txd->vd, flags);
1471}
1472
1473static struct pl08x_txd *pl08x_init_txd(
1474 struct dma_chan *chan,
1475 enum dma_transfer_direction direction,
1476 dma_addr_t *slave_addr)
1477{
1478 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1479 struct pl08x_driver_data *pl08x = plchan->host;
1480 struct pl08x_txd *txd;
1481 enum dma_slave_buswidth addr_width;
1482 int ret, tmp;
1483 u8 src_buses, dst_buses;
1484 u32 maxburst, cctl;
1485
1486 txd = pl08x_get_txd(plchan);
1487 if (!txd) {
1488 dev_err(&pl08x->adev->dev, "%s no txd\n", __func__);
1489 return NULL;
1490 }
1491
1492 /*
1493 * Set up addresses, the PrimeCell configured address
1494 * will take precedence since this may configure the
1495 * channel target address dynamically at runtime.
1496 */
1497 if (direction == DMA_MEM_TO_DEV) {
1498 cctl = PL080_CONTROL_SRC_INCR;
1499 *slave_addr = plchan->cfg.dst_addr;
1500 addr_width = plchan->cfg.dst_addr_width;
1501 maxburst = plchan->cfg.dst_maxburst;
1502 src_buses = pl08x->mem_buses;
1503 dst_buses = plchan->cd->periph_buses;
1504 } else if (direction == DMA_DEV_TO_MEM) {
1505 cctl = PL080_CONTROL_DST_INCR;
1506 *slave_addr = plchan->cfg.src_addr;
1507 addr_width = plchan->cfg.src_addr_width;
1508 maxburst = plchan->cfg.src_maxburst;
1509 src_buses = plchan->cd->periph_buses;
1510 dst_buses = pl08x->mem_buses;
1511 } else {
1512 pl08x_free_txd(pl08x, txd);
1513 dev_err(&pl08x->adev->dev,
1514 "%s direction unsupported\n", __func__);
1515 return NULL;
1516 }
1517
1518 cctl |= pl08x_get_cctl(plchan, addr_width, maxburst);
1519 if (cctl == ~0) {
1520 pl08x_free_txd(pl08x, txd);
1521 dev_err(&pl08x->adev->dev,
1522 "DMA slave configuration botched?\n");
1523 return NULL;
1524 }
1525
1526 txd->cctl = cctl | pl08x_select_bus(src_buses, dst_buses);
1527
1528 if (plchan->cfg.device_fc)
1529 tmp = (direction == DMA_MEM_TO_DEV) ? PL080_FLOW_MEM2PER_PER :
1530 PL080_FLOW_PER2MEM_PER;
1531 else
1532 tmp = (direction == DMA_MEM_TO_DEV) ? PL080_FLOW_MEM2PER :
1533 PL080_FLOW_PER2MEM;
1534
1535 txd->ccfg |= tmp << PL080_CONFIG_FLOW_CONTROL_SHIFT;
1536
1537 ret = pl08x_request_mux(plchan);
1538 if (ret < 0) {
1539 pl08x_free_txd(pl08x, txd);
1540 dev_dbg(&pl08x->adev->dev,
1541 "unable to mux for transfer on %s due to platform restrictions\n",
1542 plchan->name);
1543 return NULL;
1544 }
1545
1546 dev_dbg(&pl08x->adev->dev, "allocated DMA request signal %d for xfer on %s\n",
1547 plchan->signal, plchan->name);
1548
1549 /* Assign the flow control signal to this channel */
1550 if (direction == DMA_MEM_TO_DEV)
1551 txd->ccfg |= plchan->signal << PL080_CONFIG_DST_SEL_SHIFT;
1552 else
1553 txd->ccfg |= plchan->signal << PL080_CONFIG_SRC_SEL_SHIFT;
1554
1555 return txd;
1556}
1557
1558static int pl08x_tx_add_sg(struct pl08x_txd *txd,
1559 enum dma_transfer_direction direction,
1560 dma_addr_t slave_addr,
1561 dma_addr_t buf_addr,
1562 unsigned int len)
1563{
1564 struct pl08x_sg *dsg;
1565
1566 dsg = kzalloc(sizeof(struct pl08x_sg), GFP_NOWAIT);
1567 if (!dsg)
1568 return -ENOMEM;
1569
1570 list_add_tail(&dsg->node, &txd->dsg_list);
1571
1572 dsg->len = len;
1573 if (direction == DMA_MEM_TO_DEV) {
1574 dsg->src_addr = buf_addr;
1575 dsg->dst_addr = slave_addr;
1576 } else {
1577 dsg->src_addr = slave_addr;
1578 dsg->dst_addr = buf_addr;
1579 }
1580
1581 return 0;
1582}
1583
1584static struct dma_async_tx_descriptor *pl08x_prep_slave_sg(
1585 struct dma_chan *chan, struct scatterlist *sgl,
1586 unsigned int sg_len, enum dma_transfer_direction direction,
1587 unsigned long flags, void *context)
1588{
1589 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1590 struct pl08x_driver_data *pl08x = plchan->host;
1591 struct pl08x_txd *txd;
1592 struct scatterlist *sg;
1593 int ret, tmp;
1594 dma_addr_t slave_addr;
1595
1596 dev_dbg(&pl08x->adev->dev, "%s prepare transaction of %d bytes from %s\n",
1597 __func__, sg_dma_len(sgl), plchan->name);
1598
1599 txd = pl08x_init_txd(chan, direction, &slave_addr);
1600 if (!txd)
1601 return NULL;
1602
1603 for_each_sg(sgl, sg, sg_len, tmp) {
1604 ret = pl08x_tx_add_sg(txd, direction, slave_addr,
1605 sg_dma_address(sg),
1606 sg_dma_len(sg));
1607 if (ret) {
1608 pl08x_release_mux(plchan);
1609 pl08x_free_txd(pl08x, txd);
1610 dev_err(&pl08x->adev->dev, "%s no mem for pl080 sg\n",
1611 __func__);
1612 return NULL;
1613 }
1614 }
1615
1616 ret = pl08x_fill_llis_for_desc(plchan->host, txd);
1617 if (!ret) {
1618 pl08x_release_mux(plchan);
1619 pl08x_free_txd(pl08x, txd);
1620 return NULL;
1621 }
1622
1623 return vchan_tx_prep(&plchan->vc, &txd->vd, flags);
1624}
1625
1626static struct dma_async_tx_descriptor *pl08x_prep_dma_cyclic(
1627 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
1628 size_t period_len, enum dma_transfer_direction direction,
1629 unsigned long flags)
1630{
1631 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1632 struct pl08x_driver_data *pl08x = plchan->host;
1633 struct pl08x_txd *txd;
1634 int ret, tmp;
1635 dma_addr_t slave_addr;
1636
1637 dev_dbg(&pl08x->adev->dev,
1638 "%s prepare cyclic transaction of %zd/%zd bytes %s %s\n",
1639 __func__, period_len, buf_len,
1640 direction == DMA_MEM_TO_DEV ? "to" : "from",
1641 plchan->name);
1642
1643 txd = pl08x_init_txd(chan, direction, &slave_addr);
1644 if (!txd)
1645 return NULL;
1646
1647 txd->cyclic = true;
1648 txd->cctl |= PL080_CONTROL_TC_IRQ_EN;
1649 for (tmp = 0; tmp < buf_len; tmp += period_len) {
1650 ret = pl08x_tx_add_sg(txd, direction, slave_addr,
1651 buf_addr + tmp, period_len);
1652 if (ret) {
1653 pl08x_release_mux(plchan);
1654 pl08x_free_txd(pl08x, txd);
1655 return NULL;
1656 }
1657 }
1658
1659 ret = pl08x_fill_llis_for_desc(plchan->host, txd);
1660 if (!ret) {
1661 pl08x_release_mux(plchan);
1662 pl08x_free_txd(pl08x, txd);
1663 return NULL;
1664 }
1665
1666 return vchan_tx_prep(&plchan->vc, &txd->vd, flags);
1667}
1668
1669static int pl08x_config(struct dma_chan *chan,
1670 struct dma_slave_config *config)
1671{
1672 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1673 struct pl08x_driver_data *pl08x = plchan->host;
1674
1675 if (!plchan->slave)
1676 return -EINVAL;
1677
1678 /* Reject definitely invalid configurations */
1679 if (config->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES ||
1680 config->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES)
1681 return -EINVAL;
1682
1683 if (config->device_fc && pl08x->vd->pl080s) {
1684 dev_err(&pl08x->adev->dev,
1685 "%s: PL080S does not support peripheral flow control\n",
1686 __func__);
1687 return -EINVAL;
1688 }
1689
1690 plchan->cfg = *config;
1691
1692 return 0;
1693}
1694
1695static int pl08x_terminate_all(struct dma_chan *chan)
1696{
1697 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1698 struct pl08x_driver_data *pl08x = plchan->host;
1699 unsigned long flags;
1700
1701 spin_lock_irqsave(&plchan->vc.lock, flags);
1702 if (!plchan->phychan && !plchan->at) {
1703 spin_unlock_irqrestore(&plchan->vc.lock, flags);
1704 return 0;
1705 }
1706
1707 plchan->state = PL08X_CHAN_IDLE;
1708
1709 if (plchan->phychan) {
1710 /*
1711 * Mark physical channel as free and free any slave
1712 * signal
1713 */
1714 pl08x_phy_free(plchan);
1715 }
1716 /* Dequeue jobs and free LLIs */
1717 if (plchan->at) {
1718 pl08x_desc_free(&plchan->at->vd);
1719 plchan->at = NULL;
1720 }
1721 /* Dequeue jobs not yet fired as well */
1722 pl08x_free_txd_list(pl08x, plchan);
1723
1724 spin_unlock_irqrestore(&plchan->vc.lock, flags);
1725
1726 return 0;
1727}
1728
1729static int pl08x_pause(struct dma_chan *chan)
1730{
1731 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1732 unsigned long flags;
1733
1734 /*
1735 * Anything succeeds on channels with no physical allocation and
1736 * no queued transfers.
1737 */
1738 spin_lock_irqsave(&plchan->vc.lock, flags);
1739 if (!plchan->phychan && !plchan->at) {
1740 spin_unlock_irqrestore(&plchan->vc.lock, flags);
1741 return 0;
1742 }
1743
1744 pl08x_pause_phy_chan(plchan->phychan);
1745 plchan->state = PL08X_CHAN_PAUSED;
1746
1747 spin_unlock_irqrestore(&plchan->vc.lock, flags);
1748
1749 return 0;
1750}
1751
1752static int pl08x_resume(struct dma_chan *chan)
1753{
1754 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1755 unsigned long flags;
1756
1757 /*
1758 * Anything succeeds on channels with no physical allocation and
1759 * no queued transfers.
1760 */
1761 spin_lock_irqsave(&plchan->vc.lock, flags);
1762 if (!plchan->phychan && !plchan->at) {
1763 spin_unlock_irqrestore(&plchan->vc.lock, flags);
1764 return 0;
1765 }
1766
1767 pl08x_resume_phy_chan(plchan->phychan);
1768 plchan->state = PL08X_CHAN_RUNNING;
1769
1770 spin_unlock_irqrestore(&plchan->vc.lock, flags);
1771
1772 return 0;
1773}
1774
1775bool pl08x_filter_id(struct dma_chan *chan, void *chan_id)
1776{
1777 struct pl08x_dma_chan *plchan;
1778 char *name = chan_id;
1779
1780 /* Reject channels for devices not bound to this driver */
1781 if (chan->device->dev->driver != &pl08x_amba_driver.drv)
1782 return false;
1783
1784 plchan = to_pl08x_chan(chan);
1785
1786 /* Check that the channel is not taken! */
1787 if (!strcmp(plchan->name, name))
1788 return true;
1789
1790 return false;
1791}
1792EXPORT_SYMBOL_GPL(pl08x_filter_id);
1793
1794/*
1795 * Just check that the device is there and active
1796 * TODO: turn this bit on/off depending on the number of physical channels
1797 * actually used, if it is zero... well shut it off. That will save some
1798 * power. Cut the clock at the same time.
1799 */
1800static void pl08x_ensure_on(struct pl08x_driver_data *pl08x)
1801{
1802 /* The Nomadik variant does not have the config register */
1803 if (pl08x->vd->nomadik)
1804 return;
1805 writel(PL080_CONFIG_ENABLE, pl08x->base + PL080_CONFIG);
1806}
1807
1808static irqreturn_t pl08x_irq(int irq, void *dev)
1809{
1810 struct pl08x_driver_data *pl08x = dev;
1811 u32 mask = 0, err, tc, i;
1812
1813 /* check & clear - ERR & TC interrupts */
1814 err = readl(pl08x->base + PL080_ERR_STATUS);
1815 if (err) {
1816 dev_err(&pl08x->adev->dev, "%s error interrupt, register value 0x%08x\n",
1817 __func__, err);
1818 writel(err, pl08x->base + PL080_ERR_CLEAR);
1819 }
1820 tc = readl(pl08x->base + PL080_TC_STATUS);
1821 if (tc)
1822 writel(tc, pl08x->base + PL080_TC_CLEAR);
1823
1824 if (!err && !tc)
1825 return IRQ_NONE;
1826
1827 for (i = 0; i < pl08x->vd->channels; i++) {
1828 if (((1 << i) & err) || ((1 << i) & tc)) {
1829 /* Locate physical channel */
1830 struct pl08x_phy_chan *phychan = &pl08x->phy_chans[i];
1831 struct pl08x_dma_chan *plchan = phychan->serving;
1832 struct pl08x_txd *tx;
1833
1834 if (!plchan) {
1835 dev_err(&pl08x->adev->dev,
1836 "%s Error TC interrupt on unused channel: 0x%08x\n",
1837 __func__, i);
1838 continue;
1839 }
1840
1841 spin_lock(&plchan->vc.lock);
1842 tx = plchan->at;
1843 if (tx && tx->cyclic) {
1844 vchan_cyclic_callback(&tx->vd);
1845 } else if (tx) {
1846 plchan->at = NULL;
1847 /*
1848 * This descriptor is done, release its mux
1849 * reservation.
1850 */
1851 pl08x_release_mux(plchan);
1852 tx->done = true;
1853 vchan_cookie_complete(&tx->vd);
1854
1855 /*
1856 * And start the next descriptor (if any),
1857 * otherwise free this channel.
1858 */
1859 if (vchan_next_desc(&plchan->vc))
1860 pl08x_start_next_txd(plchan);
1861 else
1862 pl08x_phy_free(plchan);
1863 }
1864 spin_unlock(&plchan->vc.lock);
1865
1866 mask |= (1 << i);
1867 }
1868 }
1869
1870 return mask ? IRQ_HANDLED : IRQ_NONE;
1871}
1872
1873static void pl08x_dma_slave_init(struct pl08x_dma_chan *chan)
1874{
1875 chan->slave = true;
1876 chan->name = chan->cd->bus_id;
1877 chan->cfg.src_addr = chan->cd->addr;
1878 chan->cfg.dst_addr = chan->cd->addr;
1879}
1880
1881/*
1882 * Initialise the DMAC memcpy/slave channels.
1883 * Make a local wrapper to hold required data
1884 */
1885static int pl08x_dma_init_virtual_channels(struct pl08x_driver_data *pl08x,
1886 struct dma_device *dmadev, unsigned int channels, bool slave)
1887{
1888 struct pl08x_dma_chan *chan;
1889 int i;
1890
1891 INIT_LIST_HEAD(&dmadev->channels);
1892
1893 /*
1894 * Register as many many memcpy as we have physical channels,
1895 * we won't always be able to use all but the code will have
1896 * to cope with that situation.
1897 */
1898 for (i = 0; i < channels; i++) {
1899 chan = kzalloc(sizeof(*chan), GFP_KERNEL);
1900 if (!chan) {
1901 dev_err(&pl08x->adev->dev,
1902 "%s no memory for channel\n", __func__);
1903 return -ENOMEM;
1904 }
1905
1906 chan->host = pl08x;
1907 chan->state = PL08X_CHAN_IDLE;
1908 chan->signal = -1;
1909
1910 if (slave) {
1911 chan->cd = &pl08x->pd->slave_channels[i];
1912 pl08x_dma_slave_init(chan);
1913 } else {
1914 chan->cd = &pl08x->pd->memcpy_channel;
1915 chan->name = kasprintf(GFP_KERNEL, "memcpy%d", i);
1916 if (!chan->name) {
1917 kfree(chan);
1918 return -ENOMEM;
1919 }
1920 }
1921 dev_dbg(&pl08x->adev->dev,
1922 "initialize virtual channel \"%s\"\n",
1923 chan->name);
1924
1925 chan->vc.desc_free = pl08x_desc_free;
1926 vchan_init(&chan->vc, dmadev);
1927 }
1928 dev_info(&pl08x->adev->dev, "initialized %d virtual %s channels\n",
1929 i, slave ? "slave" : "memcpy");
1930 return i;
1931}
1932
1933static void pl08x_free_virtual_channels(struct dma_device *dmadev)
1934{
1935 struct pl08x_dma_chan *chan = NULL;
1936 struct pl08x_dma_chan *next;
1937
1938 list_for_each_entry_safe(chan,
1939 next, &dmadev->channels, vc.chan.device_node) {
1940 list_del(&chan->vc.chan.device_node);
1941 kfree(chan);
1942 }
1943}
1944
1945#ifdef CONFIG_DEBUG_FS
1946static const char *pl08x_state_str(enum pl08x_dma_chan_state state)
1947{
1948 switch (state) {
1949 case PL08X_CHAN_IDLE:
1950 return "idle";
1951 case PL08X_CHAN_RUNNING:
1952 return "running";
1953 case PL08X_CHAN_PAUSED:
1954 return "paused";
1955 case PL08X_CHAN_WAITING:
1956 return "waiting";
1957 default:
1958 break;
1959 }
1960 return "UNKNOWN STATE";
1961}
1962
1963static int pl08x_debugfs_show(struct seq_file *s, void *data)
1964{
1965 struct pl08x_driver_data *pl08x = s->private;
1966 struct pl08x_dma_chan *chan;
1967 struct pl08x_phy_chan *ch;
1968 unsigned long flags;
1969 int i;
1970
1971 seq_printf(s, "PL08x physical channels:\n");
1972 seq_printf(s, "CHANNEL:\tUSER:\n");
1973 seq_printf(s, "--------\t-----\n");
1974 for (i = 0; i < pl08x->vd->channels; i++) {
1975 struct pl08x_dma_chan *virt_chan;
1976
1977 ch = &pl08x->phy_chans[i];
1978
1979 spin_lock_irqsave(&ch->lock, flags);
1980 virt_chan = ch->serving;
1981
1982 seq_printf(s, "%d\t\t%s%s\n",
1983 ch->id,
1984 virt_chan ? virt_chan->name : "(none)",
1985 ch->locked ? " LOCKED" : "");
1986
1987 spin_unlock_irqrestore(&ch->lock, flags);
1988 }
1989
1990 seq_printf(s, "\nPL08x virtual memcpy channels:\n");
1991 seq_printf(s, "CHANNEL:\tSTATE:\n");
1992 seq_printf(s, "--------\t------\n");
1993 list_for_each_entry(chan, &pl08x->memcpy.channels, vc.chan.device_node) {
1994 seq_printf(s, "%s\t\t%s\n", chan->name,
1995 pl08x_state_str(chan->state));
1996 }
1997
1998 seq_printf(s, "\nPL08x virtual slave channels:\n");
1999 seq_printf(s, "CHANNEL:\tSTATE:\n");
2000 seq_printf(s, "--------\t------\n");
2001 list_for_each_entry(chan, &pl08x->slave.channels, vc.chan.device_node) {
2002 seq_printf(s, "%s\t\t%s\n", chan->name,
2003 pl08x_state_str(chan->state));
2004 }
2005
2006 return 0;
2007}
2008
2009static int pl08x_debugfs_open(struct inode *inode, struct file *file)
2010{
2011 return single_open(file, pl08x_debugfs_show, inode->i_private);
2012}
2013
2014static const struct file_operations pl08x_debugfs_operations = {
2015 .open = pl08x_debugfs_open,
2016 .read = seq_read,
2017 .llseek = seq_lseek,
2018 .release = single_release,
2019};
2020
2021static void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
2022{
2023 /* Expose a simple debugfs interface to view all clocks */
2024 (void) debugfs_create_file(dev_name(&pl08x->adev->dev),
2025 S_IFREG | S_IRUGO, NULL, pl08x,
2026 &pl08x_debugfs_operations);
2027}
2028
2029#else
2030static inline void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
2031{
2032}
2033#endif
2034
2035#ifdef CONFIG_OF
2036static struct dma_chan *pl08x_find_chan_id(struct pl08x_driver_data *pl08x,
2037 u32 id)
2038{
2039 struct pl08x_dma_chan *chan;
2040
2041 list_for_each_entry(chan, &pl08x->slave.channels, vc.chan.device_node) {
2042 if (chan->signal == id)
2043 return &chan->vc.chan;
2044 }
2045
2046 return NULL;
2047}
2048
2049static struct dma_chan *pl08x_of_xlate(struct of_phandle_args *dma_spec,
2050 struct of_dma *ofdma)
2051{
2052 struct pl08x_driver_data *pl08x = ofdma->of_dma_data;
2053 struct pl08x_channel_data *data;
2054 struct pl08x_dma_chan *chan;
2055 struct dma_chan *dma_chan;
2056
2057 if (!pl08x)
2058 return NULL;
2059
2060 if (dma_spec->args_count != 2)
2061 return NULL;
2062
2063 dma_chan = pl08x_find_chan_id(pl08x, dma_spec->args[0]);
2064 if (dma_chan)
2065 return dma_get_slave_channel(dma_chan);
2066
2067 chan = devm_kzalloc(pl08x->slave.dev, sizeof(*chan) + sizeof(*data),
2068 GFP_KERNEL);
2069 if (!chan)
2070 return NULL;
2071
2072 data = (void *)&chan[1];
2073 data->bus_id = "(none)";
2074 data->periph_buses = dma_spec->args[1];
2075
2076 chan->cd = data;
2077 chan->host = pl08x;
2078 chan->slave = true;
2079 chan->name = data->bus_id;
2080 chan->state = PL08X_CHAN_IDLE;
2081 chan->signal = dma_spec->args[0];
2082 chan->vc.desc_free = pl08x_desc_free;
2083
2084 vchan_init(&chan->vc, &pl08x->slave);
2085
2086 return dma_get_slave_channel(&chan->vc.chan);
2087}
2088
2089static int pl08x_of_probe(struct amba_device *adev,
2090 struct pl08x_driver_data *pl08x,
2091 struct device_node *np)
2092{
2093 struct pl08x_platform_data *pd;
2094 u32 cctl_memcpy = 0;
2095 u32 val;
2096 int ret;
2097
2098 pd = devm_kzalloc(&adev->dev, sizeof(*pd), GFP_KERNEL);
2099 if (!pd)
2100 return -ENOMEM;
2101
2102 /* Eligible bus masters for fetching LLIs */
2103 if (of_property_read_bool(np, "lli-bus-interface-ahb1"))
2104 pd->lli_buses |= PL08X_AHB1;
2105 if (of_property_read_bool(np, "lli-bus-interface-ahb2"))
2106 pd->lli_buses |= PL08X_AHB2;
2107 if (!pd->lli_buses) {
2108 dev_info(&adev->dev, "no bus masters for LLIs stated, assume all\n");
2109 pd->lli_buses |= PL08X_AHB1 | PL08X_AHB2;
2110 }
2111
2112 /* Eligible bus masters for memory access */
2113 if (of_property_read_bool(np, "mem-bus-interface-ahb1"))
2114 pd->mem_buses |= PL08X_AHB1;
2115 if (of_property_read_bool(np, "mem-bus-interface-ahb2"))
2116 pd->mem_buses |= PL08X_AHB2;
2117 if (!pd->mem_buses) {
2118 dev_info(&adev->dev, "no bus masters for memory stated, assume all\n");
2119 pd->mem_buses |= PL08X_AHB1 | PL08X_AHB2;
2120 }
2121
2122 /* Parse the memcpy channel properties */
2123 ret = of_property_read_u32(np, "memcpy-burst-size", &val);
2124 if (ret) {
2125 dev_info(&adev->dev, "no memcpy burst size specified, using 1 byte\n");
2126 val = 1;
2127 }
2128 switch (val) {
2129 default:
2130 dev_err(&adev->dev, "illegal burst size for memcpy, set to 1\n");
2131 /* Fall through */
2132 case 1:
2133 cctl_memcpy |= PL080_BSIZE_1 << PL080_CONTROL_SB_SIZE_SHIFT |
2134 PL080_BSIZE_1 << PL080_CONTROL_DB_SIZE_SHIFT;
2135 break;
2136 case 4:
2137 cctl_memcpy |= PL080_BSIZE_4 << PL080_CONTROL_SB_SIZE_SHIFT |
2138 PL080_BSIZE_4 << PL080_CONTROL_DB_SIZE_SHIFT;
2139 break;
2140 case 8:
2141 cctl_memcpy |= PL080_BSIZE_8 << PL080_CONTROL_SB_SIZE_SHIFT |
2142 PL080_BSIZE_8 << PL080_CONTROL_DB_SIZE_SHIFT;
2143 break;
2144 case 16:
2145 cctl_memcpy |= PL080_BSIZE_16 << PL080_CONTROL_SB_SIZE_SHIFT |
2146 PL080_BSIZE_16 << PL080_CONTROL_DB_SIZE_SHIFT;
2147 break;
2148 case 32:
2149 cctl_memcpy |= PL080_BSIZE_32 << PL080_CONTROL_SB_SIZE_SHIFT |
2150 PL080_BSIZE_32 << PL080_CONTROL_DB_SIZE_SHIFT;
2151 break;
2152 case 64:
2153 cctl_memcpy |= PL080_BSIZE_64 << PL080_CONTROL_SB_SIZE_SHIFT |
2154 PL080_BSIZE_64 << PL080_CONTROL_DB_SIZE_SHIFT;
2155 break;
2156 case 128:
2157 cctl_memcpy |= PL080_BSIZE_128 << PL080_CONTROL_SB_SIZE_SHIFT |
2158 PL080_BSIZE_128 << PL080_CONTROL_DB_SIZE_SHIFT;
2159 break;
2160 case 256:
2161 cctl_memcpy |= PL080_BSIZE_256 << PL080_CONTROL_SB_SIZE_SHIFT |
2162 PL080_BSIZE_256 << PL080_CONTROL_DB_SIZE_SHIFT;
2163 break;
2164 }
2165
2166 ret = of_property_read_u32(np, "memcpy-bus-width", &val);
2167 if (ret) {
2168 dev_info(&adev->dev, "no memcpy bus width specified, using 8 bits\n");
2169 val = 8;
2170 }
2171 switch (val) {
2172 default:
2173 dev_err(&adev->dev, "illegal bus width for memcpy, set to 8 bits\n");
2174 /* Fall through */
2175 case 8:
2176 cctl_memcpy |= PL080_WIDTH_8BIT << PL080_CONTROL_SWIDTH_SHIFT |
2177 PL080_WIDTH_8BIT << PL080_CONTROL_DWIDTH_SHIFT;
2178 break;
2179 case 16:
2180 cctl_memcpy |= PL080_WIDTH_16BIT << PL080_CONTROL_SWIDTH_SHIFT |
2181 PL080_WIDTH_16BIT << PL080_CONTROL_DWIDTH_SHIFT;
2182 break;
2183 case 32:
2184 cctl_memcpy |= PL080_WIDTH_32BIT << PL080_CONTROL_SWIDTH_SHIFT |
2185 PL080_WIDTH_32BIT << PL080_CONTROL_DWIDTH_SHIFT;
2186 break;
2187 }
2188
2189 /* This is currently the only thing making sense */
2190 cctl_memcpy |= PL080_CONTROL_PROT_SYS;
2191
2192 /* Set up memcpy channel */
2193 pd->memcpy_channel.bus_id = "memcpy";
2194 pd->memcpy_channel.cctl_memcpy = cctl_memcpy;
2195 /* Use the buses that can access memory, obviously */
2196 pd->memcpy_channel.periph_buses = pd->mem_buses;
2197
2198 pl08x->pd = pd;
2199
2200 return of_dma_controller_register(adev->dev.of_node, pl08x_of_xlate,
2201 pl08x);
2202}
2203#else
2204static inline int pl08x_of_probe(struct amba_device *adev,
2205 struct pl08x_driver_data *pl08x,
2206 struct device_node *np)
2207{
2208 return -EINVAL;
2209}
2210#endif
2211
2212static int pl08x_probe(struct amba_device *adev, const struct amba_id *id)
2213{
2214 struct pl08x_driver_data *pl08x;
2215 const struct vendor_data *vd = id->data;
2216 struct device_node *np = adev->dev.of_node;
2217 u32 tsfr_size;
2218 int ret = 0;
2219 int i;
2220
2221 ret = amba_request_regions(adev, NULL);
2222 if (ret)
2223 return ret;
2224
2225 /* Ensure that we can do DMA */
2226 ret = dma_set_mask_and_coherent(&adev->dev, DMA_BIT_MASK(32));
2227 if (ret)
2228 goto out_no_pl08x;
2229
2230 /* Create the driver state holder */
2231 pl08x = kzalloc(sizeof(*pl08x), GFP_KERNEL);
2232 if (!pl08x) {
2233 ret = -ENOMEM;
2234 goto out_no_pl08x;
2235 }
2236
2237 /* Initialize memcpy engine */
2238 dma_cap_set(DMA_MEMCPY, pl08x->memcpy.cap_mask);
2239 pl08x->memcpy.dev = &adev->dev;
2240 pl08x->memcpy.device_free_chan_resources = pl08x_free_chan_resources;
2241 pl08x->memcpy.device_prep_dma_memcpy = pl08x_prep_dma_memcpy;
2242 pl08x->memcpy.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
2243 pl08x->memcpy.device_tx_status = pl08x_dma_tx_status;
2244 pl08x->memcpy.device_issue_pending = pl08x_issue_pending;
2245 pl08x->memcpy.device_config = pl08x_config;
2246 pl08x->memcpy.device_pause = pl08x_pause;
2247 pl08x->memcpy.device_resume = pl08x_resume;
2248 pl08x->memcpy.device_terminate_all = pl08x_terminate_all;
2249 pl08x->memcpy.src_addr_widths = PL80X_DMA_BUSWIDTHS;
2250 pl08x->memcpy.dst_addr_widths = PL80X_DMA_BUSWIDTHS;
2251 pl08x->memcpy.directions = BIT(DMA_MEM_TO_MEM);
2252 pl08x->memcpy.residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT;
2253
2254 /* Initialize slave engine */
2255 dma_cap_set(DMA_SLAVE, pl08x->slave.cap_mask);
2256 dma_cap_set(DMA_CYCLIC, pl08x->slave.cap_mask);
2257 pl08x->slave.dev = &adev->dev;
2258 pl08x->slave.device_free_chan_resources = pl08x_free_chan_resources;
2259 pl08x->slave.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
2260 pl08x->slave.device_tx_status = pl08x_dma_tx_status;
2261 pl08x->slave.device_issue_pending = pl08x_issue_pending;
2262 pl08x->slave.device_prep_slave_sg = pl08x_prep_slave_sg;
2263 pl08x->slave.device_prep_dma_cyclic = pl08x_prep_dma_cyclic;
2264 pl08x->slave.device_config = pl08x_config;
2265 pl08x->slave.device_pause = pl08x_pause;
2266 pl08x->slave.device_resume = pl08x_resume;
2267 pl08x->slave.device_terminate_all = pl08x_terminate_all;
2268 pl08x->slave.src_addr_widths = PL80X_DMA_BUSWIDTHS;
2269 pl08x->slave.dst_addr_widths = PL80X_DMA_BUSWIDTHS;
2270 pl08x->slave.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
2271 pl08x->slave.residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT;
2272
2273 /* Get the platform data */
2274 pl08x->pd = dev_get_platdata(&adev->dev);
2275 if (!pl08x->pd) {
2276 if (np) {
2277 ret = pl08x_of_probe(adev, pl08x, np);
2278 if (ret)
2279 goto out_no_platdata;
2280 } else {
2281 dev_err(&adev->dev, "no platform data supplied\n");
2282 ret = -EINVAL;
2283 goto out_no_platdata;
2284 }
2285 }
2286
2287 /* Assign useful pointers to the driver state */
2288 pl08x->adev = adev;
2289 pl08x->vd = vd;
2290
2291 /* By default, AHB1 only. If dualmaster, from platform */
2292 pl08x->lli_buses = PL08X_AHB1;
2293 pl08x->mem_buses = PL08X_AHB1;
2294 if (pl08x->vd->dualmaster) {
2295 pl08x->lli_buses = pl08x->pd->lli_buses;
2296 pl08x->mem_buses = pl08x->pd->mem_buses;
2297 }
2298
2299 if (vd->pl080s)
2300 pl08x->lli_words = PL080S_LLI_WORDS;
2301 else
2302 pl08x->lli_words = PL080_LLI_WORDS;
2303 tsfr_size = MAX_NUM_TSFR_LLIS * pl08x->lli_words * sizeof(u32);
2304
2305 /* A DMA memory pool for LLIs, align on 1-byte boundary */
2306 pl08x->pool = dma_pool_create(DRIVER_NAME, &pl08x->adev->dev,
2307 tsfr_size, PL08X_ALIGN, 0);
2308 if (!pl08x->pool) {
2309 ret = -ENOMEM;
2310 goto out_no_lli_pool;
2311 }
2312
2313 pl08x->base = ioremap(adev->res.start, resource_size(&adev->res));
2314 if (!pl08x->base) {
2315 ret = -ENOMEM;
2316 goto out_no_ioremap;
2317 }
2318
2319 /* Turn on the PL08x */
2320 pl08x_ensure_on(pl08x);
2321
2322 /* Attach the interrupt handler */
2323 writel(0x000000FF, pl08x->base + PL080_ERR_CLEAR);
2324 writel(0x000000FF, pl08x->base + PL080_TC_CLEAR);
2325
2326 ret = request_irq(adev->irq[0], pl08x_irq, 0, DRIVER_NAME, pl08x);
2327 if (ret) {
2328 dev_err(&adev->dev, "%s failed to request interrupt %d\n",
2329 __func__, adev->irq[0]);
2330 goto out_no_irq;
2331 }
2332
2333 /* Initialize physical channels */
2334 pl08x->phy_chans = kzalloc((vd->channels * sizeof(*pl08x->phy_chans)),
2335 GFP_KERNEL);
2336 if (!pl08x->phy_chans) {
2337 dev_err(&adev->dev, "%s failed to allocate "
2338 "physical channel holders\n",
2339 __func__);
2340 ret = -ENOMEM;
2341 goto out_no_phychans;
2342 }
2343
2344 for (i = 0; i < vd->channels; i++) {
2345 struct pl08x_phy_chan *ch = &pl08x->phy_chans[i];
2346
2347 ch->id = i;
2348 ch->base = pl08x->base + PL080_Cx_BASE(i);
2349 ch->reg_config = ch->base + vd->config_offset;
2350 spin_lock_init(&ch->lock);
2351
2352 /*
2353 * Nomadik variants can have channels that are locked
2354 * down for the secure world only. Lock up these channels
2355 * by perpetually serving a dummy virtual channel.
2356 */
2357 if (vd->nomadik) {
2358 u32 val;
2359
2360 val = readl(ch->reg_config);
2361 if (val & (PL080N_CONFIG_ITPROT | PL080N_CONFIG_SECPROT)) {
2362 dev_info(&adev->dev, "physical channel %d reserved for secure access only\n", i);
2363 ch->locked = true;
2364 }
2365 }
2366
2367 dev_dbg(&adev->dev, "physical channel %d is %s\n",
2368 i, pl08x_phy_channel_busy(ch) ? "BUSY" : "FREE");
2369 }
2370
2371 /* Register as many memcpy channels as there are physical channels */
2372 ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->memcpy,
2373 pl08x->vd->channels, false);
2374 if (ret <= 0) {
2375 dev_warn(&pl08x->adev->dev,
2376 "%s failed to enumerate memcpy channels - %d\n",
2377 __func__, ret);
2378 goto out_no_memcpy;
2379 }
2380
2381 /* Register slave channels */
2382 ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->slave,
2383 pl08x->pd->num_slave_channels, true);
2384 if (ret < 0) {
2385 dev_warn(&pl08x->adev->dev,
2386 "%s failed to enumerate slave channels - %d\n",
2387 __func__, ret);
2388 goto out_no_slave;
2389 }
2390
2391 ret = dma_async_device_register(&pl08x->memcpy);
2392 if (ret) {
2393 dev_warn(&pl08x->adev->dev,
2394 "%s failed to register memcpy as an async device - %d\n",
2395 __func__, ret);
2396 goto out_no_memcpy_reg;
2397 }
2398
2399 ret = dma_async_device_register(&pl08x->slave);
2400 if (ret) {
2401 dev_warn(&pl08x->adev->dev,
2402 "%s failed to register slave as an async device - %d\n",
2403 __func__, ret);
2404 goto out_no_slave_reg;
2405 }
2406
2407 amba_set_drvdata(adev, pl08x);
2408 init_pl08x_debugfs(pl08x);
2409 dev_info(&pl08x->adev->dev, "DMA: PL%03x%s rev%u at 0x%08llx irq %d\n",
2410 amba_part(adev), pl08x->vd->pl080s ? "s" : "", amba_rev(adev),
2411 (unsigned long long)adev->res.start, adev->irq[0]);
2412
2413 return 0;
2414
2415out_no_slave_reg:
2416 dma_async_device_unregister(&pl08x->memcpy);
2417out_no_memcpy_reg:
2418 pl08x_free_virtual_channels(&pl08x->slave);
2419out_no_slave:
2420 pl08x_free_virtual_channels(&pl08x->memcpy);
2421out_no_memcpy:
2422 kfree(pl08x->phy_chans);
2423out_no_phychans:
2424 free_irq(adev->irq[0], pl08x);
2425out_no_irq:
2426 iounmap(pl08x->base);
2427out_no_ioremap:
2428 dma_pool_destroy(pl08x->pool);
2429out_no_lli_pool:
2430out_no_platdata:
2431 kfree(pl08x);
2432out_no_pl08x:
2433 amba_release_regions(adev);
2434 return ret;
2435}
2436
2437/* PL080 has 8 channels and the PL080 have just 2 */
2438static struct vendor_data vendor_pl080 = {
2439 .config_offset = PL080_CH_CONFIG,
2440 .channels = 8,
2441 .dualmaster = true,
2442 .max_transfer_size = PL080_CONTROL_TRANSFER_SIZE_MASK,
2443};
2444
2445static struct vendor_data vendor_nomadik = {
2446 .config_offset = PL080_CH_CONFIG,
2447 .channels = 8,
2448 .dualmaster = true,
2449 .nomadik = true,
2450 .max_transfer_size = PL080_CONTROL_TRANSFER_SIZE_MASK,
2451};
2452
2453static struct vendor_data vendor_pl080s = {
2454 .config_offset = PL080S_CH_CONFIG,
2455 .channels = 8,
2456 .pl080s = true,
2457 .max_transfer_size = PL080S_CONTROL_TRANSFER_SIZE_MASK,
2458};
2459
2460static struct vendor_data vendor_pl081 = {
2461 .config_offset = PL080_CH_CONFIG,
2462 .channels = 2,
2463 .dualmaster = false,
2464 .max_transfer_size = PL080_CONTROL_TRANSFER_SIZE_MASK,
2465};
2466
2467static struct amba_id pl08x_ids[] = {
2468 /* Samsung PL080S variant */
2469 {
2470 .id = 0x0a141080,
2471 .mask = 0xffffffff,
2472 .data = &vendor_pl080s,
2473 },
2474 /* PL080 */
2475 {
2476 .id = 0x00041080,
2477 .mask = 0x000fffff,
2478 .data = &vendor_pl080,
2479 },
2480 /* PL081 */
2481 {
2482 .id = 0x00041081,
2483 .mask = 0x000fffff,
2484 .data = &vendor_pl081,
2485 },
2486 /* Nomadik 8815 PL080 variant */
2487 {
2488 .id = 0x00280080,
2489 .mask = 0x00ffffff,
2490 .data = &vendor_nomadik,
2491 },
2492 { 0, 0 },
2493};
2494
2495MODULE_DEVICE_TABLE(amba, pl08x_ids);
2496
2497static struct amba_driver pl08x_amba_driver = {
2498 .drv.name = DRIVER_NAME,
2499 .id_table = pl08x_ids,
2500 .probe = pl08x_probe,
2501};
2502
2503static int __init pl08x_init(void)
2504{
2505 int retval;
2506 retval = amba_driver_register(&pl08x_amba_driver);
2507 if (retval)
2508 printk(KERN_WARNING DRIVER_NAME
2509 "failed to register as an AMBA device (%d)\n",
2510 retval);
2511 return retval;
2512}
2513subsys_initcall(pl08x_init);
1/*
2 * Copyright (c) 2006 ARM Ltd.
3 * Copyright (c) 2010 ST-Ericsson SA
4 *
5 * Author: Peter Pearse <peter.pearse@arm.com>
6 * Author: Linus Walleij <linus.walleij@stericsson.com>
7 *
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License as published by the Free
10 * Software Foundation; either version 2 of the License, or (at your option)
11 * any later version.
12 *
13 * This program is distributed in the hope that it will be useful, but WITHOUT
14 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
16 * more details.
17 *
18 * You should have received a copy of the GNU General Public License along with
19 * this program; if not, write to the Free Software Foundation, Inc., 59
20 * Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21 *
22 * The full GNU General Public License is in this distribution in the file
23 * called COPYING.
24 *
25 * Documentation: ARM DDI 0196G == PL080
26 * Documentation: ARM DDI 0218E == PL081
27 *
28 * PL080 & PL081 both have 16 sets of DMA signals that can be routed to any
29 * channel.
30 *
31 * The PL080 has 8 channels available for simultaneous use, and the PL081
32 * has only two channels. So on these DMA controllers the number of channels
33 * and the number of incoming DMA signals are two totally different things.
34 * It is usually not possible to theoretically handle all physical signals,
35 * so a multiplexing scheme with possible denial of use is necessary.
36 *
37 * The PL080 has a dual bus master, PL081 has a single master.
38 *
39 * Memory to peripheral transfer may be visualized as
40 * Get data from memory to DMAC
41 * Until no data left
42 * On burst request from peripheral
43 * Destination burst from DMAC to peripheral
44 * Clear burst request
45 * Raise terminal count interrupt
46 *
47 * For peripherals with a FIFO:
48 * Source burst size == half the depth of the peripheral FIFO
49 * Destination burst size == the depth of the peripheral FIFO
50 *
51 * (Bursts are irrelevant for mem to mem transfers - there are no burst
52 * signals, the DMA controller will simply facilitate its AHB master.)
53 *
54 * ASSUMES default (little) endianness for DMA transfers
55 *
56 * The PL08x has two flow control settings:
57 * - DMAC flow control: the transfer size defines the number of transfers
58 * which occur for the current LLI entry, and the DMAC raises TC at the
59 * end of every LLI entry. Observed behaviour shows the DMAC listening
60 * to both the BREQ and SREQ signals (contrary to documented),
61 * transferring data if either is active. The LBREQ and LSREQ signals
62 * are ignored.
63 *
64 * - Peripheral flow control: the transfer size is ignored (and should be
65 * zero). The data is transferred from the current LLI entry, until
66 * after the final transfer signalled by LBREQ or LSREQ. The DMAC
67 * will then move to the next LLI entry.
68 *
69 * Only the former works sanely with scatter lists, so we only implement
70 * the DMAC flow control method. However, peripherals which use the LBREQ
71 * and LSREQ signals (eg, MMCI) are unable to use this mode, which through
72 * these hardware restrictions prevents them from using scatter DMA.
73 *
74 * Global TODO:
75 * - Break out common code from arch/arm/mach-s3c64xx and share
76 */
77#include <linux/device.h>
78#include <linux/init.h>
79#include <linux/module.h>
80#include <linux/interrupt.h>
81#include <linux/slab.h>
82#include <linux/delay.h>
83#include <linux/dma-mapping.h>
84#include <linux/dmapool.h>
85#include <linux/dmaengine.h>
86#include <linux/amba/bus.h>
87#include <linux/amba/pl08x.h>
88#include <linux/debugfs.h>
89#include <linux/seq_file.h>
90
91#include <asm/hardware/pl080.h>
92
93#define DRIVER_NAME "pl08xdmac"
94
95/**
96 * struct vendor_data - vendor-specific config parameters for PL08x derivatives
97 * @channels: the number of channels available in this variant
98 * @dualmaster: whether this version supports dual AHB masters or not.
99 */
100struct vendor_data {
101 u8 channels;
102 bool dualmaster;
103};
104
105/*
106 * PL08X private data structures
107 * An LLI struct - see PL08x TRM. Note that next uses bit[0] as a bus bit,
108 * start & end do not - their bus bit info is in cctl. Also note that these
109 * are fixed 32-bit quantities.
110 */
111struct pl08x_lli {
112 u32 src;
113 u32 dst;
114 u32 lli;
115 u32 cctl;
116};
117
118/**
119 * struct pl08x_driver_data - the local state holder for the PL08x
120 * @slave: slave engine for this instance
121 * @memcpy: memcpy engine for this instance
122 * @base: virtual memory base (remapped) for the PL08x
123 * @adev: the corresponding AMBA (PrimeCell) bus entry
124 * @vd: vendor data for this PL08x variant
125 * @pd: platform data passed in from the platform/machine
126 * @phy_chans: array of data for the physical channels
127 * @pool: a pool for the LLI descriptors
128 * @pool_ctr: counter of LLIs in the pool
129 * @lli_buses: bitmask to or in to LLI pointer selecting AHB port for LLI fetches
130 * @mem_buses: set to indicate memory transfers on AHB2.
131 * @lock: a spinlock for this struct
132 */
133struct pl08x_driver_data {
134 struct dma_device slave;
135 struct dma_device memcpy;
136 void __iomem *base;
137 struct amba_device *adev;
138 const struct vendor_data *vd;
139 struct pl08x_platform_data *pd;
140 struct pl08x_phy_chan *phy_chans;
141 struct dma_pool *pool;
142 int pool_ctr;
143 u8 lli_buses;
144 u8 mem_buses;
145 spinlock_t lock;
146};
147
148/*
149 * PL08X specific defines
150 */
151
152/*
153 * Memory boundaries: the manual for PL08x says that the controller
154 * cannot read past a 1KiB boundary, so these defines are used to
155 * create transfer LLIs that do not cross such boundaries.
156 */
157#define PL08X_BOUNDARY_SHIFT (10) /* 1KB 0x400 */
158#define PL08X_BOUNDARY_SIZE (1 << PL08X_BOUNDARY_SHIFT)
159
160/* Size (bytes) of each LLI buffer allocated for one transfer */
161# define PL08X_LLI_TSFR_SIZE 0x2000
162
163/* Maximum times we call dma_pool_alloc on this pool without freeing */
164#define MAX_NUM_TSFR_LLIS (PL08X_LLI_TSFR_SIZE/sizeof(struct pl08x_lli))
165#define PL08X_ALIGN 8
166
167static inline struct pl08x_dma_chan *to_pl08x_chan(struct dma_chan *chan)
168{
169 return container_of(chan, struct pl08x_dma_chan, chan);
170}
171
172static inline struct pl08x_txd *to_pl08x_txd(struct dma_async_tx_descriptor *tx)
173{
174 return container_of(tx, struct pl08x_txd, tx);
175}
176
177/*
178 * Physical channel handling
179 */
180
181/* Whether a certain channel is busy or not */
182static int pl08x_phy_channel_busy(struct pl08x_phy_chan *ch)
183{
184 unsigned int val;
185
186 val = readl(ch->base + PL080_CH_CONFIG);
187 return val & PL080_CONFIG_ACTIVE;
188}
189
190/*
191 * Set the initial DMA register values i.e. those for the first LLI
192 * The next LLI pointer and the configuration interrupt bit have
193 * been set when the LLIs were constructed. Poke them into the hardware
194 * and start the transfer.
195 */
196static void pl08x_start_txd(struct pl08x_dma_chan *plchan,
197 struct pl08x_txd *txd)
198{
199 struct pl08x_driver_data *pl08x = plchan->host;
200 struct pl08x_phy_chan *phychan = plchan->phychan;
201 struct pl08x_lli *lli = &txd->llis_va[0];
202 u32 val;
203
204 plchan->at = txd;
205
206 /* Wait for channel inactive */
207 while (pl08x_phy_channel_busy(phychan))
208 cpu_relax();
209
210 dev_vdbg(&pl08x->adev->dev,
211 "WRITE channel %d: csrc=0x%08x, cdst=0x%08x, "
212 "clli=0x%08x, cctl=0x%08x, ccfg=0x%08x\n",
213 phychan->id, lli->src, lli->dst, lli->lli, lli->cctl,
214 txd->ccfg);
215
216 writel(lli->src, phychan->base + PL080_CH_SRC_ADDR);
217 writel(lli->dst, phychan->base + PL080_CH_DST_ADDR);
218 writel(lli->lli, phychan->base + PL080_CH_LLI);
219 writel(lli->cctl, phychan->base + PL080_CH_CONTROL);
220 writel(txd->ccfg, phychan->base + PL080_CH_CONFIG);
221
222 /* Enable the DMA channel */
223 /* Do not access config register until channel shows as disabled */
224 while (readl(pl08x->base + PL080_EN_CHAN) & (1 << phychan->id))
225 cpu_relax();
226
227 /* Do not access config register until channel shows as inactive */
228 val = readl(phychan->base + PL080_CH_CONFIG);
229 while ((val & PL080_CONFIG_ACTIVE) || (val & PL080_CONFIG_ENABLE))
230 val = readl(phychan->base + PL080_CH_CONFIG);
231
232 writel(val | PL080_CONFIG_ENABLE, phychan->base + PL080_CH_CONFIG);
233}
234
235/*
236 * Pause the channel by setting the HALT bit.
237 *
238 * For M->P transfers, pause the DMAC first and then stop the peripheral -
239 * the FIFO can only drain if the peripheral is still requesting data.
240 * (note: this can still timeout if the DMAC FIFO never drains of data.)
241 *
242 * For P->M transfers, disable the peripheral first to stop it filling
243 * the DMAC FIFO, and then pause the DMAC.
244 */
245static void pl08x_pause_phy_chan(struct pl08x_phy_chan *ch)
246{
247 u32 val;
248 int timeout;
249
250 /* Set the HALT bit and wait for the FIFO to drain */
251 val = readl(ch->base + PL080_CH_CONFIG);
252 val |= PL080_CONFIG_HALT;
253 writel(val, ch->base + PL080_CH_CONFIG);
254
255 /* Wait for channel inactive */
256 for (timeout = 1000; timeout; timeout--) {
257 if (!pl08x_phy_channel_busy(ch))
258 break;
259 udelay(1);
260 }
261 if (pl08x_phy_channel_busy(ch))
262 pr_err("pl08x: channel%u timeout waiting for pause\n", ch->id);
263}
264
265static void pl08x_resume_phy_chan(struct pl08x_phy_chan *ch)
266{
267 u32 val;
268
269 /* Clear the HALT bit */
270 val = readl(ch->base + PL080_CH_CONFIG);
271 val &= ~PL080_CONFIG_HALT;
272 writel(val, ch->base + PL080_CH_CONFIG);
273}
274
275
276/*
277 * pl08x_terminate_phy_chan() stops the channel, clears the FIFO and
278 * clears any pending interrupt status. This should not be used for
279 * an on-going transfer, but as a method of shutting down a channel
280 * (eg, when it's no longer used) or terminating a transfer.
281 */
282static void pl08x_terminate_phy_chan(struct pl08x_driver_data *pl08x,
283 struct pl08x_phy_chan *ch)
284{
285 u32 val = readl(ch->base + PL080_CH_CONFIG);
286
287 val &= ~(PL080_CONFIG_ENABLE | PL080_CONFIG_ERR_IRQ_MASK |
288 PL080_CONFIG_TC_IRQ_MASK);
289
290 writel(val, ch->base + PL080_CH_CONFIG);
291
292 writel(1 << ch->id, pl08x->base + PL080_ERR_CLEAR);
293 writel(1 << ch->id, pl08x->base + PL080_TC_CLEAR);
294}
295
296static inline u32 get_bytes_in_cctl(u32 cctl)
297{
298 /* The source width defines the number of bytes */
299 u32 bytes = cctl & PL080_CONTROL_TRANSFER_SIZE_MASK;
300
301 switch (cctl >> PL080_CONTROL_SWIDTH_SHIFT) {
302 case PL080_WIDTH_8BIT:
303 break;
304 case PL080_WIDTH_16BIT:
305 bytes *= 2;
306 break;
307 case PL080_WIDTH_32BIT:
308 bytes *= 4;
309 break;
310 }
311 return bytes;
312}
313
314/* The channel should be paused when calling this */
315static u32 pl08x_getbytes_chan(struct pl08x_dma_chan *plchan)
316{
317 struct pl08x_phy_chan *ch;
318 struct pl08x_txd *txd;
319 unsigned long flags;
320 size_t bytes = 0;
321
322 spin_lock_irqsave(&plchan->lock, flags);
323 ch = plchan->phychan;
324 txd = plchan->at;
325
326 /*
327 * Follow the LLIs to get the number of remaining
328 * bytes in the currently active transaction.
329 */
330 if (ch && txd) {
331 u32 clli = readl(ch->base + PL080_CH_LLI) & ~PL080_LLI_LM_AHB2;
332
333 /* First get the remaining bytes in the active transfer */
334 bytes = get_bytes_in_cctl(readl(ch->base + PL080_CH_CONTROL));
335
336 if (clli) {
337 struct pl08x_lli *llis_va = txd->llis_va;
338 dma_addr_t llis_bus = txd->llis_bus;
339 int index;
340
341 BUG_ON(clli < llis_bus || clli >= llis_bus +
342 sizeof(struct pl08x_lli) * MAX_NUM_TSFR_LLIS);
343
344 /*
345 * Locate the next LLI - as this is an array,
346 * it's simple maths to find.
347 */
348 index = (clli - llis_bus) / sizeof(struct pl08x_lli);
349
350 for (; index < MAX_NUM_TSFR_LLIS; index++) {
351 bytes += get_bytes_in_cctl(llis_va[index].cctl);
352
353 /*
354 * A LLI pointer of 0 terminates the LLI list
355 */
356 if (!llis_va[index].lli)
357 break;
358 }
359 }
360 }
361
362 /* Sum up all queued transactions */
363 if (!list_empty(&plchan->pend_list)) {
364 struct pl08x_txd *txdi;
365 list_for_each_entry(txdi, &plchan->pend_list, node) {
366 bytes += txdi->len;
367 }
368 }
369
370 spin_unlock_irqrestore(&plchan->lock, flags);
371
372 return bytes;
373}
374
375/*
376 * Allocate a physical channel for a virtual channel
377 *
378 * Try to locate a physical channel to be used for this transfer. If all
379 * are taken return NULL and the requester will have to cope by using
380 * some fallback PIO mode or retrying later.
381 */
382static struct pl08x_phy_chan *
383pl08x_get_phy_channel(struct pl08x_driver_data *pl08x,
384 struct pl08x_dma_chan *virt_chan)
385{
386 struct pl08x_phy_chan *ch = NULL;
387 unsigned long flags;
388 int i;
389
390 for (i = 0; i < pl08x->vd->channels; i++) {
391 ch = &pl08x->phy_chans[i];
392
393 spin_lock_irqsave(&ch->lock, flags);
394
395 if (!ch->serving) {
396 ch->serving = virt_chan;
397 ch->signal = -1;
398 spin_unlock_irqrestore(&ch->lock, flags);
399 break;
400 }
401
402 spin_unlock_irqrestore(&ch->lock, flags);
403 }
404
405 if (i == pl08x->vd->channels) {
406 /* No physical channel available, cope with it */
407 return NULL;
408 }
409
410 return ch;
411}
412
413static inline void pl08x_put_phy_channel(struct pl08x_driver_data *pl08x,
414 struct pl08x_phy_chan *ch)
415{
416 unsigned long flags;
417
418 spin_lock_irqsave(&ch->lock, flags);
419
420 /* Stop the channel and clear its interrupts */
421 pl08x_terminate_phy_chan(pl08x, ch);
422
423 /* Mark it as free */
424 ch->serving = NULL;
425 spin_unlock_irqrestore(&ch->lock, flags);
426}
427
428/*
429 * LLI handling
430 */
431
432static inline unsigned int pl08x_get_bytes_for_cctl(unsigned int coded)
433{
434 switch (coded) {
435 case PL080_WIDTH_8BIT:
436 return 1;
437 case PL080_WIDTH_16BIT:
438 return 2;
439 case PL080_WIDTH_32BIT:
440 return 4;
441 default:
442 break;
443 }
444 BUG();
445 return 0;
446}
447
448static inline u32 pl08x_cctl_bits(u32 cctl, u8 srcwidth, u8 dstwidth,
449 size_t tsize)
450{
451 u32 retbits = cctl;
452
453 /* Remove all src, dst and transfer size bits */
454 retbits &= ~PL080_CONTROL_DWIDTH_MASK;
455 retbits &= ~PL080_CONTROL_SWIDTH_MASK;
456 retbits &= ~PL080_CONTROL_TRANSFER_SIZE_MASK;
457
458 /* Then set the bits according to the parameters */
459 switch (srcwidth) {
460 case 1:
461 retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_SWIDTH_SHIFT;
462 break;
463 case 2:
464 retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_SWIDTH_SHIFT;
465 break;
466 case 4:
467 retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_SWIDTH_SHIFT;
468 break;
469 default:
470 BUG();
471 break;
472 }
473
474 switch (dstwidth) {
475 case 1:
476 retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_DWIDTH_SHIFT;
477 break;
478 case 2:
479 retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_DWIDTH_SHIFT;
480 break;
481 case 4:
482 retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_DWIDTH_SHIFT;
483 break;
484 default:
485 BUG();
486 break;
487 }
488
489 retbits |= tsize << PL080_CONTROL_TRANSFER_SIZE_SHIFT;
490 return retbits;
491}
492
493struct pl08x_lli_build_data {
494 struct pl08x_txd *txd;
495 struct pl08x_bus_data srcbus;
496 struct pl08x_bus_data dstbus;
497 size_t remainder;
498 u32 lli_bus;
499};
500
501/*
502 * Autoselect a master bus to use for the transfer this prefers the
503 * destination bus if both available if fixed address on one bus the
504 * other will be chosen
505 */
506static void pl08x_choose_master_bus(struct pl08x_lli_build_data *bd,
507 struct pl08x_bus_data **mbus, struct pl08x_bus_data **sbus, u32 cctl)
508{
509 if (!(cctl & PL080_CONTROL_DST_INCR)) {
510 *mbus = &bd->srcbus;
511 *sbus = &bd->dstbus;
512 } else if (!(cctl & PL080_CONTROL_SRC_INCR)) {
513 *mbus = &bd->dstbus;
514 *sbus = &bd->srcbus;
515 } else {
516 if (bd->dstbus.buswidth == 4) {
517 *mbus = &bd->dstbus;
518 *sbus = &bd->srcbus;
519 } else if (bd->srcbus.buswidth == 4) {
520 *mbus = &bd->srcbus;
521 *sbus = &bd->dstbus;
522 } else if (bd->dstbus.buswidth == 2) {
523 *mbus = &bd->dstbus;
524 *sbus = &bd->srcbus;
525 } else if (bd->srcbus.buswidth == 2) {
526 *mbus = &bd->srcbus;
527 *sbus = &bd->dstbus;
528 } else {
529 /* bd->srcbus.buswidth == 1 */
530 *mbus = &bd->dstbus;
531 *sbus = &bd->srcbus;
532 }
533 }
534}
535
536/*
537 * Fills in one LLI for a certain transfer descriptor and advance the counter
538 */
539static void pl08x_fill_lli_for_desc(struct pl08x_lli_build_data *bd,
540 int num_llis, int len, u32 cctl)
541{
542 struct pl08x_lli *llis_va = bd->txd->llis_va;
543 dma_addr_t llis_bus = bd->txd->llis_bus;
544
545 BUG_ON(num_llis >= MAX_NUM_TSFR_LLIS);
546
547 llis_va[num_llis].cctl = cctl;
548 llis_va[num_llis].src = bd->srcbus.addr;
549 llis_va[num_llis].dst = bd->dstbus.addr;
550 llis_va[num_llis].lli = llis_bus + (num_llis + 1) * sizeof(struct pl08x_lli);
551 llis_va[num_llis].lli |= bd->lli_bus;
552
553 if (cctl & PL080_CONTROL_SRC_INCR)
554 bd->srcbus.addr += len;
555 if (cctl & PL080_CONTROL_DST_INCR)
556 bd->dstbus.addr += len;
557
558 BUG_ON(bd->remainder < len);
559
560 bd->remainder -= len;
561}
562
563/*
564 * Return number of bytes to fill to boundary, or len.
565 * This calculation works for any value of addr.
566 */
567static inline size_t pl08x_pre_boundary(u32 addr, size_t len)
568{
569 size_t boundary_len = PL08X_BOUNDARY_SIZE -
570 (addr & (PL08X_BOUNDARY_SIZE - 1));
571
572 return min(boundary_len, len);
573}
574
575/*
576 * This fills in the table of LLIs for the transfer descriptor
577 * Note that we assume we never have to change the burst sizes
578 * Return 0 for error
579 */
580static int pl08x_fill_llis_for_desc(struct pl08x_driver_data *pl08x,
581 struct pl08x_txd *txd)
582{
583 struct pl08x_bus_data *mbus, *sbus;
584 struct pl08x_lli_build_data bd;
585 int num_llis = 0;
586 u32 cctl;
587 size_t max_bytes_per_lli;
588 size_t total_bytes = 0;
589 struct pl08x_lli *llis_va;
590
591 txd->llis_va = dma_pool_alloc(pl08x->pool, GFP_NOWAIT,
592 &txd->llis_bus);
593 if (!txd->llis_va) {
594 dev_err(&pl08x->adev->dev, "%s no memory for llis\n", __func__);
595 return 0;
596 }
597
598 pl08x->pool_ctr++;
599
600 /* Get the default CCTL */
601 cctl = txd->cctl;
602
603 bd.txd = txd;
604 bd.srcbus.addr = txd->src_addr;
605 bd.dstbus.addr = txd->dst_addr;
606 bd.lli_bus = (pl08x->lli_buses & PL08X_AHB2) ? PL080_LLI_LM_AHB2 : 0;
607
608 /* Find maximum width of the source bus */
609 bd.srcbus.maxwidth =
610 pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_SWIDTH_MASK) >>
611 PL080_CONTROL_SWIDTH_SHIFT);
612
613 /* Find maximum width of the destination bus */
614 bd.dstbus.maxwidth =
615 pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_DWIDTH_MASK) >>
616 PL080_CONTROL_DWIDTH_SHIFT);
617
618 /* Set up the bus widths to the maximum */
619 bd.srcbus.buswidth = bd.srcbus.maxwidth;
620 bd.dstbus.buswidth = bd.dstbus.maxwidth;
621
622 /*
623 * Bytes transferred == tsize * MIN(buswidths), not max(buswidths)
624 */
625 max_bytes_per_lli = min(bd.srcbus.buswidth, bd.dstbus.buswidth) *
626 PL080_CONTROL_TRANSFER_SIZE_MASK;
627
628 /* We need to count this down to zero */
629 bd.remainder = txd->len;
630
631 /*
632 * Choose bus to align to
633 * - prefers destination bus if both available
634 * - if fixed address on one bus chooses other
635 */
636 pl08x_choose_master_bus(&bd, &mbus, &sbus, cctl);
637
638 dev_vdbg(&pl08x->adev->dev, "src=0x%08x%s/%u dst=0x%08x%s/%u len=%zu llimax=%zu\n",
639 bd.srcbus.addr, cctl & PL080_CONTROL_SRC_INCR ? "+" : "",
640 bd.srcbus.buswidth,
641 bd.dstbus.addr, cctl & PL080_CONTROL_DST_INCR ? "+" : "",
642 bd.dstbus.buswidth,
643 bd.remainder, max_bytes_per_lli);
644 dev_vdbg(&pl08x->adev->dev, "mbus=%s sbus=%s\n",
645 mbus == &bd.srcbus ? "src" : "dst",
646 sbus == &bd.srcbus ? "src" : "dst");
647
648 if (txd->len < mbus->buswidth) {
649 /* Less than a bus width available - send as single bytes */
650 while (bd.remainder) {
651 dev_vdbg(&pl08x->adev->dev,
652 "%s single byte LLIs for a transfer of "
653 "less than a bus width (remain 0x%08x)\n",
654 __func__, bd.remainder);
655 cctl = pl08x_cctl_bits(cctl, 1, 1, 1);
656 pl08x_fill_lli_for_desc(&bd, num_llis++, 1, cctl);
657 total_bytes++;
658 }
659 } else {
660 /* Make one byte LLIs until master bus is aligned */
661 while ((mbus->addr) % (mbus->buswidth)) {
662 dev_vdbg(&pl08x->adev->dev,
663 "%s adjustment lli for less than bus width "
664 "(remain 0x%08x)\n",
665 __func__, bd.remainder);
666 cctl = pl08x_cctl_bits(cctl, 1, 1, 1);
667 pl08x_fill_lli_for_desc(&bd, num_llis++, 1, cctl);
668 total_bytes++;
669 }
670
671 /*
672 * Master now aligned
673 * - if slave is not then we must set its width down
674 */
675 if (sbus->addr % sbus->buswidth) {
676 dev_dbg(&pl08x->adev->dev,
677 "%s set down bus width to one byte\n",
678 __func__);
679
680 sbus->buswidth = 1;
681 }
682
683 /*
684 * Make largest possible LLIs until less than one bus
685 * width left
686 */
687 while (bd.remainder > (mbus->buswidth - 1)) {
688 size_t lli_len, target_len, tsize, odd_bytes;
689
690 /*
691 * If enough left try to send max possible,
692 * otherwise try to send the remainder
693 */
694 target_len = min(bd.remainder, max_bytes_per_lli);
695
696 /*
697 * Set bus lengths for incrementing buses to the
698 * number of bytes which fill to next memory boundary,
699 * limiting on the target length calculated above.
700 */
701 if (cctl & PL080_CONTROL_SRC_INCR)
702 bd.srcbus.fill_bytes =
703 pl08x_pre_boundary(bd.srcbus.addr,
704 target_len);
705 else
706 bd.srcbus.fill_bytes = target_len;
707
708 if (cctl & PL080_CONTROL_DST_INCR)
709 bd.dstbus.fill_bytes =
710 pl08x_pre_boundary(bd.dstbus.addr,
711 target_len);
712 else
713 bd.dstbus.fill_bytes = target_len;
714
715 /* Find the nearest */
716 lli_len = min(bd.srcbus.fill_bytes,
717 bd.dstbus.fill_bytes);
718
719 BUG_ON(lli_len > bd.remainder);
720
721 if (lli_len <= 0) {
722 dev_err(&pl08x->adev->dev,
723 "%s lli_len is %zu, <= 0\n",
724 __func__, lli_len);
725 return 0;
726 }
727
728 if (lli_len == target_len) {
729 /*
730 * Can send what we wanted.
731 * Maintain alignment
732 */
733 lli_len = (lli_len/mbus->buswidth) *
734 mbus->buswidth;
735 odd_bytes = 0;
736 } else {
737 /*
738 * So now we know how many bytes to transfer
739 * to get to the nearest boundary. The next
740 * LLI will past the boundary. However, we
741 * may be working to a boundary on the slave
742 * bus. We need to ensure the master stays
743 * aligned, and that we are working in
744 * multiples of the bus widths.
745 */
746 odd_bytes = lli_len % mbus->buswidth;
747 lli_len -= odd_bytes;
748
749 }
750
751 if (lli_len) {
752 /*
753 * Check against minimum bus alignment:
754 * Calculate actual transfer size in relation
755 * to bus width an get a maximum remainder of
756 * the smallest bus width - 1
757 */
758 /* FIXME: use round_down()? */
759 tsize = lli_len / min(mbus->buswidth,
760 sbus->buswidth);
761 lli_len = tsize * min(mbus->buswidth,
762 sbus->buswidth);
763
764 if (target_len != lli_len) {
765 dev_vdbg(&pl08x->adev->dev,
766 "%s can't send what we want. Desired 0x%08zx, lli of 0x%08zx bytes in txd of 0x%08zx\n",
767 __func__, target_len, lli_len, txd->len);
768 }
769
770 cctl = pl08x_cctl_bits(cctl,
771 bd.srcbus.buswidth,
772 bd.dstbus.buswidth,
773 tsize);
774
775 dev_vdbg(&pl08x->adev->dev,
776 "%s fill lli with single lli chunk of size 0x%08zx (remainder 0x%08zx)\n",
777 __func__, lli_len, bd.remainder);
778 pl08x_fill_lli_for_desc(&bd, num_llis++,
779 lli_len, cctl);
780 total_bytes += lli_len;
781 }
782
783
784 if (odd_bytes) {
785 /*
786 * Creep past the boundary, maintaining
787 * master alignment
788 */
789 int j;
790 for (j = 0; (j < mbus->buswidth)
791 && (bd.remainder); j++) {
792 cctl = pl08x_cctl_bits(cctl, 1, 1, 1);
793 dev_vdbg(&pl08x->adev->dev,
794 "%s align with boundary, single byte (remain 0x%08zx)\n",
795 __func__, bd.remainder);
796 pl08x_fill_lli_for_desc(&bd,
797 num_llis++, 1, cctl);
798 total_bytes++;
799 }
800 }
801 }
802
803 /*
804 * Send any odd bytes
805 */
806 while (bd.remainder) {
807 cctl = pl08x_cctl_bits(cctl, 1, 1, 1);
808 dev_vdbg(&pl08x->adev->dev,
809 "%s align with boundary, single odd byte (remain %zu)\n",
810 __func__, bd.remainder);
811 pl08x_fill_lli_for_desc(&bd, num_llis++, 1, cctl);
812 total_bytes++;
813 }
814 }
815 if (total_bytes != txd->len) {
816 dev_err(&pl08x->adev->dev,
817 "%s size of encoded lli:s don't match total txd, transferred 0x%08zx from size 0x%08zx\n",
818 __func__, total_bytes, txd->len);
819 return 0;
820 }
821
822 if (num_llis >= MAX_NUM_TSFR_LLIS) {
823 dev_err(&pl08x->adev->dev,
824 "%s need to increase MAX_NUM_TSFR_LLIS from 0x%08x\n",
825 __func__, (u32) MAX_NUM_TSFR_LLIS);
826 return 0;
827 }
828
829 llis_va = txd->llis_va;
830 /* The final LLI terminates the LLI. */
831 llis_va[num_llis - 1].lli = 0;
832 /* The final LLI element shall also fire an interrupt. */
833 llis_va[num_llis - 1].cctl |= PL080_CONTROL_TC_IRQ_EN;
834
835#ifdef VERBOSE_DEBUG
836 {
837 int i;
838
839 dev_vdbg(&pl08x->adev->dev,
840 "%-3s %-9s %-10s %-10s %-10s %s\n",
841 "lli", "", "csrc", "cdst", "clli", "cctl");
842 for (i = 0; i < num_llis; i++) {
843 dev_vdbg(&pl08x->adev->dev,
844 "%3d @%p: 0x%08x 0x%08x 0x%08x 0x%08x\n",
845 i, &llis_va[i], llis_va[i].src,
846 llis_va[i].dst, llis_va[i].lli, llis_va[i].cctl
847 );
848 }
849 }
850#endif
851
852 return num_llis;
853}
854
855/* You should call this with the struct pl08x lock held */
856static void pl08x_free_txd(struct pl08x_driver_data *pl08x,
857 struct pl08x_txd *txd)
858{
859 /* Free the LLI */
860 dma_pool_free(pl08x->pool, txd->llis_va, txd->llis_bus);
861
862 pl08x->pool_ctr--;
863
864 kfree(txd);
865}
866
867static void pl08x_free_txd_list(struct pl08x_driver_data *pl08x,
868 struct pl08x_dma_chan *plchan)
869{
870 struct pl08x_txd *txdi = NULL;
871 struct pl08x_txd *next;
872
873 if (!list_empty(&plchan->pend_list)) {
874 list_for_each_entry_safe(txdi,
875 next, &plchan->pend_list, node) {
876 list_del(&txdi->node);
877 pl08x_free_txd(pl08x, txdi);
878 }
879 }
880}
881
882/*
883 * The DMA ENGINE API
884 */
885static int pl08x_alloc_chan_resources(struct dma_chan *chan)
886{
887 return 0;
888}
889
890static void pl08x_free_chan_resources(struct dma_chan *chan)
891{
892}
893
894/*
895 * This should be called with the channel plchan->lock held
896 */
897static int prep_phy_channel(struct pl08x_dma_chan *plchan,
898 struct pl08x_txd *txd)
899{
900 struct pl08x_driver_data *pl08x = plchan->host;
901 struct pl08x_phy_chan *ch;
902 int ret;
903
904 /* Check if we already have a channel */
905 if (plchan->phychan)
906 return 0;
907
908 ch = pl08x_get_phy_channel(pl08x, plchan);
909 if (!ch) {
910 /* No physical channel available, cope with it */
911 dev_dbg(&pl08x->adev->dev, "no physical channel available for xfer on %s\n", plchan->name);
912 return -EBUSY;
913 }
914
915 /*
916 * OK we have a physical channel: for memcpy() this is all we
917 * need, but for slaves the physical signals may be muxed!
918 * Can the platform allow us to use this channel?
919 */
920 if (plchan->slave &&
921 ch->signal < 0 &&
922 pl08x->pd->get_signal) {
923 ret = pl08x->pd->get_signal(plchan);
924 if (ret < 0) {
925 dev_dbg(&pl08x->adev->dev,
926 "unable to use physical channel %d for transfer on %s due to platform restrictions\n",
927 ch->id, plchan->name);
928 /* Release physical channel & return */
929 pl08x_put_phy_channel(pl08x, ch);
930 return -EBUSY;
931 }
932 ch->signal = ret;
933
934 /* Assign the flow control signal to this channel */
935 if (txd->direction == DMA_TO_DEVICE)
936 txd->ccfg |= ch->signal << PL080_CONFIG_DST_SEL_SHIFT;
937 else if (txd->direction == DMA_FROM_DEVICE)
938 txd->ccfg |= ch->signal << PL080_CONFIG_SRC_SEL_SHIFT;
939 }
940
941 dev_dbg(&pl08x->adev->dev, "allocated physical channel %d and signal %d for xfer on %s\n",
942 ch->id,
943 ch->signal,
944 plchan->name);
945
946 plchan->phychan_hold++;
947 plchan->phychan = ch;
948
949 return 0;
950}
951
952static void release_phy_channel(struct pl08x_dma_chan *plchan)
953{
954 struct pl08x_driver_data *pl08x = plchan->host;
955
956 if ((plchan->phychan->signal >= 0) && pl08x->pd->put_signal) {
957 pl08x->pd->put_signal(plchan);
958 plchan->phychan->signal = -1;
959 }
960 pl08x_put_phy_channel(pl08x, plchan->phychan);
961 plchan->phychan = NULL;
962}
963
964static dma_cookie_t pl08x_tx_submit(struct dma_async_tx_descriptor *tx)
965{
966 struct pl08x_dma_chan *plchan = to_pl08x_chan(tx->chan);
967 struct pl08x_txd *txd = to_pl08x_txd(tx);
968 unsigned long flags;
969
970 spin_lock_irqsave(&plchan->lock, flags);
971
972 plchan->chan.cookie += 1;
973 if (plchan->chan.cookie < 0)
974 plchan->chan.cookie = 1;
975 tx->cookie = plchan->chan.cookie;
976
977 /* Put this onto the pending list */
978 list_add_tail(&txd->node, &plchan->pend_list);
979
980 /*
981 * If there was no physical channel available for this memcpy,
982 * stack the request up and indicate that the channel is waiting
983 * for a free physical channel.
984 */
985 if (!plchan->slave && !plchan->phychan) {
986 /* Do this memcpy whenever there is a channel ready */
987 plchan->state = PL08X_CHAN_WAITING;
988 plchan->waiting = txd;
989 } else {
990 plchan->phychan_hold--;
991 }
992
993 spin_unlock_irqrestore(&plchan->lock, flags);
994
995 return tx->cookie;
996}
997
998static struct dma_async_tx_descriptor *pl08x_prep_dma_interrupt(
999 struct dma_chan *chan, unsigned long flags)
1000{
1001 struct dma_async_tx_descriptor *retval = NULL;
1002
1003 return retval;
1004}
1005
1006/*
1007 * Code accessing dma_async_is_complete() in a tight loop may give problems.
1008 * If slaves are relying on interrupts to signal completion this function
1009 * must not be called with interrupts disabled.
1010 */
1011static enum dma_status
1012pl08x_dma_tx_status(struct dma_chan *chan,
1013 dma_cookie_t cookie,
1014 struct dma_tx_state *txstate)
1015{
1016 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1017 dma_cookie_t last_used;
1018 dma_cookie_t last_complete;
1019 enum dma_status ret;
1020 u32 bytesleft = 0;
1021
1022 last_used = plchan->chan.cookie;
1023 last_complete = plchan->lc;
1024
1025 ret = dma_async_is_complete(cookie, last_complete, last_used);
1026 if (ret == DMA_SUCCESS) {
1027 dma_set_tx_state(txstate, last_complete, last_used, 0);
1028 return ret;
1029 }
1030
1031 /*
1032 * This cookie not complete yet
1033 */
1034 last_used = plchan->chan.cookie;
1035 last_complete = plchan->lc;
1036
1037 /* Get number of bytes left in the active transactions and queue */
1038 bytesleft = pl08x_getbytes_chan(plchan);
1039
1040 dma_set_tx_state(txstate, last_complete, last_used,
1041 bytesleft);
1042
1043 if (plchan->state == PL08X_CHAN_PAUSED)
1044 return DMA_PAUSED;
1045
1046 /* Whether waiting or running, we're in progress */
1047 return DMA_IN_PROGRESS;
1048}
1049
1050/* PrimeCell DMA extension */
1051struct burst_table {
1052 u32 burstwords;
1053 u32 reg;
1054};
1055
1056static const struct burst_table burst_sizes[] = {
1057 {
1058 .burstwords = 256,
1059 .reg = PL080_BSIZE_256,
1060 },
1061 {
1062 .burstwords = 128,
1063 .reg = PL080_BSIZE_128,
1064 },
1065 {
1066 .burstwords = 64,
1067 .reg = PL080_BSIZE_64,
1068 },
1069 {
1070 .burstwords = 32,
1071 .reg = PL080_BSIZE_32,
1072 },
1073 {
1074 .burstwords = 16,
1075 .reg = PL080_BSIZE_16,
1076 },
1077 {
1078 .burstwords = 8,
1079 .reg = PL080_BSIZE_8,
1080 },
1081 {
1082 .burstwords = 4,
1083 .reg = PL080_BSIZE_4,
1084 },
1085 {
1086 .burstwords = 0,
1087 .reg = PL080_BSIZE_1,
1088 },
1089};
1090
1091/*
1092 * Given the source and destination available bus masks, select which
1093 * will be routed to each port. We try to have source and destination
1094 * on separate ports, but always respect the allowable settings.
1095 */
1096static u32 pl08x_select_bus(u8 src, u8 dst)
1097{
1098 u32 cctl = 0;
1099
1100 if (!(dst & PL08X_AHB1) || ((dst & PL08X_AHB2) && (src & PL08X_AHB1)))
1101 cctl |= PL080_CONTROL_DST_AHB2;
1102 if (!(src & PL08X_AHB1) || ((src & PL08X_AHB2) && !(dst & PL08X_AHB2)))
1103 cctl |= PL080_CONTROL_SRC_AHB2;
1104
1105 return cctl;
1106}
1107
1108static u32 pl08x_cctl(u32 cctl)
1109{
1110 cctl &= ~(PL080_CONTROL_SRC_AHB2 | PL080_CONTROL_DST_AHB2 |
1111 PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR |
1112 PL080_CONTROL_PROT_MASK);
1113
1114 /* Access the cell in privileged mode, non-bufferable, non-cacheable */
1115 return cctl | PL080_CONTROL_PROT_SYS;
1116}
1117
1118static u32 pl08x_width(enum dma_slave_buswidth width)
1119{
1120 switch (width) {
1121 case DMA_SLAVE_BUSWIDTH_1_BYTE:
1122 return PL080_WIDTH_8BIT;
1123 case DMA_SLAVE_BUSWIDTH_2_BYTES:
1124 return PL080_WIDTH_16BIT;
1125 case DMA_SLAVE_BUSWIDTH_4_BYTES:
1126 return PL080_WIDTH_32BIT;
1127 default:
1128 return ~0;
1129 }
1130}
1131
1132static u32 pl08x_burst(u32 maxburst)
1133{
1134 int i;
1135
1136 for (i = 0; i < ARRAY_SIZE(burst_sizes); i++)
1137 if (burst_sizes[i].burstwords <= maxburst)
1138 break;
1139
1140 return burst_sizes[i].reg;
1141}
1142
1143static int dma_set_runtime_config(struct dma_chan *chan,
1144 struct dma_slave_config *config)
1145{
1146 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1147 struct pl08x_driver_data *pl08x = plchan->host;
1148 enum dma_slave_buswidth addr_width;
1149 u32 width, burst, maxburst;
1150 u32 cctl = 0;
1151
1152 if (!plchan->slave)
1153 return -EINVAL;
1154
1155 /* Transfer direction */
1156 plchan->runtime_direction = config->direction;
1157 if (config->direction == DMA_TO_DEVICE) {
1158 addr_width = config->dst_addr_width;
1159 maxburst = config->dst_maxburst;
1160 } else if (config->direction == DMA_FROM_DEVICE) {
1161 addr_width = config->src_addr_width;
1162 maxburst = config->src_maxburst;
1163 } else {
1164 dev_err(&pl08x->adev->dev,
1165 "bad runtime_config: alien transfer direction\n");
1166 return -EINVAL;
1167 }
1168
1169 width = pl08x_width(addr_width);
1170 if (width == ~0) {
1171 dev_err(&pl08x->adev->dev,
1172 "bad runtime_config: alien address width\n");
1173 return -EINVAL;
1174 }
1175
1176 cctl |= width << PL080_CONTROL_SWIDTH_SHIFT;
1177 cctl |= width << PL080_CONTROL_DWIDTH_SHIFT;
1178
1179 /*
1180 * If this channel will only request single transfers, set this
1181 * down to ONE element. Also select one element if no maxburst
1182 * is specified.
1183 */
1184 if (plchan->cd->single)
1185 maxburst = 1;
1186
1187 burst = pl08x_burst(maxburst);
1188 cctl |= burst << PL080_CONTROL_SB_SIZE_SHIFT;
1189 cctl |= burst << PL080_CONTROL_DB_SIZE_SHIFT;
1190
1191 if (plchan->runtime_direction == DMA_FROM_DEVICE) {
1192 plchan->src_addr = config->src_addr;
1193 plchan->src_cctl = pl08x_cctl(cctl) | PL080_CONTROL_DST_INCR |
1194 pl08x_select_bus(plchan->cd->periph_buses,
1195 pl08x->mem_buses);
1196 } else {
1197 plchan->dst_addr = config->dst_addr;
1198 plchan->dst_cctl = pl08x_cctl(cctl) | PL080_CONTROL_SRC_INCR |
1199 pl08x_select_bus(pl08x->mem_buses,
1200 plchan->cd->periph_buses);
1201 }
1202
1203 dev_dbg(&pl08x->adev->dev,
1204 "configured channel %s (%s) for %s, data width %d, "
1205 "maxburst %d words, LE, CCTL=0x%08x\n",
1206 dma_chan_name(chan), plchan->name,
1207 (config->direction == DMA_FROM_DEVICE) ? "RX" : "TX",
1208 addr_width,
1209 maxburst,
1210 cctl);
1211
1212 return 0;
1213}
1214
1215/*
1216 * Slave transactions callback to the slave device to allow
1217 * synchronization of slave DMA signals with the DMAC enable
1218 */
1219static void pl08x_issue_pending(struct dma_chan *chan)
1220{
1221 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1222 unsigned long flags;
1223
1224 spin_lock_irqsave(&plchan->lock, flags);
1225 /* Something is already active, or we're waiting for a channel... */
1226 if (plchan->at || plchan->state == PL08X_CHAN_WAITING) {
1227 spin_unlock_irqrestore(&plchan->lock, flags);
1228 return;
1229 }
1230
1231 /* Take the first element in the queue and execute it */
1232 if (!list_empty(&plchan->pend_list)) {
1233 struct pl08x_txd *next;
1234
1235 next = list_first_entry(&plchan->pend_list,
1236 struct pl08x_txd,
1237 node);
1238 list_del(&next->node);
1239 plchan->state = PL08X_CHAN_RUNNING;
1240
1241 pl08x_start_txd(plchan, next);
1242 }
1243
1244 spin_unlock_irqrestore(&plchan->lock, flags);
1245}
1246
1247static int pl08x_prep_channel_resources(struct pl08x_dma_chan *plchan,
1248 struct pl08x_txd *txd)
1249{
1250 struct pl08x_driver_data *pl08x = plchan->host;
1251 unsigned long flags;
1252 int num_llis, ret;
1253
1254 num_llis = pl08x_fill_llis_for_desc(pl08x, txd);
1255 if (!num_llis) {
1256 kfree(txd);
1257 return -EINVAL;
1258 }
1259
1260 spin_lock_irqsave(&plchan->lock, flags);
1261
1262 /*
1263 * See if we already have a physical channel allocated,
1264 * else this is the time to try to get one.
1265 */
1266 ret = prep_phy_channel(plchan, txd);
1267 if (ret) {
1268 /*
1269 * No physical channel was available.
1270 *
1271 * memcpy transfers can be sorted out at submission time.
1272 *
1273 * Slave transfers may have been denied due to platform
1274 * channel muxing restrictions. Since there is no guarantee
1275 * that this will ever be resolved, and the signal must be
1276 * acquired AFTER acquiring the physical channel, we will let
1277 * them be NACK:ed with -EBUSY here. The drivers can retry
1278 * the prep() call if they are eager on doing this using DMA.
1279 */
1280 if (plchan->slave) {
1281 pl08x_free_txd_list(pl08x, plchan);
1282 pl08x_free_txd(pl08x, txd);
1283 spin_unlock_irqrestore(&plchan->lock, flags);
1284 return -EBUSY;
1285 }
1286 } else
1287 /*
1288 * Else we're all set, paused and ready to roll, status
1289 * will switch to PL08X_CHAN_RUNNING when we call
1290 * issue_pending(). If there is something running on the
1291 * channel already we don't change its state.
1292 */
1293 if (plchan->state == PL08X_CHAN_IDLE)
1294 plchan->state = PL08X_CHAN_PAUSED;
1295
1296 spin_unlock_irqrestore(&plchan->lock, flags);
1297
1298 return 0;
1299}
1300
1301static struct pl08x_txd *pl08x_get_txd(struct pl08x_dma_chan *plchan,
1302 unsigned long flags)
1303{
1304 struct pl08x_txd *txd = kzalloc(sizeof(struct pl08x_txd), GFP_NOWAIT);
1305
1306 if (txd) {
1307 dma_async_tx_descriptor_init(&txd->tx, &plchan->chan);
1308 txd->tx.flags = flags;
1309 txd->tx.tx_submit = pl08x_tx_submit;
1310 INIT_LIST_HEAD(&txd->node);
1311
1312 /* Always enable error and terminal interrupts */
1313 txd->ccfg = PL080_CONFIG_ERR_IRQ_MASK |
1314 PL080_CONFIG_TC_IRQ_MASK;
1315 }
1316 return txd;
1317}
1318
1319/*
1320 * Initialize a descriptor to be used by memcpy submit
1321 */
1322static struct dma_async_tx_descriptor *pl08x_prep_dma_memcpy(
1323 struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
1324 size_t len, unsigned long flags)
1325{
1326 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1327 struct pl08x_driver_data *pl08x = plchan->host;
1328 struct pl08x_txd *txd;
1329 int ret;
1330
1331 txd = pl08x_get_txd(plchan, flags);
1332 if (!txd) {
1333 dev_err(&pl08x->adev->dev,
1334 "%s no memory for descriptor\n", __func__);
1335 return NULL;
1336 }
1337
1338 txd->direction = DMA_NONE;
1339 txd->src_addr = src;
1340 txd->dst_addr = dest;
1341 txd->len = len;
1342
1343 /* Set platform data for m2m */
1344 txd->ccfg |= PL080_FLOW_MEM2MEM << PL080_CONFIG_FLOW_CONTROL_SHIFT;
1345 txd->cctl = pl08x->pd->memcpy_channel.cctl &
1346 ~(PL080_CONTROL_DST_AHB2 | PL080_CONTROL_SRC_AHB2);
1347
1348 /* Both to be incremented or the code will break */
1349 txd->cctl |= PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR;
1350
1351 if (pl08x->vd->dualmaster)
1352 txd->cctl |= pl08x_select_bus(pl08x->mem_buses,
1353 pl08x->mem_buses);
1354
1355 ret = pl08x_prep_channel_resources(plchan, txd);
1356 if (ret)
1357 return NULL;
1358
1359 return &txd->tx;
1360}
1361
1362static struct dma_async_tx_descriptor *pl08x_prep_slave_sg(
1363 struct dma_chan *chan, struct scatterlist *sgl,
1364 unsigned int sg_len, enum dma_data_direction direction,
1365 unsigned long flags)
1366{
1367 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1368 struct pl08x_driver_data *pl08x = plchan->host;
1369 struct pl08x_txd *txd;
1370 int ret;
1371
1372 /*
1373 * Current implementation ASSUMES only one sg
1374 */
1375 if (sg_len != 1) {
1376 dev_err(&pl08x->adev->dev, "%s prepared too long sglist\n",
1377 __func__);
1378 BUG();
1379 }
1380
1381 dev_dbg(&pl08x->adev->dev, "%s prepare transaction of %d bytes from %s\n",
1382 __func__, sgl->length, plchan->name);
1383
1384 txd = pl08x_get_txd(plchan, flags);
1385 if (!txd) {
1386 dev_err(&pl08x->adev->dev, "%s no txd\n", __func__);
1387 return NULL;
1388 }
1389
1390 if (direction != plchan->runtime_direction)
1391 dev_err(&pl08x->adev->dev, "%s DMA setup does not match "
1392 "the direction configured for the PrimeCell\n",
1393 __func__);
1394
1395 /*
1396 * Set up addresses, the PrimeCell configured address
1397 * will take precedence since this may configure the
1398 * channel target address dynamically at runtime.
1399 */
1400 txd->direction = direction;
1401 txd->len = sgl->length;
1402
1403 if (direction == DMA_TO_DEVICE) {
1404 txd->ccfg |= PL080_FLOW_MEM2PER << PL080_CONFIG_FLOW_CONTROL_SHIFT;
1405 txd->cctl = plchan->dst_cctl;
1406 txd->src_addr = sgl->dma_address;
1407 txd->dst_addr = plchan->dst_addr;
1408 } else if (direction == DMA_FROM_DEVICE) {
1409 txd->ccfg |= PL080_FLOW_PER2MEM << PL080_CONFIG_FLOW_CONTROL_SHIFT;
1410 txd->cctl = plchan->src_cctl;
1411 txd->src_addr = plchan->src_addr;
1412 txd->dst_addr = sgl->dma_address;
1413 } else {
1414 dev_err(&pl08x->adev->dev,
1415 "%s direction unsupported\n", __func__);
1416 return NULL;
1417 }
1418
1419 ret = pl08x_prep_channel_resources(plchan, txd);
1420 if (ret)
1421 return NULL;
1422
1423 return &txd->tx;
1424}
1425
1426static int pl08x_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
1427 unsigned long arg)
1428{
1429 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1430 struct pl08x_driver_data *pl08x = plchan->host;
1431 unsigned long flags;
1432 int ret = 0;
1433
1434 /* Controls applicable to inactive channels */
1435 if (cmd == DMA_SLAVE_CONFIG) {
1436 return dma_set_runtime_config(chan,
1437 (struct dma_slave_config *)arg);
1438 }
1439
1440 /*
1441 * Anything succeeds on channels with no physical allocation and
1442 * no queued transfers.
1443 */
1444 spin_lock_irqsave(&plchan->lock, flags);
1445 if (!plchan->phychan && !plchan->at) {
1446 spin_unlock_irqrestore(&plchan->lock, flags);
1447 return 0;
1448 }
1449
1450 switch (cmd) {
1451 case DMA_TERMINATE_ALL:
1452 plchan->state = PL08X_CHAN_IDLE;
1453
1454 if (plchan->phychan) {
1455 pl08x_terminate_phy_chan(pl08x, plchan->phychan);
1456
1457 /*
1458 * Mark physical channel as free and free any slave
1459 * signal
1460 */
1461 release_phy_channel(plchan);
1462 }
1463 /* Dequeue jobs and free LLIs */
1464 if (plchan->at) {
1465 pl08x_free_txd(pl08x, plchan->at);
1466 plchan->at = NULL;
1467 }
1468 /* Dequeue jobs not yet fired as well */
1469 pl08x_free_txd_list(pl08x, plchan);
1470 break;
1471 case DMA_PAUSE:
1472 pl08x_pause_phy_chan(plchan->phychan);
1473 plchan->state = PL08X_CHAN_PAUSED;
1474 break;
1475 case DMA_RESUME:
1476 pl08x_resume_phy_chan(plchan->phychan);
1477 plchan->state = PL08X_CHAN_RUNNING;
1478 break;
1479 default:
1480 /* Unknown command */
1481 ret = -ENXIO;
1482 break;
1483 }
1484
1485 spin_unlock_irqrestore(&plchan->lock, flags);
1486
1487 return ret;
1488}
1489
1490bool pl08x_filter_id(struct dma_chan *chan, void *chan_id)
1491{
1492 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1493 char *name = chan_id;
1494
1495 /* Check that the channel is not taken! */
1496 if (!strcmp(plchan->name, name))
1497 return true;
1498
1499 return false;
1500}
1501
1502/*
1503 * Just check that the device is there and active
1504 * TODO: turn this bit on/off depending on the number of physical channels
1505 * actually used, if it is zero... well shut it off. That will save some
1506 * power. Cut the clock at the same time.
1507 */
1508static void pl08x_ensure_on(struct pl08x_driver_data *pl08x)
1509{
1510 u32 val;
1511
1512 val = readl(pl08x->base + PL080_CONFIG);
1513 val &= ~(PL080_CONFIG_M2_BE | PL080_CONFIG_M1_BE | PL080_CONFIG_ENABLE);
1514 /* We implicitly clear bit 1 and that means little-endian mode */
1515 val |= PL080_CONFIG_ENABLE;
1516 writel(val, pl08x->base + PL080_CONFIG);
1517}
1518
1519static void pl08x_unmap_buffers(struct pl08x_txd *txd)
1520{
1521 struct device *dev = txd->tx.chan->device->dev;
1522
1523 if (!(txd->tx.flags & DMA_COMPL_SKIP_SRC_UNMAP)) {
1524 if (txd->tx.flags & DMA_COMPL_SRC_UNMAP_SINGLE)
1525 dma_unmap_single(dev, txd->src_addr, txd->len,
1526 DMA_TO_DEVICE);
1527 else
1528 dma_unmap_page(dev, txd->src_addr, txd->len,
1529 DMA_TO_DEVICE);
1530 }
1531 if (!(txd->tx.flags & DMA_COMPL_SKIP_DEST_UNMAP)) {
1532 if (txd->tx.flags & DMA_COMPL_DEST_UNMAP_SINGLE)
1533 dma_unmap_single(dev, txd->dst_addr, txd->len,
1534 DMA_FROM_DEVICE);
1535 else
1536 dma_unmap_page(dev, txd->dst_addr, txd->len,
1537 DMA_FROM_DEVICE);
1538 }
1539}
1540
1541static void pl08x_tasklet(unsigned long data)
1542{
1543 struct pl08x_dma_chan *plchan = (struct pl08x_dma_chan *) data;
1544 struct pl08x_driver_data *pl08x = plchan->host;
1545 struct pl08x_txd *txd;
1546 unsigned long flags;
1547
1548 spin_lock_irqsave(&plchan->lock, flags);
1549
1550 txd = plchan->at;
1551 plchan->at = NULL;
1552
1553 if (txd) {
1554 /* Update last completed */
1555 plchan->lc = txd->tx.cookie;
1556 }
1557
1558 /* If a new descriptor is queued, set it up plchan->at is NULL here */
1559 if (!list_empty(&plchan->pend_list)) {
1560 struct pl08x_txd *next;
1561
1562 next = list_first_entry(&plchan->pend_list,
1563 struct pl08x_txd,
1564 node);
1565 list_del(&next->node);
1566
1567 pl08x_start_txd(plchan, next);
1568 } else if (plchan->phychan_hold) {
1569 /*
1570 * This channel is still in use - we have a new txd being
1571 * prepared and will soon be queued. Don't give up the
1572 * physical channel.
1573 */
1574 } else {
1575 struct pl08x_dma_chan *waiting = NULL;
1576
1577 /*
1578 * No more jobs, so free up the physical channel
1579 * Free any allocated signal on slave transfers too
1580 */
1581 release_phy_channel(plchan);
1582 plchan->state = PL08X_CHAN_IDLE;
1583
1584 /*
1585 * And NOW before anyone else can grab that free:d up
1586 * physical channel, see if there is some memcpy pending
1587 * that seriously needs to start because of being stacked
1588 * up while we were choking the physical channels with data.
1589 */
1590 list_for_each_entry(waiting, &pl08x->memcpy.channels,
1591 chan.device_node) {
1592 if (waiting->state == PL08X_CHAN_WAITING &&
1593 waiting->waiting != NULL) {
1594 int ret;
1595
1596 /* This should REALLY not fail now */
1597 ret = prep_phy_channel(waiting,
1598 waiting->waiting);
1599 BUG_ON(ret);
1600 waiting->phychan_hold--;
1601 waiting->state = PL08X_CHAN_RUNNING;
1602 waiting->waiting = NULL;
1603 pl08x_issue_pending(&waiting->chan);
1604 break;
1605 }
1606 }
1607 }
1608
1609 spin_unlock_irqrestore(&plchan->lock, flags);
1610
1611 if (txd) {
1612 dma_async_tx_callback callback = txd->tx.callback;
1613 void *callback_param = txd->tx.callback_param;
1614
1615 /* Don't try to unmap buffers on slave channels */
1616 if (!plchan->slave)
1617 pl08x_unmap_buffers(txd);
1618
1619 /* Free the descriptor */
1620 spin_lock_irqsave(&plchan->lock, flags);
1621 pl08x_free_txd(pl08x, txd);
1622 spin_unlock_irqrestore(&plchan->lock, flags);
1623
1624 /* Callback to signal completion */
1625 if (callback)
1626 callback(callback_param);
1627 }
1628}
1629
1630static irqreturn_t pl08x_irq(int irq, void *dev)
1631{
1632 struct pl08x_driver_data *pl08x = dev;
1633 u32 mask = 0;
1634 u32 val;
1635 int i;
1636
1637 val = readl(pl08x->base + PL080_ERR_STATUS);
1638 if (val) {
1639 /* An error interrupt (on one or more channels) */
1640 dev_err(&pl08x->adev->dev,
1641 "%s error interrupt, register value 0x%08x\n",
1642 __func__, val);
1643 /*
1644 * Simply clear ALL PL08X error interrupts,
1645 * regardless of channel and cause
1646 * FIXME: should be 0x00000003 on PL081 really.
1647 */
1648 writel(0x000000FF, pl08x->base + PL080_ERR_CLEAR);
1649 }
1650 val = readl(pl08x->base + PL080_INT_STATUS);
1651 for (i = 0; i < pl08x->vd->channels; i++) {
1652 if ((1 << i) & val) {
1653 /* Locate physical channel */
1654 struct pl08x_phy_chan *phychan = &pl08x->phy_chans[i];
1655 struct pl08x_dma_chan *plchan = phychan->serving;
1656
1657 /* Schedule tasklet on this channel */
1658 tasklet_schedule(&plchan->tasklet);
1659
1660 mask |= (1 << i);
1661 }
1662 }
1663 /* Clear only the terminal interrupts on channels we processed */
1664 writel(mask, pl08x->base + PL080_TC_CLEAR);
1665
1666 return mask ? IRQ_HANDLED : IRQ_NONE;
1667}
1668
1669static void pl08x_dma_slave_init(struct pl08x_dma_chan *chan)
1670{
1671 u32 cctl = pl08x_cctl(chan->cd->cctl);
1672
1673 chan->slave = true;
1674 chan->name = chan->cd->bus_id;
1675 chan->src_addr = chan->cd->addr;
1676 chan->dst_addr = chan->cd->addr;
1677 chan->src_cctl = cctl | PL080_CONTROL_DST_INCR |
1678 pl08x_select_bus(chan->cd->periph_buses, chan->host->mem_buses);
1679 chan->dst_cctl = cctl | PL080_CONTROL_SRC_INCR |
1680 pl08x_select_bus(chan->host->mem_buses, chan->cd->periph_buses);
1681}
1682
1683/*
1684 * Initialise the DMAC memcpy/slave channels.
1685 * Make a local wrapper to hold required data
1686 */
1687static int pl08x_dma_init_virtual_channels(struct pl08x_driver_data *pl08x,
1688 struct dma_device *dmadev,
1689 unsigned int channels,
1690 bool slave)
1691{
1692 struct pl08x_dma_chan *chan;
1693 int i;
1694
1695 INIT_LIST_HEAD(&dmadev->channels);
1696
1697 /*
1698 * Register as many many memcpy as we have physical channels,
1699 * we won't always be able to use all but the code will have
1700 * to cope with that situation.
1701 */
1702 for (i = 0; i < channels; i++) {
1703 chan = kzalloc(sizeof(struct pl08x_dma_chan), GFP_KERNEL);
1704 if (!chan) {
1705 dev_err(&pl08x->adev->dev,
1706 "%s no memory for channel\n", __func__);
1707 return -ENOMEM;
1708 }
1709
1710 chan->host = pl08x;
1711 chan->state = PL08X_CHAN_IDLE;
1712
1713 if (slave) {
1714 chan->cd = &pl08x->pd->slave_channels[i];
1715 pl08x_dma_slave_init(chan);
1716 } else {
1717 chan->cd = &pl08x->pd->memcpy_channel;
1718 chan->name = kasprintf(GFP_KERNEL, "memcpy%d", i);
1719 if (!chan->name) {
1720 kfree(chan);
1721 return -ENOMEM;
1722 }
1723 }
1724 if (chan->cd->circular_buffer) {
1725 dev_err(&pl08x->adev->dev,
1726 "channel %s: circular buffers not supported\n",
1727 chan->name);
1728 kfree(chan);
1729 continue;
1730 }
1731 dev_info(&pl08x->adev->dev,
1732 "initialize virtual channel \"%s\"\n",
1733 chan->name);
1734
1735 chan->chan.device = dmadev;
1736 chan->chan.cookie = 0;
1737 chan->lc = 0;
1738
1739 spin_lock_init(&chan->lock);
1740 INIT_LIST_HEAD(&chan->pend_list);
1741 tasklet_init(&chan->tasklet, pl08x_tasklet,
1742 (unsigned long) chan);
1743
1744 list_add_tail(&chan->chan.device_node, &dmadev->channels);
1745 }
1746 dev_info(&pl08x->adev->dev, "initialized %d virtual %s channels\n",
1747 i, slave ? "slave" : "memcpy");
1748 return i;
1749}
1750
1751static void pl08x_free_virtual_channels(struct dma_device *dmadev)
1752{
1753 struct pl08x_dma_chan *chan = NULL;
1754 struct pl08x_dma_chan *next;
1755
1756 list_for_each_entry_safe(chan,
1757 next, &dmadev->channels, chan.device_node) {
1758 list_del(&chan->chan.device_node);
1759 kfree(chan);
1760 }
1761}
1762
1763#ifdef CONFIG_DEBUG_FS
1764static const char *pl08x_state_str(enum pl08x_dma_chan_state state)
1765{
1766 switch (state) {
1767 case PL08X_CHAN_IDLE:
1768 return "idle";
1769 case PL08X_CHAN_RUNNING:
1770 return "running";
1771 case PL08X_CHAN_PAUSED:
1772 return "paused";
1773 case PL08X_CHAN_WAITING:
1774 return "waiting";
1775 default:
1776 break;
1777 }
1778 return "UNKNOWN STATE";
1779}
1780
1781static int pl08x_debugfs_show(struct seq_file *s, void *data)
1782{
1783 struct pl08x_driver_data *pl08x = s->private;
1784 struct pl08x_dma_chan *chan;
1785 struct pl08x_phy_chan *ch;
1786 unsigned long flags;
1787 int i;
1788
1789 seq_printf(s, "PL08x physical channels:\n");
1790 seq_printf(s, "CHANNEL:\tUSER:\n");
1791 seq_printf(s, "--------\t-----\n");
1792 for (i = 0; i < pl08x->vd->channels; i++) {
1793 struct pl08x_dma_chan *virt_chan;
1794
1795 ch = &pl08x->phy_chans[i];
1796
1797 spin_lock_irqsave(&ch->lock, flags);
1798 virt_chan = ch->serving;
1799
1800 seq_printf(s, "%d\t\t%s\n",
1801 ch->id, virt_chan ? virt_chan->name : "(none)");
1802
1803 spin_unlock_irqrestore(&ch->lock, flags);
1804 }
1805
1806 seq_printf(s, "\nPL08x virtual memcpy channels:\n");
1807 seq_printf(s, "CHANNEL:\tSTATE:\n");
1808 seq_printf(s, "--------\t------\n");
1809 list_for_each_entry(chan, &pl08x->memcpy.channels, chan.device_node) {
1810 seq_printf(s, "%s\t\t%s\n", chan->name,
1811 pl08x_state_str(chan->state));
1812 }
1813
1814 seq_printf(s, "\nPL08x virtual slave channels:\n");
1815 seq_printf(s, "CHANNEL:\tSTATE:\n");
1816 seq_printf(s, "--------\t------\n");
1817 list_for_each_entry(chan, &pl08x->slave.channels, chan.device_node) {
1818 seq_printf(s, "%s\t\t%s\n", chan->name,
1819 pl08x_state_str(chan->state));
1820 }
1821
1822 return 0;
1823}
1824
1825static int pl08x_debugfs_open(struct inode *inode, struct file *file)
1826{
1827 return single_open(file, pl08x_debugfs_show, inode->i_private);
1828}
1829
1830static const struct file_operations pl08x_debugfs_operations = {
1831 .open = pl08x_debugfs_open,
1832 .read = seq_read,
1833 .llseek = seq_lseek,
1834 .release = single_release,
1835};
1836
1837static void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
1838{
1839 /* Expose a simple debugfs interface to view all clocks */
1840 (void) debugfs_create_file(dev_name(&pl08x->adev->dev), S_IFREG | S_IRUGO,
1841 NULL, pl08x,
1842 &pl08x_debugfs_operations);
1843}
1844
1845#else
1846static inline void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
1847{
1848}
1849#endif
1850
1851static int pl08x_probe(struct amba_device *adev, const struct amba_id *id)
1852{
1853 struct pl08x_driver_data *pl08x;
1854 const struct vendor_data *vd = id->data;
1855 int ret = 0;
1856 int i;
1857
1858 ret = amba_request_regions(adev, NULL);
1859 if (ret)
1860 return ret;
1861
1862 /* Create the driver state holder */
1863 pl08x = kzalloc(sizeof(struct pl08x_driver_data), GFP_KERNEL);
1864 if (!pl08x) {
1865 ret = -ENOMEM;
1866 goto out_no_pl08x;
1867 }
1868
1869 /* Initialize memcpy engine */
1870 dma_cap_set(DMA_MEMCPY, pl08x->memcpy.cap_mask);
1871 pl08x->memcpy.dev = &adev->dev;
1872 pl08x->memcpy.device_alloc_chan_resources = pl08x_alloc_chan_resources;
1873 pl08x->memcpy.device_free_chan_resources = pl08x_free_chan_resources;
1874 pl08x->memcpy.device_prep_dma_memcpy = pl08x_prep_dma_memcpy;
1875 pl08x->memcpy.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
1876 pl08x->memcpy.device_tx_status = pl08x_dma_tx_status;
1877 pl08x->memcpy.device_issue_pending = pl08x_issue_pending;
1878 pl08x->memcpy.device_control = pl08x_control;
1879
1880 /* Initialize slave engine */
1881 dma_cap_set(DMA_SLAVE, pl08x->slave.cap_mask);
1882 pl08x->slave.dev = &adev->dev;
1883 pl08x->slave.device_alloc_chan_resources = pl08x_alloc_chan_resources;
1884 pl08x->slave.device_free_chan_resources = pl08x_free_chan_resources;
1885 pl08x->slave.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
1886 pl08x->slave.device_tx_status = pl08x_dma_tx_status;
1887 pl08x->slave.device_issue_pending = pl08x_issue_pending;
1888 pl08x->slave.device_prep_slave_sg = pl08x_prep_slave_sg;
1889 pl08x->slave.device_control = pl08x_control;
1890
1891 /* Get the platform data */
1892 pl08x->pd = dev_get_platdata(&adev->dev);
1893 if (!pl08x->pd) {
1894 dev_err(&adev->dev, "no platform data supplied\n");
1895 goto out_no_platdata;
1896 }
1897
1898 /* Assign useful pointers to the driver state */
1899 pl08x->adev = adev;
1900 pl08x->vd = vd;
1901
1902 /* By default, AHB1 only. If dualmaster, from platform */
1903 pl08x->lli_buses = PL08X_AHB1;
1904 pl08x->mem_buses = PL08X_AHB1;
1905 if (pl08x->vd->dualmaster) {
1906 pl08x->lli_buses = pl08x->pd->lli_buses;
1907 pl08x->mem_buses = pl08x->pd->mem_buses;
1908 }
1909
1910 /* A DMA memory pool for LLIs, align on 1-byte boundary */
1911 pl08x->pool = dma_pool_create(DRIVER_NAME, &pl08x->adev->dev,
1912 PL08X_LLI_TSFR_SIZE, PL08X_ALIGN, 0);
1913 if (!pl08x->pool) {
1914 ret = -ENOMEM;
1915 goto out_no_lli_pool;
1916 }
1917
1918 spin_lock_init(&pl08x->lock);
1919
1920 pl08x->base = ioremap(adev->res.start, resource_size(&adev->res));
1921 if (!pl08x->base) {
1922 ret = -ENOMEM;
1923 goto out_no_ioremap;
1924 }
1925
1926 /* Turn on the PL08x */
1927 pl08x_ensure_on(pl08x);
1928
1929 /* Attach the interrupt handler */
1930 writel(0x000000FF, pl08x->base + PL080_ERR_CLEAR);
1931 writel(0x000000FF, pl08x->base + PL080_TC_CLEAR);
1932
1933 ret = request_irq(adev->irq[0], pl08x_irq, IRQF_DISABLED,
1934 DRIVER_NAME, pl08x);
1935 if (ret) {
1936 dev_err(&adev->dev, "%s failed to request interrupt %d\n",
1937 __func__, adev->irq[0]);
1938 goto out_no_irq;
1939 }
1940
1941 /* Initialize physical channels */
1942 pl08x->phy_chans = kmalloc((vd->channels * sizeof(struct pl08x_phy_chan)),
1943 GFP_KERNEL);
1944 if (!pl08x->phy_chans) {
1945 dev_err(&adev->dev, "%s failed to allocate "
1946 "physical channel holders\n",
1947 __func__);
1948 goto out_no_phychans;
1949 }
1950
1951 for (i = 0; i < vd->channels; i++) {
1952 struct pl08x_phy_chan *ch = &pl08x->phy_chans[i];
1953
1954 ch->id = i;
1955 ch->base = pl08x->base + PL080_Cx_BASE(i);
1956 spin_lock_init(&ch->lock);
1957 ch->serving = NULL;
1958 ch->signal = -1;
1959 dev_info(&adev->dev,
1960 "physical channel %d is %s\n", i,
1961 pl08x_phy_channel_busy(ch) ? "BUSY" : "FREE");
1962 }
1963
1964 /* Register as many memcpy channels as there are physical channels */
1965 ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->memcpy,
1966 pl08x->vd->channels, false);
1967 if (ret <= 0) {
1968 dev_warn(&pl08x->adev->dev,
1969 "%s failed to enumerate memcpy channels - %d\n",
1970 __func__, ret);
1971 goto out_no_memcpy;
1972 }
1973 pl08x->memcpy.chancnt = ret;
1974
1975 /* Register slave channels */
1976 ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->slave,
1977 pl08x->pd->num_slave_channels,
1978 true);
1979 if (ret <= 0) {
1980 dev_warn(&pl08x->adev->dev,
1981 "%s failed to enumerate slave channels - %d\n",
1982 __func__, ret);
1983 goto out_no_slave;
1984 }
1985 pl08x->slave.chancnt = ret;
1986
1987 ret = dma_async_device_register(&pl08x->memcpy);
1988 if (ret) {
1989 dev_warn(&pl08x->adev->dev,
1990 "%s failed to register memcpy as an async device - %d\n",
1991 __func__, ret);
1992 goto out_no_memcpy_reg;
1993 }
1994
1995 ret = dma_async_device_register(&pl08x->slave);
1996 if (ret) {
1997 dev_warn(&pl08x->adev->dev,
1998 "%s failed to register slave as an async device - %d\n",
1999 __func__, ret);
2000 goto out_no_slave_reg;
2001 }
2002
2003 amba_set_drvdata(adev, pl08x);
2004 init_pl08x_debugfs(pl08x);
2005 dev_info(&pl08x->adev->dev, "DMA: PL%03x rev%u at 0x%08llx irq %d\n",
2006 amba_part(adev), amba_rev(adev),
2007 (unsigned long long)adev->res.start, adev->irq[0]);
2008 return 0;
2009
2010out_no_slave_reg:
2011 dma_async_device_unregister(&pl08x->memcpy);
2012out_no_memcpy_reg:
2013 pl08x_free_virtual_channels(&pl08x->slave);
2014out_no_slave:
2015 pl08x_free_virtual_channels(&pl08x->memcpy);
2016out_no_memcpy:
2017 kfree(pl08x->phy_chans);
2018out_no_phychans:
2019 free_irq(adev->irq[0], pl08x);
2020out_no_irq:
2021 iounmap(pl08x->base);
2022out_no_ioremap:
2023 dma_pool_destroy(pl08x->pool);
2024out_no_lli_pool:
2025out_no_platdata:
2026 kfree(pl08x);
2027out_no_pl08x:
2028 amba_release_regions(adev);
2029 return ret;
2030}
2031
2032/* PL080 has 8 channels and the PL080 have just 2 */
2033static struct vendor_data vendor_pl080 = {
2034 .channels = 8,
2035 .dualmaster = true,
2036};
2037
2038static struct vendor_data vendor_pl081 = {
2039 .channels = 2,
2040 .dualmaster = false,
2041};
2042
2043static struct amba_id pl08x_ids[] = {
2044 /* PL080 */
2045 {
2046 .id = 0x00041080,
2047 .mask = 0x000fffff,
2048 .data = &vendor_pl080,
2049 },
2050 /* PL081 */
2051 {
2052 .id = 0x00041081,
2053 .mask = 0x000fffff,
2054 .data = &vendor_pl081,
2055 },
2056 /* Nomadik 8815 PL080 variant */
2057 {
2058 .id = 0x00280880,
2059 .mask = 0x00ffffff,
2060 .data = &vendor_pl080,
2061 },
2062 { 0, 0 },
2063};
2064
2065static struct amba_driver pl08x_amba_driver = {
2066 .drv.name = DRIVER_NAME,
2067 .id_table = pl08x_ids,
2068 .probe = pl08x_probe,
2069};
2070
2071static int __init pl08x_init(void)
2072{
2073 int retval;
2074 retval = amba_driver_register(&pl08x_amba_driver);
2075 if (retval)
2076 printk(KERN_WARNING DRIVER_NAME
2077 "failed to register as an AMBA device (%d)\n",
2078 retval);
2079 return retval;
2080}
2081subsys_initcall(pl08x_init);