Linux Audio

Check our new training course

Loading...
v4.17
 
  1/*
  2 * fs/f2fs/node.h
  3 *
  4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5 *             http://www.samsung.com/
  6 *
  7 * This program is free software; you can redistribute it and/or modify
  8 * it under the terms of the GNU General Public License version 2 as
  9 * published by the Free Software Foundation.
 10 */
 11/* start node id of a node block dedicated to the given node id */
 12#define	START_NID(nid) (((nid) / NAT_ENTRY_PER_BLOCK) * NAT_ENTRY_PER_BLOCK)
 13
 14/* node block offset on the NAT area dedicated to the given start node id */
 15#define	NAT_BLOCK_OFFSET(start_nid) ((start_nid) / NAT_ENTRY_PER_BLOCK)
 16
 17/* # of pages to perform synchronous readahead before building free nids */
 18#define FREE_NID_PAGES	8
 19#define MAX_FREE_NIDS	(NAT_ENTRY_PER_BLOCK * FREE_NID_PAGES)
 20
 
 
 
 21#define DEF_RA_NID_PAGES	0	/* # of nid pages to be readaheaded */
 22
 23/* maximum readahead size for node during getting data blocks */
 24#define MAX_RA_NODE		128
 25
 26/* control the memory footprint threshold (10MB per 1GB ram) */
 27#define DEF_RAM_THRESHOLD	1
 28
 29/* control dirty nats ratio threshold (default: 10% over max nid count) */
 30#define DEF_DIRTY_NAT_RATIO_THRESHOLD		10
 31/* control total # of nats */
 32#define DEF_NAT_CACHE_THRESHOLD			100000
 33
 
 
 
 34/* vector size for gang look-up from nat cache that consists of radix tree */
 35#define NATVEC_SIZE	64
 36#define SETVEC_SIZE	32
 37
 38/* return value for read_node_page */
 39#define LOCKED_PAGE	1
 40
 
 
 
 41/* For flag in struct node_info */
 42enum {
 43	IS_CHECKPOINTED,	/* is it checkpointed before? */
 44	HAS_FSYNCED_INODE,	/* is the inode fsynced before? */
 45	HAS_LAST_FSYNC,		/* has the latest node fsync mark? */
 46	IS_DIRTY,		/* this nat entry is dirty? */
 47	IS_PREALLOC,		/* nat entry is preallocated */
 48};
 49
 50/*
 51 * For node information
 52 */
 53struct node_info {
 54	nid_t nid;		/* node id */
 55	nid_t ino;		/* inode number of the node's owner */
 56	block_t	blk_addr;	/* block address of the node */
 57	unsigned char version;	/* version of the node */
 58	unsigned char flag;	/* for node information bits */
 59};
 60
 61struct nat_entry {
 62	struct list_head list;	/* for clean or dirty nat list */
 63	struct node_info ni;	/* in-memory node information */
 64};
 65
 66#define nat_get_nid(nat)		((nat)->ni.nid)
 67#define nat_set_nid(nat, n)		((nat)->ni.nid = (n))
 68#define nat_get_blkaddr(nat)		((nat)->ni.blk_addr)
 69#define nat_set_blkaddr(nat, b)		((nat)->ni.blk_addr = (b))
 70#define nat_get_ino(nat)		((nat)->ni.ino)
 71#define nat_set_ino(nat, i)		((nat)->ni.ino = (i))
 72#define nat_get_version(nat)		((nat)->ni.version)
 73#define nat_set_version(nat, v)		((nat)->ni.version = (v))
 74
 75#define inc_node_version(version)	(++(version))
 76
 77static inline void copy_node_info(struct node_info *dst,
 78						struct node_info *src)
 79{
 80	dst->nid = src->nid;
 81	dst->ino = src->ino;
 82	dst->blk_addr = src->blk_addr;
 83	dst->version = src->version;
 84	/* should not copy flag here */
 85}
 86
 87static inline void set_nat_flag(struct nat_entry *ne,
 88				unsigned int type, bool set)
 89{
 90	unsigned char mask = 0x01 << type;
 91	if (set)
 92		ne->ni.flag |= mask;
 93	else
 94		ne->ni.flag &= ~mask;
 95}
 96
 97static inline bool get_nat_flag(struct nat_entry *ne, unsigned int type)
 98{
 99	unsigned char mask = 0x01 << type;
100	return ne->ni.flag & mask;
101}
102
103static inline void nat_reset_flag(struct nat_entry *ne)
104{
105	/* these states can be set only after checkpoint was done */
106	set_nat_flag(ne, IS_CHECKPOINTED, true);
107	set_nat_flag(ne, HAS_FSYNCED_INODE, false);
108	set_nat_flag(ne, HAS_LAST_FSYNC, true);
109}
110
111static inline void node_info_from_raw_nat(struct node_info *ni,
112						struct f2fs_nat_entry *raw_ne)
113{
114	ni->ino = le32_to_cpu(raw_ne->ino);
115	ni->blk_addr = le32_to_cpu(raw_ne->block_addr);
116	ni->version = raw_ne->version;
117}
118
119static inline void raw_nat_from_node_info(struct f2fs_nat_entry *raw_ne,
120						struct node_info *ni)
121{
122	raw_ne->ino = cpu_to_le32(ni->ino);
123	raw_ne->block_addr = cpu_to_le32(ni->blk_addr);
124	raw_ne->version = ni->version;
125}
126
127static inline bool excess_dirty_nats(struct f2fs_sb_info *sbi)
128{
129	return NM_I(sbi)->dirty_nat_cnt >= NM_I(sbi)->max_nid *
130					NM_I(sbi)->dirty_nats_ratio / 100;
131}
132
133static inline bool excess_cached_nats(struct f2fs_sb_info *sbi)
134{
135	return NM_I(sbi)->nat_cnt >= DEF_NAT_CACHE_THRESHOLD;
136}
137
138enum mem_type {
139	FREE_NIDS,	/* indicates the free nid list */
140	NAT_ENTRIES,	/* indicates the cached nat entry */
141	DIRTY_DENTS,	/* indicates dirty dentry pages */
142	INO_ENTRIES,	/* indicates inode entries */
143	EXTENT_CACHE,	/* indicates extent cache */
144	INMEM_PAGES,	/* indicates inmemory pages */
 
 
145	BASE_CHECK,	/* check kernel status */
146};
147
148struct nat_entry_set {
149	struct list_head set_list;	/* link with other nat sets */
150	struct list_head entry_list;	/* link with dirty nat entries */
151	nid_t set;			/* set number*/
152	unsigned int entry_cnt;		/* the # of nat entries in set */
153};
154
155struct free_nid {
156	struct list_head list;	/* for free node id list */
157	nid_t nid;		/* node id */
158	int state;		/* in use or not: FREE_NID or PREALLOC_NID */
159};
160
161static inline void next_free_nid(struct f2fs_sb_info *sbi, nid_t *nid)
162{
163	struct f2fs_nm_info *nm_i = NM_I(sbi);
164	struct free_nid *fnid;
165
166	spin_lock(&nm_i->nid_list_lock);
167	if (nm_i->nid_cnt[FREE_NID] <= 0) {
168		spin_unlock(&nm_i->nid_list_lock);
169		return;
170	}
171	fnid = list_first_entry(&nm_i->free_nid_list, struct free_nid, list);
172	*nid = fnid->nid;
173	spin_unlock(&nm_i->nid_list_lock);
174}
175
176/*
177 * inline functions
178 */
179static inline void get_nat_bitmap(struct f2fs_sb_info *sbi, void *addr)
180{
181	struct f2fs_nm_info *nm_i = NM_I(sbi);
182
183#ifdef CONFIG_F2FS_CHECK_FS
184	if (memcmp(nm_i->nat_bitmap, nm_i->nat_bitmap_mir,
185						nm_i->bitmap_size))
186		f2fs_bug_on(sbi, 1);
187#endif
188	memcpy(addr, nm_i->nat_bitmap, nm_i->bitmap_size);
189}
190
191static inline pgoff_t current_nat_addr(struct f2fs_sb_info *sbi, nid_t start)
192{
193	struct f2fs_nm_info *nm_i = NM_I(sbi);
194	pgoff_t block_off;
195	pgoff_t block_addr;
196
197	/*
198	 * block_off = segment_off * 512 + off_in_segment
199	 * OLD = (segment_off * 512) * 2 + off_in_segment
200	 * NEW = 2 * (segment_off * 512 + off_in_segment) - off_in_segment
201	 */
202	block_off = NAT_BLOCK_OFFSET(start);
203
204	block_addr = (pgoff_t)(nm_i->nat_blkaddr +
205		(block_off << 1) -
206		(block_off & (sbi->blocks_per_seg - 1)));
207
208	if (f2fs_test_bit(block_off, nm_i->nat_bitmap))
209		block_addr += sbi->blocks_per_seg;
210
211	return block_addr;
212}
213
214static inline pgoff_t next_nat_addr(struct f2fs_sb_info *sbi,
215						pgoff_t block_addr)
216{
217	struct f2fs_nm_info *nm_i = NM_I(sbi);
218
219	block_addr -= nm_i->nat_blkaddr;
220	block_addr ^= 1 << sbi->log_blocks_per_seg;
221	return block_addr + nm_i->nat_blkaddr;
222}
223
224static inline void set_to_next_nat(struct f2fs_nm_info *nm_i, nid_t start_nid)
225{
226	unsigned int block_off = NAT_BLOCK_OFFSET(start_nid);
227
228	f2fs_change_bit(block_off, nm_i->nat_bitmap);
229#ifdef CONFIG_F2FS_CHECK_FS
230	f2fs_change_bit(block_off, nm_i->nat_bitmap_mir);
231#endif
232}
233
234static inline nid_t ino_of_node(struct page *node_page)
235{
236	struct f2fs_node *rn = F2FS_NODE(node_page);
237	return le32_to_cpu(rn->footer.ino);
238}
239
240static inline nid_t nid_of_node(struct page *node_page)
241{
242	struct f2fs_node *rn = F2FS_NODE(node_page);
243	return le32_to_cpu(rn->footer.nid);
244}
245
246static inline unsigned int ofs_of_node(struct page *node_page)
247{
248	struct f2fs_node *rn = F2FS_NODE(node_page);
249	unsigned flag = le32_to_cpu(rn->footer.flag);
250	return flag >> OFFSET_BIT_SHIFT;
251}
252
253static inline __u64 cpver_of_node(struct page *node_page)
254{
255	struct f2fs_node *rn = F2FS_NODE(node_page);
256	return le64_to_cpu(rn->footer.cp_ver);
257}
258
259static inline block_t next_blkaddr_of_node(struct page *node_page)
260{
261	struct f2fs_node *rn = F2FS_NODE(node_page);
262	return le32_to_cpu(rn->footer.next_blkaddr);
263}
264
265static inline void fill_node_footer(struct page *page, nid_t nid,
266				nid_t ino, unsigned int ofs, bool reset)
267{
268	struct f2fs_node *rn = F2FS_NODE(page);
269	unsigned int old_flag = 0;
270
271	if (reset)
272		memset(rn, 0, sizeof(*rn));
273	else
274		old_flag = le32_to_cpu(rn->footer.flag);
275
276	rn->footer.nid = cpu_to_le32(nid);
277	rn->footer.ino = cpu_to_le32(ino);
278
279	/* should remain old flag bits such as COLD_BIT_SHIFT */
280	rn->footer.flag = cpu_to_le32((ofs << OFFSET_BIT_SHIFT) |
281					(old_flag & OFFSET_BIT_MASK));
282}
283
284static inline void copy_node_footer(struct page *dst, struct page *src)
285{
286	struct f2fs_node *src_rn = F2FS_NODE(src);
287	struct f2fs_node *dst_rn = F2FS_NODE(dst);
288	memcpy(&dst_rn->footer, &src_rn->footer, sizeof(struct node_footer));
289}
290
291static inline void fill_node_footer_blkaddr(struct page *page, block_t blkaddr)
292{
293	struct f2fs_checkpoint *ckpt = F2FS_CKPT(F2FS_P_SB(page));
294	struct f2fs_node *rn = F2FS_NODE(page);
295	__u64 cp_ver = cur_cp_version(ckpt);
296
297	if (__is_set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG))
298		cp_ver |= (cur_cp_crc(ckpt) << 32);
299
300	rn->footer.cp_ver = cpu_to_le64(cp_ver);
301	rn->footer.next_blkaddr = cpu_to_le32(blkaddr);
302}
303
304static inline bool is_recoverable_dnode(struct page *page)
305{
306	struct f2fs_checkpoint *ckpt = F2FS_CKPT(F2FS_P_SB(page));
307	__u64 cp_ver = cur_cp_version(ckpt);
308
309	/* Don't care crc part, if fsck.f2fs sets it. */
310	if (__is_set_ckpt_flags(ckpt, CP_NOCRC_RECOVERY_FLAG))
311		return (cp_ver << 32) == (cpver_of_node(page) << 32);
312
313	if (__is_set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG))
314		cp_ver |= (cur_cp_crc(ckpt) << 32);
315
316	return cp_ver == cpver_of_node(page);
317}
318
319/*
320 * f2fs assigns the following node offsets described as (num).
321 * N = NIDS_PER_BLOCK
322 *
323 *  Inode block (0)
324 *    |- direct node (1)
325 *    |- direct node (2)
326 *    |- indirect node (3)
327 *    |            `- direct node (4 => 4 + N - 1)
328 *    |- indirect node (4 + N)
329 *    |            `- direct node (5 + N => 5 + 2N - 1)
330 *    `- double indirect node (5 + 2N)
331 *                 `- indirect node (6 + 2N)
332 *                       `- direct node
333 *                 ......
334 *                 `- indirect node ((6 + 2N) + x(N + 1))
335 *                       `- direct node
336 *                 ......
337 *                 `- indirect node ((6 + 2N) + (N - 1)(N + 1))
338 *                       `- direct node
339 */
340static inline bool IS_DNODE(struct page *node_page)
341{
342	unsigned int ofs = ofs_of_node(node_page);
343
344	if (f2fs_has_xattr_block(ofs))
345		return true;
346
347	if (ofs == 3 || ofs == 4 + NIDS_PER_BLOCK ||
348			ofs == 5 + 2 * NIDS_PER_BLOCK)
349		return false;
350	if (ofs >= 6 + 2 * NIDS_PER_BLOCK) {
351		ofs -= 6 + 2 * NIDS_PER_BLOCK;
352		if (!((long int)ofs % (NIDS_PER_BLOCK + 1)))
353			return false;
354	}
355	return true;
356}
357
358static inline int set_nid(struct page *p, int off, nid_t nid, bool i)
359{
360	struct f2fs_node *rn = F2FS_NODE(p);
361
362	f2fs_wait_on_page_writeback(p, NODE, true);
363
364	if (i)
365		rn->i.i_nid[off - NODE_DIR1_BLOCK] = cpu_to_le32(nid);
366	else
367		rn->in.nid[off] = cpu_to_le32(nid);
368	return set_page_dirty(p);
369}
370
371static inline nid_t get_nid(struct page *p, int off, bool i)
372{
373	struct f2fs_node *rn = F2FS_NODE(p);
374
375	if (i)
376		return le32_to_cpu(rn->i.i_nid[off - NODE_DIR1_BLOCK]);
377	return le32_to_cpu(rn->in.nid[off]);
378}
379
380/*
381 * Coldness identification:
382 *  - Mark cold files in f2fs_inode_info
383 *  - Mark cold node blocks in their node footer
384 *  - Mark cold data pages in page cache
385 */
386static inline int is_cold_data(struct page *page)
387{
388	return PageChecked(page);
389}
390
391static inline void set_cold_data(struct page *page)
392{
393	SetPageChecked(page);
394}
395
396static inline void clear_cold_data(struct page *page)
397{
398	ClearPageChecked(page);
399}
400
401static inline int is_node(struct page *page, int type)
402{
403	struct f2fs_node *rn = F2FS_NODE(page);
404	return le32_to_cpu(rn->footer.flag) & (1 << type);
405}
406
407#define is_cold_node(page)	is_node(page, COLD_BIT_SHIFT)
408#define is_fsync_dnode(page)	is_node(page, FSYNC_BIT_SHIFT)
409#define is_dent_dnode(page)	is_node(page, DENT_BIT_SHIFT)
410
411static inline int is_inline_node(struct page *page)
412{
413	return PageChecked(page);
414}
415
416static inline void set_inline_node(struct page *page)
417{
418	SetPageChecked(page);
419}
420
421static inline void clear_inline_node(struct page *page)
422{
423	ClearPageChecked(page);
424}
425
426static inline void set_cold_node(struct page *page, bool is_dir)
427{
428	struct f2fs_node *rn = F2FS_NODE(page);
429	unsigned int flag = le32_to_cpu(rn->footer.flag);
430
431	if (is_dir)
432		flag &= ~(0x1 << COLD_BIT_SHIFT);
433	else
434		flag |= (0x1 << COLD_BIT_SHIFT);
435	rn->footer.flag = cpu_to_le32(flag);
436}
437
438static inline void set_mark(struct page *page, int mark, int type)
439{
440	struct f2fs_node *rn = F2FS_NODE(page);
441	unsigned int flag = le32_to_cpu(rn->footer.flag);
442	if (mark)
443		flag |= (0x1 << type);
444	else
445		flag &= ~(0x1 << type);
446	rn->footer.flag = cpu_to_le32(flag);
 
 
 
 
447}
448#define set_dentry_mark(page, mark)	set_mark(page, mark, DENT_BIT_SHIFT)
449#define set_fsync_mark(page, mark)	set_mark(page, mark, FSYNC_BIT_SHIFT)
v6.9.4
  1/* SPDX-License-Identifier: GPL-2.0 */
  2/*
  3 * fs/f2fs/node.h
  4 *
  5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  6 *             http://www.samsung.com/
 
 
 
 
  7 */
  8/* start node id of a node block dedicated to the given node id */
  9#define	START_NID(nid) (((nid) / NAT_ENTRY_PER_BLOCK) * NAT_ENTRY_PER_BLOCK)
 10
 11/* node block offset on the NAT area dedicated to the given start node id */
 12#define	NAT_BLOCK_OFFSET(start_nid) ((start_nid) / NAT_ENTRY_PER_BLOCK)
 13
 14/* # of pages to perform synchronous readahead before building free nids */
 15#define FREE_NID_PAGES	8
 16#define MAX_FREE_NIDS	(NAT_ENTRY_PER_BLOCK * FREE_NID_PAGES)
 17
 18/* size of free nid batch when shrinking */
 19#define SHRINK_NID_BATCH_SIZE	8
 20
 21#define DEF_RA_NID_PAGES	0	/* # of nid pages to be readaheaded */
 22
 23/* maximum readahead size for node during getting data blocks */
 24#define MAX_RA_NODE		128
 25
 26/* control the memory footprint threshold (10MB per 1GB ram) */
 27#define DEF_RAM_THRESHOLD	1
 28
 29/* control dirty nats ratio threshold (default: 10% over max nid count) */
 30#define DEF_DIRTY_NAT_RATIO_THRESHOLD		10
 31/* control total # of nats */
 32#define DEF_NAT_CACHE_THRESHOLD			100000
 33
 34/* control total # of node writes used for roll-fowrad recovery */
 35#define DEF_RF_NODE_BLOCKS			0
 36
 37/* vector size for gang look-up from nat cache that consists of radix tree */
 38#define NAT_VEC_SIZE	32
 
 39
 40/* return value for read_node_page */
 41#define LOCKED_PAGE	1
 42
 43/* check pinned file's alignment status of physical blocks */
 44#define FILE_NOT_ALIGNED	1
 45
 46/* For flag in struct node_info */
 47enum {
 48	IS_CHECKPOINTED,	/* is it checkpointed before? */
 49	HAS_FSYNCED_INODE,	/* is the inode fsynced before? */
 50	HAS_LAST_FSYNC,		/* has the latest node fsync mark? */
 51	IS_DIRTY,		/* this nat entry is dirty? */
 52	IS_PREALLOC,		/* nat entry is preallocated */
 53};
 54
 55/*
 56 * For node information
 57 */
 58struct node_info {
 59	nid_t nid;		/* node id */
 60	nid_t ino;		/* inode number of the node's owner */
 61	block_t	blk_addr;	/* block address of the node */
 62	unsigned char version;	/* version of the node */
 63	unsigned char flag;	/* for node information bits */
 64};
 65
 66struct nat_entry {
 67	struct list_head list;	/* for clean or dirty nat list */
 68	struct node_info ni;	/* in-memory node information */
 69};
 70
 71#define nat_get_nid(nat)		((nat)->ni.nid)
 72#define nat_set_nid(nat, n)		((nat)->ni.nid = (n))
 73#define nat_get_blkaddr(nat)		((nat)->ni.blk_addr)
 74#define nat_set_blkaddr(nat, b)		((nat)->ni.blk_addr = (b))
 75#define nat_get_ino(nat)		((nat)->ni.ino)
 76#define nat_set_ino(nat, i)		((nat)->ni.ino = (i))
 77#define nat_get_version(nat)		((nat)->ni.version)
 78#define nat_set_version(nat, v)		((nat)->ni.version = (v))
 79
 80#define inc_node_version(version)	(++(version))
 81
 82static inline void copy_node_info(struct node_info *dst,
 83						struct node_info *src)
 84{
 85	dst->nid = src->nid;
 86	dst->ino = src->ino;
 87	dst->blk_addr = src->blk_addr;
 88	dst->version = src->version;
 89	/* should not copy flag here */
 90}
 91
 92static inline void set_nat_flag(struct nat_entry *ne,
 93				unsigned int type, bool set)
 94{
 
 95	if (set)
 96		ne->ni.flag |= BIT(type);
 97	else
 98		ne->ni.flag &= ~BIT(type);
 99}
100
101static inline bool get_nat_flag(struct nat_entry *ne, unsigned int type)
102{
103	return ne->ni.flag & BIT(type);
 
104}
105
106static inline void nat_reset_flag(struct nat_entry *ne)
107{
108	/* these states can be set only after checkpoint was done */
109	set_nat_flag(ne, IS_CHECKPOINTED, true);
110	set_nat_flag(ne, HAS_FSYNCED_INODE, false);
111	set_nat_flag(ne, HAS_LAST_FSYNC, true);
112}
113
114static inline void node_info_from_raw_nat(struct node_info *ni,
115						struct f2fs_nat_entry *raw_ne)
116{
117	ni->ino = le32_to_cpu(raw_ne->ino);
118	ni->blk_addr = le32_to_cpu(raw_ne->block_addr);
119	ni->version = raw_ne->version;
120}
121
122static inline void raw_nat_from_node_info(struct f2fs_nat_entry *raw_ne,
123						struct node_info *ni)
124{
125	raw_ne->ino = cpu_to_le32(ni->ino);
126	raw_ne->block_addr = cpu_to_le32(ni->blk_addr);
127	raw_ne->version = ni->version;
128}
129
130static inline bool excess_dirty_nats(struct f2fs_sb_info *sbi)
131{
132	return NM_I(sbi)->nat_cnt[DIRTY_NAT] >= NM_I(sbi)->max_nid *
133					NM_I(sbi)->dirty_nats_ratio / 100;
134}
135
136static inline bool excess_cached_nats(struct f2fs_sb_info *sbi)
137{
138	return NM_I(sbi)->nat_cnt[TOTAL_NAT] >= DEF_NAT_CACHE_THRESHOLD;
139}
140
141enum mem_type {
142	FREE_NIDS,	/* indicates the free nid list */
143	NAT_ENTRIES,	/* indicates the cached nat entry */
144	DIRTY_DENTS,	/* indicates dirty dentry pages */
145	INO_ENTRIES,	/* indicates inode entries */
146	READ_EXTENT_CACHE,	/* indicates read extent cache */
147	AGE_EXTENT_CACHE,	/* indicates age extent cache */
148	DISCARD_CACHE,	/* indicates memory of cached discard cmds */
149	COMPRESS_PAGE,	/* indicates memory of cached compressed pages */
150	BASE_CHECK,	/* check kernel status */
151};
152
153struct nat_entry_set {
154	struct list_head set_list;	/* link with other nat sets */
155	struct list_head entry_list;	/* link with dirty nat entries */
156	nid_t set;			/* set number*/
157	unsigned int entry_cnt;		/* the # of nat entries in set */
158};
159
160struct free_nid {
161	struct list_head list;	/* for free node id list */
162	nid_t nid;		/* node id */
163	int state;		/* in use or not: FREE_NID or PREALLOC_NID */
164};
165
166static inline void next_free_nid(struct f2fs_sb_info *sbi, nid_t *nid)
167{
168	struct f2fs_nm_info *nm_i = NM_I(sbi);
169	struct free_nid *fnid;
170
171	spin_lock(&nm_i->nid_list_lock);
172	if (nm_i->nid_cnt[FREE_NID] <= 0) {
173		spin_unlock(&nm_i->nid_list_lock);
174		return;
175	}
176	fnid = list_first_entry(&nm_i->free_nid_list, struct free_nid, list);
177	*nid = fnid->nid;
178	spin_unlock(&nm_i->nid_list_lock);
179}
180
181/*
182 * inline functions
183 */
184static inline void get_nat_bitmap(struct f2fs_sb_info *sbi, void *addr)
185{
186	struct f2fs_nm_info *nm_i = NM_I(sbi);
187
188#ifdef CONFIG_F2FS_CHECK_FS
189	if (memcmp(nm_i->nat_bitmap, nm_i->nat_bitmap_mir,
190						nm_i->bitmap_size))
191		f2fs_bug_on(sbi, 1);
192#endif
193	memcpy(addr, nm_i->nat_bitmap, nm_i->bitmap_size);
194}
195
196static inline pgoff_t current_nat_addr(struct f2fs_sb_info *sbi, nid_t start)
197{
198	struct f2fs_nm_info *nm_i = NM_I(sbi);
199	pgoff_t block_off;
200	pgoff_t block_addr;
201
202	/*
203	 * block_off = segment_off * 512 + off_in_segment
204	 * OLD = (segment_off * 512) * 2 + off_in_segment
205	 * NEW = 2 * (segment_off * 512 + off_in_segment) - off_in_segment
206	 */
207	block_off = NAT_BLOCK_OFFSET(start);
208
209	block_addr = (pgoff_t)(nm_i->nat_blkaddr +
210		(block_off << 1) -
211		(block_off & (BLKS_PER_SEG(sbi) - 1)));
212
213	if (f2fs_test_bit(block_off, nm_i->nat_bitmap))
214		block_addr += BLKS_PER_SEG(sbi);
215
216	return block_addr;
217}
218
219static inline pgoff_t next_nat_addr(struct f2fs_sb_info *sbi,
220						pgoff_t block_addr)
221{
222	struct f2fs_nm_info *nm_i = NM_I(sbi);
223
224	block_addr -= nm_i->nat_blkaddr;
225	block_addr ^= BIT(sbi->log_blocks_per_seg);
226	return block_addr + nm_i->nat_blkaddr;
227}
228
229static inline void set_to_next_nat(struct f2fs_nm_info *nm_i, nid_t start_nid)
230{
231	unsigned int block_off = NAT_BLOCK_OFFSET(start_nid);
232
233	f2fs_change_bit(block_off, nm_i->nat_bitmap);
234#ifdef CONFIG_F2FS_CHECK_FS
235	f2fs_change_bit(block_off, nm_i->nat_bitmap_mir);
236#endif
237}
238
239static inline nid_t ino_of_node(struct page *node_page)
240{
241	struct f2fs_node *rn = F2FS_NODE(node_page);
242	return le32_to_cpu(rn->footer.ino);
243}
244
245static inline nid_t nid_of_node(struct page *node_page)
246{
247	struct f2fs_node *rn = F2FS_NODE(node_page);
248	return le32_to_cpu(rn->footer.nid);
249}
250
251static inline unsigned int ofs_of_node(struct page *node_page)
252{
253	struct f2fs_node *rn = F2FS_NODE(node_page);
254	unsigned flag = le32_to_cpu(rn->footer.flag);
255	return flag >> OFFSET_BIT_SHIFT;
256}
257
258static inline __u64 cpver_of_node(struct page *node_page)
259{
260	struct f2fs_node *rn = F2FS_NODE(node_page);
261	return le64_to_cpu(rn->footer.cp_ver);
262}
263
264static inline block_t next_blkaddr_of_node(struct page *node_page)
265{
266	struct f2fs_node *rn = F2FS_NODE(node_page);
267	return le32_to_cpu(rn->footer.next_blkaddr);
268}
269
270static inline void fill_node_footer(struct page *page, nid_t nid,
271				nid_t ino, unsigned int ofs, bool reset)
272{
273	struct f2fs_node *rn = F2FS_NODE(page);
274	unsigned int old_flag = 0;
275
276	if (reset)
277		memset(rn, 0, sizeof(*rn));
278	else
279		old_flag = le32_to_cpu(rn->footer.flag);
280
281	rn->footer.nid = cpu_to_le32(nid);
282	rn->footer.ino = cpu_to_le32(ino);
283
284	/* should remain old flag bits such as COLD_BIT_SHIFT */
285	rn->footer.flag = cpu_to_le32((ofs << OFFSET_BIT_SHIFT) |
286					(old_flag & OFFSET_BIT_MASK));
287}
288
289static inline void copy_node_footer(struct page *dst, struct page *src)
290{
291	struct f2fs_node *src_rn = F2FS_NODE(src);
292	struct f2fs_node *dst_rn = F2FS_NODE(dst);
293	memcpy(&dst_rn->footer, &src_rn->footer, sizeof(struct node_footer));
294}
295
296static inline void fill_node_footer_blkaddr(struct page *page, block_t blkaddr)
297{
298	struct f2fs_checkpoint *ckpt = F2FS_CKPT(F2FS_P_SB(page));
299	struct f2fs_node *rn = F2FS_NODE(page);
300	__u64 cp_ver = cur_cp_version(ckpt);
301
302	if (__is_set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG))
303		cp_ver |= (cur_cp_crc(ckpt) << 32);
304
305	rn->footer.cp_ver = cpu_to_le64(cp_ver);
306	rn->footer.next_blkaddr = cpu_to_le32(blkaddr);
307}
308
309static inline bool is_recoverable_dnode(struct page *page)
310{
311	struct f2fs_checkpoint *ckpt = F2FS_CKPT(F2FS_P_SB(page));
312	__u64 cp_ver = cur_cp_version(ckpt);
313
314	/* Don't care crc part, if fsck.f2fs sets it. */
315	if (__is_set_ckpt_flags(ckpt, CP_NOCRC_RECOVERY_FLAG))
316		return (cp_ver << 32) == (cpver_of_node(page) << 32);
317
318	if (__is_set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG))
319		cp_ver |= (cur_cp_crc(ckpt) << 32);
320
321	return cp_ver == cpver_of_node(page);
322}
323
324/*
325 * f2fs assigns the following node offsets described as (num).
326 * N = NIDS_PER_BLOCK
327 *
328 *  Inode block (0)
329 *    |- direct node (1)
330 *    |- direct node (2)
331 *    |- indirect node (3)
332 *    |            `- direct node (4 => 4 + N - 1)
333 *    |- indirect node (4 + N)
334 *    |            `- direct node (5 + N => 5 + 2N - 1)
335 *    `- double indirect node (5 + 2N)
336 *                 `- indirect node (6 + 2N)
337 *                       `- direct node
338 *                 ......
339 *                 `- indirect node ((6 + 2N) + x(N + 1))
340 *                       `- direct node
341 *                 ......
342 *                 `- indirect node ((6 + 2N) + (N - 1)(N + 1))
343 *                       `- direct node
344 */
345static inline bool IS_DNODE(struct page *node_page)
346{
347	unsigned int ofs = ofs_of_node(node_page);
348
349	if (f2fs_has_xattr_block(ofs))
350		return true;
351
352	if (ofs == 3 || ofs == 4 + NIDS_PER_BLOCK ||
353			ofs == 5 + 2 * NIDS_PER_BLOCK)
354		return false;
355	if (ofs >= 6 + 2 * NIDS_PER_BLOCK) {
356		ofs -= 6 + 2 * NIDS_PER_BLOCK;
357		if (!((long int)ofs % (NIDS_PER_BLOCK + 1)))
358			return false;
359	}
360	return true;
361}
362
363static inline int set_nid(struct page *p, int off, nid_t nid, bool i)
364{
365	struct f2fs_node *rn = F2FS_NODE(p);
366
367	f2fs_wait_on_page_writeback(p, NODE, true, true);
368
369	if (i)
370		rn->i.i_nid[off - NODE_DIR1_BLOCK] = cpu_to_le32(nid);
371	else
372		rn->in.nid[off] = cpu_to_le32(nid);
373	return set_page_dirty(p);
374}
375
376static inline nid_t get_nid(struct page *p, int off, bool i)
377{
378	struct f2fs_node *rn = F2FS_NODE(p);
379
380	if (i)
381		return le32_to_cpu(rn->i.i_nid[off - NODE_DIR1_BLOCK]);
382	return le32_to_cpu(rn->in.nid[off]);
383}
384
385/*
386 * Coldness identification:
387 *  - Mark cold files in f2fs_inode_info
388 *  - Mark cold node blocks in their node footer
389 *  - Mark cold data pages in page cache
390 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
391
392static inline int is_node(struct page *page, int type)
393{
394	struct f2fs_node *rn = F2FS_NODE(page);
395	return le32_to_cpu(rn->footer.flag) & BIT(type);
396}
397
398#define is_cold_node(page)	is_node(page, COLD_BIT_SHIFT)
399#define is_fsync_dnode(page)	is_node(page, FSYNC_BIT_SHIFT)
400#define is_dent_dnode(page)	is_node(page, DENT_BIT_SHIFT)
401
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
402static inline void set_cold_node(struct page *page, bool is_dir)
403{
404	struct f2fs_node *rn = F2FS_NODE(page);
405	unsigned int flag = le32_to_cpu(rn->footer.flag);
406
407	if (is_dir)
408		flag &= ~BIT(COLD_BIT_SHIFT);
409	else
410		flag |= BIT(COLD_BIT_SHIFT);
411	rn->footer.flag = cpu_to_le32(flag);
412}
413
414static inline void set_mark(struct page *page, int mark, int type)
415{
416	struct f2fs_node *rn = F2FS_NODE(page);
417	unsigned int flag = le32_to_cpu(rn->footer.flag);
418	if (mark)
419		flag |= BIT(type);
420	else
421		flag &= ~BIT(type);
422	rn->footer.flag = cpu_to_le32(flag);
423
424#ifdef CONFIG_F2FS_CHECK_FS
425	f2fs_inode_chksum_set(F2FS_P_SB(page), page);
426#endif
427}
428#define set_dentry_mark(page, mark)	set_mark(page, mark, DENT_BIT_SHIFT)
429#define set_fsync_mark(page, mark)	set_mark(page, mark, FSYNC_BIT_SHIFT)