Linux Audio

Check our new training course

Loading...
v4.6
  1/*
  2 * Copyright (C) 2015 Anton Ivanov (aivanov@{brocade.com,kot-begemot.co.uk})
  3 * Copyright (C) 2015 Thomas Meyer (thomas@m3y3r.de)
  4 * Copyright (C) 2004 PathScale, Inc
  5 * Copyright (C) 2004 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
  6 * Licensed under the GPL
  7 */
  8
  9#include <stdlib.h>
 10#include <stdarg.h>
 11#include <errno.h>
 12#include <signal.h>
 13#include <strings.h>
 14#include <as-layout.h>
 15#include <kern_util.h>
 16#include <os.h>
 17#include <sysdep/mcontext.h>
 
 
 
 18
 19void (*sig_info[NSIG])(int, struct siginfo *, struct uml_pt_regs *) = {
 
 
 
 20	[SIGTRAP]	= relay_signal,
 21	[SIGFPE]	= relay_signal,
 22	[SIGILL]	= relay_signal,
 23	[SIGWINCH]	= winch,
 24	[SIGBUS]	= bus_handler,
 25	[SIGSEGV]	= segv_handler,
 26	[SIGIO]		= sigio_handler,
 27	[SIGALRM]	= timer_handler
 28};
 29
 30static void sig_handler_common(int sig, struct siginfo *si, mcontext_t *mc)
 31{
 32	struct uml_pt_regs r;
 33	int save_errno = errno;
 34
 35	r.is_user = 0;
 36	if (sig == SIGSEGV) {
 37		/* For segfaults, we want the data from the sigcontext. */
 38		get_regs_from_mc(&r, mc);
 39		GET_FAULTINFO_FROM_MC(r.faultinfo, mc);
 40	}
 41
 42	/* enable signals if sig isn't IRQ signal */
 43	if ((sig != SIGIO) && (sig != SIGWINCH) && (sig != SIGALRM))
 44		unblock_signals();
 45
 46	(*sig_info[sig])(sig, si, &r);
 47
 48	errno = save_errno;
 49}
 50
 51/*
 52 * These are the asynchronous signals.  SIGPROF is excluded because we want to
 53 * be able to profile all of UML, not just the non-critical sections.  If
 54 * profiling is not thread-safe, then that is not my problem.  We can disable
 55 * profiling when SMP is enabled in that case.
 56 */
 57#define SIGIO_BIT 0
 58#define SIGIO_MASK (1 << SIGIO_BIT)
 59
 60#define SIGALRM_BIT 1
 61#define SIGALRM_MASK (1 << SIGALRM_BIT)
 62
 63static int signals_enabled;
 64static unsigned int signals_pending;
 65static unsigned int signals_active = 0;
 66
 67void sig_handler(int sig, struct siginfo *si, mcontext_t *mc)
 68{
 69	int enabled;
 70
 71	enabled = signals_enabled;
 72	if (!enabled && (sig == SIGIO)) {
 73		signals_pending |= SIGIO_MASK;
 74		return;
 75	}
 76
 77	block_signals();
 78
 79	sig_handler_common(sig, si, mc);
 80
 81	set_signals(enabled);
 82}
 83
 84static void timer_real_alarm_handler(mcontext_t *mc)
 85{
 86	struct uml_pt_regs regs;
 87
 88	if (mc != NULL)
 89		get_regs_from_mc(&regs, mc);
 90	timer_handler(SIGALRM, NULL, &regs);
 
 
 91}
 92
 93void timer_alarm_handler(int sig, struct siginfo *unused_si, mcontext_t *mc)
 94{
 95	int enabled;
 96
 97	enabled = signals_enabled;
 98	if (!signals_enabled) {
 99		signals_pending |= SIGALRM_MASK;
100		return;
101	}
102
103	block_signals();
104
105	signals_active |= SIGALRM_MASK;
106
107	timer_real_alarm_handler(mc);
108
109	signals_active &= ~SIGALRM_MASK;
110
111	set_signals(enabled);
112}
113
114void deliver_alarm(void) {
115    timer_alarm_handler(SIGALRM, NULL, NULL);
116}
117
118void timer_set_signal_handler(void)
119{
120	set_handler(SIGALRM);
 
121}
122
123void set_sigstack(void *sig_stack, int size)
124{
125	stack_t stack = {
126		.ss_flags = 0,
127		.ss_sp = sig_stack,
128		.ss_size = size - sizeof(void *)
129	};
130
131	if (sigaltstack(&stack, NULL) != 0)
132		panic("enabling signal stack failed, errno = %d\n", errno);
133}
134
135static void (*handlers[_NSIG])(int sig, struct siginfo *si, mcontext_t *mc) = {
136	[SIGSEGV] = sig_handler,
137	[SIGBUS] = sig_handler,
138	[SIGILL] = sig_handler,
139	[SIGFPE] = sig_handler,
140	[SIGTRAP] = sig_handler,
141
142	[SIGIO] = sig_handler,
143	[SIGWINCH] = sig_handler,
144	[SIGALRM] = timer_alarm_handler
145};
146
147static void hard_handler(int sig, siginfo_t *si, void *p)
148{
149	struct ucontext *uc = p;
150	mcontext_t *mc = &uc->uc_mcontext;
151	unsigned long pending = 1UL << sig;
152
153	do {
154		int nested, bail;
155
156		/*
157		 * pending comes back with one bit set for each
158		 * interrupt that arrived while setting up the stack,
159		 * plus a bit for this interrupt, plus the zero bit is
160		 * set if this is a nested interrupt.
161		 * If bail is true, then we interrupted another
162		 * handler setting up the stack.  In this case, we
163		 * have to return, and the upper handler will deal
164		 * with this interrupt.
165		 */
166		bail = to_irq_stack(&pending);
167		if (bail)
168			return;
169
170		nested = pending & 1;
171		pending &= ~1;
172
173		while ((sig = ffs(pending)) != 0){
174			sig--;
175			pending &= ~(1 << sig);
176			(*handlers[sig])(sig, (struct siginfo *)si, mc);
177		}
178
179		/*
180		 * Again, pending comes back with a mask of signals
181		 * that arrived while tearing down the stack.  If this
182		 * is non-zero, we just go back, set up the stack
183		 * again, and handle the new interrupts.
184		 */
185		if (!nested)
186			pending = from_irq_stack(nested);
187	} while (pending);
188}
189
190void set_handler(int sig)
 
 
191{
192	struct sigaction action;
193	int flags = SA_SIGINFO | SA_ONSTACK;
194	sigset_t sig_mask;
 
195
196	action.sa_sigaction = hard_handler;
 
197
198	/* block irq ones */
199	sigemptyset(&action.sa_mask);
200	sigaddset(&action.sa_mask, SIGIO);
201	sigaddset(&action.sa_mask, SIGWINCH);
202	sigaddset(&action.sa_mask, SIGALRM);
 
 
203
204	if (sig == SIGSEGV)
205		flags |= SA_NODEFER;
206
207	if (sigismember(&action.sa_mask, sig))
208		flags |= SA_RESTART; /* if it's an irq signal */
209
210	action.sa_flags = flags;
211	action.sa_restorer = NULL;
212	if (sigaction(sig, &action, NULL) < 0)
213		panic("sigaction failed - errno = %d\n", errno);
214
215	sigemptyset(&sig_mask);
216	sigaddset(&sig_mask, sig);
217	if (sigprocmask(SIG_UNBLOCK, &sig_mask, NULL) < 0)
218		panic("sigprocmask failed - errno = %d\n", errno);
219}
220
221int change_sig(int signal, int on)
222{
223	sigset_t sigset;
224
225	sigemptyset(&sigset);
226	sigaddset(&sigset, signal);
227	if (sigprocmask(on ? SIG_UNBLOCK : SIG_BLOCK, &sigset, NULL) < 0)
228		return -errno;
229
230	return 0;
231}
232
233void block_signals(void)
234{
235	signals_enabled = 0;
236	/*
237	 * This must return with signals disabled, so this barrier
238	 * ensures that writes are flushed out before the return.
239	 * This might matter if gcc figures out how to inline this and
240	 * decides to shuffle this code into the caller.
241	 */
242	barrier();
243}
244
245void unblock_signals(void)
246{
247	int save_pending;
248
249	if (signals_enabled == 1)
250		return;
251
252	/*
253	 * We loop because the IRQ handler returns with interrupts off.  So,
254	 * interrupts may have arrived and we need to re-enable them and
255	 * recheck signals_pending.
256	 */
257	while (1) {
258		/*
259		 * Save and reset save_pending after enabling signals.  This
260		 * way, signals_pending won't be changed while we're reading it.
261		 */
262		signals_enabled = 1;
263
264		/*
265		 * Setting signals_enabled and reading signals_pending must
266		 * happen in this order.
267		 */
268		barrier();
269
270		save_pending = signals_pending;
271		if (save_pending == 0)
272			return;
273
274		signals_pending = 0;
275
276		/*
277		 * We have pending interrupts, so disable signals, as the
278		 * handlers expect them off when they are called.  They will
279		 * be enabled again above.
280		 */
281
282		signals_enabled = 0;
283
284		/*
285		 * Deal with SIGIO first because the alarm handler might
286		 * schedule, leaving the pending SIGIO stranded until we come
287		 * back here.
288		 *
289		 * SIGIO's handler doesn't use siginfo or mcontext,
290		 * so they can be NULL.
291		 */
292		if (save_pending & SIGIO_MASK)
293			sig_handler_common(SIGIO, NULL, NULL);
294
295		/* Do not reenter the handler */
296
297		if ((save_pending & SIGALRM_MASK) && (!(signals_active & SIGALRM_MASK)))
298			timer_real_alarm_handler(NULL);
299
300		/* Rerun the loop only if there is still pending SIGIO and not in TIMER handler */
301
302		if (!(signals_pending & SIGIO_MASK) && (signals_active & SIGALRM_MASK))
303			return;
304
 
 
305	}
306}
307
308int get_signals(void)
309{
310	return signals_enabled;
311}
312
313int set_signals(int enable)
314{
315	int ret;
316	if (signals_enabled == enable)
317		return enable;
318
319	ret = signals_enabled;
320	if (enable)
321		unblock_signals();
322	else block_signals();
323
324	return ret;
325}
326
327int os_is_signal_stack(void)
328{
329	stack_t ss;
330	sigaltstack(NULL, &ss);
331
332	return ss.ss_flags & SS_ONSTACK;
333}
v3.1
  1/*
 
 
  2 * Copyright (C) 2004 PathScale, Inc
  3 * Copyright (C) 2004 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
  4 * Licensed under the GPL
  5 */
  6
  7#include <stdlib.h>
  8#include <stdarg.h>
  9#include <errno.h>
 10#include <signal.h>
 11#include <strings.h>
 12#include "as-layout.h"
 13#include "kern_util.h"
 14#include "os.h"
 15#include "process.h"
 16#include "sysdep/barrier.h"
 17#include "sysdep/sigcontext.h"
 18#include "user.h"
 19
 20/* Copied from linux/compiler-gcc.h since we can't include it directly */
 21#define barrier() __asm__ __volatile__("": : :"memory")
 22
 23void (*sig_info[NSIG])(int, struct uml_pt_regs *) = {
 24	[SIGTRAP]	= relay_signal,
 25	[SIGFPE]	= relay_signal,
 26	[SIGILL]	= relay_signal,
 27	[SIGWINCH]	= winch,
 28	[SIGBUS]	= bus_handler,
 29	[SIGSEGV]	= segv_handler,
 30	[SIGIO]		= sigio_handler,
 31	[SIGVTALRM]	= timer_handler };
 
 32
 33static void sig_handler_common(int sig, struct sigcontext *sc)
 34{
 35	struct uml_pt_regs r;
 36	int save_errno = errno;
 37
 38	r.is_user = 0;
 39	if (sig == SIGSEGV) {
 40		/* For segfaults, we want the data from the sigcontext. */
 41		copy_sc(&r, sc);
 42		GET_FAULTINFO_FROM_SC(r.faultinfo, sc);
 43	}
 44
 45	/* enable signals if sig isn't IRQ signal */
 46	if ((sig != SIGIO) && (sig != SIGWINCH) && (sig != SIGVTALRM))
 47		unblock_signals();
 48
 49	(*sig_info[sig])(sig, &r);
 50
 51	errno = save_errno;
 52}
 53
 54/*
 55 * These are the asynchronous signals.  SIGPROF is excluded because we want to
 56 * be able to profile all of UML, not just the non-critical sections.  If
 57 * profiling is not thread-safe, then that is not my problem.  We can disable
 58 * profiling when SMP is enabled in that case.
 59 */
 60#define SIGIO_BIT 0
 61#define SIGIO_MASK (1 << SIGIO_BIT)
 62
 63#define SIGVTALRM_BIT 1
 64#define SIGVTALRM_MASK (1 << SIGVTALRM_BIT)
 65
 66static int signals_enabled;
 67static unsigned int signals_pending;
 
 68
 69void sig_handler(int sig, struct sigcontext *sc)
 70{
 71	int enabled;
 72
 73	enabled = signals_enabled;
 74	if (!enabled && (sig == SIGIO)) {
 75		signals_pending |= SIGIO_MASK;
 76		return;
 77	}
 78
 79	block_signals();
 80
 81	sig_handler_common(sig, sc);
 82
 83	set_signals(enabled);
 84}
 85
 86static void real_alarm_handler(struct sigcontext *sc)
 87{
 88	struct uml_pt_regs regs;
 89
 90	if (sc != NULL)
 91		copy_sc(&regs, sc);
 92	regs.is_user = 0;
 93	unblock_signals();
 94	timer_handler(SIGVTALRM, &regs);
 95}
 96
 97void alarm_handler(int sig, struct sigcontext *sc)
 98{
 99	int enabled;
100
101	enabled = signals_enabled;
102	if (!signals_enabled) {
103		signals_pending |= SIGVTALRM_MASK;
104		return;
105	}
106
107	block_signals();
108
109	real_alarm_handler(sc);
 
 
 
 
 
110	set_signals(enabled);
111}
112
113void timer_init(void)
 
 
 
 
114{
115	set_handler(SIGVTALRM, (__sighandler_t) alarm_handler,
116		    SA_ONSTACK | SA_RESTART, SIGUSR1, SIGIO, SIGWINCH, -1);
117}
118
119void set_sigstack(void *sig_stack, int size)
120{
121	stack_t stack = ((stack_t) { .ss_flags	= 0,
122				     .ss_sp	= (__ptr_t) sig_stack,
123				     .ss_size 	= size - sizeof(void *) });
 
 
124
125	if (sigaltstack(&stack, NULL) != 0)
126		panic("enabling signal stack failed, errno = %d\n", errno);
127}
128
129static void (*handlers[_NSIG])(int sig, struct sigcontext *sc);
 
 
 
 
 
 
 
 
 
 
130
131void handle_signal(int sig, struct sigcontext *sc)
132{
 
 
133	unsigned long pending = 1UL << sig;
134
135	do {
136		int nested, bail;
137
138		/*
139		 * pending comes back with one bit set for each
140		 * interrupt that arrived while setting up the stack,
141		 * plus a bit for this interrupt, plus the zero bit is
142		 * set if this is a nested interrupt.
143		 * If bail is true, then we interrupted another
144		 * handler setting up the stack.  In this case, we
145		 * have to return, and the upper handler will deal
146		 * with this interrupt.
147		 */
148		bail = to_irq_stack(&pending);
149		if (bail)
150			return;
151
152		nested = pending & 1;
153		pending &= ~1;
154
155		while ((sig = ffs(pending)) != 0){
156			sig--;
157			pending &= ~(1 << sig);
158			(*handlers[sig])(sig, sc);
159		}
160
161		/*
162		 * Again, pending comes back with a mask of signals
163		 * that arrived while tearing down the stack.  If this
164		 * is non-zero, we just go back, set up the stack
165		 * again, and handle the new interrupts.
166		 */
167		if (!nested)
168			pending = from_irq_stack(nested);
169	} while (pending);
170}
171
172extern void hard_handler(int sig);
173
174void set_handler(int sig, void (*handler)(int), int flags, ...)
175{
176	struct sigaction action;
177	va_list ap;
178	sigset_t sig_mask;
179	int mask;
180
181	handlers[sig] = (void (*)(int, struct sigcontext *)) handler;
182	action.sa_handler = hard_handler;
183
 
184	sigemptyset(&action.sa_mask);
185
186	va_start(ap, flags);
187	while ((mask = va_arg(ap, int)) != -1)
188		sigaddset(&action.sa_mask, mask);
189	va_end(ap);
190
191	if (sig == SIGSEGV)
192		flags |= SA_NODEFER;
193
 
 
 
194	action.sa_flags = flags;
195	action.sa_restorer = NULL;
196	if (sigaction(sig, &action, NULL) < 0)
197		panic("sigaction failed - errno = %d\n", errno);
198
199	sigemptyset(&sig_mask);
200	sigaddset(&sig_mask, sig);
201	if (sigprocmask(SIG_UNBLOCK, &sig_mask, NULL) < 0)
202		panic("sigprocmask failed - errno = %d\n", errno);
203}
204
205int change_sig(int signal, int on)
206{
207	sigset_t sigset;
208
209	sigemptyset(&sigset);
210	sigaddset(&sigset, signal);
211	if (sigprocmask(on ? SIG_UNBLOCK : SIG_BLOCK, &sigset, NULL) < 0)
212		return -errno;
213
214	return 0;
215}
216
217void block_signals(void)
218{
219	signals_enabled = 0;
220	/*
221	 * This must return with signals disabled, so this barrier
222	 * ensures that writes are flushed out before the return.
223	 * This might matter if gcc figures out how to inline this and
224	 * decides to shuffle this code into the caller.
225	 */
226	barrier();
227}
228
229void unblock_signals(void)
230{
231	int save_pending;
232
233	if (signals_enabled == 1)
234		return;
235
236	/*
237	 * We loop because the IRQ handler returns with interrupts off.  So,
238	 * interrupts may have arrived and we need to re-enable them and
239	 * recheck signals_pending.
240	 */
241	while (1) {
242		/*
243		 * Save and reset save_pending after enabling signals.  This
244		 * way, signals_pending won't be changed while we're reading it.
245		 */
246		signals_enabled = 1;
247
248		/*
249		 * Setting signals_enabled and reading signals_pending must
250		 * happen in this order.
251		 */
252		barrier();
253
254		save_pending = signals_pending;
255		if (save_pending == 0)
256			return;
257
258		signals_pending = 0;
259
260		/*
261		 * We have pending interrupts, so disable signals, as the
262		 * handlers expect them off when they are called.  They will
263		 * be enabled again above.
264		 */
265
266		signals_enabled = 0;
267
268		/*
269		 * Deal with SIGIO first because the alarm handler might
270		 * schedule, leaving the pending SIGIO stranded until we come
271		 * back here.
 
 
 
272		 */
273		if (save_pending & SIGIO_MASK)
274			sig_handler_common(SIGIO, NULL);
 
 
 
 
 
 
 
 
 
 
275
276		if (save_pending & SIGVTALRM_MASK)
277			real_alarm_handler(NULL);
278	}
279}
280
281int get_signals(void)
282{
283	return signals_enabled;
284}
285
286int set_signals(int enable)
287{
288	int ret;
289	if (signals_enabled == enable)
290		return enable;
291
292	ret = signals_enabled;
293	if (enable)
294		unblock_signals();
295	else block_signals();
296
297	return ret;
 
 
 
 
 
 
 
 
298}