Linux Audio

Check our new training course

Loading...
Note: File does not exist in v4.6.
  1#undef DEBUG
  2
  3/*
  4 * ARM performance counter support.
  5 *
  6 * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles
  7 * Copyright (C) 2010 ARM Ltd., Will Deacon <will.deacon@arm.com>
  8 *
  9 * This code is based on the sparc64 perf event code, which is in turn based
 10 * on the x86 code. Callchain code is based on the ARM OProfile backtrace
 11 * code.
 12 */
 13#define pr_fmt(fmt) "hw perfevents: " fmt
 14
 15#include <linux/interrupt.h>
 16#include <linux/kernel.h>
 17#include <linux/module.h>
 18#include <linux/perf_event.h>
 19#include <linux/platform_device.h>
 20#include <linux/spinlock.h>
 21#include <linux/uaccess.h>
 22
 23#include <asm/cputype.h>
 24#include <asm/irq.h>
 25#include <asm/irq_regs.h>
 26#include <asm/pmu.h>
 27#include <asm/stacktrace.h>
 28
 29static struct platform_device *pmu_device;
 30
 31/*
 32 * Hardware lock to serialize accesses to PMU registers. Needed for the
 33 * read/modify/write sequences.
 34 */
 35static DEFINE_RAW_SPINLOCK(pmu_lock);
 36
 37/*
 38 * ARMv6 supports a maximum of 3 events, starting from index 1. If we add
 39 * another platform that supports more, we need to increase this to be the
 40 * largest of all platforms.
 41 *
 42 * ARMv7 supports up to 32 events:
 43 *  cycle counter CCNT + 31 events counters CNT0..30.
 44 *  Cortex-A8 has 1+4 counters, Cortex-A9 has 1+6 counters.
 45 */
 46#define ARMPMU_MAX_HWEVENTS		33
 47
 48/* The events for a given CPU. */
 49struct cpu_hw_events {
 50	/*
 51	 * The events that are active on the CPU for the given index. Index 0
 52	 * is reserved.
 53	 */
 54	struct perf_event	*events[ARMPMU_MAX_HWEVENTS];
 55
 56	/*
 57	 * A 1 bit for an index indicates that the counter is being used for
 58	 * an event. A 0 means that the counter can be used.
 59	 */
 60	unsigned long		used_mask[BITS_TO_LONGS(ARMPMU_MAX_HWEVENTS)];
 61
 62	/*
 63	 * A 1 bit for an index indicates that the counter is actively being
 64	 * used.
 65	 */
 66	unsigned long		active_mask[BITS_TO_LONGS(ARMPMU_MAX_HWEVENTS)];
 67};
 68static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
 69
 70struct arm_pmu {
 71	enum arm_perf_pmu_ids id;
 72	const char	*name;
 73	irqreturn_t	(*handle_irq)(int irq_num, void *dev);
 74	void		(*enable)(struct hw_perf_event *evt, int idx);
 75	void		(*disable)(struct hw_perf_event *evt, int idx);
 76	int		(*get_event_idx)(struct cpu_hw_events *cpuc,
 77					 struct hw_perf_event *hwc);
 78	u32		(*read_counter)(int idx);
 79	void		(*write_counter)(int idx, u32 val);
 80	void		(*start)(void);
 81	void		(*stop)(void);
 82	void		(*reset)(void *);
 83	const unsigned	(*cache_map)[PERF_COUNT_HW_CACHE_MAX]
 84				    [PERF_COUNT_HW_CACHE_OP_MAX]
 85				    [PERF_COUNT_HW_CACHE_RESULT_MAX];
 86	const unsigned	(*event_map)[PERF_COUNT_HW_MAX];
 87	u32		raw_event_mask;
 88	int		num_events;
 89	u64		max_period;
 90};
 91
 92/* Set at runtime when we know what CPU type we are. */
 93static const struct arm_pmu *armpmu;
 94
 95enum arm_perf_pmu_ids
 96armpmu_get_pmu_id(void)
 97{
 98	int id = -ENODEV;
 99
100	if (armpmu != NULL)
101		id = armpmu->id;
102
103	return id;
104}
105EXPORT_SYMBOL_GPL(armpmu_get_pmu_id);
106
107int
108armpmu_get_max_events(void)
109{
110	int max_events = 0;
111
112	if (armpmu != NULL)
113		max_events = armpmu->num_events;
114
115	return max_events;
116}
117EXPORT_SYMBOL_GPL(armpmu_get_max_events);
118
119int perf_num_counters(void)
120{
121	return armpmu_get_max_events();
122}
123EXPORT_SYMBOL_GPL(perf_num_counters);
124
125#define HW_OP_UNSUPPORTED		0xFFFF
126
127#define C(_x) \
128	PERF_COUNT_HW_CACHE_##_x
129
130#define CACHE_OP_UNSUPPORTED		0xFFFF
131
132static int
133armpmu_map_cache_event(u64 config)
134{
135	unsigned int cache_type, cache_op, cache_result, ret;
136
137	cache_type = (config >>  0) & 0xff;
138	if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
139		return -EINVAL;
140
141	cache_op = (config >>  8) & 0xff;
142	if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
143		return -EINVAL;
144
145	cache_result = (config >> 16) & 0xff;
146	if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
147		return -EINVAL;
148
149	ret = (int)(*armpmu->cache_map)[cache_type][cache_op][cache_result];
150
151	if (ret == CACHE_OP_UNSUPPORTED)
152		return -ENOENT;
153
154	return ret;
155}
156
157static int
158armpmu_map_event(u64 config)
159{
160	int mapping = (*armpmu->event_map)[config];
161	return mapping == HW_OP_UNSUPPORTED ? -EOPNOTSUPP : mapping;
162}
163
164static int
165armpmu_map_raw_event(u64 config)
166{
167	return (int)(config & armpmu->raw_event_mask);
168}
169
170static int
171armpmu_event_set_period(struct perf_event *event,
172			struct hw_perf_event *hwc,
173			int idx)
174{
175	s64 left = local64_read(&hwc->period_left);
176	s64 period = hwc->sample_period;
177	int ret = 0;
178
179	if (unlikely(left <= -period)) {
180		left = period;
181		local64_set(&hwc->period_left, left);
182		hwc->last_period = period;
183		ret = 1;
184	}
185
186	if (unlikely(left <= 0)) {
187		left += period;
188		local64_set(&hwc->period_left, left);
189		hwc->last_period = period;
190		ret = 1;
191	}
192
193	if (left > (s64)armpmu->max_period)
194		left = armpmu->max_period;
195
196	local64_set(&hwc->prev_count, (u64)-left);
197
198	armpmu->write_counter(idx, (u64)(-left) & 0xffffffff);
199
200	perf_event_update_userpage(event);
201
202	return ret;
203}
204
205static u64
206armpmu_event_update(struct perf_event *event,
207		    struct hw_perf_event *hwc,
208		    int idx, int overflow)
209{
210	u64 delta, prev_raw_count, new_raw_count;
211
212again:
213	prev_raw_count = local64_read(&hwc->prev_count);
214	new_raw_count = armpmu->read_counter(idx);
215
216	if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
217			     new_raw_count) != prev_raw_count)
218		goto again;
219
220	new_raw_count &= armpmu->max_period;
221	prev_raw_count &= armpmu->max_period;
222
223	if (overflow)
224		delta = armpmu->max_period - prev_raw_count + new_raw_count + 1;
225	else
226		delta = new_raw_count - prev_raw_count;
227
228	local64_add(delta, &event->count);
229	local64_sub(delta, &hwc->period_left);
230
231	return new_raw_count;
232}
233
234static void
235armpmu_read(struct perf_event *event)
236{
237	struct hw_perf_event *hwc = &event->hw;
238
239	/* Don't read disabled counters! */
240	if (hwc->idx < 0)
241		return;
242
243	armpmu_event_update(event, hwc, hwc->idx, 0);
244}
245
246static void
247armpmu_stop(struct perf_event *event, int flags)
248{
249	struct hw_perf_event *hwc = &event->hw;
250
251	if (!armpmu)
252		return;
253
254	/*
255	 * ARM pmu always has to update the counter, so ignore
256	 * PERF_EF_UPDATE, see comments in armpmu_start().
257	 */
258	if (!(hwc->state & PERF_HES_STOPPED)) {
259		armpmu->disable(hwc, hwc->idx);
260		barrier(); /* why? */
261		armpmu_event_update(event, hwc, hwc->idx, 0);
262		hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
263	}
264}
265
266static void
267armpmu_start(struct perf_event *event, int flags)
268{
269	struct hw_perf_event *hwc = &event->hw;
270
271	if (!armpmu)
272		return;
273
274	/*
275	 * ARM pmu always has to reprogram the period, so ignore
276	 * PERF_EF_RELOAD, see the comment below.
277	 */
278	if (flags & PERF_EF_RELOAD)
279		WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
280
281	hwc->state = 0;
282	/*
283	 * Set the period again. Some counters can't be stopped, so when we
284	 * were stopped we simply disabled the IRQ source and the counter
285	 * may have been left counting. If we don't do this step then we may
286	 * get an interrupt too soon or *way* too late if the overflow has
287	 * happened since disabling.
288	 */
289	armpmu_event_set_period(event, hwc, hwc->idx);
290	armpmu->enable(hwc, hwc->idx);
291}
292
293static void
294armpmu_del(struct perf_event *event, int flags)
295{
296	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
297	struct hw_perf_event *hwc = &event->hw;
298	int idx = hwc->idx;
299
300	WARN_ON(idx < 0);
301
302	clear_bit(idx, cpuc->active_mask);
303	armpmu_stop(event, PERF_EF_UPDATE);
304	cpuc->events[idx] = NULL;
305	clear_bit(idx, cpuc->used_mask);
306
307	perf_event_update_userpage(event);
308}
309
310static int
311armpmu_add(struct perf_event *event, int flags)
312{
313	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
314	struct hw_perf_event *hwc = &event->hw;
315	int idx;
316	int err = 0;
317
318	perf_pmu_disable(event->pmu);
319
320	/* If we don't have a space for the counter then finish early. */
321	idx = armpmu->get_event_idx(cpuc, hwc);
322	if (idx < 0) {
323		err = idx;
324		goto out;
325	}
326
327	/*
328	 * If there is an event in the counter we are going to use then make
329	 * sure it is disabled.
330	 */
331	event->hw.idx = idx;
332	armpmu->disable(hwc, idx);
333	cpuc->events[idx] = event;
334	set_bit(idx, cpuc->active_mask);
335
336	hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
337	if (flags & PERF_EF_START)
338		armpmu_start(event, PERF_EF_RELOAD);
339
340	/* Propagate our changes to the userspace mapping. */
341	perf_event_update_userpage(event);
342
343out:
344	perf_pmu_enable(event->pmu);
345	return err;
346}
347
348static struct pmu pmu;
349
350static int
351validate_event(struct cpu_hw_events *cpuc,
352	       struct perf_event *event)
353{
354	struct hw_perf_event fake_event = event->hw;
355
356	if (event->pmu != &pmu || event->state <= PERF_EVENT_STATE_OFF)
357		return 1;
358
359	return armpmu->get_event_idx(cpuc, &fake_event) >= 0;
360}
361
362static int
363validate_group(struct perf_event *event)
364{
365	struct perf_event *sibling, *leader = event->group_leader;
366	struct cpu_hw_events fake_pmu;
367
368	memset(&fake_pmu, 0, sizeof(fake_pmu));
369
370	if (!validate_event(&fake_pmu, leader))
371		return -ENOSPC;
372
373	list_for_each_entry(sibling, &leader->sibling_list, group_entry) {
374		if (!validate_event(&fake_pmu, sibling))
375			return -ENOSPC;
376	}
377
378	if (!validate_event(&fake_pmu, event))
379		return -ENOSPC;
380
381	return 0;
382}
383
384static irqreturn_t armpmu_platform_irq(int irq, void *dev)
385{
386	struct arm_pmu_platdata *plat = dev_get_platdata(&pmu_device->dev);
387
388	return plat->handle_irq(irq, dev, armpmu->handle_irq);
389}
390
391static int
392armpmu_reserve_hardware(void)
393{
394	struct arm_pmu_platdata *plat;
395	irq_handler_t handle_irq;
396	int i, err = -ENODEV, irq;
397
398	pmu_device = reserve_pmu(ARM_PMU_DEVICE_CPU);
399	if (IS_ERR(pmu_device)) {
400		pr_warning("unable to reserve pmu\n");
401		return PTR_ERR(pmu_device);
402	}
403
404	init_pmu(ARM_PMU_DEVICE_CPU);
405
406	plat = dev_get_platdata(&pmu_device->dev);
407	if (plat && plat->handle_irq)
408		handle_irq = armpmu_platform_irq;
409	else
410		handle_irq = armpmu->handle_irq;
411
412	if (pmu_device->num_resources < 1) {
413		pr_err("no irqs for PMUs defined\n");
414		return -ENODEV;
415	}
416
417	for (i = 0; i < pmu_device->num_resources; ++i) {
418		irq = platform_get_irq(pmu_device, i);
419		if (irq < 0)
420			continue;
421
422		err = request_irq(irq, handle_irq,
423				  IRQF_DISABLED | IRQF_NOBALANCING,
424				  "armpmu", NULL);
425		if (err) {
426			pr_warning("unable to request IRQ%d for ARM perf "
427				"counters\n", irq);
428			break;
429		}
430	}
431
432	if (err) {
433		for (i = i - 1; i >= 0; --i) {
434			irq = platform_get_irq(pmu_device, i);
435			if (irq >= 0)
436				free_irq(irq, NULL);
437		}
438		release_pmu(ARM_PMU_DEVICE_CPU);
439		pmu_device = NULL;
440	}
441
442	return err;
443}
444
445static void
446armpmu_release_hardware(void)
447{
448	int i, irq;
449
450	for (i = pmu_device->num_resources - 1; i >= 0; --i) {
451		irq = platform_get_irq(pmu_device, i);
452		if (irq >= 0)
453			free_irq(irq, NULL);
454	}
455	armpmu->stop();
456
457	release_pmu(ARM_PMU_DEVICE_CPU);
458	pmu_device = NULL;
459}
460
461static atomic_t active_events = ATOMIC_INIT(0);
462static DEFINE_MUTEX(pmu_reserve_mutex);
463
464static void
465hw_perf_event_destroy(struct perf_event *event)
466{
467	if (atomic_dec_and_mutex_lock(&active_events, &pmu_reserve_mutex)) {
468		armpmu_release_hardware();
469		mutex_unlock(&pmu_reserve_mutex);
470	}
471}
472
473static int
474__hw_perf_event_init(struct perf_event *event)
475{
476	struct hw_perf_event *hwc = &event->hw;
477	int mapping, err;
478
479	/* Decode the generic type into an ARM event identifier. */
480	if (PERF_TYPE_HARDWARE == event->attr.type) {
481		mapping = armpmu_map_event(event->attr.config);
482	} else if (PERF_TYPE_HW_CACHE == event->attr.type) {
483		mapping = armpmu_map_cache_event(event->attr.config);
484	} else if (PERF_TYPE_RAW == event->attr.type) {
485		mapping = armpmu_map_raw_event(event->attr.config);
486	} else {
487		pr_debug("event type %x not supported\n", event->attr.type);
488		return -EOPNOTSUPP;
489	}
490
491	if (mapping < 0) {
492		pr_debug("event %x:%llx not supported\n", event->attr.type,
493			 event->attr.config);
494		return mapping;
495	}
496
497	/*
498	 * Check whether we need to exclude the counter from certain modes.
499	 * The ARM performance counters are on all of the time so if someone
500	 * has asked us for some excludes then we have to fail.
501	 */
502	if (event->attr.exclude_kernel || event->attr.exclude_user ||
503	    event->attr.exclude_hv || event->attr.exclude_idle) {
504		pr_debug("ARM performance counters do not support "
505			 "mode exclusion\n");
506		return -EPERM;
507	}
508
509	/*
510	 * We don't assign an index until we actually place the event onto
511	 * hardware. Use -1 to signify that we haven't decided where to put it
512	 * yet. For SMP systems, each core has it's own PMU so we can't do any
513	 * clever allocation or constraints checking at this point.
514	 */
515	hwc->idx = -1;
516
517	/*
518	 * Store the event encoding into the config_base field. config and
519	 * event_base are unused as the only 2 things we need to know are
520	 * the event mapping and the counter to use. The counter to use is
521	 * also the indx and the config_base is the event type.
522	 */
523	hwc->config_base	    = (unsigned long)mapping;
524	hwc->config		    = 0;
525	hwc->event_base		    = 0;
526
527	if (!hwc->sample_period) {
528		hwc->sample_period  = armpmu->max_period;
529		hwc->last_period    = hwc->sample_period;
530		local64_set(&hwc->period_left, hwc->sample_period);
531	}
532
533	err = 0;
534	if (event->group_leader != event) {
535		err = validate_group(event);
536		if (err)
537			return -EINVAL;
538	}
539
540	return err;
541}
542
543static int armpmu_event_init(struct perf_event *event)
544{
545	int err = 0;
546
547	switch (event->attr.type) {
548	case PERF_TYPE_RAW:
549	case PERF_TYPE_HARDWARE:
550	case PERF_TYPE_HW_CACHE:
551		break;
552
553	default:
554		return -ENOENT;
555	}
556
557	if (!armpmu)
558		return -ENODEV;
559
560	event->destroy = hw_perf_event_destroy;
561
562	if (!atomic_inc_not_zero(&active_events)) {
563		mutex_lock(&pmu_reserve_mutex);
564		if (atomic_read(&active_events) == 0) {
565			err = armpmu_reserve_hardware();
566		}
567
568		if (!err)
569			atomic_inc(&active_events);
570		mutex_unlock(&pmu_reserve_mutex);
571	}
572
573	if (err)
574		return err;
575
576	err = __hw_perf_event_init(event);
577	if (err)
578		hw_perf_event_destroy(event);
579
580	return err;
581}
582
583static void armpmu_enable(struct pmu *pmu)
584{
585	/* Enable all of the perf events on hardware. */
586	int idx, enabled = 0;
587	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
588
589	if (!armpmu)
590		return;
591
592	for (idx = 0; idx <= armpmu->num_events; ++idx) {
593		struct perf_event *event = cpuc->events[idx];
594
595		if (!event)
596			continue;
597
598		armpmu->enable(&event->hw, idx);
599		enabled = 1;
600	}
601
602	if (enabled)
603		armpmu->start();
604}
605
606static void armpmu_disable(struct pmu *pmu)
607{
608	if (armpmu)
609		armpmu->stop();
610}
611
612static struct pmu pmu = {
613	.pmu_enable	= armpmu_enable,
614	.pmu_disable	= armpmu_disable,
615	.event_init	= armpmu_event_init,
616	.add		= armpmu_add,
617	.del		= armpmu_del,
618	.start		= armpmu_start,
619	.stop		= armpmu_stop,
620	.read		= armpmu_read,
621};
622
623/* Include the PMU-specific implementations. */
624#include "perf_event_xscale.c"
625#include "perf_event_v6.c"
626#include "perf_event_v7.c"
627
628/*
629 * Ensure the PMU has sane values out of reset.
630 * This requires SMP to be available, so exists as a separate initcall.
631 */
632static int __init
633armpmu_reset(void)
634{
635	if (armpmu && armpmu->reset)
636		return on_each_cpu(armpmu->reset, NULL, 1);
637	return 0;
638}
639arch_initcall(armpmu_reset);
640
641static int __init
642init_hw_perf_events(void)
643{
644	unsigned long cpuid = read_cpuid_id();
645	unsigned long implementor = (cpuid & 0xFF000000) >> 24;
646	unsigned long part_number = (cpuid & 0xFFF0);
647
648	/* ARM Ltd CPUs. */
649	if (0x41 == implementor) {
650		switch (part_number) {
651		case 0xB360:	/* ARM1136 */
652		case 0xB560:	/* ARM1156 */
653		case 0xB760:	/* ARM1176 */
654			armpmu = armv6pmu_init();
655			break;
656		case 0xB020:	/* ARM11mpcore */
657			armpmu = armv6mpcore_pmu_init();
658			break;
659		case 0xC080:	/* Cortex-A8 */
660			armpmu = armv7_a8_pmu_init();
661			break;
662		case 0xC090:	/* Cortex-A9 */
663			armpmu = armv7_a9_pmu_init();
664			break;
665		case 0xC050:	/* Cortex-A5 */
666			armpmu = armv7_a5_pmu_init();
667			break;
668		case 0xC0F0:	/* Cortex-A15 */
669			armpmu = armv7_a15_pmu_init();
670			break;
671		}
672	/* Intel CPUs [xscale]. */
673	} else if (0x69 == implementor) {
674		part_number = (cpuid >> 13) & 0x7;
675		switch (part_number) {
676		case 1:
677			armpmu = xscale1pmu_init();
678			break;
679		case 2:
680			armpmu = xscale2pmu_init();
681			break;
682		}
683	}
684
685	if (armpmu) {
686		pr_info("enabled with %s PMU driver, %d counters available\n",
687			armpmu->name, armpmu->num_events);
688	} else {
689		pr_info("no hardware support available\n");
690	}
691
692	perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
693
694	return 0;
695}
696early_initcall(init_hw_perf_events);
697
698/*
699 * Callchain handling code.
700 */
701
702/*
703 * The registers we're interested in are at the end of the variable
704 * length saved register structure. The fp points at the end of this
705 * structure so the address of this struct is:
706 * (struct frame_tail *)(xxx->fp)-1
707 *
708 * This code has been adapted from the ARM OProfile support.
709 */
710struct frame_tail {
711	struct frame_tail __user *fp;
712	unsigned long sp;
713	unsigned long lr;
714} __attribute__((packed));
715
716/*
717 * Get the return address for a single stackframe and return a pointer to the
718 * next frame tail.
719 */
720static struct frame_tail __user *
721user_backtrace(struct frame_tail __user *tail,
722	       struct perf_callchain_entry *entry)
723{
724	struct frame_tail buftail;
725
726	/* Also check accessibility of one struct frame_tail beyond */
727	if (!access_ok(VERIFY_READ, tail, sizeof(buftail)))
728		return NULL;
729	if (__copy_from_user_inatomic(&buftail, tail, sizeof(buftail)))
730		return NULL;
731
732	perf_callchain_store(entry, buftail.lr);
733
734	/*
735	 * Frame pointers should strictly progress back up the stack
736	 * (towards higher addresses).
737	 */
738	if (tail + 1 >= buftail.fp)
739		return NULL;
740
741	return buftail.fp - 1;
742}
743
744void
745perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
746{
747	struct frame_tail __user *tail;
748
749
750	tail = (struct frame_tail __user *)regs->ARM_fp - 1;
751
752	while ((entry->nr < PERF_MAX_STACK_DEPTH) &&
753	       tail && !((unsigned long)tail & 0x3))
754		tail = user_backtrace(tail, entry);
755}
756
757/*
758 * Gets called by walk_stackframe() for every stackframe. This will be called
759 * whist unwinding the stackframe and is like a subroutine return so we use
760 * the PC.
761 */
762static int
763callchain_trace(struct stackframe *fr,
764		void *data)
765{
766	struct perf_callchain_entry *entry = data;
767	perf_callchain_store(entry, fr->pc);
768	return 0;
769}
770
771void
772perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs)
773{
774	struct stackframe fr;
775
776	fr.fp = regs->ARM_fp;
777	fr.sp = regs->ARM_sp;
778	fr.lr = regs->ARM_lr;
779	fr.pc = regs->ARM_pc;
780	walk_stackframe(&fr, callchain_trace, entry);
781}