Linux Audio

Check our new training course

Loading...
v4.6
  1/*
  2 * mm/percpu-vm.c - vmalloc area based chunk allocation
  3 *
  4 * Copyright (C) 2010		SUSE Linux Products GmbH
  5 * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
  6 *
  7 * This file is released under the GPLv2.
  8 *
  9 * Chunks are mapped into vmalloc areas and populated page by page.
 10 * This is the default chunk allocator.
 11 */
 12
 13static struct page *pcpu_chunk_page(struct pcpu_chunk *chunk,
 14				    unsigned int cpu, int page_idx)
 15{
 16	/* must not be used on pre-mapped chunk */
 17	WARN_ON(chunk->immutable);
 18
 19	return vmalloc_to_page((void *)pcpu_chunk_addr(chunk, cpu, page_idx));
 20}
 21
 22/**
 23 * pcpu_get_pages - get temp pages array
 24 * @chunk: chunk of interest
 
 
 25 *
 26 * Returns pointer to array of pointers to struct page which can be indexed
 27 * with pcpu_page_idx().  Note that there is only one array and accesses
 28 * should be serialized by pcpu_alloc_mutex.
 
 
 
 
 
 
 29 *
 30 * RETURNS:
 31 * Pointer to temp pages array on success.
 32 */
 33static struct page **pcpu_get_pages(struct pcpu_chunk *chunk_alloc)
 
 
 34{
 35	static struct page **pages;
 
 36	size_t pages_size = pcpu_nr_units * pcpu_unit_pages * sizeof(pages[0]);
 
 
 37
 38	lockdep_assert_held(&pcpu_alloc_mutex);
 
 
 
 
 
 
 
 39
 40	if (!pages)
 41		pages = pcpu_mem_zalloc(pages_size);
 
 
 42	return pages;
 43}
 44
 45/**
 46 * pcpu_free_pages - free pages which were allocated for @chunk
 47 * @chunk: chunk pages were allocated for
 48 * @pages: array of pages to be freed, indexed by pcpu_page_idx()
 
 49 * @page_start: page index of the first page to be freed
 50 * @page_end: page index of the last page to be freed + 1
 51 *
 52 * Free pages [@page_start and @page_end) in @pages for all units.
 53 * The pages were allocated for @chunk.
 54 */
 55static void pcpu_free_pages(struct pcpu_chunk *chunk,
 56			    struct page **pages, int page_start, int page_end)
 
 57{
 58	unsigned int cpu;
 59	int i;
 60
 61	for_each_possible_cpu(cpu) {
 62		for (i = page_start; i < page_end; i++) {
 63			struct page *page = pages[pcpu_page_idx(cpu, i)];
 64
 65			if (page)
 66				__free_page(page);
 67		}
 68	}
 69}
 70
 71/**
 72 * pcpu_alloc_pages - allocates pages for @chunk
 73 * @chunk: target chunk
 74 * @pages: array to put the allocated pages into, indexed by pcpu_page_idx()
 
 75 * @page_start: page index of the first page to be allocated
 76 * @page_end: page index of the last page to be allocated + 1
 77 *
 78 * Allocate pages [@page_start,@page_end) into @pages for all units.
 79 * The allocation is for @chunk.  Percpu core doesn't care about the
 80 * content of @pages and will pass it verbatim to pcpu_map_pages().
 81 */
 82static int pcpu_alloc_pages(struct pcpu_chunk *chunk,
 83			    struct page **pages, int page_start, int page_end)
 
 84{
 85	const gfp_t gfp = GFP_KERNEL | __GFP_HIGHMEM | __GFP_COLD;
 86	unsigned int cpu, tcpu;
 87	int i;
 88
 89	for_each_possible_cpu(cpu) {
 90		for (i = page_start; i < page_end; i++) {
 91			struct page **pagep = &pages[pcpu_page_idx(cpu, i)];
 92
 93			*pagep = alloc_pages_node(cpu_to_node(cpu), gfp, 0);
 94			if (!*pagep)
 95				goto err;
 
 
 
 96		}
 97	}
 98	return 0;
 99
100err:
101	while (--i >= page_start)
102		__free_page(pages[pcpu_page_idx(cpu, i)]);
103
104	for_each_possible_cpu(tcpu) {
105		if (tcpu == cpu)
106			break;
107		for (i = page_start; i < page_end; i++)
108			__free_page(pages[pcpu_page_idx(tcpu, i)]);
109	}
110	return -ENOMEM;
111}
112
113/**
114 * pcpu_pre_unmap_flush - flush cache prior to unmapping
115 * @chunk: chunk the regions to be flushed belongs to
116 * @page_start: page index of the first page to be flushed
117 * @page_end: page index of the last page to be flushed + 1
118 *
119 * Pages in [@page_start,@page_end) of @chunk are about to be
120 * unmapped.  Flush cache.  As each flushing trial can be very
121 * expensive, issue flush on the whole region at once rather than
122 * doing it for each cpu.  This could be an overkill but is more
123 * scalable.
124 */
125static void pcpu_pre_unmap_flush(struct pcpu_chunk *chunk,
126				 int page_start, int page_end)
127{
128	flush_cache_vunmap(
129		pcpu_chunk_addr(chunk, pcpu_low_unit_cpu, page_start),
130		pcpu_chunk_addr(chunk, pcpu_high_unit_cpu, page_end));
131}
132
133static void __pcpu_unmap_pages(unsigned long addr, int nr_pages)
134{
135	unmap_kernel_range_noflush(addr, nr_pages << PAGE_SHIFT);
136}
137
138/**
139 * pcpu_unmap_pages - unmap pages out of a pcpu_chunk
140 * @chunk: chunk of interest
141 * @pages: pages array which can be used to pass information to free
 
142 * @page_start: page index of the first page to unmap
143 * @page_end: page index of the last page to unmap + 1
144 *
145 * For each cpu, unmap pages [@page_start,@page_end) out of @chunk.
146 * Corresponding elements in @pages were cleared by the caller and can
147 * be used to carry information to pcpu_free_pages() which will be
148 * called after all unmaps are finished.  The caller should call
149 * proper pre/post flush functions.
150 */
151static void pcpu_unmap_pages(struct pcpu_chunk *chunk,
152			     struct page **pages, int page_start, int page_end)
 
153{
154	unsigned int cpu;
155	int i;
156
157	for_each_possible_cpu(cpu) {
158		for (i = page_start; i < page_end; i++) {
159			struct page *page;
160
161			page = pcpu_chunk_page(chunk, cpu, i);
162			WARN_ON(!page);
163			pages[pcpu_page_idx(cpu, i)] = page;
164		}
165		__pcpu_unmap_pages(pcpu_chunk_addr(chunk, cpu, page_start),
166				   page_end - page_start);
167	}
 
 
 
168}
169
170/**
171 * pcpu_post_unmap_tlb_flush - flush TLB after unmapping
172 * @chunk: pcpu_chunk the regions to be flushed belong to
173 * @page_start: page index of the first page to be flushed
174 * @page_end: page index of the last page to be flushed + 1
175 *
176 * Pages [@page_start,@page_end) of @chunk have been unmapped.  Flush
177 * TLB for the regions.  This can be skipped if the area is to be
178 * returned to vmalloc as vmalloc will handle TLB flushing lazily.
179 *
180 * As with pcpu_pre_unmap_flush(), TLB flushing also is done at once
181 * for the whole region.
182 */
183static void pcpu_post_unmap_tlb_flush(struct pcpu_chunk *chunk,
184				      int page_start, int page_end)
185{
186	flush_tlb_kernel_range(
187		pcpu_chunk_addr(chunk, pcpu_low_unit_cpu, page_start),
188		pcpu_chunk_addr(chunk, pcpu_high_unit_cpu, page_end));
189}
190
191static int __pcpu_map_pages(unsigned long addr, struct page **pages,
192			    int nr_pages)
193{
194	return map_kernel_range_noflush(addr, nr_pages << PAGE_SHIFT,
195					PAGE_KERNEL, pages);
196}
197
198/**
199 * pcpu_map_pages - map pages into a pcpu_chunk
200 * @chunk: chunk of interest
201 * @pages: pages array containing pages to be mapped
 
202 * @page_start: page index of the first page to map
203 * @page_end: page index of the last page to map + 1
204 *
205 * For each cpu, map pages [@page_start,@page_end) into @chunk.  The
206 * caller is responsible for calling pcpu_post_map_flush() after all
207 * mappings are complete.
208 *
209 * This function is responsible for setting up whatever is necessary for
210 * reverse lookup (addr -> chunk).
 
211 */
212static int pcpu_map_pages(struct pcpu_chunk *chunk,
213			  struct page **pages, int page_start, int page_end)
 
214{
215	unsigned int cpu, tcpu;
216	int i, err;
217
218	for_each_possible_cpu(cpu) {
219		err = __pcpu_map_pages(pcpu_chunk_addr(chunk, cpu, page_start),
220				       &pages[pcpu_page_idx(cpu, page_start)],
221				       page_end - page_start);
222		if (err < 0)
223			goto err;
 
224
225		for (i = page_start; i < page_end; i++)
 
 
226			pcpu_set_page_chunk(pages[pcpu_page_idx(cpu, i)],
227					    chunk);
 
228	}
 
229	return 0;
 
230err:
231	for_each_possible_cpu(tcpu) {
232		if (tcpu == cpu)
233			break;
234		__pcpu_unmap_pages(pcpu_chunk_addr(chunk, tcpu, page_start),
235				   page_end - page_start);
236	}
237	pcpu_post_unmap_tlb_flush(chunk, page_start, page_end);
238	return err;
239}
240
241/**
242 * pcpu_post_map_flush - flush cache after mapping
243 * @chunk: pcpu_chunk the regions to be flushed belong to
244 * @page_start: page index of the first page to be flushed
245 * @page_end: page index of the last page to be flushed + 1
246 *
247 * Pages [@page_start,@page_end) of @chunk have been mapped.  Flush
248 * cache.
249 *
250 * As with pcpu_pre_unmap_flush(), TLB flushing also is done at once
251 * for the whole region.
252 */
253static void pcpu_post_map_flush(struct pcpu_chunk *chunk,
254				int page_start, int page_end)
255{
256	flush_cache_vmap(
257		pcpu_chunk_addr(chunk, pcpu_low_unit_cpu, page_start),
258		pcpu_chunk_addr(chunk, pcpu_high_unit_cpu, page_end));
259}
260
261/**
262 * pcpu_populate_chunk - populate and map an area of a pcpu_chunk
263 * @chunk: chunk of interest
264 * @page_start: the start page
265 * @page_end: the end page
266 *
267 * For each cpu, populate and map pages [@page_start,@page_end) into
268 * @chunk.
269 *
270 * CONTEXT:
271 * pcpu_alloc_mutex, does GFP_KERNEL allocation.
272 */
273static int pcpu_populate_chunk(struct pcpu_chunk *chunk,
274			       int page_start, int page_end)
275{
 
 
 
276	struct page **pages;
 
 
 
 
 
 
 
 
 
 
 
 
277
278	pages = pcpu_get_pages(chunk);
279	if (!pages)
280		return -ENOMEM;
281
282	if (pcpu_alloc_pages(chunk, pages, page_start, page_end))
283		return -ENOMEM;
 
 
 
 
 
284
285	if (pcpu_map_pages(chunk, pages, page_start, page_end)) {
286		pcpu_free_pages(chunk, pages, page_start, page_end);
287		return -ENOMEM;
 
 
288	}
289	pcpu_post_map_flush(chunk, page_start, page_end);
290
 
 
 
 
 
291	return 0;
 
 
 
 
 
 
 
 
 
 
292}
293
294/**
295 * pcpu_depopulate_chunk - depopulate and unmap an area of a pcpu_chunk
296 * @chunk: chunk to depopulate
297 * @page_start: the start page
298 * @page_end: the end page
 
299 *
300 * For each cpu, depopulate and unmap pages [@page_start,@page_end)
301 * from @chunk.
 
302 *
303 * CONTEXT:
304 * pcpu_alloc_mutex.
305 */
306static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk,
307				  int page_start, int page_end)
308{
 
 
309	struct page **pages;
 
 
 
 
 
 
 
 
 
 
 
310
311	/*
312	 * If control reaches here, there must have been at least one
313	 * successful population attempt so the temp pages array must
314	 * be available now.
315	 */
316	pages = pcpu_get_pages(chunk);
317	BUG_ON(!pages);
318
319	/* unmap and free */
320	pcpu_pre_unmap_flush(chunk, page_start, page_end);
321
322	pcpu_unmap_pages(chunk, pages, page_start, page_end);
 
323
324	/* no need to flush tlb, vmalloc will handle it lazily */
325
326	pcpu_free_pages(chunk, pages, page_start, page_end);
 
 
 
 
327}
328
329static struct pcpu_chunk *pcpu_create_chunk(void)
330{
331	struct pcpu_chunk *chunk;
332	struct vm_struct **vms;
333
334	chunk = pcpu_alloc_chunk();
335	if (!chunk)
336		return NULL;
337
338	vms = pcpu_get_vm_areas(pcpu_group_offsets, pcpu_group_sizes,
339				pcpu_nr_groups, pcpu_atom_size);
340	if (!vms) {
341		pcpu_free_chunk(chunk);
342		return NULL;
343	}
344
345	chunk->data = vms;
346	chunk->base_addr = vms[0]->addr - pcpu_group_offsets[0];
347	return chunk;
348}
349
350static void pcpu_destroy_chunk(struct pcpu_chunk *chunk)
351{
352	if (chunk && chunk->data)
353		pcpu_free_vm_areas(chunk->data, pcpu_nr_groups);
354	pcpu_free_chunk(chunk);
355}
356
357static struct page *pcpu_addr_to_page(void *addr)
358{
359	return vmalloc_to_page(addr);
360}
361
362static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai)
363{
364	/* no extra restriction */
365	return 0;
366}
v3.1
  1/*
  2 * mm/percpu-vm.c - vmalloc area based chunk allocation
  3 *
  4 * Copyright (C) 2010		SUSE Linux Products GmbH
  5 * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
  6 *
  7 * This file is released under the GPLv2.
  8 *
  9 * Chunks are mapped into vmalloc areas and populated page by page.
 10 * This is the default chunk allocator.
 11 */
 12
 13static struct page *pcpu_chunk_page(struct pcpu_chunk *chunk,
 14				    unsigned int cpu, int page_idx)
 15{
 16	/* must not be used on pre-mapped chunk */
 17	WARN_ON(chunk->immutable);
 18
 19	return vmalloc_to_page((void *)pcpu_chunk_addr(chunk, cpu, page_idx));
 20}
 21
 22/**
 23 * pcpu_get_pages_and_bitmap - get temp pages array and bitmap
 24 * @chunk: chunk of interest
 25 * @bitmapp: output parameter for bitmap
 26 * @may_alloc: may allocate the array
 27 *
 28 * Returns pointer to array of pointers to struct page and bitmap,
 29 * both of which can be indexed with pcpu_page_idx().  The returned
 30 * array is cleared to zero and *@bitmapp is copied from
 31 * @chunk->populated.  Note that there is only one array and bitmap
 32 * and access exclusion is the caller's responsibility.
 33 *
 34 * CONTEXT:
 35 * pcpu_alloc_mutex and does GFP_KERNEL allocation if @may_alloc.
 36 * Otherwise, don't care.
 37 *
 38 * RETURNS:
 39 * Pointer to temp pages array on success, NULL on failure.
 40 */
 41static struct page **pcpu_get_pages_and_bitmap(struct pcpu_chunk *chunk,
 42					       unsigned long **bitmapp,
 43					       bool may_alloc)
 44{
 45	static struct page **pages;
 46	static unsigned long *bitmap;
 47	size_t pages_size = pcpu_nr_units * pcpu_unit_pages * sizeof(pages[0]);
 48	size_t bitmap_size = BITS_TO_LONGS(pcpu_unit_pages) *
 49			     sizeof(unsigned long);
 50
 51	if (!pages || !bitmap) {
 52		if (may_alloc && !pages)
 53			pages = pcpu_mem_alloc(pages_size);
 54		if (may_alloc && !bitmap)
 55			bitmap = pcpu_mem_alloc(bitmap_size);
 56		if (!pages || !bitmap)
 57			return NULL;
 58	}
 59
 60	memset(pages, 0, pages_size);
 61	bitmap_copy(bitmap, chunk->populated, pcpu_unit_pages);
 62
 63	*bitmapp = bitmap;
 64	return pages;
 65}
 66
 67/**
 68 * pcpu_free_pages - free pages which were allocated for @chunk
 69 * @chunk: chunk pages were allocated for
 70 * @pages: array of pages to be freed, indexed by pcpu_page_idx()
 71 * @populated: populated bitmap
 72 * @page_start: page index of the first page to be freed
 73 * @page_end: page index of the last page to be freed + 1
 74 *
 75 * Free pages [@page_start and @page_end) in @pages for all units.
 76 * The pages were allocated for @chunk.
 77 */
 78static void pcpu_free_pages(struct pcpu_chunk *chunk,
 79			    struct page **pages, unsigned long *populated,
 80			    int page_start, int page_end)
 81{
 82	unsigned int cpu;
 83	int i;
 84
 85	for_each_possible_cpu(cpu) {
 86		for (i = page_start; i < page_end; i++) {
 87			struct page *page = pages[pcpu_page_idx(cpu, i)];
 88
 89			if (page)
 90				__free_page(page);
 91		}
 92	}
 93}
 94
 95/**
 96 * pcpu_alloc_pages - allocates pages for @chunk
 97 * @chunk: target chunk
 98 * @pages: array to put the allocated pages into, indexed by pcpu_page_idx()
 99 * @populated: populated bitmap
100 * @page_start: page index of the first page to be allocated
101 * @page_end: page index of the last page to be allocated + 1
102 *
103 * Allocate pages [@page_start,@page_end) into @pages for all units.
104 * The allocation is for @chunk.  Percpu core doesn't care about the
105 * content of @pages and will pass it verbatim to pcpu_map_pages().
106 */
107static int pcpu_alloc_pages(struct pcpu_chunk *chunk,
108			    struct page **pages, unsigned long *populated,
109			    int page_start, int page_end)
110{
111	const gfp_t gfp = GFP_KERNEL | __GFP_HIGHMEM | __GFP_COLD;
112	unsigned int cpu;
113	int i;
114
115	for_each_possible_cpu(cpu) {
116		for (i = page_start; i < page_end; i++) {
117			struct page **pagep = &pages[pcpu_page_idx(cpu, i)];
118
119			*pagep = alloc_pages_node(cpu_to_node(cpu), gfp, 0);
120			if (!*pagep) {
121				pcpu_free_pages(chunk, pages, populated,
122						page_start, page_end);
123				return -ENOMEM;
124			}
125		}
126	}
127	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
128}
129
130/**
131 * pcpu_pre_unmap_flush - flush cache prior to unmapping
132 * @chunk: chunk the regions to be flushed belongs to
133 * @page_start: page index of the first page to be flushed
134 * @page_end: page index of the last page to be flushed + 1
135 *
136 * Pages in [@page_start,@page_end) of @chunk are about to be
137 * unmapped.  Flush cache.  As each flushing trial can be very
138 * expensive, issue flush on the whole region at once rather than
139 * doing it for each cpu.  This could be an overkill but is more
140 * scalable.
141 */
142static void pcpu_pre_unmap_flush(struct pcpu_chunk *chunk,
143				 int page_start, int page_end)
144{
145	flush_cache_vunmap(
146		pcpu_chunk_addr(chunk, pcpu_first_unit_cpu, page_start),
147		pcpu_chunk_addr(chunk, pcpu_last_unit_cpu, page_end));
148}
149
150static void __pcpu_unmap_pages(unsigned long addr, int nr_pages)
151{
152	unmap_kernel_range_noflush(addr, nr_pages << PAGE_SHIFT);
153}
154
155/**
156 * pcpu_unmap_pages - unmap pages out of a pcpu_chunk
157 * @chunk: chunk of interest
158 * @pages: pages array which can be used to pass information to free
159 * @populated: populated bitmap
160 * @page_start: page index of the first page to unmap
161 * @page_end: page index of the last page to unmap + 1
162 *
163 * For each cpu, unmap pages [@page_start,@page_end) out of @chunk.
164 * Corresponding elements in @pages were cleared by the caller and can
165 * be used to carry information to pcpu_free_pages() which will be
166 * called after all unmaps are finished.  The caller should call
167 * proper pre/post flush functions.
168 */
169static void pcpu_unmap_pages(struct pcpu_chunk *chunk,
170			     struct page **pages, unsigned long *populated,
171			     int page_start, int page_end)
172{
173	unsigned int cpu;
174	int i;
175
176	for_each_possible_cpu(cpu) {
177		for (i = page_start; i < page_end; i++) {
178			struct page *page;
179
180			page = pcpu_chunk_page(chunk, cpu, i);
181			WARN_ON(!page);
182			pages[pcpu_page_idx(cpu, i)] = page;
183		}
184		__pcpu_unmap_pages(pcpu_chunk_addr(chunk, cpu, page_start),
185				   page_end - page_start);
186	}
187
188	for (i = page_start; i < page_end; i++)
189		__clear_bit(i, populated);
190}
191
192/**
193 * pcpu_post_unmap_tlb_flush - flush TLB after unmapping
194 * @chunk: pcpu_chunk the regions to be flushed belong to
195 * @page_start: page index of the first page to be flushed
196 * @page_end: page index of the last page to be flushed + 1
197 *
198 * Pages [@page_start,@page_end) of @chunk have been unmapped.  Flush
199 * TLB for the regions.  This can be skipped if the area is to be
200 * returned to vmalloc as vmalloc will handle TLB flushing lazily.
201 *
202 * As with pcpu_pre_unmap_flush(), TLB flushing also is done at once
203 * for the whole region.
204 */
205static void pcpu_post_unmap_tlb_flush(struct pcpu_chunk *chunk,
206				      int page_start, int page_end)
207{
208	flush_tlb_kernel_range(
209		pcpu_chunk_addr(chunk, pcpu_first_unit_cpu, page_start),
210		pcpu_chunk_addr(chunk, pcpu_last_unit_cpu, page_end));
211}
212
213static int __pcpu_map_pages(unsigned long addr, struct page **pages,
214			    int nr_pages)
215{
216	return map_kernel_range_noflush(addr, nr_pages << PAGE_SHIFT,
217					PAGE_KERNEL, pages);
218}
219
220/**
221 * pcpu_map_pages - map pages into a pcpu_chunk
222 * @chunk: chunk of interest
223 * @pages: pages array containing pages to be mapped
224 * @populated: populated bitmap
225 * @page_start: page index of the first page to map
226 * @page_end: page index of the last page to map + 1
227 *
228 * For each cpu, map pages [@page_start,@page_end) into @chunk.  The
229 * caller is responsible for calling pcpu_post_map_flush() after all
230 * mappings are complete.
231 *
232 * This function is responsible for setting corresponding bits in
233 * @chunk->populated bitmap and whatever is necessary for reverse
234 * lookup (addr -> chunk).
235 */
236static int pcpu_map_pages(struct pcpu_chunk *chunk,
237			  struct page **pages, unsigned long *populated,
238			  int page_start, int page_end)
239{
240	unsigned int cpu, tcpu;
241	int i, err;
242
243	for_each_possible_cpu(cpu) {
244		err = __pcpu_map_pages(pcpu_chunk_addr(chunk, cpu, page_start),
245				       &pages[pcpu_page_idx(cpu, page_start)],
246				       page_end - page_start);
247		if (err < 0)
248			goto err;
249	}
250
251	/* mapping successful, link chunk and mark populated */
252	for (i = page_start; i < page_end; i++) {
253		for_each_possible_cpu(cpu)
254			pcpu_set_page_chunk(pages[pcpu_page_idx(cpu, i)],
255					    chunk);
256		__set_bit(i, populated);
257	}
258
259	return 0;
260
261err:
262	for_each_possible_cpu(tcpu) {
263		if (tcpu == cpu)
264			break;
265		__pcpu_unmap_pages(pcpu_chunk_addr(chunk, tcpu, page_start),
266				   page_end - page_start);
267	}
 
268	return err;
269}
270
271/**
272 * pcpu_post_map_flush - flush cache after mapping
273 * @chunk: pcpu_chunk the regions to be flushed belong to
274 * @page_start: page index of the first page to be flushed
275 * @page_end: page index of the last page to be flushed + 1
276 *
277 * Pages [@page_start,@page_end) of @chunk have been mapped.  Flush
278 * cache.
279 *
280 * As with pcpu_pre_unmap_flush(), TLB flushing also is done at once
281 * for the whole region.
282 */
283static void pcpu_post_map_flush(struct pcpu_chunk *chunk,
284				int page_start, int page_end)
285{
286	flush_cache_vmap(
287		pcpu_chunk_addr(chunk, pcpu_first_unit_cpu, page_start),
288		pcpu_chunk_addr(chunk, pcpu_last_unit_cpu, page_end));
289}
290
291/**
292 * pcpu_populate_chunk - populate and map an area of a pcpu_chunk
293 * @chunk: chunk of interest
294 * @off: offset to the area to populate
295 * @size: size of the area to populate in bytes
296 *
297 * For each cpu, populate and map pages [@page_start,@page_end) into
298 * @chunk.  The area is cleared on return.
299 *
300 * CONTEXT:
301 * pcpu_alloc_mutex, does GFP_KERNEL allocation.
302 */
303static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size)
 
304{
305	int page_start = PFN_DOWN(off);
306	int page_end = PFN_UP(off + size);
307	int free_end = page_start, unmap_end = page_start;
308	struct page **pages;
309	unsigned long *populated;
310	unsigned int cpu;
311	int rs, re, rc;
312
313	/* quick path, check whether all pages are already there */
314	rs = page_start;
315	pcpu_next_pop(chunk, &rs, &re, page_end);
316	if (rs == page_start && re == page_end)
317		goto clear;
318
319	/* need to allocate and map pages, this chunk can't be immutable */
320	WARN_ON(chunk->immutable);
321
322	pages = pcpu_get_pages_and_bitmap(chunk, &populated, true);
323	if (!pages)
324		return -ENOMEM;
325
326	/* alloc and map */
327	pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) {
328		rc = pcpu_alloc_pages(chunk, pages, populated, rs, re);
329		if (rc)
330			goto err_free;
331		free_end = re;
332	}
333
334	pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) {
335		rc = pcpu_map_pages(chunk, pages, populated, rs, re);
336		if (rc)
337			goto err_unmap;
338		unmap_end = re;
339	}
340	pcpu_post_map_flush(chunk, page_start, page_end);
341
342	/* commit new bitmap */
343	bitmap_copy(chunk->populated, populated, pcpu_unit_pages);
344clear:
345	for_each_possible_cpu(cpu)
346		memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size);
347	return 0;
348
349err_unmap:
350	pcpu_pre_unmap_flush(chunk, page_start, unmap_end);
351	pcpu_for_each_unpop_region(chunk, rs, re, page_start, unmap_end)
352		pcpu_unmap_pages(chunk, pages, populated, rs, re);
353	pcpu_post_unmap_tlb_flush(chunk, page_start, unmap_end);
354err_free:
355	pcpu_for_each_unpop_region(chunk, rs, re, page_start, free_end)
356		pcpu_free_pages(chunk, pages, populated, rs, re);
357	return rc;
358}
359
360/**
361 * pcpu_depopulate_chunk - depopulate and unmap an area of a pcpu_chunk
362 * @chunk: chunk to depopulate
363 * @off: offset to the area to depopulate
364 * @size: size of the area to depopulate in bytes
365 * @flush: whether to flush cache and tlb or not
366 *
367 * For each cpu, depopulate and unmap pages [@page_start,@page_end)
368 * from @chunk.  If @flush is true, vcache is flushed before unmapping
369 * and tlb after.
370 *
371 * CONTEXT:
372 * pcpu_alloc_mutex.
373 */
374static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size)
 
375{
376	int page_start = PFN_DOWN(off);
377	int page_end = PFN_UP(off + size);
378	struct page **pages;
379	unsigned long *populated;
380	int rs, re;
381
382	/* quick path, check whether it's empty already */
383	rs = page_start;
384	pcpu_next_unpop(chunk, &rs, &re, page_end);
385	if (rs == page_start && re == page_end)
386		return;
387
388	/* immutable chunks can't be depopulated */
389	WARN_ON(chunk->immutable);
390
391	/*
392	 * If control reaches here, there must have been at least one
393	 * successful population attempt so the temp pages array must
394	 * be available now.
395	 */
396	pages = pcpu_get_pages_and_bitmap(chunk, &populated, false);
397	BUG_ON(!pages);
398
399	/* unmap and free */
400	pcpu_pre_unmap_flush(chunk, page_start, page_end);
401
402	pcpu_for_each_pop_region(chunk, rs, re, page_start, page_end)
403		pcpu_unmap_pages(chunk, pages, populated, rs, re);
404
405	/* no need to flush tlb, vmalloc will handle it lazily */
406
407	pcpu_for_each_pop_region(chunk, rs, re, page_start, page_end)
408		pcpu_free_pages(chunk, pages, populated, rs, re);
409
410	/* commit new bitmap */
411	bitmap_copy(chunk->populated, populated, pcpu_unit_pages);
412}
413
414static struct pcpu_chunk *pcpu_create_chunk(void)
415{
416	struct pcpu_chunk *chunk;
417	struct vm_struct **vms;
418
419	chunk = pcpu_alloc_chunk();
420	if (!chunk)
421		return NULL;
422
423	vms = pcpu_get_vm_areas(pcpu_group_offsets, pcpu_group_sizes,
424				pcpu_nr_groups, pcpu_atom_size);
425	if (!vms) {
426		pcpu_free_chunk(chunk);
427		return NULL;
428	}
429
430	chunk->data = vms;
431	chunk->base_addr = vms[0]->addr - pcpu_group_offsets[0];
432	return chunk;
433}
434
435static void pcpu_destroy_chunk(struct pcpu_chunk *chunk)
436{
437	if (chunk && chunk->data)
438		pcpu_free_vm_areas(chunk->data, pcpu_nr_groups);
439	pcpu_free_chunk(chunk);
440}
441
442static struct page *pcpu_addr_to_page(void *addr)
443{
444	return vmalloc_to_page(addr);
445}
446
447static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai)
448{
449	/* no extra restriction */
450	return 0;
451}