Linux Audio

Check our new training course

Loading...
v4.6
   1/*
   2 *  linux/arch/arm/vfp/vfpsingle.c
   3 *
   4 * This code is derived in part from John R. Housers softfloat library, which
   5 * carries the following notice:
   6 *
   7 * ===========================================================================
   8 * This C source file is part of the SoftFloat IEC/IEEE Floating-point
   9 * Arithmetic Package, Release 2.
  10 *
  11 * Written by John R. Hauser.  This work was made possible in part by the
  12 * International Computer Science Institute, located at Suite 600, 1947 Center
  13 * Street, Berkeley, California 94704.  Funding was partially provided by the
  14 * National Science Foundation under grant MIP-9311980.  The original version
  15 * of this code was written as part of a project to build a fixed-point vector
  16 * processor in collaboration with the University of California at Berkeley,
  17 * overseen by Profs. Nelson Morgan and John Wawrzynek.  More information
  18 * is available through the web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
  19 * arithmetic/softfloat.html'.
  20 *
  21 * THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE.  Although reasonable effort
  22 * has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
  23 * TIMES RESULT IN INCORRECT BEHAVIOR.  USE OF THIS SOFTWARE IS RESTRICTED TO
  24 * PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
  25 * AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
  26 *
  27 * Derivative works are acceptable, even for commercial purposes, so long as
  28 * (1) they include prominent notice that the work is derivative, and (2) they
  29 * include prominent notice akin to these three paragraphs for those parts of
  30 * this code that are retained.
  31 * ===========================================================================
  32 */
  33#include <linux/kernel.h>
  34#include <linux/bitops.h>
  35
  36#include <asm/div64.h>
  37#include <asm/vfp.h>
  38
  39#include "vfpinstr.h"
  40#include "vfp.h"
  41
  42static struct vfp_single vfp_single_default_qnan = {
  43	.exponent	= 255,
  44	.sign		= 0,
  45	.significand	= VFP_SINGLE_SIGNIFICAND_QNAN,
  46};
  47
  48static void vfp_single_dump(const char *str, struct vfp_single *s)
  49{
  50	pr_debug("VFP: %s: sign=%d exponent=%d significand=%08x\n",
  51		 str, s->sign != 0, s->exponent, s->significand);
  52}
  53
  54static void vfp_single_normalise_denormal(struct vfp_single *vs)
  55{
  56	int bits = 31 - fls(vs->significand);
  57
  58	vfp_single_dump("normalise_denormal: in", vs);
  59
  60	if (bits) {
  61		vs->exponent -= bits - 1;
  62		vs->significand <<= bits;
  63	}
  64
  65	vfp_single_dump("normalise_denormal: out", vs);
  66}
  67
  68#ifndef DEBUG
  69#define vfp_single_normaliseround(sd,vsd,fpscr,except,func) __vfp_single_normaliseround(sd,vsd,fpscr,except)
  70u32 __vfp_single_normaliseround(int sd, struct vfp_single *vs, u32 fpscr, u32 exceptions)
  71#else
  72u32 vfp_single_normaliseround(int sd, struct vfp_single *vs, u32 fpscr, u32 exceptions, const char *func)
  73#endif
  74{
  75	u32 significand, incr, rmode;
  76	int exponent, shift, underflow;
  77
  78	vfp_single_dump("pack: in", vs);
  79
  80	/*
  81	 * Infinities and NaNs are a special case.
  82	 */
  83	if (vs->exponent == 255 && (vs->significand == 0 || exceptions))
  84		goto pack;
  85
  86	/*
  87	 * Special-case zero.
  88	 */
  89	if (vs->significand == 0) {
  90		vs->exponent = 0;
  91		goto pack;
  92	}
  93
  94	exponent = vs->exponent;
  95	significand = vs->significand;
  96
  97	/*
  98	 * Normalise first.  Note that we shift the significand up to
  99	 * bit 31, so we have VFP_SINGLE_LOW_BITS + 1 below the least
 100	 * significant bit.
 101	 */
 102	shift = 32 - fls(significand);
 103	if (shift < 32 && shift) {
 104		exponent -= shift;
 105		significand <<= shift;
 106	}
 107
 108#ifdef DEBUG
 109	vs->exponent = exponent;
 110	vs->significand = significand;
 111	vfp_single_dump("pack: normalised", vs);
 112#endif
 113
 114	/*
 115	 * Tiny number?
 116	 */
 117	underflow = exponent < 0;
 118	if (underflow) {
 119		significand = vfp_shiftright32jamming(significand, -exponent);
 120		exponent = 0;
 121#ifdef DEBUG
 122		vs->exponent = exponent;
 123		vs->significand = significand;
 124		vfp_single_dump("pack: tiny number", vs);
 125#endif
 126		if (!(significand & ((1 << (VFP_SINGLE_LOW_BITS + 1)) - 1)))
 127			underflow = 0;
 128	}
 129
 130	/*
 131	 * Select rounding increment.
 132	 */
 133	incr = 0;
 134	rmode = fpscr & FPSCR_RMODE_MASK;
 135
 136	if (rmode == FPSCR_ROUND_NEAREST) {
 137		incr = 1 << VFP_SINGLE_LOW_BITS;
 138		if ((significand & (1 << (VFP_SINGLE_LOW_BITS + 1))) == 0)
 139			incr -= 1;
 140	} else if (rmode == FPSCR_ROUND_TOZERO) {
 141		incr = 0;
 142	} else if ((rmode == FPSCR_ROUND_PLUSINF) ^ (vs->sign != 0))
 143		incr = (1 << (VFP_SINGLE_LOW_BITS + 1)) - 1;
 144
 145	pr_debug("VFP: rounding increment = 0x%08x\n", incr);
 146
 147	/*
 148	 * Is our rounding going to overflow?
 149	 */
 150	if ((significand + incr) < significand) {
 151		exponent += 1;
 152		significand = (significand >> 1) | (significand & 1);
 153		incr >>= 1;
 154#ifdef DEBUG
 155		vs->exponent = exponent;
 156		vs->significand = significand;
 157		vfp_single_dump("pack: overflow", vs);
 158#endif
 159	}
 160
 161	/*
 162	 * If any of the low bits (which will be shifted out of the
 163	 * number) are non-zero, the result is inexact.
 164	 */
 165	if (significand & ((1 << (VFP_SINGLE_LOW_BITS + 1)) - 1))
 166		exceptions |= FPSCR_IXC;
 167
 168	/*
 169	 * Do our rounding.
 170	 */
 171	significand += incr;
 172
 173	/*
 174	 * Infinity?
 175	 */
 176	if (exponent >= 254) {
 177		exceptions |= FPSCR_OFC | FPSCR_IXC;
 178		if (incr == 0) {
 179			vs->exponent = 253;
 180			vs->significand = 0x7fffffff;
 181		} else {
 182			vs->exponent = 255;		/* infinity */
 183			vs->significand = 0;
 184		}
 185	} else {
 186		if (significand >> (VFP_SINGLE_LOW_BITS + 1) == 0)
 187			exponent = 0;
 188		if (exponent || significand > 0x80000000)
 189			underflow = 0;
 190		if (underflow)
 191			exceptions |= FPSCR_UFC;
 192		vs->exponent = exponent;
 193		vs->significand = significand >> 1;
 194	}
 195
 196 pack:
 197	vfp_single_dump("pack: final", vs);
 198	{
 199		s32 d = vfp_single_pack(vs);
 200#ifdef DEBUG
 201		pr_debug("VFP: %s: d(s%d)=%08x exceptions=%08x\n", func,
 202			 sd, d, exceptions);
 203#endif
 204		vfp_put_float(d, sd);
 205	}
 206
 207	return exceptions;
 208}
 209
 210/*
 211 * Propagate the NaN, setting exceptions if it is signalling.
 212 * 'n' is always a NaN.  'm' may be a number, NaN or infinity.
 213 */
 214static u32
 215vfp_propagate_nan(struct vfp_single *vsd, struct vfp_single *vsn,
 216		  struct vfp_single *vsm, u32 fpscr)
 217{
 218	struct vfp_single *nan;
 219	int tn, tm = 0;
 220
 221	tn = vfp_single_type(vsn);
 222
 223	if (vsm)
 224		tm = vfp_single_type(vsm);
 225
 226	if (fpscr & FPSCR_DEFAULT_NAN)
 227		/*
 228		 * Default NaN mode - always returns a quiet NaN
 229		 */
 230		nan = &vfp_single_default_qnan;
 231	else {
 232		/*
 233		 * Contemporary mode - select the first signalling
 234		 * NAN, or if neither are signalling, the first
 235		 * quiet NAN.
 236		 */
 237		if (tn == VFP_SNAN || (tm != VFP_SNAN && tn == VFP_QNAN))
 238			nan = vsn;
 239		else
 240			nan = vsm;
 241		/*
 242		 * Make the NaN quiet.
 243		 */
 244		nan->significand |= VFP_SINGLE_SIGNIFICAND_QNAN;
 245	}
 246
 247	*vsd = *nan;
 248
 249	/*
 250	 * If one was a signalling NAN, raise invalid operation.
 251	 */
 252	return tn == VFP_SNAN || tm == VFP_SNAN ? FPSCR_IOC : VFP_NAN_FLAG;
 253}
 254
 255
 256/*
 257 * Extended operations
 258 */
 259static u32 vfp_single_fabs(int sd, int unused, s32 m, u32 fpscr)
 260{
 261	vfp_put_float(vfp_single_packed_abs(m), sd);
 262	return 0;
 263}
 264
 265static u32 vfp_single_fcpy(int sd, int unused, s32 m, u32 fpscr)
 266{
 267	vfp_put_float(m, sd);
 268	return 0;
 269}
 270
 271static u32 vfp_single_fneg(int sd, int unused, s32 m, u32 fpscr)
 272{
 273	vfp_put_float(vfp_single_packed_negate(m), sd);
 274	return 0;
 275}
 276
 277static const u16 sqrt_oddadjust[] = {
 278	0x0004, 0x0022, 0x005d, 0x00b1, 0x011d, 0x019f, 0x0236, 0x02e0,
 279	0x039c, 0x0468, 0x0545, 0x0631, 0x072b, 0x0832, 0x0946, 0x0a67
 280};
 281
 282static const u16 sqrt_evenadjust[] = {
 283	0x0a2d, 0x08af, 0x075a, 0x0629, 0x051a, 0x0429, 0x0356, 0x029e,
 284	0x0200, 0x0179, 0x0109, 0x00af, 0x0068, 0x0034, 0x0012, 0x0002
 285};
 286
 287u32 vfp_estimate_sqrt_significand(u32 exponent, u32 significand)
 288{
 289	int index;
 290	u32 z, a;
 291
 292	if ((significand & 0xc0000000) != 0x40000000) {
 293		pr_warn("VFP: estimate_sqrt: invalid significand\n");
 294	}
 295
 296	a = significand << 1;
 297	index = (a >> 27) & 15;
 298	if (exponent & 1) {
 299		z = 0x4000 + (a >> 17) - sqrt_oddadjust[index];
 300		z = ((a / z) << 14) + (z << 15);
 301		a >>= 1;
 302	} else {
 303		z = 0x8000 + (a >> 17) - sqrt_evenadjust[index];
 304		z = a / z + z;
 305		z = (z >= 0x20000) ? 0xffff8000 : (z << 15);
 306		if (z <= a)
 307			return (s32)a >> 1;
 308	}
 309	{
 310		u64 v = (u64)a << 31;
 311		do_div(v, z);
 312		return v + (z >> 1);
 313	}
 314}
 315
 316static u32 vfp_single_fsqrt(int sd, int unused, s32 m, u32 fpscr)
 317{
 318	struct vfp_single vsm, vsd;
 319	int ret, tm;
 320
 321	vfp_single_unpack(&vsm, m);
 322	tm = vfp_single_type(&vsm);
 323	if (tm & (VFP_NAN|VFP_INFINITY)) {
 324		struct vfp_single *vsp = &vsd;
 325
 326		if (tm & VFP_NAN)
 327			ret = vfp_propagate_nan(vsp, &vsm, NULL, fpscr);
 328		else if (vsm.sign == 0) {
 329 sqrt_copy:
 330			vsp = &vsm;
 331			ret = 0;
 332		} else {
 333 sqrt_invalid:
 334			vsp = &vfp_single_default_qnan;
 335			ret = FPSCR_IOC;
 336		}
 337		vfp_put_float(vfp_single_pack(vsp), sd);
 338		return ret;
 339	}
 340
 341	/*
 342	 * sqrt(+/- 0) == +/- 0
 343	 */
 344	if (tm & VFP_ZERO)
 345		goto sqrt_copy;
 346
 347	/*
 348	 * Normalise a denormalised number
 349	 */
 350	if (tm & VFP_DENORMAL)
 351		vfp_single_normalise_denormal(&vsm);
 352
 353	/*
 354	 * sqrt(<0) = invalid
 355	 */
 356	if (vsm.sign)
 357		goto sqrt_invalid;
 358
 359	vfp_single_dump("sqrt", &vsm);
 360
 361	/*
 362	 * Estimate the square root.
 363	 */
 364	vsd.sign = 0;
 365	vsd.exponent = ((vsm.exponent - 127) >> 1) + 127;
 366	vsd.significand = vfp_estimate_sqrt_significand(vsm.exponent, vsm.significand) + 2;
 367
 368	vfp_single_dump("sqrt estimate", &vsd);
 369
 370	/*
 371	 * And now adjust.
 372	 */
 373	if ((vsd.significand & VFP_SINGLE_LOW_BITS_MASK) <= 5) {
 374		if (vsd.significand < 2) {
 375			vsd.significand = 0xffffffff;
 376		} else {
 377			u64 term;
 378			s64 rem;
 379			vsm.significand <<= !(vsm.exponent & 1);
 380			term = (u64)vsd.significand * vsd.significand;
 381			rem = ((u64)vsm.significand << 32) - term;
 382
 383			pr_debug("VFP: term=%016llx rem=%016llx\n", term, rem);
 384
 385			while (rem < 0) {
 386				vsd.significand -= 1;
 387				rem += ((u64)vsd.significand << 1) | 1;
 388			}
 389			vsd.significand |= rem != 0;
 390		}
 391	}
 392	vsd.significand = vfp_shiftright32jamming(vsd.significand, 1);
 393
 394	return vfp_single_normaliseround(sd, &vsd, fpscr, 0, "fsqrt");
 395}
 396
 397/*
 398 * Equal	:= ZC
 399 * Less than	:= N
 400 * Greater than	:= C
 401 * Unordered	:= CV
 402 */
 403static u32 vfp_compare(int sd, int signal_on_qnan, s32 m, u32 fpscr)
 404{
 405	s32 d;
 406	u32 ret = 0;
 407
 408	d = vfp_get_float(sd);
 409	if (vfp_single_packed_exponent(m) == 255 && vfp_single_packed_mantissa(m)) {
 410		ret |= FPSCR_C | FPSCR_V;
 411		if (signal_on_qnan || !(vfp_single_packed_mantissa(m) & (1 << (VFP_SINGLE_MANTISSA_BITS - 1))))
 412			/*
 413			 * Signalling NaN, or signalling on quiet NaN
 414			 */
 415			ret |= FPSCR_IOC;
 416	}
 417
 418	if (vfp_single_packed_exponent(d) == 255 && vfp_single_packed_mantissa(d)) {
 419		ret |= FPSCR_C | FPSCR_V;
 420		if (signal_on_qnan || !(vfp_single_packed_mantissa(d) & (1 << (VFP_SINGLE_MANTISSA_BITS - 1))))
 421			/*
 422			 * Signalling NaN, or signalling on quiet NaN
 423			 */
 424			ret |= FPSCR_IOC;
 425	}
 426
 427	if (ret == 0) {
 428		if (d == m || vfp_single_packed_abs(d | m) == 0) {
 429			/*
 430			 * equal
 431			 */
 432			ret |= FPSCR_Z | FPSCR_C;
 433		} else if (vfp_single_packed_sign(d ^ m)) {
 434			/*
 435			 * different signs
 436			 */
 437			if (vfp_single_packed_sign(d))
 438				/*
 439				 * d is negative, so d < m
 440				 */
 441				ret |= FPSCR_N;
 442			else
 443				/*
 444				 * d is positive, so d > m
 445				 */
 446				ret |= FPSCR_C;
 447		} else if ((vfp_single_packed_sign(d) != 0) ^ (d < m)) {
 448			/*
 449			 * d < m
 450			 */
 451			ret |= FPSCR_N;
 452		} else if ((vfp_single_packed_sign(d) != 0) ^ (d > m)) {
 453			/*
 454			 * d > m
 455			 */
 456			ret |= FPSCR_C;
 457		}
 458	}
 459	return ret;
 460}
 461
 462static u32 vfp_single_fcmp(int sd, int unused, s32 m, u32 fpscr)
 463{
 464	return vfp_compare(sd, 0, m, fpscr);
 465}
 466
 467static u32 vfp_single_fcmpe(int sd, int unused, s32 m, u32 fpscr)
 468{
 469	return vfp_compare(sd, 1, m, fpscr);
 470}
 471
 472static u32 vfp_single_fcmpz(int sd, int unused, s32 m, u32 fpscr)
 473{
 474	return vfp_compare(sd, 0, 0, fpscr);
 475}
 476
 477static u32 vfp_single_fcmpez(int sd, int unused, s32 m, u32 fpscr)
 478{
 479	return vfp_compare(sd, 1, 0, fpscr);
 480}
 481
 482static u32 vfp_single_fcvtd(int dd, int unused, s32 m, u32 fpscr)
 483{
 484	struct vfp_single vsm;
 485	struct vfp_double vdd;
 486	int tm;
 487	u32 exceptions = 0;
 488
 489	vfp_single_unpack(&vsm, m);
 490
 491	tm = vfp_single_type(&vsm);
 492
 493	/*
 494	 * If we have a signalling NaN, signal invalid operation.
 495	 */
 496	if (tm == VFP_SNAN)
 497		exceptions = FPSCR_IOC;
 498
 499	if (tm & VFP_DENORMAL)
 500		vfp_single_normalise_denormal(&vsm);
 501
 502	vdd.sign = vsm.sign;
 503	vdd.significand = (u64)vsm.significand << 32;
 504
 505	/*
 506	 * If we have an infinity or NaN, the exponent must be 2047.
 507	 */
 508	if (tm & (VFP_INFINITY|VFP_NAN)) {
 509		vdd.exponent = 2047;
 510		if (tm == VFP_QNAN)
 511			vdd.significand |= VFP_DOUBLE_SIGNIFICAND_QNAN;
 512		goto pack_nan;
 513	} else if (tm & VFP_ZERO)
 514		vdd.exponent = 0;
 515	else
 516		vdd.exponent = vsm.exponent + (1023 - 127);
 517
 518	return vfp_double_normaliseround(dd, &vdd, fpscr, exceptions, "fcvtd");
 519
 520 pack_nan:
 521	vfp_put_double(vfp_double_pack(&vdd), dd);
 522	return exceptions;
 523}
 524
 525static u32 vfp_single_fuito(int sd, int unused, s32 m, u32 fpscr)
 526{
 527	struct vfp_single vs;
 528
 529	vs.sign = 0;
 530	vs.exponent = 127 + 31 - 1;
 531	vs.significand = (u32)m;
 532
 533	return vfp_single_normaliseround(sd, &vs, fpscr, 0, "fuito");
 534}
 535
 536static u32 vfp_single_fsito(int sd, int unused, s32 m, u32 fpscr)
 537{
 538	struct vfp_single vs;
 539
 540	vs.sign = (m & 0x80000000) >> 16;
 541	vs.exponent = 127 + 31 - 1;
 542	vs.significand = vs.sign ? -m : m;
 543
 544	return vfp_single_normaliseround(sd, &vs, fpscr, 0, "fsito");
 545}
 546
 547static u32 vfp_single_ftoui(int sd, int unused, s32 m, u32 fpscr)
 548{
 549	struct vfp_single vsm;
 550	u32 d, exceptions = 0;
 551	int rmode = fpscr & FPSCR_RMODE_MASK;
 552	int tm;
 553
 554	vfp_single_unpack(&vsm, m);
 555	vfp_single_dump("VSM", &vsm);
 556
 557	/*
 558	 * Do we have a denormalised number?
 559	 */
 560	tm = vfp_single_type(&vsm);
 561	if (tm & VFP_DENORMAL)
 562		exceptions |= FPSCR_IDC;
 563
 564	if (tm & VFP_NAN)
 565		vsm.sign = 0;
 566
 567	if (vsm.exponent >= 127 + 32) {
 568		d = vsm.sign ? 0 : 0xffffffff;
 569		exceptions = FPSCR_IOC;
 570	} else if (vsm.exponent >= 127 - 1) {
 571		int shift = 127 + 31 - vsm.exponent;
 572		u32 rem, incr = 0;
 573
 574		/*
 575		 * 2^0 <= m < 2^32-2^8
 576		 */
 577		d = (vsm.significand << 1) >> shift;
 578		rem = vsm.significand << (33 - shift);
 579
 580		if (rmode == FPSCR_ROUND_NEAREST) {
 581			incr = 0x80000000;
 582			if ((d & 1) == 0)
 583				incr -= 1;
 584		} else if (rmode == FPSCR_ROUND_TOZERO) {
 585			incr = 0;
 586		} else if ((rmode == FPSCR_ROUND_PLUSINF) ^ (vsm.sign != 0)) {
 587			incr = ~0;
 588		}
 589
 590		if ((rem + incr) < rem) {
 591			if (d < 0xffffffff)
 592				d += 1;
 593			else
 594				exceptions |= FPSCR_IOC;
 595		}
 596
 597		if (d && vsm.sign) {
 598			d = 0;
 599			exceptions |= FPSCR_IOC;
 600		} else if (rem)
 601			exceptions |= FPSCR_IXC;
 602	} else {
 603		d = 0;
 604		if (vsm.exponent | vsm.significand) {
 605			exceptions |= FPSCR_IXC;
 606			if (rmode == FPSCR_ROUND_PLUSINF && vsm.sign == 0)
 607				d = 1;
 608			else if (rmode == FPSCR_ROUND_MINUSINF && vsm.sign) {
 609				d = 0;
 610				exceptions |= FPSCR_IOC;
 611			}
 612		}
 613	}
 614
 615	pr_debug("VFP: ftoui: d(s%d)=%08x exceptions=%08x\n", sd, d, exceptions);
 616
 617	vfp_put_float(d, sd);
 618
 619	return exceptions;
 620}
 621
 622static u32 vfp_single_ftouiz(int sd, int unused, s32 m, u32 fpscr)
 623{
 624	return vfp_single_ftoui(sd, unused, m, FPSCR_ROUND_TOZERO);
 625}
 626
 627static u32 vfp_single_ftosi(int sd, int unused, s32 m, u32 fpscr)
 628{
 629	struct vfp_single vsm;
 630	u32 d, exceptions = 0;
 631	int rmode = fpscr & FPSCR_RMODE_MASK;
 632	int tm;
 633
 634	vfp_single_unpack(&vsm, m);
 635	vfp_single_dump("VSM", &vsm);
 636
 637	/*
 638	 * Do we have a denormalised number?
 639	 */
 640	tm = vfp_single_type(&vsm);
 641	if (vfp_single_type(&vsm) & VFP_DENORMAL)
 642		exceptions |= FPSCR_IDC;
 643
 644	if (tm & VFP_NAN) {
 645		d = 0;
 646		exceptions |= FPSCR_IOC;
 647	} else if (vsm.exponent >= 127 + 32) {
 648		/*
 649		 * m >= 2^31-2^7: invalid
 650		 */
 651		d = 0x7fffffff;
 652		if (vsm.sign)
 653			d = ~d;
 654		exceptions |= FPSCR_IOC;
 655	} else if (vsm.exponent >= 127 - 1) {
 656		int shift = 127 + 31 - vsm.exponent;
 657		u32 rem, incr = 0;
 658
 659		/* 2^0 <= m <= 2^31-2^7 */
 660		d = (vsm.significand << 1) >> shift;
 661		rem = vsm.significand << (33 - shift);
 662
 663		if (rmode == FPSCR_ROUND_NEAREST) {
 664			incr = 0x80000000;
 665			if ((d & 1) == 0)
 666				incr -= 1;
 667		} else if (rmode == FPSCR_ROUND_TOZERO) {
 668			incr = 0;
 669		} else if ((rmode == FPSCR_ROUND_PLUSINF) ^ (vsm.sign != 0)) {
 670			incr = ~0;
 671		}
 672
 673		if ((rem + incr) < rem && d < 0xffffffff)
 674			d += 1;
 675		if (d > 0x7fffffff + (vsm.sign != 0)) {
 676			d = 0x7fffffff + (vsm.sign != 0);
 677			exceptions |= FPSCR_IOC;
 678		} else if (rem)
 679			exceptions |= FPSCR_IXC;
 680
 681		if (vsm.sign)
 682			d = -d;
 683	} else {
 684		d = 0;
 685		if (vsm.exponent | vsm.significand) {
 686			exceptions |= FPSCR_IXC;
 687			if (rmode == FPSCR_ROUND_PLUSINF && vsm.sign == 0)
 688				d = 1;
 689			else if (rmode == FPSCR_ROUND_MINUSINF && vsm.sign)
 690				d = -1;
 691		}
 692	}
 693
 694	pr_debug("VFP: ftosi: d(s%d)=%08x exceptions=%08x\n", sd, d, exceptions);
 695
 696	vfp_put_float((s32)d, sd);
 697
 698	return exceptions;
 699}
 700
 701static u32 vfp_single_ftosiz(int sd, int unused, s32 m, u32 fpscr)
 702{
 703	return vfp_single_ftosi(sd, unused, m, FPSCR_ROUND_TOZERO);
 704}
 705
 706static struct op fops_ext[32] = {
 707	[FEXT_TO_IDX(FEXT_FCPY)]	= { vfp_single_fcpy,   0 },
 708	[FEXT_TO_IDX(FEXT_FABS)]	= { vfp_single_fabs,   0 },
 709	[FEXT_TO_IDX(FEXT_FNEG)]	= { vfp_single_fneg,   0 },
 710	[FEXT_TO_IDX(FEXT_FSQRT)]	= { vfp_single_fsqrt,  0 },
 711	[FEXT_TO_IDX(FEXT_FCMP)]	= { vfp_single_fcmp,   OP_SCALAR },
 712	[FEXT_TO_IDX(FEXT_FCMPE)]	= { vfp_single_fcmpe,  OP_SCALAR },
 713	[FEXT_TO_IDX(FEXT_FCMPZ)]	= { vfp_single_fcmpz,  OP_SCALAR },
 714	[FEXT_TO_IDX(FEXT_FCMPEZ)]	= { vfp_single_fcmpez, OP_SCALAR },
 715	[FEXT_TO_IDX(FEXT_FCVT)]	= { vfp_single_fcvtd,  OP_SCALAR|OP_DD },
 716	[FEXT_TO_IDX(FEXT_FUITO)]	= { vfp_single_fuito,  OP_SCALAR },
 717	[FEXT_TO_IDX(FEXT_FSITO)]	= { vfp_single_fsito,  OP_SCALAR },
 718	[FEXT_TO_IDX(FEXT_FTOUI)]	= { vfp_single_ftoui,  OP_SCALAR },
 719	[FEXT_TO_IDX(FEXT_FTOUIZ)]	= { vfp_single_ftouiz, OP_SCALAR },
 720	[FEXT_TO_IDX(FEXT_FTOSI)]	= { vfp_single_ftosi,  OP_SCALAR },
 721	[FEXT_TO_IDX(FEXT_FTOSIZ)]	= { vfp_single_ftosiz, OP_SCALAR },
 722};
 723
 724
 725
 726
 727
 728static u32
 729vfp_single_fadd_nonnumber(struct vfp_single *vsd, struct vfp_single *vsn,
 730			  struct vfp_single *vsm, u32 fpscr)
 731{
 732	struct vfp_single *vsp;
 733	u32 exceptions = 0;
 734	int tn, tm;
 735
 736	tn = vfp_single_type(vsn);
 737	tm = vfp_single_type(vsm);
 738
 739	if (tn & tm & VFP_INFINITY) {
 740		/*
 741		 * Two infinities.  Are they different signs?
 742		 */
 743		if (vsn->sign ^ vsm->sign) {
 744			/*
 745			 * different signs -> invalid
 746			 */
 747			exceptions = FPSCR_IOC;
 748			vsp = &vfp_single_default_qnan;
 749		} else {
 750			/*
 751			 * same signs -> valid
 752			 */
 753			vsp = vsn;
 754		}
 755	} else if (tn & VFP_INFINITY && tm & VFP_NUMBER) {
 756		/*
 757		 * One infinity and one number -> infinity
 758		 */
 759		vsp = vsn;
 760	} else {
 761		/*
 762		 * 'n' is a NaN of some type
 763		 */
 764		return vfp_propagate_nan(vsd, vsn, vsm, fpscr);
 765	}
 766	*vsd = *vsp;
 767	return exceptions;
 768}
 769
 770static u32
 771vfp_single_add(struct vfp_single *vsd, struct vfp_single *vsn,
 772	       struct vfp_single *vsm, u32 fpscr)
 773{
 774	u32 exp_diff, m_sig;
 775
 776	if (vsn->significand & 0x80000000 ||
 777	    vsm->significand & 0x80000000) {
 778		pr_info("VFP: bad FP values in %s\n", __func__);
 779		vfp_single_dump("VSN", vsn);
 780		vfp_single_dump("VSM", vsm);
 781	}
 782
 783	/*
 784	 * Ensure that 'n' is the largest magnitude number.  Note that
 785	 * if 'n' and 'm' have equal exponents, we do not swap them.
 786	 * This ensures that NaN propagation works correctly.
 787	 */
 788	if (vsn->exponent < vsm->exponent) {
 789		struct vfp_single *t = vsn;
 790		vsn = vsm;
 791		vsm = t;
 792	}
 793
 794	/*
 795	 * Is 'n' an infinity or a NaN?  Note that 'm' may be a number,
 796	 * infinity or a NaN here.
 797	 */
 798	if (vsn->exponent == 255)
 799		return vfp_single_fadd_nonnumber(vsd, vsn, vsm, fpscr);
 800
 801	/*
 802	 * We have two proper numbers, where 'vsn' is the larger magnitude.
 803	 *
 804	 * Copy 'n' to 'd' before doing the arithmetic.
 805	 */
 806	*vsd = *vsn;
 807
 808	/*
 809	 * Align both numbers.
 810	 */
 811	exp_diff = vsn->exponent - vsm->exponent;
 812	m_sig = vfp_shiftright32jamming(vsm->significand, exp_diff);
 813
 814	/*
 815	 * If the signs are different, we are really subtracting.
 816	 */
 817	if (vsn->sign ^ vsm->sign) {
 818		m_sig = vsn->significand - m_sig;
 819		if ((s32)m_sig < 0) {
 820			vsd->sign = vfp_sign_negate(vsd->sign);
 821			m_sig = -m_sig;
 822		} else if (m_sig == 0) {
 823			vsd->sign = (fpscr & FPSCR_RMODE_MASK) ==
 824				      FPSCR_ROUND_MINUSINF ? 0x8000 : 0;
 825		}
 826	} else {
 827		m_sig = vsn->significand + m_sig;
 828	}
 829	vsd->significand = m_sig;
 830
 831	return 0;
 832}
 833
 834static u32
 835vfp_single_multiply(struct vfp_single *vsd, struct vfp_single *vsn, struct vfp_single *vsm, u32 fpscr)
 836{
 837	vfp_single_dump("VSN", vsn);
 838	vfp_single_dump("VSM", vsm);
 839
 840	/*
 841	 * Ensure that 'n' is the largest magnitude number.  Note that
 842	 * if 'n' and 'm' have equal exponents, we do not swap them.
 843	 * This ensures that NaN propagation works correctly.
 844	 */
 845	if (vsn->exponent < vsm->exponent) {
 846		struct vfp_single *t = vsn;
 847		vsn = vsm;
 848		vsm = t;
 849		pr_debug("VFP: swapping M <-> N\n");
 850	}
 851
 852	vsd->sign = vsn->sign ^ vsm->sign;
 853
 854	/*
 855	 * If 'n' is an infinity or NaN, handle it.  'm' may be anything.
 856	 */
 857	if (vsn->exponent == 255) {
 858		if (vsn->significand || (vsm->exponent == 255 && vsm->significand))
 859			return vfp_propagate_nan(vsd, vsn, vsm, fpscr);
 860		if ((vsm->exponent | vsm->significand) == 0) {
 861			*vsd = vfp_single_default_qnan;
 862			return FPSCR_IOC;
 863		}
 864		vsd->exponent = vsn->exponent;
 865		vsd->significand = 0;
 866		return 0;
 867	}
 868
 869	/*
 870	 * If 'm' is zero, the result is always zero.  In this case,
 871	 * 'n' may be zero or a number, but it doesn't matter which.
 872	 */
 873	if ((vsm->exponent | vsm->significand) == 0) {
 874		vsd->exponent = 0;
 875		vsd->significand = 0;
 876		return 0;
 877	}
 878
 879	/*
 880	 * We add 2 to the destination exponent for the same reason as
 881	 * the addition case - though this time we have +1 from each
 882	 * input operand.
 883	 */
 884	vsd->exponent = vsn->exponent + vsm->exponent - 127 + 2;
 885	vsd->significand = vfp_hi64to32jamming((u64)vsn->significand * vsm->significand);
 886
 887	vfp_single_dump("VSD", vsd);
 888	return 0;
 889}
 890
 891#define NEG_MULTIPLY	(1 << 0)
 892#define NEG_SUBTRACT	(1 << 1)
 893
 894static u32
 895vfp_single_multiply_accumulate(int sd, int sn, s32 m, u32 fpscr, u32 negate, char *func)
 896{
 897	struct vfp_single vsd, vsp, vsn, vsm;
 898	u32 exceptions;
 899	s32 v;
 900
 901	v = vfp_get_float(sn);
 902	pr_debug("VFP: s%u = %08x\n", sn, v);
 903	vfp_single_unpack(&vsn, v);
 904	if (vsn.exponent == 0 && vsn.significand)
 905		vfp_single_normalise_denormal(&vsn);
 906
 907	vfp_single_unpack(&vsm, m);
 908	if (vsm.exponent == 0 && vsm.significand)
 909		vfp_single_normalise_denormal(&vsm);
 910
 911	exceptions = vfp_single_multiply(&vsp, &vsn, &vsm, fpscr);
 912	if (negate & NEG_MULTIPLY)
 913		vsp.sign = vfp_sign_negate(vsp.sign);
 914
 915	v = vfp_get_float(sd);
 916	pr_debug("VFP: s%u = %08x\n", sd, v);
 917	vfp_single_unpack(&vsn, v);
 918	if (vsn.exponent == 0 && vsn.significand)
 919		vfp_single_normalise_denormal(&vsn);
 920	if (negate & NEG_SUBTRACT)
 921		vsn.sign = vfp_sign_negate(vsn.sign);
 922
 923	exceptions |= vfp_single_add(&vsd, &vsn, &vsp, fpscr);
 924
 925	return vfp_single_normaliseround(sd, &vsd, fpscr, exceptions, func);
 926}
 927
 928/*
 929 * Standard operations
 930 */
 931
 932/*
 933 * sd = sd + (sn * sm)
 934 */
 935static u32 vfp_single_fmac(int sd, int sn, s32 m, u32 fpscr)
 936{
 937	return vfp_single_multiply_accumulate(sd, sn, m, fpscr, 0, "fmac");
 938}
 939
 940/*
 941 * sd = sd - (sn * sm)
 942 */
 943static u32 vfp_single_fnmac(int sd, int sn, s32 m, u32 fpscr)
 944{
 945	return vfp_single_multiply_accumulate(sd, sn, m, fpscr, NEG_MULTIPLY, "fnmac");
 946}
 947
 948/*
 949 * sd = -sd + (sn * sm)
 950 */
 951static u32 vfp_single_fmsc(int sd, int sn, s32 m, u32 fpscr)
 952{
 953	return vfp_single_multiply_accumulate(sd, sn, m, fpscr, NEG_SUBTRACT, "fmsc");
 954}
 955
 956/*
 957 * sd = -sd - (sn * sm)
 958 */
 959static u32 vfp_single_fnmsc(int sd, int sn, s32 m, u32 fpscr)
 960{
 961	return vfp_single_multiply_accumulate(sd, sn, m, fpscr, NEG_SUBTRACT | NEG_MULTIPLY, "fnmsc");
 962}
 963
 964/*
 965 * sd = sn * sm
 966 */
 967static u32 vfp_single_fmul(int sd, int sn, s32 m, u32 fpscr)
 968{
 969	struct vfp_single vsd, vsn, vsm;
 970	u32 exceptions;
 971	s32 n = vfp_get_float(sn);
 972
 973	pr_debug("VFP: s%u = %08x\n", sn, n);
 974
 975	vfp_single_unpack(&vsn, n);
 976	if (vsn.exponent == 0 && vsn.significand)
 977		vfp_single_normalise_denormal(&vsn);
 978
 979	vfp_single_unpack(&vsm, m);
 980	if (vsm.exponent == 0 && vsm.significand)
 981		vfp_single_normalise_denormal(&vsm);
 982
 983	exceptions = vfp_single_multiply(&vsd, &vsn, &vsm, fpscr);
 984	return vfp_single_normaliseround(sd, &vsd, fpscr, exceptions, "fmul");
 985}
 986
 987/*
 988 * sd = -(sn * sm)
 989 */
 990static u32 vfp_single_fnmul(int sd, int sn, s32 m, u32 fpscr)
 991{
 992	struct vfp_single vsd, vsn, vsm;
 993	u32 exceptions;
 994	s32 n = vfp_get_float(sn);
 995
 996	pr_debug("VFP: s%u = %08x\n", sn, n);
 997
 998	vfp_single_unpack(&vsn, n);
 999	if (vsn.exponent == 0 && vsn.significand)
1000		vfp_single_normalise_denormal(&vsn);
1001
1002	vfp_single_unpack(&vsm, m);
1003	if (vsm.exponent == 0 && vsm.significand)
1004		vfp_single_normalise_denormal(&vsm);
1005
1006	exceptions = vfp_single_multiply(&vsd, &vsn, &vsm, fpscr);
1007	vsd.sign = vfp_sign_negate(vsd.sign);
1008	return vfp_single_normaliseround(sd, &vsd, fpscr, exceptions, "fnmul");
1009}
1010
1011/*
1012 * sd = sn + sm
1013 */
1014static u32 vfp_single_fadd(int sd, int sn, s32 m, u32 fpscr)
1015{
1016	struct vfp_single vsd, vsn, vsm;
1017	u32 exceptions;
1018	s32 n = vfp_get_float(sn);
1019
1020	pr_debug("VFP: s%u = %08x\n", sn, n);
1021
1022	/*
1023	 * Unpack and normalise denormals.
1024	 */
1025	vfp_single_unpack(&vsn, n);
1026	if (vsn.exponent == 0 && vsn.significand)
1027		vfp_single_normalise_denormal(&vsn);
1028
1029	vfp_single_unpack(&vsm, m);
1030	if (vsm.exponent == 0 && vsm.significand)
1031		vfp_single_normalise_denormal(&vsm);
1032
1033	exceptions = vfp_single_add(&vsd, &vsn, &vsm, fpscr);
1034
1035	return vfp_single_normaliseround(sd, &vsd, fpscr, exceptions, "fadd");
1036}
1037
1038/*
1039 * sd = sn - sm
1040 */
1041static u32 vfp_single_fsub(int sd, int sn, s32 m, u32 fpscr)
1042{
1043	/*
1044	 * Subtraction is addition with one sign inverted.
1045	 */
1046	return vfp_single_fadd(sd, sn, vfp_single_packed_negate(m), fpscr);
1047}
1048
1049/*
1050 * sd = sn / sm
1051 */
1052static u32 vfp_single_fdiv(int sd, int sn, s32 m, u32 fpscr)
1053{
1054	struct vfp_single vsd, vsn, vsm;
1055	u32 exceptions = 0;
1056	s32 n = vfp_get_float(sn);
1057	int tm, tn;
1058
1059	pr_debug("VFP: s%u = %08x\n", sn, n);
1060
1061	vfp_single_unpack(&vsn, n);
1062	vfp_single_unpack(&vsm, m);
1063
1064	vsd.sign = vsn.sign ^ vsm.sign;
1065
1066	tn = vfp_single_type(&vsn);
1067	tm = vfp_single_type(&vsm);
1068
1069	/*
1070	 * Is n a NAN?
1071	 */
1072	if (tn & VFP_NAN)
1073		goto vsn_nan;
1074
1075	/*
1076	 * Is m a NAN?
1077	 */
1078	if (tm & VFP_NAN)
1079		goto vsm_nan;
1080
1081	/*
1082	 * If n and m are infinity, the result is invalid
1083	 * If n and m are zero, the result is invalid
1084	 */
1085	if (tm & tn & (VFP_INFINITY|VFP_ZERO))
1086		goto invalid;
1087
1088	/*
1089	 * If n is infinity, the result is infinity
1090	 */
1091	if (tn & VFP_INFINITY)
1092		goto infinity;
1093
1094	/*
1095	 * If m is zero, raise div0 exception
1096	 */
1097	if (tm & VFP_ZERO)
1098		goto divzero;
1099
1100	/*
1101	 * If m is infinity, or n is zero, the result is zero
1102	 */
1103	if (tm & VFP_INFINITY || tn & VFP_ZERO)
1104		goto zero;
1105
1106	if (tn & VFP_DENORMAL)
1107		vfp_single_normalise_denormal(&vsn);
1108	if (tm & VFP_DENORMAL)
1109		vfp_single_normalise_denormal(&vsm);
1110
1111	/*
1112	 * Ok, we have two numbers, we can perform division.
1113	 */
1114	vsd.exponent = vsn.exponent - vsm.exponent + 127 - 1;
1115	vsm.significand <<= 1;
1116	if (vsm.significand <= (2 * vsn.significand)) {
1117		vsn.significand >>= 1;
1118		vsd.exponent++;
1119	}
1120	{
1121		u64 significand = (u64)vsn.significand << 32;
1122		do_div(significand, vsm.significand);
1123		vsd.significand = significand;
1124	}
1125	if ((vsd.significand & 0x3f) == 0)
1126		vsd.significand |= ((u64)vsm.significand * vsd.significand != (u64)vsn.significand << 32);
1127
1128	return vfp_single_normaliseround(sd, &vsd, fpscr, 0, "fdiv");
1129
1130 vsn_nan:
1131	exceptions = vfp_propagate_nan(&vsd, &vsn, &vsm, fpscr);
1132 pack:
1133	vfp_put_float(vfp_single_pack(&vsd), sd);
1134	return exceptions;
1135
1136 vsm_nan:
1137	exceptions = vfp_propagate_nan(&vsd, &vsm, &vsn, fpscr);
1138	goto pack;
1139
1140 zero:
1141	vsd.exponent = 0;
1142	vsd.significand = 0;
1143	goto pack;
1144
1145 divzero:
1146	exceptions = FPSCR_DZC;
1147 infinity:
1148	vsd.exponent = 255;
1149	vsd.significand = 0;
1150	goto pack;
1151
1152 invalid:
1153	vfp_put_float(vfp_single_pack(&vfp_single_default_qnan), sd);
1154	return FPSCR_IOC;
1155}
1156
1157static struct op fops[16] = {
1158	[FOP_TO_IDX(FOP_FMAC)]	= { vfp_single_fmac,  0 },
1159	[FOP_TO_IDX(FOP_FNMAC)]	= { vfp_single_fnmac, 0 },
1160	[FOP_TO_IDX(FOP_FMSC)]	= { vfp_single_fmsc,  0 },
1161	[FOP_TO_IDX(FOP_FNMSC)]	= { vfp_single_fnmsc, 0 },
1162	[FOP_TO_IDX(FOP_FMUL)]	= { vfp_single_fmul,  0 },
1163	[FOP_TO_IDX(FOP_FNMUL)]	= { vfp_single_fnmul, 0 },
1164	[FOP_TO_IDX(FOP_FADD)]	= { vfp_single_fadd,  0 },
1165	[FOP_TO_IDX(FOP_FSUB)]	= { vfp_single_fsub,  0 },
1166	[FOP_TO_IDX(FOP_FDIV)]	= { vfp_single_fdiv,  0 },
1167};
1168
1169#define FREG_BANK(x)	((x) & 0x18)
1170#define FREG_IDX(x)	((x) & 7)
1171
1172u32 vfp_single_cpdo(u32 inst, u32 fpscr)
1173{
1174	u32 op = inst & FOP_MASK;
1175	u32 exceptions = 0;
1176	unsigned int dest;
1177	unsigned int sn = vfp_get_sn(inst);
1178	unsigned int sm = vfp_get_sm(inst);
1179	unsigned int vecitr, veclen, vecstride;
1180	struct op *fop;
1181
1182	vecstride = 1 + ((fpscr & FPSCR_STRIDE_MASK) == FPSCR_STRIDE_MASK);
1183
1184	fop = (op == FOP_EXT) ? &fops_ext[FEXT_TO_IDX(inst)] : &fops[FOP_TO_IDX(op)];
1185
1186	/*
1187	 * fcvtsd takes a dN register number as destination, not sN.
1188	 * Technically, if bit 0 of dd is set, this is an invalid
1189	 * instruction.  However, we ignore this for efficiency.
1190	 * It also only operates on scalars.
1191	 */
1192	if (fop->flags & OP_DD)
1193		dest = vfp_get_dd(inst);
1194	else
1195		dest = vfp_get_sd(inst);
1196
1197	/*
1198	 * If destination bank is zero, vector length is always '1'.
1199	 * ARM DDI0100F C5.1.3, C5.3.2.
1200	 */
1201	if ((fop->flags & OP_SCALAR) || FREG_BANK(dest) == 0)
1202		veclen = 0;
1203	else
1204		veclen = fpscr & FPSCR_LENGTH_MASK;
1205
1206	pr_debug("VFP: vecstride=%u veclen=%u\n", vecstride,
1207		 (veclen >> FPSCR_LENGTH_BIT) + 1);
1208
1209	if (!fop->fn)
1210		goto invalid;
1211
1212	for (vecitr = 0; vecitr <= veclen; vecitr += 1 << FPSCR_LENGTH_BIT) {
1213		s32 m = vfp_get_float(sm);
1214		u32 except;
1215		char type;
1216
1217		type = fop->flags & OP_DD ? 'd' : 's';
1218		if (op == FOP_EXT)
1219			pr_debug("VFP: itr%d (%c%u) = op[%u] (s%u=%08x)\n",
1220				 vecitr >> FPSCR_LENGTH_BIT, type, dest, sn,
1221				 sm, m);
1222		else
1223			pr_debug("VFP: itr%d (%c%u) = (s%u) op[%u] (s%u=%08x)\n",
1224				 vecitr >> FPSCR_LENGTH_BIT, type, dest, sn,
1225				 FOP_TO_IDX(op), sm, m);
1226
1227		except = fop->fn(dest, sn, m, fpscr);
1228		pr_debug("VFP: itr%d: exceptions=%08x\n",
1229			 vecitr >> FPSCR_LENGTH_BIT, except);
1230
1231		exceptions |= except;
1232
1233		/*
1234		 * CHECK: It appears to be undefined whether we stop when
1235		 * we encounter an exception.  We continue.
1236		 */
1237		dest = FREG_BANK(dest) + ((FREG_IDX(dest) + vecstride) & 7);
1238		sn = FREG_BANK(sn) + ((FREG_IDX(sn) + vecstride) & 7);
1239		if (FREG_BANK(sm) != 0)
1240			sm = FREG_BANK(sm) + ((FREG_IDX(sm) + vecstride) & 7);
1241	}
1242	return exceptions;
1243
1244 invalid:
1245	return (u32)-1;
1246}
v3.1
   1/*
   2 *  linux/arch/arm/vfp/vfpsingle.c
   3 *
   4 * This code is derived in part from John R. Housers softfloat library, which
   5 * carries the following notice:
   6 *
   7 * ===========================================================================
   8 * This C source file is part of the SoftFloat IEC/IEEE Floating-point
   9 * Arithmetic Package, Release 2.
  10 *
  11 * Written by John R. Hauser.  This work was made possible in part by the
  12 * International Computer Science Institute, located at Suite 600, 1947 Center
  13 * Street, Berkeley, California 94704.  Funding was partially provided by the
  14 * National Science Foundation under grant MIP-9311980.  The original version
  15 * of this code was written as part of a project to build a fixed-point vector
  16 * processor in collaboration with the University of California at Berkeley,
  17 * overseen by Profs. Nelson Morgan and John Wawrzynek.  More information
  18 * is available through the web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
  19 * arithmetic/softfloat.html'.
  20 *
  21 * THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE.  Although reasonable effort
  22 * has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
  23 * TIMES RESULT IN INCORRECT BEHAVIOR.  USE OF THIS SOFTWARE IS RESTRICTED TO
  24 * PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
  25 * AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
  26 *
  27 * Derivative works are acceptable, even for commercial purposes, so long as
  28 * (1) they include prominent notice that the work is derivative, and (2) they
  29 * include prominent notice akin to these three paragraphs for those parts of
  30 * this code that are retained.
  31 * ===========================================================================
  32 */
  33#include <linux/kernel.h>
  34#include <linux/bitops.h>
  35
  36#include <asm/div64.h>
  37#include <asm/vfp.h>
  38
  39#include "vfpinstr.h"
  40#include "vfp.h"
  41
  42static struct vfp_single vfp_single_default_qnan = {
  43	.exponent	= 255,
  44	.sign		= 0,
  45	.significand	= VFP_SINGLE_SIGNIFICAND_QNAN,
  46};
  47
  48static void vfp_single_dump(const char *str, struct vfp_single *s)
  49{
  50	pr_debug("VFP: %s: sign=%d exponent=%d significand=%08x\n",
  51		 str, s->sign != 0, s->exponent, s->significand);
  52}
  53
  54static void vfp_single_normalise_denormal(struct vfp_single *vs)
  55{
  56	int bits = 31 - fls(vs->significand);
  57
  58	vfp_single_dump("normalise_denormal: in", vs);
  59
  60	if (bits) {
  61		vs->exponent -= bits - 1;
  62		vs->significand <<= bits;
  63	}
  64
  65	vfp_single_dump("normalise_denormal: out", vs);
  66}
  67
  68#ifndef DEBUG
  69#define vfp_single_normaliseround(sd,vsd,fpscr,except,func) __vfp_single_normaliseround(sd,vsd,fpscr,except)
  70u32 __vfp_single_normaliseround(int sd, struct vfp_single *vs, u32 fpscr, u32 exceptions)
  71#else
  72u32 vfp_single_normaliseround(int sd, struct vfp_single *vs, u32 fpscr, u32 exceptions, const char *func)
  73#endif
  74{
  75	u32 significand, incr, rmode;
  76	int exponent, shift, underflow;
  77
  78	vfp_single_dump("pack: in", vs);
  79
  80	/*
  81	 * Infinities and NaNs are a special case.
  82	 */
  83	if (vs->exponent == 255 && (vs->significand == 0 || exceptions))
  84		goto pack;
  85
  86	/*
  87	 * Special-case zero.
  88	 */
  89	if (vs->significand == 0) {
  90		vs->exponent = 0;
  91		goto pack;
  92	}
  93
  94	exponent = vs->exponent;
  95	significand = vs->significand;
  96
  97	/*
  98	 * Normalise first.  Note that we shift the significand up to
  99	 * bit 31, so we have VFP_SINGLE_LOW_BITS + 1 below the least
 100	 * significant bit.
 101	 */
 102	shift = 32 - fls(significand);
 103	if (shift < 32 && shift) {
 104		exponent -= shift;
 105		significand <<= shift;
 106	}
 107
 108#ifdef DEBUG
 109	vs->exponent = exponent;
 110	vs->significand = significand;
 111	vfp_single_dump("pack: normalised", vs);
 112#endif
 113
 114	/*
 115	 * Tiny number?
 116	 */
 117	underflow = exponent < 0;
 118	if (underflow) {
 119		significand = vfp_shiftright32jamming(significand, -exponent);
 120		exponent = 0;
 121#ifdef DEBUG
 122		vs->exponent = exponent;
 123		vs->significand = significand;
 124		vfp_single_dump("pack: tiny number", vs);
 125#endif
 126		if (!(significand & ((1 << (VFP_SINGLE_LOW_BITS + 1)) - 1)))
 127			underflow = 0;
 128	}
 129
 130	/*
 131	 * Select rounding increment.
 132	 */
 133	incr = 0;
 134	rmode = fpscr & FPSCR_RMODE_MASK;
 135
 136	if (rmode == FPSCR_ROUND_NEAREST) {
 137		incr = 1 << VFP_SINGLE_LOW_BITS;
 138		if ((significand & (1 << (VFP_SINGLE_LOW_BITS + 1))) == 0)
 139			incr -= 1;
 140	} else if (rmode == FPSCR_ROUND_TOZERO) {
 141		incr = 0;
 142	} else if ((rmode == FPSCR_ROUND_PLUSINF) ^ (vs->sign != 0))
 143		incr = (1 << (VFP_SINGLE_LOW_BITS + 1)) - 1;
 144
 145	pr_debug("VFP: rounding increment = 0x%08x\n", incr);
 146
 147	/*
 148	 * Is our rounding going to overflow?
 149	 */
 150	if ((significand + incr) < significand) {
 151		exponent += 1;
 152		significand = (significand >> 1) | (significand & 1);
 153		incr >>= 1;
 154#ifdef DEBUG
 155		vs->exponent = exponent;
 156		vs->significand = significand;
 157		vfp_single_dump("pack: overflow", vs);
 158#endif
 159	}
 160
 161	/*
 162	 * If any of the low bits (which will be shifted out of the
 163	 * number) are non-zero, the result is inexact.
 164	 */
 165	if (significand & ((1 << (VFP_SINGLE_LOW_BITS + 1)) - 1))
 166		exceptions |= FPSCR_IXC;
 167
 168	/*
 169	 * Do our rounding.
 170	 */
 171	significand += incr;
 172
 173	/*
 174	 * Infinity?
 175	 */
 176	if (exponent >= 254) {
 177		exceptions |= FPSCR_OFC | FPSCR_IXC;
 178		if (incr == 0) {
 179			vs->exponent = 253;
 180			vs->significand = 0x7fffffff;
 181		} else {
 182			vs->exponent = 255;		/* infinity */
 183			vs->significand = 0;
 184		}
 185	} else {
 186		if (significand >> (VFP_SINGLE_LOW_BITS + 1) == 0)
 187			exponent = 0;
 188		if (exponent || significand > 0x80000000)
 189			underflow = 0;
 190		if (underflow)
 191			exceptions |= FPSCR_UFC;
 192		vs->exponent = exponent;
 193		vs->significand = significand >> 1;
 194	}
 195
 196 pack:
 197	vfp_single_dump("pack: final", vs);
 198	{
 199		s32 d = vfp_single_pack(vs);
 200#ifdef DEBUG
 201		pr_debug("VFP: %s: d(s%d)=%08x exceptions=%08x\n", func,
 202			 sd, d, exceptions);
 203#endif
 204		vfp_put_float(d, sd);
 205	}
 206
 207	return exceptions;
 208}
 209
 210/*
 211 * Propagate the NaN, setting exceptions if it is signalling.
 212 * 'n' is always a NaN.  'm' may be a number, NaN or infinity.
 213 */
 214static u32
 215vfp_propagate_nan(struct vfp_single *vsd, struct vfp_single *vsn,
 216		  struct vfp_single *vsm, u32 fpscr)
 217{
 218	struct vfp_single *nan;
 219	int tn, tm = 0;
 220
 221	tn = vfp_single_type(vsn);
 222
 223	if (vsm)
 224		tm = vfp_single_type(vsm);
 225
 226	if (fpscr & FPSCR_DEFAULT_NAN)
 227		/*
 228		 * Default NaN mode - always returns a quiet NaN
 229		 */
 230		nan = &vfp_single_default_qnan;
 231	else {
 232		/*
 233		 * Contemporary mode - select the first signalling
 234		 * NAN, or if neither are signalling, the first
 235		 * quiet NAN.
 236		 */
 237		if (tn == VFP_SNAN || (tm != VFP_SNAN && tn == VFP_QNAN))
 238			nan = vsn;
 239		else
 240			nan = vsm;
 241		/*
 242		 * Make the NaN quiet.
 243		 */
 244		nan->significand |= VFP_SINGLE_SIGNIFICAND_QNAN;
 245	}
 246
 247	*vsd = *nan;
 248
 249	/*
 250	 * If one was a signalling NAN, raise invalid operation.
 251	 */
 252	return tn == VFP_SNAN || tm == VFP_SNAN ? FPSCR_IOC : VFP_NAN_FLAG;
 253}
 254
 255
 256/*
 257 * Extended operations
 258 */
 259static u32 vfp_single_fabs(int sd, int unused, s32 m, u32 fpscr)
 260{
 261	vfp_put_float(vfp_single_packed_abs(m), sd);
 262	return 0;
 263}
 264
 265static u32 vfp_single_fcpy(int sd, int unused, s32 m, u32 fpscr)
 266{
 267	vfp_put_float(m, sd);
 268	return 0;
 269}
 270
 271static u32 vfp_single_fneg(int sd, int unused, s32 m, u32 fpscr)
 272{
 273	vfp_put_float(vfp_single_packed_negate(m), sd);
 274	return 0;
 275}
 276
 277static const u16 sqrt_oddadjust[] = {
 278	0x0004, 0x0022, 0x005d, 0x00b1, 0x011d, 0x019f, 0x0236, 0x02e0,
 279	0x039c, 0x0468, 0x0545, 0x0631, 0x072b, 0x0832, 0x0946, 0x0a67
 280};
 281
 282static const u16 sqrt_evenadjust[] = {
 283	0x0a2d, 0x08af, 0x075a, 0x0629, 0x051a, 0x0429, 0x0356, 0x029e,
 284	0x0200, 0x0179, 0x0109, 0x00af, 0x0068, 0x0034, 0x0012, 0x0002
 285};
 286
 287u32 vfp_estimate_sqrt_significand(u32 exponent, u32 significand)
 288{
 289	int index;
 290	u32 z, a;
 291
 292	if ((significand & 0xc0000000) != 0x40000000) {
 293		printk(KERN_WARNING "VFP: estimate_sqrt: invalid significand\n");
 294	}
 295
 296	a = significand << 1;
 297	index = (a >> 27) & 15;
 298	if (exponent & 1) {
 299		z = 0x4000 + (a >> 17) - sqrt_oddadjust[index];
 300		z = ((a / z) << 14) + (z << 15);
 301		a >>= 1;
 302	} else {
 303		z = 0x8000 + (a >> 17) - sqrt_evenadjust[index];
 304		z = a / z + z;
 305		z = (z >= 0x20000) ? 0xffff8000 : (z << 15);
 306		if (z <= a)
 307			return (s32)a >> 1;
 308	}
 309	{
 310		u64 v = (u64)a << 31;
 311		do_div(v, z);
 312		return v + (z >> 1);
 313	}
 314}
 315
 316static u32 vfp_single_fsqrt(int sd, int unused, s32 m, u32 fpscr)
 317{
 318	struct vfp_single vsm, vsd;
 319	int ret, tm;
 320
 321	vfp_single_unpack(&vsm, m);
 322	tm = vfp_single_type(&vsm);
 323	if (tm & (VFP_NAN|VFP_INFINITY)) {
 324		struct vfp_single *vsp = &vsd;
 325
 326		if (tm & VFP_NAN)
 327			ret = vfp_propagate_nan(vsp, &vsm, NULL, fpscr);
 328		else if (vsm.sign == 0) {
 329 sqrt_copy:
 330			vsp = &vsm;
 331			ret = 0;
 332		} else {
 333 sqrt_invalid:
 334			vsp = &vfp_single_default_qnan;
 335			ret = FPSCR_IOC;
 336		}
 337		vfp_put_float(vfp_single_pack(vsp), sd);
 338		return ret;
 339	}
 340
 341	/*
 342	 * sqrt(+/- 0) == +/- 0
 343	 */
 344	if (tm & VFP_ZERO)
 345		goto sqrt_copy;
 346
 347	/*
 348	 * Normalise a denormalised number
 349	 */
 350	if (tm & VFP_DENORMAL)
 351		vfp_single_normalise_denormal(&vsm);
 352
 353	/*
 354	 * sqrt(<0) = invalid
 355	 */
 356	if (vsm.sign)
 357		goto sqrt_invalid;
 358
 359	vfp_single_dump("sqrt", &vsm);
 360
 361	/*
 362	 * Estimate the square root.
 363	 */
 364	vsd.sign = 0;
 365	vsd.exponent = ((vsm.exponent - 127) >> 1) + 127;
 366	vsd.significand = vfp_estimate_sqrt_significand(vsm.exponent, vsm.significand) + 2;
 367
 368	vfp_single_dump("sqrt estimate", &vsd);
 369
 370	/*
 371	 * And now adjust.
 372	 */
 373	if ((vsd.significand & VFP_SINGLE_LOW_BITS_MASK) <= 5) {
 374		if (vsd.significand < 2) {
 375			vsd.significand = 0xffffffff;
 376		} else {
 377			u64 term;
 378			s64 rem;
 379			vsm.significand <<= !(vsm.exponent & 1);
 380			term = (u64)vsd.significand * vsd.significand;
 381			rem = ((u64)vsm.significand << 32) - term;
 382
 383			pr_debug("VFP: term=%016llx rem=%016llx\n", term, rem);
 384
 385			while (rem < 0) {
 386				vsd.significand -= 1;
 387				rem += ((u64)vsd.significand << 1) | 1;
 388			}
 389			vsd.significand |= rem != 0;
 390		}
 391	}
 392	vsd.significand = vfp_shiftright32jamming(vsd.significand, 1);
 393
 394	return vfp_single_normaliseround(sd, &vsd, fpscr, 0, "fsqrt");
 395}
 396
 397/*
 398 * Equal	:= ZC
 399 * Less than	:= N
 400 * Greater than	:= C
 401 * Unordered	:= CV
 402 */
 403static u32 vfp_compare(int sd, int signal_on_qnan, s32 m, u32 fpscr)
 404{
 405	s32 d;
 406	u32 ret = 0;
 407
 408	d = vfp_get_float(sd);
 409	if (vfp_single_packed_exponent(m) == 255 && vfp_single_packed_mantissa(m)) {
 410		ret |= FPSCR_C | FPSCR_V;
 411		if (signal_on_qnan || !(vfp_single_packed_mantissa(m) & (1 << (VFP_SINGLE_MANTISSA_BITS - 1))))
 412			/*
 413			 * Signalling NaN, or signalling on quiet NaN
 414			 */
 415			ret |= FPSCR_IOC;
 416	}
 417
 418	if (vfp_single_packed_exponent(d) == 255 && vfp_single_packed_mantissa(d)) {
 419		ret |= FPSCR_C | FPSCR_V;
 420		if (signal_on_qnan || !(vfp_single_packed_mantissa(d) & (1 << (VFP_SINGLE_MANTISSA_BITS - 1))))
 421			/*
 422			 * Signalling NaN, or signalling on quiet NaN
 423			 */
 424			ret |= FPSCR_IOC;
 425	}
 426
 427	if (ret == 0) {
 428		if (d == m || vfp_single_packed_abs(d | m) == 0) {
 429			/*
 430			 * equal
 431			 */
 432			ret |= FPSCR_Z | FPSCR_C;
 433		} else if (vfp_single_packed_sign(d ^ m)) {
 434			/*
 435			 * different signs
 436			 */
 437			if (vfp_single_packed_sign(d))
 438				/*
 439				 * d is negative, so d < m
 440				 */
 441				ret |= FPSCR_N;
 442			else
 443				/*
 444				 * d is positive, so d > m
 445				 */
 446				ret |= FPSCR_C;
 447		} else if ((vfp_single_packed_sign(d) != 0) ^ (d < m)) {
 448			/*
 449			 * d < m
 450			 */
 451			ret |= FPSCR_N;
 452		} else if ((vfp_single_packed_sign(d) != 0) ^ (d > m)) {
 453			/*
 454			 * d > m
 455			 */
 456			ret |= FPSCR_C;
 457		}
 458	}
 459	return ret;
 460}
 461
 462static u32 vfp_single_fcmp(int sd, int unused, s32 m, u32 fpscr)
 463{
 464	return vfp_compare(sd, 0, m, fpscr);
 465}
 466
 467static u32 vfp_single_fcmpe(int sd, int unused, s32 m, u32 fpscr)
 468{
 469	return vfp_compare(sd, 1, m, fpscr);
 470}
 471
 472static u32 vfp_single_fcmpz(int sd, int unused, s32 m, u32 fpscr)
 473{
 474	return vfp_compare(sd, 0, 0, fpscr);
 475}
 476
 477static u32 vfp_single_fcmpez(int sd, int unused, s32 m, u32 fpscr)
 478{
 479	return vfp_compare(sd, 1, 0, fpscr);
 480}
 481
 482static u32 vfp_single_fcvtd(int dd, int unused, s32 m, u32 fpscr)
 483{
 484	struct vfp_single vsm;
 485	struct vfp_double vdd;
 486	int tm;
 487	u32 exceptions = 0;
 488
 489	vfp_single_unpack(&vsm, m);
 490
 491	tm = vfp_single_type(&vsm);
 492
 493	/*
 494	 * If we have a signalling NaN, signal invalid operation.
 495	 */
 496	if (tm == VFP_SNAN)
 497		exceptions = FPSCR_IOC;
 498
 499	if (tm & VFP_DENORMAL)
 500		vfp_single_normalise_denormal(&vsm);
 501
 502	vdd.sign = vsm.sign;
 503	vdd.significand = (u64)vsm.significand << 32;
 504
 505	/*
 506	 * If we have an infinity or NaN, the exponent must be 2047.
 507	 */
 508	if (tm & (VFP_INFINITY|VFP_NAN)) {
 509		vdd.exponent = 2047;
 510		if (tm == VFP_QNAN)
 511			vdd.significand |= VFP_DOUBLE_SIGNIFICAND_QNAN;
 512		goto pack_nan;
 513	} else if (tm & VFP_ZERO)
 514		vdd.exponent = 0;
 515	else
 516		vdd.exponent = vsm.exponent + (1023 - 127);
 517
 518	return vfp_double_normaliseround(dd, &vdd, fpscr, exceptions, "fcvtd");
 519
 520 pack_nan:
 521	vfp_put_double(vfp_double_pack(&vdd), dd);
 522	return exceptions;
 523}
 524
 525static u32 vfp_single_fuito(int sd, int unused, s32 m, u32 fpscr)
 526{
 527	struct vfp_single vs;
 528
 529	vs.sign = 0;
 530	vs.exponent = 127 + 31 - 1;
 531	vs.significand = (u32)m;
 532
 533	return vfp_single_normaliseround(sd, &vs, fpscr, 0, "fuito");
 534}
 535
 536static u32 vfp_single_fsito(int sd, int unused, s32 m, u32 fpscr)
 537{
 538	struct vfp_single vs;
 539
 540	vs.sign = (m & 0x80000000) >> 16;
 541	vs.exponent = 127 + 31 - 1;
 542	vs.significand = vs.sign ? -m : m;
 543
 544	return vfp_single_normaliseround(sd, &vs, fpscr, 0, "fsito");
 545}
 546
 547static u32 vfp_single_ftoui(int sd, int unused, s32 m, u32 fpscr)
 548{
 549	struct vfp_single vsm;
 550	u32 d, exceptions = 0;
 551	int rmode = fpscr & FPSCR_RMODE_MASK;
 552	int tm;
 553
 554	vfp_single_unpack(&vsm, m);
 555	vfp_single_dump("VSM", &vsm);
 556
 557	/*
 558	 * Do we have a denormalised number?
 559	 */
 560	tm = vfp_single_type(&vsm);
 561	if (tm & VFP_DENORMAL)
 562		exceptions |= FPSCR_IDC;
 563
 564	if (tm & VFP_NAN)
 565		vsm.sign = 0;
 566
 567	if (vsm.exponent >= 127 + 32) {
 568		d = vsm.sign ? 0 : 0xffffffff;
 569		exceptions = FPSCR_IOC;
 570	} else if (vsm.exponent >= 127 - 1) {
 571		int shift = 127 + 31 - vsm.exponent;
 572		u32 rem, incr = 0;
 573
 574		/*
 575		 * 2^0 <= m < 2^32-2^8
 576		 */
 577		d = (vsm.significand << 1) >> shift;
 578		rem = vsm.significand << (33 - shift);
 579
 580		if (rmode == FPSCR_ROUND_NEAREST) {
 581			incr = 0x80000000;
 582			if ((d & 1) == 0)
 583				incr -= 1;
 584		} else if (rmode == FPSCR_ROUND_TOZERO) {
 585			incr = 0;
 586		} else if ((rmode == FPSCR_ROUND_PLUSINF) ^ (vsm.sign != 0)) {
 587			incr = ~0;
 588		}
 589
 590		if ((rem + incr) < rem) {
 591			if (d < 0xffffffff)
 592				d += 1;
 593			else
 594				exceptions |= FPSCR_IOC;
 595		}
 596
 597		if (d && vsm.sign) {
 598			d = 0;
 599			exceptions |= FPSCR_IOC;
 600		} else if (rem)
 601			exceptions |= FPSCR_IXC;
 602	} else {
 603		d = 0;
 604		if (vsm.exponent | vsm.significand) {
 605			exceptions |= FPSCR_IXC;
 606			if (rmode == FPSCR_ROUND_PLUSINF && vsm.sign == 0)
 607				d = 1;
 608			else if (rmode == FPSCR_ROUND_MINUSINF && vsm.sign) {
 609				d = 0;
 610				exceptions |= FPSCR_IOC;
 611			}
 612		}
 613	}
 614
 615	pr_debug("VFP: ftoui: d(s%d)=%08x exceptions=%08x\n", sd, d, exceptions);
 616
 617	vfp_put_float(d, sd);
 618
 619	return exceptions;
 620}
 621
 622static u32 vfp_single_ftouiz(int sd, int unused, s32 m, u32 fpscr)
 623{
 624	return vfp_single_ftoui(sd, unused, m, FPSCR_ROUND_TOZERO);
 625}
 626
 627static u32 vfp_single_ftosi(int sd, int unused, s32 m, u32 fpscr)
 628{
 629	struct vfp_single vsm;
 630	u32 d, exceptions = 0;
 631	int rmode = fpscr & FPSCR_RMODE_MASK;
 632	int tm;
 633
 634	vfp_single_unpack(&vsm, m);
 635	vfp_single_dump("VSM", &vsm);
 636
 637	/*
 638	 * Do we have a denormalised number?
 639	 */
 640	tm = vfp_single_type(&vsm);
 641	if (vfp_single_type(&vsm) & VFP_DENORMAL)
 642		exceptions |= FPSCR_IDC;
 643
 644	if (tm & VFP_NAN) {
 645		d = 0;
 646		exceptions |= FPSCR_IOC;
 647	} else if (vsm.exponent >= 127 + 32) {
 648		/*
 649		 * m >= 2^31-2^7: invalid
 650		 */
 651		d = 0x7fffffff;
 652		if (vsm.sign)
 653			d = ~d;
 654		exceptions |= FPSCR_IOC;
 655	} else if (vsm.exponent >= 127 - 1) {
 656		int shift = 127 + 31 - vsm.exponent;
 657		u32 rem, incr = 0;
 658
 659		/* 2^0 <= m <= 2^31-2^7 */
 660		d = (vsm.significand << 1) >> shift;
 661		rem = vsm.significand << (33 - shift);
 662
 663		if (rmode == FPSCR_ROUND_NEAREST) {
 664			incr = 0x80000000;
 665			if ((d & 1) == 0)
 666				incr -= 1;
 667		} else if (rmode == FPSCR_ROUND_TOZERO) {
 668			incr = 0;
 669		} else if ((rmode == FPSCR_ROUND_PLUSINF) ^ (vsm.sign != 0)) {
 670			incr = ~0;
 671		}
 672
 673		if ((rem + incr) < rem && d < 0xffffffff)
 674			d += 1;
 675		if (d > 0x7fffffff + (vsm.sign != 0)) {
 676			d = 0x7fffffff + (vsm.sign != 0);
 677			exceptions |= FPSCR_IOC;
 678		} else if (rem)
 679			exceptions |= FPSCR_IXC;
 680
 681		if (vsm.sign)
 682			d = -d;
 683	} else {
 684		d = 0;
 685		if (vsm.exponent | vsm.significand) {
 686			exceptions |= FPSCR_IXC;
 687			if (rmode == FPSCR_ROUND_PLUSINF && vsm.sign == 0)
 688				d = 1;
 689			else if (rmode == FPSCR_ROUND_MINUSINF && vsm.sign)
 690				d = -1;
 691		}
 692	}
 693
 694	pr_debug("VFP: ftosi: d(s%d)=%08x exceptions=%08x\n", sd, d, exceptions);
 695
 696	vfp_put_float((s32)d, sd);
 697
 698	return exceptions;
 699}
 700
 701static u32 vfp_single_ftosiz(int sd, int unused, s32 m, u32 fpscr)
 702{
 703	return vfp_single_ftosi(sd, unused, m, FPSCR_ROUND_TOZERO);
 704}
 705
 706static struct op fops_ext[32] = {
 707	[FEXT_TO_IDX(FEXT_FCPY)]	= { vfp_single_fcpy,   0 },
 708	[FEXT_TO_IDX(FEXT_FABS)]	= { vfp_single_fabs,   0 },
 709	[FEXT_TO_IDX(FEXT_FNEG)]	= { vfp_single_fneg,   0 },
 710	[FEXT_TO_IDX(FEXT_FSQRT)]	= { vfp_single_fsqrt,  0 },
 711	[FEXT_TO_IDX(FEXT_FCMP)]	= { vfp_single_fcmp,   OP_SCALAR },
 712	[FEXT_TO_IDX(FEXT_FCMPE)]	= { vfp_single_fcmpe,  OP_SCALAR },
 713	[FEXT_TO_IDX(FEXT_FCMPZ)]	= { vfp_single_fcmpz,  OP_SCALAR },
 714	[FEXT_TO_IDX(FEXT_FCMPEZ)]	= { vfp_single_fcmpez, OP_SCALAR },
 715	[FEXT_TO_IDX(FEXT_FCVT)]	= { vfp_single_fcvtd,  OP_SCALAR|OP_DD },
 716	[FEXT_TO_IDX(FEXT_FUITO)]	= { vfp_single_fuito,  OP_SCALAR },
 717	[FEXT_TO_IDX(FEXT_FSITO)]	= { vfp_single_fsito,  OP_SCALAR },
 718	[FEXT_TO_IDX(FEXT_FTOUI)]	= { vfp_single_ftoui,  OP_SCALAR },
 719	[FEXT_TO_IDX(FEXT_FTOUIZ)]	= { vfp_single_ftouiz, OP_SCALAR },
 720	[FEXT_TO_IDX(FEXT_FTOSI)]	= { vfp_single_ftosi,  OP_SCALAR },
 721	[FEXT_TO_IDX(FEXT_FTOSIZ)]	= { vfp_single_ftosiz, OP_SCALAR },
 722};
 723
 724
 725
 726
 727
 728static u32
 729vfp_single_fadd_nonnumber(struct vfp_single *vsd, struct vfp_single *vsn,
 730			  struct vfp_single *vsm, u32 fpscr)
 731{
 732	struct vfp_single *vsp;
 733	u32 exceptions = 0;
 734	int tn, tm;
 735
 736	tn = vfp_single_type(vsn);
 737	tm = vfp_single_type(vsm);
 738
 739	if (tn & tm & VFP_INFINITY) {
 740		/*
 741		 * Two infinities.  Are they different signs?
 742		 */
 743		if (vsn->sign ^ vsm->sign) {
 744			/*
 745			 * different signs -> invalid
 746			 */
 747			exceptions = FPSCR_IOC;
 748			vsp = &vfp_single_default_qnan;
 749		} else {
 750			/*
 751			 * same signs -> valid
 752			 */
 753			vsp = vsn;
 754		}
 755	} else if (tn & VFP_INFINITY && tm & VFP_NUMBER) {
 756		/*
 757		 * One infinity and one number -> infinity
 758		 */
 759		vsp = vsn;
 760	} else {
 761		/*
 762		 * 'n' is a NaN of some type
 763		 */
 764		return vfp_propagate_nan(vsd, vsn, vsm, fpscr);
 765	}
 766	*vsd = *vsp;
 767	return exceptions;
 768}
 769
 770static u32
 771vfp_single_add(struct vfp_single *vsd, struct vfp_single *vsn,
 772	       struct vfp_single *vsm, u32 fpscr)
 773{
 774	u32 exp_diff, m_sig;
 775
 776	if (vsn->significand & 0x80000000 ||
 777	    vsm->significand & 0x80000000) {
 778		pr_info("VFP: bad FP values in %s\n", __func__);
 779		vfp_single_dump("VSN", vsn);
 780		vfp_single_dump("VSM", vsm);
 781	}
 782
 783	/*
 784	 * Ensure that 'n' is the largest magnitude number.  Note that
 785	 * if 'n' and 'm' have equal exponents, we do not swap them.
 786	 * This ensures that NaN propagation works correctly.
 787	 */
 788	if (vsn->exponent < vsm->exponent) {
 789		struct vfp_single *t = vsn;
 790		vsn = vsm;
 791		vsm = t;
 792	}
 793
 794	/*
 795	 * Is 'n' an infinity or a NaN?  Note that 'm' may be a number,
 796	 * infinity or a NaN here.
 797	 */
 798	if (vsn->exponent == 255)
 799		return vfp_single_fadd_nonnumber(vsd, vsn, vsm, fpscr);
 800
 801	/*
 802	 * We have two proper numbers, where 'vsn' is the larger magnitude.
 803	 *
 804	 * Copy 'n' to 'd' before doing the arithmetic.
 805	 */
 806	*vsd = *vsn;
 807
 808	/*
 809	 * Align both numbers.
 810	 */
 811	exp_diff = vsn->exponent - vsm->exponent;
 812	m_sig = vfp_shiftright32jamming(vsm->significand, exp_diff);
 813
 814	/*
 815	 * If the signs are different, we are really subtracting.
 816	 */
 817	if (vsn->sign ^ vsm->sign) {
 818		m_sig = vsn->significand - m_sig;
 819		if ((s32)m_sig < 0) {
 820			vsd->sign = vfp_sign_negate(vsd->sign);
 821			m_sig = -m_sig;
 822		} else if (m_sig == 0) {
 823			vsd->sign = (fpscr & FPSCR_RMODE_MASK) ==
 824				      FPSCR_ROUND_MINUSINF ? 0x8000 : 0;
 825		}
 826	} else {
 827		m_sig = vsn->significand + m_sig;
 828	}
 829	vsd->significand = m_sig;
 830
 831	return 0;
 832}
 833
 834static u32
 835vfp_single_multiply(struct vfp_single *vsd, struct vfp_single *vsn, struct vfp_single *vsm, u32 fpscr)
 836{
 837	vfp_single_dump("VSN", vsn);
 838	vfp_single_dump("VSM", vsm);
 839
 840	/*
 841	 * Ensure that 'n' is the largest magnitude number.  Note that
 842	 * if 'n' and 'm' have equal exponents, we do not swap them.
 843	 * This ensures that NaN propagation works correctly.
 844	 */
 845	if (vsn->exponent < vsm->exponent) {
 846		struct vfp_single *t = vsn;
 847		vsn = vsm;
 848		vsm = t;
 849		pr_debug("VFP: swapping M <-> N\n");
 850	}
 851
 852	vsd->sign = vsn->sign ^ vsm->sign;
 853
 854	/*
 855	 * If 'n' is an infinity or NaN, handle it.  'm' may be anything.
 856	 */
 857	if (vsn->exponent == 255) {
 858		if (vsn->significand || (vsm->exponent == 255 && vsm->significand))
 859			return vfp_propagate_nan(vsd, vsn, vsm, fpscr);
 860		if ((vsm->exponent | vsm->significand) == 0) {
 861			*vsd = vfp_single_default_qnan;
 862			return FPSCR_IOC;
 863		}
 864		vsd->exponent = vsn->exponent;
 865		vsd->significand = 0;
 866		return 0;
 867	}
 868
 869	/*
 870	 * If 'm' is zero, the result is always zero.  In this case,
 871	 * 'n' may be zero or a number, but it doesn't matter which.
 872	 */
 873	if ((vsm->exponent | vsm->significand) == 0) {
 874		vsd->exponent = 0;
 875		vsd->significand = 0;
 876		return 0;
 877	}
 878
 879	/*
 880	 * We add 2 to the destination exponent for the same reason as
 881	 * the addition case - though this time we have +1 from each
 882	 * input operand.
 883	 */
 884	vsd->exponent = vsn->exponent + vsm->exponent - 127 + 2;
 885	vsd->significand = vfp_hi64to32jamming((u64)vsn->significand * vsm->significand);
 886
 887	vfp_single_dump("VSD", vsd);
 888	return 0;
 889}
 890
 891#define NEG_MULTIPLY	(1 << 0)
 892#define NEG_SUBTRACT	(1 << 1)
 893
 894static u32
 895vfp_single_multiply_accumulate(int sd, int sn, s32 m, u32 fpscr, u32 negate, char *func)
 896{
 897	struct vfp_single vsd, vsp, vsn, vsm;
 898	u32 exceptions;
 899	s32 v;
 900
 901	v = vfp_get_float(sn);
 902	pr_debug("VFP: s%u = %08x\n", sn, v);
 903	vfp_single_unpack(&vsn, v);
 904	if (vsn.exponent == 0 && vsn.significand)
 905		vfp_single_normalise_denormal(&vsn);
 906
 907	vfp_single_unpack(&vsm, m);
 908	if (vsm.exponent == 0 && vsm.significand)
 909		vfp_single_normalise_denormal(&vsm);
 910
 911	exceptions = vfp_single_multiply(&vsp, &vsn, &vsm, fpscr);
 912	if (negate & NEG_MULTIPLY)
 913		vsp.sign = vfp_sign_negate(vsp.sign);
 914
 915	v = vfp_get_float(sd);
 916	pr_debug("VFP: s%u = %08x\n", sd, v);
 917	vfp_single_unpack(&vsn, v);
 
 
 918	if (negate & NEG_SUBTRACT)
 919		vsn.sign = vfp_sign_negate(vsn.sign);
 920
 921	exceptions |= vfp_single_add(&vsd, &vsn, &vsp, fpscr);
 922
 923	return vfp_single_normaliseround(sd, &vsd, fpscr, exceptions, func);
 924}
 925
 926/*
 927 * Standard operations
 928 */
 929
 930/*
 931 * sd = sd + (sn * sm)
 932 */
 933static u32 vfp_single_fmac(int sd, int sn, s32 m, u32 fpscr)
 934{
 935	return vfp_single_multiply_accumulate(sd, sn, m, fpscr, 0, "fmac");
 936}
 937
 938/*
 939 * sd = sd - (sn * sm)
 940 */
 941static u32 vfp_single_fnmac(int sd, int sn, s32 m, u32 fpscr)
 942{
 943	return vfp_single_multiply_accumulate(sd, sn, m, fpscr, NEG_MULTIPLY, "fnmac");
 944}
 945
 946/*
 947 * sd = -sd + (sn * sm)
 948 */
 949static u32 vfp_single_fmsc(int sd, int sn, s32 m, u32 fpscr)
 950{
 951	return vfp_single_multiply_accumulate(sd, sn, m, fpscr, NEG_SUBTRACT, "fmsc");
 952}
 953
 954/*
 955 * sd = -sd - (sn * sm)
 956 */
 957static u32 vfp_single_fnmsc(int sd, int sn, s32 m, u32 fpscr)
 958{
 959	return vfp_single_multiply_accumulate(sd, sn, m, fpscr, NEG_SUBTRACT | NEG_MULTIPLY, "fnmsc");
 960}
 961
 962/*
 963 * sd = sn * sm
 964 */
 965static u32 vfp_single_fmul(int sd, int sn, s32 m, u32 fpscr)
 966{
 967	struct vfp_single vsd, vsn, vsm;
 968	u32 exceptions;
 969	s32 n = vfp_get_float(sn);
 970
 971	pr_debug("VFP: s%u = %08x\n", sn, n);
 972
 973	vfp_single_unpack(&vsn, n);
 974	if (vsn.exponent == 0 && vsn.significand)
 975		vfp_single_normalise_denormal(&vsn);
 976
 977	vfp_single_unpack(&vsm, m);
 978	if (vsm.exponent == 0 && vsm.significand)
 979		vfp_single_normalise_denormal(&vsm);
 980
 981	exceptions = vfp_single_multiply(&vsd, &vsn, &vsm, fpscr);
 982	return vfp_single_normaliseround(sd, &vsd, fpscr, exceptions, "fmul");
 983}
 984
 985/*
 986 * sd = -(sn * sm)
 987 */
 988static u32 vfp_single_fnmul(int sd, int sn, s32 m, u32 fpscr)
 989{
 990	struct vfp_single vsd, vsn, vsm;
 991	u32 exceptions;
 992	s32 n = vfp_get_float(sn);
 993
 994	pr_debug("VFP: s%u = %08x\n", sn, n);
 995
 996	vfp_single_unpack(&vsn, n);
 997	if (vsn.exponent == 0 && vsn.significand)
 998		vfp_single_normalise_denormal(&vsn);
 999
1000	vfp_single_unpack(&vsm, m);
1001	if (vsm.exponent == 0 && vsm.significand)
1002		vfp_single_normalise_denormal(&vsm);
1003
1004	exceptions = vfp_single_multiply(&vsd, &vsn, &vsm, fpscr);
1005	vsd.sign = vfp_sign_negate(vsd.sign);
1006	return vfp_single_normaliseround(sd, &vsd, fpscr, exceptions, "fnmul");
1007}
1008
1009/*
1010 * sd = sn + sm
1011 */
1012static u32 vfp_single_fadd(int sd, int sn, s32 m, u32 fpscr)
1013{
1014	struct vfp_single vsd, vsn, vsm;
1015	u32 exceptions;
1016	s32 n = vfp_get_float(sn);
1017
1018	pr_debug("VFP: s%u = %08x\n", sn, n);
1019
1020	/*
1021	 * Unpack and normalise denormals.
1022	 */
1023	vfp_single_unpack(&vsn, n);
1024	if (vsn.exponent == 0 && vsn.significand)
1025		vfp_single_normalise_denormal(&vsn);
1026
1027	vfp_single_unpack(&vsm, m);
1028	if (vsm.exponent == 0 && vsm.significand)
1029		vfp_single_normalise_denormal(&vsm);
1030
1031	exceptions = vfp_single_add(&vsd, &vsn, &vsm, fpscr);
1032
1033	return vfp_single_normaliseround(sd, &vsd, fpscr, exceptions, "fadd");
1034}
1035
1036/*
1037 * sd = sn - sm
1038 */
1039static u32 vfp_single_fsub(int sd, int sn, s32 m, u32 fpscr)
1040{
1041	/*
1042	 * Subtraction is addition with one sign inverted.
1043	 */
1044	return vfp_single_fadd(sd, sn, vfp_single_packed_negate(m), fpscr);
1045}
1046
1047/*
1048 * sd = sn / sm
1049 */
1050static u32 vfp_single_fdiv(int sd, int sn, s32 m, u32 fpscr)
1051{
1052	struct vfp_single vsd, vsn, vsm;
1053	u32 exceptions = 0;
1054	s32 n = vfp_get_float(sn);
1055	int tm, tn;
1056
1057	pr_debug("VFP: s%u = %08x\n", sn, n);
1058
1059	vfp_single_unpack(&vsn, n);
1060	vfp_single_unpack(&vsm, m);
1061
1062	vsd.sign = vsn.sign ^ vsm.sign;
1063
1064	tn = vfp_single_type(&vsn);
1065	tm = vfp_single_type(&vsm);
1066
1067	/*
1068	 * Is n a NAN?
1069	 */
1070	if (tn & VFP_NAN)
1071		goto vsn_nan;
1072
1073	/*
1074	 * Is m a NAN?
1075	 */
1076	if (tm & VFP_NAN)
1077		goto vsm_nan;
1078
1079	/*
1080	 * If n and m are infinity, the result is invalid
1081	 * If n and m are zero, the result is invalid
1082	 */
1083	if (tm & tn & (VFP_INFINITY|VFP_ZERO))
1084		goto invalid;
1085
1086	/*
1087	 * If n is infinity, the result is infinity
1088	 */
1089	if (tn & VFP_INFINITY)
1090		goto infinity;
1091
1092	/*
1093	 * If m is zero, raise div0 exception
1094	 */
1095	if (tm & VFP_ZERO)
1096		goto divzero;
1097
1098	/*
1099	 * If m is infinity, or n is zero, the result is zero
1100	 */
1101	if (tm & VFP_INFINITY || tn & VFP_ZERO)
1102		goto zero;
1103
1104	if (tn & VFP_DENORMAL)
1105		vfp_single_normalise_denormal(&vsn);
1106	if (tm & VFP_DENORMAL)
1107		vfp_single_normalise_denormal(&vsm);
1108
1109	/*
1110	 * Ok, we have two numbers, we can perform division.
1111	 */
1112	vsd.exponent = vsn.exponent - vsm.exponent + 127 - 1;
1113	vsm.significand <<= 1;
1114	if (vsm.significand <= (2 * vsn.significand)) {
1115		vsn.significand >>= 1;
1116		vsd.exponent++;
1117	}
1118	{
1119		u64 significand = (u64)vsn.significand << 32;
1120		do_div(significand, vsm.significand);
1121		vsd.significand = significand;
1122	}
1123	if ((vsd.significand & 0x3f) == 0)
1124		vsd.significand |= ((u64)vsm.significand * vsd.significand != (u64)vsn.significand << 32);
1125
1126	return vfp_single_normaliseround(sd, &vsd, fpscr, 0, "fdiv");
1127
1128 vsn_nan:
1129	exceptions = vfp_propagate_nan(&vsd, &vsn, &vsm, fpscr);
1130 pack:
1131	vfp_put_float(vfp_single_pack(&vsd), sd);
1132	return exceptions;
1133
1134 vsm_nan:
1135	exceptions = vfp_propagate_nan(&vsd, &vsm, &vsn, fpscr);
1136	goto pack;
1137
1138 zero:
1139	vsd.exponent = 0;
1140	vsd.significand = 0;
1141	goto pack;
1142
1143 divzero:
1144	exceptions = FPSCR_DZC;
1145 infinity:
1146	vsd.exponent = 255;
1147	vsd.significand = 0;
1148	goto pack;
1149
1150 invalid:
1151	vfp_put_float(vfp_single_pack(&vfp_single_default_qnan), sd);
1152	return FPSCR_IOC;
1153}
1154
1155static struct op fops[16] = {
1156	[FOP_TO_IDX(FOP_FMAC)]	= { vfp_single_fmac,  0 },
1157	[FOP_TO_IDX(FOP_FNMAC)]	= { vfp_single_fnmac, 0 },
1158	[FOP_TO_IDX(FOP_FMSC)]	= { vfp_single_fmsc,  0 },
1159	[FOP_TO_IDX(FOP_FNMSC)]	= { vfp_single_fnmsc, 0 },
1160	[FOP_TO_IDX(FOP_FMUL)]	= { vfp_single_fmul,  0 },
1161	[FOP_TO_IDX(FOP_FNMUL)]	= { vfp_single_fnmul, 0 },
1162	[FOP_TO_IDX(FOP_FADD)]	= { vfp_single_fadd,  0 },
1163	[FOP_TO_IDX(FOP_FSUB)]	= { vfp_single_fsub,  0 },
1164	[FOP_TO_IDX(FOP_FDIV)]	= { vfp_single_fdiv,  0 },
1165};
1166
1167#define FREG_BANK(x)	((x) & 0x18)
1168#define FREG_IDX(x)	((x) & 7)
1169
1170u32 vfp_single_cpdo(u32 inst, u32 fpscr)
1171{
1172	u32 op = inst & FOP_MASK;
1173	u32 exceptions = 0;
1174	unsigned int dest;
1175	unsigned int sn = vfp_get_sn(inst);
1176	unsigned int sm = vfp_get_sm(inst);
1177	unsigned int vecitr, veclen, vecstride;
1178	struct op *fop;
1179
1180	vecstride = 1 + ((fpscr & FPSCR_STRIDE_MASK) == FPSCR_STRIDE_MASK);
1181
1182	fop = (op == FOP_EXT) ? &fops_ext[FEXT_TO_IDX(inst)] : &fops[FOP_TO_IDX(op)];
1183
1184	/*
1185	 * fcvtsd takes a dN register number as destination, not sN.
1186	 * Technically, if bit 0 of dd is set, this is an invalid
1187	 * instruction.  However, we ignore this for efficiency.
1188	 * It also only operates on scalars.
1189	 */
1190	if (fop->flags & OP_DD)
1191		dest = vfp_get_dd(inst);
1192	else
1193		dest = vfp_get_sd(inst);
1194
1195	/*
1196	 * If destination bank is zero, vector length is always '1'.
1197	 * ARM DDI0100F C5.1.3, C5.3.2.
1198	 */
1199	if ((fop->flags & OP_SCALAR) || FREG_BANK(dest) == 0)
1200		veclen = 0;
1201	else
1202		veclen = fpscr & FPSCR_LENGTH_MASK;
1203
1204	pr_debug("VFP: vecstride=%u veclen=%u\n", vecstride,
1205		 (veclen >> FPSCR_LENGTH_BIT) + 1);
1206
1207	if (!fop->fn)
1208		goto invalid;
1209
1210	for (vecitr = 0; vecitr <= veclen; vecitr += 1 << FPSCR_LENGTH_BIT) {
1211		s32 m = vfp_get_float(sm);
1212		u32 except;
1213		char type;
1214
1215		type = fop->flags & OP_DD ? 'd' : 's';
1216		if (op == FOP_EXT)
1217			pr_debug("VFP: itr%d (%c%u) = op[%u] (s%u=%08x)\n",
1218				 vecitr >> FPSCR_LENGTH_BIT, type, dest, sn,
1219				 sm, m);
1220		else
1221			pr_debug("VFP: itr%d (%c%u) = (s%u) op[%u] (s%u=%08x)\n",
1222				 vecitr >> FPSCR_LENGTH_BIT, type, dest, sn,
1223				 FOP_TO_IDX(op), sm, m);
1224
1225		except = fop->fn(dest, sn, m, fpscr);
1226		pr_debug("VFP: itr%d: exceptions=%08x\n",
1227			 vecitr >> FPSCR_LENGTH_BIT, except);
1228
1229		exceptions |= except;
1230
1231		/*
1232		 * CHECK: It appears to be undefined whether we stop when
1233		 * we encounter an exception.  We continue.
1234		 */
1235		dest = FREG_BANK(dest) + ((FREG_IDX(dest) + vecstride) & 7);
1236		sn = FREG_BANK(sn) + ((FREG_IDX(sn) + vecstride) & 7);
1237		if (FREG_BANK(sm) != 0)
1238			sm = FREG_BANK(sm) + ((FREG_IDX(sm) + vecstride) & 7);
1239	}
1240	return exceptions;
1241
1242 invalid:
1243	return (u32)-1;
1244}