Linux Audio

Check our new training course

Loading...
v4.6
  1/*
  2 * KVM paravirt_ops implementation
  3 *
  4 * This program is free software; you can redistribute it and/or modify
  5 * it under the terms of the GNU General Public License as published by
  6 * the Free Software Foundation; either version 2 of the License, or
  7 * (at your option) any later version.
  8 *
  9 * This program is distributed in the hope that it will be useful,
 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 12 * GNU General Public License for more details.
 13 *
 14 * You should have received a copy of the GNU General Public License
 15 * along with this program; if not, write to the Free Software
 16 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
 17 *
 18 * Copyright (C) 2007, Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 19 * Copyright IBM Corporation, 2007
 20 *   Authors: Anthony Liguori <aliguori@us.ibm.com>
 21 */
 22
 23#include <linux/context_tracking.h>
 24#include <linux/module.h>
 25#include <linux/kernel.h>
 26#include <linux/kvm_para.h>
 27#include <linux/cpu.h>
 28#include <linux/mm.h>
 29#include <linux/highmem.h>
 30#include <linux/hardirq.h>
 31#include <linux/notifier.h>
 32#include <linux/reboot.h>
 33#include <linux/hash.h>
 34#include <linux/sched.h>
 35#include <linux/slab.h>
 36#include <linux/kprobes.h>
 37#include <linux/debugfs.h>
 38#include <linux/nmi.h>
 39#include <linux/swait.h>
 40#include <asm/timer.h>
 41#include <asm/cpu.h>
 42#include <asm/traps.h>
 43#include <asm/desc.h>
 44#include <asm/tlbflush.h>
 45#include <asm/idle.h>
 46#include <asm/apic.h>
 47#include <asm/apicdef.h>
 48#include <asm/hypervisor.h>
 49#include <asm/kvm_guest.h>
 50
 51static int kvmapf = 1;
 52
 53static int parse_no_kvmapf(char *arg)
 54{
 55        kvmapf = 0;
 56        return 0;
 57}
 58
 59early_param("no-kvmapf", parse_no_kvmapf);
 60
 61static int steal_acc = 1;
 62static int parse_no_stealacc(char *arg)
 63{
 64        steal_acc = 0;
 65        return 0;
 66}
 67
 68early_param("no-steal-acc", parse_no_stealacc);
 69
 70static int kvmclock_vsyscall = 1;
 71static int parse_no_kvmclock_vsyscall(char *arg)
 72{
 73        kvmclock_vsyscall = 0;
 74        return 0;
 75}
 76
 77early_param("no-kvmclock-vsyscall", parse_no_kvmclock_vsyscall);
 78
 
 79static DEFINE_PER_CPU(struct kvm_vcpu_pv_apf_data, apf_reason) __aligned(64);
 80static DEFINE_PER_CPU(struct kvm_steal_time, steal_time) __aligned(64);
 81static int has_steal_clock = 0;
 82
 
 
 
 
 
 83/*
 84 * No need for any "IO delay" on KVM
 85 */
 86static void kvm_io_delay(void)
 87{
 88}
 89
 90#define KVM_TASK_SLEEP_HASHBITS 8
 91#define KVM_TASK_SLEEP_HASHSIZE (1<<KVM_TASK_SLEEP_HASHBITS)
 92
 93struct kvm_task_sleep_node {
 94	struct hlist_node link;
 95	struct swait_queue_head wq;
 96	u32 token;
 97	int cpu;
 98	bool halted;
 
 99};
100
101static struct kvm_task_sleep_head {
102	raw_spinlock_t lock;
103	struct hlist_head list;
104} async_pf_sleepers[KVM_TASK_SLEEP_HASHSIZE];
105
106static struct kvm_task_sleep_node *_find_apf_task(struct kvm_task_sleep_head *b,
107						  u32 token)
108{
109	struct hlist_node *p;
110
111	hlist_for_each(p, &b->list) {
112		struct kvm_task_sleep_node *n =
113			hlist_entry(p, typeof(*n), link);
114		if (n->token == token)
115			return n;
116	}
117
118	return NULL;
119}
120
121void kvm_async_pf_task_wait(u32 token)
122{
123	u32 key = hash_32(token, KVM_TASK_SLEEP_HASHBITS);
124	struct kvm_task_sleep_head *b = &async_pf_sleepers[key];
125	struct kvm_task_sleep_node n, *e;
126	DECLARE_SWAITQUEUE(wait);
 
127
128	rcu_irq_enter();
 
 
129
130	raw_spin_lock(&b->lock);
131	e = _find_apf_task(b, token);
132	if (e) {
133		/* dummy entry exist -> wake up was delivered ahead of PF */
134		hlist_del(&e->link);
135		kfree(e);
136		raw_spin_unlock(&b->lock);
137
138		rcu_irq_exit();
139		return;
140	}
141
142	n.token = token;
143	n.cpu = smp_processor_id();
144	n.halted = is_idle_task(current) || preempt_count() > 1;
145	init_swait_queue_head(&n.wq);
 
 
146	hlist_add_head(&n.link, &b->list);
147	raw_spin_unlock(&b->lock);
148
149	for (;;) {
150		if (!n.halted)
151			prepare_to_swait(&n.wq, &wait, TASK_UNINTERRUPTIBLE);
152		if (hlist_unhashed(&n.link))
153			break;
154
155		if (!n.halted) {
156			local_irq_enable();
157			schedule();
158			local_irq_disable();
159		} else {
160			/*
161			 * We cannot reschedule. So halt.
162			 */
163			rcu_irq_exit();
164			native_safe_halt();
165			rcu_irq_enter();
166			local_irq_disable();
167		}
168	}
169	if (!n.halted)
170		finish_swait(&n.wq, &wait);
171
172	rcu_irq_exit();
173	return;
174}
175EXPORT_SYMBOL_GPL(kvm_async_pf_task_wait);
176
177static void apf_task_wake_one(struct kvm_task_sleep_node *n)
178{
179	hlist_del_init(&n->link);
 
 
 
180	if (n->halted)
181		smp_send_reschedule(n->cpu);
182	else if (swait_active(&n->wq))
183		swake_up(&n->wq);
184}
185
186static void apf_task_wake_all(void)
187{
188	int i;
189
190	for (i = 0; i < KVM_TASK_SLEEP_HASHSIZE; i++) {
191		struct hlist_node *p, *next;
192		struct kvm_task_sleep_head *b = &async_pf_sleepers[i];
193		raw_spin_lock(&b->lock);
194		hlist_for_each_safe(p, next, &b->list) {
195			struct kvm_task_sleep_node *n =
196				hlist_entry(p, typeof(*n), link);
197			if (n->cpu == smp_processor_id())
198				apf_task_wake_one(n);
199		}
200		raw_spin_unlock(&b->lock);
201	}
202}
203
204void kvm_async_pf_task_wake(u32 token)
205{
206	u32 key = hash_32(token, KVM_TASK_SLEEP_HASHBITS);
207	struct kvm_task_sleep_head *b = &async_pf_sleepers[key];
208	struct kvm_task_sleep_node *n;
209
210	if (token == ~0) {
211		apf_task_wake_all();
212		return;
213	}
214
215again:
216	raw_spin_lock(&b->lock);
217	n = _find_apf_task(b, token);
218	if (!n) {
219		/*
220		 * async PF was not yet handled.
221		 * Add dummy entry for the token.
222		 */
223		n = kzalloc(sizeof(*n), GFP_ATOMIC);
224		if (!n) {
225			/*
226			 * Allocation failed! Busy wait while other cpu
227			 * handles async PF.
228			 */
229			raw_spin_unlock(&b->lock);
230			cpu_relax();
231			goto again;
232		}
233		n->token = token;
234		n->cpu = smp_processor_id();
235		init_swait_queue_head(&n->wq);
 
236		hlist_add_head(&n->link, &b->list);
237	} else
238		apf_task_wake_one(n);
239	raw_spin_unlock(&b->lock);
240	return;
241}
242EXPORT_SYMBOL_GPL(kvm_async_pf_task_wake);
243
244u32 kvm_read_and_reset_pf_reason(void)
245{
246	u32 reason = 0;
247
248	if (__this_cpu_read(apf_reason.enabled)) {
249		reason = __this_cpu_read(apf_reason.reason);
250		__this_cpu_write(apf_reason.reason, 0);
251	}
252
253	return reason;
254}
255EXPORT_SYMBOL_GPL(kvm_read_and_reset_pf_reason);
256NOKPROBE_SYMBOL(kvm_read_and_reset_pf_reason);
257
258dotraplinkage void
259do_async_page_fault(struct pt_regs *regs, unsigned long error_code)
260{
261	enum ctx_state prev_state;
262
263	switch (kvm_read_and_reset_pf_reason()) {
264	default:
265		trace_do_page_fault(regs, error_code);
266		break;
267	case KVM_PV_REASON_PAGE_NOT_PRESENT:
268		/* page is swapped out by the host. */
269		prev_state = exception_enter();
270		exit_idle();
271		kvm_async_pf_task_wait((u32)read_cr2());
272		exception_exit(prev_state);
273		break;
274	case KVM_PV_REASON_PAGE_READY:
275		rcu_irq_enter();
276		exit_idle();
277		kvm_async_pf_task_wake((u32)read_cr2());
278		rcu_irq_exit();
279		break;
280	}
281}
282NOKPROBE_SYMBOL(do_async_page_fault);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
283
284static void __init paravirt_ops_setup(void)
285{
286	pv_info.name = "KVM";
287
288	/*
289	 * KVM isn't paravirt in the sense of paravirt_enabled.  A KVM
290	 * guest kernel works like a bare metal kernel with additional
291	 * features, and paravirt_enabled is about features that are
292	 * missing.
293	 */
294	pv_info.paravirt_enabled = 0;
295
296	if (kvm_para_has_feature(KVM_FEATURE_NOP_IO_DELAY))
297		pv_cpu_ops.io_delay = kvm_io_delay;
298
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
299#ifdef CONFIG_X86_IO_APIC
300	no_timer_check = 1;
301#endif
302}
303
304static void kvm_register_steal_time(void)
305{
306	int cpu = smp_processor_id();
307	struct kvm_steal_time *st = &per_cpu(steal_time, cpu);
308
309	if (!has_steal_clock)
310		return;
311
312	memset(st, 0, sizeof(*st));
313
314	wrmsrl(MSR_KVM_STEAL_TIME, (slow_virt_to_phys(st) | KVM_MSR_ENABLED));
315	pr_info("kvm-stealtime: cpu %d, msr %llx\n",
316		cpu, (unsigned long long) slow_virt_to_phys(st));
317}
318
319static DEFINE_PER_CPU(unsigned long, kvm_apic_eoi) = KVM_PV_EOI_DISABLED;
320
321static void kvm_guest_apic_eoi_write(u32 reg, u32 val)
322{
323	/**
324	 * This relies on __test_and_clear_bit to modify the memory
325	 * in a way that is atomic with respect to the local CPU.
326	 * The hypervisor only accesses this memory from the local CPU so
327	 * there's no need for lock or memory barriers.
328	 * An optimization barrier is implied in apic write.
329	 */
330	if (__test_and_clear_bit(KVM_PV_EOI_BIT, this_cpu_ptr(&kvm_apic_eoi)))
331		return;
332	apic_write(APIC_EOI, APIC_EOI_ACK);
333}
334
335static void kvm_guest_cpu_init(void)
336{
337	if (!kvm_para_available())
338		return;
339
340	if (kvm_para_has_feature(KVM_FEATURE_ASYNC_PF) && kvmapf) {
341		u64 pa = slow_virt_to_phys(this_cpu_ptr(&apf_reason));
342
343#ifdef CONFIG_PREEMPT
344		pa |= KVM_ASYNC_PF_SEND_ALWAYS;
345#endif
346		wrmsrl(MSR_KVM_ASYNC_PF_EN, pa | KVM_ASYNC_PF_ENABLED);
347		__this_cpu_write(apf_reason.enabled, 1);
348		printk(KERN_INFO"KVM setup async PF for cpu %d\n",
349		       smp_processor_id());
350	}
351
352	if (kvm_para_has_feature(KVM_FEATURE_PV_EOI)) {
353		unsigned long pa;
354		/* Size alignment is implied but just to make it explicit. */
355		BUILD_BUG_ON(__alignof__(kvm_apic_eoi) < 4);
356		__this_cpu_write(kvm_apic_eoi, 0);
357		pa = slow_virt_to_phys(this_cpu_ptr(&kvm_apic_eoi))
358			| KVM_MSR_ENABLED;
359		wrmsrl(MSR_KVM_PV_EOI_EN, pa);
360	}
361
362	if (has_steal_clock)
363		kvm_register_steal_time();
364}
365
366static void kvm_pv_disable_apf(void)
367{
368	if (!__this_cpu_read(apf_reason.enabled))
369		return;
370
371	wrmsrl(MSR_KVM_ASYNC_PF_EN, 0);
372	__this_cpu_write(apf_reason.enabled, 0);
373
374	printk(KERN_INFO"Unregister pv shared memory for cpu %d\n",
375	       smp_processor_id());
376}
377
378static void kvm_pv_guest_cpu_reboot(void *unused)
379{
380	/*
381	 * We disable PV EOI before we load a new kernel by kexec,
382	 * since MSR_KVM_PV_EOI_EN stores a pointer into old kernel's memory.
383	 * New kernel can re-enable when it boots.
384	 */
385	if (kvm_para_has_feature(KVM_FEATURE_PV_EOI))
386		wrmsrl(MSR_KVM_PV_EOI_EN, 0);
387	kvm_pv_disable_apf();
388	kvm_disable_steal_time();
389}
390
391static int kvm_pv_reboot_notify(struct notifier_block *nb,
392				unsigned long code, void *unused)
393{
394	if (code == SYS_RESTART)
395		on_each_cpu(kvm_pv_guest_cpu_reboot, NULL, 1);
396	return NOTIFY_DONE;
397}
398
399static struct notifier_block kvm_pv_reboot_nb = {
400	.notifier_call = kvm_pv_reboot_notify,
401};
402
403static u64 kvm_steal_clock(int cpu)
404{
405	u64 steal;
406	struct kvm_steal_time *src;
407	int version;
408
409	src = &per_cpu(steal_time, cpu);
410	do {
411		version = src->version;
412		rmb();
413		steal = src->steal;
414		rmb();
415	} while ((version & 1) || (version != src->version));
416
417	return steal;
418}
419
420void kvm_disable_steal_time(void)
421{
422	if (!has_steal_clock)
423		return;
424
425	wrmsr(MSR_KVM_STEAL_TIME, 0, 0);
426}
427
428#ifdef CONFIG_SMP
429static void __init kvm_smp_prepare_boot_cpu(void)
430{
 
 
 
431	kvm_guest_cpu_init();
432	native_smp_prepare_boot_cpu();
433	kvm_spinlock_init();
434}
435
436static void kvm_guest_cpu_online(void *dummy)
437{
438	kvm_guest_cpu_init();
439}
440
441static void kvm_guest_cpu_offline(void *dummy)
442{
443	kvm_disable_steal_time();
444	if (kvm_para_has_feature(KVM_FEATURE_PV_EOI))
445		wrmsrl(MSR_KVM_PV_EOI_EN, 0);
446	kvm_pv_disable_apf();
447	apf_task_wake_all();
448}
449
450static int kvm_cpu_notify(struct notifier_block *self, unsigned long action,
451			  void *hcpu)
452{
453	int cpu = (unsigned long)hcpu;
454	switch (action) {
455	case CPU_ONLINE:
456	case CPU_DOWN_FAILED:
457	case CPU_ONLINE_FROZEN:
458		smp_call_function_single(cpu, kvm_guest_cpu_online, NULL, 0);
459		break;
460	case CPU_DOWN_PREPARE:
461	case CPU_DOWN_PREPARE_FROZEN:
462		smp_call_function_single(cpu, kvm_guest_cpu_offline, NULL, 1);
463		break;
464	default:
465		break;
466	}
467	return NOTIFY_OK;
468}
469
470static struct notifier_block kvm_cpu_notifier = {
471        .notifier_call  = kvm_cpu_notify,
472};
473#endif
474
475static void __init kvm_apf_trap_init(void)
476{
477	set_intr_gate(14, async_page_fault);
478}
479
480void __init kvm_guest_init(void)
481{
482	int i;
483
484	if (!kvm_para_available())
485		return;
486
487	paravirt_ops_setup();
488	register_reboot_notifier(&kvm_pv_reboot_nb);
489	for (i = 0; i < KVM_TASK_SLEEP_HASHSIZE; i++)
490		raw_spin_lock_init(&async_pf_sleepers[i].lock);
491	if (kvm_para_has_feature(KVM_FEATURE_ASYNC_PF))
492		x86_init.irqs.trap_init = kvm_apf_trap_init;
493
494	if (kvm_para_has_feature(KVM_FEATURE_STEAL_TIME)) {
495		has_steal_clock = 1;
496		pv_time_ops.steal_clock = kvm_steal_clock;
497	}
498
499	if (kvm_para_has_feature(KVM_FEATURE_PV_EOI))
500		apic_set_eoi_write(kvm_guest_apic_eoi_write);
501
502	if (kvmclock_vsyscall)
503		kvm_setup_vsyscall_timeinfo();
504
505#ifdef CONFIG_SMP
506	smp_ops.smp_prepare_boot_cpu = kvm_smp_prepare_boot_cpu;
507	register_cpu_notifier(&kvm_cpu_notifier);
508#else
509	kvm_guest_cpu_init();
510#endif
511
512	/*
513	 * Hard lockup detection is enabled by default. Disable it, as guests
514	 * can get false positives too easily, for example if the host is
515	 * overcommitted.
516	 */
517	hardlockup_detector_disable();
518}
519
520static noinline uint32_t __kvm_cpuid_base(void)
521{
522	if (boot_cpu_data.cpuid_level < 0)
523		return 0;	/* So we don't blow up on old processors */
524
525	if (cpu_has_hypervisor)
526		return hypervisor_cpuid_base("KVMKVMKVM\0\0\0", 0);
527
528	return 0;
529}
530
531static inline uint32_t kvm_cpuid_base(void)
532{
533	static int kvm_cpuid_base = -1;
534
535	if (kvm_cpuid_base == -1)
536		kvm_cpuid_base = __kvm_cpuid_base();
537
538	return kvm_cpuid_base;
539}
540
541bool kvm_para_available(void)
542{
543	return kvm_cpuid_base() != 0;
544}
545EXPORT_SYMBOL_GPL(kvm_para_available);
546
547unsigned int kvm_arch_para_features(void)
548{
549	return cpuid_eax(kvm_cpuid_base() | KVM_CPUID_FEATURES);
550}
551
552static uint32_t __init kvm_detect(void)
553{
554	return kvm_cpuid_base();
555}
556
557const struct hypervisor_x86 x86_hyper_kvm __refconst = {
558	.name			= "KVM",
559	.detect			= kvm_detect,
560	.x2apic_available	= kvm_para_available,
561};
562EXPORT_SYMBOL_GPL(x86_hyper_kvm);
563
564static __init int activate_jump_labels(void)
565{
566	if (has_steal_clock) {
567		static_key_slow_inc(&paravirt_steal_enabled);
568		if (steal_acc)
569			static_key_slow_inc(&paravirt_steal_rq_enabled);
570	}
571
572	return 0;
573}
574arch_initcall(activate_jump_labels);
575
576#ifdef CONFIG_PARAVIRT_SPINLOCKS
577
578/* Kick a cpu by its apicid. Used to wake up a halted vcpu */
579static void kvm_kick_cpu(int cpu)
580{
581	int apicid;
582	unsigned long flags = 0;
583
584	apicid = per_cpu(x86_cpu_to_apicid, cpu);
585	kvm_hypercall2(KVM_HC_KICK_CPU, flags, apicid);
586}
587
588
589#ifdef CONFIG_QUEUED_SPINLOCKS
590
591#include <asm/qspinlock.h>
592
593static void kvm_wait(u8 *ptr, u8 val)
594{
595	unsigned long flags;
596
597	if (in_nmi())
598		return;
599
600	local_irq_save(flags);
601
602	if (READ_ONCE(*ptr) != val)
603		goto out;
604
605	/*
606	 * halt until it's our turn and kicked. Note that we do safe halt
607	 * for irq enabled case to avoid hang when lock info is overwritten
608	 * in irq spinlock slowpath and no spurious interrupt occur to save us.
609	 */
610	if (arch_irqs_disabled_flags(flags))
611		halt();
612	else
613		safe_halt();
614
615out:
616	local_irq_restore(flags);
617}
618
619#else /* !CONFIG_QUEUED_SPINLOCKS */
620
621enum kvm_contention_stat {
622	TAKEN_SLOW,
623	TAKEN_SLOW_PICKUP,
624	RELEASED_SLOW,
625	RELEASED_SLOW_KICKED,
626	NR_CONTENTION_STATS
627};
628
629#ifdef CONFIG_KVM_DEBUG_FS
630#define HISTO_BUCKETS	30
631
632static struct kvm_spinlock_stats
633{
634	u32 contention_stats[NR_CONTENTION_STATS];
635	u32 histo_spin_blocked[HISTO_BUCKETS+1];
636	u64 time_blocked;
637} spinlock_stats;
638
639static u8 zero_stats;
640
641static inline void check_zero(void)
642{
643	u8 ret;
644	u8 old;
645
646	old = READ_ONCE(zero_stats);
647	if (unlikely(old)) {
648		ret = cmpxchg(&zero_stats, old, 0);
649		/* This ensures only one fellow resets the stat */
650		if (ret == old)
651			memset(&spinlock_stats, 0, sizeof(spinlock_stats));
652	}
653}
654
655static inline void add_stats(enum kvm_contention_stat var, u32 val)
656{
657	check_zero();
658	spinlock_stats.contention_stats[var] += val;
659}
660
661
662static inline u64 spin_time_start(void)
663{
664	return sched_clock();
665}
666
667static void __spin_time_accum(u64 delta, u32 *array)
668{
669	unsigned index;
670
671	index = ilog2(delta);
672	check_zero();
673
674	if (index < HISTO_BUCKETS)
675		array[index]++;
676	else
677		array[HISTO_BUCKETS]++;
678}
679
680static inline void spin_time_accum_blocked(u64 start)
681{
682	u32 delta;
683
684	delta = sched_clock() - start;
685	__spin_time_accum(delta, spinlock_stats.histo_spin_blocked);
686	spinlock_stats.time_blocked += delta;
687}
688
689static struct dentry *d_spin_debug;
690static struct dentry *d_kvm_debug;
691
692static struct dentry *kvm_init_debugfs(void)
693{
694	d_kvm_debug = debugfs_create_dir("kvm-guest", NULL);
695	if (!d_kvm_debug)
696		printk(KERN_WARNING "Could not create 'kvm' debugfs directory\n");
697
698	return d_kvm_debug;
699}
700
701static int __init kvm_spinlock_debugfs(void)
702{
703	struct dentry *d_kvm;
704
705	d_kvm = kvm_init_debugfs();
706	if (d_kvm == NULL)
707		return -ENOMEM;
708
709	d_spin_debug = debugfs_create_dir("spinlocks", d_kvm);
710
711	debugfs_create_u8("zero_stats", 0644, d_spin_debug, &zero_stats);
712
713	debugfs_create_u32("taken_slow", 0444, d_spin_debug,
714		   &spinlock_stats.contention_stats[TAKEN_SLOW]);
715	debugfs_create_u32("taken_slow_pickup", 0444, d_spin_debug,
716		   &spinlock_stats.contention_stats[TAKEN_SLOW_PICKUP]);
717
718	debugfs_create_u32("released_slow", 0444, d_spin_debug,
719		   &spinlock_stats.contention_stats[RELEASED_SLOW]);
720	debugfs_create_u32("released_slow_kicked", 0444, d_spin_debug,
721		   &spinlock_stats.contention_stats[RELEASED_SLOW_KICKED]);
722
723	debugfs_create_u64("time_blocked", 0444, d_spin_debug,
724			   &spinlock_stats.time_blocked);
725
726	debugfs_create_u32_array("histo_blocked", 0444, d_spin_debug,
727		     spinlock_stats.histo_spin_blocked, HISTO_BUCKETS + 1);
728
729	return 0;
730}
731fs_initcall(kvm_spinlock_debugfs);
732#else  /* !CONFIG_KVM_DEBUG_FS */
733static inline void add_stats(enum kvm_contention_stat var, u32 val)
734{
735}
736
737static inline u64 spin_time_start(void)
738{
739	return 0;
740}
741
742static inline void spin_time_accum_blocked(u64 start)
743{
744}
745#endif  /* CONFIG_KVM_DEBUG_FS */
746
747struct kvm_lock_waiting {
748	struct arch_spinlock *lock;
749	__ticket_t want;
750};
751
752/* cpus 'waiting' on a spinlock to become available */
753static cpumask_t waiting_cpus;
754
755/* Track spinlock on which a cpu is waiting */
756static DEFINE_PER_CPU(struct kvm_lock_waiting, klock_waiting);
757
758__visible void kvm_lock_spinning(struct arch_spinlock *lock, __ticket_t want)
759{
760	struct kvm_lock_waiting *w;
761	int cpu;
762	u64 start;
763	unsigned long flags;
764	__ticket_t head;
765
766	if (in_nmi())
767		return;
768
769	w = this_cpu_ptr(&klock_waiting);
770	cpu = smp_processor_id();
771	start = spin_time_start();
772
773	/*
774	 * Make sure an interrupt handler can't upset things in a
775	 * partially setup state.
776	 */
777	local_irq_save(flags);
778
779	/*
780	 * The ordering protocol on this is that the "lock" pointer
781	 * may only be set non-NULL if the "want" ticket is correct.
782	 * If we're updating "want", we must first clear "lock".
783	 */
784	w->lock = NULL;
785	smp_wmb();
786	w->want = want;
787	smp_wmb();
788	w->lock = lock;
789
790	add_stats(TAKEN_SLOW, 1);
791
792	/*
793	 * This uses set_bit, which is atomic but we should not rely on its
794	 * reordering gurantees. So barrier is needed after this call.
795	 */
796	cpumask_set_cpu(cpu, &waiting_cpus);
797
798	barrier();
799
800	/*
801	 * Mark entry to slowpath before doing the pickup test to make
802	 * sure we don't deadlock with an unlocker.
803	 */
804	__ticket_enter_slowpath(lock);
805
806	/* make sure enter_slowpath, which is atomic does not cross the read */
807	smp_mb__after_atomic();
808
809	/*
810	 * check again make sure it didn't become free while
811	 * we weren't looking.
812	 */
813	head = READ_ONCE(lock->tickets.head);
814	if (__tickets_equal(head, want)) {
815		add_stats(TAKEN_SLOW_PICKUP, 1);
816		goto out;
817	}
818
819	/*
820	 * halt until it's our turn and kicked. Note that we do safe halt
821	 * for irq enabled case to avoid hang when lock info is overwritten
822	 * in irq spinlock slowpath and no spurious interrupt occur to save us.
823	 */
824	if (arch_irqs_disabled_flags(flags))
825		halt();
826	else
827		safe_halt();
828
829out:
830	cpumask_clear_cpu(cpu, &waiting_cpus);
831	w->lock = NULL;
832	local_irq_restore(flags);
833	spin_time_accum_blocked(start);
834}
835PV_CALLEE_SAVE_REGS_THUNK(kvm_lock_spinning);
836
837/* Kick vcpu waiting on @lock->head to reach value @ticket */
838static void kvm_unlock_kick(struct arch_spinlock *lock, __ticket_t ticket)
839{
840	int cpu;
841
842	add_stats(RELEASED_SLOW, 1);
843	for_each_cpu(cpu, &waiting_cpus) {
844		const struct kvm_lock_waiting *w = &per_cpu(klock_waiting, cpu);
845		if (READ_ONCE(w->lock) == lock &&
846		    READ_ONCE(w->want) == ticket) {
847			add_stats(RELEASED_SLOW_KICKED, 1);
848			kvm_kick_cpu(cpu);
849			break;
850		}
851	}
852}
853
854#endif /* !CONFIG_QUEUED_SPINLOCKS */
855
856/*
857 * Setup pv_lock_ops to exploit KVM_FEATURE_PV_UNHALT if present.
858 */
859void __init kvm_spinlock_init(void)
860{
861	if (!kvm_para_available())
862		return;
863	/* Does host kernel support KVM_FEATURE_PV_UNHALT? */
864	if (!kvm_para_has_feature(KVM_FEATURE_PV_UNHALT))
865		return;
866
867#ifdef CONFIG_QUEUED_SPINLOCKS
868	__pv_init_lock_hash();
869	pv_lock_ops.queued_spin_lock_slowpath = __pv_queued_spin_lock_slowpath;
870	pv_lock_ops.queued_spin_unlock = PV_CALLEE_SAVE(__pv_queued_spin_unlock);
871	pv_lock_ops.wait = kvm_wait;
872	pv_lock_ops.kick = kvm_kick_cpu;
873#else /* !CONFIG_QUEUED_SPINLOCKS */
874	pv_lock_ops.lock_spinning = PV_CALLEE_SAVE(kvm_lock_spinning);
875	pv_lock_ops.unlock_kick = kvm_unlock_kick;
876#endif
877}
878
879static __init int kvm_spinlock_init_jump(void)
880{
881	if (!kvm_para_available())
882		return 0;
883	if (!kvm_para_has_feature(KVM_FEATURE_PV_UNHALT))
884		return 0;
885
886	static_key_slow_inc(&paravirt_ticketlocks_enabled);
887	printk(KERN_INFO "KVM setup paravirtual spinlock\n");
888
889	return 0;
890}
891early_initcall(kvm_spinlock_init_jump);
892
893#endif	/* CONFIG_PARAVIRT_SPINLOCKS */
v3.1
  1/*
  2 * KVM paravirt_ops implementation
  3 *
  4 * This program is free software; you can redistribute it and/or modify
  5 * it under the terms of the GNU General Public License as published by
  6 * the Free Software Foundation; either version 2 of the License, or
  7 * (at your option) any later version.
  8 *
  9 * This program is distributed in the hope that it will be useful,
 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 12 * GNU General Public License for more details.
 13 *
 14 * You should have received a copy of the GNU General Public License
 15 * along with this program; if not, write to the Free Software
 16 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
 17 *
 18 * Copyright (C) 2007, Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 19 * Copyright IBM Corporation, 2007
 20 *   Authors: Anthony Liguori <aliguori@us.ibm.com>
 21 */
 22
 
 23#include <linux/module.h>
 24#include <linux/kernel.h>
 25#include <linux/kvm_para.h>
 26#include <linux/cpu.h>
 27#include <linux/mm.h>
 28#include <linux/highmem.h>
 29#include <linux/hardirq.h>
 30#include <linux/notifier.h>
 31#include <linux/reboot.h>
 32#include <linux/hash.h>
 33#include <linux/sched.h>
 34#include <linux/slab.h>
 35#include <linux/kprobes.h>
 
 
 
 36#include <asm/timer.h>
 37#include <asm/cpu.h>
 38#include <asm/traps.h>
 39#include <asm/desc.h>
 40#include <asm/tlbflush.h>
 41
 42#define MMU_QUEUE_SIZE 1024
 
 
 
 43
 44static int kvmapf = 1;
 45
 46static int parse_no_kvmapf(char *arg)
 47{
 48        kvmapf = 0;
 49        return 0;
 50}
 51
 52early_param("no-kvmapf", parse_no_kvmapf);
 53
 54static int steal_acc = 1;
 55static int parse_no_stealacc(char *arg)
 56{
 57        steal_acc = 0;
 58        return 0;
 59}
 60
 61early_param("no-steal-acc", parse_no_stealacc);
 62
 63struct kvm_para_state {
 64	u8 mmu_queue[MMU_QUEUE_SIZE];
 65	int mmu_queue_len;
 66};
 
 
 
 
 67
 68static DEFINE_PER_CPU(struct kvm_para_state, para_state);
 69static DEFINE_PER_CPU(struct kvm_vcpu_pv_apf_data, apf_reason) __aligned(64);
 70static DEFINE_PER_CPU(struct kvm_steal_time, steal_time) __aligned(64);
 71static int has_steal_clock = 0;
 72
 73static struct kvm_para_state *kvm_para_state(void)
 74{
 75	return &per_cpu(para_state, raw_smp_processor_id());
 76}
 77
 78/*
 79 * No need for any "IO delay" on KVM
 80 */
 81static void kvm_io_delay(void)
 82{
 83}
 84
 85#define KVM_TASK_SLEEP_HASHBITS 8
 86#define KVM_TASK_SLEEP_HASHSIZE (1<<KVM_TASK_SLEEP_HASHBITS)
 87
 88struct kvm_task_sleep_node {
 89	struct hlist_node link;
 90	wait_queue_head_t wq;
 91	u32 token;
 92	int cpu;
 93	bool halted;
 94	struct mm_struct *mm;
 95};
 96
 97static struct kvm_task_sleep_head {
 98	spinlock_t lock;
 99	struct hlist_head list;
100} async_pf_sleepers[KVM_TASK_SLEEP_HASHSIZE];
101
102static struct kvm_task_sleep_node *_find_apf_task(struct kvm_task_sleep_head *b,
103						  u32 token)
104{
105	struct hlist_node *p;
106
107	hlist_for_each(p, &b->list) {
108		struct kvm_task_sleep_node *n =
109			hlist_entry(p, typeof(*n), link);
110		if (n->token == token)
111			return n;
112	}
113
114	return NULL;
115}
116
117void kvm_async_pf_task_wait(u32 token)
118{
119	u32 key = hash_32(token, KVM_TASK_SLEEP_HASHBITS);
120	struct kvm_task_sleep_head *b = &async_pf_sleepers[key];
121	struct kvm_task_sleep_node n, *e;
122	DEFINE_WAIT(wait);
123	int cpu, idle;
124
125	cpu = get_cpu();
126	idle = idle_cpu(cpu);
127	put_cpu();
128
129	spin_lock(&b->lock);
130	e = _find_apf_task(b, token);
131	if (e) {
132		/* dummy entry exist -> wake up was delivered ahead of PF */
133		hlist_del(&e->link);
134		kfree(e);
135		spin_unlock(&b->lock);
 
 
136		return;
137	}
138
139	n.token = token;
140	n.cpu = smp_processor_id();
141	n.mm = current->active_mm;
142	n.halted = idle || preempt_count() > 1;
143	atomic_inc(&n.mm->mm_count);
144	init_waitqueue_head(&n.wq);
145	hlist_add_head(&n.link, &b->list);
146	spin_unlock(&b->lock);
147
148	for (;;) {
149		if (!n.halted)
150			prepare_to_wait(&n.wq, &wait, TASK_UNINTERRUPTIBLE);
151		if (hlist_unhashed(&n.link))
152			break;
153
154		if (!n.halted) {
155			local_irq_enable();
156			schedule();
157			local_irq_disable();
158		} else {
159			/*
160			 * We cannot reschedule. So halt.
161			 */
 
162			native_safe_halt();
 
163			local_irq_disable();
164		}
165	}
166	if (!n.halted)
167		finish_wait(&n.wq, &wait);
168
 
169	return;
170}
171EXPORT_SYMBOL_GPL(kvm_async_pf_task_wait);
172
173static void apf_task_wake_one(struct kvm_task_sleep_node *n)
174{
175	hlist_del_init(&n->link);
176	if (!n->mm)
177		return;
178	mmdrop(n->mm);
179	if (n->halted)
180		smp_send_reschedule(n->cpu);
181	else if (waitqueue_active(&n->wq))
182		wake_up(&n->wq);
183}
184
185static void apf_task_wake_all(void)
186{
187	int i;
188
189	for (i = 0; i < KVM_TASK_SLEEP_HASHSIZE; i++) {
190		struct hlist_node *p, *next;
191		struct kvm_task_sleep_head *b = &async_pf_sleepers[i];
192		spin_lock(&b->lock);
193		hlist_for_each_safe(p, next, &b->list) {
194			struct kvm_task_sleep_node *n =
195				hlist_entry(p, typeof(*n), link);
196			if (n->cpu == smp_processor_id())
197				apf_task_wake_one(n);
198		}
199		spin_unlock(&b->lock);
200	}
201}
202
203void kvm_async_pf_task_wake(u32 token)
204{
205	u32 key = hash_32(token, KVM_TASK_SLEEP_HASHBITS);
206	struct kvm_task_sleep_head *b = &async_pf_sleepers[key];
207	struct kvm_task_sleep_node *n;
208
209	if (token == ~0) {
210		apf_task_wake_all();
211		return;
212	}
213
214again:
215	spin_lock(&b->lock);
216	n = _find_apf_task(b, token);
217	if (!n) {
218		/*
219		 * async PF was not yet handled.
220		 * Add dummy entry for the token.
221		 */
222		n = kmalloc(sizeof(*n), GFP_ATOMIC);
223		if (!n) {
224			/*
225			 * Allocation failed! Busy wait while other cpu
226			 * handles async PF.
227			 */
228			spin_unlock(&b->lock);
229			cpu_relax();
230			goto again;
231		}
232		n->token = token;
233		n->cpu = smp_processor_id();
234		n->mm = NULL;
235		init_waitqueue_head(&n->wq);
236		hlist_add_head(&n->link, &b->list);
237	} else
238		apf_task_wake_one(n);
239	spin_unlock(&b->lock);
240	return;
241}
242EXPORT_SYMBOL_GPL(kvm_async_pf_task_wake);
243
244u32 kvm_read_and_reset_pf_reason(void)
245{
246	u32 reason = 0;
247
248	if (__get_cpu_var(apf_reason).enabled) {
249		reason = __get_cpu_var(apf_reason).reason;
250		__get_cpu_var(apf_reason).reason = 0;
251	}
252
253	return reason;
254}
255EXPORT_SYMBOL_GPL(kvm_read_and_reset_pf_reason);
 
256
257dotraplinkage void __kprobes
258do_async_page_fault(struct pt_regs *regs, unsigned long error_code)
259{
 
 
260	switch (kvm_read_and_reset_pf_reason()) {
261	default:
262		do_page_fault(regs, error_code);
263		break;
264	case KVM_PV_REASON_PAGE_NOT_PRESENT:
265		/* page is swapped out by the host. */
 
 
266		kvm_async_pf_task_wait((u32)read_cr2());
 
267		break;
268	case KVM_PV_REASON_PAGE_READY:
 
 
269		kvm_async_pf_task_wake((u32)read_cr2());
 
270		break;
271	}
272}
273
274static void kvm_mmu_op(void *buffer, unsigned len)
275{
276	int r;
277	unsigned long a1, a2;
278
279	do {
280		a1 = __pa(buffer);
281		a2 = 0;   /* on i386 __pa() always returns <4G */
282		r = kvm_hypercall3(KVM_HC_MMU_OP, len, a1, a2);
283		buffer += r;
284		len -= r;
285	} while (len);
286}
287
288static void mmu_queue_flush(struct kvm_para_state *state)
289{
290	if (state->mmu_queue_len) {
291		kvm_mmu_op(state->mmu_queue, state->mmu_queue_len);
292		state->mmu_queue_len = 0;
293	}
294}
295
296static void kvm_deferred_mmu_op(void *buffer, int len)
297{
298	struct kvm_para_state *state = kvm_para_state();
299
300	if (paravirt_get_lazy_mode() != PARAVIRT_LAZY_MMU) {
301		kvm_mmu_op(buffer, len);
302		return;
303	}
304	if (state->mmu_queue_len + len > sizeof state->mmu_queue)
305		mmu_queue_flush(state);
306	memcpy(state->mmu_queue + state->mmu_queue_len, buffer, len);
307	state->mmu_queue_len += len;
308}
309
310static void kvm_mmu_write(void *dest, u64 val)
311{
312	__u64 pte_phys;
313	struct kvm_mmu_op_write_pte wpte;
314
315#ifdef CONFIG_HIGHPTE
316	struct page *page;
317	unsigned long dst = (unsigned long) dest;
318
319	page = kmap_atomic_to_page(dest);
320	pte_phys = page_to_pfn(page);
321	pte_phys <<= PAGE_SHIFT;
322	pte_phys += (dst & ~(PAGE_MASK));
323#else
324	pte_phys = (unsigned long)__pa(dest);
325#endif
326	wpte.header.op = KVM_MMU_OP_WRITE_PTE;
327	wpte.pte_val = val;
328	wpte.pte_phys = pte_phys;
329
330	kvm_deferred_mmu_op(&wpte, sizeof wpte);
331}
332
333/*
334 * We only need to hook operations that are MMU writes.  We hook these so that
335 * we can use lazy MMU mode to batch these operations.  We could probably
336 * improve the performance of the host code if we used some of the information
337 * here to simplify processing of batched writes.
338 */
339static void kvm_set_pte(pte_t *ptep, pte_t pte)
340{
341	kvm_mmu_write(ptep, pte_val(pte));
342}
343
344static void kvm_set_pte_at(struct mm_struct *mm, unsigned long addr,
345			   pte_t *ptep, pte_t pte)
346{
347	kvm_mmu_write(ptep, pte_val(pte));
348}
349
350static void kvm_set_pmd(pmd_t *pmdp, pmd_t pmd)
351{
352	kvm_mmu_write(pmdp, pmd_val(pmd));
353}
354
355#if PAGETABLE_LEVELS >= 3
356#ifdef CONFIG_X86_PAE
357static void kvm_set_pte_atomic(pte_t *ptep, pte_t pte)
358{
359	kvm_mmu_write(ptep, pte_val(pte));
360}
361
362static void kvm_pte_clear(struct mm_struct *mm,
363			  unsigned long addr, pte_t *ptep)
364{
365	kvm_mmu_write(ptep, 0);
366}
367
368static void kvm_pmd_clear(pmd_t *pmdp)
369{
370	kvm_mmu_write(pmdp, 0);
371}
372#endif
373
374static void kvm_set_pud(pud_t *pudp, pud_t pud)
375{
376	kvm_mmu_write(pudp, pud_val(pud));
377}
378
379#if PAGETABLE_LEVELS == 4
380static void kvm_set_pgd(pgd_t *pgdp, pgd_t pgd)
381{
382	kvm_mmu_write(pgdp, pgd_val(pgd));
383}
384#endif
385#endif /* PAGETABLE_LEVELS >= 3 */
386
387static void kvm_flush_tlb(void)
388{
389	struct kvm_mmu_op_flush_tlb ftlb = {
390		.header.op = KVM_MMU_OP_FLUSH_TLB,
391	};
392
393	kvm_deferred_mmu_op(&ftlb, sizeof ftlb);
394}
395
396static void kvm_release_pt(unsigned long pfn)
397{
398	struct kvm_mmu_op_release_pt rpt = {
399		.header.op = KVM_MMU_OP_RELEASE_PT,
400		.pt_phys = (u64)pfn << PAGE_SHIFT,
401	};
402
403	kvm_mmu_op(&rpt, sizeof rpt);
404}
405
406static void kvm_enter_lazy_mmu(void)
407{
408	paravirt_enter_lazy_mmu();
409}
410
411static void kvm_leave_lazy_mmu(void)
412{
413	struct kvm_para_state *state = kvm_para_state();
414
415	mmu_queue_flush(state);
416	paravirt_leave_lazy_mmu();
417}
418
419static void __init paravirt_ops_setup(void)
420{
421	pv_info.name = "KVM";
422	pv_info.paravirt_enabled = 1;
 
 
 
 
 
 
 
423
424	if (kvm_para_has_feature(KVM_FEATURE_NOP_IO_DELAY))
425		pv_cpu_ops.io_delay = kvm_io_delay;
426
427	if (kvm_para_has_feature(KVM_FEATURE_MMU_OP)) {
428		pv_mmu_ops.set_pte = kvm_set_pte;
429		pv_mmu_ops.set_pte_at = kvm_set_pte_at;
430		pv_mmu_ops.set_pmd = kvm_set_pmd;
431#if PAGETABLE_LEVELS >= 3
432#ifdef CONFIG_X86_PAE
433		pv_mmu_ops.set_pte_atomic = kvm_set_pte_atomic;
434		pv_mmu_ops.pte_clear = kvm_pte_clear;
435		pv_mmu_ops.pmd_clear = kvm_pmd_clear;
436#endif
437		pv_mmu_ops.set_pud = kvm_set_pud;
438#if PAGETABLE_LEVELS == 4
439		pv_mmu_ops.set_pgd = kvm_set_pgd;
440#endif
441#endif
442		pv_mmu_ops.flush_tlb_user = kvm_flush_tlb;
443		pv_mmu_ops.release_pte = kvm_release_pt;
444		pv_mmu_ops.release_pmd = kvm_release_pt;
445		pv_mmu_ops.release_pud = kvm_release_pt;
446
447		pv_mmu_ops.lazy_mode.enter = kvm_enter_lazy_mmu;
448		pv_mmu_ops.lazy_mode.leave = kvm_leave_lazy_mmu;
449	}
450#ifdef CONFIG_X86_IO_APIC
451	no_timer_check = 1;
452#endif
453}
454
455static void kvm_register_steal_time(void)
456{
457	int cpu = smp_processor_id();
458	struct kvm_steal_time *st = &per_cpu(steal_time, cpu);
459
460	if (!has_steal_clock)
461		return;
462
463	memset(st, 0, sizeof(*st));
464
465	wrmsrl(MSR_KVM_STEAL_TIME, (__pa(st) | KVM_MSR_ENABLED));
466	printk(KERN_INFO "kvm-stealtime: cpu %d, msr %lx\n",
467		cpu, __pa(st));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
468}
469
470void __cpuinit kvm_guest_cpu_init(void)
471{
472	if (!kvm_para_available())
473		return;
474
475	if (kvm_para_has_feature(KVM_FEATURE_ASYNC_PF) && kvmapf) {
476		u64 pa = __pa(&__get_cpu_var(apf_reason));
477
478#ifdef CONFIG_PREEMPT
479		pa |= KVM_ASYNC_PF_SEND_ALWAYS;
480#endif
481		wrmsrl(MSR_KVM_ASYNC_PF_EN, pa | KVM_ASYNC_PF_ENABLED);
482		__get_cpu_var(apf_reason).enabled = 1;
483		printk(KERN_INFO"KVM setup async PF for cpu %d\n",
484		       smp_processor_id());
485	}
486
 
 
 
 
 
 
 
 
 
 
487	if (has_steal_clock)
488		kvm_register_steal_time();
489}
490
491static void kvm_pv_disable_apf(void *unused)
492{
493	if (!__get_cpu_var(apf_reason).enabled)
494		return;
495
496	wrmsrl(MSR_KVM_ASYNC_PF_EN, 0);
497	__get_cpu_var(apf_reason).enabled = 0;
498
499	printk(KERN_INFO"Unregister pv shared memory for cpu %d\n",
500	       smp_processor_id());
501}
502
 
 
 
 
 
 
 
 
 
 
 
 
 
503static int kvm_pv_reboot_notify(struct notifier_block *nb,
504				unsigned long code, void *unused)
505{
506	if (code == SYS_RESTART)
507		on_each_cpu(kvm_pv_disable_apf, NULL, 1);
508	return NOTIFY_DONE;
509}
510
511static struct notifier_block kvm_pv_reboot_nb = {
512	.notifier_call = kvm_pv_reboot_notify,
513};
514
515static u64 kvm_steal_clock(int cpu)
516{
517	u64 steal;
518	struct kvm_steal_time *src;
519	int version;
520
521	src = &per_cpu(steal_time, cpu);
522	do {
523		version = src->version;
524		rmb();
525		steal = src->steal;
526		rmb();
527	} while ((version & 1) || (version != src->version));
528
529	return steal;
530}
531
532void kvm_disable_steal_time(void)
533{
534	if (!has_steal_clock)
535		return;
536
537	wrmsr(MSR_KVM_STEAL_TIME, 0, 0);
538}
539
540#ifdef CONFIG_SMP
541static void __init kvm_smp_prepare_boot_cpu(void)
542{
543#ifdef CONFIG_KVM_CLOCK
544	WARN_ON(kvm_register_clock("primary cpu clock"));
545#endif
546	kvm_guest_cpu_init();
547	native_smp_prepare_boot_cpu();
 
548}
549
550static void __cpuinit kvm_guest_cpu_online(void *dummy)
551{
552	kvm_guest_cpu_init();
553}
554
555static void kvm_guest_cpu_offline(void *dummy)
556{
557	kvm_disable_steal_time();
558	kvm_pv_disable_apf(NULL);
 
 
559	apf_task_wake_all();
560}
561
562static int __cpuinit kvm_cpu_notify(struct notifier_block *self,
563				    unsigned long action, void *hcpu)
564{
565	int cpu = (unsigned long)hcpu;
566	switch (action) {
567	case CPU_ONLINE:
568	case CPU_DOWN_FAILED:
569	case CPU_ONLINE_FROZEN:
570		smp_call_function_single(cpu, kvm_guest_cpu_online, NULL, 0);
571		break;
572	case CPU_DOWN_PREPARE:
573	case CPU_DOWN_PREPARE_FROZEN:
574		smp_call_function_single(cpu, kvm_guest_cpu_offline, NULL, 1);
575		break;
576	default:
577		break;
578	}
579	return NOTIFY_OK;
580}
581
582static struct notifier_block __cpuinitdata kvm_cpu_notifier = {
583        .notifier_call  = kvm_cpu_notify,
584};
585#endif
586
587static void __init kvm_apf_trap_init(void)
588{
589	set_intr_gate(14, &async_page_fault);
590}
591
592void __init kvm_guest_init(void)
593{
594	int i;
595
596	if (!kvm_para_available())
597		return;
598
599	paravirt_ops_setup();
600	register_reboot_notifier(&kvm_pv_reboot_nb);
601	for (i = 0; i < KVM_TASK_SLEEP_HASHSIZE; i++)
602		spin_lock_init(&async_pf_sleepers[i].lock);
603	if (kvm_para_has_feature(KVM_FEATURE_ASYNC_PF))
604		x86_init.irqs.trap_init = kvm_apf_trap_init;
605
606	if (kvm_para_has_feature(KVM_FEATURE_STEAL_TIME)) {
607		has_steal_clock = 1;
608		pv_time_ops.steal_clock = kvm_steal_clock;
609	}
610
 
 
 
 
 
 
611#ifdef CONFIG_SMP
612	smp_ops.smp_prepare_boot_cpu = kvm_smp_prepare_boot_cpu;
613	register_cpu_notifier(&kvm_cpu_notifier);
614#else
615	kvm_guest_cpu_init();
616#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
617}
618
 
 
 
 
 
 
 
619static __init int activate_jump_labels(void)
620{
621	if (has_steal_clock) {
622		jump_label_inc(&paravirt_steal_enabled);
623		if (steal_acc)
624			jump_label_inc(&paravirt_steal_rq_enabled);
625	}
626
627	return 0;
628}
629arch_initcall(activate_jump_labels);