Linux Audio

Check our new training course

Loading...
v4.17
  1// SPDX-License-Identifier: GPL-2.0
 
  2/*
  3 * CPU accounting code for task groups.
  4 *
  5 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  6 * (balbir@in.ibm.com).
  7 */
  8#include "sched.h"
  9
 10/* Time spent by the tasks of the CPU accounting group executing in ... */
 11enum cpuacct_stat_index {
 12	CPUACCT_STAT_USER,	/* ... user mode */
 13	CPUACCT_STAT_SYSTEM,	/* ... kernel mode */
 14
 15	CPUACCT_STAT_NSTATS,
 16};
 17
 18static const char * const cpuacct_stat_desc[] = {
 19	[CPUACCT_STAT_USER] = "user",
 20	[CPUACCT_STAT_SYSTEM] = "system",
 21};
 22
 23struct cpuacct_usage {
 24	u64	usages[CPUACCT_STAT_NSTATS];
 25};
 26
 27/* track CPU usage of a group of tasks and its child groups */
 28struct cpuacct {
 29	struct cgroup_subsys_state	css;
 30	/* cpuusage holds pointer to a u64-type object on every CPU */
 31	struct cpuacct_usage __percpu	*cpuusage;
 32	struct kernel_cpustat __percpu	*cpustat;
 33};
 34
 35static inline struct cpuacct *css_ca(struct cgroup_subsys_state *css)
 36{
 37	return css ? container_of(css, struct cpuacct, css) : NULL;
 38}
 39
 40/* Return CPU accounting group to which this task belongs */
 41static inline struct cpuacct *task_ca(struct task_struct *tsk)
 42{
 43	return css_ca(task_css(tsk, cpuacct_cgrp_id));
 44}
 45
 46static inline struct cpuacct *parent_ca(struct cpuacct *ca)
 47{
 48	return css_ca(ca->css.parent);
 49}
 50
 51static DEFINE_PER_CPU(struct cpuacct_usage, root_cpuacct_cpuusage);
 52static struct cpuacct root_cpuacct = {
 53	.cpustat	= &kernel_cpustat,
 54	.cpuusage	= &root_cpuacct_cpuusage,
 55};
 56
 57/* Create a new CPU accounting group */
 58static struct cgroup_subsys_state *
 59cpuacct_css_alloc(struct cgroup_subsys_state *parent_css)
 60{
 61	struct cpuacct *ca;
 62
 63	if (!parent_css)
 64		return &root_cpuacct.css;
 65
 66	ca = kzalloc(sizeof(*ca), GFP_KERNEL);
 67	if (!ca)
 68		goto out;
 69
 70	ca->cpuusage = alloc_percpu(struct cpuacct_usage);
 71	if (!ca->cpuusage)
 72		goto out_free_ca;
 73
 74	ca->cpustat = alloc_percpu(struct kernel_cpustat);
 75	if (!ca->cpustat)
 76		goto out_free_cpuusage;
 77
 78	return &ca->css;
 79
 80out_free_cpuusage:
 81	free_percpu(ca->cpuusage);
 82out_free_ca:
 83	kfree(ca);
 84out:
 85	return ERR_PTR(-ENOMEM);
 86}
 87
 88/* Destroy an existing CPU accounting group */
 89static void cpuacct_css_free(struct cgroup_subsys_state *css)
 90{
 91	struct cpuacct *ca = css_ca(css);
 92
 93	free_percpu(ca->cpustat);
 94	free_percpu(ca->cpuusage);
 95	kfree(ca);
 96}
 97
 98static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu,
 99				 enum cpuacct_stat_index index)
100{
101	struct cpuacct_usage *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
 
102	u64 data;
103
104	/*
105	 * We allow index == CPUACCT_STAT_NSTATS here to read
106	 * the sum of suages.
107	 */
108	BUG_ON(index > CPUACCT_STAT_NSTATS);
 
109
110#ifndef CONFIG_64BIT
111	/*
112	 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
113	 */
114	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
115#endif
116
117	if (index == CPUACCT_STAT_NSTATS) {
118		int i = 0;
119
120		data = 0;
121		for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
122			data += cpuusage->usages[i];
123	} else {
124		data = cpuusage->usages[index];
 
 
 
125	}
126
127#ifndef CONFIG_64BIT
128	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
129#endif
130
131	return data;
132}
133
134static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
135{
136	struct cpuacct_usage *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
137	int i;
 
 
 
 
138
139#ifndef CONFIG_64BIT
140	/*
141	 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
142	 */
143	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
144#endif
145
146	for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
147		cpuusage->usages[i] = val;
 
148
149#ifndef CONFIG_64BIT
150	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
151#endif
152}
153
154/* Return total CPU usage (in nanoseconds) of a group */
155static u64 __cpuusage_read(struct cgroup_subsys_state *css,
156			   enum cpuacct_stat_index index)
157{
158	struct cpuacct *ca = css_ca(css);
159	u64 totalcpuusage = 0;
160	int i;
161
162	for_each_possible_cpu(i)
163		totalcpuusage += cpuacct_cpuusage_read(ca, i, index);
164
165	return totalcpuusage;
166}
167
168static u64 cpuusage_user_read(struct cgroup_subsys_state *css,
169			      struct cftype *cft)
170{
171	return __cpuusage_read(css, CPUACCT_STAT_USER);
172}
173
174static u64 cpuusage_sys_read(struct cgroup_subsys_state *css,
175			     struct cftype *cft)
176{
177	return __cpuusage_read(css, CPUACCT_STAT_SYSTEM);
178}
179
180static u64 cpuusage_read(struct cgroup_subsys_state *css, struct cftype *cft)
181{
182	return __cpuusage_read(css, CPUACCT_STAT_NSTATS);
183}
184
185static int cpuusage_write(struct cgroup_subsys_state *css, struct cftype *cft,
186			  u64 val)
187{
188	struct cpuacct *ca = css_ca(css);
189	int cpu;
190
191	/*
192	 * Only allow '0' here to do a reset.
193	 */
194	if (val)
195		return -EINVAL;
196
197	for_each_possible_cpu(cpu)
198		cpuacct_cpuusage_write(ca, cpu, 0);
199
200	return 0;
201}
202
203static int __cpuacct_percpu_seq_show(struct seq_file *m,
204				     enum cpuacct_stat_index index)
205{
206	struct cpuacct *ca = css_ca(seq_css(m));
207	u64 percpu;
208	int i;
209
210	for_each_possible_cpu(i) {
211		percpu = cpuacct_cpuusage_read(ca, i, index);
212		seq_printf(m, "%llu ", (unsigned long long) percpu);
213	}
214	seq_printf(m, "\n");
215	return 0;
216}
217
218static int cpuacct_percpu_user_seq_show(struct seq_file *m, void *V)
219{
220	return __cpuacct_percpu_seq_show(m, CPUACCT_STAT_USER);
221}
222
223static int cpuacct_percpu_sys_seq_show(struct seq_file *m, void *V)
224{
225	return __cpuacct_percpu_seq_show(m, CPUACCT_STAT_SYSTEM);
226}
227
228static int cpuacct_percpu_seq_show(struct seq_file *m, void *V)
229{
230	return __cpuacct_percpu_seq_show(m, CPUACCT_STAT_NSTATS);
231}
232
233static int cpuacct_all_seq_show(struct seq_file *m, void *V)
234{
235	struct cpuacct *ca = css_ca(seq_css(m));
236	int index;
237	int cpu;
238
239	seq_puts(m, "cpu");
240	for (index = 0; index < CPUACCT_STAT_NSTATS; index++)
241		seq_printf(m, " %s", cpuacct_stat_desc[index]);
242	seq_puts(m, "\n");
243
244	for_each_possible_cpu(cpu) {
245		struct cpuacct_usage *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
246
247		seq_printf(m, "%d", cpu);
248
249		for (index = 0; index < CPUACCT_STAT_NSTATS; index++) {
250#ifndef CONFIG_64BIT
251			/*
252			 * Take rq->lock to make 64-bit read safe on 32-bit
253			 * platforms.
254			 */
255			raw_spin_lock_irq(&cpu_rq(cpu)->lock);
256#endif
257
258			seq_printf(m, " %llu", cpuusage->usages[index]);
259
260#ifndef CONFIG_64BIT
261			raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
262#endif
263		}
264		seq_puts(m, "\n");
265	}
266	return 0;
267}
268
269static int cpuacct_stats_show(struct seq_file *sf, void *v)
270{
271	struct cpuacct *ca = css_ca(seq_css(sf));
272	s64 val[CPUACCT_STAT_NSTATS];
 
273	int cpu;
274	int stat;
275
276	memset(val, 0, sizeof(val));
277	for_each_possible_cpu(cpu) {
278		u64 *cpustat = per_cpu_ptr(ca->cpustat, cpu)->cpustat;
279
280		val[CPUACCT_STAT_USER]   += cpustat[CPUTIME_USER];
281		val[CPUACCT_STAT_USER]   += cpustat[CPUTIME_NICE];
282		val[CPUACCT_STAT_SYSTEM] += cpustat[CPUTIME_SYSTEM];
283		val[CPUACCT_STAT_SYSTEM] += cpustat[CPUTIME_IRQ];
284		val[CPUACCT_STAT_SYSTEM] += cpustat[CPUTIME_SOFTIRQ];
 
 
285	}
286
 
 
 
287	for (stat = 0; stat < CPUACCT_STAT_NSTATS; stat++) {
288		seq_printf(sf, "%s %lld\n",
289			   cpuacct_stat_desc[stat],
290			   (long long)nsec_to_clock_t(val[stat]));
291	}
292
293	return 0;
294}
295
296static struct cftype files[] = {
297	{
298		.name = "usage",
299		.read_u64 = cpuusage_read,
300		.write_u64 = cpuusage_write,
301	},
302	{
303		.name = "usage_user",
304		.read_u64 = cpuusage_user_read,
305	},
306	{
307		.name = "usage_sys",
308		.read_u64 = cpuusage_sys_read,
309	},
310	{
311		.name = "usage_percpu",
312		.seq_show = cpuacct_percpu_seq_show,
313	},
314	{
315		.name = "usage_percpu_user",
316		.seq_show = cpuacct_percpu_user_seq_show,
317	},
318	{
319		.name = "usage_percpu_sys",
320		.seq_show = cpuacct_percpu_sys_seq_show,
321	},
322	{
323		.name = "usage_all",
324		.seq_show = cpuacct_all_seq_show,
325	},
326	{
327		.name = "stat",
328		.seq_show = cpuacct_stats_show,
329	},
330	{ }	/* terminate */
331};
332
333/*
334 * charge this task's execution time to its accounting group.
335 *
336 * called with rq->lock held.
337 */
338void cpuacct_charge(struct task_struct *tsk, u64 cputime)
339{
 
340	struct cpuacct *ca;
341	int index = CPUACCT_STAT_SYSTEM;
342	struct pt_regs *regs = task_pt_regs(tsk);
343
344	if (regs && user_mode(regs))
345		index = CPUACCT_STAT_USER;
346
347	rcu_read_lock();
348
349	for (ca = task_ca(tsk); ca; ca = parent_ca(ca))
350		this_cpu_ptr(ca->cpuusage)->usages[index] += cputime;
351
352	rcu_read_unlock();
353}
354
355/*
356 * Add user/system time to cpuacct.
357 *
358 * Note: it's the caller that updates the account of the root cgroup.
359 */
360void cpuacct_account_field(struct task_struct *tsk, int index, u64 val)
361{
362	struct cpuacct *ca;
363
364	rcu_read_lock();
365	for (ca = task_ca(tsk); ca != &root_cpuacct; ca = parent_ca(ca))
366		this_cpu_ptr(ca->cpustat)->cpustat[index] += val;
367	rcu_read_unlock();
368}
369
370struct cgroup_subsys cpuacct_cgrp_subsys = {
371	.css_alloc	= cpuacct_css_alloc,
372	.css_free	= cpuacct_css_free,
373	.legacy_cftypes	= files,
374	.early_init	= true,
375};
v6.9.4
  1// SPDX-License-Identifier: GPL-2.0
  2
  3/*
  4 * CPU accounting code for task groups.
  5 *
  6 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  7 * (balbir@in.ibm.com).
  8 */
 
  9
 10/* Time spent by the tasks of the CPU accounting group executing in ... */
 11enum cpuacct_stat_index {
 12	CPUACCT_STAT_USER,	/* ... user mode */
 13	CPUACCT_STAT_SYSTEM,	/* ... kernel mode */
 14
 15	CPUACCT_STAT_NSTATS,
 16};
 17
 18static const char * const cpuacct_stat_desc[] = {
 19	[CPUACCT_STAT_USER] = "user",
 20	[CPUACCT_STAT_SYSTEM] = "system",
 21};
 22
 
 
 
 
 23/* track CPU usage of a group of tasks and its child groups */
 24struct cpuacct {
 25	struct cgroup_subsys_state	css;
 26	/* cpuusage holds pointer to a u64-type object on every CPU */
 27	u64 __percpu	*cpuusage;
 28	struct kernel_cpustat __percpu	*cpustat;
 29};
 30
 31static inline struct cpuacct *css_ca(struct cgroup_subsys_state *css)
 32{
 33	return css ? container_of(css, struct cpuacct, css) : NULL;
 34}
 35
 36/* Return CPU accounting group to which this task belongs */
 37static inline struct cpuacct *task_ca(struct task_struct *tsk)
 38{
 39	return css_ca(task_css(tsk, cpuacct_cgrp_id));
 40}
 41
 42static inline struct cpuacct *parent_ca(struct cpuacct *ca)
 43{
 44	return css_ca(ca->css.parent);
 45}
 46
 47static DEFINE_PER_CPU(u64, root_cpuacct_cpuusage);
 48static struct cpuacct root_cpuacct = {
 49	.cpustat	= &kernel_cpustat,
 50	.cpuusage	= &root_cpuacct_cpuusage,
 51};
 52
 53/* Create a new CPU accounting group */
 54static struct cgroup_subsys_state *
 55cpuacct_css_alloc(struct cgroup_subsys_state *parent_css)
 56{
 57	struct cpuacct *ca;
 58
 59	if (!parent_css)
 60		return &root_cpuacct.css;
 61
 62	ca = kzalloc(sizeof(*ca), GFP_KERNEL);
 63	if (!ca)
 64		goto out;
 65
 66	ca->cpuusage = alloc_percpu(u64);
 67	if (!ca->cpuusage)
 68		goto out_free_ca;
 69
 70	ca->cpustat = alloc_percpu(struct kernel_cpustat);
 71	if (!ca->cpustat)
 72		goto out_free_cpuusage;
 73
 74	return &ca->css;
 75
 76out_free_cpuusage:
 77	free_percpu(ca->cpuusage);
 78out_free_ca:
 79	kfree(ca);
 80out:
 81	return ERR_PTR(-ENOMEM);
 82}
 83
 84/* Destroy an existing CPU accounting group */
 85static void cpuacct_css_free(struct cgroup_subsys_state *css)
 86{
 87	struct cpuacct *ca = css_ca(css);
 88
 89	free_percpu(ca->cpustat);
 90	free_percpu(ca->cpuusage);
 91	kfree(ca);
 92}
 93
 94static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu,
 95				 enum cpuacct_stat_index index)
 96{
 97	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
 98	u64 *cpustat = per_cpu_ptr(ca->cpustat, cpu)->cpustat;
 99	u64 data;
100
101	/*
102	 * We allow index == CPUACCT_STAT_NSTATS here to read
103	 * the sum of usages.
104	 */
105	if (WARN_ON_ONCE(index > CPUACCT_STAT_NSTATS))
106		return 0;
107
108#ifndef CONFIG_64BIT
109	/*
110	 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
111	 */
112	raw_spin_rq_lock_irq(cpu_rq(cpu));
113#endif
114
115	switch (index) {
116	case CPUACCT_STAT_USER:
117		data = cpustat[CPUTIME_USER] + cpustat[CPUTIME_NICE];
118		break;
119	case CPUACCT_STAT_SYSTEM:
120		data = cpustat[CPUTIME_SYSTEM] + cpustat[CPUTIME_IRQ] +
121			cpustat[CPUTIME_SOFTIRQ];
122		break;
123	case CPUACCT_STAT_NSTATS:
124		data = *cpuusage;
125		break;
126	}
127
128#ifndef CONFIG_64BIT
129	raw_spin_rq_unlock_irq(cpu_rq(cpu));
130#endif
131
132	return data;
133}
134
135static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu)
136{
137	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
138	u64 *cpustat = per_cpu_ptr(ca->cpustat, cpu)->cpustat;
139
140	/* Don't allow to reset global kernel_cpustat */
141	if (ca == &root_cpuacct)
142		return;
143
144#ifndef CONFIG_64BIT
145	/*
146	 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
147	 */
148	raw_spin_rq_lock_irq(cpu_rq(cpu));
149#endif
150	*cpuusage = 0;
151	cpustat[CPUTIME_USER] = cpustat[CPUTIME_NICE] = 0;
152	cpustat[CPUTIME_SYSTEM] = cpustat[CPUTIME_IRQ] = 0;
153	cpustat[CPUTIME_SOFTIRQ] = 0;
154
155#ifndef CONFIG_64BIT
156	raw_spin_rq_unlock_irq(cpu_rq(cpu));
157#endif
158}
159
160/* Return total CPU usage (in nanoseconds) of a group */
161static u64 __cpuusage_read(struct cgroup_subsys_state *css,
162			   enum cpuacct_stat_index index)
163{
164	struct cpuacct *ca = css_ca(css);
165	u64 totalcpuusage = 0;
166	int i;
167
168	for_each_possible_cpu(i)
169		totalcpuusage += cpuacct_cpuusage_read(ca, i, index);
170
171	return totalcpuusage;
172}
173
174static u64 cpuusage_user_read(struct cgroup_subsys_state *css,
175			      struct cftype *cft)
176{
177	return __cpuusage_read(css, CPUACCT_STAT_USER);
178}
179
180static u64 cpuusage_sys_read(struct cgroup_subsys_state *css,
181			     struct cftype *cft)
182{
183	return __cpuusage_read(css, CPUACCT_STAT_SYSTEM);
184}
185
186static u64 cpuusage_read(struct cgroup_subsys_state *css, struct cftype *cft)
187{
188	return __cpuusage_read(css, CPUACCT_STAT_NSTATS);
189}
190
191static int cpuusage_write(struct cgroup_subsys_state *css, struct cftype *cft,
192			  u64 val)
193{
194	struct cpuacct *ca = css_ca(css);
195	int cpu;
196
197	/*
198	 * Only allow '0' here to do a reset.
199	 */
200	if (val)
201		return -EINVAL;
202
203	for_each_possible_cpu(cpu)
204		cpuacct_cpuusage_write(ca, cpu);
205
206	return 0;
207}
208
209static int __cpuacct_percpu_seq_show(struct seq_file *m,
210				     enum cpuacct_stat_index index)
211{
212	struct cpuacct *ca = css_ca(seq_css(m));
213	u64 percpu;
214	int i;
215
216	for_each_possible_cpu(i) {
217		percpu = cpuacct_cpuusage_read(ca, i, index);
218		seq_printf(m, "%llu ", (unsigned long long) percpu);
219	}
220	seq_printf(m, "\n");
221	return 0;
222}
223
224static int cpuacct_percpu_user_seq_show(struct seq_file *m, void *V)
225{
226	return __cpuacct_percpu_seq_show(m, CPUACCT_STAT_USER);
227}
228
229static int cpuacct_percpu_sys_seq_show(struct seq_file *m, void *V)
230{
231	return __cpuacct_percpu_seq_show(m, CPUACCT_STAT_SYSTEM);
232}
233
234static int cpuacct_percpu_seq_show(struct seq_file *m, void *V)
235{
236	return __cpuacct_percpu_seq_show(m, CPUACCT_STAT_NSTATS);
237}
238
239static int cpuacct_all_seq_show(struct seq_file *m, void *V)
240{
241	struct cpuacct *ca = css_ca(seq_css(m));
242	int index;
243	int cpu;
244
245	seq_puts(m, "cpu");
246	for (index = 0; index < CPUACCT_STAT_NSTATS; index++)
247		seq_printf(m, " %s", cpuacct_stat_desc[index]);
248	seq_puts(m, "\n");
249
250	for_each_possible_cpu(cpu) {
 
 
251		seq_printf(m, "%d", cpu);
252		for (index = 0; index < CPUACCT_STAT_NSTATS; index++)
253			seq_printf(m, " %llu",
254				   cpuacct_cpuusage_read(ca, cpu, index));
 
 
 
 
 
 
 
 
 
 
 
 
 
255		seq_puts(m, "\n");
256	}
257	return 0;
258}
259
260static int cpuacct_stats_show(struct seq_file *sf, void *v)
261{
262	struct cpuacct *ca = css_ca(seq_css(sf));
263	struct task_cputime cputime;
264	u64 val[CPUACCT_STAT_NSTATS];
265	int cpu;
266	int stat;
267
268	memset(&cputime, 0, sizeof(cputime));
269	for_each_possible_cpu(cpu) {
270		u64 *cpustat = per_cpu_ptr(ca->cpustat, cpu)->cpustat;
271
272		cputime.utime += cpustat[CPUTIME_USER];
273		cputime.utime += cpustat[CPUTIME_NICE];
274		cputime.stime += cpustat[CPUTIME_SYSTEM];
275		cputime.stime += cpustat[CPUTIME_IRQ];
276		cputime.stime += cpustat[CPUTIME_SOFTIRQ];
277
278		cputime.sum_exec_runtime += *per_cpu_ptr(ca->cpuusage, cpu);
279	}
280
281	cputime_adjust(&cputime, &seq_css(sf)->cgroup->prev_cputime,
282		&val[CPUACCT_STAT_USER], &val[CPUACCT_STAT_SYSTEM]);
283
284	for (stat = 0; stat < CPUACCT_STAT_NSTATS; stat++) {
285		seq_printf(sf, "%s %llu\n", cpuacct_stat_desc[stat],
286			nsec_to_clock_t(val[stat]));
 
287	}
288
289	return 0;
290}
291
292static struct cftype files[] = {
293	{
294		.name = "usage",
295		.read_u64 = cpuusage_read,
296		.write_u64 = cpuusage_write,
297	},
298	{
299		.name = "usage_user",
300		.read_u64 = cpuusage_user_read,
301	},
302	{
303		.name = "usage_sys",
304		.read_u64 = cpuusage_sys_read,
305	},
306	{
307		.name = "usage_percpu",
308		.seq_show = cpuacct_percpu_seq_show,
309	},
310	{
311		.name = "usage_percpu_user",
312		.seq_show = cpuacct_percpu_user_seq_show,
313	},
314	{
315		.name = "usage_percpu_sys",
316		.seq_show = cpuacct_percpu_sys_seq_show,
317	},
318	{
319		.name = "usage_all",
320		.seq_show = cpuacct_all_seq_show,
321	},
322	{
323		.name = "stat",
324		.seq_show = cpuacct_stats_show,
325	},
326	{ }	/* terminate */
327};
328
329/*
330 * charge this task's execution time to its accounting group.
331 *
332 * called with rq->lock held.
333 */
334void cpuacct_charge(struct task_struct *tsk, u64 cputime)
335{
336	unsigned int cpu = task_cpu(tsk);
337	struct cpuacct *ca;
 
 
338
339	lockdep_assert_rq_held(cpu_rq(cpu));
 
 
 
340
341	for (ca = task_ca(tsk); ca; ca = parent_ca(ca))
342		*per_cpu_ptr(ca->cpuusage, cpu) += cputime;
 
 
343}
344
345/*
346 * Add user/system time to cpuacct.
347 *
348 * Note: it's the caller that updates the account of the root cgroup.
349 */
350void cpuacct_account_field(struct task_struct *tsk, int index, u64 val)
351{
352	struct cpuacct *ca;
353
 
354	for (ca = task_ca(tsk); ca != &root_cpuacct; ca = parent_ca(ca))
355		__this_cpu_add(ca->cpustat->cpustat[index], val);
 
356}
357
358struct cgroup_subsys cpuacct_cgrp_subsys = {
359	.css_alloc	= cpuacct_css_alloc,
360	.css_free	= cpuacct_css_free,
361	.legacy_cftypes	= files,
362	.early_init	= true,
363};