Linux Audio

Check our new training course

Loading...
v4.6
  1/*
  2 *  arch/arm/include/asm/pgtable.h
  3 *
  4 *  Copyright (C) 1995-2002 Russell King
  5 *
  6 * This program is free software; you can redistribute it and/or modify
  7 * it under the terms of the GNU General Public License version 2 as
  8 * published by the Free Software Foundation.
  9 */
 10#ifndef _ASMARM_PGTABLE_H
 11#define _ASMARM_PGTABLE_H
 12
 13#include <linux/const.h>
 
 14#include <asm/proc-fns.h>
 15
 16#ifndef CONFIG_MMU
 17
 18#include <asm-generic/4level-fixup.h>
 19#include <asm/pgtable-nommu.h>
 20
 21#else
 22
 23#include <asm-generic/pgtable-nopud.h>
 24#include <asm/memory.h>
 
 25#include <asm/pgtable-hwdef.h>
 26
 27
 28#include <asm/tlbflush.h>
 29
 30#ifdef CONFIG_ARM_LPAE
 31#include <asm/pgtable-3level.h>
 32#else
 33#include <asm/pgtable-2level.h>
 34#endif
 35
 36/*
 37 * Just any arbitrary offset to the start of the vmalloc VM area: the
 38 * current 8MB value just means that there will be a 8MB "hole" after the
 39 * physical memory until the kernel virtual memory starts.  That means that
 40 * any out-of-bounds memory accesses will hopefully be caught.
 41 * The vmalloc() routines leaves a hole of 4kB between each vmalloced
 42 * area for the same reason. ;)
 
 
 
 
 43 */
 
 44#define VMALLOC_OFFSET		(8*1024*1024)
 45#define VMALLOC_START		(((unsigned long)high_memory + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1))
 46#define VMALLOC_END		0xff800000UL
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 47
 48#define LIBRARY_TEXT_START	0x0c000000
 49
 50#ifndef __ASSEMBLY__
 51extern void __pte_error(const char *file, int line, pte_t);
 52extern void __pmd_error(const char *file, int line, pmd_t);
 53extern void __pgd_error(const char *file, int line, pgd_t);
 54
 55#define pte_ERROR(pte)		__pte_error(__FILE__, __LINE__, pte)
 56#define pmd_ERROR(pmd)		__pmd_error(__FILE__, __LINE__, pmd)
 57#define pgd_ERROR(pgd)		__pgd_error(__FILE__, __LINE__, pgd)
 
 
 
 
 
 
 58
 59/*
 60 * This is the lowest virtual address we can permit any user space
 61 * mapping to be mapped at.  This is particularly important for
 62 * non-high vector CPUs.
 63 */
 64#define FIRST_USER_ADDRESS	(PAGE_SIZE * 2)
 
 
 65
 66/*
 67 * Use TASK_SIZE as the ceiling argument for free_pgtables() and
 68 * free_pgd_range() to avoid freeing the modules pmd when LPAE is enabled (pmd
 69 * page shared between user and kernel).
 70 */
 71#ifdef CONFIG_ARM_LPAE
 72#define USER_PGTABLES_CEILING	TASK_SIZE
 73#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 74
 75/*
 76 * The pgprot_* and protection_map entries will be fixed up in runtime
 77 * to include the cachable and bufferable bits based on memory policy,
 78 * as well as any architecture dependent bits like global/ASID and SMP
 79 * shared mapping bits.
 80 */
 81#define _L_PTE_DEFAULT	L_PTE_PRESENT | L_PTE_YOUNG
 82
 83extern pgprot_t		pgprot_user;
 84extern pgprot_t		pgprot_kernel;
 85extern pgprot_t		pgprot_hyp_device;
 86extern pgprot_t		pgprot_s2;
 87extern pgprot_t		pgprot_s2_device;
 88
 89#define _MOD_PROT(p, b)	__pgprot(pgprot_val(p) | (b))
 90
 91#define PAGE_NONE		_MOD_PROT(pgprot_user, L_PTE_XN | L_PTE_RDONLY | L_PTE_NONE)
 92#define PAGE_SHARED		_MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_XN)
 93#define PAGE_SHARED_EXEC	_MOD_PROT(pgprot_user, L_PTE_USER)
 94#define PAGE_COPY		_MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_RDONLY | L_PTE_XN)
 95#define PAGE_COPY_EXEC		_MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_RDONLY)
 96#define PAGE_READONLY		_MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_RDONLY | L_PTE_XN)
 97#define PAGE_READONLY_EXEC	_MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_RDONLY)
 98#define PAGE_KERNEL		_MOD_PROT(pgprot_kernel, L_PTE_XN)
 99#define PAGE_KERNEL_EXEC	pgprot_kernel
100#define PAGE_HYP		_MOD_PROT(pgprot_kernel, L_PTE_HYP)
101#define PAGE_HYP_DEVICE		_MOD_PROT(pgprot_hyp_device, L_PTE_HYP)
102#define PAGE_S2			_MOD_PROT(pgprot_s2, L_PTE_S2_RDONLY)
103#define PAGE_S2_DEVICE		_MOD_PROT(pgprot_s2_device, L_PTE_S2_RDONLY)
104
105#define __PAGE_NONE		__pgprot(_L_PTE_DEFAULT | L_PTE_RDONLY | L_PTE_XN | L_PTE_NONE)
106#define __PAGE_SHARED		__pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_XN)
107#define __PAGE_SHARED_EXEC	__pgprot(_L_PTE_DEFAULT | L_PTE_USER)
108#define __PAGE_COPY		__pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_RDONLY | L_PTE_XN)
109#define __PAGE_COPY_EXEC	__pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_RDONLY)
110#define __PAGE_READONLY		__pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_RDONLY | L_PTE_XN)
111#define __PAGE_READONLY_EXEC	__pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_RDONLY)
112
113#define __pgprot_modify(prot,mask,bits)		\
114	__pgprot((pgprot_val(prot) & ~(mask)) | (bits))
115
116#define pgprot_noncached(prot) \
117	__pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_UNCACHED)
118
119#define pgprot_writecombine(prot) \
120	__pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_BUFFERABLE)
121
122#define pgprot_stronglyordered(prot) \
123	__pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_UNCACHED)
124
125#ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
126#define pgprot_dmacoherent(prot) \
127	__pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_BUFFERABLE | L_PTE_XN)
128#define __HAVE_PHYS_MEM_ACCESS_PROT
129struct file;
130extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
131				     unsigned long size, pgprot_t vma_prot);
132#else
133#define pgprot_dmacoherent(prot) \
134	__pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_UNCACHED | L_PTE_XN)
135#endif
136
137#endif /* __ASSEMBLY__ */
138
139/*
140 * The table below defines the page protection levels that we insert into our
141 * Linux page table version.  These get translated into the best that the
142 * architecture can perform.  Note that on most ARM hardware:
143 *  1) We cannot do execute protection
144 *  2) If we could do execute protection, then read is implied
145 *  3) write implies read permissions
146 */
147#define __P000  __PAGE_NONE
148#define __P001  __PAGE_READONLY
149#define __P010  __PAGE_COPY
150#define __P011  __PAGE_COPY
151#define __P100  __PAGE_READONLY_EXEC
152#define __P101  __PAGE_READONLY_EXEC
153#define __P110  __PAGE_COPY_EXEC
154#define __P111  __PAGE_COPY_EXEC
155
156#define __S000  __PAGE_NONE
157#define __S001  __PAGE_READONLY
158#define __S010  __PAGE_SHARED
159#define __S011  __PAGE_SHARED
160#define __S100  __PAGE_READONLY_EXEC
161#define __S101  __PAGE_READONLY_EXEC
162#define __S110  __PAGE_SHARED_EXEC
163#define __S111  __PAGE_SHARED_EXEC
164
165#ifndef __ASSEMBLY__
166/*
167 * ZERO_PAGE is a global shared page that is always zero: used
168 * for zero-mapped memory areas etc..
169 */
170extern struct page *empty_zero_page;
171#define ZERO_PAGE(vaddr)	(empty_zero_page)
172
173
174extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
175
176/* to find an entry in a page-table-directory */
177#define pgd_index(addr)		((addr) >> PGDIR_SHIFT)
178
179#define pgd_offset(mm, addr)	((mm)->pgd + pgd_index(addr))
180
181/* to find an entry in a kernel page-table-directory */
182#define pgd_offset_k(addr)	pgd_offset(&init_mm, addr)
183
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
184#define pmd_none(pmd)		(!pmd_val(pmd))
185#define pmd_present(pmd)	(pmd_val(pmd))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
186
187static inline pte_t *pmd_page_vaddr(pmd_t pmd)
188{
189	return __va(pmd_val(pmd) & PHYS_MASK & (s32)PAGE_MASK);
190}
191
192#define pmd_page(pmd)		pfn_to_page(__phys_to_pfn(pmd_val(pmd) & PHYS_MASK))
 
 
 
 
193
194#ifndef CONFIG_HIGHPTE
195#define __pte_map(pmd)		pmd_page_vaddr(*(pmd))
196#define __pte_unmap(pte)	do { } while (0)
197#else
198#define __pte_map(pmd)		(pte_t *)kmap_atomic(pmd_page(*(pmd)))
199#define __pte_unmap(pte)	kunmap_atomic(pte)
200#endif
201
202#define pte_index(addr)		(((addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
203
204#define pte_offset_kernel(pmd,addr)	(pmd_page_vaddr(*(pmd)) + pte_index(addr))
205
206#define pte_offset_map(pmd,addr)	(__pte_map(pmd) + pte_index(addr))
207#define pte_unmap(pte)			__pte_unmap(pte)
208
209#define pte_pfn(pte)		((pte_val(pte) & PHYS_MASK) >> PAGE_SHIFT)
210#define pfn_pte(pfn,prot)	__pte(__pfn_to_phys(pfn) | pgprot_val(prot))
211
212#define pte_page(pte)		pfn_to_page(pte_pfn(pte))
213#define mk_pte(page,prot)	pfn_pte(page_to_pfn(page), prot)
214
 
215#define pte_clear(mm,addr,ptep)	set_pte_ext(ptep, __pte(0), 0)
216
217#define pte_isset(pte, val)	((u32)(val) == (val) ? pte_val(pte) & (val) \
218						: !!(pte_val(pte) & (val)))
219#define pte_isclear(pte, val)	(!(pte_val(pte) & (val)))
220
221#define pte_none(pte)		(!pte_val(pte))
222#define pte_present(pte)	(pte_isset((pte), L_PTE_PRESENT))
223#define pte_valid(pte)		(pte_isset((pte), L_PTE_VALID))
224#define pte_accessible(mm, pte)	(mm_tlb_flush_pending(mm) ? pte_present(pte) : pte_valid(pte))
225#define pte_write(pte)		(pte_isclear((pte), L_PTE_RDONLY))
226#define pte_dirty(pte)		(pte_isset((pte), L_PTE_DIRTY))
227#define pte_young(pte)		(pte_isset((pte), L_PTE_YOUNG))
228#define pte_exec(pte)		(pte_isclear((pte), L_PTE_XN))
229
230#define pte_valid_user(pte)	\
231	(pte_valid(pte) && pte_isset((pte), L_PTE_USER) && pte_young(pte))
232
233#if __LINUX_ARM_ARCH__ < 6
234static inline void __sync_icache_dcache(pte_t pteval)
235{
236}
237#else
238extern void __sync_icache_dcache(pte_t pteval);
239#endif
240
241static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
242			      pte_t *ptep, pte_t pteval)
243{
244	unsigned long ext = 0;
245
246	if (addr < TASK_SIZE && pte_valid_user(pteval)) {
247		if (!pte_special(pteval))
248			__sync_icache_dcache(pteval);
249		ext |= PTE_EXT_NG;
250	}
251
252	set_pte_ext(ptep, pteval, ext);
253}
254
255static inline pte_t clear_pte_bit(pte_t pte, pgprot_t prot)
256{
257	pte_val(pte) &= ~pgprot_val(prot);
258	return pte;
259}
260
261static inline pte_t set_pte_bit(pte_t pte, pgprot_t prot)
262{
263	pte_val(pte) |= pgprot_val(prot);
264	return pte;
265}
266
267static inline pte_t pte_wrprotect(pte_t pte)
268{
269	return set_pte_bit(pte, __pgprot(L_PTE_RDONLY));
270}
271
272static inline pte_t pte_mkwrite(pte_t pte)
273{
274	return clear_pte_bit(pte, __pgprot(L_PTE_RDONLY));
275}
276
277static inline pte_t pte_mkclean(pte_t pte)
278{
279	return clear_pte_bit(pte, __pgprot(L_PTE_DIRTY));
280}
281
282static inline pte_t pte_mkdirty(pte_t pte)
283{
284	return set_pte_bit(pte, __pgprot(L_PTE_DIRTY));
285}
286
287static inline pte_t pte_mkold(pte_t pte)
288{
289	return clear_pte_bit(pte, __pgprot(L_PTE_YOUNG));
290}
291
292static inline pte_t pte_mkyoung(pte_t pte)
293{
294	return set_pte_bit(pte, __pgprot(L_PTE_YOUNG));
295}
296
297static inline pte_t pte_mkexec(pte_t pte)
298{
299	return clear_pte_bit(pte, __pgprot(L_PTE_XN));
300}
301
302static inline pte_t pte_mknexec(pte_t pte)
303{
304	return set_pte_bit(pte, __pgprot(L_PTE_XN));
305}
306
307static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
308{
309	const pteval_t mask = L_PTE_XN | L_PTE_RDONLY | L_PTE_USER |
310		L_PTE_NONE | L_PTE_VALID;
311	pte_val(pte) = (pte_val(pte) & ~mask) | (pgprot_val(newprot) & mask);
312	return pte;
313}
314
315/*
316 * Encode and decode a swap entry.  Swap entries are stored in the Linux
317 * page tables as follows:
318 *
319 *   3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
320 *   1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
321 *   <--------------- offset ------------------------> < type -> 0 0
322 *
323 * This gives us up to 31 swap files and 128GB per swap file.  Note that
324 * the offset field is always non-zero.
325 */
326#define __SWP_TYPE_SHIFT	2
327#define __SWP_TYPE_BITS		5
328#define __SWP_TYPE_MASK		((1 << __SWP_TYPE_BITS) - 1)
329#define __SWP_OFFSET_SHIFT	(__SWP_TYPE_BITS + __SWP_TYPE_SHIFT)
330
331#define __swp_type(x)		(((x).val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK)
332#define __swp_offset(x)		((x).val >> __SWP_OFFSET_SHIFT)
333#define __swp_entry(type,offset) ((swp_entry_t) { ((type) << __SWP_TYPE_SHIFT) | ((offset) << __SWP_OFFSET_SHIFT) })
334
335#define __pte_to_swp_entry(pte)	((swp_entry_t) { pte_val(pte) })
336#define __swp_entry_to_pte(swp)	((pte_t) { (swp).val })
337
338/*
339 * It is an error for the kernel to have more swap files than we can
340 * encode in the PTEs.  This ensures that we know when MAX_SWAPFILES
341 * is increased beyond what we presently support.
342 */
343#define MAX_SWAPFILES_CHECK() BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > __SWP_TYPE_BITS)
344
 
 
 
 
 
 
 
 
 
 
 
 
 
 
345/* Needs to be defined here and not in linux/mm.h, as it is arch dependent */
346/* FIXME: this is not correct */
347#define kern_addr_valid(addr)	(1)
348
349#include <asm-generic/pgtable.h>
350
351/*
352 * We provide our own arch_get_unmapped_area to cope with VIPT caches.
353 */
354#define HAVE_ARCH_UNMAPPED_AREA
355#define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
 
 
 
 
 
 
356
357#define pgtable_cache_init() do { } while (0)
 
 
 
358
359#endif /* !__ASSEMBLY__ */
360
361#endif /* CONFIG_MMU */
362
363#endif /* _ASMARM_PGTABLE_H */
v3.1
  1/*
  2 *  arch/arm/include/asm/pgtable.h
  3 *
  4 *  Copyright (C) 1995-2002 Russell King
  5 *
  6 * This program is free software; you can redistribute it and/or modify
  7 * it under the terms of the GNU General Public License version 2 as
  8 * published by the Free Software Foundation.
  9 */
 10#ifndef _ASMARM_PGTABLE_H
 11#define _ASMARM_PGTABLE_H
 12
 13#include <linux/const.h>
 14#include <asm-generic/4level-fixup.h>
 15#include <asm/proc-fns.h>
 16
 17#ifndef CONFIG_MMU
 18
 19#include "pgtable-nommu.h"
 
 20
 21#else
 22
 
 23#include <asm/memory.h>
 24#include <mach/vmalloc.h>
 25#include <asm/pgtable-hwdef.h>
 26
 
 
 
 
 
 
 
 
 
 27/*
 28 * Just any arbitrary offset to the start of the vmalloc VM area: the
 29 * current 8MB value just means that there will be a 8MB "hole" after the
 30 * physical memory until the kernel virtual memory starts.  That means that
 31 * any out-of-bounds memory accesses will hopefully be caught.
 32 * The vmalloc() routines leaves a hole of 4kB between each vmalloced
 33 * area for the same reason. ;)
 34 *
 35 * Note that platforms may override VMALLOC_START, but they must provide
 36 * VMALLOC_END.  VMALLOC_END defines the (exclusive) limit of this space,
 37 * which may not overlap IO space.
 38 */
 39#ifndef VMALLOC_START
 40#define VMALLOC_OFFSET		(8*1024*1024)
 41#define VMALLOC_START		(((unsigned long)high_memory + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1))
 42#endif
 43
 44/*
 45 * Hardware-wise, we have a two level page table structure, where the first
 46 * level has 4096 entries, and the second level has 256 entries.  Each entry
 47 * is one 32-bit word.  Most of the bits in the second level entry are used
 48 * by hardware, and there aren't any "accessed" and "dirty" bits.
 49 *
 50 * Linux on the other hand has a three level page table structure, which can
 51 * be wrapped to fit a two level page table structure easily - using the PGD
 52 * and PTE only.  However, Linux also expects one "PTE" table per page, and
 53 * at least a "dirty" bit.
 54 *
 55 * Therefore, we tweak the implementation slightly - we tell Linux that we
 56 * have 2048 entries in the first level, each of which is 8 bytes (iow, two
 57 * hardware pointers to the second level.)  The second level contains two
 58 * hardware PTE tables arranged contiguously, preceded by Linux versions
 59 * which contain the state information Linux needs.  We, therefore, end up
 60 * with 512 entries in the "PTE" level.
 61 *
 62 * This leads to the page tables having the following layout:
 63 *
 64 *    pgd             pte
 65 * |        |
 66 * +--------+
 67 * |        |       +------------+ +0
 68 * +- - - - +       | Linux pt 0 |
 69 * |        |       +------------+ +1024
 70 * +--------+ +0    | Linux pt 1 |
 71 * |        |-----> +------------+ +2048
 72 * +- - - - + +4    |  h/w pt 0  |
 73 * |        |-----> +------------+ +3072
 74 * +--------+ +8    |  h/w pt 1  |
 75 * |        |       +------------+ +4096
 76 *
 77 * See L_PTE_xxx below for definitions of bits in the "Linux pt", and
 78 * PTE_xxx for definitions of bits appearing in the "h/w pt".
 79 *
 80 * PMD_xxx definitions refer to bits in the first level page table.
 81 *
 82 * The "dirty" bit is emulated by only granting hardware write permission
 83 * iff the page is marked "writable" and "dirty" in the Linux PTE.  This
 84 * means that a write to a clean page will cause a permission fault, and
 85 * the Linux MM layer will mark the page dirty via handle_pte_fault().
 86 * For the hardware to notice the permission change, the TLB entry must
 87 * be flushed, and ptep_set_access_flags() does that for us.
 88 *
 89 * The "accessed" or "young" bit is emulated by a similar method; we only
 90 * allow accesses to the page if the "young" bit is set.  Accesses to the
 91 * page will cause a fault, and handle_pte_fault() will set the young bit
 92 * for us as long as the page is marked present in the corresponding Linux
 93 * PTE entry.  Again, ptep_set_access_flags() will ensure that the TLB is
 94 * up to date.
 95 *
 96 * However, when the "young" bit is cleared, we deny access to the page
 97 * by clearing the hardware PTE.  Currently Linux does not flush the TLB
 98 * for us in this case, which means the TLB will retain the transation
 99 * until either the TLB entry is evicted under pressure, or a context
100 * switch which changes the user space mapping occurs.
101 */
102#define PTRS_PER_PTE		512
103#define PTRS_PER_PMD		1
104#define PTRS_PER_PGD		2048
105
106#define PTE_HWTABLE_PTRS	(PTRS_PER_PTE)
107#define PTE_HWTABLE_OFF		(PTE_HWTABLE_PTRS * sizeof(pte_t))
108#define PTE_HWTABLE_SIZE	(PTRS_PER_PTE * sizeof(u32))
109
110/*
111 * PMD_SHIFT determines the size of the area a second-level page table can map
112 * PGDIR_SHIFT determines what a third-level page table entry can map
113 */
114#define PMD_SHIFT		21
115#define PGDIR_SHIFT		21
116
117#define LIBRARY_TEXT_START	0x0c000000
118
119#ifndef __ASSEMBLY__
120extern void __pte_error(const char *file, int line, pte_t);
121extern void __pmd_error(const char *file, int line, pmd_t);
122extern void __pgd_error(const char *file, int line, pgd_t);
123
124#define pte_ERROR(pte)		__pte_error(__FILE__, __LINE__, pte)
125#define pmd_ERROR(pmd)		__pmd_error(__FILE__, __LINE__, pmd)
126#define pgd_ERROR(pgd)		__pgd_error(__FILE__, __LINE__, pgd)
127#endif /* !__ASSEMBLY__ */
128
129#define PMD_SIZE		(1UL << PMD_SHIFT)
130#define PMD_MASK		(~(PMD_SIZE-1))
131#define PGDIR_SIZE		(1UL << PGDIR_SHIFT)
132#define PGDIR_MASK		(~(PGDIR_SIZE-1))
133
134/*
135 * This is the lowest virtual address we can permit any user space
136 * mapping to be mapped at.  This is particularly important for
137 * non-high vector CPUs.
138 */
139#define FIRST_USER_ADDRESS	PAGE_SIZE
140
141#define USER_PTRS_PER_PGD	(TASK_SIZE / PGDIR_SIZE)
142
143/*
144 * section address mask and size definitions.
 
 
145 */
146#define SECTION_SHIFT		20
147#define SECTION_SIZE		(1UL << SECTION_SHIFT)
148#define SECTION_MASK		(~(SECTION_SIZE-1))
149
150/*
151 * ARMv6 supersection address mask and size definitions.
152 */
153#define SUPERSECTION_SHIFT	24
154#define SUPERSECTION_SIZE	(1UL << SUPERSECTION_SHIFT)
155#define SUPERSECTION_MASK	(~(SUPERSECTION_SIZE-1))
156
157/*
158 * "Linux" PTE definitions.
159 *
160 * We keep two sets of PTEs - the hardware and the linux version.
161 * This allows greater flexibility in the way we map the Linux bits
162 * onto the hardware tables, and allows us to have YOUNG and DIRTY
163 * bits.
164 *
165 * The PTE table pointer refers to the hardware entries; the "Linux"
166 * entries are stored 1024 bytes below.
167 */
168#define L_PTE_PRESENT		(_AT(pteval_t, 1) << 0)
169#define L_PTE_YOUNG		(_AT(pteval_t, 1) << 1)
170#define L_PTE_FILE		(_AT(pteval_t, 1) << 2)	/* only when !PRESENT */
171#define L_PTE_DIRTY		(_AT(pteval_t, 1) << 6)
172#define L_PTE_RDONLY		(_AT(pteval_t, 1) << 7)
173#define L_PTE_USER		(_AT(pteval_t, 1) << 8)
174#define L_PTE_XN		(_AT(pteval_t, 1) << 9)
175#define L_PTE_SHARED		(_AT(pteval_t, 1) << 10)	/* shared(v6), coherent(xsc3) */
176
177/*
178 * These are the memory types, defined to be compatible with
179 * pre-ARMv6 CPUs cacheable and bufferable bits:   XXCB
180 */
181#define L_PTE_MT_UNCACHED	(_AT(pteval_t, 0x00) << 2)	/* 0000 */
182#define L_PTE_MT_BUFFERABLE	(_AT(pteval_t, 0x01) << 2)	/* 0001 */
183#define L_PTE_MT_WRITETHROUGH	(_AT(pteval_t, 0x02) << 2)	/* 0010 */
184#define L_PTE_MT_WRITEBACK	(_AT(pteval_t, 0x03) << 2)	/* 0011 */
185#define L_PTE_MT_MINICACHE	(_AT(pteval_t, 0x06) << 2)	/* 0110 (sa1100, xscale) */
186#define L_PTE_MT_WRITEALLOC	(_AT(pteval_t, 0x07) << 2)	/* 0111 */
187#define L_PTE_MT_DEV_SHARED	(_AT(pteval_t, 0x04) << 2)	/* 0100 */
188#define L_PTE_MT_DEV_NONSHARED	(_AT(pteval_t, 0x0c) << 2)	/* 1100 */
189#define L_PTE_MT_DEV_WC		(_AT(pteval_t, 0x09) << 2)	/* 1001 */
190#define L_PTE_MT_DEV_CACHED	(_AT(pteval_t, 0x0b) << 2)	/* 1011 */
191#define L_PTE_MT_MASK		(_AT(pteval_t, 0x0f) << 2)
192
193#ifndef __ASSEMBLY__
194
195/*
196 * The pgprot_* and protection_map entries will be fixed up in runtime
197 * to include the cachable and bufferable bits based on memory policy,
198 * as well as any architecture dependent bits like global/ASID and SMP
199 * shared mapping bits.
200 */
201#define _L_PTE_DEFAULT	L_PTE_PRESENT | L_PTE_YOUNG
202
203extern pgprot_t		pgprot_user;
204extern pgprot_t		pgprot_kernel;
 
 
 
205
206#define _MOD_PROT(p, b)	__pgprot(pgprot_val(p) | (b))
207
208#define PAGE_NONE		_MOD_PROT(pgprot_user, L_PTE_XN | L_PTE_RDONLY)
209#define PAGE_SHARED		_MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_XN)
210#define PAGE_SHARED_EXEC	_MOD_PROT(pgprot_user, L_PTE_USER)
211#define PAGE_COPY		_MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_RDONLY | L_PTE_XN)
212#define PAGE_COPY_EXEC		_MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_RDONLY)
213#define PAGE_READONLY		_MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_RDONLY | L_PTE_XN)
214#define PAGE_READONLY_EXEC	_MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_RDONLY)
215#define PAGE_KERNEL		_MOD_PROT(pgprot_kernel, L_PTE_XN)
216#define PAGE_KERNEL_EXEC	pgprot_kernel
 
 
 
 
217
218#define __PAGE_NONE		__pgprot(_L_PTE_DEFAULT | L_PTE_RDONLY | L_PTE_XN)
219#define __PAGE_SHARED		__pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_XN)
220#define __PAGE_SHARED_EXEC	__pgprot(_L_PTE_DEFAULT | L_PTE_USER)
221#define __PAGE_COPY		__pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_RDONLY | L_PTE_XN)
222#define __PAGE_COPY_EXEC	__pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_RDONLY)
223#define __PAGE_READONLY		__pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_RDONLY | L_PTE_XN)
224#define __PAGE_READONLY_EXEC	__pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_RDONLY)
225
226#define __pgprot_modify(prot,mask,bits)		\
227	__pgprot((pgprot_val(prot) & ~(mask)) | (bits))
228
229#define pgprot_noncached(prot) \
230	__pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_UNCACHED)
231
232#define pgprot_writecombine(prot) \
233	__pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_BUFFERABLE)
234
 
 
 
235#ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
236#define pgprot_dmacoherent(prot) \
237	__pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_BUFFERABLE | L_PTE_XN)
238#define __HAVE_PHYS_MEM_ACCESS_PROT
239struct file;
240extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
241				     unsigned long size, pgprot_t vma_prot);
242#else
243#define pgprot_dmacoherent(prot) \
244	__pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_UNCACHED | L_PTE_XN)
245#endif
246
247#endif /* __ASSEMBLY__ */
248
249/*
250 * The table below defines the page protection levels that we insert into our
251 * Linux page table version.  These get translated into the best that the
252 * architecture can perform.  Note that on most ARM hardware:
253 *  1) We cannot do execute protection
254 *  2) If we could do execute protection, then read is implied
255 *  3) write implies read permissions
256 */
257#define __P000  __PAGE_NONE
258#define __P001  __PAGE_READONLY
259#define __P010  __PAGE_COPY
260#define __P011  __PAGE_COPY
261#define __P100  __PAGE_READONLY_EXEC
262#define __P101  __PAGE_READONLY_EXEC
263#define __P110  __PAGE_COPY_EXEC
264#define __P111  __PAGE_COPY_EXEC
265
266#define __S000  __PAGE_NONE
267#define __S001  __PAGE_READONLY
268#define __S010  __PAGE_SHARED
269#define __S011  __PAGE_SHARED
270#define __S100  __PAGE_READONLY_EXEC
271#define __S101  __PAGE_READONLY_EXEC
272#define __S110  __PAGE_SHARED_EXEC
273#define __S111  __PAGE_SHARED_EXEC
274
275#ifndef __ASSEMBLY__
276/*
277 * ZERO_PAGE is a global shared page that is always zero: used
278 * for zero-mapped memory areas etc..
279 */
280extern struct page *empty_zero_page;
281#define ZERO_PAGE(vaddr)	(empty_zero_page)
282
283
284extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
285
286/* to find an entry in a page-table-directory */
287#define pgd_index(addr)		((addr) >> PGDIR_SHIFT)
288
289#define pgd_offset(mm, addr)	((mm)->pgd + pgd_index(addr))
290
291/* to find an entry in a kernel page-table-directory */
292#define pgd_offset_k(addr)	pgd_offset(&init_mm, addr)
293
294/*
295 * The "pgd_xxx()" functions here are trivial for a folded two-level
296 * setup: the pgd is never bad, and a pmd always exists (as it's folded
297 * into the pgd entry)
298 */
299#define pgd_none(pgd)		(0)
300#define pgd_bad(pgd)		(0)
301#define pgd_present(pgd)	(1)
302#define pgd_clear(pgdp)		do { } while (0)
303#define set_pgd(pgd,pgdp)	do { } while (0)
304#define set_pud(pud,pudp)	do { } while (0)
305
306
307/* Find an entry in the second-level page table.. */
308#define pmd_offset(dir, addr)	((pmd_t *)(dir))
309
310#define pmd_none(pmd)		(!pmd_val(pmd))
311#define pmd_present(pmd)	(pmd_val(pmd))
312#define pmd_bad(pmd)		(pmd_val(pmd) & 2)
313
314#define copy_pmd(pmdpd,pmdps)		\
315	do {				\
316		pmdpd[0] = pmdps[0];	\
317		pmdpd[1] = pmdps[1];	\
318		flush_pmd_entry(pmdpd);	\
319	} while (0)
320
321#define pmd_clear(pmdp)			\
322	do {				\
323		pmdp[0] = __pmd(0);	\
324		pmdp[1] = __pmd(0);	\
325		clean_pmd_entry(pmdp);	\
326	} while (0)
327
328static inline pte_t *pmd_page_vaddr(pmd_t pmd)
329{
330	return __va(pmd_val(pmd) & PAGE_MASK);
331}
332
333#define pmd_page(pmd)		pfn_to_page(__phys_to_pfn(pmd_val(pmd)))
334
335/* we don't need complex calculations here as the pmd is folded into the pgd */
336#define pmd_addr_end(addr,end)	(end)
337
338
339#ifndef CONFIG_HIGHPTE
340#define __pte_map(pmd)		pmd_page_vaddr(*(pmd))
341#define __pte_unmap(pte)	do { } while (0)
342#else
343#define __pte_map(pmd)		(pte_t *)kmap_atomic(pmd_page(*(pmd)))
344#define __pte_unmap(pte)	kunmap_atomic(pte)
345#endif
346
347#define pte_index(addr)		(((addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
348
349#define pte_offset_kernel(pmd,addr)	(pmd_page_vaddr(*(pmd)) + pte_index(addr))
350
351#define pte_offset_map(pmd,addr)	(__pte_map(pmd) + pte_index(addr))
352#define pte_unmap(pte)			__pte_unmap(pte)
353
354#define pte_pfn(pte)		(pte_val(pte) >> PAGE_SHIFT)
355#define pfn_pte(pfn,prot)	__pte(__pfn_to_phys(pfn) | pgprot_val(prot))
356
357#define pte_page(pte)		pfn_to_page(pte_pfn(pte))
358#define mk_pte(page,prot)	pfn_pte(page_to_pfn(page), prot)
359
360#define set_pte_ext(ptep,pte,ext) cpu_set_pte_ext(ptep,pte,ext)
361#define pte_clear(mm,addr,ptep)	set_pte_ext(ptep, __pte(0), 0)
362
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
363#if __LINUX_ARM_ARCH__ < 6
364static inline void __sync_icache_dcache(pte_t pteval)
365{
366}
367#else
368extern void __sync_icache_dcache(pte_t pteval);
369#endif
370
371static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
372			      pte_t *ptep, pte_t pteval)
373{
374	if (addr >= TASK_SIZE)
375		set_pte_ext(ptep, pteval, 0);
376	else {
377		__sync_icache_dcache(pteval);
378		set_pte_ext(ptep, pteval, PTE_EXT_NG);
 
379	}
 
 
380}
381
382#define pte_none(pte)		(!pte_val(pte))
383#define pte_present(pte)	(pte_val(pte) & L_PTE_PRESENT)
384#define pte_write(pte)		(!(pte_val(pte) & L_PTE_RDONLY))
385#define pte_dirty(pte)		(pte_val(pte) & L_PTE_DIRTY)
386#define pte_young(pte)		(pte_val(pte) & L_PTE_YOUNG)
387#define pte_exec(pte)		(!(pte_val(pte) & L_PTE_XN))
388#define pte_special(pte)	(0)
389
390#define pte_present_user(pte) \
391	((pte_val(pte) & (L_PTE_PRESENT | L_PTE_USER)) == \
392	 (L_PTE_PRESENT | L_PTE_USER))
393
394#define PTE_BIT_FUNC(fn,op) \
395static inline pte_t pte_##fn(pte_t pte) { pte_val(pte) op; return pte; }
396
397PTE_BIT_FUNC(wrprotect, |= L_PTE_RDONLY);
398PTE_BIT_FUNC(mkwrite,   &= ~L_PTE_RDONLY);
399PTE_BIT_FUNC(mkclean,   &= ~L_PTE_DIRTY);
400PTE_BIT_FUNC(mkdirty,   |= L_PTE_DIRTY);
401PTE_BIT_FUNC(mkold,     &= ~L_PTE_YOUNG);
402PTE_BIT_FUNC(mkyoung,   |= L_PTE_YOUNG);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
403
404static inline pte_t pte_mkspecial(pte_t pte) { return pte; }
 
 
 
405
406static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
407{
408	const pteval_t mask = L_PTE_XN | L_PTE_RDONLY | L_PTE_USER;
 
409	pte_val(pte) = (pte_val(pte) & ~mask) | (pgprot_val(newprot) & mask);
410	return pte;
411}
412
413/*
414 * Encode and decode a swap entry.  Swap entries are stored in the Linux
415 * page tables as follows:
416 *
417 *   3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
418 *   1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
419 *   <--------------- offset --------------------> <- type --> 0 0 0
420 *
421 * This gives us up to 63 swap files and 32GB per swap file.  Note that
422 * the offset field is always non-zero.
423 */
424#define __SWP_TYPE_SHIFT	3
425#define __SWP_TYPE_BITS		6
426#define __SWP_TYPE_MASK		((1 << __SWP_TYPE_BITS) - 1)
427#define __SWP_OFFSET_SHIFT	(__SWP_TYPE_BITS + __SWP_TYPE_SHIFT)
428
429#define __swp_type(x)		(((x).val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK)
430#define __swp_offset(x)		((x).val >> __SWP_OFFSET_SHIFT)
431#define __swp_entry(type,offset) ((swp_entry_t) { ((type) << __SWP_TYPE_SHIFT) | ((offset) << __SWP_OFFSET_SHIFT) })
432
433#define __pte_to_swp_entry(pte)	((swp_entry_t) { pte_val(pte) })
434#define __swp_entry_to_pte(swp)	((pte_t) { (swp).val })
435
436/*
437 * It is an error for the kernel to have more swap files than we can
438 * encode in the PTEs.  This ensures that we know when MAX_SWAPFILES
439 * is increased beyond what we presently support.
440 */
441#define MAX_SWAPFILES_CHECK() BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > __SWP_TYPE_BITS)
442
443/*
444 * Encode and decode a file entry.  File entries are stored in the Linux
445 * page tables as follows:
446 *
447 *   3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
448 *   1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
449 *   <----------------------- offset ------------------------> 1 0 0
450 */
451#define pte_file(pte)		(pte_val(pte) & L_PTE_FILE)
452#define pte_to_pgoff(x)		(pte_val(x) >> 3)
453#define pgoff_to_pte(x)		__pte(((x) << 3) | L_PTE_FILE)
454
455#define PTE_FILE_MAX_BITS	29
456
457/* Needs to be defined here and not in linux/mm.h, as it is arch dependent */
458/* FIXME: this is not correct */
459#define kern_addr_valid(addr)	(1)
460
461#include <asm-generic/pgtable.h>
462
463/*
464 * We provide our own arch_get_unmapped_area to cope with VIPT caches.
465 */
466#define HAVE_ARCH_UNMAPPED_AREA
467
468/*
469 * remap a physical page `pfn' of size `size' with page protection `prot'
470 * into virtual address `from'
471 */
472#define io_remap_pfn_range(vma,from,pfn,size,prot) \
473		remap_pfn_range(vma, from, pfn, size, prot)
474
475#define pgtable_cache_init() do { } while (0)
476
477void identity_mapping_add(pgd_t *, unsigned long, unsigned long);
478void identity_mapping_del(pgd_t *, unsigned long, unsigned long);
479
480#endif /* !__ASSEMBLY__ */
481
482#endif /* CONFIG_MMU */
483
484#endif /* _ASMARM_PGTABLE_H */