Linux Audio

Check our new training course

Loading...
v4.6
  1#include <linux/mm.h>
  2#include <linux/gfp.h>
  3#include <asm/pgalloc.h>
  4#include <asm/pgtable.h>
  5#include <asm/tlb.h>
  6#include <asm/fixmap.h>
  7#include <asm/mtrr.h>
  8
  9#define PGALLOC_GFP GFP_KERNEL | __GFP_NOTRACK | __GFP_REPEAT | __GFP_ZERO
 10
 11#ifdef CONFIG_HIGHPTE
 12#define PGALLOC_USER_GFP __GFP_HIGHMEM
 13#else
 14#define PGALLOC_USER_GFP 0
 15#endif
 16
 17gfp_t __userpte_alloc_gfp = PGALLOC_GFP | PGALLOC_USER_GFP;
 18
 19pte_t *pte_alloc_one_kernel(struct mm_struct *mm, unsigned long address)
 20{
 21	return (pte_t *)__get_free_page(PGALLOC_GFP);
 22}
 23
 24pgtable_t pte_alloc_one(struct mm_struct *mm, unsigned long address)
 25{
 26	struct page *pte;
 27
 28	pte = alloc_pages(__userpte_alloc_gfp, 0);
 29	if (!pte)
 30		return NULL;
 31	if (!pgtable_page_ctor(pte)) {
 32		__free_page(pte);
 33		return NULL;
 34	}
 35	return pte;
 36}
 37
 38static int __init setup_userpte(char *arg)
 39{
 40	if (!arg)
 41		return -EINVAL;
 42
 43	/*
 44	 * "userpte=nohigh" disables allocation of user pagetables in
 45	 * high memory.
 46	 */
 47	if (strcmp(arg, "nohigh") == 0)
 48		__userpte_alloc_gfp &= ~__GFP_HIGHMEM;
 49	else
 50		return -EINVAL;
 51	return 0;
 52}
 53early_param("userpte", setup_userpte);
 54
 55void ___pte_free_tlb(struct mmu_gather *tlb, struct page *pte)
 56{
 57	pgtable_page_dtor(pte);
 58	paravirt_release_pte(page_to_pfn(pte));
 59	tlb_remove_page(tlb, pte);
 60}
 61
 62#if CONFIG_PGTABLE_LEVELS > 2
 63void ___pmd_free_tlb(struct mmu_gather *tlb, pmd_t *pmd)
 64{
 65	struct page *page = virt_to_page(pmd);
 66	paravirt_release_pmd(__pa(pmd) >> PAGE_SHIFT);
 67	/*
 68	 * NOTE! For PAE, any changes to the top page-directory-pointer-table
 69	 * entries need a full cr3 reload to flush.
 70	 */
 71#ifdef CONFIG_X86_PAE
 72	tlb->need_flush_all = 1;
 73#endif
 74	pgtable_pmd_page_dtor(page);
 75	tlb_remove_page(tlb, page);
 76}
 77
 78#if CONFIG_PGTABLE_LEVELS > 3
 79void ___pud_free_tlb(struct mmu_gather *tlb, pud_t *pud)
 80{
 81	paravirt_release_pud(__pa(pud) >> PAGE_SHIFT);
 82	tlb_remove_page(tlb, virt_to_page(pud));
 83}
 84#endif	/* CONFIG_PGTABLE_LEVELS > 3 */
 85#endif	/* CONFIG_PGTABLE_LEVELS > 2 */
 86
 87static inline void pgd_list_add(pgd_t *pgd)
 88{
 89	struct page *page = virt_to_page(pgd);
 90
 91	list_add(&page->lru, &pgd_list);
 92}
 93
 94static inline void pgd_list_del(pgd_t *pgd)
 95{
 96	struct page *page = virt_to_page(pgd);
 97
 98	list_del(&page->lru);
 99}
100
101#define UNSHARED_PTRS_PER_PGD				\
102	(SHARED_KERNEL_PMD ? KERNEL_PGD_BOUNDARY : PTRS_PER_PGD)
103
104
105static void pgd_set_mm(pgd_t *pgd, struct mm_struct *mm)
106{
107	BUILD_BUG_ON(sizeof(virt_to_page(pgd)->index) < sizeof(mm));
108	virt_to_page(pgd)->index = (pgoff_t)mm;
109}
110
111struct mm_struct *pgd_page_get_mm(struct page *page)
112{
113	return (struct mm_struct *)page->index;
114}
115
116static void pgd_ctor(struct mm_struct *mm, pgd_t *pgd)
117{
118	/* If the pgd points to a shared pagetable level (either the
119	   ptes in non-PAE, or shared PMD in PAE), then just copy the
120	   references from swapper_pg_dir. */
121	if (CONFIG_PGTABLE_LEVELS == 2 ||
122	    (CONFIG_PGTABLE_LEVELS == 3 && SHARED_KERNEL_PMD) ||
123	    CONFIG_PGTABLE_LEVELS == 4) {
124		clone_pgd_range(pgd + KERNEL_PGD_BOUNDARY,
125				swapper_pg_dir + KERNEL_PGD_BOUNDARY,
126				KERNEL_PGD_PTRS);
127	}
128
129	/* list required to sync kernel mapping updates */
130	if (!SHARED_KERNEL_PMD) {
131		pgd_set_mm(pgd, mm);
132		pgd_list_add(pgd);
133	}
134}
135
136static void pgd_dtor(pgd_t *pgd)
137{
138	if (SHARED_KERNEL_PMD)
139		return;
140
141	spin_lock(&pgd_lock);
142	pgd_list_del(pgd);
143	spin_unlock(&pgd_lock);
144}
145
146/*
147 * List of all pgd's needed for non-PAE so it can invalidate entries
148 * in both cached and uncached pgd's; not needed for PAE since the
149 * kernel pmd is shared. If PAE were not to share the pmd a similar
150 * tactic would be needed. This is essentially codepath-based locking
151 * against pageattr.c; it is the unique case in which a valid change
152 * of kernel pagetables can't be lazily synchronized by vmalloc faults.
153 * vmalloc faults work because attached pagetables are never freed.
154 * -- nyc
155 */
156
157#ifdef CONFIG_X86_PAE
158/*
159 * In PAE mode, we need to do a cr3 reload (=tlb flush) when
160 * updating the top-level pagetable entries to guarantee the
161 * processor notices the update.  Since this is expensive, and
162 * all 4 top-level entries are used almost immediately in a
163 * new process's life, we just pre-populate them here.
164 *
165 * Also, if we're in a paravirt environment where the kernel pmd is
166 * not shared between pagetables (!SHARED_KERNEL_PMDS), we allocate
167 * and initialize the kernel pmds here.
168 */
169#define PREALLOCATED_PMDS	UNSHARED_PTRS_PER_PGD
170
171void pud_populate(struct mm_struct *mm, pud_t *pudp, pmd_t *pmd)
172{
173	paravirt_alloc_pmd(mm, __pa(pmd) >> PAGE_SHIFT);
174
175	/* Note: almost everything apart from _PAGE_PRESENT is
176	   reserved at the pmd (PDPT) level. */
177	set_pud(pudp, __pud(__pa(pmd) | _PAGE_PRESENT));
178
179	/*
180	 * According to Intel App note "TLBs, Paging-Structure Caches,
181	 * and Their Invalidation", April 2007, document 317080-001,
182	 * section 8.1: in PAE mode we explicitly have to flush the
183	 * TLB via cr3 if the top-level pgd is changed...
184	 */
185	flush_tlb_mm(mm);
186}
187#else  /* !CONFIG_X86_PAE */
188
189/* No need to prepopulate any pagetable entries in non-PAE modes. */
190#define PREALLOCATED_PMDS	0
191
192#endif	/* CONFIG_X86_PAE */
193
194static void free_pmds(struct mm_struct *mm, pmd_t *pmds[])
195{
196	int i;
197
198	for(i = 0; i < PREALLOCATED_PMDS; i++)
199		if (pmds[i]) {
200			pgtable_pmd_page_dtor(virt_to_page(pmds[i]));
201			free_page((unsigned long)pmds[i]);
202			mm_dec_nr_pmds(mm);
203		}
204}
205
206static int preallocate_pmds(struct mm_struct *mm, pmd_t *pmds[])
207{
208	int i;
209	bool failed = false;
210
211	for(i = 0; i < PREALLOCATED_PMDS; i++) {
212		pmd_t *pmd = (pmd_t *)__get_free_page(PGALLOC_GFP);
213		if (!pmd)
214			failed = true;
215		if (pmd && !pgtable_pmd_page_ctor(virt_to_page(pmd))) {
216			free_page((unsigned long)pmd);
217			pmd = NULL;
218			failed = true;
219		}
220		if (pmd)
221			mm_inc_nr_pmds(mm);
222		pmds[i] = pmd;
223	}
224
225	if (failed) {
226		free_pmds(mm, pmds);
227		return -ENOMEM;
228	}
229
230	return 0;
231}
232
233/*
234 * Mop up any pmd pages which may still be attached to the pgd.
235 * Normally they will be freed by munmap/exit_mmap, but any pmd we
236 * preallocate which never got a corresponding vma will need to be
237 * freed manually.
238 */
239static void pgd_mop_up_pmds(struct mm_struct *mm, pgd_t *pgdp)
240{
241	int i;
242
243	for(i = 0; i < PREALLOCATED_PMDS; i++) {
244		pgd_t pgd = pgdp[i];
245
246		if (pgd_val(pgd) != 0) {
247			pmd_t *pmd = (pmd_t *)pgd_page_vaddr(pgd);
248
249			pgdp[i] = native_make_pgd(0);
250
251			paravirt_release_pmd(pgd_val(pgd) >> PAGE_SHIFT);
252			pmd_free(mm, pmd);
253			mm_dec_nr_pmds(mm);
254		}
255	}
256}
257
258static void pgd_prepopulate_pmd(struct mm_struct *mm, pgd_t *pgd, pmd_t *pmds[])
259{
260	pud_t *pud;
 
261	int i;
262
263	if (PREALLOCATED_PMDS == 0) /* Work around gcc-3.4.x bug */
264		return;
265
266	pud = pud_offset(pgd, 0);
267
268	for (i = 0; i < PREALLOCATED_PMDS; i++, pud++) {
 
269		pmd_t *pmd = pmds[i];
270
271		if (i >= KERNEL_PGD_BOUNDARY)
272			memcpy(pmd, (pmd_t *)pgd_page_vaddr(swapper_pg_dir[i]),
273			       sizeof(pmd_t) * PTRS_PER_PMD);
274
275		pud_populate(mm, pud, pmd);
276	}
277}
278
279/*
280 * Xen paravirt assumes pgd table should be in one page. 64 bit kernel also
281 * assumes that pgd should be in one page.
282 *
283 * But kernel with PAE paging that is not running as a Xen domain
284 * only needs to allocate 32 bytes for pgd instead of one page.
285 */
286#ifdef CONFIG_X86_PAE
287
288#include <linux/slab.h>
289
290#define PGD_SIZE	(PTRS_PER_PGD * sizeof(pgd_t))
291#define PGD_ALIGN	32
292
293static struct kmem_cache *pgd_cache;
294
295static int __init pgd_cache_init(void)
296{
297	/*
298	 * When PAE kernel is running as a Xen domain, it does not use
299	 * shared kernel pmd. And this requires a whole page for pgd.
300	 */
301	if (!SHARED_KERNEL_PMD)
302		return 0;
303
304	/*
305	 * when PAE kernel is not running as a Xen domain, it uses
306	 * shared kernel pmd. Shared kernel pmd does not require a whole
307	 * page for pgd. We are able to just allocate a 32-byte for pgd.
308	 * During boot time, we create a 32-byte slab for pgd table allocation.
309	 */
310	pgd_cache = kmem_cache_create("pgd_cache", PGD_SIZE, PGD_ALIGN,
311				      SLAB_PANIC, NULL);
312	if (!pgd_cache)
313		return -ENOMEM;
314
315	return 0;
316}
317core_initcall(pgd_cache_init);
318
319static inline pgd_t *_pgd_alloc(void)
320{
321	/*
322	 * If no SHARED_KERNEL_PMD, PAE kernel is running as a Xen domain.
323	 * We allocate one page for pgd.
324	 */
325	if (!SHARED_KERNEL_PMD)
326		return (pgd_t *)__get_free_page(PGALLOC_GFP);
327
328	/*
329	 * Now PAE kernel is not running as a Xen domain. We can allocate
330	 * a 32-byte slab for pgd to save memory space.
331	 */
332	return kmem_cache_alloc(pgd_cache, PGALLOC_GFP);
333}
334
335static inline void _pgd_free(pgd_t *pgd)
336{
337	if (!SHARED_KERNEL_PMD)
338		free_page((unsigned long)pgd);
339	else
340		kmem_cache_free(pgd_cache, pgd);
341}
342#else
343static inline pgd_t *_pgd_alloc(void)
344{
345	return (pgd_t *)__get_free_page(PGALLOC_GFP);
346}
347
348static inline void _pgd_free(pgd_t *pgd)
349{
350	free_page((unsigned long)pgd);
351}
352#endif /* CONFIG_X86_PAE */
353
354pgd_t *pgd_alloc(struct mm_struct *mm)
355{
356	pgd_t *pgd;
357	pmd_t *pmds[PREALLOCATED_PMDS];
358
359	pgd = _pgd_alloc();
360
361	if (pgd == NULL)
362		goto out;
363
364	mm->pgd = pgd;
365
366	if (preallocate_pmds(mm, pmds) != 0)
367		goto out_free_pgd;
368
369	if (paravirt_pgd_alloc(mm) != 0)
370		goto out_free_pmds;
371
372	/*
373	 * Make sure that pre-populating the pmds is atomic with
374	 * respect to anything walking the pgd_list, so that they
375	 * never see a partially populated pgd.
376	 */
377	spin_lock(&pgd_lock);
378
379	pgd_ctor(mm, pgd);
380	pgd_prepopulate_pmd(mm, pgd, pmds);
381
382	spin_unlock(&pgd_lock);
383
384	return pgd;
385
386out_free_pmds:
387	free_pmds(mm, pmds);
388out_free_pgd:
389	_pgd_free(pgd);
390out:
391	return NULL;
392}
393
394void pgd_free(struct mm_struct *mm, pgd_t *pgd)
395{
396	pgd_mop_up_pmds(mm, pgd);
397	pgd_dtor(pgd);
398	paravirt_pgd_free(mm, pgd);
399	_pgd_free(pgd);
400}
401
402/*
403 * Used to set accessed or dirty bits in the page table entries
404 * on other architectures. On x86, the accessed and dirty bits
405 * are tracked by hardware. However, do_wp_page calls this function
406 * to also make the pte writeable at the same time the dirty bit is
407 * set. In that case we do actually need to write the PTE.
408 */
409int ptep_set_access_flags(struct vm_area_struct *vma,
410			  unsigned long address, pte_t *ptep,
411			  pte_t entry, int dirty)
412{
413	int changed = !pte_same(*ptep, entry);
414
415	if (changed && dirty) {
416		*ptep = entry;
417		pte_update(vma->vm_mm, address, ptep);
 
418	}
419
420	return changed;
421}
422
423#ifdef CONFIG_TRANSPARENT_HUGEPAGE
424int pmdp_set_access_flags(struct vm_area_struct *vma,
425			  unsigned long address, pmd_t *pmdp,
426			  pmd_t entry, int dirty)
427{
428	int changed = !pmd_same(*pmdp, entry);
429
430	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
431
432	if (changed && dirty) {
433		*pmdp = entry;
434		/*
435		 * We had a write-protection fault here and changed the pmd
436		 * to to more permissive. No need to flush the TLB for that,
437		 * #PF is architecturally guaranteed to do that and in the
438		 * worst-case we'll generate a spurious fault.
439		 */
440	}
441
442	return changed;
443}
444#endif
445
446int ptep_test_and_clear_young(struct vm_area_struct *vma,
447			      unsigned long addr, pte_t *ptep)
448{
449	int ret = 0;
450
451	if (pte_young(*ptep))
452		ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
453					 (unsigned long *) &ptep->pte);
454
455	if (ret)
456		pte_update(vma->vm_mm, addr, ptep);
457
458	return ret;
459}
460
461#ifdef CONFIG_TRANSPARENT_HUGEPAGE
462int pmdp_test_and_clear_young(struct vm_area_struct *vma,
463			      unsigned long addr, pmd_t *pmdp)
464{
465	int ret = 0;
466
467	if (pmd_young(*pmdp))
468		ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
469					 (unsigned long *)pmdp);
470
 
 
 
471	return ret;
472}
473#endif
474
475int ptep_clear_flush_young(struct vm_area_struct *vma,
476			   unsigned long address, pte_t *ptep)
477{
478	/*
479	 * On x86 CPUs, clearing the accessed bit without a TLB flush
480	 * doesn't cause data corruption. [ It could cause incorrect
481	 * page aging and the (mistaken) reclaim of hot pages, but the
482	 * chance of that should be relatively low. ]
483	 *
484	 * So as a performance optimization don't flush the TLB when
485	 * clearing the accessed bit, it will eventually be flushed by
486	 * a context switch or a VM operation anyway. [ In the rare
487	 * event of it not getting flushed for a long time the delay
488	 * shouldn't really matter because there's no real memory
489	 * pressure for swapout to react to. ]
490	 */
491	return ptep_test_and_clear_young(vma, address, ptep);
492}
493
494#ifdef CONFIG_TRANSPARENT_HUGEPAGE
495int pmdp_clear_flush_young(struct vm_area_struct *vma,
496			   unsigned long address, pmd_t *pmdp)
497{
498	int young;
499
500	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
501
502	young = pmdp_test_and_clear_young(vma, address, pmdp);
503	if (young)
504		flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
505
506	return young;
507}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
508#endif
509
510/**
511 * reserve_top_address - reserves a hole in the top of kernel address space
512 * @reserve - size of hole to reserve
513 *
514 * Can be used to relocate the fixmap area and poke a hole in the top
515 * of kernel address space to make room for a hypervisor.
516 */
517void __init reserve_top_address(unsigned long reserve)
518{
519#ifdef CONFIG_X86_32
520	BUG_ON(fixmaps_set > 0);
521	__FIXADDR_TOP = round_down(-reserve, 1 << PMD_SHIFT) - PAGE_SIZE;
522	printk(KERN_INFO "Reserving virtual address space above 0x%08lx (rounded to 0x%08lx)\n",
523	       -reserve, __FIXADDR_TOP + PAGE_SIZE);
524#endif
525}
526
527int fixmaps_set;
528
529void __native_set_fixmap(enum fixed_addresses idx, pte_t pte)
530{
531	unsigned long address = __fix_to_virt(idx);
532
533	if (idx >= __end_of_fixed_addresses) {
534		BUG();
535		return;
536	}
537	set_pte_vaddr(address, pte);
538	fixmaps_set++;
539}
540
541void native_set_fixmap(enum fixed_addresses idx, phys_addr_t phys,
542		       pgprot_t flags)
543{
544	__native_set_fixmap(idx, pfn_pte(phys >> PAGE_SHIFT, flags));
545}
546
547#ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
548/**
549 * pud_set_huge - setup kernel PUD mapping
550 *
551 * MTRRs can override PAT memory types with 4KiB granularity. Therefore, this
552 * function sets up a huge page only if any of the following conditions are met:
553 *
554 * - MTRRs are disabled, or
555 *
556 * - MTRRs are enabled and the range is completely covered by a single MTRR, or
557 *
558 * - MTRRs are enabled and the corresponding MTRR memory type is WB, which
559 *   has no effect on the requested PAT memory type.
560 *
561 * Callers should try to decrease page size (1GB -> 2MB -> 4K) if the bigger
562 * page mapping attempt fails.
563 *
564 * Returns 1 on success and 0 on failure.
565 */
566int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot)
567{
568	u8 mtrr, uniform;
569
570	mtrr = mtrr_type_lookup(addr, addr + PUD_SIZE, &uniform);
571	if ((mtrr != MTRR_TYPE_INVALID) && (!uniform) &&
572	    (mtrr != MTRR_TYPE_WRBACK))
573		return 0;
574
575	prot = pgprot_4k_2_large(prot);
576
577	set_pte((pte_t *)pud, pfn_pte(
578		(u64)addr >> PAGE_SHIFT,
579		__pgprot(pgprot_val(prot) | _PAGE_PSE)));
580
581	return 1;
582}
583
584/**
585 * pmd_set_huge - setup kernel PMD mapping
586 *
587 * See text over pud_set_huge() above.
588 *
589 * Returns 1 on success and 0 on failure.
590 */
591int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot)
592{
593	u8 mtrr, uniform;
594
595	mtrr = mtrr_type_lookup(addr, addr + PMD_SIZE, &uniform);
596	if ((mtrr != MTRR_TYPE_INVALID) && (!uniform) &&
597	    (mtrr != MTRR_TYPE_WRBACK)) {
598		pr_warn_once("%s: Cannot satisfy [mem %#010llx-%#010llx] with a huge-page mapping due to MTRR override.\n",
599			     __func__, addr, addr + PMD_SIZE);
600		return 0;
601	}
602
603	prot = pgprot_4k_2_large(prot);
604
605	set_pte((pte_t *)pmd, pfn_pte(
606		(u64)addr >> PAGE_SHIFT,
607		__pgprot(pgprot_val(prot) | _PAGE_PSE)));
608
609	return 1;
610}
611
612/**
613 * pud_clear_huge - clear kernel PUD mapping when it is set
614 *
615 * Returns 1 on success and 0 on failure (no PUD map is found).
616 */
617int pud_clear_huge(pud_t *pud)
618{
619	if (pud_large(*pud)) {
620		pud_clear(pud);
621		return 1;
622	}
623
624	return 0;
625}
626
627/**
628 * pmd_clear_huge - clear kernel PMD mapping when it is set
629 *
630 * Returns 1 on success and 0 on failure (no PMD map is found).
631 */
632int pmd_clear_huge(pmd_t *pmd)
633{
634	if (pmd_large(*pmd)) {
635		pmd_clear(pmd);
636		return 1;
637	}
638
639	return 0;
640}
641#endif	/* CONFIG_HAVE_ARCH_HUGE_VMAP */
v3.1
  1#include <linux/mm.h>
  2#include <linux/gfp.h>
  3#include <asm/pgalloc.h>
  4#include <asm/pgtable.h>
  5#include <asm/tlb.h>
  6#include <asm/fixmap.h>
 
  7
  8#define PGALLOC_GFP GFP_KERNEL | __GFP_NOTRACK | __GFP_REPEAT | __GFP_ZERO
  9
 10#ifdef CONFIG_HIGHPTE
 11#define PGALLOC_USER_GFP __GFP_HIGHMEM
 12#else
 13#define PGALLOC_USER_GFP 0
 14#endif
 15
 16gfp_t __userpte_alloc_gfp = PGALLOC_GFP | PGALLOC_USER_GFP;
 17
 18pte_t *pte_alloc_one_kernel(struct mm_struct *mm, unsigned long address)
 19{
 20	return (pte_t *)__get_free_page(PGALLOC_GFP);
 21}
 22
 23pgtable_t pte_alloc_one(struct mm_struct *mm, unsigned long address)
 24{
 25	struct page *pte;
 26
 27	pte = alloc_pages(__userpte_alloc_gfp, 0);
 28	if (pte)
 29		pgtable_page_ctor(pte);
 
 
 
 
 30	return pte;
 31}
 32
 33static int __init setup_userpte(char *arg)
 34{
 35	if (!arg)
 36		return -EINVAL;
 37
 38	/*
 39	 * "userpte=nohigh" disables allocation of user pagetables in
 40	 * high memory.
 41	 */
 42	if (strcmp(arg, "nohigh") == 0)
 43		__userpte_alloc_gfp &= ~__GFP_HIGHMEM;
 44	else
 45		return -EINVAL;
 46	return 0;
 47}
 48early_param("userpte", setup_userpte);
 49
 50void ___pte_free_tlb(struct mmu_gather *tlb, struct page *pte)
 51{
 52	pgtable_page_dtor(pte);
 53	paravirt_release_pte(page_to_pfn(pte));
 54	tlb_remove_page(tlb, pte);
 55}
 56
 57#if PAGETABLE_LEVELS > 2
 58void ___pmd_free_tlb(struct mmu_gather *tlb, pmd_t *pmd)
 59{
 
 60	paravirt_release_pmd(__pa(pmd) >> PAGE_SHIFT);
 61	tlb_remove_page(tlb, virt_to_page(pmd));
 
 
 
 
 
 
 
 
 62}
 63
 64#if PAGETABLE_LEVELS > 3
 65void ___pud_free_tlb(struct mmu_gather *tlb, pud_t *pud)
 66{
 67	paravirt_release_pud(__pa(pud) >> PAGE_SHIFT);
 68	tlb_remove_page(tlb, virt_to_page(pud));
 69}
 70#endif	/* PAGETABLE_LEVELS > 3 */
 71#endif	/* PAGETABLE_LEVELS > 2 */
 72
 73static inline void pgd_list_add(pgd_t *pgd)
 74{
 75	struct page *page = virt_to_page(pgd);
 76
 77	list_add(&page->lru, &pgd_list);
 78}
 79
 80static inline void pgd_list_del(pgd_t *pgd)
 81{
 82	struct page *page = virt_to_page(pgd);
 83
 84	list_del(&page->lru);
 85}
 86
 87#define UNSHARED_PTRS_PER_PGD				\
 88	(SHARED_KERNEL_PMD ? KERNEL_PGD_BOUNDARY : PTRS_PER_PGD)
 89
 90
 91static void pgd_set_mm(pgd_t *pgd, struct mm_struct *mm)
 92{
 93	BUILD_BUG_ON(sizeof(virt_to_page(pgd)->index) < sizeof(mm));
 94	virt_to_page(pgd)->index = (pgoff_t)mm;
 95}
 96
 97struct mm_struct *pgd_page_get_mm(struct page *page)
 98{
 99	return (struct mm_struct *)page->index;
100}
101
102static void pgd_ctor(struct mm_struct *mm, pgd_t *pgd)
103{
104	/* If the pgd points to a shared pagetable level (either the
105	   ptes in non-PAE, or shared PMD in PAE), then just copy the
106	   references from swapper_pg_dir. */
107	if (PAGETABLE_LEVELS == 2 ||
108	    (PAGETABLE_LEVELS == 3 && SHARED_KERNEL_PMD) ||
109	    PAGETABLE_LEVELS == 4) {
110		clone_pgd_range(pgd + KERNEL_PGD_BOUNDARY,
111				swapper_pg_dir + KERNEL_PGD_BOUNDARY,
112				KERNEL_PGD_PTRS);
113	}
114
115	/* list required to sync kernel mapping updates */
116	if (!SHARED_KERNEL_PMD) {
117		pgd_set_mm(pgd, mm);
118		pgd_list_add(pgd);
119	}
120}
121
122static void pgd_dtor(pgd_t *pgd)
123{
124	if (SHARED_KERNEL_PMD)
125		return;
126
127	spin_lock(&pgd_lock);
128	pgd_list_del(pgd);
129	spin_unlock(&pgd_lock);
130}
131
132/*
133 * List of all pgd's needed for non-PAE so it can invalidate entries
134 * in both cached and uncached pgd's; not needed for PAE since the
135 * kernel pmd is shared. If PAE were not to share the pmd a similar
136 * tactic would be needed. This is essentially codepath-based locking
137 * against pageattr.c; it is the unique case in which a valid change
138 * of kernel pagetables can't be lazily synchronized by vmalloc faults.
139 * vmalloc faults work because attached pagetables are never freed.
140 * -- wli
141 */
142
143#ifdef CONFIG_X86_PAE
144/*
145 * In PAE mode, we need to do a cr3 reload (=tlb flush) when
146 * updating the top-level pagetable entries to guarantee the
147 * processor notices the update.  Since this is expensive, and
148 * all 4 top-level entries are used almost immediately in a
149 * new process's life, we just pre-populate them here.
150 *
151 * Also, if we're in a paravirt environment where the kernel pmd is
152 * not shared between pagetables (!SHARED_KERNEL_PMDS), we allocate
153 * and initialize the kernel pmds here.
154 */
155#define PREALLOCATED_PMDS	UNSHARED_PTRS_PER_PGD
156
157void pud_populate(struct mm_struct *mm, pud_t *pudp, pmd_t *pmd)
158{
159	paravirt_alloc_pmd(mm, __pa(pmd) >> PAGE_SHIFT);
160
161	/* Note: almost everything apart from _PAGE_PRESENT is
162	   reserved at the pmd (PDPT) level. */
163	set_pud(pudp, __pud(__pa(pmd) | _PAGE_PRESENT));
164
165	/*
166	 * According to Intel App note "TLBs, Paging-Structure Caches,
167	 * and Their Invalidation", April 2007, document 317080-001,
168	 * section 8.1: in PAE mode we explicitly have to flush the
169	 * TLB via cr3 if the top-level pgd is changed...
170	 */
171	flush_tlb_mm(mm);
172}
173#else  /* !CONFIG_X86_PAE */
174
175/* No need to prepopulate any pagetable entries in non-PAE modes. */
176#define PREALLOCATED_PMDS	0
177
178#endif	/* CONFIG_X86_PAE */
179
180static void free_pmds(pmd_t *pmds[])
181{
182	int i;
183
184	for(i = 0; i < PREALLOCATED_PMDS; i++)
185		if (pmds[i])
 
186			free_page((unsigned long)pmds[i]);
 
 
187}
188
189static int preallocate_pmds(pmd_t *pmds[])
190{
191	int i;
192	bool failed = false;
193
194	for(i = 0; i < PREALLOCATED_PMDS; i++) {
195		pmd_t *pmd = (pmd_t *)__get_free_page(PGALLOC_GFP);
196		if (pmd == NULL)
 
 
 
 
197			failed = true;
 
 
 
198		pmds[i] = pmd;
199	}
200
201	if (failed) {
202		free_pmds(pmds);
203		return -ENOMEM;
204	}
205
206	return 0;
207}
208
209/*
210 * Mop up any pmd pages which may still be attached to the pgd.
211 * Normally they will be freed by munmap/exit_mmap, but any pmd we
212 * preallocate which never got a corresponding vma will need to be
213 * freed manually.
214 */
215static void pgd_mop_up_pmds(struct mm_struct *mm, pgd_t *pgdp)
216{
217	int i;
218
219	for(i = 0; i < PREALLOCATED_PMDS; i++) {
220		pgd_t pgd = pgdp[i];
221
222		if (pgd_val(pgd) != 0) {
223			pmd_t *pmd = (pmd_t *)pgd_page_vaddr(pgd);
224
225			pgdp[i] = native_make_pgd(0);
226
227			paravirt_release_pmd(pgd_val(pgd) >> PAGE_SHIFT);
228			pmd_free(mm, pmd);
 
229		}
230	}
231}
232
233static void pgd_prepopulate_pmd(struct mm_struct *mm, pgd_t *pgd, pmd_t *pmds[])
234{
235	pud_t *pud;
236	unsigned long addr;
237	int i;
238
239	if (PREALLOCATED_PMDS == 0) /* Work around gcc-3.4.x bug */
240		return;
241
242	pud = pud_offset(pgd, 0);
243
244 	for (addr = i = 0; i < PREALLOCATED_PMDS;
245	     i++, pud++, addr += PUD_SIZE) {
246		pmd_t *pmd = pmds[i];
247
248		if (i >= KERNEL_PGD_BOUNDARY)
249			memcpy(pmd, (pmd_t *)pgd_page_vaddr(swapper_pg_dir[i]),
250			       sizeof(pmd_t) * PTRS_PER_PMD);
251
252		pud_populate(mm, pud, pmd);
253	}
254}
255
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
256pgd_t *pgd_alloc(struct mm_struct *mm)
257{
258	pgd_t *pgd;
259	pmd_t *pmds[PREALLOCATED_PMDS];
260
261	pgd = (pgd_t *)__get_free_page(PGALLOC_GFP);
262
263	if (pgd == NULL)
264		goto out;
265
266	mm->pgd = pgd;
267
268	if (preallocate_pmds(pmds) != 0)
269		goto out_free_pgd;
270
271	if (paravirt_pgd_alloc(mm) != 0)
272		goto out_free_pmds;
273
274	/*
275	 * Make sure that pre-populating the pmds is atomic with
276	 * respect to anything walking the pgd_list, so that they
277	 * never see a partially populated pgd.
278	 */
279	spin_lock(&pgd_lock);
280
281	pgd_ctor(mm, pgd);
282	pgd_prepopulate_pmd(mm, pgd, pmds);
283
284	spin_unlock(&pgd_lock);
285
286	return pgd;
287
288out_free_pmds:
289	free_pmds(pmds);
290out_free_pgd:
291	free_page((unsigned long)pgd);
292out:
293	return NULL;
294}
295
296void pgd_free(struct mm_struct *mm, pgd_t *pgd)
297{
298	pgd_mop_up_pmds(mm, pgd);
299	pgd_dtor(pgd);
300	paravirt_pgd_free(mm, pgd);
301	free_page((unsigned long)pgd);
302}
303
 
 
 
 
 
 
 
304int ptep_set_access_flags(struct vm_area_struct *vma,
305			  unsigned long address, pte_t *ptep,
306			  pte_t entry, int dirty)
307{
308	int changed = !pte_same(*ptep, entry);
309
310	if (changed && dirty) {
311		*ptep = entry;
312		pte_update_defer(vma->vm_mm, address, ptep);
313		flush_tlb_page(vma, address);
314	}
315
316	return changed;
317}
318
319#ifdef CONFIG_TRANSPARENT_HUGEPAGE
320int pmdp_set_access_flags(struct vm_area_struct *vma,
321			  unsigned long address, pmd_t *pmdp,
322			  pmd_t entry, int dirty)
323{
324	int changed = !pmd_same(*pmdp, entry);
325
326	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
327
328	if (changed && dirty) {
329		*pmdp = entry;
330		pmd_update_defer(vma->vm_mm, address, pmdp);
331		flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
 
 
 
 
332	}
333
334	return changed;
335}
336#endif
337
338int ptep_test_and_clear_young(struct vm_area_struct *vma,
339			      unsigned long addr, pte_t *ptep)
340{
341	int ret = 0;
342
343	if (pte_young(*ptep))
344		ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
345					 (unsigned long *) &ptep->pte);
346
347	if (ret)
348		pte_update(vma->vm_mm, addr, ptep);
349
350	return ret;
351}
352
353#ifdef CONFIG_TRANSPARENT_HUGEPAGE
354int pmdp_test_and_clear_young(struct vm_area_struct *vma,
355			      unsigned long addr, pmd_t *pmdp)
356{
357	int ret = 0;
358
359	if (pmd_young(*pmdp))
360		ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
361					 (unsigned long *)pmdp);
362
363	if (ret)
364		pmd_update(vma->vm_mm, addr, pmdp);
365
366	return ret;
367}
368#endif
369
370int ptep_clear_flush_young(struct vm_area_struct *vma,
371			   unsigned long address, pte_t *ptep)
372{
373	int young;
374
375	young = ptep_test_and_clear_young(vma, address, ptep);
376	if (young)
377		flush_tlb_page(vma, address);
378
379	return young;
 
 
 
 
 
 
 
380}
381
382#ifdef CONFIG_TRANSPARENT_HUGEPAGE
383int pmdp_clear_flush_young(struct vm_area_struct *vma,
384			   unsigned long address, pmd_t *pmdp)
385{
386	int young;
387
388	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
389
390	young = pmdp_test_and_clear_young(vma, address, pmdp);
391	if (young)
392		flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
393
394	return young;
395}
396
397void pmdp_splitting_flush(struct vm_area_struct *vma,
398			  unsigned long address, pmd_t *pmdp)
399{
400	int set;
401	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
402	set = !test_and_set_bit(_PAGE_BIT_SPLITTING,
403				(unsigned long *)pmdp);
404	if (set) {
405		pmd_update(vma->vm_mm, address, pmdp);
406		/* need tlb flush only to serialize against gup-fast */
407		flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
408	}
409}
410#endif
411
412/**
413 * reserve_top_address - reserves a hole in the top of kernel address space
414 * @reserve - size of hole to reserve
415 *
416 * Can be used to relocate the fixmap area and poke a hole in the top
417 * of kernel address space to make room for a hypervisor.
418 */
419void __init reserve_top_address(unsigned long reserve)
420{
421#ifdef CONFIG_X86_32
422	BUG_ON(fixmaps_set > 0);
423	printk(KERN_INFO "Reserving virtual address space above 0x%08x\n",
424	       (int)-reserve);
425	__FIXADDR_TOP = -reserve - PAGE_SIZE;
426#endif
427}
428
429int fixmaps_set;
430
431void __native_set_fixmap(enum fixed_addresses idx, pte_t pte)
432{
433	unsigned long address = __fix_to_virt(idx);
434
435	if (idx >= __end_of_fixed_addresses) {
436		BUG();
437		return;
438	}
439	set_pte_vaddr(address, pte);
440	fixmaps_set++;
441}
442
443void native_set_fixmap(enum fixed_addresses idx, phys_addr_t phys,
444		       pgprot_t flags)
445{
446	__native_set_fixmap(idx, pfn_pte(phys >> PAGE_SHIFT, flags));
447}