Linux Audio

Check our new training course

Linux debugging, profiling, tracing and performance analysis training

Mar 24-27, 2025, special US time zones
Register
Loading...
v4.17
   1// SPDX-License-Identifier: GPL-2.0
   2#include <linux/ceph/ceph_debug.h>
   3
   4#include <linux/crc32c.h>
   5#include <linux/ctype.h>
   6#include <linux/highmem.h>
   7#include <linux/inet.h>
   8#include <linux/kthread.h>
   9#include <linux/net.h>
  10#include <linux/nsproxy.h>
  11#include <linux/sched/mm.h>
  12#include <linux/slab.h>
  13#include <linux/socket.h>
  14#include <linux/string.h>
  15#ifdef	CONFIG_BLOCK
  16#include <linux/bio.h>
  17#endif	/* CONFIG_BLOCK */
  18#include <linux/dns_resolver.h>
  19#include <net/tcp.h>
 
  20
  21#include <linux/ceph/ceph_features.h>
  22#include <linux/ceph/libceph.h>
  23#include <linux/ceph/messenger.h>
  24#include <linux/ceph/decode.h>
  25#include <linux/ceph/pagelist.h>
  26#include <linux/export.h>
  27
  28/*
  29 * Ceph uses the messenger to exchange ceph_msg messages with other
  30 * hosts in the system.  The messenger provides ordered and reliable
  31 * delivery.  We tolerate TCP disconnects by reconnecting (with
  32 * exponential backoff) in the case of a fault (disconnection, bad
  33 * crc, protocol error).  Acks allow sent messages to be discarded by
  34 * the sender.
  35 */
  36
  37/*
  38 * We track the state of the socket on a given connection using
  39 * values defined below.  The transition to a new socket state is
  40 * handled by a function which verifies we aren't coming from an
  41 * unexpected state.
  42 *
  43 *      --------
  44 *      | NEW* |  transient initial state
  45 *      --------
  46 *          | con_sock_state_init()
  47 *          v
  48 *      ----------
  49 *      | CLOSED |  initialized, but no socket (and no
  50 *      ----------  TCP connection)
  51 *       ^      \
  52 *       |       \ con_sock_state_connecting()
  53 *       |        ----------------------
  54 *       |                              \
  55 *       + con_sock_state_closed()       \
  56 *       |+---------------------------    \
  57 *       | \                          \    \
  58 *       |  -----------                \    \
  59 *       |  | CLOSING |  socket event;  \    \
  60 *       |  -----------  await close     \    \
  61 *       |       ^                        \   |
  62 *       |       |                         \  |
  63 *       |       + con_sock_state_closing() \ |
  64 *       |      / \                         | |
  65 *       |     /   ---------------          | |
  66 *       |    /                   \         v v
  67 *       |   /                    --------------
  68 *       |  /    -----------------| CONNECTING |  socket created, TCP
  69 *       |  |   /                 --------------  connect initiated
  70 *       |  |   | con_sock_state_connected()
  71 *       |  |   v
  72 *      -------------
  73 *      | CONNECTED |  TCP connection established
  74 *      -------------
  75 *
  76 * State values for ceph_connection->sock_state; NEW is assumed to be 0.
  77 */
  78
  79#define CON_SOCK_STATE_NEW		0	/* -> CLOSED */
  80#define CON_SOCK_STATE_CLOSED		1	/* -> CONNECTING */
  81#define CON_SOCK_STATE_CONNECTING	2	/* -> CONNECTED or -> CLOSING */
  82#define CON_SOCK_STATE_CONNECTED	3	/* -> CLOSING or -> CLOSED */
  83#define CON_SOCK_STATE_CLOSING		4	/* -> CLOSED */
  84
  85/*
  86 * connection states
  87 */
  88#define CON_STATE_CLOSED        1  /* -> PREOPEN */
  89#define CON_STATE_PREOPEN       2  /* -> CONNECTING, CLOSED */
  90#define CON_STATE_CONNECTING    3  /* -> NEGOTIATING, CLOSED */
  91#define CON_STATE_NEGOTIATING   4  /* -> OPEN, CLOSED */
  92#define CON_STATE_OPEN          5  /* -> STANDBY, CLOSED */
  93#define CON_STATE_STANDBY       6  /* -> PREOPEN, CLOSED */
  94
  95/*
  96 * ceph_connection flag bits
  97 */
  98#define CON_FLAG_LOSSYTX           0  /* we can close channel or drop
  99				       * messages on errors */
 100#define CON_FLAG_KEEPALIVE_PENDING 1  /* we need to send a keepalive */
 101#define CON_FLAG_WRITE_PENDING	   2  /* we have data ready to send */
 102#define CON_FLAG_SOCK_CLOSED	   3  /* socket state changed to closed */
 103#define CON_FLAG_BACKOFF           4  /* need to retry queuing delayed work */
 104
 105static bool con_flag_valid(unsigned long con_flag)
 106{
 107	switch (con_flag) {
 108	case CON_FLAG_LOSSYTX:
 109	case CON_FLAG_KEEPALIVE_PENDING:
 110	case CON_FLAG_WRITE_PENDING:
 111	case CON_FLAG_SOCK_CLOSED:
 112	case CON_FLAG_BACKOFF:
 113		return true;
 114	default:
 115		return false;
 116	}
 117}
 118
 119static void con_flag_clear(struct ceph_connection *con, unsigned long con_flag)
 120{
 121	BUG_ON(!con_flag_valid(con_flag));
 122
 123	clear_bit(con_flag, &con->flags);
 124}
 125
 126static void con_flag_set(struct ceph_connection *con, unsigned long con_flag)
 127{
 128	BUG_ON(!con_flag_valid(con_flag));
 129
 130	set_bit(con_flag, &con->flags);
 131}
 132
 133static bool con_flag_test(struct ceph_connection *con, unsigned long con_flag)
 134{
 135	BUG_ON(!con_flag_valid(con_flag));
 136
 137	return test_bit(con_flag, &con->flags);
 138}
 139
 140static bool con_flag_test_and_clear(struct ceph_connection *con,
 141					unsigned long con_flag)
 142{
 143	BUG_ON(!con_flag_valid(con_flag));
 144
 145	return test_and_clear_bit(con_flag, &con->flags);
 146}
 147
 148static bool con_flag_test_and_set(struct ceph_connection *con,
 149					unsigned long con_flag)
 150{
 151	BUG_ON(!con_flag_valid(con_flag));
 152
 153	return test_and_set_bit(con_flag, &con->flags);
 154}
 155
 156/* Slab caches for frequently-allocated structures */
 157
 158static struct kmem_cache	*ceph_msg_cache;
 159static struct kmem_cache	*ceph_msg_data_cache;
 160
 161/* static tag bytes (protocol control messages) */
 162static char tag_msg = CEPH_MSGR_TAG_MSG;
 163static char tag_ack = CEPH_MSGR_TAG_ACK;
 164static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
 165static char tag_keepalive2 = CEPH_MSGR_TAG_KEEPALIVE2;
 166
 167#ifdef CONFIG_LOCKDEP
 168static struct lock_class_key socket_class;
 169#endif
 170
 171/*
 172 * When skipping (ignoring) a block of input we read it into a "skip
 173 * buffer," which is this many bytes in size.
 174 */
 175#define SKIP_BUF_SIZE	1024
 176
 177static void queue_con(struct ceph_connection *con);
 178static void cancel_con(struct ceph_connection *con);
 179static void ceph_con_workfn(struct work_struct *);
 180static void con_fault(struct ceph_connection *con);
 181
 182/*
 183 * Nicely render a sockaddr as a string.  An array of formatted
 184 * strings is used, to approximate reentrancy.
 185 */
 186#define ADDR_STR_COUNT_LOG	5	/* log2(# address strings in array) */
 187#define ADDR_STR_COUNT		(1 << ADDR_STR_COUNT_LOG)
 188#define ADDR_STR_COUNT_MASK	(ADDR_STR_COUNT - 1)
 189#define MAX_ADDR_STR_LEN	64	/* 54 is enough */
 190
 191static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
 192static atomic_t addr_str_seq = ATOMIC_INIT(0);
 193
 194static struct page *zero_page;		/* used in certain error cases */
 195
 196const char *ceph_pr_addr(const struct sockaddr_storage *ss)
 197{
 198	int i;
 199	char *s;
 200	struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
 201	struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
 
 202
 203	i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
 204	s = addr_str[i];
 205
 206	switch (ss->ss_family) {
 207	case AF_INET:
 208		snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr,
 
 209			 ntohs(in4->sin_port));
 210		break;
 211
 212	case AF_INET6:
 213		snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr,
 
 214			 ntohs(in6->sin6_port));
 215		break;
 216
 217	default:
 218		snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
 219			 ss->ss_family);
 220	}
 221
 222	return s;
 223}
 224EXPORT_SYMBOL(ceph_pr_addr);
 225
 226static void encode_my_addr(struct ceph_messenger *msgr)
 227{
 228	memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
 229	ceph_encode_addr(&msgr->my_enc_addr);
 
 
 
 230}
 231
 232/*
 233 * work queue for all reading and writing to/from the socket.
 234 */
 235static struct workqueue_struct *ceph_msgr_wq;
 236
 237static int ceph_msgr_slab_init(void)
 238{
 239	BUG_ON(ceph_msg_cache);
 240	ceph_msg_cache = KMEM_CACHE(ceph_msg, 0);
 241	if (!ceph_msg_cache)
 242		return -ENOMEM;
 243
 244	BUG_ON(ceph_msg_data_cache);
 245	ceph_msg_data_cache = KMEM_CACHE(ceph_msg_data, 0);
 246	if (ceph_msg_data_cache)
 247		return 0;
 248
 249	kmem_cache_destroy(ceph_msg_cache);
 250	ceph_msg_cache = NULL;
 251
 252	return -ENOMEM;
 253}
 254
 255static void ceph_msgr_slab_exit(void)
 256{
 257	BUG_ON(!ceph_msg_data_cache);
 258	kmem_cache_destroy(ceph_msg_data_cache);
 259	ceph_msg_data_cache = NULL;
 260
 261	BUG_ON(!ceph_msg_cache);
 262	kmem_cache_destroy(ceph_msg_cache);
 263	ceph_msg_cache = NULL;
 264}
 265
 266static void _ceph_msgr_exit(void)
 267{
 268	if (ceph_msgr_wq) {
 269		destroy_workqueue(ceph_msgr_wq);
 270		ceph_msgr_wq = NULL;
 271	}
 272
 273	BUG_ON(zero_page == NULL);
 274	put_page(zero_page);
 275	zero_page = NULL;
 276
 277	ceph_msgr_slab_exit();
 278}
 279
 280int __init ceph_msgr_init(void)
 281{
 282	if (ceph_msgr_slab_init())
 283		return -ENOMEM;
 284
 285	BUG_ON(zero_page != NULL);
 286	zero_page = ZERO_PAGE(0);
 287	get_page(zero_page);
 288
 289	/*
 290	 * The number of active work items is limited by the number of
 291	 * connections, so leave @max_active at default.
 292	 */
 293	ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_MEM_RECLAIM, 0);
 294	if (ceph_msgr_wq)
 295		return 0;
 296
 297	pr_err("msgr_init failed to create workqueue\n");
 298	_ceph_msgr_exit();
 299
 300	return -ENOMEM;
 301}
 302
 303void ceph_msgr_exit(void)
 304{
 305	BUG_ON(ceph_msgr_wq == NULL);
 306
 307	_ceph_msgr_exit();
 308}
 309
 310void ceph_msgr_flush(void)
 311{
 312	flush_workqueue(ceph_msgr_wq);
 313}
 314EXPORT_SYMBOL(ceph_msgr_flush);
 315
 316/* Connection socket state transition functions */
 317
 318static void con_sock_state_init(struct ceph_connection *con)
 319{
 320	int old_state;
 321
 322	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
 323	if (WARN_ON(old_state != CON_SOCK_STATE_NEW))
 324		printk("%s: unexpected old state %d\n", __func__, old_state);
 325	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
 326	     CON_SOCK_STATE_CLOSED);
 327}
 328
 329static void con_sock_state_connecting(struct ceph_connection *con)
 330{
 331	int old_state;
 332
 333	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING);
 334	if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED))
 335		printk("%s: unexpected old state %d\n", __func__, old_state);
 336	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
 337	     CON_SOCK_STATE_CONNECTING);
 338}
 339
 340static void con_sock_state_connected(struct ceph_connection *con)
 341{
 342	int old_state;
 343
 344	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED);
 345	if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING))
 346		printk("%s: unexpected old state %d\n", __func__, old_state);
 347	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
 348	     CON_SOCK_STATE_CONNECTED);
 349}
 350
 351static void con_sock_state_closing(struct ceph_connection *con)
 352{
 353	int old_state;
 354
 355	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING);
 356	if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING &&
 357			old_state != CON_SOCK_STATE_CONNECTED &&
 358			old_state != CON_SOCK_STATE_CLOSING))
 359		printk("%s: unexpected old state %d\n", __func__, old_state);
 360	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
 361	     CON_SOCK_STATE_CLOSING);
 362}
 363
 364static void con_sock_state_closed(struct ceph_connection *con)
 365{
 366	int old_state;
 367
 368	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
 369	if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED &&
 370		    old_state != CON_SOCK_STATE_CLOSING &&
 371		    old_state != CON_SOCK_STATE_CONNECTING &&
 372		    old_state != CON_SOCK_STATE_CLOSED))
 373		printk("%s: unexpected old state %d\n", __func__, old_state);
 374	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
 375	     CON_SOCK_STATE_CLOSED);
 376}
 377
 378/*
 379 * socket callback functions
 380 */
 381
 382/* data available on socket, or listen socket received a connect */
 383static void ceph_sock_data_ready(struct sock *sk)
 384{
 385	struct ceph_connection *con = sk->sk_user_data;
 
 
 
 386	if (atomic_read(&con->msgr->stopping)) {
 387		return;
 388	}
 389
 390	if (sk->sk_state != TCP_CLOSE_WAIT) {
 391		dout("%s on %p state = %lu, queueing work\n", __func__,
 392		     con, con->state);
 393		queue_con(con);
 394	}
 395}
 396
 397/* socket has buffer space for writing */
 398static void ceph_sock_write_space(struct sock *sk)
 399{
 400	struct ceph_connection *con = sk->sk_user_data;
 401
 402	/* only queue to workqueue if there is data we want to write,
 403	 * and there is sufficient space in the socket buffer to accept
 404	 * more data.  clear SOCK_NOSPACE so that ceph_sock_write_space()
 405	 * doesn't get called again until try_write() fills the socket
 406	 * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
 407	 * and net/core/stream.c:sk_stream_write_space().
 408	 */
 409	if (con_flag_test(con, CON_FLAG_WRITE_PENDING)) {
 410		if (sk_stream_is_writeable(sk)) {
 411			dout("%s %p queueing write work\n", __func__, con);
 412			clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
 413			queue_con(con);
 414		}
 415	} else {
 416		dout("%s %p nothing to write\n", __func__, con);
 417	}
 418}
 419
 420/* socket's state has changed */
 421static void ceph_sock_state_change(struct sock *sk)
 422{
 423	struct ceph_connection *con = sk->sk_user_data;
 424
 425	dout("%s %p state = %lu sk_state = %u\n", __func__,
 426	     con, con->state, sk->sk_state);
 427
 428	switch (sk->sk_state) {
 429	case TCP_CLOSE:
 430		dout("%s TCP_CLOSE\n", __func__);
 431		/* fall through */
 432	case TCP_CLOSE_WAIT:
 433		dout("%s TCP_CLOSE_WAIT\n", __func__);
 434		con_sock_state_closing(con);
 435		con_flag_set(con, CON_FLAG_SOCK_CLOSED);
 436		queue_con(con);
 437		break;
 438	case TCP_ESTABLISHED:
 439		dout("%s TCP_ESTABLISHED\n", __func__);
 440		con_sock_state_connected(con);
 441		queue_con(con);
 442		break;
 443	default:	/* Everything else is uninteresting */
 444		break;
 445	}
 446}
 447
 448/*
 449 * set up socket callbacks
 450 */
 451static void set_sock_callbacks(struct socket *sock,
 452			       struct ceph_connection *con)
 453{
 454	struct sock *sk = sock->sk;
 455	sk->sk_user_data = con;
 456	sk->sk_data_ready = ceph_sock_data_ready;
 457	sk->sk_write_space = ceph_sock_write_space;
 458	sk->sk_state_change = ceph_sock_state_change;
 459}
 460
 461
 462/*
 463 * socket helpers
 464 */
 465
 466/*
 467 * initiate connection to a remote socket.
 468 */
 469static int ceph_tcp_connect(struct ceph_connection *con)
 470{
 471	struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
 472	struct socket *sock;
 473	unsigned int noio_flag;
 474	int ret;
 475
 
 
 476	BUG_ON(con->sock);
 477
 478	/* sock_create_kern() allocates with GFP_KERNEL */
 479	noio_flag = memalloc_noio_save();
 480	ret = sock_create_kern(read_pnet(&con->msgr->net), paddr->ss_family,
 481			       SOCK_STREAM, IPPROTO_TCP, &sock);
 482	memalloc_noio_restore(noio_flag);
 483	if (ret)
 484		return ret;
 485	sock->sk->sk_allocation = GFP_NOFS;
 
 486
 487#ifdef CONFIG_LOCKDEP
 488	lockdep_set_class(&sock->sk->sk_lock, &socket_class);
 489#endif
 490
 491	set_sock_callbacks(sock, con);
 492
 493	dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr));
 494
 495	con_sock_state_connecting(con);
 496	ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
 497				 O_NONBLOCK);
 498	if (ret == -EINPROGRESS) {
 499		dout("connect %s EINPROGRESS sk_state = %u\n",
 500		     ceph_pr_addr(&con->peer_addr.in_addr),
 501		     sock->sk->sk_state);
 502	} else if (ret < 0) {
 503		pr_err("connect %s error %d\n",
 504		       ceph_pr_addr(&con->peer_addr.in_addr), ret);
 505		sock_release(sock);
 506		return ret;
 507	}
 508
 509	if (ceph_test_opt(from_msgr(con->msgr), TCP_NODELAY)) {
 510		int optval = 1;
 511
 512		ret = kernel_setsockopt(sock, SOL_TCP, TCP_NODELAY,
 513					(char *)&optval, sizeof(optval));
 514		if (ret)
 515			pr_err("kernel_setsockopt(TCP_NODELAY) failed: %d",
 516			       ret);
 517	}
 518
 519	con->sock = sock;
 520	return 0;
 521}
 522
 523static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
 524{
 525	struct kvec iov = {buf, len};
 526	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
 527	int r;
 528
 529	iov_iter_kvec(&msg.msg_iter, READ | ITER_KVEC, &iov, 1, len);
 530	r = sock_recvmsg(sock, &msg, msg.msg_flags);
 531	if (r == -EAGAIN)
 532		r = 0;
 533	return r;
 534}
 535
 536static int ceph_tcp_recvpage(struct socket *sock, struct page *page,
 537		     int page_offset, size_t length)
 538{
 539	struct bio_vec bvec = {
 540		.bv_page = page,
 541		.bv_offset = page_offset,
 542		.bv_len = length
 543	};
 544	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
 545	int r;
 546
 547	BUG_ON(page_offset + length > PAGE_SIZE);
 548	iov_iter_bvec(&msg.msg_iter, READ | ITER_BVEC, &bvec, 1, length);
 549	r = sock_recvmsg(sock, &msg, msg.msg_flags);
 550	if (r == -EAGAIN)
 551		r = 0;
 552	return r;
 553}
 554
 555/*
 556 * write something.  @more is true if caller will be sending more data
 557 * shortly.
 558 */
 559static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
 560		     size_t kvlen, size_t len, int more)
 561{
 562	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
 563	int r;
 564
 565	if (more)
 566		msg.msg_flags |= MSG_MORE;
 567	else
 568		msg.msg_flags |= MSG_EOR;  /* superfluous, but what the hell */
 569
 570	r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
 571	if (r == -EAGAIN)
 572		r = 0;
 573	return r;
 574}
 575
 576static int __ceph_tcp_sendpage(struct socket *sock, struct page *page,
 577		     int offset, size_t size, bool more)
 578{
 579	int flags = MSG_DONTWAIT | MSG_NOSIGNAL | (more ? MSG_MORE : MSG_EOR);
 580	int ret;
 581
 582	ret = kernel_sendpage(sock, page, offset, size, flags);
 583	if (ret == -EAGAIN)
 584		ret = 0;
 585
 586	return ret;
 587}
 588
 589static int ceph_tcp_sendpage(struct socket *sock, struct page *page,
 590		     int offset, size_t size, bool more)
 591{
 592	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
 593	struct bio_vec bvec;
 594	int ret;
 595
 596	/* sendpage cannot properly handle pages with page_count == 0,
 597	 * we need to fallback to sendmsg if that's the case */
 598	if (page_count(page) >= 1)
 599		return __ceph_tcp_sendpage(sock, page, offset, size, more);
 600
 601	bvec.bv_page = page;
 602	bvec.bv_offset = offset;
 603	bvec.bv_len = size;
 604
 605	if (more)
 606		msg.msg_flags |= MSG_MORE;
 607	else
 608		msg.msg_flags |= MSG_EOR;  /* superfluous, but what the hell */
 609
 610	iov_iter_bvec(&msg.msg_iter, WRITE | ITER_BVEC, &bvec, 1, size);
 611	ret = sock_sendmsg(sock, &msg);
 612	if (ret == -EAGAIN)
 613		ret = 0;
 614
 615	return ret;
 616}
 617
 618/*
 619 * Shutdown/close the socket for the given connection.
 620 */
 621static int con_close_socket(struct ceph_connection *con)
 622{
 623	int rc = 0;
 624
 625	dout("con_close_socket on %p sock %p\n", con, con->sock);
 626	if (con->sock) {
 627		rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
 628		sock_release(con->sock);
 629		con->sock = NULL;
 630	}
 631
 632	/*
 633	 * Forcibly clear the SOCK_CLOSED flag.  It gets set
 634	 * independent of the connection mutex, and we could have
 635	 * received a socket close event before we had the chance to
 636	 * shut the socket down.
 637	 */
 638	con_flag_clear(con, CON_FLAG_SOCK_CLOSED);
 639
 640	con_sock_state_closed(con);
 641	return rc;
 642}
 643
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 644/*
 645 * Reset a connection.  Discard all incoming and outgoing messages
 646 * and clear *_seq state.
 647 */
 648static void ceph_msg_remove(struct ceph_msg *msg)
 649{
 650	list_del_init(&msg->list_head);
 651
 652	ceph_msg_put(msg);
 653}
 
 654static void ceph_msg_remove_list(struct list_head *head)
 655{
 656	while (!list_empty(head)) {
 657		struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
 658							list_head);
 659		ceph_msg_remove(msg);
 660	}
 661}
 662
 663static void reset_connection(struct ceph_connection *con)
 664{
 665	/* reset connection, out_queue, msg_ and connect_seq */
 666	/* discard existing out_queue and msg_seq */
 667	dout("reset_connection %p\n", con);
 
 668	ceph_msg_remove_list(&con->out_queue);
 669	ceph_msg_remove_list(&con->out_sent);
 670
 671	if (con->in_msg) {
 672		BUG_ON(con->in_msg->con != con);
 673		ceph_msg_put(con->in_msg);
 674		con->in_msg = NULL;
 675	}
 676
 677	con->connect_seq = 0;
 678	con->out_seq = 0;
 679	if (con->out_msg) {
 680		BUG_ON(con->out_msg->con != con);
 681		ceph_msg_put(con->out_msg);
 682		con->out_msg = NULL;
 683	}
 684	con->in_seq = 0;
 685	con->in_seq_acked = 0;
 686
 687	con->out_skip = 0;
 
 
 
 688}
 689
 690/*
 691 * mark a peer down.  drop any open connections.
 692 */
 693void ceph_con_close(struct ceph_connection *con)
 694{
 695	mutex_lock(&con->mutex);
 696	dout("con_close %p peer %s\n", con,
 697	     ceph_pr_addr(&con->peer_addr.in_addr));
 698	con->state = CON_STATE_CLOSED;
 699
 700	con_flag_clear(con, CON_FLAG_LOSSYTX);	/* so we retry next connect */
 701	con_flag_clear(con, CON_FLAG_KEEPALIVE_PENDING);
 702	con_flag_clear(con, CON_FLAG_WRITE_PENDING);
 703	con_flag_clear(con, CON_FLAG_BACKOFF);
 704
 705	reset_connection(con);
 706	con->peer_global_seq = 0;
 707	cancel_con(con);
 708	con_close_socket(con);
 709	mutex_unlock(&con->mutex);
 710}
 711EXPORT_SYMBOL(ceph_con_close);
 712
 713/*
 714 * Reopen a closed connection, with a new peer address.
 715 */
 716void ceph_con_open(struct ceph_connection *con,
 717		   __u8 entity_type, __u64 entity_num,
 718		   struct ceph_entity_addr *addr)
 719{
 720	mutex_lock(&con->mutex);
 721	dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr));
 722
 723	WARN_ON(con->state != CON_STATE_CLOSED);
 724	con->state = CON_STATE_PREOPEN;
 725
 726	con->peer_name.type = (__u8) entity_type;
 727	con->peer_name.num = cpu_to_le64(entity_num);
 728
 729	memcpy(&con->peer_addr, addr, sizeof(*addr));
 730	con->delay = 0;      /* reset backoff memory */
 731	mutex_unlock(&con->mutex);
 732	queue_con(con);
 733}
 734EXPORT_SYMBOL(ceph_con_open);
 735
 736/*
 737 * return true if this connection ever successfully opened
 738 */
 739bool ceph_con_opened(struct ceph_connection *con)
 740{
 741	return con->connect_seq > 0;
 
 
 
 742}
 743
 744/*
 745 * initialize a new connection.
 746 */
 747void ceph_con_init(struct ceph_connection *con, void *private,
 748	const struct ceph_connection_operations *ops,
 749	struct ceph_messenger *msgr)
 750{
 751	dout("con_init %p\n", con);
 752	memset(con, 0, sizeof(*con));
 753	con->private = private;
 754	con->ops = ops;
 755	con->msgr = msgr;
 756
 757	con_sock_state_init(con);
 758
 759	mutex_init(&con->mutex);
 760	INIT_LIST_HEAD(&con->out_queue);
 761	INIT_LIST_HEAD(&con->out_sent);
 762	INIT_DELAYED_WORK(&con->work, ceph_con_workfn);
 763
 764	con->state = CON_STATE_CLOSED;
 765}
 766EXPORT_SYMBOL(ceph_con_init);
 767
 768
 769/*
 770 * We maintain a global counter to order connection attempts.  Get
 771 * a unique seq greater than @gt.
 772 */
 773static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
 774{
 775	u32 ret;
 776
 777	spin_lock(&msgr->global_seq_lock);
 778	if (msgr->global_seq < gt)
 779		msgr->global_seq = gt;
 780	ret = ++msgr->global_seq;
 781	spin_unlock(&msgr->global_seq_lock);
 782	return ret;
 783}
 784
 785static void con_out_kvec_reset(struct ceph_connection *con)
 786{
 787	BUG_ON(con->out_skip);
 788
 789	con->out_kvec_left = 0;
 790	con->out_kvec_bytes = 0;
 791	con->out_kvec_cur = &con->out_kvec[0];
 792}
 793
 794static void con_out_kvec_add(struct ceph_connection *con,
 795				size_t size, void *data)
 796{
 797	int index = con->out_kvec_left;
 
 798
 799	BUG_ON(con->out_skip);
 800	BUG_ON(index >= ARRAY_SIZE(con->out_kvec));
 
 
 
 
 
 
 801
 802	con->out_kvec[index].iov_len = size;
 803	con->out_kvec[index].iov_base = data;
 804	con->out_kvec_left++;
 805	con->out_kvec_bytes += size;
 806}
 807
 808/*
 809 * Chop off a kvec from the end.  Return residual number of bytes for
 810 * that kvec, i.e. how many bytes would have been written if the kvec
 811 * hadn't been nuked.
 812 */
 813static int con_out_kvec_skip(struct ceph_connection *con)
 814{
 815	int off = con->out_kvec_cur - con->out_kvec;
 816	int skip = 0;
 817
 818	if (con->out_kvec_bytes > 0) {
 819		skip = con->out_kvec[off + con->out_kvec_left - 1].iov_len;
 820		BUG_ON(con->out_kvec_bytes < skip);
 821		BUG_ON(!con->out_kvec_left);
 822		con->out_kvec_bytes -= skip;
 823		con->out_kvec_left--;
 824	}
 
 
 825
 826	return skip;
 
 
 
 827}
 828
 829#ifdef CONFIG_BLOCK
 830
 831/*
 832 * For a bio data item, a piece is whatever remains of the next
 833 * entry in the current bio iovec, or the first entry in the next
 834 * bio in the list.
 835 */
 836static void ceph_msg_data_bio_cursor_init(struct ceph_msg_data_cursor *cursor,
 837					size_t length)
 838{
 839	struct ceph_msg_data *data = cursor->data;
 840	struct ceph_bio_iter *it = &cursor->bio_iter;
 841
 842	cursor->resid = min_t(size_t, length, data->bio_length);
 843	*it = data->bio_pos;
 844	if (cursor->resid < it->iter.bi_size)
 845		it->iter.bi_size = cursor->resid;
 846
 847	BUG_ON(cursor->resid < bio_iter_len(it->bio, it->iter));
 848	cursor->last_piece = cursor->resid == bio_iter_len(it->bio, it->iter);
 849}
 850
 851static struct page *ceph_msg_data_bio_next(struct ceph_msg_data_cursor *cursor,
 852						size_t *page_offset,
 853						size_t *length)
 854{
 855	struct bio_vec bv = bio_iter_iovec(cursor->bio_iter.bio,
 856					   cursor->bio_iter.iter);
 857
 858	*page_offset = bv.bv_offset;
 859	*length = bv.bv_len;
 860	return bv.bv_page;
 861}
 862
 863static bool ceph_msg_data_bio_advance(struct ceph_msg_data_cursor *cursor,
 864					size_t bytes)
 865{
 866	struct ceph_bio_iter *it = &cursor->bio_iter;
 
 867
 868	BUG_ON(bytes > cursor->resid);
 869	BUG_ON(bytes > bio_iter_len(it->bio, it->iter));
 870	cursor->resid -= bytes;
 871	bio_advance_iter(it->bio, &it->iter, bytes);
 872
 873	if (!cursor->resid) {
 874		BUG_ON(!cursor->last_piece);
 875		return false;   /* no more data */
 876	}
 877
 878	if (!bytes || (it->iter.bi_size && it->iter.bi_bvec_done))
 
 879		return false;	/* more bytes to process in this segment */
 880
 881	if (!it->iter.bi_size) {
 882		it->bio = it->bio->bi_next;
 883		it->iter = it->bio->bi_iter;
 884		if (cursor->resid < it->iter.bi_size)
 885			it->iter.bi_size = cursor->resid;
 886	}
 887
 888	BUG_ON(cursor->last_piece);
 889	BUG_ON(cursor->resid < bio_iter_len(it->bio, it->iter));
 890	cursor->last_piece = cursor->resid == bio_iter_len(it->bio, it->iter);
 891	return true;
 892}
 893#endif /* CONFIG_BLOCK */
 894
 895static void ceph_msg_data_bvecs_cursor_init(struct ceph_msg_data_cursor *cursor,
 896					size_t length)
 897{
 898	struct ceph_msg_data *data = cursor->data;
 899	struct bio_vec *bvecs = data->bvec_pos.bvecs;
 900
 901	cursor->resid = min_t(size_t, length, data->bvec_pos.iter.bi_size);
 902	cursor->bvec_iter = data->bvec_pos.iter;
 903	cursor->bvec_iter.bi_size = cursor->resid;
 904
 905	BUG_ON(cursor->resid < bvec_iter_len(bvecs, cursor->bvec_iter));
 906	cursor->last_piece =
 907	    cursor->resid == bvec_iter_len(bvecs, cursor->bvec_iter);
 908}
 909
 910static struct page *ceph_msg_data_bvecs_next(struct ceph_msg_data_cursor *cursor,
 911						size_t *page_offset,
 912						size_t *length)
 913{
 914	struct bio_vec bv = bvec_iter_bvec(cursor->data->bvec_pos.bvecs,
 915					   cursor->bvec_iter);
 916
 917	*page_offset = bv.bv_offset;
 918	*length = bv.bv_len;
 919	return bv.bv_page;
 920}
 921
 922static bool ceph_msg_data_bvecs_advance(struct ceph_msg_data_cursor *cursor,
 923					size_t bytes)
 924{
 925	struct bio_vec *bvecs = cursor->data->bvec_pos.bvecs;
 
 926
 927	BUG_ON(bytes > cursor->resid);
 928	BUG_ON(bytes > bvec_iter_len(bvecs, cursor->bvec_iter));
 929	cursor->resid -= bytes;
 930	bvec_iter_advance(bvecs, &cursor->bvec_iter, bytes);
 931
 932	if (!cursor->resid) {
 933		BUG_ON(!cursor->last_piece);
 934		return false;   /* no more data */
 935	}
 936
 937	if (!bytes || cursor->bvec_iter.bi_bvec_done)
 
 938		return false;	/* more bytes to process in this segment */
 939
 940	BUG_ON(cursor->last_piece);
 941	BUG_ON(cursor->resid < bvec_iter_len(bvecs, cursor->bvec_iter));
 942	cursor->last_piece =
 943	    cursor->resid == bvec_iter_len(bvecs, cursor->bvec_iter);
 944	return true;
 945}
 946
 947/*
 948 * For a page array, a piece comes from the first page in the array
 949 * that has not already been fully consumed.
 950 */
 951static void ceph_msg_data_pages_cursor_init(struct ceph_msg_data_cursor *cursor,
 952					size_t length)
 953{
 954	struct ceph_msg_data *data = cursor->data;
 955	int page_count;
 956
 957	BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
 958
 959	BUG_ON(!data->pages);
 960	BUG_ON(!data->length);
 961
 962	cursor->resid = min(length, data->length);
 963	page_count = calc_pages_for(data->alignment, (u64)data->length);
 964	cursor->page_offset = data->alignment & ~PAGE_MASK;
 965	cursor->page_index = 0;
 966	BUG_ON(page_count > (int)USHRT_MAX);
 967	cursor->page_count = (unsigned short)page_count;
 968	BUG_ON(length > SIZE_MAX - cursor->page_offset);
 969	cursor->last_piece = cursor->page_offset + cursor->resid <= PAGE_SIZE;
 970}
 971
 972static struct page *
 973ceph_msg_data_pages_next(struct ceph_msg_data_cursor *cursor,
 974					size_t *page_offset, size_t *length)
 975{
 976	struct ceph_msg_data *data = cursor->data;
 977
 978	BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
 979
 980	BUG_ON(cursor->page_index >= cursor->page_count);
 981	BUG_ON(cursor->page_offset >= PAGE_SIZE);
 982
 983	*page_offset = cursor->page_offset;
 984	if (cursor->last_piece)
 985		*length = cursor->resid;
 986	else
 987		*length = PAGE_SIZE - *page_offset;
 988
 989	return data->pages[cursor->page_index];
 990}
 991
 992static bool ceph_msg_data_pages_advance(struct ceph_msg_data_cursor *cursor,
 993						size_t bytes)
 994{
 995	BUG_ON(cursor->data->type != CEPH_MSG_DATA_PAGES);
 996
 997	BUG_ON(cursor->page_offset + bytes > PAGE_SIZE);
 998
 999	/* Advance the cursor page offset */
1000
1001	cursor->resid -= bytes;
1002	cursor->page_offset = (cursor->page_offset + bytes) & ~PAGE_MASK;
1003	if (!bytes || cursor->page_offset)
1004		return false;	/* more bytes to process in the current page */
1005
1006	if (!cursor->resid)
1007		return false;   /* no more data */
1008
1009	/* Move on to the next page; offset is already at 0 */
1010
1011	BUG_ON(cursor->page_index >= cursor->page_count);
1012	cursor->page_index++;
1013	cursor->last_piece = cursor->resid <= PAGE_SIZE;
1014
1015	return true;
1016}
1017
1018/*
1019 * For a pagelist, a piece is whatever remains to be consumed in the
1020 * first page in the list, or the front of the next page.
1021 */
1022static void
1023ceph_msg_data_pagelist_cursor_init(struct ceph_msg_data_cursor *cursor,
1024					size_t length)
1025{
1026	struct ceph_msg_data *data = cursor->data;
1027	struct ceph_pagelist *pagelist;
1028	struct page *page;
1029
1030	BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
1031
1032	pagelist = data->pagelist;
1033	BUG_ON(!pagelist);
1034
1035	if (!length)
1036		return;		/* pagelist can be assigned but empty */
1037
1038	BUG_ON(list_empty(&pagelist->head));
1039	page = list_first_entry(&pagelist->head, struct page, lru);
1040
1041	cursor->resid = min(length, pagelist->length);
1042	cursor->page = page;
1043	cursor->offset = 0;
1044	cursor->last_piece = cursor->resid <= PAGE_SIZE;
1045}
1046
1047static struct page *
1048ceph_msg_data_pagelist_next(struct ceph_msg_data_cursor *cursor,
1049				size_t *page_offset, size_t *length)
1050{
1051	struct ceph_msg_data *data = cursor->data;
1052	struct ceph_pagelist *pagelist;
1053
1054	BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
1055
1056	pagelist = data->pagelist;
1057	BUG_ON(!pagelist);
1058
1059	BUG_ON(!cursor->page);
1060	BUG_ON(cursor->offset + cursor->resid != pagelist->length);
1061
1062	/* offset of first page in pagelist is always 0 */
1063	*page_offset = cursor->offset & ~PAGE_MASK;
1064	if (cursor->last_piece)
1065		*length = cursor->resid;
1066	else
1067		*length = PAGE_SIZE - *page_offset;
1068
1069	return cursor->page;
1070}
1071
1072static bool ceph_msg_data_pagelist_advance(struct ceph_msg_data_cursor *cursor,
1073						size_t bytes)
1074{
1075	struct ceph_msg_data *data = cursor->data;
1076	struct ceph_pagelist *pagelist;
1077
1078	BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
1079
1080	pagelist = data->pagelist;
1081	BUG_ON(!pagelist);
1082
1083	BUG_ON(cursor->offset + cursor->resid != pagelist->length);
1084	BUG_ON((cursor->offset & ~PAGE_MASK) + bytes > PAGE_SIZE);
1085
1086	/* Advance the cursor offset */
1087
1088	cursor->resid -= bytes;
1089	cursor->offset += bytes;
1090	/* offset of first page in pagelist is always 0 */
1091	if (!bytes || cursor->offset & ~PAGE_MASK)
1092		return false;	/* more bytes to process in the current page */
1093
1094	if (!cursor->resid)
1095		return false;   /* no more data */
1096
1097	/* Move on to the next page */
1098
1099	BUG_ON(list_is_last(&cursor->page->lru, &pagelist->head));
1100	cursor->page = list_next_entry(cursor->page, lru);
1101	cursor->last_piece = cursor->resid <= PAGE_SIZE;
1102
1103	return true;
1104}
1105
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1106/*
1107 * Message data is handled (sent or received) in pieces, where each
1108 * piece resides on a single page.  The network layer might not
1109 * consume an entire piece at once.  A data item's cursor keeps
1110 * track of which piece is next to process and how much remains to
1111 * be processed in that piece.  It also tracks whether the current
1112 * piece is the last one in the data item.
1113 */
1114static void __ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor)
1115{
1116	size_t length = cursor->total_resid;
1117
1118	switch (cursor->data->type) {
1119	case CEPH_MSG_DATA_PAGELIST:
1120		ceph_msg_data_pagelist_cursor_init(cursor, length);
1121		break;
1122	case CEPH_MSG_DATA_PAGES:
1123		ceph_msg_data_pages_cursor_init(cursor, length);
1124		break;
1125#ifdef CONFIG_BLOCK
1126	case CEPH_MSG_DATA_BIO:
1127		ceph_msg_data_bio_cursor_init(cursor, length);
1128		break;
1129#endif /* CONFIG_BLOCK */
1130	case CEPH_MSG_DATA_BVECS:
1131		ceph_msg_data_bvecs_cursor_init(cursor, length);
1132		break;
 
 
 
1133	case CEPH_MSG_DATA_NONE:
1134	default:
1135		/* BUG(); */
1136		break;
1137	}
1138	cursor->need_crc = true;
1139}
1140
1141static void ceph_msg_data_cursor_init(struct ceph_msg *msg, size_t length)
 
1142{
1143	struct ceph_msg_data_cursor *cursor = &msg->cursor;
1144	struct ceph_msg_data *data;
1145
1146	BUG_ON(!length);
1147	BUG_ON(length > msg->data_length);
1148	BUG_ON(list_empty(&msg->data));
1149
1150	cursor->data_head = &msg->data;
1151	cursor->total_resid = length;
1152	data = list_first_entry(&msg->data, struct ceph_msg_data, links);
1153	cursor->data = data;
1154
1155	__ceph_msg_data_cursor_init(cursor);
1156}
1157
1158/*
1159 * Return the page containing the next piece to process for a given
1160 * data item, and supply the page offset and length of that piece.
1161 * Indicate whether this is the last piece in this data item.
1162 */
1163static struct page *ceph_msg_data_next(struct ceph_msg_data_cursor *cursor,
1164					size_t *page_offset, size_t *length,
1165					bool *last_piece)
1166{
1167	struct page *page;
1168
1169	switch (cursor->data->type) {
1170	case CEPH_MSG_DATA_PAGELIST:
1171		page = ceph_msg_data_pagelist_next(cursor, page_offset, length);
1172		break;
1173	case CEPH_MSG_DATA_PAGES:
1174		page = ceph_msg_data_pages_next(cursor, page_offset, length);
1175		break;
1176#ifdef CONFIG_BLOCK
1177	case CEPH_MSG_DATA_BIO:
1178		page = ceph_msg_data_bio_next(cursor, page_offset, length);
1179		break;
1180#endif /* CONFIG_BLOCK */
1181	case CEPH_MSG_DATA_BVECS:
1182		page = ceph_msg_data_bvecs_next(cursor, page_offset, length);
1183		break;
 
 
 
1184	case CEPH_MSG_DATA_NONE:
1185	default:
1186		page = NULL;
1187		break;
1188	}
1189
1190	BUG_ON(!page);
1191	BUG_ON(*page_offset + *length > PAGE_SIZE);
1192	BUG_ON(!*length);
1193	BUG_ON(*length > cursor->resid);
1194	if (last_piece)
1195		*last_piece = cursor->last_piece;
1196
1197	return page;
1198}
1199
1200/*
1201 * Returns true if the result moves the cursor on to the next piece
1202 * of the data item.
1203 */
1204static void ceph_msg_data_advance(struct ceph_msg_data_cursor *cursor,
1205				  size_t bytes)
1206{
1207	bool new_piece;
1208
1209	BUG_ON(bytes > cursor->resid);
1210	switch (cursor->data->type) {
1211	case CEPH_MSG_DATA_PAGELIST:
1212		new_piece = ceph_msg_data_pagelist_advance(cursor, bytes);
1213		break;
1214	case CEPH_MSG_DATA_PAGES:
1215		new_piece = ceph_msg_data_pages_advance(cursor, bytes);
1216		break;
1217#ifdef CONFIG_BLOCK
1218	case CEPH_MSG_DATA_BIO:
1219		new_piece = ceph_msg_data_bio_advance(cursor, bytes);
1220		break;
1221#endif /* CONFIG_BLOCK */
1222	case CEPH_MSG_DATA_BVECS:
1223		new_piece = ceph_msg_data_bvecs_advance(cursor, bytes);
1224		break;
 
 
 
1225	case CEPH_MSG_DATA_NONE:
1226	default:
1227		BUG();
1228		break;
1229	}
1230	cursor->total_resid -= bytes;
1231
1232	if (!cursor->resid && cursor->total_resid) {
1233		WARN_ON(!cursor->last_piece);
1234		BUG_ON(list_is_last(&cursor->data->links, cursor->data_head));
1235		cursor->data = list_next_entry(cursor->data, links);
1236		__ceph_msg_data_cursor_init(cursor);
1237		new_piece = true;
1238	}
1239	cursor->need_crc = new_piece;
1240}
1241
1242static size_t sizeof_footer(struct ceph_connection *con)
1243{
1244	return (con->peer_features & CEPH_FEATURE_MSG_AUTH) ?
1245	    sizeof(struct ceph_msg_footer) :
1246	    sizeof(struct ceph_msg_footer_old);
1247}
1248
1249static void prepare_message_data(struct ceph_msg *msg, u32 data_len)
1250{
1251	BUG_ON(!msg);
1252	BUG_ON(!data_len);
1253
1254	/* Initialize data cursor */
1255
1256	ceph_msg_data_cursor_init(msg, (size_t)data_len);
1257}
1258
1259/*
1260 * Prepare footer for currently outgoing message, and finish things
1261 * off.  Assumes out_kvec* are already valid.. we just add on to the end.
1262 */
1263static void prepare_write_message_footer(struct ceph_connection *con)
1264{
1265	struct ceph_msg *m = con->out_msg;
1266
1267	m->footer.flags |= CEPH_MSG_FOOTER_COMPLETE;
1268
1269	dout("prepare_write_message_footer %p\n", con);
1270	con_out_kvec_add(con, sizeof_footer(con), &m->footer);
1271	if (con->peer_features & CEPH_FEATURE_MSG_AUTH) {
1272		if (con->ops->sign_message)
1273			con->ops->sign_message(m);
1274		else
1275			m->footer.sig = 0;
1276	} else {
1277		m->old_footer.flags = m->footer.flags;
1278	}
1279	con->out_more = m->more_to_follow;
1280	con->out_msg_done = true;
1281}
1282
1283/*
1284 * Prepare headers for the next outgoing message.
1285 */
1286static void prepare_write_message(struct ceph_connection *con)
1287{
1288	struct ceph_msg *m;
1289	u32 crc;
1290
1291	con_out_kvec_reset(con);
1292	con->out_msg_done = false;
1293
1294	/* Sneak an ack in there first?  If we can get it into the same
1295	 * TCP packet that's a good thing. */
1296	if (con->in_seq > con->in_seq_acked) {
1297		con->in_seq_acked = con->in_seq;
1298		con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1299		con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1300		con_out_kvec_add(con, sizeof (con->out_temp_ack),
1301			&con->out_temp_ack);
1302	}
1303
1304	BUG_ON(list_empty(&con->out_queue));
1305	m = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
1306	con->out_msg = m;
1307	BUG_ON(m->con != con);
1308
1309	/* put message on sent list */
1310	ceph_msg_get(m);
1311	list_move_tail(&m->list_head, &con->out_sent);
1312
1313	/*
1314	 * only assign outgoing seq # if we haven't sent this message
1315	 * yet.  if it is requeued, resend with it's original seq.
1316	 */
1317	if (m->needs_out_seq) {
1318		m->hdr.seq = cpu_to_le64(++con->out_seq);
1319		m->needs_out_seq = false;
1320
1321		if (con->ops->reencode_message)
1322			con->ops->reencode_message(m);
1323	}
1324
1325	dout("prepare_write_message %p seq %lld type %d len %d+%d+%zd\n",
1326	     m, con->out_seq, le16_to_cpu(m->hdr.type),
1327	     le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
1328	     m->data_length);
1329	WARN_ON(m->front.iov_len != le32_to_cpu(m->hdr.front_len));
1330	WARN_ON(m->data_length != le32_to_cpu(m->hdr.data_len));
1331
1332	/* tag + hdr + front + middle */
1333	con_out_kvec_add(con, sizeof (tag_msg), &tag_msg);
1334	con_out_kvec_add(con, sizeof(con->out_hdr), &con->out_hdr);
1335	con_out_kvec_add(con, m->front.iov_len, m->front.iov_base);
1336
1337	if (m->middle)
1338		con_out_kvec_add(con, m->middle->vec.iov_len,
1339			m->middle->vec.iov_base);
1340
1341	/* fill in hdr crc and finalize hdr */
1342	crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc));
1343	con->out_msg->hdr.crc = cpu_to_le32(crc);
1344	memcpy(&con->out_hdr, &con->out_msg->hdr, sizeof(con->out_hdr));
1345
1346	/* fill in front and middle crc, footer */
1347	crc = crc32c(0, m->front.iov_base, m->front.iov_len);
1348	con->out_msg->footer.front_crc = cpu_to_le32(crc);
1349	if (m->middle) {
1350		crc = crc32c(0, m->middle->vec.iov_base,
1351				m->middle->vec.iov_len);
1352		con->out_msg->footer.middle_crc = cpu_to_le32(crc);
1353	} else
1354		con->out_msg->footer.middle_crc = 0;
1355	dout("%s front_crc %u middle_crc %u\n", __func__,
1356	     le32_to_cpu(con->out_msg->footer.front_crc),
1357	     le32_to_cpu(con->out_msg->footer.middle_crc));
1358	con->out_msg->footer.flags = 0;
1359
1360	/* is there a data payload? */
1361	con->out_msg->footer.data_crc = 0;
1362	if (m->data_length) {
1363		prepare_message_data(con->out_msg, m->data_length);
1364		con->out_more = 1;  /* data + footer will follow */
1365	} else {
1366		/* no, queue up footer too and be done */
1367		prepare_write_message_footer(con);
1368	}
1369
1370	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1371}
1372
1373/*
1374 * Prepare an ack.
1375 */
1376static void prepare_write_ack(struct ceph_connection *con)
1377{
1378	dout("prepare_write_ack %p %llu -> %llu\n", con,
1379	     con->in_seq_acked, con->in_seq);
1380	con->in_seq_acked = con->in_seq;
1381
1382	con_out_kvec_reset(con);
1383
1384	con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1385
1386	con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1387	con_out_kvec_add(con, sizeof (con->out_temp_ack),
1388				&con->out_temp_ack);
1389
1390	con->out_more = 1;  /* more will follow.. eventually.. */
1391	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1392}
1393
1394/*
1395 * Prepare to share the seq during handshake
1396 */
1397static void prepare_write_seq(struct ceph_connection *con)
1398{
1399	dout("prepare_write_seq %p %llu -> %llu\n", con,
1400	     con->in_seq_acked, con->in_seq);
1401	con->in_seq_acked = con->in_seq;
1402
1403	con_out_kvec_reset(con);
1404
1405	con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1406	con_out_kvec_add(con, sizeof (con->out_temp_ack),
1407			 &con->out_temp_ack);
1408
1409	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1410}
1411
1412/*
1413 * Prepare to write keepalive byte.
1414 */
1415static void prepare_write_keepalive(struct ceph_connection *con)
1416{
1417	dout("prepare_write_keepalive %p\n", con);
1418	con_out_kvec_reset(con);
1419	if (con->peer_features & CEPH_FEATURE_MSGR_KEEPALIVE2) {
1420		struct timespec now;
1421
1422		ktime_get_real_ts(&now);
1423		con_out_kvec_add(con, sizeof(tag_keepalive2), &tag_keepalive2);
1424		ceph_encode_timespec(&con->out_temp_keepalive2, &now);
1425		con_out_kvec_add(con, sizeof(con->out_temp_keepalive2),
1426				 &con->out_temp_keepalive2);
1427	} else {
1428		con_out_kvec_add(con, sizeof(tag_keepalive), &tag_keepalive);
1429	}
1430	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1431}
1432
1433/*
1434 * Connection negotiation.
1435 */
1436
1437static struct ceph_auth_handshake *get_connect_authorizer(struct ceph_connection *con,
1438						int *auth_proto)
1439{
1440	struct ceph_auth_handshake *auth;
1441
1442	if (!con->ops->get_authorizer) {
1443		con->out_connect.authorizer_protocol = CEPH_AUTH_UNKNOWN;
1444		con->out_connect.authorizer_len = 0;
1445		return NULL;
1446	}
1447
1448	auth = con->ops->get_authorizer(con, auth_proto, con->auth_retry);
1449	if (IS_ERR(auth))
1450		return auth;
1451
1452	con->auth_reply_buf = auth->authorizer_reply_buf;
1453	con->auth_reply_buf_len = auth->authorizer_reply_buf_len;
1454	return auth;
1455}
1456
1457/*
1458 * We connected to a peer and are saying hello.
1459 */
1460static void prepare_write_banner(struct ceph_connection *con)
1461{
1462	con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER);
1463	con_out_kvec_add(con, sizeof (con->msgr->my_enc_addr),
1464					&con->msgr->my_enc_addr);
1465
1466	con->out_more = 0;
1467	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1468}
1469
1470static int prepare_write_connect(struct ceph_connection *con)
1471{
1472	unsigned int global_seq = get_global_seq(con->msgr, 0);
1473	int proto;
1474	int auth_proto;
1475	struct ceph_auth_handshake *auth;
1476
1477	switch (con->peer_name.type) {
1478	case CEPH_ENTITY_TYPE_MON:
1479		proto = CEPH_MONC_PROTOCOL;
1480		break;
1481	case CEPH_ENTITY_TYPE_OSD:
1482		proto = CEPH_OSDC_PROTOCOL;
1483		break;
1484	case CEPH_ENTITY_TYPE_MDS:
1485		proto = CEPH_MDSC_PROTOCOL;
1486		break;
1487	default:
1488		BUG();
1489	}
1490
1491	dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
1492	     con->connect_seq, global_seq, proto);
1493
1494	con->out_connect.features =
1495	    cpu_to_le64(from_msgr(con->msgr)->supported_features);
1496	con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
1497	con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
1498	con->out_connect.global_seq = cpu_to_le32(global_seq);
1499	con->out_connect.protocol_version = cpu_to_le32(proto);
1500	con->out_connect.flags = 0;
1501
1502	auth_proto = CEPH_AUTH_UNKNOWN;
1503	auth = get_connect_authorizer(con, &auth_proto);
1504	if (IS_ERR(auth))
1505		return PTR_ERR(auth);
1506
1507	con->out_connect.authorizer_protocol = cpu_to_le32(auth_proto);
1508	con->out_connect.authorizer_len = auth ?
1509		cpu_to_le32(auth->authorizer_buf_len) : 0;
1510
1511	con_out_kvec_add(con, sizeof (con->out_connect),
1512					&con->out_connect);
1513	if (auth && auth->authorizer_buf_len)
1514		con_out_kvec_add(con, auth->authorizer_buf_len,
1515					auth->authorizer_buf);
1516
1517	con->out_more = 0;
1518	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1519
1520	return 0;
1521}
1522
1523/*
1524 * write as much of pending kvecs to the socket as we can.
1525 *  1 -> done
1526 *  0 -> socket full, but more to do
1527 * <0 -> error
1528 */
1529static int write_partial_kvec(struct ceph_connection *con)
1530{
1531	int ret;
1532
1533	dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
1534	while (con->out_kvec_bytes > 0) {
1535		ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
1536				       con->out_kvec_left, con->out_kvec_bytes,
1537				       con->out_more);
1538		if (ret <= 0)
1539			goto out;
1540		con->out_kvec_bytes -= ret;
1541		if (con->out_kvec_bytes == 0)
1542			break;            /* done */
1543
1544		/* account for full iov entries consumed */
1545		while (ret >= con->out_kvec_cur->iov_len) {
1546			BUG_ON(!con->out_kvec_left);
1547			ret -= con->out_kvec_cur->iov_len;
1548			con->out_kvec_cur++;
1549			con->out_kvec_left--;
1550		}
1551		/* and for a partially-consumed entry */
1552		if (ret) {
1553			con->out_kvec_cur->iov_len -= ret;
1554			con->out_kvec_cur->iov_base += ret;
1555		}
1556	}
1557	con->out_kvec_left = 0;
1558	ret = 1;
1559out:
1560	dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
1561	     con->out_kvec_bytes, con->out_kvec_left, ret);
1562	return ret;  /* done! */
1563}
1564
1565static u32 ceph_crc32c_page(u32 crc, struct page *page,
1566				unsigned int page_offset,
1567				unsigned int length)
1568{
1569	char *kaddr;
1570
1571	kaddr = kmap(page);
1572	BUG_ON(kaddr == NULL);
1573	crc = crc32c(crc, kaddr + page_offset, length);
1574	kunmap(page);
1575
1576	return crc;
1577}
1578/*
1579 * Write as much message data payload as we can.  If we finish, queue
1580 * up the footer.
1581 *  1 -> done, footer is now queued in out_kvec[].
1582 *  0 -> socket full, but more to do
1583 * <0 -> error
1584 */
1585static int write_partial_message_data(struct ceph_connection *con)
1586{
1587	struct ceph_msg *msg = con->out_msg;
1588	struct ceph_msg_data_cursor *cursor = &msg->cursor;
1589	bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC);
1590	u32 crc;
1591
1592	dout("%s %p msg %p\n", __func__, con, msg);
1593
1594	if (list_empty(&msg->data))
1595		return -EINVAL;
1596
1597	/*
1598	 * Iterate through each page that contains data to be
1599	 * written, and send as much as possible for each.
1600	 *
1601	 * If we are calculating the data crc (the default), we will
1602	 * need to map the page.  If we have no pages, they have
1603	 * been revoked, so use the zero page.
1604	 */
1605	crc = do_datacrc ? le32_to_cpu(msg->footer.data_crc) : 0;
1606	while (cursor->total_resid) {
1607		struct page *page;
1608		size_t page_offset;
1609		size_t length;
1610		bool last_piece;
1611		int ret;
1612
1613		if (!cursor->resid) {
1614			ceph_msg_data_advance(cursor, 0);
1615			continue;
1616		}
1617
1618		page = ceph_msg_data_next(cursor, &page_offset, &length,
1619					  &last_piece);
1620		ret = ceph_tcp_sendpage(con->sock, page, page_offset,
1621					length, !last_piece);
1622		if (ret <= 0) {
1623			if (do_datacrc)
1624				msg->footer.data_crc = cpu_to_le32(crc);
1625
1626			return ret;
1627		}
1628		if (do_datacrc && cursor->need_crc)
1629			crc = ceph_crc32c_page(crc, page, page_offset, length);
1630		ceph_msg_data_advance(cursor, (size_t)ret);
1631	}
1632
1633	dout("%s %p msg %p done\n", __func__, con, msg);
1634
1635	/* prepare and queue up footer, too */
1636	if (do_datacrc)
1637		msg->footer.data_crc = cpu_to_le32(crc);
1638	else
1639		msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
1640	con_out_kvec_reset(con);
1641	prepare_write_message_footer(con);
1642
1643	return 1;	/* must return > 0 to indicate success */
1644}
1645
1646/*
1647 * write some zeros
1648 */
1649static int write_partial_skip(struct ceph_connection *con)
1650{
1651	int ret;
1652
1653	dout("%s %p %d left\n", __func__, con, con->out_skip);
1654	while (con->out_skip > 0) {
1655		size_t size = min(con->out_skip, (int) PAGE_SIZE);
1656
1657		ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, true);
1658		if (ret <= 0)
1659			goto out;
1660		con->out_skip -= ret;
1661	}
1662	ret = 1;
1663out:
1664	return ret;
1665}
1666
1667/*
1668 * Prepare to read connection handshake, or an ack.
1669 */
1670static void prepare_read_banner(struct ceph_connection *con)
1671{
1672	dout("prepare_read_banner %p\n", con);
1673	con->in_base_pos = 0;
1674}
1675
1676static void prepare_read_connect(struct ceph_connection *con)
1677{
1678	dout("prepare_read_connect %p\n", con);
1679	con->in_base_pos = 0;
1680}
1681
1682static void prepare_read_ack(struct ceph_connection *con)
1683{
1684	dout("prepare_read_ack %p\n", con);
1685	con->in_base_pos = 0;
1686}
1687
1688static void prepare_read_seq(struct ceph_connection *con)
1689{
1690	dout("prepare_read_seq %p\n", con);
1691	con->in_base_pos = 0;
1692	con->in_tag = CEPH_MSGR_TAG_SEQ;
1693}
1694
1695static void prepare_read_tag(struct ceph_connection *con)
1696{
1697	dout("prepare_read_tag %p\n", con);
1698	con->in_base_pos = 0;
1699	con->in_tag = CEPH_MSGR_TAG_READY;
1700}
1701
1702static void prepare_read_keepalive_ack(struct ceph_connection *con)
1703{
1704	dout("prepare_read_keepalive_ack %p\n", con);
1705	con->in_base_pos = 0;
1706}
1707
1708/*
1709 * Prepare to read a message.
1710 */
1711static int prepare_read_message(struct ceph_connection *con)
1712{
1713	dout("prepare_read_message %p\n", con);
1714	BUG_ON(con->in_msg != NULL);
1715	con->in_base_pos = 0;
1716	con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
1717	return 0;
1718}
1719
1720
1721static int read_partial(struct ceph_connection *con,
1722			int end, int size, void *object)
1723{
1724	while (con->in_base_pos < end) {
1725		int left = end - con->in_base_pos;
1726		int have = size - left;
1727		int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
1728		if (ret <= 0)
1729			return ret;
1730		con->in_base_pos += ret;
1731	}
1732	return 1;
1733}
1734
1735
1736/*
1737 * Read all or part of the connect-side handshake on a new connection
1738 */
1739static int read_partial_banner(struct ceph_connection *con)
1740{
1741	int size;
1742	int end;
1743	int ret;
1744
1745	dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
1746
1747	/* peer's banner */
1748	size = strlen(CEPH_BANNER);
1749	end = size;
1750	ret = read_partial(con, end, size, con->in_banner);
1751	if (ret <= 0)
1752		goto out;
1753
1754	size = sizeof (con->actual_peer_addr);
1755	end += size;
1756	ret = read_partial(con, end, size, &con->actual_peer_addr);
1757	if (ret <= 0)
1758		goto out;
1759
1760	size = sizeof (con->peer_addr_for_me);
1761	end += size;
1762	ret = read_partial(con, end, size, &con->peer_addr_for_me);
1763	if (ret <= 0)
1764		goto out;
1765
1766out:
1767	return ret;
1768}
1769
1770static int read_partial_connect(struct ceph_connection *con)
1771{
1772	int size;
1773	int end;
1774	int ret;
1775
1776	dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
1777
1778	size = sizeof (con->in_reply);
1779	end = size;
1780	ret = read_partial(con, end, size, &con->in_reply);
1781	if (ret <= 0)
1782		goto out;
1783
1784	size = le32_to_cpu(con->in_reply.authorizer_len);
1785	end += size;
1786	ret = read_partial(con, end, size, con->auth_reply_buf);
1787	if (ret <= 0)
1788		goto out;
1789
1790	dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1791	     con, (int)con->in_reply.tag,
1792	     le32_to_cpu(con->in_reply.connect_seq),
1793	     le32_to_cpu(con->in_reply.global_seq));
1794out:
1795	return ret;
1796
1797}
1798
1799/*
1800 * Verify the hello banner looks okay.
1801 */
1802static int verify_hello(struct ceph_connection *con)
1803{
1804	if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
1805		pr_err("connect to %s got bad banner\n",
1806		       ceph_pr_addr(&con->peer_addr.in_addr));
1807		con->error_msg = "protocol error, bad banner";
1808		return -1;
1809	}
1810	return 0;
1811}
1812
1813static bool addr_is_blank(struct sockaddr_storage *ss)
1814{
1815	struct in_addr *addr = &((struct sockaddr_in *)ss)->sin_addr;
1816	struct in6_addr *addr6 = &((struct sockaddr_in6 *)ss)->sin6_addr;
1817
1818	switch (ss->ss_family) {
1819	case AF_INET:
1820		return addr->s_addr == htonl(INADDR_ANY);
1821	case AF_INET6:
1822		return ipv6_addr_any(addr6);
1823	default:
1824		return true;
1825	}
1826}
 
1827
1828static int addr_port(struct sockaddr_storage *ss)
1829{
1830	switch (ss->ss_family) {
1831	case AF_INET:
1832		return ntohs(((struct sockaddr_in *)ss)->sin_port);
1833	case AF_INET6:
1834		return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
1835	}
1836	return 0;
1837}
1838
1839static void addr_set_port(struct sockaddr_storage *ss, int p)
1840{
1841	switch (ss->ss_family) {
1842	case AF_INET:
1843		((struct sockaddr_in *)ss)->sin_port = htons(p);
1844		break;
1845	case AF_INET6:
1846		((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
1847		break;
1848	}
1849}
1850
1851/*
1852 * Unlike other *_pton function semantics, zero indicates success.
1853 */
1854static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss,
1855		char delim, const char **ipend)
1856{
1857	struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
1858	struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
1859
1860	memset(ss, 0, sizeof(*ss));
1861
1862	if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) {
1863		ss->ss_family = AF_INET;
1864		return 0;
1865	}
1866
1867	if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) {
1868		ss->ss_family = AF_INET6;
1869		return 0;
1870	}
1871
1872	return -EINVAL;
1873}
1874
1875/*
1876 * Extract hostname string and resolve using kernel DNS facility.
1877 */
1878#ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1879static int ceph_dns_resolve_name(const char *name, size_t namelen,
1880		struct sockaddr_storage *ss, char delim, const char **ipend)
1881{
1882	const char *end, *delim_p;
1883	char *colon_p, *ip_addr = NULL;
1884	int ip_len, ret;
1885
1886	/*
1887	 * The end of the hostname occurs immediately preceding the delimiter or
1888	 * the port marker (':') where the delimiter takes precedence.
1889	 */
1890	delim_p = memchr(name, delim, namelen);
1891	colon_p = memchr(name, ':', namelen);
1892
1893	if (delim_p && colon_p)
1894		end = delim_p < colon_p ? delim_p : colon_p;
1895	else if (!delim_p && colon_p)
1896		end = colon_p;
1897	else {
1898		end = delim_p;
1899		if (!end) /* case: hostname:/ */
1900			end = name + namelen;
1901	}
1902
1903	if (end <= name)
1904		return -EINVAL;
1905
1906	/* do dns_resolve upcall */
1907	ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL);
 
1908	if (ip_len > 0)
1909		ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL);
1910	else
1911		ret = -ESRCH;
1912
1913	kfree(ip_addr);
1914
1915	*ipend = end;
1916
1917	pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1918			ret, ret ? "failed" : ceph_pr_addr(ss));
1919
1920	return ret;
1921}
1922#else
1923static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1924		struct sockaddr_storage *ss, char delim, const char **ipend)
1925{
1926	return -EINVAL;
1927}
1928#endif
1929
1930/*
1931 * Parse a server name (IP or hostname). If a valid IP address is not found
1932 * then try to extract a hostname to resolve using userspace DNS upcall.
1933 */
1934static int ceph_parse_server_name(const char *name, size_t namelen,
1935			struct sockaddr_storage *ss, char delim, const char **ipend)
1936{
1937	int ret;
1938
1939	ret = ceph_pton(name, namelen, ss, delim, ipend);
1940	if (ret)
1941		ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend);
1942
1943	return ret;
1944}
1945
1946/*
1947 * Parse an ip[:port] list into an addr array.  Use the default
1948 * monitor port if a port isn't specified.
1949 */
1950int ceph_parse_ips(const char *c, const char *end,
1951		   struct ceph_entity_addr *addr,
1952		   int max_count, int *count)
1953{
1954	int i, ret = -EINVAL;
1955	const char *p = c;
1956
1957	dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1958	for (i = 0; i < max_count; i++) {
 
1959		const char *ipend;
1960		struct sockaddr_storage *ss = &addr[i].in_addr;
1961		int port;
1962		char delim = ',';
1963
1964		if (*p == '[') {
1965			delim = ']';
1966			p++;
1967		}
1968
1969		ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend);
 
1970		if (ret)
1971			goto bad;
1972		ret = -EINVAL;
1973
1974		p = ipend;
1975
1976		if (delim == ']') {
1977			if (*p != ']') {
1978				dout("missing matching ']'\n");
1979				goto bad;
1980			}
1981			p++;
1982		}
1983
1984		/* port? */
1985		if (p < end && *p == ':') {
1986			port = 0;
1987			p++;
1988			while (p < end && *p >= '0' && *p <= '9') {
1989				port = (port * 10) + (*p - '0');
1990				p++;
1991			}
1992			if (port == 0)
1993				port = CEPH_MON_PORT;
1994			else if (port > 65535)
1995				goto bad;
1996		} else {
1997			port = CEPH_MON_PORT;
1998		}
1999
2000		addr_set_port(ss, port);
 
 
 
 
 
 
 
 
 
 
2001
2002		dout("parse_ips got %s\n", ceph_pr_addr(ss));
2003
2004		if (p == end)
2005			break;
2006		if (*p != ',')
2007			goto bad;
2008		p++;
2009	}
2010
2011	if (p != end)
2012		goto bad;
2013
2014	if (count)
2015		*count = i + 1;
2016	return 0;
2017
2018bad:
2019	pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
2020	return ret;
2021}
2022EXPORT_SYMBOL(ceph_parse_ips);
2023
2024static int process_banner(struct ceph_connection *con)
2025{
2026	dout("process_banner on %p\n", con);
2027
2028	if (verify_hello(con) < 0)
2029		return -1;
2030
2031	ceph_decode_addr(&con->actual_peer_addr);
2032	ceph_decode_addr(&con->peer_addr_for_me);
2033
2034	/*
2035	 * Make sure the other end is who we wanted.  note that the other
2036	 * end may not yet know their ip address, so if it's 0.0.0.0, give
2037	 * them the benefit of the doubt.
2038	 */
2039	if (memcmp(&con->peer_addr, &con->actual_peer_addr,
2040		   sizeof(con->peer_addr)) != 0 &&
2041	    !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
2042	      con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
2043		pr_warn("wrong peer, want %s/%d, got %s/%d\n",
2044			ceph_pr_addr(&con->peer_addr.in_addr),
2045			(int)le32_to_cpu(con->peer_addr.nonce),
2046			ceph_pr_addr(&con->actual_peer_addr.in_addr),
2047			(int)le32_to_cpu(con->actual_peer_addr.nonce));
2048		con->error_msg = "wrong peer at address";
2049		return -1;
2050	}
2051
2052	/*
2053	 * did we learn our address?
2054	 */
2055	if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
2056		int port = addr_port(&con->msgr->inst.addr.in_addr);
2057
2058		memcpy(&con->msgr->inst.addr.in_addr,
2059		       &con->peer_addr_for_me.in_addr,
2060		       sizeof(con->peer_addr_for_me.in_addr));
2061		addr_set_port(&con->msgr->inst.addr.in_addr, port);
2062		encode_my_addr(con->msgr);
2063		dout("process_banner learned my addr is %s\n",
2064		     ceph_pr_addr(&con->msgr->inst.addr.in_addr));
2065	}
2066
2067	return 0;
2068}
2069
2070static int process_connect(struct ceph_connection *con)
2071{
2072	u64 sup_feat = from_msgr(con->msgr)->supported_features;
2073	u64 req_feat = from_msgr(con->msgr)->required_features;
2074	u64 server_feat = le64_to_cpu(con->in_reply.features);
2075	int ret;
2076
2077	dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
2078
2079	if (con->auth_reply_buf) {
2080		/*
2081		 * Any connection that defines ->get_authorizer()
2082		 * should also define ->verify_authorizer_reply().
2083		 * See get_connect_authorizer().
2084		 */
2085		ret = con->ops->verify_authorizer_reply(con);
2086		if (ret < 0) {
2087			con->error_msg = "bad authorize reply";
2088			return ret;
2089		}
2090	}
2091
2092	switch (con->in_reply.tag) {
2093	case CEPH_MSGR_TAG_FEATURES:
2094		pr_err("%s%lld %s feature set mismatch,"
2095		       " my %llx < server's %llx, missing %llx\n",
2096		       ENTITY_NAME(con->peer_name),
2097		       ceph_pr_addr(&con->peer_addr.in_addr),
2098		       sup_feat, server_feat, server_feat & ~sup_feat);
2099		con->error_msg = "missing required protocol features";
2100		reset_connection(con);
2101		return -1;
2102
2103	case CEPH_MSGR_TAG_BADPROTOVER:
2104		pr_err("%s%lld %s protocol version mismatch,"
2105		       " my %d != server's %d\n",
2106		       ENTITY_NAME(con->peer_name),
2107		       ceph_pr_addr(&con->peer_addr.in_addr),
2108		       le32_to_cpu(con->out_connect.protocol_version),
2109		       le32_to_cpu(con->in_reply.protocol_version));
2110		con->error_msg = "protocol version mismatch";
2111		reset_connection(con);
2112		return -1;
2113
2114	case CEPH_MSGR_TAG_BADAUTHORIZER:
2115		con->auth_retry++;
2116		dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
2117		     con->auth_retry);
2118		if (con->auth_retry == 2) {
2119			con->error_msg = "connect authorization failure";
2120			return -1;
2121		}
2122		con_out_kvec_reset(con);
2123		ret = prepare_write_connect(con);
2124		if (ret < 0)
2125			return ret;
2126		prepare_read_connect(con);
2127		break;
2128
2129	case CEPH_MSGR_TAG_RESETSESSION:
2130		/*
2131		 * If we connected with a large connect_seq but the peer
2132		 * has no record of a session with us (no connection, or
2133		 * connect_seq == 0), they will send RESETSESION to indicate
2134		 * that they must have reset their session, and may have
2135		 * dropped messages.
2136		 */
2137		dout("process_connect got RESET peer seq %u\n",
2138		     le32_to_cpu(con->in_reply.connect_seq));
2139		pr_err("%s%lld %s connection reset\n",
2140		       ENTITY_NAME(con->peer_name),
2141		       ceph_pr_addr(&con->peer_addr.in_addr));
2142		reset_connection(con);
2143		con_out_kvec_reset(con);
2144		ret = prepare_write_connect(con);
2145		if (ret < 0)
2146			return ret;
2147		prepare_read_connect(con);
2148
2149		/* Tell ceph about it. */
2150		mutex_unlock(&con->mutex);
2151		pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
2152		if (con->ops->peer_reset)
2153			con->ops->peer_reset(con);
2154		mutex_lock(&con->mutex);
2155		if (con->state != CON_STATE_NEGOTIATING)
2156			return -EAGAIN;
2157		break;
2158
2159	case CEPH_MSGR_TAG_RETRY_SESSION:
2160		/*
2161		 * If we sent a smaller connect_seq than the peer has, try
2162		 * again with a larger value.
2163		 */
2164		dout("process_connect got RETRY_SESSION my seq %u, peer %u\n",
2165		     le32_to_cpu(con->out_connect.connect_seq),
2166		     le32_to_cpu(con->in_reply.connect_seq));
2167		con->connect_seq = le32_to_cpu(con->in_reply.connect_seq);
2168		con_out_kvec_reset(con);
2169		ret = prepare_write_connect(con);
2170		if (ret < 0)
2171			return ret;
2172		prepare_read_connect(con);
2173		break;
2174
2175	case CEPH_MSGR_TAG_RETRY_GLOBAL:
2176		/*
2177		 * If we sent a smaller global_seq than the peer has, try
2178		 * again with a larger value.
2179		 */
2180		dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
2181		     con->peer_global_seq,
2182		     le32_to_cpu(con->in_reply.global_seq));
2183		get_global_seq(con->msgr,
2184			       le32_to_cpu(con->in_reply.global_seq));
2185		con_out_kvec_reset(con);
2186		ret = prepare_write_connect(con);
2187		if (ret < 0)
2188			return ret;
2189		prepare_read_connect(con);
2190		break;
2191
2192	case CEPH_MSGR_TAG_SEQ:
2193	case CEPH_MSGR_TAG_READY:
2194		if (req_feat & ~server_feat) {
2195			pr_err("%s%lld %s protocol feature mismatch,"
2196			       " my required %llx > server's %llx, need %llx\n",
2197			       ENTITY_NAME(con->peer_name),
2198			       ceph_pr_addr(&con->peer_addr.in_addr),
2199			       req_feat, server_feat, req_feat & ~server_feat);
2200			con->error_msg = "missing required protocol features";
2201			reset_connection(con);
2202			return -1;
2203		}
2204
2205		WARN_ON(con->state != CON_STATE_NEGOTIATING);
2206		con->state = CON_STATE_OPEN;
2207		con->auth_retry = 0;    /* we authenticated; clear flag */
2208		con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
2209		con->connect_seq++;
2210		con->peer_features = server_feat;
2211		dout("process_connect got READY gseq %d cseq %d (%d)\n",
2212		     con->peer_global_seq,
2213		     le32_to_cpu(con->in_reply.connect_seq),
2214		     con->connect_seq);
2215		WARN_ON(con->connect_seq !=
2216			le32_to_cpu(con->in_reply.connect_seq));
2217
2218		if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
2219			con_flag_set(con, CON_FLAG_LOSSYTX);
2220
2221		con->delay = 0;      /* reset backoff memory */
2222
2223		if (con->in_reply.tag == CEPH_MSGR_TAG_SEQ) {
2224			prepare_write_seq(con);
2225			prepare_read_seq(con);
2226		} else {
2227			prepare_read_tag(con);
2228		}
2229		break;
2230
2231	case CEPH_MSGR_TAG_WAIT:
2232		/*
2233		 * If there is a connection race (we are opening
2234		 * connections to each other), one of us may just have
2235		 * to WAIT.  This shouldn't happen if we are the
2236		 * client.
2237		 */
2238		con->error_msg = "protocol error, got WAIT as client";
2239		return -1;
2240
2241	default:
2242		con->error_msg = "protocol error, garbage tag during connect";
2243		return -1;
2244	}
2245	return 0;
2246}
2247
2248
2249/*
2250 * read (part of) an ack
2251 */
2252static int read_partial_ack(struct ceph_connection *con)
2253{
2254	int size = sizeof (con->in_temp_ack);
2255	int end = size;
2256
2257	return read_partial(con, end, size, &con->in_temp_ack);
2258}
2259
2260/*
2261 * We can finally discard anything that's been acked.
2262 */
2263static void process_ack(struct ceph_connection *con)
2264{
2265	struct ceph_msg *m;
2266	u64 ack = le64_to_cpu(con->in_temp_ack);
2267	u64 seq;
2268	bool reconnect = (con->in_tag == CEPH_MSGR_TAG_SEQ);
2269	struct list_head *list = reconnect ? &con->out_queue : &con->out_sent;
2270
2271	/*
2272	 * In the reconnect case, con_fault() has requeued messages
2273	 * in out_sent. We should cleanup old messages according to
2274	 * the reconnect seq.
2275	 */
2276	while (!list_empty(list)) {
2277		m = list_first_entry(list, struct ceph_msg, list_head);
2278		if (reconnect && m->needs_out_seq)
2279			break;
2280		seq = le64_to_cpu(m->hdr.seq);
2281		if (seq > ack)
2282			break;
2283		dout("got ack for seq %llu type %d at %p\n", seq,
2284		     le16_to_cpu(m->hdr.type), m);
2285		m->ack_stamp = jiffies;
2286		ceph_msg_remove(m);
2287	}
2288
2289	prepare_read_tag(con);
2290}
2291
2292
2293static int read_partial_message_section(struct ceph_connection *con,
2294					struct kvec *section,
2295					unsigned int sec_len, u32 *crc)
2296{
2297	int ret, left;
2298
2299	BUG_ON(!section);
2300
2301	while (section->iov_len < sec_len) {
2302		BUG_ON(section->iov_base == NULL);
2303		left = sec_len - section->iov_len;
2304		ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
2305				       section->iov_len, left);
2306		if (ret <= 0)
2307			return ret;
2308		section->iov_len += ret;
2309	}
2310	if (section->iov_len == sec_len)
2311		*crc = crc32c(0, section->iov_base, section->iov_len);
2312
2313	return 1;
2314}
2315
2316static int read_partial_msg_data(struct ceph_connection *con)
2317{
2318	struct ceph_msg *msg = con->in_msg;
2319	struct ceph_msg_data_cursor *cursor = &msg->cursor;
2320	bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC);
2321	struct page *page;
2322	size_t page_offset;
2323	size_t length;
2324	u32 crc = 0;
2325	int ret;
2326
2327	BUG_ON(!msg);
2328	if (list_empty(&msg->data))
2329		return -EIO;
2330
2331	if (do_datacrc)
2332		crc = con->in_data_crc;
2333	while (cursor->total_resid) {
2334		if (!cursor->resid) {
2335			ceph_msg_data_advance(cursor, 0);
2336			continue;
2337		}
2338
2339		page = ceph_msg_data_next(cursor, &page_offset, &length, NULL);
2340		ret = ceph_tcp_recvpage(con->sock, page, page_offset, length);
2341		if (ret <= 0) {
2342			if (do_datacrc)
2343				con->in_data_crc = crc;
2344
2345			return ret;
2346		}
2347
2348		if (do_datacrc)
2349			crc = ceph_crc32c_page(crc, page, page_offset, ret);
2350		ceph_msg_data_advance(cursor, (size_t)ret);
2351	}
2352	if (do_datacrc)
2353		con->in_data_crc = crc;
2354
2355	return 1;	/* must return > 0 to indicate success */
2356}
2357
2358/*
2359 * read (part of) a message.
2360 */
2361static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip);
2362
2363static int read_partial_message(struct ceph_connection *con)
2364{
2365	struct ceph_msg *m = con->in_msg;
2366	int size;
2367	int end;
2368	int ret;
2369	unsigned int front_len, middle_len, data_len;
2370	bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC);
2371	bool need_sign = (con->peer_features & CEPH_FEATURE_MSG_AUTH);
2372	u64 seq;
2373	u32 crc;
2374
2375	dout("read_partial_message con %p msg %p\n", con, m);
2376
2377	/* header */
2378	size = sizeof (con->in_hdr);
2379	end = size;
2380	ret = read_partial(con, end, size, &con->in_hdr);
2381	if (ret <= 0)
2382		return ret;
2383
2384	crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc));
2385	if (cpu_to_le32(crc) != con->in_hdr.crc) {
2386		pr_err("read_partial_message bad hdr crc %u != expected %u\n",
2387		       crc, con->in_hdr.crc);
2388		return -EBADMSG;
2389	}
2390
2391	front_len = le32_to_cpu(con->in_hdr.front_len);
2392	if (front_len > CEPH_MSG_MAX_FRONT_LEN)
2393		return -EIO;
2394	middle_len = le32_to_cpu(con->in_hdr.middle_len);
2395	if (middle_len > CEPH_MSG_MAX_MIDDLE_LEN)
2396		return -EIO;
2397	data_len = le32_to_cpu(con->in_hdr.data_len);
2398	if (data_len > CEPH_MSG_MAX_DATA_LEN)
2399		return -EIO;
2400
2401	/* verify seq# */
2402	seq = le64_to_cpu(con->in_hdr.seq);
2403	if ((s64)seq - (s64)con->in_seq < 1) {
2404		pr_info("skipping %s%lld %s seq %lld expected %lld\n",
2405			ENTITY_NAME(con->peer_name),
2406			ceph_pr_addr(&con->peer_addr.in_addr),
2407			seq, con->in_seq + 1);
2408		con->in_base_pos = -front_len - middle_len - data_len -
2409			sizeof_footer(con);
2410		con->in_tag = CEPH_MSGR_TAG_READY;
2411		return 1;
2412	} else if ((s64)seq - (s64)con->in_seq > 1) {
2413		pr_err("read_partial_message bad seq %lld expected %lld\n",
2414		       seq, con->in_seq + 1);
2415		con->error_msg = "bad message sequence # for incoming message";
2416		return -EBADE;
2417	}
2418
2419	/* allocate message? */
2420	if (!con->in_msg) {
2421		int skip = 0;
2422
2423		dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
2424		     front_len, data_len);
2425		ret = ceph_con_in_msg_alloc(con, &skip);
2426		if (ret < 0)
2427			return ret;
2428
2429		BUG_ON(!con->in_msg ^ skip);
2430		if (skip) {
2431			/* skip this message */
2432			dout("alloc_msg said skip message\n");
2433			con->in_base_pos = -front_len - middle_len - data_len -
2434				sizeof_footer(con);
2435			con->in_tag = CEPH_MSGR_TAG_READY;
2436			con->in_seq++;
2437			return 1;
2438		}
2439
2440		BUG_ON(!con->in_msg);
2441		BUG_ON(con->in_msg->con != con);
2442		m = con->in_msg;
2443		m->front.iov_len = 0;    /* haven't read it yet */
2444		if (m->middle)
2445			m->middle->vec.iov_len = 0;
2446
2447		/* prepare for data payload, if any */
2448
2449		if (data_len)
2450			prepare_message_data(con->in_msg, data_len);
2451	}
2452
2453	/* front */
2454	ret = read_partial_message_section(con, &m->front, front_len,
2455					   &con->in_front_crc);
2456	if (ret <= 0)
2457		return ret;
2458
2459	/* middle */
2460	if (m->middle) {
2461		ret = read_partial_message_section(con, &m->middle->vec,
2462						   middle_len,
2463						   &con->in_middle_crc);
2464		if (ret <= 0)
2465			return ret;
2466	}
2467
2468	/* (page) data */
2469	if (data_len) {
2470		ret = read_partial_msg_data(con);
2471		if (ret <= 0)
2472			return ret;
2473	}
2474
2475	/* footer */
2476	size = sizeof_footer(con);
2477	end += size;
2478	ret = read_partial(con, end, size, &m->footer);
2479	if (ret <= 0)
2480		return ret;
2481
2482	if (!need_sign) {
2483		m->footer.flags = m->old_footer.flags;
2484		m->footer.sig = 0;
2485	}
2486
2487	dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
2488	     m, front_len, m->footer.front_crc, middle_len,
2489	     m->footer.middle_crc, data_len, m->footer.data_crc);
2490
2491	/* crc ok? */
2492	if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
2493		pr_err("read_partial_message %p front crc %u != exp. %u\n",
2494		       m, con->in_front_crc, m->footer.front_crc);
2495		return -EBADMSG;
2496	}
2497	if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
2498		pr_err("read_partial_message %p middle crc %u != exp %u\n",
2499		       m, con->in_middle_crc, m->footer.middle_crc);
2500		return -EBADMSG;
2501	}
2502	if (do_datacrc &&
2503	    (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
2504	    con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
2505		pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
2506		       con->in_data_crc, le32_to_cpu(m->footer.data_crc));
2507		return -EBADMSG;
2508	}
2509
2510	if (need_sign && con->ops->check_message_signature &&
2511	    con->ops->check_message_signature(m)) {
2512		pr_err("read_partial_message %p signature check failed\n", m);
2513		return -EBADMSG;
2514	}
2515
2516	return 1; /* done! */
2517}
2518
2519/*
2520 * Process message.  This happens in the worker thread.  The callback should
2521 * be careful not to do anything that waits on other incoming messages or it
2522 * may deadlock.
2523 */
2524static void process_message(struct ceph_connection *con)
2525{
2526	struct ceph_msg *msg = con->in_msg;
2527
2528	BUG_ON(con->in_msg->con != con);
2529	con->in_msg = NULL;
2530
2531	/* if first message, set peer_name */
2532	if (con->peer_name.type == 0)
2533		con->peer_name = msg->hdr.src;
2534
2535	con->in_seq++;
2536	mutex_unlock(&con->mutex);
2537
2538	dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
2539	     msg, le64_to_cpu(msg->hdr.seq),
2540	     ENTITY_NAME(msg->hdr.src),
2541	     le16_to_cpu(msg->hdr.type),
2542	     ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2543	     le32_to_cpu(msg->hdr.front_len),
 
2544	     le32_to_cpu(msg->hdr.data_len),
2545	     con->in_front_crc, con->in_middle_crc, con->in_data_crc);
2546	con->ops->dispatch(con, msg);
2547
2548	mutex_lock(&con->mutex);
2549}
2550
2551static int read_keepalive_ack(struct ceph_connection *con)
2552{
2553	struct ceph_timespec ceph_ts;
2554	size_t size = sizeof(ceph_ts);
2555	int ret = read_partial(con, size, size, &ceph_ts);
2556	if (ret <= 0)
2557		return ret;
2558	ceph_decode_timespec(&con->last_keepalive_ack, &ceph_ts);
2559	prepare_read_tag(con);
2560	return 1;
2561}
2562
2563/*
2564 * Write something to the socket.  Called in a worker thread when the
2565 * socket appears to be writeable and we have something ready to send.
2566 */
2567static int try_write(struct ceph_connection *con)
2568{
2569	int ret = 1;
2570
2571	dout("try_write start %p state %lu\n", con, con->state);
2572	if (con->state != CON_STATE_PREOPEN &&
2573	    con->state != CON_STATE_CONNECTING &&
2574	    con->state != CON_STATE_NEGOTIATING &&
2575	    con->state != CON_STATE_OPEN)
2576		return 0;
2577
2578more:
2579	dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
2580
2581	/* open the socket first? */
2582	if (con->state == CON_STATE_PREOPEN) {
2583		BUG_ON(con->sock);
2584		con->state = CON_STATE_CONNECTING;
2585
2586		con_out_kvec_reset(con);
2587		prepare_write_banner(con);
2588		prepare_read_banner(con);
2589
2590		BUG_ON(con->in_msg);
2591		con->in_tag = CEPH_MSGR_TAG_READY;
2592		dout("try_write initiating connect on %p new state %lu\n",
2593		     con, con->state);
2594		ret = ceph_tcp_connect(con);
2595		if (ret < 0) {
2596			con->error_msg = "connect error";
2597			goto out;
2598		}
2599	}
2600
2601more_kvec:
2602	BUG_ON(!con->sock);
2603
2604	/* kvec data queued? */
2605	if (con->out_kvec_left) {
2606		ret = write_partial_kvec(con);
2607		if (ret <= 0)
2608			goto out;
2609	}
2610	if (con->out_skip) {
2611		ret = write_partial_skip(con);
2612		if (ret <= 0)
2613			goto out;
2614	}
2615
2616	/* msg pages? */
2617	if (con->out_msg) {
2618		if (con->out_msg_done) {
2619			ceph_msg_put(con->out_msg);
2620			con->out_msg = NULL;   /* we're done with this one */
2621			goto do_next;
2622		}
2623
2624		ret = write_partial_message_data(con);
2625		if (ret == 1)
2626			goto more_kvec;  /* we need to send the footer, too! */
2627		if (ret == 0)
2628			goto out;
2629		if (ret < 0) {
2630			dout("try_write write_partial_message_data err %d\n",
2631			     ret);
2632			goto out;
2633		}
2634	}
2635
2636do_next:
2637	if (con->state == CON_STATE_OPEN) {
2638		if (con_flag_test_and_clear(con, CON_FLAG_KEEPALIVE_PENDING)) {
2639			prepare_write_keepalive(con);
2640			goto more;
2641		}
2642		/* is anything else pending? */
2643		if (!list_empty(&con->out_queue)) {
2644			prepare_write_message(con);
2645			goto more;
2646		}
2647		if (con->in_seq > con->in_seq_acked) {
2648			prepare_write_ack(con);
2649			goto more;
2650		}
2651	}
2652
2653	/* Nothing to do! */
2654	con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2655	dout("try_write nothing else to write.\n");
2656	ret = 0;
2657out:
2658	dout("try_write done on %p ret %d\n", con, ret);
2659	return ret;
2660}
2661
2662
2663
2664/*
2665 * Read what we can from the socket.
2666 */
2667static int try_read(struct ceph_connection *con)
2668{
2669	int ret = -1;
2670
2671more:
2672	dout("try_read start on %p state %lu\n", con, con->state);
2673	if (con->state != CON_STATE_CONNECTING &&
2674	    con->state != CON_STATE_NEGOTIATING &&
2675	    con->state != CON_STATE_OPEN)
2676		return 0;
2677
2678	BUG_ON(!con->sock);
2679
2680	dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
2681	     con->in_base_pos);
2682
2683	if (con->state == CON_STATE_CONNECTING) {
2684		dout("try_read connecting\n");
2685		ret = read_partial_banner(con);
2686		if (ret <= 0)
2687			goto out;
2688		ret = process_banner(con);
2689		if (ret < 0)
2690			goto out;
2691
2692		con->state = CON_STATE_NEGOTIATING;
2693
2694		/*
2695		 * Received banner is good, exchange connection info.
2696		 * Do not reset out_kvec, as sending our banner raced
2697		 * with receiving peer banner after connect completed.
2698		 */
2699		ret = prepare_write_connect(con);
2700		if (ret < 0)
2701			goto out;
2702		prepare_read_connect(con);
2703
2704		/* Send connection info before awaiting response */
2705		goto out;
2706	}
2707
2708	if (con->state == CON_STATE_NEGOTIATING) {
2709		dout("try_read negotiating\n");
2710		ret = read_partial_connect(con);
2711		if (ret <= 0)
2712			goto out;
2713		ret = process_connect(con);
2714		if (ret < 0)
2715			goto out;
2716		goto more;
2717	}
2718
2719	WARN_ON(con->state != CON_STATE_OPEN);
2720
2721	if (con->in_base_pos < 0) {
2722		/*
2723		 * skipping + discarding content.
2724		 *
2725		 * FIXME: there must be a better way to do this!
2726		 */
2727		static char buf[SKIP_BUF_SIZE];
2728		int skip = min((int) sizeof (buf), -con->in_base_pos);
2729
2730		dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
2731		ret = ceph_tcp_recvmsg(con->sock, buf, skip);
2732		if (ret <= 0)
2733			goto out;
2734		con->in_base_pos += ret;
2735		if (con->in_base_pos)
2736			goto more;
2737	}
2738	if (con->in_tag == CEPH_MSGR_TAG_READY) {
2739		/*
2740		 * what's next?
2741		 */
2742		ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
2743		if (ret <= 0)
2744			goto out;
2745		dout("try_read got tag %d\n", (int)con->in_tag);
2746		switch (con->in_tag) {
2747		case CEPH_MSGR_TAG_MSG:
2748			prepare_read_message(con);
2749			break;
2750		case CEPH_MSGR_TAG_ACK:
2751			prepare_read_ack(con);
2752			break;
2753		case CEPH_MSGR_TAG_KEEPALIVE2_ACK:
2754			prepare_read_keepalive_ack(con);
2755			break;
2756		case CEPH_MSGR_TAG_CLOSE:
2757			con_close_socket(con);
2758			con->state = CON_STATE_CLOSED;
2759			goto out;
2760		default:
2761			goto bad_tag;
2762		}
2763	}
2764	if (con->in_tag == CEPH_MSGR_TAG_MSG) {
2765		ret = read_partial_message(con);
2766		if (ret <= 0) {
2767			switch (ret) {
2768			case -EBADMSG:
2769				con->error_msg = "bad crc/signature";
2770				/* fall through */
2771			case -EBADE:
2772				ret = -EIO;
2773				break;
2774			case -EIO:
2775				con->error_msg = "io error";
2776				break;
2777			}
2778			goto out;
2779		}
2780		if (con->in_tag == CEPH_MSGR_TAG_READY)
2781			goto more;
2782		process_message(con);
2783		if (con->state == CON_STATE_OPEN)
2784			prepare_read_tag(con);
2785		goto more;
2786	}
2787	if (con->in_tag == CEPH_MSGR_TAG_ACK ||
2788	    con->in_tag == CEPH_MSGR_TAG_SEQ) {
2789		/*
2790		 * the final handshake seq exchange is semantically
2791		 * equivalent to an ACK
2792		 */
2793		ret = read_partial_ack(con);
2794		if (ret <= 0)
2795			goto out;
2796		process_ack(con);
2797		goto more;
2798	}
2799	if (con->in_tag == CEPH_MSGR_TAG_KEEPALIVE2_ACK) {
2800		ret = read_keepalive_ack(con);
2801		if (ret <= 0)
2802			goto out;
2803		goto more;
2804	}
2805
2806out:
2807	dout("try_read done on %p ret %d\n", con, ret);
2808	return ret;
2809
2810bad_tag:
2811	pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
2812	con->error_msg = "protocol error, garbage tag";
2813	ret = -1;
2814	goto out;
2815}
2816
2817
2818/*
2819 * Atomically queue work on a connection after the specified delay.
2820 * Bump @con reference to avoid races with connection teardown.
2821 * Returns 0 if work was queued, or an error code otherwise.
2822 */
2823static int queue_con_delay(struct ceph_connection *con, unsigned long delay)
2824{
2825	if (!con->ops->get(con)) {
2826		dout("%s %p ref count 0\n", __func__, con);
2827		return -ENOENT;
2828	}
2829
 
 
 
 
2830	if (!queue_delayed_work(ceph_msgr_wq, &con->work, delay)) {
2831		dout("%s %p - already queued\n", __func__, con);
2832		con->ops->put(con);
2833		return -EBUSY;
2834	}
2835
2836	dout("%s %p %lu\n", __func__, con, delay);
2837	return 0;
2838}
2839
2840static void queue_con(struct ceph_connection *con)
2841{
2842	(void) queue_con_delay(con, 0);
2843}
2844
2845static void cancel_con(struct ceph_connection *con)
2846{
2847	if (cancel_delayed_work(&con->work)) {
2848		dout("%s %p\n", __func__, con);
2849		con->ops->put(con);
2850	}
2851}
2852
2853static bool con_sock_closed(struct ceph_connection *con)
2854{
2855	if (!con_flag_test_and_clear(con, CON_FLAG_SOCK_CLOSED))
2856		return false;
2857
2858#define CASE(x)								\
2859	case CON_STATE_ ## x:						\
2860		con->error_msg = "socket closed (con state " #x ")";	\
2861		break;
2862
2863	switch (con->state) {
2864	CASE(CLOSED);
2865	CASE(PREOPEN);
2866	CASE(CONNECTING);
2867	CASE(NEGOTIATING);
 
 
 
 
 
 
 
2868	CASE(OPEN);
2869	CASE(STANDBY);
2870	default:
2871		pr_warn("%s con %p unrecognized state %lu\n",
2872			__func__, con, con->state);
2873		con->error_msg = "unrecognized con state";
2874		BUG();
2875		break;
2876	}
2877#undef CASE
2878
2879	return true;
2880}
2881
2882static bool con_backoff(struct ceph_connection *con)
2883{
2884	int ret;
2885
2886	if (!con_flag_test_and_clear(con, CON_FLAG_BACKOFF))
2887		return false;
2888
2889	ret = queue_con_delay(con, round_jiffies_relative(con->delay));
2890	if (ret) {
2891		dout("%s: con %p FAILED to back off %lu\n", __func__,
2892			con, con->delay);
2893		BUG_ON(ret == -ENOENT);
2894		con_flag_set(con, CON_FLAG_BACKOFF);
2895	}
2896
2897	return true;
2898}
2899
2900/* Finish fault handling; con->mutex must *not* be held here */
2901
2902static void con_fault_finish(struct ceph_connection *con)
2903{
2904	dout("%s %p\n", __func__, con);
2905
2906	/*
2907	 * in case we faulted due to authentication, invalidate our
2908	 * current tickets so that we can get new ones.
2909	 */
2910	if (con->auth_retry) {
2911		dout("auth_retry %d, invalidating\n", con->auth_retry);
2912		if (con->ops->invalidate_authorizer)
2913			con->ops->invalidate_authorizer(con);
2914		con->auth_retry = 0;
2915	}
2916
2917	if (con->ops->fault)
2918		con->ops->fault(con);
2919}
2920
2921/*
2922 * Do some work on a connection.  Drop a connection ref when we're done.
2923 */
2924static void ceph_con_workfn(struct work_struct *work)
2925{
2926	struct ceph_connection *con = container_of(work, struct ceph_connection,
2927						   work.work);
2928	bool fault;
2929
2930	mutex_lock(&con->mutex);
2931	while (true) {
2932		int ret;
2933
2934		if ((fault = con_sock_closed(con))) {
2935			dout("%s: con %p SOCK_CLOSED\n", __func__, con);
2936			break;
2937		}
2938		if (con_backoff(con)) {
2939			dout("%s: con %p BACKOFF\n", __func__, con);
2940			break;
2941		}
2942		if (con->state == CON_STATE_STANDBY) {
2943			dout("%s: con %p STANDBY\n", __func__, con);
2944			break;
2945		}
2946		if (con->state == CON_STATE_CLOSED) {
2947			dout("%s: con %p CLOSED\n", __func__, con);
2948			BUG_ON(con->sock);
2949			break;
2950		}
2951		if (con->state == CON_STATE_PREOPEN) {
2952			dout("%s: con %p PREOPEN\n", __func__, con);
2953			BUG_ON(con->sock);
2954		}
2955
2956		ret = try_read(con);
 
 
 
2957		if (ret < 0) {
2958			if (ret == -EAGAIN)
2959				continue;
2960			if (!con->error_msg)
2961				con->error_msg = "socket error on read";
2962			fault = true;
2963			break;
2964		}
2965
2966		ret = try_write(con);
 
 
 
2967		if (ret < 0) {
2968			if (ret == -EAGAIN)
2969				continue;
2970			if (!con->error_msg)
2971				con->error_msg = "socket error on write";
2972			fault = true;
2973		}
2974
2975		break;	/* If we make it to here, we're done */
2976	}
2977	if (fault)
2978		con_fault(con);
2979	mutex_unlock(&con->mutex);
2980
2981	if (fault)
2982		con_fault_finish(con);
2983
2984	con->ops->put(con);
2985}
2986
2987/*
2988 * Generic error/fault handler.  A retry mechanism is used with
2989 * exponential backoff
2990 */
2991static void con_fault(struct ceph_connection *con)
2992{
2993	dout("fault %p state %lu to peer %s\n",
2994	     con, con->state, ceph_pr_addr(&con->peer_addr.in_addr));
2995
2996	pr_warn("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
2997		ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg);
2998	con->error_msg = NULL;
2999
3000	WARN_ON(con->state != CON_STATE_CONNECTING &&
3001	       con->state != CON_STATE_NEGOTIATING &&
3002	       con->state != CON_STATE_OPEN);
3003
3004	con_close_socket(con);
3005
3006	if (con_flag_test(con, CON_FLAG_LOSSYTX)) {
3007		dout("fault on LOSSYTX channel, marking CLOSED\n");
3008		con->state = CON_STATE_CLOSED;
3009		return;
3010	}
3011
3012	if (con->in_msg) {
3013		BUG_ON(con->in_msg->con != con);
3014		ceph_msg_put(con->in_msg);
3015		con->in_msg = NULL;
3016	}
3017
3018	/* Requeue anything that hasn't been acked */
3019	list_splice_init(&con->out_sent, &con->out_queue);
3020
3021	/* If there are no messages queued or keepalive pending, place
3022	 * the connection in a STANDBY state */
3023	if (list_empty(&con->out_queue) &&
3024	    !con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING)) {
3025		dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
3026		con_flag_clear(con, CON_FLAG_WRITE_PENDING);
3027		con->state = CON_STATE_STANDBY;
3028	} else {
3029		/* retry after a delay. */
3030		con->state = CON_STATE_PREOPEN;
3031		if (con->delay == 0)
3032			con->delay = BASE_DELAY_INTERVAL;
3033		else if (con->delay < MAX_DELAY_INTERVAL)
3034			con->delay *= 2;
3035		con_flag_set(con, CON_FLAG_BACKOFF);
 
 
 
3036		queue_con(con);
3037	}
3038}
3039
3040
 
 
 
 
 
3041
3042/*
3043 * initialize a new messenger instance
3044 */
3045void ceph_messenger_init(struct ceph_messenger *msgr,
3046			 struct ceph_entity_addr *myaddr)
3047{
3048	spin_lock_init(&msgr->global_seq_lock);
3049
3050	if (myaddr)
3051		msgr->inst.addr = *myaddr;
 
 
 
 
 
 
 
 
 
3052
3053	/* select a random nonce */
3054	msgr->inst.addr.type = 0;
3055	get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
3056	encode_my_addr(msgr);
 
 
3057
3058	atomic_set(&msgr->stopping, 0);
3059	write_pnet(&msgr->net, get_net(current->nsproxy->net_ns));
3060
3061	dout("%s %p\n", __func__, msgr);
3062}
3063EXPORT_SYMBOL(ceph_messenger_init);
3064
3065void ceph_messenger_fini(struct ceph_messenger *msgr)
3066{
3067	put_net(read_pnet(&msgr->net));
3068}
3069EXPORT_SYMBOL(ceph_messenger_fini);
3070
3071static void msg_con_set(struct ceph_msg *msg, struct ceph_connection *con)
3072{
3073	if (msg->con)
3074		msg->con->ops->put(msg->con);
3075
3076	msg->con = con ? con->ops->get(con) : NULL;
3077	BUG_ON(msg->con != con);
3078}
3079
3080static void clear_standby(struct ceph_connection *con)
3081{
3082	/* come back from STANDBY? */
3083	if (con->state == CON_STATE_STANDBY) {
3084		dout("clear_standby %p and ++connect_seq\n", con);
3085		con->state = CON_STATE_PREOPEN;
3086		con->connect_seq++;
3087		WARN_ON(con_flag_test(con, CON_FLAG_WRITE_PENDING));
3088		WARN_ON(con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING));
3089	}
3090}
3091
3092/*
3093 * Queue up an outgoing message on the given connection.
 
 
3094 */
3095void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
3096{
3097	/* set src+dst */
3098	msg->hdr.src = con->msgr->inst.name;
3099	BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
3100	msg->needs_out_seq = true;
3101
3102	mutex_lock(&con->mutex);
3103
3104	if (con->state == CON_STATE_CLOSED) {
3105		dout("con_send %p closed, dropping %p\n", con, msg);
3106		ceph_msg_put(msg);
3107		mutex_unlock(&con->mutex);
3108		return;
3109	}
3110
3111	msg_con_set(msg, con);
3112
3113	BUG_ON(!list_empty(&msg->list_head));
3114	list_add_tail(&msg->list_head, &con->out_queue);
3115	dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
3116	     ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
3117	     ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
3118	     le32_to_cpu(msg->hdr.front_len),
3119	     le32_to_cpu(msg->hdr.middle_len),
3120	     le32_to_cpu(msg->hdr.data_len));
3121
3122	clear_standby(con);
3123	mutex_unlock(&con->mutex);
3124
3125	/* if there wasn't anything waiting to send before, queue
3126	 * new work */
3127	if (con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
3128		queue_con(con);
3129}
3130EXPORT_SYMBOL(ceph_con_send);
3131
3132/*
3133 * Revoke a message that was previously queued for send
3134 */
3135void ceph_msg_revoke(struct ceph_msg *msg)
3136{
3137	struct ceph_connection *con = msg->con;
3138
3139	if (!con) {
3140		dout("%s msg %p null con\n", __func__, msg);
3141		return;		/* Message not in our possession */
3142	}
3143
3144	mutex_lock(&con->mutex);
3145	if (!list_empty(&msg->list_head)) {
3146		dout("%s %p msg %p - was on queue\n", __func__, con, msg);
3147		list_del_init(&msg->list_head);
3148		msg->hdr.seq = 0;
3149
3150		ceph_msg_put(msg);
3151	}
 
 
 
 
 
3152	if (con->out_msg == msg) {
3153		BUG_ON(con->out_skip);
3154		/* footer */
3155		if (con->out_msg_done) {
3156			con->out_skip += con_out_kvec_skip(con);
3157		} else {
3158			BUG_ON(!msg->data_length);
3159			con->out_skip += sizeof_footer(con);
3160		}
3161		/* data, middle, front */
3162		if (msg->data_length)
3163			con->out_skip += msg->cursor.total_resid;
3164		if (msg->middle)
3165			con->out_skip += con_out_kvec_skip(con);
3166		con->out_skip += con_out_kvec_skip(con);
3167
3168		dout("%s %p msg %p - was sending, will write %d skip %d\n",
3169		     __func__, con, msg, con->out_kvec_bytes, con->out_skip);
3170		msg->hdr.seq = 0;
3171		con->out_msg = NULL;
3172		ceph_msg_put(msg);
 
 
3173	}
3174
3175	mutex_unlock(&con->mutex);
3176}
3177
3178/*
3179 * Revoke a message that we may be reading data into
3180 */
3181void ceph_msg_revoke_incoming(struct ceph_msg *msg)
3182{
3183	struct ceph_connection *con = msg->con;
3184
3185	if (!con) {
3186		dout("%s msg %p null con\n", __func__, msg);
3187		return;		/* Message not in our possession */
3188	}
3189
3190	mutex_lock(&con->mutex);
3191	if (con->in_msg == msg) {
3192		unsigned int front_len = le32_to_cpu(con->in_hdr.front_len);
3193		unsigned int middle_len = le32_to_cpu(con->in_hdr.middle_len);
3194		unsigned int data_len = le32_to_cpu(con->in_hdr.data_len);
3195
3196		/* skip rest of message */
3197		dout("%s %p msg %p revoked\n", __func__, con, msg);
3198		con->in_base_pos = con->in_base_pos -
3199				sizeof(struct ceph_msg_header) -
3200				front_len -
3201				middle_len -
3202				data_len -
3203				sizeof(struct ceph_msg_footer);
3204		ceph_msg_put(con->in_msg);
3205		con->in_msg = NULL;
3206		con->in_tag = CEPH_MSGR_TAG_READY;
3207		con->in_seq++;
3208	} else {
3209		dout("%s %p in_msg %p msg %p no-op\n",
3210		     __func__, con, con->in_msg, msg);
3211	}
3212	mutex_unlock(&con->mutex);
3213}
3214
3215/*
3216 * Queue a keepalive byte to ensure the tcp connection is alive.
3217 */
3218void ceph_con_keepalive(struct ceph_connection *con)
3219{
3220	dout("con_keepalive %p\n", con);
3221	mutex_lock(&con->mutex);
3222	clear_standby(con);
 
3223	mutex_unlock(&con->mutex);
3224	if (con_flag_test_and_set(con, CON_FLAG_KEEPALIVE_PENDING) == 0 &&
3225	    con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
3226		queue_con(con);
3227}
3228EXPORT_SYMBOL(ceph_con_keepalive);
3229
3230bool ceph_con_keepalive_expired(struct ceph_connection *con,
3231			       unsigned long interval)
3232{
3233	if (interval > 0 &&
3234	    (con->peer_features & CEPH_FEATURE_MSGR_KEEPALIVE2)) {
3235		struct timespec now;
3236		struct timespec ts;
3237		ktime_get_real_ts(&now);
3238		jiffies_to_timespec(interval, &ts);
3239		ts = timespec_add(con->last_keepalive_ack, ts);
3240		return timespec_compare(&now, &ts) >= 0;
3241	}
3242	return false;
3243}
3244
3245static struct ceph_msg_data *ceph_msg_data_create(enum ceph_msg_data_type type)
3246{
3247	struct ceph_msg_data *data;
3248
3249	if (WARN_ON(!ceph_msg_data_type_valid(type)))
3250		return NULL;
3251
3252	data = kmem_cache_zalloc(ceph_msg_data_cache, GFP_NOFS);
3253	if (!data)
3254		return NULL;
3255
3256	data->type = type;
3257	INIT_LIST_HEAD(&data->links);
3258
3259	return data;
3260}
3261
3262static void ceph_msg_data_destroy(struct ceph_msg_data *data)
3263{
3264	if (!data)
3265		return;
3266
3267	WARN_ON(!list_empty(&data->links));
3268	if (data->type == CEPH_MSG_DATA_PAGELIST)
3269		ceph_pagelist_release(data->pagelist);
3270	kmem_cache_free(ceph_msg_data_cache, data);
3271}
3272
3273void ceph_msg_data_add_pages(struct ceph_msg *msg, struct page **pages,
3274		size_t length, size_t alignment)
3275{
3276	struct ceph_msg_data *data;
3277
3278	BUG_ON(!pages);
3279	BUG_ON(!length);
3280
3281	data = ceph_msg_data_create(CEPH_MSG_DATA_PAGES);
3282	BUG_ON(!data);
3283	data->pages = pages;
3284	data->length = length;
3285	data->alignment = alignment & ~PAGE_MASK;
 
3286
3287	list_add_tail(&data->links, &msg->data);
3288	msg->data_length += length;
3289}
3290EXPORT_SYMBOL(ceph_msg_data_add_pages);
3291
3292void ceph_msg_data_add_pagelist(struct ceph_msg *msg,
3293				struct ceph_pagelist *pagelist)
3294{
3295	struct ceph_msg_data *data;
3296
3297	BUG_ON(!pagelist);
3298	BUG_ON(!pagelist->length);
3299
3300	data = ceph_msg_data_create(CEPH_MSG_DATA_PAGELIST);
3301	BUG_ON(!data);
 
3302	data->pagelist = pagelist;
3303
3304	list_add_tail(&data->links, &msg->data);
3305	msg->data_length += pagelist->length;
3306}
3307EXPORT_SYMBOL(ceph_msg_data_add_pagelist);
3308
3309#ifdef	CONFIG_BLOCK
3310void ceph_msg_data_add_bio(struct ceph_msg *msg, struct ceph_bio_iter *bio_pos,
3311			   u32 length)
3312{
3313	struct ceph_msg_data *data;
3314
3315	data = ceph_msg_data_create(CEPH_MSG_DATA_BIO);
3316	BUG_ON(!data);
3317	data->bio_pos = *bio_pos;
3318	data->bio_length = length;
3319
3320	list_add_tail(&data->links, &msg->data);
3321	msg->data_length += length;
3322}
3323EXPORT_SYMBOL(ceph_msg_data_add_bio);
3324#endif	/* CONFIG_BLOCK */
3325
3326void ceph_msg_data_add_bvecs(struct ceph_msg *msg,
3327			     struct ceph_bvec_iter *bvec_pos)
3328{
3329	struct ceph_msg_data *data;
3330
3331	data = ceph_msg_data_create(CEPH_MSG_DATA_BVECS);
3332	BUG_ON(!data);
3333	data->bvec_pos = *bvec_pos;
3334
3335	list_add_tail(&data->links, &msg->data);
3336	msg->data_length += bvec_pos->iter.bi_size;
3337}
3338EXPORT_SYMBOL(ceph_msg_data_add_bvecs);
3339
 
 
 
 
 
 
 
 
 
 
 
 
3340/*
3341 * construct a new message with given type, size
3342 * the new msg has a ref count of 1.
3343 */
3344struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
3345			      bool can_fail)
3346{
3347	struct ceph_msg *m;
3348
3349	m = kmem_cache_zalloc(ceph_msg_cache, flags);
3350	if (m == NULL)
3351		goto out;
3352
3353	m->hdr.type = cpu_to_le16(type);
3354	m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
3355	m->hdr.front_len = cpu_to_le32(front_len);
3356
3357	INIT_LIST_HEAD(&m->list_head);
3358	kref_init(&m->kref);
3359	INIT_LIST_HEAD(&m->data);
3360
3361	/* front */
3362	if (front_len) {
3363		m->front.iov_base = ceph_kvmalloc(front_len, flags);
3364		if (m->front.iov_base == NULL) {
3365			dout("ceph_msg_new can't allocate %d bytes\n",
3366			     front_len);
3367			goto out2;
3368		}
3369	} else {
3370		m->front.iov_base = NULL;
3371	}
3372	m->front_alloc_len = m->front.iov_len = front_len;
3373
 
 
 
 
 
 
 
 
 
3374	dout("ceph_msg_new %p front %d\n", m, front_len);
3375	return m;
3376
3377out2:
3378	ceph_msg_put(m);
3379out:
3380	if (!can_fail) {
3381		pr_err("msg_new can't create type %d front %d\n", type,
3382		       front_len);
3383		WARN_ON(1);
3384	} else {
3385		dout("msg_new can't create type %d front %d\n", type,
3386		     front_len);
3387	}
3388	return NULL;
3389}
 
 
 
 
 
 
 
3390EXPORT_SYMBOL(ceph_msg_new);
3391
3392/*
3393 * Allocate "middle" portion of a message, if it is needed and wasn't
3394 * allocated by alloc_msg.  This allows us to read a small fixed-size
3395 * per-type header in the front and then gracefully fail (i.e.,
3396 * propagate the error to the caller based on info in the front) when
3397 * the middle is too large.
3398 */
3399static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
3400{
3401	int type = le16_to_cpu(msg->hdr.type);
3402	int middle_len = le32_to_cpu(msg->hdr.middle_len);
3403
3404	dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
3405	     ceph_msg_type_name(type), middle_len);
3406	BUG_ON(!middle_len);
3407	BUG_ON(msg->middle);
3408
3409	msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
3410	if (!msg->middle)
3411		return -ENOMEM;
3412	return 0;
3413}
3414
3415/*
3416 * Allocate a message for receiving an incoming message on a
3417 * connection, and save the result in con->in_msg.  Uses the
3418 * connection's private alloc_msg op if available.
3419 *
3420 * Returns 0 on success, or a negative error code.
3421 *
3422 * On success, if we set *skip = 1:
3423 *  - the next message should be skipped and ignored.
3424 *  - con->in_msg == NULL
3425 * or if we set *skip = 0:
3426 *  - con->in_msg is non-null.
3427 * On error (ENOMEM, EAGAIN, ...),
3428 *  - con->in_msg == NULL
3429 */
3430static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip)
 
3431{
3432	struct ceph_msg_header *hdr = &con->in_hdr;
3433	int middle_len = le32_to_cpu(hdr->middle_len);
3434	struct ceph_msg *msg;
3435	int ret = 0;
3436
3437	BUG_ON(con->in_msg != NULL);
3438	BUG_ON(!con->ops->alloc_msg);
3439
3440	mutex_unlock(&con->mutex);
3441	msg = con->ops->alloc_msg(con, hdr, skip);
3442	mutex_lock(&con->mutex);
3443	if (con->state != CON_STATE_OPEN) {
3444		if (msg)
3445			ceph_msg_put(msg);
3446		return -EAGAIN;
3447	}
3448	if (msg) {
3449		BUG_ON(*skip);
3450		msg_con_set(msg, con);
3451		con->in_msg = msg;
3452	} else {
3453		/*
3454		 * Null message pointer means either we should skip
3455		 * this message or we couldn't allocate memory.  The
3456		 * former is not an error.
3457		 */
3458		if (*skip)
3459			return 0;
3460
3461		con->error_msg = "error allocating memory for incoming message";
3462		return -ENOMEM;
3463	}
3464	memcpy(&con->in_msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
3465
3466	if (middle_len && !con->in_msg->middle) {
3467		ret = ceph_alloc_middle(con, con->in_msg);
3468		if (ret < 0) {
3469			ceph_msg_put(con->in_msg);
3470			con->in_msg = NULL;
3471		}
3472	}
3473
3474	return ret;
3475}
3476
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3477
3478/*
3479 * Free a generically kmalloc'd message.
3480 */
3481static void ceph_msg_free(struct ceph_msg *m)
3482{
3483	dout("%s %p\n", __func__, m);
3484	kvfree(m->front.iov_base);
 
3485	kmem_cache_free(ceph_msg_cache, m);
3486}
3487
3488static void ceph_msg_release(struct kref *kref)
3489{
3490	struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
3491	struct ceph_msg_data *data, *next;
3492
3493	dout("%s %p\n", __func__, m);
3494	WARN_ON(!list_empty(&m->list_head));
3495
3496	msg_con_set(m, NULL);
3497
3498	/* drop middle, data, if any */
3499	if (m->middle) {
3500		ceph_buffer_put(m->middle);
3501		m->middle = NULL;
3502	}
3503
3504	list_for_each_entry_safe(data, next, &m->data, links) {
3505		list_del_init(&data->links);
3506		ceph_msg_data_destroy(data);
3507	}
3508	m->data_length = 0;
3509
3510	if (m->pool)
3511		ceph_msgpool_put(m->pool, m);
3512	else
3513		ceph_msg_free(m);
3514}
3515
3516struct ceph_msg *ceph_msg_get(struct ceph_msg *msg)
3517{
3518	dout("%s %p (was %d)\n", __func__, msg,
3519	     kref_read(&msg->kref));
3520	kref_get(&msg->kref);
3521	return msg;
3522}
3523EXPORT_SYMBOL(ceph_msg_get);
3524
3525void ceph_msg_put(struct ceph_msg *msg)
3526{
3527	dout("%s %p (was %d)\n", __func__, msg,
3528	     kref_read(&msg->kref));
3529	kref_put(&msg->kref, ceph_msg_release);
3530}
3531EXPORT_SYMBOL(ceph_msg_put);
3532
3533void ceph_msg_dump(struct ceph_msg *msg)
3534{
3535	pr_debug("msg_dump %p (front_alloc_len %d length %zd)\n", msg,
3536		 msg->front_alloc_len, msg->data_length);
3537	print_hex_dump(KERN_DEBUG, "header: ",
3538		       DUMP_PREFIX_OFFSET, 16, 1,
3539		       &msg->hdr, sizeof(msg->hdr), true);
3540	print_hex_dump(KERN_DEBUG, " front: ",
3541		       DUMP_PREFIX_OFFSET, 16, 1,
3542		       msg->front.iov_base, msg->front.iov_len, true);
3543	if (msg->middle)
3544		print_hex_dump(KERN_DEBUG, "middle: ",
3545			       DUMP_PREFIX_OFFSET, 16, 1,
3546			       msg->middle->vec.iov_base,
3547			       msg->middle->vec.iov_len, true);
3548	print_hex_dump(KERN_DEBUG, "footer: ",
3549		       DUMP_PREFIX_OFFSET, 16, 1,
3550		       &msg->footer, sizeof(msg->footer), true);
3551}
3552EXPORT_SYMBOL(ceph_msg_dump);
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0
   2#include <linux/ceph/ceph_debug.h>
   3
   4#include <linux/crc32c.h>
   5#include <linux/ctype.h>
   6#include <linux/highmem.h>
   7#include <linux/inet.h>
   8#include <linux/kthread.h>
   9#include <linux/net.h>
  10#include <linux/nsproxy.h>
  11#include <linux/sched/mm.h>
  12#include <linux/slab.h>
  13#include <linux/socket.h>
  14#include <linux/string.h>
  15#ifdef	CONFIG_BLOCK
  16#include <linux/bio.h>
  17#endif	/* CONFIG_BLOCK */
  18#include <linux/dns_resolver.h>
  19#include <net/tcp.h>
  20#include <trace/events/sock.h>
  21
  22#include <linux/ceph/ceph_features.h>
  23#include <linux/ceph/libceph.h>
  24#include <linux/ceph/messenger.h>
  25#include <linux/ceph/decode.h>
  26#include <linux/ceph/pagelist.h>
  27#include <linux/export.h>
  28
  29/*
  30 * Ceph uses the messenger to exchange ceph_msg messages with other
  31 * hosts in the system.  The messenger provides ordered and reliable
  32 * delivery.  We tolerate TCP disconnects by reconnecting (with
  33 * exponential backoff) in the case of a fault (disconnection, bad
  34 * crc, protocol error).  Acks allow sent messages to be discarded by
  35 * the sender.
  36 */
  37
  38/*
  39 * We track the state of the socket on a given connection using
  40 * values defined below.  The transition to a new socket state is
  41 * handled by a function which verifies we aren't coming from an
  42 * unexpected state.
  43 *
  44 *      --------
  45 *      | NEW* |  transient initial state
  46 *      --------
  47 *          | con_sock_state_init()
  48 *          v
  49 *      ----------
  50 *      | CLOSED |  initialized, but no socket (and no
  51 *      ----------  TCP connection)
  52 *       ^      \
  53 *       |       \ con_sock_state_connecting()
  54 *       |        ----------------------
  55 *       |                              \
  56 *       + con_sock_state_closed()       \
  57 *       |+---------------------------    \
  58 *       | \                          \    \
  59 *       |  -----------                \    \
  60 *       |  | CLOSING |  socket event;  \    \
  61 *       |  -----------  await close     \    \
  62 *       |       ^                        \   |
  63 *       |       |                         \  |
  64 *       |       + con_sock_state_closing() \ |
  65 *       |      / \                         | |
  66 *       |     /   ---------------          | |
  67 *       |    /                   \         v v
  68 *       |   /                    --------------
  69 *       |  /    -----------------| CONNECTING |  socket created, TCP
  70 *       |  |   /                 --------------  connect initiated
  71 *       |  |   | con_sock_state_connected()
  72 *       |  |   v
  73 *      -------------
  74 *      | CONNECTED |  TCP connection established
  75 *      -------------
  76 *
  77 * State values for ceph_connection->sock_state; NEW is assumed to be 0.
  78 */
  79
  80#define CON_SOCK_STATE_NEW		0	/* -> CLOSED */
  81#define CON_SOCK_STATE_CLOSED		1	/* -> CONNECTING */
  82#define CON_SOCK_STATE_CONNECTING	2	/* -> CONNECTED or -> CLOSING */
  83#define CON_SOCK_STATE_CONNECTED	3	/* -> CLOSING or -> CLOSED */
  84#define CON_SOCK_STATE_CLOSING		4	/* -> CLOSED */
  85
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  86static bool con_flag_valid(unsigned long con_flag)
  87{
  88	switch (con_flag) {
  89	case CEPH_CON_F_LOSSYTX:
  90	case CEPH_CON_F_KEEPALIVE_PENDING:
  91	case CEPH_CON_F_WRITE_PENDING:
  92	case CEPH_CON_F_SOCK_CLOSED:
  93	case CEPH_CON_F_BACKOFF:
  94		return true;
  95	default:
  96		return false;
  97	}
  98}
  99
 100void ceph_con_flag_clear(struct ceph_connection *con, unsigned long con_flag)
 101{
 102	BUG_ON(!con_flag_valid(con_flag));
 103
 104	clear_bit(con_flag, &con->flags);
 105}
 106
 107void ceph_con_flag_set(struct ceph_connection *con, unsigned long con_flag)
 108{
 109	BUG_ON(!con_flag_valid(con_flag));
 110
 111	set_bit(con_flag, &con->flags);
 112}
 113
 114bool ceph_con_flag_test(struct ceph_connection *con, unsigned long con_flag)
 115{
 116	BUG_ON(!con_flag_valid(con_flag));
 117
 118	return test_bit(con_flag, &con->flags);
 119}
 120
 121bool ceph_con_flag_test_and_clear(struct ceph_connection *con,
 122				  unsigned long con_flag)
 123{
 124	BUG_ON(!con_flag_valid(con_flag));
 125
 126	return test_and_clear_bit(con_flag, &con->flags);
 127}
 128
 129bool ceph_con_flag_test_and_set(struct ceph_connection *con,
 130				unsigned long con_flag)
 131{
 132	BUG_ON(!con_flag_valid(con_flag));
 133
 134	return test_and_set_bit(con_flag, &con->flags);
 135}
 136
 137/* Slab caches for frequently-allocated structures */
 138
 139static struct kmem_cache	*ceph_msg_cache;
 
 
 
 
 
 
 
 140
 141#ifdef CONFIG_LOCKDEP
 142static struct lock_class_key socket_class;
 143#endif
 144
 
 
 
 
 
 
 145static void queue_con(struct ceph_connection *con);
 146static void cancel_con(struct ceph_connection *con);
 147static void ceph_con_workfn(struct work_struct *);
 148static void con_fault(struct ceph_connection *con);
 149
 150/*
 151 * Nicely render a sockaddr as a string.  An array of formatted
 152 * strings is used, to approximate reentrancy.
 153 */
 154#define ADDR_STR_COUNT_LOG	5	/* log2(# address strings in array) */
 155#define ADDR_STR_COUNT		(1 << ADDR_STR_COUNT_LOG)
 156#define ADDR_STR_COUNT_MASK	(ADDR_STR_COUNT - 1)
 157#define MAX_ADDR_STR_LEN	64	/* 54 is enough */
 158
 159static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
 160static atomic_t addr_str_seq = ATOMIC_INIT(0);
 161
 162struct page *ceph_zero_page;		/* used in certain error cases */
 163
 164const char *ceph_pr_addr(const struct ceph_entity_addr *addr)
 165{
 166	int i;
 167	char *s;
 168	struct sockaddr_storage ss = addr->in_addr; /* align */
 169	struct sockaddr_in *in4 = (struct sockaddr_in *)&ss;
 170	struct sockaddr_in6 *in6 = (struct sockaddr_in6 *)&ss;
 171
 172	i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
 173	s = addr_str[i];
 174
 175	switch (ss.ss_family) {
 176	case AF_INET:
 177		snprintf(s, MAX_ADDR_STR_LEN, "(%d)%pI4:%hu",
 178			 le32_to_cpu(addr->type), &in4->sin_addr,
 179			 ntohs(in4->sin_port));
 180		break;
 181
 182	case AF_INET6:
 183		snprintf(s, MAX_ADDR_STR_LEN, "(%d)[%pI6c]:%hu",
 184			 le32_to_cpu(addr->type), &in6->sin6_addr,
 185			 ntohs(in6->sin6_port));
 186		break;
 187
 188	default:
 189		snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
 190			 ss.ss_family);
 191	}
 192
 193	return s;
 194}
 195EXPORT_SYMBOL(ceph_pr_addr);
 196
 197void ceph_encode_my_addr(struct ceph_messenger *msgr)
 198{
 199	if (!ceph_msgr2(from_msgr(msgr))) {
 200		memcpy(&msgr->my_enc_addr, &msgr->inst.addr,
 201		       sizeof(msgr->my_enc_addr));
 202		ceph_encode_banner_addr(&msgr->my_enc_addr);
 203	}
 204}
 205
 206/*
 207 * work queue for all reading and writing to/from the socket.
 208 */
 209static struct workqueue_struct *ceph_msgr_wq;
 210
 211static int ceph_msgr_slab_init(void)
 212{
 213	BUG_ON(ceph_msg_cache);
 214	ceph_msg_cache = KMEM_CACHE(ceph_msg, 0);
 215	if (!ceph_msg_cache)
 216		return -ENOMEM;
 217
 218	return 0;
 
 
 
 
 
 
 
 
 219}
 220
 221static void ceph_msgr_slab_exit(void)
 222{
 
 
 
 
 223	BUG_ON(!ceph_msg_cache);
 224	kmem_cache_destroy(ceph_msg_cache);
 225	ceph_msg_cache = NULL;
 226}
 227
 228static void _ceph_msgr_exit(void)
 229{
 230	if (ceph_msgr_wq) {
 231		destroy_workqueue(ceph_msgr_wq);
 232		ceph_msgr_wq = NULL;
 233	}
 234
 235	BUG_ON(!ceph_zero_page);
 236	put_page(ceph_zero_page);
 237	ceph_zero_page = NULL;
 238
 239	ceph_msgr_slab_exit();
 240}
 241
 242int __init ceph_msgr_init(void)
 243{
 244	if (ceph_msgr_slab_init())
 245		return -ENOMEM;
 246
 247	BUG_ON(ceph_zero_page);
 248	ceph_zero_page = ZERO_PAGE(0);
 249	get_page(ceph_zero_page);
 250
 251	/*
 252	 * The number of active work items is limited by the number of
 253	 * connections, so leave @max_active at default.
 254	 */
 255	ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_MEM_RECLAIM, 0);
 256	if (ceph_msgr_wq)
 257		return 0;
 258
 259	pr_err("msgr_init failed to create workqueue\n");
 260	_ceph_msgr_exit();
 261
 262	return -ENOMEM;
 263}
 264
 265void ceph_msgr_exit(void)
 266{
 267	BUG_ON(ceph_msgr_wq == NULL);
 268
 269	_ceph_msgr_exit();
 270}
 271
 272void ceph_msgr_flush(void)
 273{
 274	flush_workqueue(ceph_msgr_wq);
 275}
 276EXPORT_SYMBOL(ceph_msgr_flush);
 277
 278/* Connection socket state transition functions */
 279
 280static void con_sock_state_init(struct ceph_connection *con)
 281{
 282	int old_state;
 283
 284	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
 285	if (WARN_ON(old_state != CON_SOCK_STATE_NEW))
 286		printk("%s: unexpected old state %d\n", __func__, old_state);
 287	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
 288	     CON_SOCK_STATE_CLOSED);
 289}
 290
 291static void con_sock_state_connecting(struct ceph_connection *con)
 292{
 293	int old_state;
 294
 295	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING);
 296	if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED))
 297		printk("%s: unexpected old state %d\n", __func__, old_state);
 298	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
 299	     CON_SOCK_STATE_CONNECTING);
 300}
 301
 302static void con_sock_state_connected(struct ceph_connection *con)
 303{
 304	int old_state;
 305
 306	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED);
 307	if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING))
 308		printk("%s: unexpected old state %d\n", __func__, old_state);
 309	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
 310	     CON_SOCK_STATE_CONNECTED);
 311}
 312
 313static void con_sock_state_closing(struct ceph_connection *con)
 314{
 315	int old_state;
 316
 317	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING);
 318	if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING &&
 319			old_state != CON_SOCK_STATE_CONNECTED &&
 320			old_state != CON_SOCK_STATE_CLOSING))
 321		printk("%s: unexpected old state %d\n", __func__, old_state);
 322	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
 323	     CON_SOCK_STATE_CLOSING);
 324}
 325
 326static void con_sock_state_closed(struct ceph_connection *con)
 327{
 328	int old_state;
 329
 330	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
 331	if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED &&
 332		    old_state != CON_SOCK_STATE_CLOSING &&
 333		    old_state != CON_SOCK_STATE_CONNECTING &&
 334		    old_state != CON_SOCK_STATE_CLOSED))
 335		printk("%s: unexpected old state %d\n", __func__, old_state);
 336	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
 337	     CON_SOCK_STATE_CLOSED);
 338}
 339
 340/*
 341 * socket callback functions
 342 */
 343
 344/* data available on socket, or listen socket received a connect */
 345static void ceph_sock_data_ready(struct sock *sk)
 346{
 347	struct ceph_connection *con = sk->sk_user_data;
 348
 349	trace_sk_data_ready(sk);
 350
 351	if (atomic_read(&con->msgr->stopping)) {
 352		return;
 353	}
 354
 355	if (sk->sk_state != TCP_CLOSE_WAIT) {
 356		dout("%s %p state = %d, queueing work\n", __func__,
 357		     con, con->state);
 358		queue_con(con);
 359	}
 360}
 361
 362/* socket has buffer space for writing */
 363static void ceph_sock_write_space(struct sock *sk)
 364{
 365	struct ceph_connection *con = sk->sk_user_data;
 366
 367	/* only queue to workqueue if there is data we want to write,
 368	 * and there is sufficient space in the socket buffer to accept
 369	 * more data.  clear SOCK_NOSPACE so that ceph_sock_write_space()
 370	 * doesn't get called again until try_write() fills the socket
 371	 * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
 372	 * and net/core/stream.c:sk_stream_write_space().
 373	 */
 374	if (ceph_con_flag_test(con, CEPH_CON_F_WRITE_PENDING)) {
 375		if (sk_stream_is_writeable(sk)) {
 376			dout("%s %p queueing write work\n", __func__, con);
 377			clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
 378			queue_con(con);
 379		}
 380	} else {
 381		dout("%s %p nothing to write\n", __func__, con);
 382	}
 383}
 384
 385/* socket's state has changed */
 386static void ceph_sock_state_change(struct sock *sk)
 387{
 388	struct ceph_connection *con = sk->sk_user_data;
 389
 390	dout("%s %p state = %d sk_state = %u\n", __func__,
 391	     con, con->state, sk->sk_state);
 392
 393	switch (sk->sk_state) {
 394	case TCP_CLOSE:
 395		dout("%s TCP_CLOSE\n", __func__);
 396		fallthrough;
 397	case TCP_CLOSE_WAIT:
 398		dout("%s TCP_CLOSE_WAIT\n", __func__);
 399		con_sock_state_closing(con);
 400		ceph_con_flag_set(con, CEPH_CON_F_SOCK_CLOSED);
 401		queue_con(con);
 402		break;
 403	case TCP_ESTABLISHED:
 404		dout("%s TCP_ESTABLISHED\n", __func__);
 405		con_sock_state_connected(con);
 406		queue_con(con);
 407		break;
 408	default:	/* Everything else is uninteresting */
 409		break;
 410	}
 411}
 412
 413/*
 414 * set up socket callbacks
 415 */
 416static void set_sock_callbacks(struct socket *sock,
 417			       struct ceph_connection *con)
 418{
 419	struct sock *sk = sock->sk;
 420	sk->sk_user_data = con;
 421	sk->sk_data_ready = ceph_sock_data_ready;
 422	sk->sk_write_space = ceph_sock_write_space;
 423	sk->sk_state_change = ceph_sock_state_change;
 424}
 425
 426
 427/*
 428 * socket helpers
 429 */
 430
 431/*
 432 * initiate connection to a remote socket.
 433 */
 434int ceph_tcp_connect(struct ceph_connection *con)
 435{
 436	struct sockaddr_storage ss = con->peer_addr.in_addr; /* align */
 437	struct socket *sock;
 438	unsigned int noio_flag;
 439	int ret;
 440
 441	dout("%s con %p peer_addr %s\n", __func__, con,
 442	     ceph_pr_addr(&con->peer_addr));
 443	BUG_ON(con->sock);
 444
 445	/* sock_create_kern() allocates with GFP_KERNEL */
 446	noio_flag = memalloc_noio_save();
 447	ret = sock_create_kern(read_pnet(&con->msgr->net), ss.ss_family,
 448			       SOCK_STREAM, IPPROTO_TCP, &sock);
 449	memalloc_noio_restore(noio_flag);
 450	if (ret)
 451		return ret;
 452	sock->sk->sk_allocation = GFP_NOFS;
 453	sock->sk->sk_use_task_frag = false;
 454
 455#ifdef CONFIG_LOCKDEP
 456	lockdep_set_class(&sock->sk->sk_lock, &socket_class);
 457#endif
 458
 459	set_sock_callbacks(sock, con);
 460
 
 
 461	con_sock_state_connecting(con);
 462	ret = kernel_connect(sock, (struct sockaddr *)&ss, sizeof(ss),
 463			     O_NONBLOCK);
 464	if (ret == -EINPROGRESS) {
 465		dout("connect %s EINPROGRESS sk_state = %u\n",
 466		     ceph_pr_addr(&con->peer_addr),
 467		     sock->sk->sk_state);
 468	} else if (ret < 0) {
 469		pr_err("connect %s error %d\n",
 470		       ceph_pr_addr(&con->peer_addr), ret);
 471		sock_release(sock);
 472		return ret;
 473	}
 474
 475	if (ceph_test_opt(from_msgr(con->msgr), TCP_NODELAY))
 476		tcp_sock_set_nodelay(sock->sk);
 
 
 
 
 
 
 
 477
 478	con->sock = sock;
 479	return 0;
 480}
 481
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 482/*
 483 * Shutdown/close the socket for the given connection.
 484 */
 485int ceph_con_close_socket(struct ceph_connection *con)
 486{
 487	int rc = 0;
 488
 489	dout("%s con %p sock %p\n", __func__, con, con->sock);
 490	if (con->sock) {
 491		rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
 492		sock_release(con->sock);
 493		con->sock = NULL;
 494	}
 495
 496	/*
 497	 * Forcibly clear the SOCK_CLOSED flag.  It gets set
 498	 * independent of the connection mutex, and we could have
 499	 * received a socket close event before we had the chance to
 500	 * shut the socket down.
 501	 */
 502	ceph_con_flag_clear(con, CEPH_CON_F_SOCK_CLOSED);
 503
 504	con_sock_state_closed(con);
 505	return rc;
 506}
 507
 508static void ceph_con_reset_protocol(struct ceph_connection *con)
 509{
 510	dout("%s con %p\n", __func__, con);
 511
 512	ceph_con_close_socket(con);
 513	if (con->in_msg) {
 514		WARN_ON(con->in_msg->con != con);
 515		ceph_msg_put(con->in_msg);
 516		con->in_msg = NULL;
 517	}
 518	if (con->out_msg) {
 519		WARN_ON(con->out_msg->con != con);
 520		ceph_msg_put(con->out_msg);
 521		con->out_msg = NULL;
 522	}
 523	if (con->bounce_page) {
 524		__free_page(con->bounce_page);
 525		con->bounce_page = NULL;
 526	}
 527
 528	if (ceph_msgr2(from_msgr(con->msgr)))
 529		ceph_con_v2_reset_protocol(con);
 530	else
 531		ceph_con_v1_reset_protocol(con);
 532}
 533
 534/*
 535 * Reset a connection.  Discard all incoming and outgoing messages
 536 * and clear *_seq state.
 537 */
 538static void ceph_msg_remove(struct ceph_msg *msg)
 539{
 540	list_del_init(&msg->list_head);
 541
 542	ceph_msg_put(msg);
 543}
 544
 545static void ceph_msg_remove_list(struct list_head *head)
 546{
 547	while (!list_empty(head)) {
 548		struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
 549							list_head);
 550		ceph_msg_remove(msg);
 551	}
 552}
 553
 554void ceph_con_reset_session(struct ceph_connection *con)
 555{
 556	dout("%s con %p\n", __func__, con);
 557
 558	WARN_ON(con->in_msg);
 559	WARN_ON(con->out_msg);
 560	ceph_msg_remove_list(&con->out_queue);
 561	ceph_msg_remove_list(&con->out_sent);
 
 
 
 
 
 
 
 
 562	con->out_seq = 0;
 
 
 
 
 
 563	con->in_seq = 0;
 564	con->in_seq_acked = 0;
 565
 566	if (ceph_msgr2(from_msgr(con->msgr)))
 567		ceph_con_v2_reset_session(con);
 568	else
 569		ceph_con_v1_reset_session(con);
 570}
 571
 572/*
 573 * mark a peer down.  drop any open connections.
 574 */
 575void ceph_con_close(struct ceph_connection *con)
 576{
 577	mutex_lock(&con->mutex);
 578	dout("con_close %p peer %s\n", con, ceph_pr_addr(&con->peer_addr));
 579	con->state = CEPH_CON_S_CLOSED;
 580
 581	ceph_con_flag_clear(con, CEPH_CON_F_LOSSYTX);  /* so we retry next
 582							  connect */
 583	ceph_con_flag_clear(con, CEPH_CON_F_KEEPALIVE_PENDING);
 584	ceph_con_flag_clear(con, CEPH_CON_F_WRITE_PENDING);
 585	ceph_con_flag_clear(con, CEPH_CON_F_BACKOFF);
 586
 587	ceph_con_reset_protocol(con);
 588	ceph_con_reset_session(con);
 589	cancel_con(con);
 
 590	mutex_unlock(&con->mutex);
 591}
 592EXPORT_SYMBOL(ceph_con_close);
 593
 594/*
 595 * Reopen a closed connection, with a new peer address.
 596 */
 597void ceph_con_open(struct ceph_connection *con,
 598		   __u8 entity_type, __u64 entity_num,
 599		   struct ceph_entity_addr *addr)
 600{
 601	mutex_lock(&con->mutex);
 602	dout("con_open %p %s\n", con, ceph_pr_addr(addr));
 603
 604	WARN_ON(con->state != CEPH_CON_S_CLOSED);
 605	con->state = CEPH_CON_S_PREOPEN;
 606
 607	con->peer_name.type = (__u8) entity_type;
 608	con->peer_name.num = cpu_to_le64(entity_num);
 609
 610	memcpy(&con->peer_addr, addr, sizeof(*addr));
 611	con->delay = 0;      /* reset backoff memory */
 612	mutex_unlock(&con->mutex);
 613	queue_con(con);
 614}
 615EXPORT_SYMBOL(ceph_con_open);
 616
 617/*
 618 * return true if this connection ever successfully opened
 619 */
 620bool ceph_con_opened(struct ceph_connection *con)
 621{
 622	if (ceph_msgr2(from_msgr(con->msgr)))
 623		return ceph_con_v2_opened(con);
 624
 625	return ceph_con_v1_opened(con);
 626}
 627
 628/*
 629 * initialize a new connection.
 630 */
 631void ceph_con_init(struct ceph_connection *con, void *private,
 632	const struct ceph_connection_operations *ops,
 633	struct ceph_messenger *msgr)
 634{
 635	dout("con_init %p\n", con);
 636	memset(con, 0, sizeof(*con));
 637	con->private = private;
 638	con->ops = ops;
 639	con->msgr = msgr;
 640
 641	con_sock_state_init(con);
 642
 643	mutex_init(&con->mutex);
 644	INIT_LIST_HEAD(&con->out_queue);
 645	INIT_LIST_HEAD(&con->out_sent);
 646	INIT_DELAYED_WORK(&con->work, ceph_con_workfn);
 647
 648	con->state = CEPH_CON_S_CLOSED;
 649}
 650EXPORT_SYMBOL(ceph_con_init);
 651
 
 652/*
 653 * We maintain a global counter to order connection attempts.  Get
 654 * a unique seq greater than @gt.
 655 */
 656u32 ceph_get_global_seq(struct ceph_messenger *msgr, u32 gt)
 657{
 658	u32 ret;
 659
 660	spin_lock(&msgr->global_seq_lock);
 661	if (msgr->global_seq < gt)
 662		msgr->global_seq = gt;
 663	ret = ++msgr->global_seq;
 664	spin_unlock(&msgr->global_seq_lock);
 665	return ret;
 666}
 667
 668/*
 669 * Discard messages that have been acked by the server.
 670 */
 671void ceph_con_discard_sent(struct ceph_connection *con, u64 ack_seq)
 
 
 
 
 
 
 
 672{
 673	struct ceph_msg *msg;
 674	u64 seq;
 675
 676	dout("%s con %p ack_seq %llu\n", __func__, con, ack_seq);
 677	while (!list_empty(&con->out_sent)) {
 678		msg = list_first_entry(&con->out_sent, struct ceph_msg,
 679				       list_head);
 680		WARN_ON(msg->needs_out_seq);
 681		seq = le64_to_cpu(msg->hdr.seq);
 682		if (seq > ack_seq)
 683			break;
 684
 685		dout("%s con %p discarding msg %p seq %llu\n", __func__, con,
 686		     msg, seq);
 687		ceph_msg_remove(msg);
 688	}
 689}
 690
 691/*
 692 * Discard messages that have been requeued in con_fault(), up to
 693 * reconnect_seq.  This avoids gratuitously resending messages that
 694 * the server had received and handled prior to reconnect.
 695 */
 696void ceph_con_discard_requeued(struct ceph_connection *con, u64 reconnect_seq)
 697{
 698	struct ceph_msg *msg;
 699	u64 seq;
 700
 701	dout("%s con %p reconnect_seq %llu\n", __func__, con, reconnect_seq);
 702	while (!list_empty(&con->out_queue)) {
 703		msg = list_first_entry(&con->out_queue, struct ceph_msg,
 704				       list_head);
 705		if (msg->needs_out_seq)
 706			break;
 707		seq = le64_to_cpu(msg->hdr.seq);
 708		if (seq > reconnect_seq)
 709			break;
 710
 711		dout("%s con %p discarding msg %p seq %llu\n", __func__, con,
 712		     msg, seq);
 713		ceph_msg_remove(msg);
 714	}
 715}
 716
 717#ifdef CONFIG_BLOCK
 718
 719/*
 720 * For a bio data item, a piece is whatever remains of the next
 721 * entry in the current bio iovec, or the first entry in the next
 722 * bio in the list.
 723 */
 724static void ceph_msg_data_bio_cursor_init(struct ceph_msg_data_cursor *cursor,
 725					size_t length)
 726{
 727	struct ceph_msg_data *data = cursor->data;
 728	struct ceph_bio_iter *it = &cursor->bio_iter;
 729
 730	cursor->resid = min_t(size_t, length, data->bio_length);
 731	*it = data->bio_pos;
 732	if (cursor->resid < it->iter.bi_size)
 733		it->iter.bi_size = cursor->resid;
 734
 735	BUG_ON(cursor->resid < bio_iter_len(it->bio, it->iter));
 
 736}
 737
 738static struct page *ceph_msg_data_bio_next(struct ceph_msg_data_cursor *cursor,
 739						size_t *page_offset,
 740						size_t *length)
 741{
 742	struct bio_vec bv = bio_iter_iovec(cursor->bio_iter.bio,
 743					   cursor->bio_iter.iter);
 744
 745	*page_offset = bv.bv_offset;
 746	*length = bv.bv_len;
 747	return bv.bv_page;
 748}
 749
 750static bool ceph_msg_data_bio_advance(struct ceph_msg_data_cursor *cursor,
 751					size_t bytes)
 752{
 753	struct ceph_bio_iter *it = &cursor->bio_iter;
 754	struct page *page = bio_iter_page(it->bio, it->iter);
 755
 756	BUG_ON(bytes > cursor->resid);
 757	BUG_ON(bytes > bio_iter_len(it->bio, it->iter));
 758	cursor->resid -= bytes;
 759	bio_advance_iter(it->bio, &it->iter, bytes);
 760
 761	if (!cursor->resid)
 
 762		return false;   /* no more data */
 
 763
 764	if (!bytes || (it->iter.bi_size && it->iter.bi_bvec_done &&
 765		       page == bio_iter_page(it->bio, it->iter)))
 766		return false;	/* more bytes to process in this segment */
 767
 768	if (!it->iter.bi_size) {
 769		it->bio = it->bio->bi_next;
 770		it->iter = it->bio->bi_iter;
 771		if (cursor->resid < it->iter.bi_size)
 772			it->iter.bi_size = cursor->resid;
 773	}
 774
 
 775	BUG_ON(cursor->resid < bio_iter_len(it->bio, it->iter));
 
 776	return true;
 777}
 778#endif /* CONFIG_BLOCK */
 779
 780static void ceph_msg_data_bvecs_cursor_init(struct ceph_msg_data_cursor *cursor,
 781					size_t length)
 782{
 783	struct ceph_msg_data *data = cursor->data;
 784	struct bio_vec *bvecs = data->bvec_pos.bvecs;
 785
 786	cursor->resid = min_t(size_t, length, data->bvec_pos.iter.bi_size);
 787	cursor->bvec_iter = data->bvec_pos.iter;
 788	cursor->bvec_iter.bi_size = cursor->resid;
 789
 790	BUG_ON(cursor->resid < bvec_iter_len(bvecs, cursor->bvec_iter));
 
 
 791}
 792
 793static struct page *ceph_msg_data_bvecs_next(struct ceph_msg_data_cursor *cursor,
 794						size_t *page_offset,
 795						size_t *length)
 796{
 797	struct bio_vec bv = bvec_iter_bvec(cursor->data->bvec_pos.bvecs,
 798					   cursor->bvec_iter);
 799
 800	*page_offset = bv.bv_offset;
 801	*length = bv.bv_len;
 802	return bv.bv_page;
 803}
 804
 805static bool ceph_msg_data_bvecs_advance(struct ceph_msg_data_cursor *cursor,
 806					size_t bytes)
 807{
 808	struct bio_vec *bvecs = cursor->data->bvec_pos.bvecs;
 809	struct page *page = bvec_iter_page(bvecs, cursor->bvec_iter);
 810
 811	BUG_ON(bytes > cursor->resid);
 812	BUG_ON(bytes > bvec_iter_len(bvecs, cursor->bvec_iter));
 813	cursor->resid -= bytes;
 814	bvec_iter_advance(bvecs, &cursor->bvec_iter, bytes);
 815
 816	if (!cursor->resid)
 
 817		return false;   /* no more data */
 
 818
 819	if (!bytes || (cursor->bvec_iter.bi_bvec_done &&
 820		       page == bvec_iter_page(bvecs, cursor->bvec_iter)))
 821		return false;	/* more bytes to process in this segment */
 822
 
 823	BUG_ON(cursor->resid < bvec_iter_len(bvecs, cursor->bvec_iter));
 
 
 824	return true;
 825}
 826
 827/*
 828 * For a page array, a piece comes from the first page in the array
 829 * that has not already been fully consumed.
 830 */
 831static void ceph_msg_data_pages_cursor_init(struct ceph_msg_data_cursor *cursor,
 832					size_t length)
 833{
 834	struct ceph_msg_data *data = cursor->data;
 835	int page_count;
 836
 837	BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
 838
 839	BUG_ON(!data->pages);
 840	BUG_ON(!data->length);
 841
 842	cursor->resid = min(length, data->length);
 843	page_count = calc_pages_for(data->alignment, (u64)data->length);
 844	cursor->page_offset = data->alignment & ~PAGE_MASK;
 845	cursor->page_index = 0;
 846	BUG_ON(page_count > (int)USHRT_MAX);
 847	cursor->page_count = (unsigned short)page_count;
 848	BUG_ON(length > SIZE_MAX - cursor->page_offset);
 
 849}
 850
 851static struct page *
 852ceph_msg_data_pages_next(struct ceph_msg_data_cursor *cursor,
 853					size_t *page_offset, size_t *length)
 854{
 855	struct ceph_msg_data *data = cursor->data;
 856
 857	BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
 858
 859	BUG_ON(cursor->page_index >= cursor->page_count);
 860	BUG_ON(cursor->page_offset >= PAGE_SIZE);
 861
 862	*page_offset = cursor->page_offset;
 863	*length = min_t(size_t, cursor->resid, PAGE_SIZE - *page_offset);
 
 
 
 
 864	return data->pages[cursor->page_index];
 865}
 866
 867static bool ceph_msg_data_pages_advance(struct ceph_msg_data_cursor *cursor,
 868						size_t bytes)
 869{
 870	BUG_ON(cursor->data->type != CEPH_MSG_DATA_PAGES);
 871
 872	BUG_ON(cursor->page_offset + bytes > PAGE_SIZE);
 873
 874	/* Advance the cursor page offset */
 875
 876	cursor->resid -= bytes;
 877	cursor->page_offset = (cursor->page_offset + bytes) & ~PAGE_MASK;
 878	if (!bytes || cursor->page_offset)
 879		return false;	/* more bytes to process in the current page */
 880
 881	if (!cursor->resid)
 882		return false;   /* no more data */
 883
 884	/* Move on to the next page; offset is already at 0 */
 885
 886	BUG_ON(cursor->page_index >= cursor->page_count);
 887	cursor->page_index++;
 
 
 888	return true;
 889}
 890
 891/*
 892 * For a pagelist, a piece is whatever remains to be consumed in the
 893 * first page in the list, or the front of the next page.
 894 */
 895static void
 896ceph_msg_data_pagelist_cursor_init(struct ceph_msg_data_cursor *cursor,
 897					size_t length)
 898{
 899	struct ceph_msg_data *data = cursor->data;
 900	struct ceph_pagelist *pagelist;
 901	struct page *page;
 902
 903	BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
 904
 905	pagelist = data->pagelist;
 906	BUG_ON(!pagelist);
 907
 908	if (!length)
 909		return;		/* pagelist can be assigned but empty */
 910
 911	BUG_ON(list_empty(&pagelist->head));
 912	page = list_first_entry(&pagelist->head, struct page, lru);
 913
 914	cursor->resid = min(length, pagelist->length);
 915	cursor->page = page;
 916	cursor->offset = 0;
 
 917}
 918
 919static struct page *
 920ceph_msg_data_pagelist_next(struct ceph_msg_data_cursor *cursor,
 921				size_t *page_offset, size_t *length)
 922{
 923	struct ceph_msg_data *data = cursor->data;
 924	struct ceph_pagelist *pagelist;
 925
 926	BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
 927
 928	pagelist = data->pagelist;
 929	BUG_ON(!pagelist);
 930
 931	BUG_ON(!cursor->page);
 932	BUG_ON(cursor->offset + cursor->resid != pagelist->length);
 933
 934	/* offset of first page in pagelist is always 0 */
 935	*page_offset = cursor->offset & ~PAGE_MASK;
 936	*length = min_t(size_t, cursor->resid, PAGE_SIZE - *page_offset);
 
 
 
 
 937	return cursor->page;
 938}
 939
 940static bool ceph_msg_data_pagelist_advance(struct ceph_msg_data_cursor *cursor,
 941						size_t bytes)
 942{
 943	struct ceph_msg_data *data = cursor->data;
 944	struct ceph_pagelist *pagelist;
 945
 946	BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
 947
 948	pagelist = data->pagelist;
 949	BUG_ON(!pagelist);
 950
 951	BUG_ON(cursor->offset + cursor->resid != pagelist->length);
 952	BUG_ON((cursor->offset & ~PAGE_MASK) + bytes > PAGE_SIZE);
 953
 954	/* Advance the cursor offset */
 955
 956	cursor->resid -= bytes;
 957	cursor->offset += bytes;
 958	/* offset of first page in pagelist is always 0 */
 959	if (!bytes || cursor->offset & ~PAGE_MASK)
 960		return false;	/* more bytes to process in the current page */
 961
 962	if (!cursor->resid)
 963		return false;   /* no more data */
 964
 965	/* Move on to the next page */
 966
 967	BUG_ON(list_is_last(&cursor->page->lru, &pagelist->head));
 968	cursor->page = list_next_entry(cursor->page, lru);
 
 
 969	return true;
 970}
 971
 972static void ceph_msg_data_iter_cursor_init(struct ceph_msg_data_cursor *cursor,
 973					   size_t length)
 974{
 975	struct ceph_msg_data *data = cursor->data;
 976
 977	cursor->iov_iter = data->iter;
 978	cursor->lastlen = 0;
 979	iov_iter_truncate(&cursor->iov_iter, length);
 980	cursor->resid = iov_iter_count(&cursor->iov_iter);
 981}
 982
 983static struct page *ceph_msg_data_iter_next(struct ceph_msg_data_cursor *cursor,
 984					    size_t *page_offset, size_t *length)
 985{
 986	struct page *page;
 987	ssize_t len;
 988
 989	if (cursor->lastlen)
 990		iov_iter_revert(&cursor->iov_iter, cursor->lastlen);
 991
 992	len = iov_iter_get_pages2(&cursor->iov_iter, &page, PAGE_SIZE,
 993				  1, page_offset);
 994	BUG_ON(len < 0);
 995
 996	cursor->lastlen = len;
 997
 998	/*
 999	 * FIXME: The assumption is that the pages represented by the iov_iter
1000	 *	  are pinned, with the references held by the upper-level
1001	 *	  callers, or by virtue of being under writeback. Eventually,
1002	 *	  we'll get an iov_iter_get_pages2 variant that doesn't take
1003	 *	  page refs. Until then, just put the page ref.
1004	 */
1005	VM_BUG_ON_PAGE(!PageWriteback(page) && page_count(page) < 2, page);
1006	put_page(page);
1007
1008	*length = min_t(size_t, len, cursor->resid);
1009	return page;
1010}
1011
1012static bool ceph_msg_data_iter_advance(struct ceph_msg_data_cursor *cursor,
1013				       size_t bytes)
1014{
1015	BUG_ON(bytes > cursor->resid);
1016	cursor->resid -= bytes;
1017
1018	if (bytes < cursor->lastlen) {
1019		cursor->lastlen -= bytes;
1020	} else {
1021		iov_iter_advance(&cursor->iov_iter, bytes - cursor->lastlen);
1022		cursor->lastlen = 0;
1023	}
1024
1025	return cursor->resid;
1026}
1027
1028/*
1029 * Message data is handled (sent or received) in pieces, where each
1030 * piece resides on a single page.  The network layer might not
1031 * consume an entire piece at once.  A data item's cursor keeps
1032 * track of which piece is next to process and how much remains to
1033 * be processed in that piece.  It also tracks whether the current
1034 * piece is the last one in the data item.
1035 */
1036static void __ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor)
1037{
1038	size_t length = cursor->total_resid;
1039
1040	switch (cursor->data->type) {
1041	case CEPH_MSG_DATA_PAGELIST:
1042		ceph_msg_data_pagelist_cursor_init(cursor, length);
1043		break;
1044	case CEPH_MSG_DATA_PAGES:
1045		ceph_msg_data_pages_cursor_init(cursor, length);
1046		break;
1047#ifdef CONFIG_BLOCK
1048	case CEPH_MSG_DATA_BIO:
1049		ceph_msg_data_bio_cursor_init(cursor, length);
1050		break;
1051#endif /* CONFIG_BLOCK */
1052	case CEPH_MSG_DATA_BVECS:
1053		ceph_msg_data_bvecs_cursor_init(cursor, length);
1054		break;
1055	case CEPH_MSG_DATA_ITER:
1056		ceph_msg_data_iter_cursor_init(cursor, length);
1057		break;
1058	case CEPH_MSG_DATA_NONE:
1059	default:
1060		/* BUG(); */
1061		break;
1062	}
1063	cursor->need_crc = true;
1064}
1065
1066void ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor,
1067			       struct ceph_msg *msg, size_t length)
1068{
 
 
 
1069	BUG_ON(!length);
1070	BUG_ON(length > msg->data_length);
1071	BUG_ON(!msg->num_data_items);
1072
 
1073	cursor->total_resid = length;
1074	cursor->data = msg->data;
1075	cursor->sr_resid = 0;
1076
1077	__ceph_msg_data_cursor_init(cursor);
1078}
1079
1080/*
1081 * Return the page containing the next piece to process for a given
1082 * data item, and supply the page offset and length of that piece.
1083 * Indicate whether this is the last piece in this data item.
1084 */
1085struct page *ceph_msg_data_next(struct ceph_msg_data_cursor *cursor,
1086				size_t *page_offset, size_t *length)
 
1087{
1088	struct page *page;
1089
1090	switch (cursor->data->type) {
1091	case CEPH_MSG_DATA_PAGELIST:
1092		page = ceph_msg_data_pagelist_next(cursor, page_offset, length);
1093		break;
1094	case CEPH_MSG_DATA_PAGES:
1095		page = ceph_msg_data_pages_next(cursor, page_offset, length);
1096		break;
1097#ifdef CONFIG_BLOCK
1098	case CEPH_MSG_DATA_BIO:
1099		page = ceph_msg_data_bio_next(cursor, page_offset, length);
1100		break;
1101#endif /* CONFIG_BLOCK */
1102	case CEPH_MSG_DATA_BVECS:
1103		page = ceph_msg_data_bvecs_next(cursor, page_offset, length);
1104		break;
1105	case CEPH_MSG_DATA_ITER:
1106		page = ceph_msg_data_iter_next(cursor, page_offset, length);
1107		break;
1108	case CEPH_MSG_DATA_NONE:
1109	default:
1110		page = NULL;
1111		break;
1112	}
1113
1114	BUG_ON(!page);
1115	BUG_ON(*page_offset + *length > PAGE_SIZE);
1116	BUG_ON(!*length);
1117	BUG_ON(*length > cursor->resid);
 
 
1118
1119	return page;
1120}
1121
1122/*
1123 * Returns true if the result moves the cursor on to the next piece
1124 * of the data item.
1125 */
1126void ceph_msg_data_advance(struct ceph_msg_data_cursor *cursor, size_t bytes)
 
1127{
1128	bool new_piece;
1129
1130	BUG_ON(bytes > cursor->resid);
1131	switch (cursor->data->type) {
1132	case CEPH_MSG_DATA_PAGELIST:
1133		new_piece = ceph_msg_data_pagelist_advance(cursor, bytes);
1134		break;
1135	case CEPH_MSG_DATA_PAGES:
1136		new_piece = ceph_msg_data_pages_advance(cursor, bytes);
1137		break;
1138#ifdef CONFIG_BLOCK
1139	case CEPH_MSG_DATA_BIO:
1140		new_piece = ceph_msg_data_bio_advance(cursor, bytes);
1141		break;
1142#endif /* CONFIG_BLOCK */
1143	case CEPH_MSG_DATA_BVECS:
1144		new_piece = ceph_msg_data_bvecs_advance(cursor, bytes);
1145		break;
1146	case CEPH_MSG_DATA_ITER:
1147		new_piece = ceph_msg_data_iter_advance(cursor, bytes);
1148		break;
1149	case CEPH_MSG_DATA_NONE:
1150	default:
1151		BUG();
1152		break;
1153	}
1154	cursor->total_resid -= bytes;
1155
1156	if (!cursor->resid && cursor->total_resid) {
1157		cursor->data++;
 
 
1158		__ceph_msg_data_cursor_init(cursor);
1159		new_piece = true;
1160	}
1161	cursor->need_crc = new_piece;
1162}
1163
1164u32 ceph_crc32c_page(u32 crc, struct page *page, unsigned int page_offset,
1165		     unsigned int length)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1166{
1167	char *kaddr;
1168
1169	kaddr = kmap(page);
1170	BUG_ON(kaddr == NULL);
1171	crc = crc32c(crc, kaddr + page_offset, length);
1172	kunmap(page);
1173
1174	return crc;
1175}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1176
1177bool ceph_addr_is_blank(const struct ceph_entity_addr *addr)
 
 
 
1178{
1179	struct sockaddr_storage ss = addr->in_addr; /* align */
1180	struct in_addr *addr4 = &((struct sockaddr_in *)&ss)->sin_addr;
1181	struct in6_addr *addr6 = &((struct sockaddr_in6 *)&ss)->sin6_addr;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1182
1183	switch (ss.ss_family) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1184	case AF_INET:
1185		return addr4->s_addr == htonl(INADDR_ANY);
1186	case AF_INET6:
1187		return ipv6_addr_any(addr6);
1188	default:
1189		return true;
1190	}
1191}
1192EXPORT_SYMBOL(ceph_addr_is_blank);
1193
1194int ceph_addr_port(const struct ceph_entity_addr *addr)
1195{
1196	switch (get_unaligned(&addr->in_addr.ss_family)) {
1197	case AF_INET:
1198		return ntohs(get_unaligned(&((struct sockaddr_in *)&addr->in_addr)->sin_port));
1199	case AF_INET6:
1200		return ntohs(get_unaligned(&((struct sockaddr_in6 *)&addr->in_addr)->sin6_port));
1201	}
1202	return 0;
1203}
1204
1205void ceph_addr_set_port(struct ceph_entity_addr *addr, int p)
1206{
1207	switch (get_unaligned(&addr->in_addr.ss_family)) {
1208	case AF_INET:
1209		put_unaligned(htons(p), &((struct sockaddr_in *)&addr->in_addr)->sin_port);
1210		break;
1211	case AF_INET6:
1212		put_unaligned(htons(p), &((struct sockaddr_in6 *)&addr->in_addr)->sin6_port);
1213		break;
1214	}
1215}
1216
1217/*
1218 * Unlike other *_pton function semantics, zero indicates success.
1219 */
1220static int ceph_pton(const char *str, size_t len, struct ceph_entity_addr *addr,
1221		char delim, const char **ipend)
1222{
1223	memset(&addr->in_addr, 0, sizeof(addr->in_addr));
 
 
 
1224
1225	if (in4_pton(str, len, (u8 *)&((struct sockaddr_in *)&addr->in_addr)->sin_addr.s_addr, delim, ipend)) {
1226		put_unaligned(AF_INET, &addr->in_addr.ss_family);
1227		return 0;
1228	}
1229
1230	if (in6_pton(str, len, (u8 *)&((struct sockaddr_in6 *)&addr->in_addr)->sin6_addr.s6_addr, delim, ipend)) {
1231		put_unaligned(AF_INET6, &addr->in_addr.ss_family);
1232		return 0;
1233	}
1234
1235	return -EINVAL;
1236}
1237
1238/*
1239 * Extract hostname string and resolve using kernel DNS facility.
1240 */
1241#ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1242static int ceph_dns_resolve_name(const char *name, size_t namelen,
1243		struct ceph_entity_addr *addr, char delim, const char **ipend)
1244{
1245	const char *end, *delim_p;
1246	char *colon_p, *ip_addr = NULL;
1247	int ip_len, ret;
1248
1249	/*
1250	 * The end of the hostname occurs immediately preceding the delimiter or
1251	 * the port marker (':') where the delimiter takes precedence.
1252	 */
1253	delim_p = memchr(name, delim, namelen);
1254	colon_p = memchr(name, ':', namelen);
1255
1256	if (delim_p && colon_p)
1257		end = delim_p < colon_p ? delim_p : colon_p;
1258	else if (!delim_p && colon_p)
1259		end = colon_p;
1260	else {
1261		end = delim_p;
1262		if (!end) /* case: hostname:/ */
1263			end = name + namelen;
1264	}
1265
1266	if (end <= name)
1267		return -EINVAL;
1268
1269	/* do dns_resolve upcall */
1270	ip_len = dns_query(current->nsproxy->net_ns,
1271			   NULL, name, end - name, NULL, &ip_addr, NULL, false);
1272	if (ip_len > 0)
1273		ret = ceph_pton(ip_addr, ip_len, addr, -1, NULL);
1274	else
1275		ret = -ESRCH;
1276
1277	kfree(ip_addr);
1278
1279	*ipend = end;
1280
1281	pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1282			ret, ret ? "failed" : ceph_pr_addr(addr));
1283
1284	return ret;
1285}
1286#else
1287static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1288		struct ceph_entity_addr *addr, char delim, const char **ipend)
1289{
1290	return -EINVAL;
1291}
1292#endif
1293
1294/*
1295 * Parse a server name (IP or hostname). If a valid IP address is not found
1296 * then try to extract a hostname to resolve using userspace DNS upcall.
1297 */
1298static int ceph_parse_server_name(const char *name, size_t namelen,
1299		struct ceph_entity_addr *addr, char delim, const char **ipend)
1300{
1301	int ret;
1302
1303	ret = ceph_pton(name, namelen, addr, delim, ipend);
1304	if (ret)
1305		ret = ceph_dns_resolve_name(name, namelen, addr, delim, ipend);
1306
1307	return ret;
1308}
1309
1310/*
1311 * Parse an ip[:port] list into an addr array.  Use the default
1312 * monitor port if a port isn't specified.
1313 */
1314int ceph_parse_ips(const char *c, const char *end,
1315		   struct ceph_entity_addr *addr,
1316		   int max_count, int *count, char delim)
1317{
1318	int i, ret = -EINVAL;
1319	const char *p = c;
1320
1321	dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1322	for (i = 0; i < max_count; i++) {
1323		char cur_delim = delim;
1324		const char *ipend;
 
1325		int port;
 
1326
1327		if (*p == '[') {
1328			cur_delim = ']';
1329			p++;
1330		}
1331
1332		ret = ceph_parse_server_name(p, end - p, &addr[i], cur_delim,
1333					     &ipend);
1334		if (ret)
1335			goto bad;
1336		ret = -EINVAL;
1337
1338		p = ipend;
1339
1340		if (cur_delim == ']') {
1341			if (*p != ']') {
1342				dout("missing matching ']'\n");
1343				goto bad;
1344			}
1345			p++;
1346		}
1347
1348		/* port? */
1349		if (p < end && *p == ':') {
1350			port = 0;
1351			p++;
1352			while (p < end && *p >= '0' && *p <= '9') {
1353				port = (port * 10) + (*p - '0');
1354				p++;
1355			}
1356			if (port == 0)
1357				port = CEPH_MON_PORT;
1358			else if (port > 65535)
1359				goto bad;
1360		} else {
1361			port = CEPH_MON_PORT;
1362		}
1363
1364		ceph_addr_set_port(&addr[i], port);
1365		/*
1366		 * We want the type to be set according to ms_mode
1367		 * option, but options are normally parsed after mon
1368		 * addresses.  Rather than complicating parsing, set
1369		 * to LEGACY and override in build_initial_monmap()
1370		 * for mon addresses and ceph_messenger_init() for
1371		 * ip option.
1372		 */
1373		addr[i].type = CEPH_ENTITY_ADDR_TYPE_LEGACY;
1374		addr[i].nonce = 0;
1375
1376		dout("%s got %s\n", __func__, ceph_pr_addr(&addr[i]));
1377
1378		if (p == end)
1379			break;
1380		if (*p != delim)
1381			goto bad;
1382		p++;
1383	}
1384
1385	if (p != end)
1386		goto bad;
1387
1388	if (count)
1389		*count = i + 1;
1390	return 0;
1391
1392bad:
 
1393	return ret;
1394}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1395
1396/*
1397 * Process message.  This happens in the worker thread.  The callback should
1398 * be careful not to do anything that waits on other incoming messages or it
1399 * may deadlock.
1400 */
1401void ceph_con_process_message(struct ceph_connection *con)
1402{
1403	struct ceph_msg *msg = con->in_msg;
1404
1405	BUG_ON(con->in_msg->con != con);
1406	con->in_msg = NULL;
1407
1408	/* if first message, set peer_name */
1409	if (con->peer_name.type == 0)
1410		con->peer_name = msg->hdr.src;
1411
1412	con->in_seq++;
1413	mutex_unlock(&con->mutex);
1414
1415	dout("===== %p %llu from %s%lld %d=%s len %d+%d+%d (%u %u %u) =====\n",
1416	     msg, le64_to_cpu(msg->hdr.seq),
1417	     ENTITY_NAME(msg->hdr.src),
1418	     le16_to_cpu(msg->hdr.type),
1419	     ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
1420	     le32_to_cpu(msg->hdr.front_len),
1421	     le32_to_cpu(msg->hdr.middle_len),
1422	     le32_to_cpu(msg->hdr.data_len),
1423	     con->in_front_crc, con->in_middle_crc, con->in_data_crc);
1424	con->ops->dispatch(con, msg);
1425
1426	mutex_lock(&con->mutex);
1427}
1428
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1429/*
1430 * Atomically queue work on a connection after the specified delay.
1431 * Bump @con reference to avoid races with connection teardown.
1432 * Returns 0 if work was queued, or an error code otherwise.
1433 */
1434static int queue_con_delay(struct ceph_connection *con, unsigned long delay)
1435{
1436	if (!con->ops->get(con)) {
1437		dout("%s %p ref count 0\n", __func__, con);
1438		return -ENOENT;
1439	}
1440
1441	if (delay >= HZ)
1442		delay = round_jiffies_relative(delay);
1443
1444	dout("%s %p %lu\n", __func__, con, delay);
1445	if (!queue_delayed_work(ceph_msgr_wq, &con->work, delay)) {
1446		dout("%s %p - already queued\n", __func__, con);
1447		con->ops->put(con);
1448		return -EBUSY;
1449	}
1450
 
1451	return 0;
1452}
1453
1454static void queue_con(struct ceph_connection *con)
1455{
1456	(void) queue_con_delay(con, 0);
1457}
1458
1459static void cancel_con(struct ceph_connection *con)
1460{
1461	if (cancel_delayed_work(&con->work)) {
1462		dout("%s %p\n", __func__, con);
1463		con->ops->put(con);
1464	}
1465}
1466
1467static bool con_sock_closed(struct ceph_connection *con)
1468{
1469	if (!ceph_con_flag_test_and_clear(con, CEPH_CON_F_SOCK_CLOSED))
1470		return false;
1471
1472#define CASE(x)								\
1473	case CEPH_CON_S_ ## x:						\
1474		con->error_msg = "socket closed (con state " #x ")";	\
1475		break;
1476
1477	switch (con->state) {
1478	CASE(CLOSED);
1479	CASE(PREOPEN);
1480	CASE(V1_BANNER);
1481	CASE(V1_CONNECT_MSG);
1482	CASE(V2_BANNER_PREFIX);
1483	CASE(V2_BANNER_PAYLOAD);
1484	CASE(V2_HELLO);
1485	CASE(V2_AUTH);
1486	CASE(V2_AUTH_SIGNATURE);
1487	CASE(V2_SESSION_CONNECT);
1488	CASE(V2_SESSION_RECONNECT);
1489	CASE(OPEN);
1490	CASE(STANDBY);
1491	default:
 
 
 
1492		BUG();
 
1493	}
1494#undef CASE
1495
1496	return true;
1497}
1498
1499static bool con_backoff(struct ceph_connection *con)
1500{
1501	int ret;
1502
1503	if (!ceph_con_flag_test_and_clear(con, CEPH_CON_F_BACKOFF))
1504		return false;
1505
1506	ret = queue_con_delay(con, con->delay);
1507	if (ret) {
1508		dout("%s: con %p FAILED to back off %lu\n", __func__,
1509			con, con->delay);
1510		BUG_ON(ret == -ENOENT);
1511		ceph_con_flag_set(con, CEPH_CON_F_BACKOFF);
1512	}
1513
1514	return true;
1515}
1516
1517/* Finish fault handling; con->mutex must *not* be held here */
1518
1519static void con_fault_finish(struct ceph_connection *con)
1520{
1521	dout("%s %p\n", __func__, con);
1522
1523	/*
1524	 * in case we faulted due to authentication, invalidate our
1525	 * current tickets so that we can get new ones.
1526	 */
1527	if (con->v1.auth_retry) {
1528		dout("auth_retry %d, invalidating\n", con->v1.auth_retry);
1529		if (con->ops->invalidate_authorizer)
1530			con->ops->invalidate_authorizer(con);
1531		con->v1.auth_retry = 0;
1532	}
1533
1534	if (con->ops->fault)
1535		con->ops->fault(con);
1536}
1537
1538/*
1539 * Do some work on a connection.  Drop a connection ref when we're done.
1540 */
1541static void ceph_con_workfn(struct work_struct *work)
1542{
1543	struct ceph_connection *con = container_of(work, struct ceph_connection,
1544						   work.work);
1545	bool fault;
1546
1547	mutex_lock(&con->mutex);
1548	while (true) {
1549		int ret;
1550
1551		if ((fault = con_sock_closed(con))) {
1552			dout("%s: con %p SOCK_CLOSED\n", __func__, con);
1553			break;
1554		}
1555		if (con_backoff(con)) {
1556			dout("%s: con %p BACKOFF\n", __func__, con);
1557			break;
1558		}
1559		if (con->state == CEPH_CON_S_STANDBY) {
1560			dout("%s: con %p STANDBY\n", __func__, con);
1561			break;
1562		}
1563		if (con->state == CEPH_CON_S_CLOSED) {
1564			dout("%s: con %p CLOSED\n", __func__, con);
1565			BUG_ON(con->sock);
1566			break;
1567		}
1568		if (con->state == CEPH_CON_S_PREOPEN) {
1569			dout("%s: con %p PREOPEN\n", __func__, con);
1570			BUG_ON(con->sock);
1571		}
1572
1573		if (ceph_msgr2(from_msgr(con->msgr)))
1574			ret = ceph_con_v2_try_read(con);
1575		else
1576			ret = ceph_con_v1_try_read(con);
1577		if (ret < 0) {
1578			if (ret == -EAGAIN)
1579				continue;
1580			if (!con->error_msg)
1581				con->error_msg = "socket error on read";
1582			fault = true;
1583			break;
1584		}
1585
1586		if (ceph_msgr2(from_msgr(con->msgr)))
1587			ret = ceph_con_v2_try_write(con);
1588		else
1589			ret = ceph_con_v1_try_write(con);
1590		if (ret < 0) {
1591			if (ret == -EAGAIN)
1592				continue;
1593			if (!con->error_msg)
1594				con->error_msg = "socket error on write";
1595			fault = true;
1596		}
1597
1598		break;	/* If we make it to here, we're done */
1599	}
1600	if (fault)
1601		con_fault(con);
1602	mutex_unlock(&con->mutex);
1603
1604	if (fault)
1605		con_fault_finish(con);
1606
1607	con->ops->put(con);
1608}
1609
1610/*
1611 * Generic error/fault handler.  A retry mechanism is used with
1612 * exponential backoff
1613 */
1614static void con_fault(struct ceph_connection *con)
1615{
1616	dout("fault %p state %d to peer %s\n",
1617	     con, con->state, ceph_pr_addr(&con->peer_addr));
1618
1619	pr_warn("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
1620		ceph_pr_addr(&con->peer_addr), con->error_msg);
1621	con->error_msg = NULL;
1622
1623	WARN_ON(con->state == CEPH_CON_S_STANDBY ||
1624		con->state == CEPH_CON_S_CLOSED);
 
1625
1626	ceph_con_reset_protocol(con);
1627
1628	if (ceph_con_flag_test(con, CEPH_CON_F_LOSSYTX)) {
1629		dout("fault on LOSSYTX channel, marking CLOSED\n");
1630		con->state = CEPH_CON_S_CLOSED;
1631		return;
1632	}
1633
 
 
 
 
 
 
1634	/* Requeue anything that hasn't been acked */
1635	list_splice_init(&con->out_sent, &con->out_queue);
1636
1637	/* If there are no messages queued or keepalive pending, place
1638	 * the connection in a STANDBY state */
1639	if (list_empty(&con->out_queue) &&
1640	    !ceph_con_flag_test(con, CEPH_CON_F_KEEPALIVE_PENDING)) {
1641		dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
1642		ceph_con_flag_clear(con, CEPH_CON_F_WRITE_PENDING);
1643		con->state = CEPH_CON_S_STANDBY;
1644	} else {
1645		/* retry after a delay. */
1646		con->state = CEPH_CON_S_PREOPEN;
1647		if (!con->delay) {
1648			con->delay = BASE_DELAY_INTERVAL;
1649		} else if (con->delay < MAX_DELAY_INTERVAL) {
1650			con->delay *= 2;
1651			if (con->delay > MAX_DELAY_INTERVAL)
1652				con->delay = MAX_DELAY_INTERVAL;
1653		}
1654		ceph_con_flag_set(con, CEPH_CON_F_BACKOFF);
1655		queue_con(con);
1656	}
1657}
1658
1659void ceph_messenger_reset_nonce(struct ceph_messenger *msgr)
1660{
1661	u32 nonce = le32_to_cpu(msgr->inst.addr.nonce) + 1000000;
1662	msgr->inst.addr.nonce = cpu_to_le32(nonce);
1663	ceph_encode_my_addr(msgr);
1664}
1665
1666/*
1667 * initialize a new messenger instance
1668 */
1669void ceph_messenger_init(struct ceph_messenger *msgr,
1670			 struct ceph_entity_addr *myaddr)
1671{
1672	spin_lock_init(&msgr->global_seq_lock);
1673
1674	if (myaddr) {
1675		memcpy(&msgr->inst.addr.in_addr, &myaddr->in_addr,
1676		       sizeof(msgr->inst.addr.in_addr));
1677		ceph_addr_set_port(&msgr->inst.addr, 0);
1678	}
1679
1680	/*
1681	 * Since nautilus, clients are identified using type ANY.
1682	 * For msgr1, ceph_encode_banner_addr() munges it to NONE.
1683	 */
1684	msgr->inst.addr.type = CEPH_ENTITY_ADDR_TYPE_ANY;
1685
1686	/* generate a random non-zero nonce */
1687	do {
1688		get_random_bytes(&msgr->inst.addr.nonce,
1689				 sizeof(msgr->inst.addr.nonce));
1690	} while (!msgr->inst.addr.nonce);
1691	ceph_encode_my_addr(msgr);
1692
1693	atomic_set(&msgr->stopping, 0);
1694	write_pnet(&msgr->net, get_net(current->nsproxy->net_ns));
1695
1696	dout("%s %p\n", __func__, msgr);
1697}
 
1698
1699void ceph_messenger_fini(struct ceph_messenger *msgr)
1700{
1701	put_net(read_pnet(&msgr->net));
1702}
 
1703
1704static void msg_con_set(struct ceph_msg *msg, struct ceph_connection *con)
1705{
1706	if (msg->con)
1707		msg->con->ops->put(msg->con);
1708
1709	msg->con = con ? con->ops->get(con) : NULL;
1710	BUG_ON(msg->con != con);
1711}
1712
1713static void clear_standby(struct ceph_connection *con)
1714{
1715	/* come back from STANDBY? */
1716	if (con->state == CEPH_CON_S_STANDBY) {
1717		dout("clear_standby %p and ++connect_seq\n", con);
1718		con->state = CEPH_CON_S_PREOPEN;
1719		con->v1.connect_seq++;
1720		WARN_ON(ceph_con_flag_test(con, CEPH_CON_F_WRITE_PENDING));
1721		WARN_ON(ceph_con_flag_test(con, CEPH_CON_F_KEEPALIVE_PENDING));
1722	}
1723}
1724
1725/*
1726 * Queue up an outgoing message on the given connection.
1727 *
1728 * Consumes a ref on @msg.
1729 */
1730void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
1731{
1732	/* set src+dst */
1733	msg->hdr.src = con->msgr->inst.name;
1734	BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
1735	msg->needs_out_seq = true;
1736
1737	mutex_lock(&con->mutex);
1738
1739	if (con->state == CEPH_CON_S_CLOSED) {
1740		dout("con_send %p closed, dropping %p\n", con, msg);
1741		ceph_msg_put(msg);
1742		mutex_unlock(&con->mutex);
1743		return;
1744	}
1745
1746	msg_con_set(msg, con);
1747
1748	BUG_ON(!list_empty(&msg->list_head));
1749	list_add_tail(&msg->list_head, &con->out_queue);
1750	dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
1751	     ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
1752	     ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
1753	     le32_to_cpu(msg->hdr.front_len),
1754	     le32_to_cpu(msg->hdr.middle_len),
1755	     le32_to_cpu(msg->hdr.data_len));
1756
1757	clear_standby(con);
1758	mutex_unlock(&con->mutex);
1759
1760	/* if there wasn't anything waiting to send before, queue
1761	 * new work */
1762	if (!ceph_con_flag_test_and_set(con, CEPH_CON_F_WRITE_PENDING))
1763		queue_con(con);
1764}
1765EXPORT_SYMBOL(ceph_con_send);
1766
1767/*
1768 * Revoke a message that was previously queued for send
1769 */
1770void ceph_msg_revoke(struct ceph_msg *msg)
1771{
1772	struct ceph_connection *con = msg->con;
1773
1774	if (!con) {
1775		dout("%s msg %p null con\n", __func__, msg);
1776		return;		/* Message not in our possession */
1777	}
1778
1779	mutex_lock(&con->mutex);
1780	if (list_empty(&msg->list_head)) {
1781		WARN_ON(con->out_msg == msg);
1782		dout("%s con %p msg %p not linked\n", __func__, con, msg);
1783		mutex_unlock(&con->mutex);
1784		return;
 
1785	}
1786
1787	dout("%s con %p msg %p was linked\n", __func__, con, msg);
1788	msg->hdr.seq = 0;
1789	ceph_msg_remove(msg);
1790
1791	if (con->out_msg == msg) {
1792		WARN_ON(con->state != CEPH_CON_S_OPEN);
1793		dout("%s con %p msg %p was sending\n", __func__, con, msg);
1794		if (ceph_msgr2(from_msgr(con->msgr)))
1795			ceph_con_v2_revoke(con);
1796		else
1797			ceph_con_v1_revoke(con);
1798		ceph_msg_put(con->out_msg);
 
 
 
 
 
 
 
 
 
 
 
1799		con->out_msg = NULL;
1800	} else {
1801		dout("%s con %p msg %p not current, out_msg %p\n", __func__,
1802		     con, msg, con->out_msg);
1803	}
 
1804	mutex_unlock(&con->mutex);
1805}
1806
1807/*
1808 * Revoke a message that we may be reading data into
1809 */
1810void ceph_msg_revoke_incoming(struct ceph_msg *msg)
1811{
1812	struct ceph_connection *con = msg->con;
1813
1814	if (!con) {
1815		dout("%s msg %p null con\n", __func__, msg);
1816		return;		/* Message not in our possession */
1817	}
1818
1819	mutex_lock(&con->mutex);
1820	if (con->in_msg == msg) {
1821		WARN_ON(con->state != CEPH_CON_S_OPEN);
1822		dout("%s con %p msg %p was recving\n", __func__, con, msg);
1823		if (ceph_msgr2(from_msgr(con->msgr)))
1824			ceph_con_v2_revoke_incoming(con);
1825		else
1826			ceph_con_v1_revoke_incoming(con);
 
 
 
 
 
 
1827		ceph_msg_put(con->in_msg);
1828		con->in_msg = NULL;
 
 
1829	} else {
1830		dout("%s con %p msg %p not current, in_msg %p\n", __func__,
1831		     con, msg, con->in_msg);
1832	}
1833	mutex_unlock(&con->mutex);
1834}
1835
1836/*
1837 * Queue a keepalive byte to ensure the tcp connection is alive.
1838 */
1839void ceph_con_keepalive(struct ceph_connection *con)
1840{
1841	dout("con_keepalive %p\n", con);
1842	mutex_lock(&con->mutex);
1843	clear_standby(con);
1844	ceph_con_flag_set(con, CEPH_CON_F_KEEPALIVE_PENDING);
1845	mutex_unlock(&con->mutex);
1846
1847	if (!ceph_con_flag_test_and_set(con, CEPH_CON_F_WRITE_PENDING))
1848		queue_con(con);
1849}
1850EXPORT_SYMBOL(ceph_con_keepalive);
1851
1852bool ceph_con_keepalive_expired(struct ceph_connection *con,
1853			       unsigned long interval)
1854{
1855	if (interval > 0 &&
1856	    (con->peer_features & CEPH_FEATURE_MSGR_KEEPALIVE2)) {
1857		struct timespec64 now;
1858		struct timespec64 ts;
1859		ktime_get_real_ts64(&now);
1860		jiffies_to_timespec64(interval, &ts);
1861		ts = timespec64_add(con->last_keepalive_ack, ts);
1862		return timespec64_compare(&now, &ts) >= 0;
1863	}
1864	return false;
1865}
1866
1867static struct ceph_msg_data *ceph_msg_data_add(struct ceph_msg *msg)
1868{
1869	BUG_ON(msg->num_data_items >= msg->max_data_items);
1870	return &msg->data[msg->num_data_items++];
 
 
 
 
 
 
 
 
 
 
 
1871}
1872
1873static void ceph_msg_data_destroy(struct ceph_msg_data *data)
1874{
1875	if (data->type == CEPH_MSG_DATA_PAGES && data->own_pages) {
1876		int num_pages = calc_pages_for(data->alignment, data->length);
1877		ceph_release_page_vector(data->pages, num_pages);
1878	} else if (data->type == CEPH_MSG_DATA_PAGELIST) {
 
1879		ceph_pagelist_release(data->pagelist);
1880	}
1881}
1882
1883void ceph_msg_data_add_pages(struct ceph_msg *msg, struct page **pages,
1884			     size_t length, size_t alignment, bool own_pages)
1885{
1886	struct ceph_msg_data *data;
1887
1888	BUG_ON(!pages);
1889	BUG_ON(!length);
1890
1891	data = ceph_msg_data_add(msg);
1892	data->type = CEPH_MSG_DATA_PAGES;
1893	data->pages = pages;
1894	data->length = length;
1895	data->alignment = alignment & ~PAGE_MASK;
1896	data->own_pages = own_pages;
1897
 
1898	msg->data_length += length;
1899}
1900EXPORT_SYMBOL(ceph_msg_data_add_pages);
1901
1902void ceph_msg_data_add_pagelist(struct ceph_msg *msg,
1903				struct ceph_pagelist *pagelist)
1904{
1905	struct ceph_msg_data *data;
1906
1907	BUG_ON(!pagelist);
1908	BUG_ON(!pagelist->length);
1909
1910	data = ceph_msg_data_add(msg);
1911	data->type = CEPH_MSG_DATA_PAGELIST;
1912	refcount_inc(&pagelist->refcnt);
1913	data->pagelist = pagelist;
1914
 
1915	msg->data_length += pagelist->length;
1916}
1917EXPORT_SYMBOL(ceph_msg_data_add_pagelist);
1918
1919#ifdef	CONFIG_BLOCK
1920void ceph_msg_data_add_bio(struct ceph_msg *msg, struct ceph_bio_iter *bio_pos,
1921			   u32 length)
1922{
1923	struct ceph_msg_data *data;
1924
1925	data = ceph_msg_data_add(msg);
1926	data->type = CEPH_MSG_DATA_BIO;
1927	data->bio_pos = *bio_pos;
1928	data->bio_length = length;
1929
 
1930	msg->data_length += length;
1931}
1932EXPORT_SYMBOL(ceph_msg_data_add_bio);
1933#endif	/* CONFIG_BLOCK */
1934
1935void ceph_msg_data_add_bvecs(struct ceph_msg *msg,
1936			     struct ceph_bvec_iter *bvec_pos)
1937{
1938	struct ceph_msg_data *data;
1939
1940	data = ceph_msg_data_add(msg);
1941	data->type = CEPH_MSG_DATA_BVECS;
1942	data->bvec_pos = *bvec_pos;
1943
 
1944	msg->data_length += bvec_pos->iter.bi_size;
1945}
1946EXPORT_SYMBOL(ceph_msg_data_add_bvecs);
1947
1948void ceph_msg_data_add_iter(struct ceph_msg *msg,
1949			    struct iov_iter *iter)
1950{
1951	struct ceph_msg_data *data;
1952
1953	data = ceph_msg_data_add(msg);
1954	data->type = CEPH_MSG_DATA_ITER;
1955	data->iter = *iter;
1956
1957	msg->data_length += iov_iter_count(&data->iter);
1958}
1959
1960/*
1961 * construct a new message with given type, size
1962 * the new msg has a ref count of 1.
1963 */
1964struct ceph_msg *ceph_msg_new2(int type, int front_len, int max_data_items,
1965			       gfp_t flags, bool can_fail)
1966{
1967	struct ceph_msg *m;
1968
1969	m = kmem_cache_zalloc(ceph_msg_cache, flags);
1970	if (m == NULL)
1971		goto out;
1972
1973	m->hdr.type = cpu_to_le16(type);
1974	m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
1975	m->hdr.front_len = cpu_to_le32(front_len);
1976
1977	INIT_LIST_HEAD(&m->list_head);
1978	kref_init(&m->kref);
 
1979
1980	/* front */
1981	if (front_len) {
1982		m->front.iov_base = kvmalloc(front_len, flags);
1983		if (m->front.iov_base == NULL) {
1984			dout("ceph_msg_new can't allocate %d bytes\n",
1985			     front_len);
1986			goto out2;
1987		}
1988	} else {
1989		m->front.iov_base = NULL;
1990	}
1991	m->front_alloc_len = m->front.iov_len = front_len;
1992
1993	if (max_data_items) {
1994		m->data = kmalloc_array(max_data_items, sizeof(*m->data),
1995					flags);
1996		if (!m->data)
1997			goto out2;
1998
1999		m->max_data_items = max_data_items;
2000	}
2001
2002	dout("ceph_msg_new %p front %d\n", m, front_len);
2003	return m;
2004
2005out2:
2006	ceph_msg_put(m);
2007out:
2008	if (!can_fail) {
2009		pr_err("msg_new can't create type %d front %d\n", type,
2010		       front_len);
2011		WARN_ON(1);
2012	} else {
2013		dout("msg_new can't create type %d front %d\n", type,
2014		     front_len);
2015	}
2016	return NULL;
2017}
2018EXPORT_SYMBOL(ceph_msg_new2);
2019
2020struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
2021			      bool can_fail)
2022{
2023	return ceph_msg_new2(type, front_len, 0, flags, can_fail);
2024}
2025EXPORT_SYMBOL(ceph_msg_new);
2026
2027/*
2028 * Allocate "middle" portion of a message, if it is needed and wasn't
2029 * allocated by alloc_msg.  This allows us to read a small fixed-size
2030 * per-type header in the front and then gracefully fail (i.e.,
2031 * propagate the error to the caller based on info in the front) when
2032 * the middle is too large.
2033 */
2034static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
2035{
2036	int type = le16_to_cpu(msg->hdr.type);
2037	int middle_len = le32_to_cpu(msg->hdr.middle_len);
2038
2039	dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
2040	     ceph_msg_type_name(type), middle_len);
2041	BUG_ON(!middle_len);
2042	BUG_ON(msg->middle);
2043
2044	msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
2045	if (!msg->middle)
2046		return -ENOMEM;
2047	return 0;
2048}
2049
2050/*
2051 * Allocate a message for receiving an incoming message on a
2052 * connection, and save the result in con->in_msg.  Uses the
2053 * connection's private alloc_msg op if available.
2054 *
2055 * Returns 0 on success, or a negative error code.
2056 *
2057 * On success, if we set *skip = 1:
2058 *  - the next message should be skipped and ignored.
2059 *  - con->in_msg == NULL
2060 * or if we set *skip = 0:
2061 *  - con->in_msg is non-null.
2062 * On error (ENOMEM, EAGAIN, ...),
2063 *  - con->in_msg == NULL
2064 */
2065int ceph_con_in_msg_alloc(struct ceph_connection *con,
2066			  struct ceph_msg_header *hdr, int *skip)
2067{
 
2068	int middle_len = le32_to_cpu(hdr->middle_len);
2069	struct ceph_msg *msg;
2070	int ret = 0;
2071
2072	BUG_ON(con->in_msg != NULL);
2073	BUG_ON(!con->ops->alloc_msg);
2074
2075	mutex_unlock(&con->mutex);
2076	msg = con->ops->alloc_msg(con, hdr, skip);
2077	mutex_lock(&con->mutex);
2078	if (con->state != CEPH_CON_S_OPEN) {
2079		if (msg)
2080			ceph_msg_put(msg);
2081		return -EAGAIN;
2082	}
2083	if (msg) {
2084		BUG_ON(*skip);
2085		msg_con_set(msg, con);
2086		con->in_msg = msg;
2087	} else {
2088		/*
2089		 * Null message pointer means either we should skip
2090		 * this message or we couldn't allocate memory.  The
2091		 * former is not an error.
2092		 */
2093		if (*skip)
2094			return 0;
2095
2096		con->error_msg = "error allocating memory for incoming message";
2097		return -ENOMEM;
2098	}
2099	memcpy(&con->in_msg->hdr, hdr, sizeof(*hdr));
2100
2101	if (middle_len && !con->in_msg->middle) {
2102		ret = ceph_alloc_middle(con, con->in_msg);
2103		if (ret < 0) {
2104			ceph_msg_put(con->in_msg);
2105			con->in_msg = NULL;
2106		}
2107	}
2108
2109	return ret;
2110}
2111
2112void ceph_con_get_out_msg(struct ceph_connection *con)
2113{
2114	struct ceph_msg *msg;
2115
2116	BUG_ON(list_empty(&con->out_queue));
2117	msg = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
2118	WARN_ON(msg->con != con);
2119
2120	/*
2121	 * Put the message on "sent" list using a ref from ceph_con_send().
2122	 * It is put when the message is acked or revoked.
2123	 */
2124	list_move_tail(&msg->list_head, &con->out_sent);
2125
2126	/*
2127	 * Only assign outgoing seq # if we haven't sent this message
2128	 * yet.  If it is requeued, resend with it's original seq.
2129	 */
2130	if (msg->needs_out_seq) {
2131		msg->hdr.seq = cpu_to_le64(++con->out_seq);
2132		msg->needs_out_seq = false;
2133
2134		if (con->ops->reencode_message)
2135			con->ops->reencode_message(msg);
2136	}
2137
2138	/*
2139	 * Get a ref for out_msg.  It is put when we are done sending the
2140	 * message or in case of a fault.
2141	 */
2142	WARN_ON(con->out_msg);
2143	con->out_msg = ceph_msg_get(msg);
2144}
2145
2146/*
2147 * Free a generically kmalloc'd message.
2148 */
2149static void ceph_msg_free(struct ceph_msg *m)
2150{
2151	dout("%s %p\n", __func__, m);
2152	kvfree(m->front.iov_base);
2153	kfree(m->data);
2154	kmem_cache_free(ceph_msg_cache, m);
2155}
2156
2157static void ceph_msg_release(struct kref *kref)
2158{
2159	struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
2160	int i;
2161
2162	dout("%s %p\n", __func__, m);
2163	WARN_ON(!list_empty(&m->list_head));
2164
2165	msg_con_set(m, NULL);
2166
2167	/* drop middle, data, if any */
2168	if (m->middle) {
2169		ceph_buffer_put(m->middle);
2170		m->middle = NULL;
2171	}
2172
2173	for (i = 0; i < m->num_data_items; i++)
2174		ceph_msg_data_destroy(&m->data[i]);
 
 
 
2175
2176	if (m->pool)
2177		ceph_msgpool_put(m->pool, m);
2178	else
2179		ceph_msg_free(m);
2180}
2181
2182struct ceph_msg *ceph_msg_get(struct ceph_msg *msg)
2183{
2184	dout("%s %p (was %d)\n", __func__, msg,
2185	     kref_read(&msg->kref));
2186	kref_get(&msg->kref);
2187	return msg;
2188}
2189EXPORT_SYMBOL(ceph_msg_get);
2190
2191void ceph_msg_put(struct ceph_msg *msg)
2192{
2193	dout("%s %p (was %d)\n", __func__, msg,
2194	     kref_read(&msg->kref));
2195	kref_put(&msg->kref, ceph_msg_release);
2196}
2197EXPORT_SYMBOL(ceph_msg_put);
2198
2199void ceph_msg_dump(struct ceph_msg *msg)
2200{
2201	pr_debug("msg_dump %p (front_alloc_len %d length %zd)\n", msg,
2202		 msg->front_alloc_len, msg->data_length);
2203	print_hex_dump(KERN_DEBUG, "header: ",
2204		       DUMP_PREFIX_OFFSET, 16, 1,
2205		       &msg->hdr, sizeof(msg->hdr), true);
2206	print_hex_dump(KERN_DEBUG, " front: ",
2207		       DUMP_PREFIX_OFFSET, 16, 1,
2208		       msg->front.iov_base, msg->front.iov_len, true);
2209	if (msg->middle)
2210		print_hex_dump(KERN_DEBUG, "middle: ",
2211			       DUMP_PREFIX_OFFSET, 16, 1,
2212			       msg->middle->vec.iov_base,
2213			       msg->middle->vec.iov_len, true);
2214	print_hex_dump(KERN_DEBUG, "footer: ",
2215		       DUMP_PREFIX_OFFSET, 16, 1,
2216		       &msg->footer, sizeof(msg->footer), true);
2217}
2218EXPORT_SYMBOL(ceph_msg_dump);