Linux Audio

Check our new training course

Loading...
v4.17
 
   1/*
   2 * Copyright (c) 2012-2017 Qualcomm Atheros, Inc.
   3 * Copyright (c) 2018, The Linux Foundation. All rights reserved.
   4 *
   5 * Permission to use, copy, modify, and/or distribute this software for any
   6 * purpose with or without fee is hereby granted, provided that the above
   7 * copyright notice and this permission notice appear in all copies.
   8 *
   9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  16 */
  17
  18#include <linux/moduleparam.h>
  19#include <linux/if_arp.h>
  20#include <linux/etherdevice.h>
 
  21
  22#include "wil6210.h"
  23#include "txrx.h"
 
  24#include "wmi.h"
  25#include "boot_loader.h"
  26
  27#define WAIT_FOR_HALP_VOTE_MS 100
  28#define WAIT_FOR_SCAN_ABORT_MS 1000
 
 
  29
  30bool debug_fw; /* = false; */
  31module_param(debug_fw, bool, 0444);
  32MODULE_PARM_DESC(debug_fw, " do not perform card reset. For FW debug");
  33
  34static u8 oob_mode;
  35module_param(oob_mode, byte, 0444);
  36MODULE_PARM_DESC(oob_mode,
  37		 " enable out of the box (OOB) mode in FW, for diagnostics and certification");
  38
  39bool no_fw_recovery;
  40module_param(no_fw_recovery, bool, 0644);
  41MODULE_PARM_DESC(no_fw_recovery, " disable automatic FW error recovery");
  42
  43/* if not set via modparam, will be set to default value of 1/8 of
  44 * rx ring size during init flow
  45 */
  46unsigned short rx_ring_overflow_thrsh = WIL6210_RX_HIGH_TRSH_INIT;
  47module_param(rx_ring_overflow_thrsh, ushort, 0444);
  48MODULE_PARM_DESC(rx_ring_overflow_thrsh,
  49		 " RX ring overflow threshold in descriptors.");
  50
  51/* We allow allocation of more than 1 page buffers to support large packets.
  52 * It is suboptimal behavior performance wise in case MTU above page size.
  53 */
  54unsigned int mtu_max = TXRX_BUF_LEN_DEFAULT - WIL_MAX_MPDU_OVERHEAD;
  55static int mtu_max_set(const char *val, const struct kernel_param *kp)
  56{
  57	int ret;
  58
  59	/* sets mtu_max directly. no need to restore it in case of
  60	 * illegal value since we assume this will fail insmod
  61	 */
  62	ret = param_set_uint(val, kp);
  63	if (ret)
  64		return ret;
  65
  66	if (mtu_max < 68 || mtu_max > WIL_MAX_ETH_MTU)
  67		ret = -EINVAL;
  68
  69	return ret;
  70}
  71
  72static const struct kernel_param_ops mtu_max_ops = {
  73	.set = mtu_max_set,
  74	.get = param_get_uint,
  75};
  76
  77module_param_cb(mtu_max, &mtu_max_ops, &mtu_max, 0444);
  78MODULE_PARM_DESC(mtu_max, " Max MTU value.");
  79
  80static uint rx_ring_order = WIL_RX_RING_SIZE_ORDER_DEFAULT;
  81static uint tx_ring_order = WIL_TX_RING_SIZE_ORDER_DEFAULT;
  82static uint bcast_ring_order = WIL_BCAST_RING_SIZE_ORDER_DEFAULT;
  83
  84static int ring_order_set(const char *val, const struct kernel_param *kp)
  85{
  86	int ret;
  87	uint x;
  88
  89	ret = kstrtouint(val, 0, &x);
  90	if (ret)
  91		return ret;
  92
  93	if ((x < WIL_RING_SIZE_ORDER_MIN) || (x > WIL_RING_SIZE_ORDER_MAX))
  94		return -EINVAL;
  95
  96	*((uint *)kp->arg) = x;
  97
  98	return 0;
  99}
 100
 101static const struct kernel_param_ops ring_order_ops = {
 102	.set = ring_order_set,
 103	.get = param_get_uint,
 104};
 105
 106module_param_cb(rx_ring_order, &ring_order_ops, &rx_ring_order, 0444);
 107MODULE_PARM_DESC(rx_ring_order, " Rx ring order; size = 1 << order");
 108module_param_cb(tx_ring_order, &ring_order_ops, &tx_ring_order, 0444);
 109MODULE_PARM_DESC(tx_ring_order, " Tx ring order; size = 1 << order");
 110module_param_cb(bcast_ring_order, &ring_order_ops, &bcast_ring_order, 0444);
 111MODULE_PARM_DESC(bcast_ring_order, " Bcast ring order; size = 1 << order");
 112
 113#define RST_DELAY (20) /* msec, for loop in @wil_target_reset */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 114#define RST_COUNT (1 + 1000/RST_DELAY) /* round up to be above 1 sec total */
 115
 
 
 
 
 
 
 116/*
 117 * Due to a hardware issue,
 118 * one has to read/write to/from NIC in 32-bit chunks;
 119 * regular memcpy_fromio and siblings will
 120 * not work on 64-bit platform - it uses 64-bit transactions
 121 *
 122 * Force 32-bit transactions to enable NIC on 64-bit platforms
 123 *
 124 * To avoid byte swap on big endian host, __raw_{read|write}l
 125 * should be used - {read|write}l would swap bytes to provide
 126 * little endian on PCI value in host endianness.
 127 */
 128void wil_memcpy_fromio_32(void *dst, const volatile void __iomem *src,
 129			  size_t count)
 130{
 131	u32 *d = dst;
 132	const volatile u32 __iomem *s = src;
 133
 134	for (; count >= 4; count -= 4)
 135		*d++ = __raw_readl(s++);
 136
 137	if (unlikely(count)) {
 138		/* count can be 1..3 */
 139		u32 tmp = __raw_readl(s);
 140
 141		memcpy(d, &tmp, count);
 142	}
 143}
 144
 145void wil_memcpy_toio_32(volatile void __iomem *dst, const void *src,
 146			size_t count)
 147{
 148	volatile u32 __iomem *d = dst;
 149	const u32 *s = src;
 150
 151	for (; count >= 4; count -= 4)
 152		__raw_writel(*s++, d++);
 153
 154	if (unlikely(count)) {
 155		/* count can be 1..3 */
 156		u32 tmp = 0;
 157
 158		memcpy(&tmp, s, count);
 159		__raw_writel(tmp, d);
 160	}
 161}
 162
 163static void wil_disconnect_cid(struct wil6210_vif *vif, int cid,
 164			       u16 reason_code, bool from_event)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 165__acquires(&sta->tid_rx_lock) __releases(&sta->tid_rx_lock)
 166{
 167	uint i;
 168	struct wil6210_priv *wil = vif_to_wil(vif);
 169	struct net_device *ndev = vif_to_ndev(vif);
 170	struct wireless_dev *wdev = vif_to_wdev(vif);
 171	struct wil_sta_info *sta = &wil->sta[cid];
 
 172
 173	might_sleep();
 174	wil_dbg_misc(wil, "disconnect_cid: CID %d, MID %d, status %d\n",
 
 175		     cid, sta->mid, sta->status);
 176	/* inform upper/lower layers */
 177	if (sta->status != wil_sta_unused) {
 178		if (vif->mid != sta->mid) {
 179			wil_err(wil, "STA MID mismatch with VIF MID(%d)\n",
 180				vif->mid);
 181			/* let FW override sta->mid but be more strict with
 182			 * user space requests
 183			 */
 184			if (!from_event)
 185				return;
 186		}
 187		if (!from_event) {
 188			bool del_sta = (wdev->iftype == NL80211_IFTYPE_AP) ?
 189						disable_ap_sme : false;
 190			wmi_disconnect_sta(vif, sta->addr, reason_code,
 191					   true, del_sta);
 192		}
 193
 194		switch (wdev->iftype) {
 195		case NL80211_IFTYPE_AP:
 196		case NL80211_IFTYPE_P2P_GO:
 197			/* AP-like interface */
 198			cfg80211_del_sta(ndev, sta->addr, GFP_KERNEL);
 199			break;
 200		default:
 201			break;
 202		}
 203		sta->status = wil_sta_unused;
 204		sta->mid = U8_MAX;
 205	}
 206	/* reorder buffers */
 207	for (i = 0; i < WIL_STA_TID_NUM; i++) {
 208		struct wil_tid_ampdu_rx *r;
 209
 210		spin_lock_bh(&sta->tid_rx_lock);
 211
 212		r = sta->tid_rx[i];
 213		sta->tid_rx[i] = NULL;
 214		wil_tid_ampdu_rx_free(wil, r);
 215
 216		spin_unlock_bh(&sta->tid_rx_lock);
 217	}
 218	/* crypto context */
 219	memset(sta->tid_crypto_rx, 0, sizeof(sta->tid_crypto_rx));
 220	memset(&sta->group_crypto_rx, 0, sizeof(sta->group_crypto_rx));
 221	/* release vrings */
 222	for (i = 0; i < ARRAY_SIZE(wil->vring_tx); i++) {
 223		if (wil->vring2cid_tid[i][0] == cid)
 224			wil_vring_fini_tx(wil, i);
 225	}
 226	/* statistics */
 227	memset(&sta->stats, 0, sizeof(sta->stats));
 
 228}
 229
 230static bool wil_vif_is_connected(struct wil6210_priv *wil, u8 mid)
 231{
 232	int i;
 233
 234	for (i = 0; i < ARRAY_SIZE(wil->sta); i++) {
 235		if (wil->sta[i].mid == mid &&
 236		    wil->sta[i].status == wil_sta_connected)
 237			return true;
 238	}
 239
 240	return false;
 241}
 242
 243static void _wil6210_disconnect(struct wil6210_vif *vif, const u8 *bssid,
 244				u16 reason_code, bool from_event)
 245{
 246	struct wil6210_priv *wil = vif_to_wil(vif);
 247	int cid = -ENOENT;
 248	struct net_device *ndev;
 249	struct wireless_dev *wdev;
 250
 251	if (unlikely(!vif))
 252		return;
 253
 254	ndev = vif_to_ndev(vif);
 255	wdev = vif_to_wdev(vif);
 256
 257	might_sleep();
 258	wil_info(wil, "bssid=%pM, reason=%d, ev%s\n", bssid,
 259		 reason_code, from_event ? "+" : "-");
 260
 261	/* Cases are:
 262	 * - disconnect single STA, still connected
 263	 * - disconnect single STA, already disconnected
 264	 * - disconnect all
 265	 *
 266	 * For "disconnect all", there are 3 options:
 267	 * - bssid == NULL
 268	 * - bssid is broadcast address (ff:ff:ff:ff:ff:ff)
 269	 * - bssid is our MAC address
 270	 */
 271	if (bssid && !is_broadcast_ether_addr(bssid) &&
 272	    !ether_addr_equal_unaligned(ndev->dev_addr, bssid)) {
 273		cid = wil_find_cid(wil, vif->mid, bssid);
 274		wil_dbg_misc(wil, "Disconnect %pM, CID=%d, reason=%d\n",
 
 275			     bssid, cid, reason_code);
 276		if (cid >= 0) /* disconnect 1 peer */
 277			wil_disconnect_cid(vif, cid, reason_code, from_event);
 278	} else { /* all */
 279		wil_dbg_misc(wil, "Disconnect all\n");
 280		for (cid = 0; cid < WIL6210_MAX_CID; cid++)
 281			wil_disconnect_cid(vif, cid, reason_code, from_event);
 282	}
 283
 284	/* link state */
 285	switch (wdev->iftype) {
 286	case NL80211_IFTYPE_STATION:
 287	case NL80211_IFTYPE_P2P_CLIENT:
 288		wil_bcast_fini(vif);
 289		wil_update_net_queues_bh(wil, vif, NULL, true);
 290		netif_carrier_off(ndev);
 291		if (!wil_has_other_active_ifaces(wil, ndev, false, true))
 292			wil6210_bus_request(wil, WIL_DEFAULT_BUS_REQUEST_KBPS);
 293
 294		if (test_and_clear_bit(wil_vif_fwconnected, vif->status)) {
 295			atomic_dec(&wil->connected_vifs);
 296			cfg80211_disconnected(ndev, reason_code,
 297					      NULL, 0,
 298					      vif->locally_generated_disc,
 299					      GFP_KERNEL);
 300			vif->locally_generated_disc = false;
 301		} else if (test_bit(wil_vif_fwconnecting, vif->status)) {
 302			cfg80211_connect_result(ndev, bssid, NULL, 0, NULL, 0,
 303						WLAN_STATUS_UNSPECIFIED_FAILURE,
 304						GFP_KERNEL);
 305			vif->bss = NULL;
 306		}
 307		clear_bit(wil_vif_fwconnecting, vif->status);
 
 
 
 308		break;
 309	case NL80211_IFTYPE_AP:
 310	case NL80211_IFTYPE_P2P_GO:
 311		if (!wil_vif_is_connected(wil, vif->mid)) {
 312			wil_update_net_queues_bh(wil, vif, NULL, true);
 313			if (test_and_clear_bit(wil_vif_fwconnected,
 314					       vif->status))
 315				atomic_dec(&wil->connected_vifs);
 316		} else {
 317			wil_update_net_queues_bh(wil, vif, NULL, false);
 318		}
 319		break;
 320	default:
 321		break;
 322	}
 323}
 324
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 325void wil_disconnect_worker(struct work_struct *work)
 326{
 327	struct wil6210_vif *vif = container_of(work,
 328			struct wil6210_vif, disconnect_worker);
 329	struct wil6210_priv *wil = vif_to_wil(vif);
 330	struct net_device *ndev = vif_to_ndev(vif);
 331	int rc;
 332	struct {
 333		struct wmi_cmd_hdr wmi;
 334		struct wmi_disconnect_event evt;
 335	} __packed reply;
 336
 337	if (test_bit(wil_vif_fwconnected, vif->status))
 338		/* connect succeeded after all */
 339		return;
 340
 341	if (!test_bit(wil_vif_fwconnecting, vif->status))
 342		/* already disconnected */
 343		return;
 344
 
 
 345	rc = wmi_call(wil, WMI_DISCONNECT_CMDID, vif->mid, NULL, 0,
 346		      WMI_DISCONNECT_EVENTID, &reply, sizeof(reply),
 347		      WIL6210_DISCONNECT_TO_MS);
 348	if (rc) {
 349		wil_err(wil, "disconnect error %d\n", rc);
 350		return;
 351	}
 352
 353	wil_update_net_queues_bh(wil, vif, NULL, true);
 354	netif_carrier_off(ndev);
 355	cfg80211_connect_result(ndev, NULL, NULL, 0, NULL, 0,
 356				WLAN_STATUS_UNSPECIFIED_FAILURE, GFP_KERNEL);
 357	clear_bit(wil_vif_fwconnecting, vif->status);
 358}
 359
 360static int wil_wait_for_recovery(struct wil6210_priv *wil)
 361{
 362	if (wait_event_interruptible(wil->wq, wil->recovery_state !=
 363				     fw_recovery_pending)) {
 364		wil_err(wil, "Interrupt, canceling recovery\n");
 365		return -ERESTARTSYS;
 366	}
 367	if (wil->recovery_state != fw_recovery_running) {
 368		wil_info(wil, "Recovery cancelled\n");
 369		return -EINTR;
 370	}
 371	wil_info(wil, "Proceed with recovery\n");
 372	return 0;
 373}
 374
 375void wil_set_recovery_state(struct wil6210_priv *wil, int state)
 376{
 377	wil_dbg_misc(wil, "set_recovery_state: %d -> %d\n",
 378		     wil->recovery_state, state);
 379
 380	wil->recovery_state = state;
 381	wake_up_interruptible(&wil->wq);
 382}
 383
 384bool wil_is_recovery_blocked(struct wil6210_priv *wil)
 385{
 386	return no_fw_recovery && (wil->recovery_state == fw_recovery_pending);
 387}
 388
 389static void wil_fw_error_worker(struct work_struct *work)
 390{
 391	struct wil6210_priv *wil = container_of(work, struct wil6210_priv,
 392						fw_error_worker);
 393	struct net_device *ndev = wil->main_ndev;
 394	struct wireless_dev *wdev = ndev->ieee80211_ptr;
 395
 396	wil_dbg_misc(wil, "fw error worker\n");
 397
 398	if (!ndev || !(ndev->flags & IFF_UP)) {
 399		wil_info(wil, "No recovery - interface is down\n");
 400		return;
 401	}
 
 402
 403	/* increment @recovery_count if less then WIL6210_FW_RECOVERY_TO
 404	 * passed since last recovery attempt
 405	 */
 406	if (time_is_after_jiffies(wil->last_fw_recovery +
 407				  WIL6210_FW_RECOVERY_TO))
 408		wil->recovery_count++;
 409	else
 410		wil->recovery_count = 1; /* fw was alive for a long time */
 411
 412	if (wil->recovery_count > WIL6210_FW_RECOVERY_RETRIES) {
 413		wil_err(wil, "too many recovery attempts (%d), giving up\n",
 414			wil->recovery_count);
 415		return;
 416	}
 417
 418	wil->last_fw_recovery = jiffies;
 419
 420	wil_info(wil, "fw error recovery requested (try %d)...\n",
 421		 wil->recovery_count);
 422	if (!no_fw_recovery)
 423		wil->recovery_state = fw_recovery_running;
 424	if (wil_wait_for_recovery(wil) != 0)
 425		return;
 426
 
 427	mutex_lock(&wil->mutex);
 428	/* Needs adaptation for multiple VIFs
 429	 * need to go over all VIFs and consider the appropriate
 430	 * recovery.
 431	 */
 432	switch (wdev->iftype) {
 433	case NL80211_IFTYPE_STATION:
 434	case NL80211_IFTYPE_P2P_CLIENT:
 435	case NL80211_IFTYPE_MONITOR:
 436		/* silent recovery, upper layers will see disconnect */
 437		__wil_down(wil);
 438		__wil_up(wil);
 439		break;
 440	case NL80211_IFTYPE_AP:
 441	case NL80211_IFTYPE_P2P_GO:
 442		wil_info(wil, "No recovery for AP-like interface\n");
 443		/* recovery in these modes is done by upper layers */
 
 
 
 
 
 
 
 444		break;
 445	default:
 446		wil_err(wil, "No recovery - unknown interface type %d\n",
 447			wdev->iftype);
 448		break;
 449	}
 
 450	mutex_unlock(&wil->mutex);
 
 451}
 452
 453static int wil_find_free_vring(struct wil6210_priv *wil)
 454{
 455	int i;
 
 456
 457	for (i = 0; i < WIL6210_MAX_TX_RINGS; i++) {
 458		if (!wil->vring_tx[i].va)
 459			return i;
 460	}
 461	return -EINVAL;
 462}
 463
 464int wil_tx_init(struct wil6210_vif *vif, int cid)
 465{
 466	struct wil6210_priv *wil = vif_to_wil(vif);
 467	int rc = -EINVAL, ringid;
 468
 469	if (cid < 0) {
 470		wil_err(wil, "No connection pending\n");
 471		goto out;
 472	}
 473	ringid = wil_find_free_vring(wil);
 474	if (ringid < 0) {
 475		wil_err(wil, "No free vring found\n");
 476		goto out;
 477	}
 478
 479	wil_dbg_wmi(wil, "Configure for connection CID %d MID %d vring %d\n",
 480		    cid, vif->mid, ringid);
 481
 482	rc = wil_vring_init_tx(vif, ringid, 1 << tx_ring_order, cid, 0);
 
 483	if (rc)
 484		wil_err(wil, "init TX for CID %d MID %d vring %d failed\n",
 485			cid, vif->mid, ringid);
 486
 487out:
 488	return rc;
 489}
 490
 491int wil_bcast_init(struct wil6210_vif *vif)
 492{
 493	struct wil6210_priv *wil = vif_to_wil(vif);
 494	int ri = vif->bcast_vring, rc;
 495
 496	if ((ri >= 0) && wil->vring_tx[ri].va)
 497		return 0;
 498
 499	ri = wil_find_free_vring(wil);
 500	if (ri < 0)
 501		return ri;
 502
 503	vif->bcast_vring = ri;
 504	rc = wil_vring_init_bcast(vif, ri, 1 << bcast_ring_order);
 505	if (rc)
 506		vif->bcast_vring = -1;
 507
 508	return rc;
 509}
 510
 511void wil_bcast_fini(struct wil6210_vif *vif)
 512{
 513	struct wil6210_priv *wil = vif_to_wil(vif);
 514	int ri = vif->bcast_vring;
 515
 516	if (ri < 0)
 517		return;
 518
 519	vif->bcast_vring = -1;
 520	wil_vring_fini_tx(wil, ri);
 521}
 522
 523void wil_bcast_fini_all(struct wil6210_priv *wil)
 524{
 525	int i;
 526	struct wil6210_vif *vif;
 527
 528	for (i = 0; i < wil->max_vifs; i++) {
 529		vif = wil->vifs[i];
 530		if (vif)
 531			wil_bcast_fini(vif);
 532	}
 533}
 534
 535int wil_priv_init(struct wil6210_priv *wil)
 536{
 537	uint i;
 538
 539	wil_dbg_misc(wil, "priv_init\n");
 540
 541	memset(wil->sta, 0, sizeof(wil->sta));
 542	for (i = 0; i < WIL6210_MAX_CID; i++) {
 543		spin_lock_init(&wil->sta[i].tid_rx_lock);
 544		wil->sta[i].mid = U8_MAX;
 545	}
 546
 547	for (i = 0; i < WIL6210_MAX_TX_RINGS; i++)
 548		spin_lock_init(&wil->vring_tx_data[i].lock);
 
 
 549
 550	mutex_init(&wil->mutex);
 551	mutex_init(&wil->vif_mutex);
 552	mutex_init(&wil->wmi_mutex);
 553	mutex_init(&wil->halp.lock);
 554
 555	init_completion(&wil->wmi_ready);
 556	init_completion(&wil->wmi_call);
 557	init_completion(&wil->halp.comp);
 558
 559	INIT_WORK(&wil->wmi_event_worker, wmi_event_worker);
 560	INIT_WORK(&wil->fw_error_worker, wil_fw_error_worker);
 561
 562	INIT_LIST_HEAD(&wil->pending_wmi_ev);
 563	spin_lock_init(&wil->wmi_ev_lock);
 564	spin_lock_init(&wil->net_queue_lock);
 
 
 565	init_waitqueue_head(&wil->wq);
 
 566
 567	wil->wmi_wq = create_singlethread_workqueue(WIL_NAME "_wmi");
 568	if (!wil->wmi_wq)
 569		return -EAGAIN;
 570
 571	wil->wq_service = create_singlethread_workqueue(WIL_NAME "_service");
 572	if (!wil->wq_service)
 573		goto out_wmi_wq;
 574
 575	wil->last_fw_recovery = jiffies;
 576	wil->tx_interframe_timeout = WIL6210_ITR_TX_INTERFRAME_TIMEOUT_DEFAULT;
 577	wil->rx_interframe_timeout = WIL6210_ITR_RX_INTERFRAME_TIMEOUT_DEFAULT;
 578	wil->tx_max_burst_duration = WIL6210_ITR_TX_MAX_BURST_DURATION_DEFAULT;
 579	wil->rx_max_burst_duration = WIL6210_ITR_RX_MAX_BURST_DURATION_DEFAULT;
 580
 581	if (rx_ring_overflow_thrsh == WIL6210_RX_HIGH_TRSH_INIT)
 582		rx_ring_overflow_thrsh = WIL6210_RX_HIGH_TRSH_DEFAULT;
 583
 584	wil->ps_profile =  WMI_PS_PROFILE_TYPE_DEFAULT;
 585
 586	wil->wakeup_trigger = WMI_WAKEUP_TRIGGER_UCAST |
 587			      WMI_WAKEUP_TRIGGER_BCAST;
 588	memset(&wil->suspend_stats, 0, sizeof(wil->suspend_stats));
 589	wil->vring_idle_trsh = 16;
 590
 591	wil->reply_mid = U8_MAX;
 592	wil->max_vifs = 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 593
 594	return 0;
 595
 596out_wmi_wq:
 597	destroy_workqueue(wil->wmi_wq);
 598
 599	return -EAGAIN;
 600}
 601
 602void wil6210_bus_request(struct wil6210_priv *wil, u32 kbps)
 603{
 604	if (wil->platform_ops.bus_request) {
 605		wil->bus_request_kbps = kbps;
 606		wil->platform_ops.bus_request(wil->platform_handle, kbps);
 607	}
 608}
 609
 610/**
 611 * wil6210_disconnect - disconnect one connection
 612 * @vif: virtual interface context
 613 * @bssid: peer to disconnect, NULL to disconnect all
 614 * @reason_code: Reason code for the Disassociation frame
 615 * @from_event: whether is invoked from FW event handler
 616 *
 617 * Disconnect and release associated resources. If invoked not from the
 618 * FW event handler, issue WMI command(s) to trigger MAC disconnect.
 
 
 619 */
 620void wil6210_disconnect(struct wil6210_vif *vif, const u8 *bssid,
 621			u16 reason_code, bool from_event)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 622{
 623	struct wil6210_priv *wil = vif_to_wil(vif);
 624
 625	wil_dbg_misc(wil, "disconnect\n");
 626
 627	del_timer_sync(&vif->connect_timer);
 628	_wil6210_disconnect(vif, bssid, reason_code, from_event);
 629}
 630
 631void wil_priv_deinit(struct wil6210_priv *wil)
 632{
 633	wil_dbg_misc(wil, "priv_deinit\n");
 634
 635	wil_set_recovery_state(wil, fw_recovery_idle);
 636	cancel_work_sync(&wil->fw_error_worker);
 637	wmi_event_flush(wil);
 638	destroy_workqueue(wil->wq_service);
 639	destroy_workqueue(wil->wmi_wq);
 
 640}
 641
 642static void wil_shutdown_bl(struct wil6210_priv *wil)
 643{
 644	u32 val;
 645
 646	wil_s(wil, RGF_USER_BL +
 647	      offsetof(struct bl_dedicated_registers_v1,
 648		       bl_shutdown_handshake), BL_SHUTDOWN_HS_GRTD);
 649
 650	usleep_range(100, 150);
 651
 652	val = wil_r(wil, RGF_USER_BL +
 653		    offsetof(struct bl_dedicated_registers_v1,
 654			     bl_shutdown_handshake));
 655	if (val & BL_SHUTDOWN_HS_RTD) {
 656		wil_dbg_misc(wil, "BL is ready for halt\n");
 657		return;
 658	}
 659
 660	wil_err(wil, "BL did not report ready for halt\n");
 661}
 662
 663/* this format is used by ARC embedded CPU for instruction memory */
 664static inline u32 ARC_me_imm32(u32 d)
 665{
 666	return ((d & 0xffff0000) >> 16) | ((d & 0x0000ffff) << 16);
 667}
 668
 669/* defines access to interrupt vectors for wil_freeze_bl */
 670#define ARC_IRQ_VECTOR_OFFSET(N)	((N) * 8)
 671/* ARC long jump instruction */
 672#define ARC_JAL_INST			(0x20200f80)
 673
 674static void wil_freeze_bl(struct wil6210_priv *wil)
 675{
 676	u32 jal, upc, saved;
 677	u32 ivt3 = ARC_IRQ_VECTOR_OFFSET(3);
 678
 679	jal = wil_r(wil, wil->iccm_base + ivt3);
 680	if (jal != ARC_me_imm32(ARC_JAL_INST)) {
 681		wil_dbg_misc(wil, "invalid IVT entry found, skipping\n");
 682		return;
 683	}
 684
 685	/* prevent the target from entering deep sleep
 686	 * and disabling memory access
 687	 */
 688	saved = wil_r(wil, RGF_USER_USAGE_8);
 689	wil_w(wil, RGF_USER_USAGE_8, saved | BIT_USER_PREVENT_DEEP_SLEEP);
 690	usleep_range(20, 25); /* let the BL process the bit */
 691
 692	/* redirect to endless loop in the INT_L1 context and let it trap */
 693	wil_w(wil, wil->iccm_base + ivt3 + 4, ARC_me_imm32(ivt3));
 694	usleep_range(20, 25); /* let the BL get into the trap */
 695
 696	/* verify the BL is frozen */
 697	upc = wil_r(wil, RGF_USER_CPU_PC);
 698	if (upc < ivt3 || (upc > (ivt3 + 8)))
 699		wil_dbg_misc(wil, "BL freeze failed, PC=0x%08X\n", upc);
 700
 701	wil_w(wil, RGF_USER_USAGE_8, saved);
 702}
 703
 704static void wil_bl_prepare_halt(struct wil6210_priv *wil)
 705{
 706	u32 tmp, ver;
 707
 708	/* before halting device CPU driver must make sure BL is not accessing
 709	 * host memory. This is done differently depending on BL version:
 710	 * 1. For very old BL versions the procedure is skipped
 711	 * (not supported).
 712	 * 2. For old BL version we use a special trick to freeze the BL
 713	 * 3. For new BL versions we shutdown the BL using handshake procedure.
 714	 */
 715	tmp = wil_r(wil, RGF_USER_BL +
 716		    offsetof(struct bl_dedicated_registers_v0,
 717			     boot_loader_struct_version));
 718	if (!tmp) {
 719		wil_dbg_misc(wil, "old BL, skipping halt preparation\n");
 720		return;
 721	}
 722
 723	tmp = wil_r(wil, RGF_USER_BL +
 724		    offsetof(struct bl_dedicated_registers_v1,
 725			     bl_shutdown_handshake));
 726	ver = BL_SHUTDOWN_HS_PROT_VER(tmp);
 727
 728	if (ver > 0)
 729		wil_shutdown_bl(wil);
 730	else
 731		wil_freeze_bl(wil);
 732}
 733
 734static inline void wil_halt_cpu(struct wil6210_priv *wil)
 735{
 736	wil_w(wil, RGF_USER_USER_CPU_0, BIT_USER_USER_CPU_MAN_RST);
 737	wil_w(wil, RGF_USER_MAC_CPU_0,  BIT_USER_MAC_CPU_MAN_RST);
 
 
 
 
 
 
 
 738}
 739
 740static inline void wil_release_cpu(struct wil6210_priv *wil)
 741{
 742	/* Start CPU */
 743	wil_w(wil, RGF_USER_USER_CPU_0, 1);
 
 
 
 744}
 745
 746static void wil_set_oob_mode(struct wil6210_priv *wil, u8 mode)
 747{
 748	wil_info(wil, "oob_mode to %d\n", mode);
 749	switch (mode) {
 750	case 0:
 751		wil_c(wil, RGF_USER_USAGE_6, BIT_USER_OOB_MODE |
 752		      BIT_USER_OOB_R2_MODE);
 753		break;
 754	case 1:
 755		wil_c(wil, RGF_USER_USAGE_6, BIT_USER_OOB_R2_MODE);
 756		wil_s(wil, RGF_USER_USAGE_6, BIT_USER_OOB_MODE);
 757		break;
 758	case 2:
 759		wil_c(wil, RGF_USER_USAGE_6, BIT_USER_OOB_MODE);
 760		wil_s(wil, RGF_USER_USAGE_6, BIT_USER_OOB_R2_MODE);
 761		break;
 762	default:
 763		wil_err(wil, "invalid oob_mode: %d\n", mode);
 764	}
 765}
 766
 767static int wil_target_reset(struct wil6210_priv *wil, int no_flash)
 768{
 769	int delay = 0;
 770	u32 x, x1 = 0;
 771
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 772	wil_dbg_misc(wil, "Resetting \"%s\"...\n", wil->hw_name);
 773
 774	/* Clear MAC link up */
 775	wil_s(wil, RGF_HP_CTRL, BIT(15));
 776	wil_s(wil, RGF_USER_CLKS_CTL_SW_RST_MASK_0, BIT_HPAL_PERST_FROM_PAD);
 777	wil_s(wil, RGF_USER_CLKS_CTL_SW_RST_MASK_0, BIT_CAR_PERST_RST);
 
 
 
 778
 779	wil_halt_cpu(wil);
 780
 781	if (!no_flash) {
 782		/* clear all boot loader "ready" bits */
 783		wil_w(wil, RGF_USER_BL +
 784		      offsetof(struct bl_dedicated_registers_v0,
 785			       boot_loader_ready), 0);
 786		/* this should be safe to write even with old BLs */
 787		wil_w(wil, RGF_USER_BL +
 788		      offsetof(struct bl_dedicated_registers_v1,
 789			       bl_shutdown_handshake), 0);
 790	}
 791	/* Clear Fw Download notification */
 792	wil_c(wil, RGF_USER_USAGE_6, BIT(0));
 793
 794	wil_s(wil, RGF_CAF_OSC_CONTROL, BIT_CAF_OSC_XTAL_EN);
 795	/* XTAL stabilization should take about 3ms */
 796	usleep_range(5000, 7000);
 797	x = wil_r(wil, RGF_CAF_PLL_LOCK_STATUS);
 798	if (!(x & BIT_CAF_OSC_DIG_XTAL_STABLE)) {
 799		wil_err(wil, "Xtal stabilization timeout\n"
 800			"RGF_CAF_PLL_LOCK_STATUS = 0x%08x\n", x);
 801		return -ETIME;
 802	}
 803	/* switch 10k to XTAL*/
 804	wil_c(wil, RGF_USER_SPARROW_M_4, BIT_SPARROW_M_4_SEL_SLEEP_OR_REF);
 805	/* 40 MHz */
 806	wil_c(wil, RGF_USER_CLKS_CTL_0, BIT_USER_CLKS_CAR_AHB_SW_SEL);
 807
 808	wil_w(wil, RGF_USER_CLKS_CTL_EXT_SW_RST_VEC_0, 0x3ff81f);
 809	wil_w(wil, RGF_USER_CLKS_CTL_EXT_SW_RST_VEC_1, 0xf);
 810
 811	wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_2, 0xFE000000);
 812	wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_1, 0x0000003F);
 813	wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_3, 0x000000f0);
 814	wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_0, 0xFFE7FE00);
 
 
 
 
 
 
 
 815
 816	wil_w(wil, RGF_USER_CLKS_CTL_EXT_SW_RST_VEC_0, 0x0);
 817	wil_w(wil, RGF_USER_CLKS_CTL_EXT_SW_RST_VEC_1, 0x0);
 818
 819	wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_3, 0);
 820	wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_2, 0);
 821	wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_1, 0);
 822	wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_0, 0);
 823
 824	wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_3, 0x00000003);
 825	/* reset A2 PCIE AHB */
 826	wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_2, 0x00008000);
 827
 828	wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_0, 0);
 829
 830	/* wait until device ready. typical time is 20..80 msec */
 831	if (no_flash)
 832		do {
 833			msleep(RST_DELAY);
 834			x = wil_r(wil, USER_EXT_USER_PMU_3);
 835			if (delay++ > RST_COUNT) {
 836				wil_err(wil, "Reset not completed, PMU_3 0x%08x\n",
 837					x);
 838				return -ETIME;
 839			}
 840		} while ((x & BIT_PMU_DEVICE_RDY) == 0);
 841	else
 842		do {
 843			msleep(RST_DELAY);
 844			x = wil_r(wil, RGF_USER_BL +
 845				  offsetof(struct bl_dedicated_registers_v0,
 846					   boot_loader_ready));
 847			if (x1 != x) {
 848				wil_dbg_misc(wil, "BL.ready 0x%08x => 0x%08x\n",
 849					     x1, x);
 850				x1 = x;
 851			}
 852			if (delay++ > RST_COUNT) {
 853				wil_err(wil, "Reset not completed, bl.ready 0x%08x\n",
 854					x);
 855				return -ETIME;
 856			}
 857		} while (x != BL_READY);
 858
 859	wil_c(wil, RGF_USER_CLKS_CTL_0, BIT_USER_CLKS_RST_PWGD);
 860
 861	/* enable fix for HW bug related to the SA/DA swap in AP Rx */
 862	wil_s(wil, RGF_DMA_OFUL_NID_0, BIT_DMA_OFUL_NID_0_RX_EXT_TR_EN |
 863	      BIT_DMA_OFUL_NID_0_RX_EXT_A3_SRC);
 864
 865	if (no_flash) {
 866		/* Reset OTP HW vectors to fit 40MHz */
 867		wil_w(wil, RGF_USER_XPM_IFC_RD_TIME1, 0x60001);
 868		wil_w(wil, RGF_USER_XPM_IFC_RD_TIME2, 0x20027);
 869		wil_w(wil, RGF_USER_XPM_IFC_RD_TIME3, 0x1);
 870		wil_w(wil, RGF_USER_XPM_IFC_RD_TIME4, 0x20027);
 871		wil_w(wil, RGF_USER_XPM_IFC_RD_TIME5, 0x30003);
 872		wil_w(wil, RGF_USER_XPM_IFC_RD_TIME6, 0x20002);
 873		wil_w(wil, RGF_USER_XPM_IFC_RD_TIME7, 0x60001);
 874		wil_w(wil, RGF_USER_XPM_IFC_RD_TIME8, 0x60001);
 875		wil_w(wil, RGF_USER_XPM_IFC_RD_TIME9, 0x60001);
 876		wil_w(wil, RGF_USER_XPM_IFC_RD_TIME10, 0x60001);
 877		wil_w(wil, RGF_USER_XPM_RD_DOUT_SAMPLE_TIME, 0x57);
 878	}
 879
 880	wil_dbg_misc(wil, "Reset completed in %d ms\n", delay * RST_DELAY);
 881	return 0;
 882}
 883
 884static void wil_collect_fw_info(struct wil6210_priv *wil)
 885{
 886	struct wiphy *wiphy = wil_to_wiphy(wil);
 887	u8 retry_short;
 888	int rc;
 889
 890	wil_refresh_fw_capabilities(wil);
 891
 892	rc = wmi_get_mgmt_retry(wil, &retry_short);
 893	if (!rc) {
 894		wiphy->retry_short = retry_short;
 895		wil_dbg_misc(wil, "FW retry_short: %d\n", retry_short);
 896	}
 897}
 898
 899void wil_refresh_fw_capabilities(struct wil6210_priv *wil)
 900{
 901	struct wiphy *wiphy = wil_to_wiphy(wil);
 902	int features;
 903
 904	wil->keep_radio_on_during_sleep =
 905		test_bit(WIL_PLATFORM_CAPA_RADIO_ON_IN_SUSPEND,
 906			 wil->platform_capa) &&
 907		test_bit(WMI_FW_CAPABILITY_D3_SUSPEND, wil->fw_capabilities);
 908
 909	wil_info(wil, "keep_radio_on_during_sleep (%d)\n",
 910		 wil->keep_radio_on_during_sleep);
 911
 912	if (test_bit(WMI_FW_CAPABILITY_RSSI_REPORTING, wil->fw_capabilities))
 913		wiphy->signal_type = CFG80211_SIGNAL_TYPE_MBM;
 914	else
 915		wiphy->signal_type = CFG80211_SIGNAL_TYPE_UNSPEC;
 916
 917	if (test_bit(WMI_FW_CAPABILITY_PNO, wil->fw_capabilities)) {
 918		wiphy->max_sched_scan_reqs = 1;
 919		wiphy->max_sched_scan_ssids = WMI_MAX_PNO_SSID_NUM;
 920		wiphy->max_match_sets = WMI_MAX_PNO_SSID_NUM;
 921		wiphy->max_sched_scan_ie_len = WMI_MAX_IE_LEN;
 922		wiphy->max_sched_scan_plans = WMI_MAX_PLANS_NUM;
 923	}
 924
 
 
 
 925	if (wil->platform_ops.set_features) {
 926		features = (test_bit(WMI_FW_CAPABILITY_REF_CLOCK_CONTROL,
 927				     wil->fw_capabilities) &&
 928			    test_bit(WIL_PLATFORM_CAPA_EXT_CLK,
 929				     wil->platform_capa)) ?
 930			BIT(WIL_PLATFORM_FEATURE_FW_EXT_CLK_CONTROL) : 0;
 931
 
 
 
 932		wil->platform_ops.set_features(wil->platform_handle, features);
 933	}
 
 
 
 
 
 
 
 
 
 
 
 934}
 935
 936void wil_mbox_ring_le2cpus(struct wil6210_mbox_ring *r)
 937{
 938	le32_to_cpus(&r->base);
 939	le16_to_cpus(&r->entry_size);
 940	le16_to_cpus(&r->size);
 941	le32_to_cpus(&r->tail);
 942	le32_to_cpus(&r->head);
 943}
 944
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 945static int wil_get_bl_info(struct wil6210_priv *wil)
 946{
 947	struct net_device *ndev = wil->main_ndev;
 948	struct wiphy *wiphy = wil_to_wiphy(wil);
 949	union {
 950		struct bl_dedicated_registers_v0 bl0;
 951		struct bl_dedicated_registers_v1 bl1;
 952	} bl;
 953	u32 bl_ver;
 954	u8 *mac;
 955	u16 rf_status;
 956
 957	wil_memcpy_fromio_32(&bl, wil->csr + HOSTADDR(RGF_USER_BL),
 958			     sizeof(bl));
 959	bl_ver = le32_to_cpu(bl.bl0.boot_loader_struct_version);
 960	mac = bl.bl0.mac_address;
 961
 962	if (bl_ver == 0) {
 963		le32_to_cpus(&bl.bl0.rf_type);
 964		le32_to_cpus(&bl.bl0.baseband_type);
 965		rf_status = 0; /* actually, unknown */
 966		wil_info(wil,
 967			 "Boot Loader struct v%d: MAC = %pM RF = 0x%08x bband = 0x%08x\n",
 968			 bl_ver, mac,
 969			 bl.bl0.rf_type, bl.bl0.baseband_type);
 970		wil_info(wil, "Boot Loader build unknown for struct v0\n");
 971	} else {
 972		le16_to_cpus(&bl.bl1.rf_type);
 973		rf_status = le16_to_cpu(bl.bl1.rf_status);
 974		le32_to_cpus(&bl.bl1.baseband_type);
 975		le16_to_cpus(&bl.bl1.bl_version_subminor);
 976		le16_to_cpus(&bl.bl1.bl_version_build);
 977		wil_info(wil,
 978			 "Boot Loader struct v%d: MAC = %pM RF = 0x%04x (status 0x%04x) bband = 0x%08x\n",
 979			 bl_ver, mac,
 980			 bl.bl1.rf_type, rf_status,
 981			 bl.bl1.baseband_type);
 982		wil_info(wil, "Boot Loader build %d.%d.%d.%d\n",
 983			 bl.bl1.bl_version_major, bl.bl1.bl_version_minor,
 984			 bl.bl1.bl_version_subminor, bl.bl1.bl_version_build);
 985	}
 986
 987	if (!is_valid_ether_addr(mac)) {
 988		wil_err(wil, "BL: Invalid MAC %pM\n", mac);
 989		return -EINVAL;
 990	}
 991
 992	ether_addr_copy(ndev->perm_addr, mac);
 993	ether_addr_copy(wiphy->perm_addr, mac);
 994	if (!is_valid_ether_addr(ndev->dev_addr))
 995		ether_addr_copy(ndev->dev_addr, mac);
 996
 997	if (rf_status) {/* bad RF cable? */
 998		wil_err(wil, "RF communication error 0x%04x",
 999			rf_status);
1000		return -EAGAIN;
1001	}
1002
1003	return 0;
1004}
1005
1006static void wil_bl_crash_info(struct wil6210_priv *wil, bool is_err)
1007{
1008	u32 bl_assert_code, bl_assert_blink, bl_magic_number;
1009	u32 bl_ver = wil_r(wil, RGF_USER_BL +
1010			   offsetof(struct bl_dedicated_registers_v0,
1011				    boot_loader_struct_version));
1012
1013	if (bl_ver < 2)
1014		return;
1015
1016	bl_assert_code = wil_r(wil, RGF_USER_BL +
1017			       offsetof(struct bl_dedicated_registers_v1,
1018					bl_assert_code));
1019	bl_assert_blink = wil_r(wil, RGF_USER_BL +
1020				offsetof(struct bl_dedicated_registers_v1,
1021					 bl_assert_blink));
1022	bl_magic_number = wil_r(wil, RGF_USER_BL +
1023				offsetof(struct bl_dedicated_registers_v1,
1024					 bl_magic_number));
1025
1026	if (is_err) {
1027		wil_err(wil,
1028			"BL assert code 0x%08x blink 0x%08x magic 0x%08x\n",
1029			bl_assert_code, bl_assert_blink, bl_magic_number);
1030	} else {
1031		wil_dbg_misc(wil,
1032			     "BL assert code 0x%08x blink 0x%08x magic 0x%08x\n",
1033			     bl_assert_code, bl_assert_blink, bl_magic_number);
1034	}
1035}
1036
1037static int wil_get_otp_info(struct wil6210_priv *wil)
1038{
1039	struct net_device *ndev = wil->main_ndev;
1040	struct wiphy *wiphy = wil_to_wiphy(wil);
1041	u8 mac[8];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1042
1043	wil_memcpy_fromio_32(mac, wil->csr + HOSTADDR(RGF_OTP_MAC),
1044			     sizeof(mac));
1045	if (!is_valid_ether_addr(mac)) {
1046		wil_err(wil, "Invalid MAC %pM\n", mac);
1047		return -EINVAL;
1048	}
1049
1050	ether_addr_copy(ndev->perm_addr, mac);
1051	ether_addr_copy(wiphy->perm_addr, mac);
1052	if (!is_valid_ether_addr(ndev->dev_addr))
1053		ether_addr_copy(ndev->dev_addr, mac);
1054
1055	return 0;
1056}
1057
1058static int wil_wait_for_fw_ready(struct wil6210_priv *wil)
1059{
1060	ulong to = msecs_to_jiffies(1000);
1061	ulong left = wait_for_completion_timeout(&wil->wmi_ready, to);
1062
1063	if (0 == left) {
1064		wil_err(wil, "Firmware not ready\n");
1065		return -ETIME;
1066	} else {
1067		wil_info(wil, "FW ready after %d ms. HW version 0x%08x\n",
1068			 jiffies_to_msecs(to-left), wil->hw_version);
1069	}
1070	return 0;
1071}
1072
1073void wil_abort_scan(struct wil6210_vif *vif, bool sync)
1074{
1075	struct wil6210_priv *wil = vif_to_wil(vif);
1076	int rc;
1077	struct cfg80211_scan_info info = {
1078		.aborted = true,
1079	};
1080
1081	lockdep_assert_held(&wil->vif_mutex);
1082
1083	if (!vif->scan_request)
1084		return;
1085
1086	wil_dbg_misc(wil, "Abort scan_request 0x%p\n", vif->scan_request);
1087	del_timer_sync(&vif->scan_timer);
1088	mutex_unlock(&wil->vif_mutex);
1089	rc = wmi_abort_scan(vif);
1090	if (!rc && sync)
1091		wait_event_interruptible_timeout(wil->wq, !vif->scan_request,
1092						 msecs_to_jiffies(
1093						 WAIT_FOR_SCAN_ABORT_MS));
1094
1095	mutex_lock(&wil->vif_mutex);
1096	if (vif->scan_request) {
1097		cfg80211_scan_done(vif->scan_request, &info);
1098		vif->scan_request = NULL;
1099	}
1100}
1101
1102void wil_abort_scan_all_vifs(struct wil6210_priv *wil, bool sync)
1103{
1104	int i;
1105
1106	lockdep_assert_held(&wil->vif_mutex);
1107
1108	for (i = 0; i < wil->max_vifs; i++) {
1109		struct wil6210_vif *vif = wil->vifs[i];
1110
1111		if (vif)
1112			wil_abort_scan(vif, sync);
1113	}
1114}
1115
1116int wil_ps_update(struct wil6210_priv *wil, enum wmi_ps_profile_type ps_profile)
1117{
1118	int rc;
1119
1120	if (!test_bit(WMI_FW_CAPABILITY_PS_CONFIG, wil->fw_capabilities)) {
1121		wil_err(wil, "set_power_mgmt not supported\n");
1122		return -EOPNOTSUPP;
1123	}
1124
1125	rc  = wmi_ps_dev_profile_cfg(wil, ps_profile);
1126	if (rc)
1127		wil_err(wil, "wmi_ps_dev_profile_cfg failed (%d)\n", rc);
1128	else
1129		wil->ps_profile = ps_profile;
1130
1131	return rc;
1132}
1133
1134static void wil_pre_fw_config(struct wil6210_priv *wil)
1135{
 
1136	/* Mark FW as loaded from host */
1137	wil_s(wil, RGF_USER_USAGE_6, 1);
1138
1139	/* clear any interrupts which on-card-firmware
1140	 * may have set
1141	 */
1142	wil6210_clear_irq(wil);
1143	/* CAF_ICR - clear and mask */
1144	/* it is W1C, clear by writing back same value */
1145	wil_s(wil, RGF_CAF_ICR + offsetof(struct RGF_ICR, ICR), 0);
1146	wil_w(wil, RGF_CAF_ICR + offsetof(struct RGF_ICR, IMV), ~0);
1147	/* clear PAL_UNIT_ICR (potential D0->D3 leftover) */
1148	wil_s(wil, RGF_PAL_UNIT_ICR + offsetof(struct RGF_ICR, ICR), 0);
 
 
 
 
 
 
 
1149
1150	if (wil->fw_calib_result > 0) {
1151		__le32 val = cpu_to_le32(wil->fw_calib_result |
1152						(CALIB_RESULT_SIGNATURE << 8));
1153		wil_w(wil, RGF_USER_FW_CALIB_RESULT, (u32 __force)val);
1154	}
1155}
1156
1157static int wil_restore_vifs(struct wil6210_priv *wil)
1158{
1159	struct wil6210_vif *vif;
1160	struct net_device *ndev;
1161	struct wireless_dev *wdev;
1162	int i, rc;
1163
1164	for (i = 0; i < wil->max_vifs; i++) {
1165		vif = wil->vifs[i];
1166		if (!vif)
1167			continue;
1168		vif->ap_isolate = 0;
1169		if (vif->mid) {
1170			ndev = vif_to_ndev(vif);
1171			wdev = vif_to_wdev(vif);
1172			rc = wmi_port_allocate(wil, vif->mid, ndev->dev_addr,
1173					       wdev->iftype);
1174			if (rc) {
1175				wil_err(wil, "fail to restore VIF %d type %d, rc %d\n",
1176					i, wdev->iftype, rc);
1177				return rc;
1178			}
1179		}
1180	}
1181
1182	return 0;
1183}
1184
1185/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1186 * We reset all the structures, and we reset the UMAC.
1187 * After calling this routine, you're expected to reload
1188 * the firmware.
1189 */
1190int wil_reset(struct wil6210_priv *wil, bool load_fw)
1191{
1192	int rc, i;
1193	unsigned long status_flags = BIT(wil_status_resetting);
1194	int no_flash;
1195	struct wil6210_vif *vif;
1196
1197	wil_dbg_misc(wil, "reset\n");
1198
1199	WARN_ON(!mutex_is_locked(&wil->mutex));
1200	WARN_ON(test_bit(wil_status_napi_en, wil->status));
1201
1202	if (debug_fw) {
1203		static const u8 mac[ETH_ALEN] = {
1204			0x00, 0xde, 0xad, 0x12, 0x34, 0x56,
1205		};
1206		struct net_device *ndev = wil->main_ndev;
1207
1208		ether_addr_copy(ndev->perm_addr, mac);
1209		ether_addr_copy(ndev->dev_addr, ndev->perm_addr);
1210		return 0;
1211	}
1212
1213	if (wil->hw_version == HW_VER_UNKNOWN)
1214		return -ENODEV;
1215
1216	if (test_bit(WIL_PLATFORM_CAPA_T_PWR_ON_0, wil->platform_capa)) {
 
1217		wil_dbg_misc(wil, "Notify FW to set T_POWER_ON=0\n");
1218		wil_s(wil, RGF_USER_USAGE_8, BIT_USER_SUPPORT_T_POWER_ON_0);
1219	}
1220
1221	if (test_bit(WIL_PLATFORM_CAPA_EXT_CLK, wil->platform_capa)) {
1222		wil_dbg_misc(wil, "Notify FW on ext clock configuration\n");
1223		wil_s(wil, RGF_USER_USAGE_8, BIT_USER_EXT_CLK);
1224	}
1225
1226	if (wil->platform_ops.notify) {
1227		rc = wil->platform_ops.notify(wil->platform_handle,
1228					      WIL_PLATFORM_EVT_PRE_RESET);
1229		if (rc)
1230			wil_err(wil, "PRE_RESET platform notify failed, rc %d\n",
1231				rc);
1232	}
1233
1234	set_bit(wil_status_resetting, wil->status);
1235	if (test_bit(wil_status_collecting_dumps, wil->status)) {
1236		/* Device collects crash dump, cancel the reset.
1237		 * following crash dump collection, reset would take place.
1238		 */
1239		wil_dbg_misc(wil, "reject reset while collecting crash dump\n");
1240		rc = -EBUSY;
1241		goto out;
1242	}
1243
1244	mutex_lock(&wil->vif_mutex);
1245	wil_abort_scan_all_vifs(wil, false);
1246	mutex_unlock(&wil->vif_mutex);
1247
1248	for (i = 0; i < wil->max_vifs; i++) {
1249		vif = wil->vifs[i];
1250		if (vif) {
1251			cancel_work_sync(&vif->disconnect_worker);
1252			wil6210_disconnect(vif, NULL,
1253					   WLAN_REASON_DEAUTH_LEAVING, false);
 
1254		}
1255	}
1256	wil_bcast_fini_all(wil);
1257
1258	/* Disable device led before reset*/
1259	wmi_led_cfg(wil, false);
1260
 
 
1261	/* prevent NAPI from being scheduled and prevent wmi commands */
1262	mutex_lock(&wil->wmi_mutex);
1263	if (test_bit(wil_status_suspending, wil->status))
1264		status_flags |= BIT(wil_status_suspending);
1265	bitmap_and(wil->status, wil->status, &status_flags,
1266		   wil_status_last);
1267	wil_dbg_misc(wil, "wil->status (0x%lx)\n", *wil->status);
1268	mutex_unlock(&wil->wmi_mutex);
1269
1270	wil_mask_irq(wil);
1271
1272	wmi_event_flush(wil);
1273
1274	flush_workqueue(wil->wq_service);
1275	flush_workqueue(wil->wmi_wq);
1276
1277	no_flash = test_bit(hw_capa_no_flash, wil->hw_capa);
1278	if (!no_flash)
1279		wil_bl_crash_info(wil, false);
1280	wil_disable_irq(wil);
1281	rc = wil_target_reset(wil, no_flash);
1282	wil6210_clear_irq(wil);
1283	wil_enable_irq(wil);
1284	wil_rx_fini(wil);
 
1285	if (rc) {
1286		if (!no_flash)
1287			wil_bl_crash_info(wil, true);
1288		goto out;
1289	}
1290
1291	if (no_flash) {
1292		rc = wil_get_otp_info(wil);
1293	} else {
1294		rc = wil_get_bl_info(wil);
1295		if (rc == -EAGAIN && !load_fw)
1296			/* ignore RF error if not going up */
1297			rc = 0;
1298	}
1299	if (rc)
1300		goto out;
1301
1302	wil_set_oob_mode(wil, oob_mode);
1303	if (load_fw) {
 
 
 
 
 
 
 
 
 
 
1304		wil_info(wil, "Use firmware <%s> + board <%s>\n",
1305			 wil->wil_fw_name, WIL_BOARD_FILE_NAME);
1306
1307		if (!no_flash)
1308			wil_bl_prepare_halt(wil);
1309
1310		wil_halt_cpu(wil);
1311		memset(wil->fw_version, 0, sizeof(wil->fw_version));
1312		/* Loading f/w from the file */
1313		rc = wil_request_firmware(wil, wil->wil_fw_name, true);
1314		if (rc)
1315			goto out;
1316		if (wil->brd_file_addr)
1317			rc = wil_request_board(wil, WIL_BOARD_FILE_NAME);
1318		else
1319			rc = wil_request_firmware(wil,
1320						  WIL_BOARD_FILE_NAME,
1321						  true);
1322		if (rc)
1323			goto out;
1324
1325		wil_pre_fw_config(wil);
1326		wil_release_cpu(wil);
1327	}
1328
1329	/* init after reset */
1330	reinit_completion(&wil->wmi_ready);
1331	reinit_completion(&wil->wmi_call);
1332	reinit_completion(&wil->halp.comp);
1333
1334	clear_bit(wil_status_resetting, wil->status);
1335
 
 
1336	if (load_fw) {
1337		wil_configure_interrupt_moderation(wil);
1338		wil_unmask_irq(wil);
1339
1340		/* we just started MAC, wait for FW ready */
1341		rc = wil_wait_for_fw_ready(wil);
1342		if (rc)
1343			return rc;
1344
1345		/* check FW is responsive */
1346		rc = wmi_echo(wil);
1347		if (rc) {
1348			wil_err(wil, "wmi_echo failed, rc %d\n", rc);
1349			return rc;
1350		}
1351
 
 
 
 
 
 
 
 
 
1352		rc = wil_restore_vifs(wil);
1353		if (rc) {
1354			wil_err(wil, "failed to restore vifs, rc %d\n", rc);
1355			return rc;
1356		}
1357
1358		wil_collect_fw_info(wil);
1359
1360		if (wil->ps_profile != WMI_PS_PROFILE_TYPE_DEFAULT)
1361			wil_ps_update(wil, wil->ps_profile);
1362
1363		if (wil->platform_ops.notify) {
1364			rc = wil->platform_ops.notify(wil->platform_handle,
1365						      WIL_PLATFORM_EVT_FW_RDY);
1366			if (rc) {
1367				wil_err(wil, "FW_RDY notify failed, rc %d\n",
1368					rc);
1369				rc = 0;
1370			}
1371		}
1372	}
1373
1374	return rc;
1375
1376out:
 
1377	clear_bit(wil_status_resetting, wil->status);
1378	return rc;
1379}
1380
1381void wil_fw_error_recovery(struct wil6210_priv *wil)
1382{
1383	wil_dbg_misc(wil, "starting fw error recovery\n");
1384
1385	if (test_bit(wil_status_resetting, wil->status)) {
1386		wil_info(wil, "Reset already in progress\n");
1387		return;
1388	}
1389
1390	wil->recovery_state = fw_recovery_pending;
1391	schedule_work(&wil->fw_error_worker);
1392}
1393
1394int __wil_up(struct wil6210_priv *wil)
1395{
1396	struct net_device *ndev = wil->main_ndev;
1397	struct wireless_dev *wdev = ndev->ieee80211_ptr;
1398	int rc;
1399
1400	WARN_ON(!mutex_is_locked(&wil->mutex));
1401
1402	rc = wil_reset(wil, true);
1403	if (rc)
1404		return rc;
1405
1406	/* Rx VRING. After MAC and beacon */
1407	rc = wil_rx_init(wil, 1 << rx_ring_order);
 
 
 
 
 
 
 
 
 
1408	if (rc)
1409		return rc;
1410
1411	switch (wdev->iftype) {
1412	case NL80211_IFTYPE_STATION:
1413		wil_dbg_misc(wil, "type: STATION\n");
1414		ndev->type = ARPHRD_ETHER;
1415		break;
1416	case NL80211_IFTYPE_AP:
1417		wil_dbg_misc(wil, "type: AP\n");
1418		ndev->type = ARPHRD_ETHER;
1419		break;
1420	case NL80211_IFTYPE_P2P_CLIENT:
1421		wil_dbg_misc(wil, "type: P2P_CLIENT\n");
1422		ndev->type = ARPHRD_ETHER;
1423		break;
1424	case NL80211_IFTYPE_P2P_GO:
1425		wil_dbg_misc(wil, "type: P2P_GO\n");
1426		ndev->type = ARPHRD_ETHER;
1427		break;
1428	case NL80211_IFTYPE_MONITOR:
1429		wil_dbg_misc(wil, "type: Monitor\n");
1430		ndev->type = ARPHRD_IEEE80211_RADIOTAP;
1431		/* ARPHRD_IEEE80211 or ARPHRD_IEEE80211_RADIOTAP ? */
1432		break;
1433	default:
1434		return -EOPNOTSUPP;
1435	}
1436
1437	/* MAC address - pre-requisite for other commands */
1438	wmi_set_mac_address(wil, ndev->dev_addr);
1439
1440	wil_dbg_misc(wil, "NAPI enable\n");
1441	napi_enable(&wil->napi_rx);
1442	napi_enable(&wil->napi_tx);
1443	set_bit(wil_status_napi_en, wil->status);
1444
1445	wil6210_bus_request(wil, WIL_DEFAULT_BUS_REQUEST_KBPS);
1446
1447	return 0;
1448}
1449
1450int wil_up(struct wil6210_priv *wil)
1451{
1452	int rc;
1453
1454	wil_dbg_misc(wil, "up\n");
1455
1456	mutex_lock(&wil->mutex);
1457	rc = __wil_up(wil);
1458	mutex_unlock(&wil->mutex);
1459
1460	return rc;
1461}
1462
1463int __wil_down(struct wil6210_priv *wil)
1464{
 
1465	WARN_ON(!mutex_is_locked(&wil->mutex));
1466
1467	set_bit(wil_status_resetting, wil->status);
1468
1469	wil6210_bus_request(wil, 0);
1470
1471	wil_disable_irq(wil);
1472	if (test_and_clear_bit(wil_status_napi_en, wil->status)) {
1473		napi_disable(&wil->napi_rx);
1474		napi_disable(&wil->napi_tx);
1475		wil_dbg_misc(wil, "NAPI disable\n");
1476	}
1477	wil_enable_irq(wil);
1478
1479	mutex_lock(&wil->vif_mutex);
1480	wil_p2p_stop_radio_operations(wil);
1481	wil_abort_scan_all_vifs(wil, false);
1482	mutex_unlock(&wil->vif_mutex);
1483
1484	return wil_reset(wil, false);
 
 
1485}
1486
1487int wil_down(struct wil6210_priv *wil)
1488{
1489	int rc;
1490
1491	wil_dbg_misc(wil, "down\n");
1492
1493	wil_set_recovery_state(wil, fw_recovery_idle);
1494	mutex_lock(&wil->mutex);
1495	rc = __wil_down(wil);
1496	mutex_unlock(&wil->mutex);
1497
1498	return rc;
1499}
1500
1501int wil_find_cid(struct wil6210_priv *wil, u8 mid, const u8 *mac)
1502{
1503	int i;
1504	int rc = -ENOENT;
1505
1506	for (i = 0; i < ARRAY_SIZE(wil->sta); i++) {
1507		if (wil->sta[i].mid == mid &&
1508		    wil->sta[i].status != wil_sta_unused &&
1509		    ether_addr_equal(wil->sta[i].addr, mac)) {
1510			rc = i;
1511			break;
1512		}
1513	}
1514
1515	return rc;
1516}
1517
1518void wil_halp_vote(struct wil6210_priv *wil)
1519{
1520	unsigned long rc;
1521	unsigned long to_jiffies = msecs_to_jiffies(WAIT_FOR_HALP_VOTE_MS);
1522
 
 
 
1523	mutex_lock(&wil->halp.lock);
1524
1525	wil_dbg_irq(wil, "halp_vote: start, HALP ref_cnt (%d)\n",
1526		    wil->halp.ref_cnt);
1527
1528	if (++wil->halp.ref_cnt == 1) {
1529		reinit_completion(&wil->halp.comp);
 
 
1530		wil6210_set_halp(wil);
1531		rc = wait_for_completion_timeout(&wil->halp.comp, to_jiffies);
1532		if (!rc) {
1533			wil_err(wil, "HALP vote timed out\n");
1534			/* Mask HALP as done in case the interrupt is raised */
 
1535			wil6210_mask_halp(wil);
1536		} else {
1537			wil_dbg_irq(wil,
1538				    "halp_vote: HALP vote completed after %d ms\n",
1539				    jiffies_to_msecs(to_jiffies - rc));
1540		}
1541	}
1542
1543	wil_dbg_irq(wil, "halp_vote: end, HALP ref_cnt (%d)\n",
1544		    wil->halp.ref_cnt);
1545
1546	mutex_unlock(&wil->halp.lock);
1547}
1548
1549void wil_halp_unvote(struct wil6210_priv *wil)
1550{
 
 
 
1551	WARN_ON(wil->halp.ref_cnt == 0);
1552
1553	mutex_lock(&wil->halp.lock);
1554
1555	wil_dbg_irq(wil, "halp_unvote: start, HALP ref_cnt (%d)\n",
1556		    wil->halp.ref_cnt);
1557
1558	if (--wil->halp.ref_cnt == 0) {
1559		wil6210_clear_halp(wil);
1560		wil_dbg_irq(wil, "HALP unvote\n");
1561	}
1562
1563	wil_dbg_irq(wil, "halp_unvote:end, HALP ref_cnt (%d)\n",
1564		    wil->halp.ref_cnt);
1565
1566	mutex_unlock(&wil->halp.lock);
 
 
 
 
 
 
 
 
1567}
v6.9.4
   1// SPDX-License-Identifier: ISC
   2/*
   3 * Copyright (c) 2012-2017 Qualcomm Atheros, Inc.
   4 * Copyright (c) 2018-2019, The Linux Foundation. All rights reserved.
 
 
 
 
 
 
 
 
 
 
 
 
   5 */
   6
   7#include <linux/moduleparam.h>
   8#include <linux/if_arp.h>
   9#include <linux/etherdevice.h>
  10#include <linux/rtnetlink.h>
  11
  12#include "wil6210.h"
  13#include "txrx.h"
  14#include "txrx_edma.h"
  15#include "wmi.h"
  16#include "boot_loader.h"
  17
  18#define WAIT_FOR_HALP_VOTE_MS 100
  19#define WAIT_FOR_SCAN_ABORT_MS 1000
  20#define WIL_DEFAULT_NUM_RX_STATUS_RINGS 1
  21#define WIL_BOARD_FILE_MAX_NAMELEN 128
  22
  23bool debug_fw; /* = false; */
  24module_param(debug_fw, bool, 0444);
  25MODULE_PARM_DESC(debug_fw, " do not perform card reset. For FW debug");
  26
  27static u8 oob_mode;
  28module_param(oob_mode, byte, 0444);
  29MODULE_PARM_DESC(oob_mode,
  30		 " enable out of the box (OOB) mode in FW, for diagnostics and certification");
  31
  32bool no_fw_recovery;
  33module_param(no_fw_recovery, bool, 0644);
  34MODULE_PARM_DESC(no_fw_recovery, " disable automatic FW error recovery");
  35
  36/* if not set via modparam, will be set to default value of 1/8 of
  37 * rx ring size during init flow
  38 */
  39unsigned short rx_ring_overflow_thrsh = WIL6210_RX_HIGH_TRSH_INIT;
  40module_param(rx_ring_overflow_thrsh, ushort, 0444);
  41MODULE_PARM_DESC(rx_ring_overflow_thrsh,
  42		 " RX ring overflow threshold in descriptors.");
  43
  44/* We allow allocation of more than 1 page buffers to support large packets.
  45 * It is suboptimal behavior performance wise in case MTU above page size.
  46 */
  47unsigned int mtu_max = TXRX_BUF_LEN_DEFAULT - WIL_MAX_MPDU_OVERHEAD;
  48static int mtu_max_set(const char *val, const struct kernel_param *kp)
  49{
  50	int ret;
  51
  52	/* sets mtu_max directly. no need to restore it in case of
  53	 * illegal value since we assume this will fail insmod
  54	 */
  55	ret = param_set_uint(val, kp);
  56	if (ret)
  57		return ret;
  58
  59	if (mtu_max < 68 || mtu_max > WIL_MAX_ETH_MTU)
  60		ret = -EINVAL;
  61
  62	return ret;
  63}
  64
  65static const struct kernel_param_ops mtu_max_ops = {
  66	.set = mtu_max_set,
  67	.get = param_get_uint,
  68};
  69
  70module_param_cb(mtu_max, &mtu_max_ops, &mtu_max, 0444);
  71MODULE_PARM_DESC(mtu_max, " Max MTU value.");
  72
  73static uint rx_ring_order;
  74static uint tx_ring_order = WIL_TX_RING_SIZE_ORDER_DEFAULT;
  75static uint bcast_ring_order = WIL_BCAST_RING_SIZE_ORDER_DEFAULT;
  76
  77static int ring_order_set(const char *val, const struct kernel_param *kp)
  78{
  79	int ret;
  80	uint x;
  81
  82	ret = kstrtouint(val, 0, &x);
  83	if (ret)
  84		return ret;
  85
  86	if ((x < WIL_RING_SIZE_ORDER_MIN) || (x > WIL_RING_SIZE_ORDER_MAX))
  87		return -EINVAL;
  88
  89	*((uint *)kp->arg) = x;
  90
  91	return 0;
  92}
  93
  94static const struct kernel_param_ops ring_order_ops = {
  95	.set = ring_order_set,
  96	.get = param_get_uint,
  97};
  98
  99module_param_cb(rx_ring_order, &ring_order_ops, &rx_ring_order, 0444);
 100MODULE_PARM_DESC(rx_ring_order, " Rx ring order; size = 1 << order");
 101module_param_cb(tx_ring_order, &ring_order_ops, &tx_ring_order, 0444);
 102MODULE_PARM_DESC(tx_ring_order, " Tx ring order; size = 1 << order");
 103module_param_cb(bcast_ring_order, &ring_order_ops, &bcast_ring_order, 0444);
 104MODULE_PARM_DESC(bcast_ring_order, " Bcast ring order; size = 1 << order");
 105
 106enum {
 107	WIL_BOOT_ERR,
 108	WIL_BOOT_VANILLA,
 109	WIL_BOOT_PRODUCTION,
 110	WIL_BOOT_DEVELOPMENT,
 111};
 112
 113enum {
 114	WIL_SIG_STATUS_VANILLA = 0x0,
 115	WIL_SIG_STATUS_DEVELOPMENT = 0x1,
 116	WIL_SIG_STATUS_PRODUCTION = 0x2,
 117	WIL_SIG_STATUS_CORRUPTED_PRODUCTION = 0x3,
 118};
 119
 120#define RST_DELAY (20) /* msec, for loop in @wil_wait_device_ready */
 121#define RST_COUNT (1 + 1000/RST_DELAY) /* round up to be above 1 sec total */
 122
 123#define PMU_READY_DELAY_MS (4) /* ms, for sleep in @wil_wait_device_ready */
 124
 125#define OTP_HW_DELAY (200) /* usec, loop in @wil_wait_device_ready_talyn_mb */
 126/* round up to be above 2 ms total */
 127#define OTP_HW_COUNT (1 + 2000 / OTP_HW_DELAY)
 128
 129/*
 130 * Due to a hardware issue,
 131 * one has to read/write to/from NIC in 32-bit chunks;
 132 * regular memcpy_fromio and siblings will
 133 * not work on 64-bit platform - it uses 64-bit transactions
 134 *
 135 * Force 32-bit transactions to enable NIC on 64-bit platforms
 136 *
 137 * To avoid byte swap on big endian host, __raw_{read|write}l
 138 * should be used - {read|write}l would swap bytes to provide
 139 * little endian on PCI value in host endianness.
 140 */
 141void wil_memcpy_fromio_32(void *dst, const volatile void __iomem *src,
 142			  size_t count)
 143{
 144	u32 *d = dst;
 145	const volatile u32 __iomem *s = src;
 146
 147	for (; count >= 4; count -= 4)
 148		*d++ = __raw_readl(s++);
 149
 150	if (unlikely(count)) {
 151		/* count can be 1..3 */
 152		u32 tmp = __raw_readl(s);
 153
 154		memcpy(d, &tmp, count);
 155	}
 156}
 157
 158void wil_memcpy_toio_32(volatile void __iomem *dst, const void *src,
 159			size_t count)
 160{
 161	volatile u32 __iomem *d = dst;
 162	const u32 *s = src;
 163
 164	for (; count >= 4; count -= 4)
 165		__raw_writel(*s++, d++);
 166
 167	if (unlikely(count)) {
 168		/* count can be 1..3 */
 169		u32 tmp = 0;
 170
 171		memcpy(&tmp, s, count);
 172		__raw_writel(tmp, d);
 173	}
 174}
 175
 176/* Device memory access is prohibited while reset or suspend.
 177 * wil_mem_access_lock protects accessing device memory in these cases
 178 */
 179int wil_mem_access_lock(struct wil6210_priv *wil)
 180{
 181	if (!down_read_trylock(&wil->mem_lock))
 182		return -EBUSY;
 183
 184	if (test_bit(wil_status_suspending, wil->status) ||
 185	    test_bit(wil_status_suspended, wil->status)) {
 186		up_read(&wil->mem_lock);
 187		return -EBUSY;
 188	}
 189
 190	return 0;
 191}
 192
 193void wil_mem_access_unlock(struct wil6210_priv *wil)
 194{
 195	up_read(&wil->mem_lock);
 196}
 197
 198static void wil_ring_fini_tx(struct wil6210_priv *wil, int id)
 199{
 200	struct wil_ring *ring = &wil->ring_tx[id];
 201	struct wil_ring_tx_data *txdata = &wil->ring_tx_data[id];
 202
 203	lockdep_assert_held(&wil->mutex);
 204
 205	if (!ring->va)
 206		return;
 207
 208	wil_dbg_misc(wil, "vring_fini_tx: id=%d\n", id);
 209
 210	spin_lock_bh(&txdata->lock);
 211	txdata->dot1x_open = false;
 212	txdata->mid = U8_MAX;
 213	txdata->enabled = 0; /* no Tx can be in progress or start anew */
 214	spin_unlock_bh(&txdata->lock);
 215	/* napi_synchronize waits for completion of the current NAPI but will
 216	 * not prevent the next NAPI run.
 217	 * Add a memory barrier to guarantee that txdata->enabled is zeroed
 218	 * before napi_synchronize so that the next scheduled NAPI will not
 219	 * handle this vring
 220	 */
 221	wmb();
 222	/* make sure NAPI won't touch this vring */
 223	if (test_bit(wil_status_napi_en, wil->status))
 224		napi_synchronize(&wil->napi_tx);
 225
 226	wil->txrx_ops.ring_fini_tx(wil, ring);
 227}
 228
 229static bool wil_vif_is_connected(struct wil6210_priv *wil, u8 mid)
 230{
 231	int i;
 232
 233	for (i = 0; i < wil->max_assoc_sta; i++) {
 234		if (wil->sta[i].mid == mid &&
 235		    wil->sta[i].status == wil_sta_connected)
 236			return true;
 237	}
 238
 239	return false;
 240}
 241
 242static void wil_disconnect_cid_complete(struct wil6210_vif *vif, int cid,
 243					u16 reason_code)
 244__acquires(&sta->tid_rx_lock) __releases(&sta->tid_rx_lock)
 245{
 246	uint i;
 247	struct wil6210_priv *wil = vif_to_wil(vif);
 248	struct net_device *ndev = vif_to_ndev(vif);
 249	struct wireless_dev *wdev = vif_to_wdev(vif);
 250	struct wil_sta_info *sta = &wil->sta[cid];
 251	int min_ring_id = wil_get_min_tx_ring_id(wil);
 252
 253	might_sleep();
 254	wil_dbg_misc(wil,
 255		     "disconnect_cid_complete: CID %d, MID %d, status %d\n",
 256		     cid, sta->mid, sta->status);
 257	/* inform upper layers */
 258	if (sta->status != wil_sta_unused) {
 259		if (vif->mid != sta->mid) {
 260			wil_err(wil, "STA MID mismatch with VIF MID(%d)\n",
 261				vif->mid);
 
 
 
 
 
 
 
 
 
 
 
 262		}
 263
 264		switch (wdev->iftype) {
 265		case NL80211_IFTYPE_AP:
 266		case NL80211_IFTYPE_P2P_GO:
 267			/* AP-like interface */
 268			cfg80211_del_sta(ndev, sta->addr, GFP_KERNEL);
 269			break;
 270		default:
 271			break;
 272		}
 273		sta->status = wil_sta_unused;
 274		sta->mid = U8_MAX;
 275	}
 276	/* reorder buffers */
 277	for (i = 0; i < WIL_STA_TID_NUM; i++) {
 278		struct wil_tid_ampdu_rx *r;
 279
 280		spin_lock_bh(&sta->tid_rx_lock);
 281
 282		r = sta->tid_rx[i];
 283		sta->tid_rx[i] = NULL;
 284		wil_tid_ampdu_rx_free(wil, r);
 285
 286		spin_unlock_bh(&sta->tid_rx_lock);
 287	}
 288	/* crypto context */
 289	memset(sta->tid_crypto_rx, 0, sizeof(sta->tid_crypto_rx));
 290	memset(&sta->group_crypto_rx, 0, sizeof(sta->group_crypto_rx));
 291	/* release vrings */
 292	for (i = min_ring_id; i < ARRAY_SIZE(wil->ring_tx); i++) {
 293		if (wil->ring2cid_tid[i][0] == cid)
 294			wil_ring_fini_tx(wil, i);
 295	}
 296	/* statistics */
 297	memset(&sta->stats, 0, sizeof(sta->stats));
 298	sta->stats.tx_latency_min_us = U32_MAX;
 299}
 300
 301static void _wil6210_disconnect_complete(struct wil6210_vif *vif,
 302					 const u8 *bssid, u16 reason_code)
 
 
 
 
 
 
 
 
 
 
 
 
 
 303{
 304	struct wil6210_priv *wil = vif_to_wil(vif);
 305	int cid = -ENOENT;
 306	struct net_device *ndev;
 307	struct wireless_dev *wdev;
 308
 
 
 
 309	ndev = vif_to_ndev(vif);
 310	wdev = vif_to_wdev(vif);
 311
 312	might_sleep();
 313	wil_info(wil, "disconnect_complete: bssid=%pM, reason=%d\n",
 314		 bssid, reason_code);
 315
 316	/* Cases are:
 317	 * - disconnect single STA, still connected
 318	 * - disconnect single STA, already disconnected
 319	 * - disconnect all
 320	 *
 321	 * For "disconnect all", there are 3 options:
 322	 * - bssid == NULL
 323	 * - bssid is broadcast address (ff:ff:ff:ff:ff:ff)
 324	 * - bssid is our MAC address
 325	 */
 326	if (bssid && !is_broadcast_ether_addr(bssid) &&
 327	    !ether_addr_equal_unaligned(ndev->dev_addr, bssid)) {
 328		cid = wil_find_cid(wil, vif->mid, bssid);
 329		wil_dbg_misc(wil,
 330			     "Disconnect complete %pM, CID=%d, reason=%d\n",
 331			     bssid, cid, reason_code);
 332		if (wil_cid_valid(wil, cid)) /* disconnect 1 peer */
 333			wil_disconnect_cid_complete(vif, cid, reason_code);
 334	} else { /* all */
 335		wil_dbg_misc(wil, "Disconnect complete all\n");
 336		for (cid = 0; cid < wil->max_assoc_sta; cid++)
 337			wil_disconnect_cid_complete(vif, cid, reason_code);
 338	}
 339
 340	/* link state */
 341	switch (wdev->iftype) {
 342	case NL80211_IFTYPE_STATION:
 343	case NL80211_IFTYPE_P2P_CLIENT:
 344		wil_bcast_fini(vif);
 345		wil_update_net_queues_bh(wil, vif, NULL, true);
 346		netif_carrier_off(ndev);
 347		if (!wil_has_other_active_ifaces(wil, ndev, false, true))
 348			wil6210_bus_request(wil, WIL_DEFAULT_BUS_REQUEST_KBPS);
 349
 350		if (test_and_clear_bit(wil_vif_fwconnected, vif->status)) {
 351			atomic_dec(&wil->connected_vifs);
 352			cfg80211_disconnected(ndev, reason_code,
 353					      NULL, 0,
 354					      vif->locally_generated_disc,
 355					      GFP_KERNEL);
 356			vif->locally_generated_disc = false;
 357		} else if (test_bit(wil_vif_fwconnecting, vif->status)) {
 358			cfg80211_connect_result(ndev, bssid, NULL, 0, NULL, 0,
 359						WLAN_STATUS_UNSPECIFIED_FAILURE,
 360						GFP_KERNEL);
 361			vif->bss = NULL;
 362		}
 363		clear_bit(wil_vif_fwconnecting, vif->status);
 364		clear_bit(wil_vif_ft_roam, vif->status);
 365		vif->ptk_rekey_state = WIL_REKEY_IDLE;
 366
 367		break;
 368	case NL80211_IFTYPE_AP:
 369	case NL80211_IFTYPE_P2P_GO:
 370		if (!wil_vif_is_connected(wil, vif->mid)) {
 371			wil_update_net_queues_bh(wil, vif, NULL, true);
 372			if (test_and_clear_bit(wil_vif_fwconnected,
 373					       vif->status))
 374				atomic_dec(&wil->connected_vifs);
 375		} else {
 376			wil_update_net_queues_bh(wil, vif, NULL, false);
 377		}
 378		break;
 379	default:
 380		break;
 381	}
 382}
 383
 384static int wil_disconnect_cid(struct wil6210_vif *vif, int cid,
 385			      u16 reason_code)
 386{
 387	struct wil6210_priv *wil = vif_to_wil(vif);
 388	struct wireless_dev *wdev = vif_to_wdev(vif);
 389	struct wil_sta_info *sta = &wil->sta[cid];
 390	bool del_sta = false;
 391
 392	might_sleep();
 393	wil_dbg_misc(wil, "disconnect_cid: CID %d, MID %d, status %d\n",
 394		     cid, sta->mid, sta->status);
 395
 396	if (sta->status == wil_sta_unused)
 397		return 0;
 398
 399	if (vif->mid != sta->mid) {
 400		wil_err(wil, "STA MID mismatch with VIF MID(%d)\n", vif->mid);
 401		return -EINVAL;
 402	}
 403
 404	/* inform lower layers */
 405	if (wdev->iftype == NL80211_IFTYPE_AP && disable_ap_sme)
 406		del_sta = true;
 407
 408	/* disconnect by sending command disconnect/del_sta and wait
 409	 * synchronously for WMI_DISCONNECT_EVENTID event.
 410	 */
 411	return wmi_disconnect_sta(vif, sta->addr, reason_code, del_sta);
 412}
 413
 414static void _wil6210_disconnect(struct wil6210_vif *vif, const u8 *bssid,
 415				u16 reason_code)
 416{
 417	struct wil6210_priv *wil;
 418	struct net_device *ndev;
 419	int cid = -ENOENT;
 420
 421	if (unlikely(!vif))
 422		return;
 423
 424	wil = vif_to_wil(vif);
 425	ndev = vif_to_ndev(vif);
 426
 427	might_sleep();
 428	wil_info(wil, "disconnect bssid=%pM, reason=%d\n", bssid, reason_code);
 429
 430	/* Cases are:
 431	 * - disconnect single STA, still connected
 432	 * - disconnect single STA, already disconnected
 433	 * - disconnect all
 434	 *
 435	 * For "disconnect all", there are 3 options:
 436	 * - bssid == NULL
 437	 * - bssid is broadcast address (ff:ff:ff:ff:ff:ff)
 438	 * - bssid is our MAC address
 439	 */
 440	if (bssid && !is_broadcast_ether_addr(bssid) &&
 441	    !ether_addr_equal_unaligned(ndev->dev_addr, bssid)) {
 442		cid = wil_find_cid(wil, vif->mid, bssid);
 443		wil_dbg_misc(wil, "Disconnect %pM, CID=%d, reason=%d\n",
 444			     bssid, cid, reason_code);
 445		if (wil_cid_valid(wil, cid)) /* disconnect 1 peer */
 446			wil_disconnect_cid(vif, cid, reason_code);
 447	} else { /* all */
 448		wil_dbg_misc(wil, "Disconnect all\n");
 449		for (cid = 0; cid < wil->max_assoc_sta; cid++)
 450			wil_disconnect_cid(vif, cid, reason_code);
 451	}
 452
 453	/* call event handler manually after processing wmi_call,
 454	 * to avoid deadlock - disconnect event handler acquires
 455	 * wil->mutex while it is already held here
 456	 */
 457	_wil6210_disconnect_complete(vif, bssid, reason_code);
 458}
 459
 460void wil_disconnect_worker(struct work_struct *work)
 461{
 462	struct wil6210_vif *vif = container_of(work,
 463			struct wil6210_vif, disconnect_worker);
 464	struct wil6210_priv *wil = vif_to_wil(vif);
 465	struct net_device *ndev = vif_to_ndev(vif);
 466	int rc;
 467	struct {
 468		struct wmi_cmd_hdr wmi;
 469		struct wmi_disconnect_event evt;
 470	} __packed reply;
 471
 472	if (test_bit(wil_vif_fwconnected, vif->status))
 473		/* connect succeeded after all */
 474		return;
 475
 476	if (!test_bit(wil_vif_fwconnecting, vif->status))
 477		/* already disconnected */
 478		return;
 479
 480	memset(&reply, 0, sizeof(reply));
 481
 482	rc = wmi_call(wil, WMI_DISCONNECT_CMDID, vif->mid, NULL, 0,
 483		      WMI_DISCONNECT_EVENTID, &reply, sizeof(reply),
 484		      WIL6210_DISCONNECT_TO_MS);
 485	if (rc) {
 486		wil_err(wil, "disconnect error %d\n", rc);
 487		return;
 488	}
 489
 490	wil_update_net_queues_bh(wil, vif, NULL, true);
 491	netif_carrier_off(ndev);
 492	cfg80211_connect_result(ndev, NULL, NULL, 0, NULL, 0,
 493				WLAN_STATUS_UNSPECIFIED_FAILURE, GFP_KERNEL);
 494	clear_bit(wil_vif_fwconnecting, vif->status);
 495}
 496
 497static int wil_wait_for_recovery(struct wil6210_priv *wil)
 498{
 499	if (wait_event_interruptible(wil->wq, wil->recovery_state !=
 500				     fw_recovery_pending)) {
 501		wil_err(wil, "Interrupt, canceling recovery\n");
 502		return -ERESTARTSYS;
 503	}
 504	if (wil->recovery_state != fw_recovery_running) {
 505		wil_info(wil, "Recovery cancelled\n");
 506		return -EINTR;
 507	}
 508	wil_info(wil, "Proceed with recovery\n");
 509	return 0;
 510}
 511
 512void wil_set_recovery_state(struct wil6210_priv *wil, int state)
 513{
 514	wil_dbg_misc(wil, "set_recovery_state: %d -> %d\n",
 515		     wil->recovery_state, state);
 516
 517	wil->recovery_state = state;
 518	wake_up_interruptible(&wil->wq);
 519}
 520
 521bool wil_is_recovery_blocked(struct wil6210_priv *wil)
 522{
 523	return no_fw_recovery && (wil->recovery_state == fw_recovery_pending);
 524}
 525
 526static void wil_fw_error_worker(struct work_struct *work)
 527{
 528	struct wil6210_priv *wil = container_of(work, struct wil6210_priv,
 529						fw_error_worker);
 530	struct net_device *ndev = wil->main_ndev;
 531	struct wireless_dev *wdev;
 532
 533	wil_dbg_misc(wil, "fw error worker\n");
 534
 535	if (!ndev || !(ndev->flags & IFF_UP)) {
 536		wil_info(wil, "No recovery - interface is down\n");
 537		return;
 538	}
 539	wdev = ndev->ieee80211_ptr;
 540
 541	/* increment @recovery_count if less then WIL6210_FW_RECOVERY_TO
 542	 * passed since last recovery attempt
 543	 */
 544	if (time_is_after_jiffies(wil->last_fw_recovery +
 545				  WIL6210_FW_RECOVERY_TO))
 546		wil->recovery_count++;
 547	else
 548		wil->recovery_count = 1; /* fw was alive for a long time */
 549
 550	if (wil->recovery_count > WIL6210_FW_RECOVERY_RETRIES) {
 551		wil_err(wil, "too many recovery attempts (%d), giving up\n",
 552			wil->recovery_count);
 553		return;
 554	}
 555
 556	wil->last_fw_recovery = jiffies;
 557
 558	wil_info(wil, "fw error recovery requested (try %d)...\n",
 559		 wil->recovery_count);
 560	if (!no_fw_recovery)
 561		wil->recovery_state = fw_recovery_running;
 562	if (wil_wait_for_recovery(wil) != 0)
 563		return;
 564
 565	rtnl_lock();
 566	mutex_lock(&wil->mutex);
 567	/* Needs adaptation for multiple VIFs
 568	 * need to go over all VIFs and consider the appropriate
 569	 * recovery because each one can have different iftype.
 570	 */
 571	switch (wdev->iftype) {
 572	case NL80211_IFTYPE_STATION:
 573	case NL80211_IFTYPE_P2P_CLIENT:
 574	case NL80211_IFTYPE_MONITOR:
 575		/* silent recovery, upper layers will see disconnect */
 576		__wil_down(wil);
 577		__wil_up(wil);
 578		break;
 579	case NL80211_IFTYPE_AP:
 580	case NL80211_IFTYPE_P2P_GO:
 581		if (no_fw_recovery) /* upper layers do recovery */
 582			break;
 583		/* silent recovery, upper layers will see disconnect */
 584		__wil_down(wil);
 585		__wil_up(wil);
 586		mutex_unlock(&wil->mutex);
 587		wil_cfg80211_ap_recovery(wil);
 588		mutex_lock(&wil->mutex);
 589		wil_info(wil, "... completed\n");
 590		break;
 591	default:
 592		wil_err(wil, "No recovery - unknown interface type %d\n",
 593			wdev->iftype);
 594		break;
 595	}
 596
 597	mutex_unlock(&wil->mutex);
 598	rtnl_unlock();
 599}
 600
 601static int wil_find_free_ring(struct wil6210_priv *wil)
 602{
 603	int i;
 604	int min_ring_id = wil_get_min_tx_ring_id(wil);
 605
 606	for (i = min_ring_id; i < WIL6210_MAX_TX_RINGS; i++) {
 607		if (!wil->ring_tx[i].va)
 608			return i;
 609	}
 610	return -EINVAL;
 611}
 612
 613int wil_ring_init_tx(struct wil6210_vif *vif, int cid)
 614{
 615	struct wil6210_priv *wil = vif_to_wil(vif);
 616	int rc = -EINVAL, ringid;
 617
 618	if (cid < 0) {
 619		wil_err(wil, "No connection pending\n");
 620		goto out;
 621	}
 622	ringid = wil_find_free_ring(wil);
 623	if (ringid < 0) {
 624		wil_err(wil, "No free vring found\n");
 625		goto out;
 626	}
 627
 628	wil_dbg_wmi(wil, "Configure for connection CID %d MID %d ring %d\n",
 629		    cid, vif->mid, ringid);
 630
 631	rc = wil->txrx_ops.ring_init_tx(vif, ringid, 1 << tx_ring_order,
 632					cid, 0);
 633	if (rc)
 634		wil_err(wil, "init TX for CID %d MID %d vring %d failed\n",
 635			cid, vif->mid, ringid);
 636
 637out:
 638	return rc;
 639}
 640
 641int wil_bcast_init(struct wil6210_vif *vif)
 642{
 643	struct wil6210_priv *wil = vif_to_wil(vif);
 644	int ri = vif->bcast_ring, rc;
 645
 646	if (ri >= 0 && wil->ring_tx[ri].va)
 647		return 0;
 648
 649	ri = wil_find_free_ring(wil);
 650	if (ri < 0)
 651		return ri;
 652
 653	vif->bcast_ring = ri;
 654	rc = wil->txrx_ops.ring_init_bcast(vif, ri, 1 << bcast_ring_order);
 655	if (rc)
 656		vif->bcast_ring = -1;
 657
 658	return rc;
 659}
 660
 661void wil_bcast_fini(struct wil6210_vif *vif)
 662{
 663	struct wil6210_priv *wil = vif_to_wil(vif);
 664	int ri = vif->bcast_ring;
 665
 666	if (ri < 0)
 667		return;
 668
 669	vif->bcast_ring = -1;
 670	wil_ring_fini_tx(wil, ri);
 671}
 672
 673void wil_bcast_fini_all(struct wil6210_priv *wil)
 674{
 675	int i;
 676	struct wil6210_vif *vif;
 677
 678	for (i = 0; i < GET_MAX_VIFS(wil); i++) {
 679		vif = wil->vifs[i];
 680		if (vif)
 681			wil_bcast_fini(vif);
 682	}
 683}
 684
 685int wil_priv_init(struct wil6210_priv *wil)
 686{
 687	uint i;
 688
 689	wil_dbg_misc(wil, "priv_init\n");
 690
 691	memset(wil->sta, 0, sizeof(wil->sta));
 692	for (i = 0; i < WIL6210_MAX_CID; i++) {
 693		spin_lock_init(&wil->sta[i].tid_rx_lock);
 694		wil->sta[i].mid = U8_MAX;
 695	}
 696
 697	for (i = 0; i < WIL6210_MAX_TX_RINGS; i++) {
 698		spin_lock_init(&wil->ring_tx_data[i].lock);
 699		wil->ring2cid_tid[i][0] = WIL6210_MAX_CID;
 700	}
 701
 702	mutex_init(&wil->mutex);
 703	mutex_init(&wil->vif_mutex);
 704	mutex_init(&wil->wmi_mutex);
 705	mutex_init(&wil->halp.lock);
 706
 707	init_completion(&wil->wmi_ready);
 708	init_completion(&wil->wmi_call);
 709	init_completion(&wil->halp.comp);
 710
 711	INIT_WORK(&wil->wmi_event_worker, wmi_event_worker);
 712	INIT_WORK(&wil->fw_error_worker, wil_fw_error_worker);
 713
 714	INIT_LIST_HEAD(&wil->pending_wmi_ev);
 715	spin_lock_init(&wil->wmi_ev_lock);
 716	spin_lock_init(&wil->net_queue_lock);
 717	spin_lock_init(&wil->eap_lock);
 718
 719	init_waitqueue_head(&wil->wq);
 720	init_rwsem(&wil->mem_lock);
 721
 722	wil->wmi_wq = create_singlethread_workqueue(WIL_NAME "_wmi");
 723	if (!wil->wmi_wq)
 724		return -EAGAIN;
 725
 726	wil->wq_service = create_singlethread_workqueue(WIL_NAME "_service");
 727	if (!wil->wq_service)
 728		goto out_wmi_wq;
 729
 730	wil->last_fw_recovery = jiffies;
 731	wil->tx_interframe_timeout = WIL6210_ITR_TX_INTERFRAME_TIMEOUT_DEFAULT;
 732	wil->rx_interframe_timeout = WIL6210_ITR_RX_INTERFRAME_TIMEOUT_DEFAULT;
 733	wil->tx_max_burst_duration = WIL6210_ITR_TX_MAX_BURST_DURATION_DEFAULT;
 734	wil->rx_max_burst_duration = WIL6210_ITR_RX_MAX_BURST_DURATION_DEFAULT;
 735
 736	if (rx_ring_overflow_thrsh == WIL6210_RX_HIGH_TRSH_INIT)
 737		rx_ring_overflow_thrsh = WIL6210_RX_HIGH_TRSH_DEFAULT;
 738
 739	wil->ps_profile =  WMI_PS_PROFILE_TYPE_DEFAULT;
 740
 741	wil->wakeup_trigger = WMI_WAKEUP_TRIGGER_UCAST |
 742			      WMI_WAKEUP_TRIGGER_BCAST;
 743	memset(&wil->suspend_stats, 0, sizeof(wil->suspend_stats));
 744	wil->ring_idle_trsh = 16;
 745
 746	wil->reply_mid = U8_MAX;
 747	wil->max_vifs = 1;
 748	wil->max_assoc_sta = max_assoc_sta;
 749
 750	/* edma configuration can be updated via debugfs before allocation */
 751	wil->num_rx_status_rings = WIL_DEFAULT_NUM_RX_STATUS_RINGS;
 752	wil->tx_status_ring_order = WIL_TX_SRING_SIZE_ORDER_DEFAULT;
 753
 754	/* Rx status ring size should be bigger than the number of RX buffers
 755	 * in order to prevent backpressure on the status ring, which may
 756	 * cause HW freeze.
 757	 */
 758	wil->rx_status_ring_order = WIL_RX_SRING_SIZE_ORDER_DEFAULT;
 759	/* Number of RX buffer IDs should be bigger than the RX descriptor
 760	 * ring size as in HW reorder flow, the HW can consume additional
 761	 * buffers before releasing the previous ones.
 762	 */
 763	wil->rx_buff_id_count = WIL_RX_BUFF_ARR_SIZE_DEFAULT;
 764
 765	wil->amsdu_en = true;
 766
 767	return 0;
 768
 769out_wmi_wq:
 770	destroy_workqueue(wil->wmi_wq);
 771
 772	return -EAGAIN;
 773}
 774
 775void wil6210_bus_request(struct wil6210_priv *wil, u32 kbps)
 776{
 777	if (wil->platform_ops.bus_request) {
 778		wil->bus_request_kbps = kbps;
 779		wil->platform_ops.bus_request(wil->platform_handle, kbps);
 780	}
 781}
 782
 783/**
 784 * wil6210_disconnect - disconnect one connection
 785 * @vif: virtual interface context
 786 * @bssid: peer to disconnect, NULL to disconnect all
 787 * @reason_code: Reason code for the Disassociation frame
 
 788 *
 789 * Disconnect and release associated resources. Issue WMI
 790 * command(s) to trigger MAC disconnect. When command was issued
 791 * successfully, call the wil6210_disconnect_complete function
 792 * to handle the event synchronously
 793 */
 794void wil6210_disconnect(struct wil6210_vif *vif, const u8 *bssid,
 795			u16 reason_code)
 796{
 797	struct wil6210_priv *wil = vif_to_wil(vif);
 798
 799	wil_dbg_misc(wil, "disconnecting\n");
 800
 801	del_timer_sync(&vif->connect_timer);
 802	_wil6210_disconnect(vif, bssid, reason_code);
 803}
 804
 805/**
 806 * wil6210_disconnect_complete - handle disconnect event
 807 * @vif: virtual interface context
 808 * @bssid: peer to disconnect, NULL to disconnect all
 809 * @reason_code: Reason code for the Disassociation frame
 810 *
 811 * Release associated resources and indicate upper layers the
 812 * connection is terminated.
 813 */
 814void wil6210_disconnect_complete(struct wil6210_vif *vif, const u8 *bssid,
 815				 u16 reason_code)
 816{
 817	struct wil6210_priv *wil = vif_to_wil(vif);
 818
 819	wil_dbg_misc(wil, "got disconnect\n");
 820
 821	del_timer_sync(&vif->connect_timer);
 822	_wil6210_disconnect_complete(vif, bssid, reason_code);
 823}
 824
 825void wil_priv_deinit(struct wil6210_priv *wil)
 826{
 827	wil_dbg_misc(wil, "priv_deinit\n");
 828
 829	wil_set_recovery_state(wil, fw_recovery_idle);
 830	cancel_work_sync(&wil->fw_error_worker);
 831	wmi_event_flush(wil);
 832	destroy_workqueue(wil->wq_service);
 833	destroy_workqueue(wil->wmi_wq);
 834	kfree(wil->brd_info);
 835}
 836
 837static void wil_shutdown_bl(struct wil6210_priv *wil)
 838{
 839	u32 val;
 840
 841	wil_s(wil, RGF_USER_BL +
 842	      offsetof(struct bl_dedicated_registers_v1,
 843		       bl_shutdown_handshake), BL_SHUTDOWN_HS_GRTD);
 844
 845	usleep_range(100, 150);
 846
 847	val = wil_r(wil, RGF_USER_BL +
 848		    offsetof(struct bl_dedicated_registers_v1,
 849			     bl_shutdown_handshake));
 850	if (val & BL_SHUTDOWN_HS_RTD) {
 851		wil_dbg_misc(wil, "BL is ready for halt\n");
 852		return;
 853	}
 854
 855	wil_err(wil, "BL did not report ready for halt\n");
 856}
 857
 858/* this format is used by ARC embedded CPU for instruction memory */
 859static inline u32 ARC_me_imm32(u32 d)
 860{
 861	return ((d & 0xffff0000) >> 16) | ((d & 0x0000ffff) << 16);
 862}
 863
 864/* defines access to interrupt vectors for wil_freeze_bl */
 865#define ARC_IRQ_VECTOR_OFFSET(N)	((N) * 8)
 866/* ARC long jump instruction */
 867#define ARC_JAL_INST			(0x20200f80)
 868
 869static void wil_freeze_bl(struct wil6210_priv *wil)
 870{
 871	u32 jal, upc, saved;
 872	u32 ivt3 = ARC_IRQ_VECTOR_OFFSET(3);
 873
 874	jal = wil_r(wil, wil->iccm_base + ivt3);
 875	if (jal != ARC_me_imm32(ARC_JAL_INST)) {
 876		wil_dbg_misc(wil, "invalid IVT entry found, skipping\n");
 877		return;
 878	}
 879
 880	/* prevent the target from entering deep sleep
 881	 * and disabling memory access
 882	 */
 883	saved = wil_r(wil, RGF_USER_USAGE_8);
 884	wil_w(wil, RGF_USER_USAGE_8, saved | BIT_USER_PREVENT_DEEP_SLEEP);
 885	usleep_range(20, 25); /* let the BL process the bit */
 886
 887	/* redirect to endless loop in the INT_L1 context and let it trap */
 888	wil_w(wil, wil->iccm_base + ivt3 + 4, ARC_me_imm32(ivt3));
 889	usleep_range(20, 25); /* let the BL get into the trap */
 890
 891	/* verify the BL is frozen */
 892	upc = wil_r(wil, RGF_USER_CPU_PC);
 893	if (upc < ivt3 || (upc > (ivt3 + 8)))
 894		wil_dbg_misc(wil, "BL freeze failed, PC=0x%08X\n", upc);
 895
 896	wil_w(wil, RGF_USER_USAGE_8, saved);
 897}
 898
 899static void wil_bl_prepare_halt(struct wil6210_priv *wil)
 900{
 901	u32 tmp, ver;
 902
 903	/* before halting device CPU driver must make sure BL is not accessing
 904	 * host memory. This is done differently depending on BL version:
 905	 * 1. For very old BL versions the procedure is skipped
 906	 * (not supported).
 907	 * 2. For old BL version we use a special trick to freeze the BL
 908	 * 3. For new BL versions we shutdown the BL using handshake procedure.
 909	 */
 910	tmp = wil_r(wil, RGF_USER_BL +
 911		    offsetof(struct bl_dedicated_registers_v0,
 912			     boot_loader_struct_version));
 913	if (!tmp) {
 914		wil_dbg_misc(wil, "old BL, skipping halt preparation\n");
 915		return;
 916	}
 917
 918	tmp = wil_r(wil, RGF_USER_BL +
 919		    offsetof(struct bl_dedicated_registers_v1,
 920			     bl_shutdown_handshake));
 921	ver = BL_SHUTDOWN_HS_PROT_VER(tmp);
 922
 923	if (ver > 0)
 924		wil_shutdown_bl(wil);
 925	else
 926		wil_freeze_bl(wil);
 927}
 928
 929static inline void wil_halt_cpu(struct wil6210_priv *wil)
 930{
 931	if (wil->hw_version >= HW_VER_TALYN_MB) {
 932		wil_w(wil, RGF_USER_USER_CPU_0_TALYN_MB,
 933		      BIT_USER_USER_CPU_MAN_RST);
 934		wil_w(wil, RGF_USER_MAC_CPU_0_TALYN_MB,
 935		      BIT_USER_MAC_CPU_MAN_RST);
 936	} else {
 937		wil_w(wil, RGF_USER_USER_CPU_0, BIT_USER_USER_CPU_MAN_RST);
 938		wil_w(wil, RGF_USER_MAC_CPU_0,  BIT_USER_MAC_CPU_MAN_RST);
 939	}
 940}
 941
 942static inline void wil_release_cpu(struct wil6210_priv *wil)
 943{
 944	/* Start CPU */
 945	if (wil->hw_version >= HW_VER_TALYN_MB)
 946		wil_w(wil, RGF_USER_USER_CPU_0_TALYN_MB, 1);
 947	else
 948		wil_w(wil, RGF_USER_USER_CPU_0, 1);
 949}
 950
 951static void wil_set_oob_mode(struct wil6210_priv *wil, u8 mode)
 952{
 953	wil_info(wil, "oob_mode to %d\n", mode);
 954	switch (mode) {
 955	case 0:
 956		wil_c(wil, RGF_USER_USAGE_6, BIT_USER_OOB_MODE |
 957		      BIT_USER_OOB_R2_MODE);
 958		break;
 959	case 1:
 960		wil_c(wil, RGF_USER_USAGE_6, BIT_USER_OOB_R2_MODE);
 961		wil_s(wil, RGF_USER_USAGE_6, BIT_USER_OOB_MODE);
 962		break;
 963	case 2:
 964		wil_c(wil, RGF_USER_USAGE_6, BIT_USER_OOB_MODE);
 965		wil_s(wil, RGF_USER_USAGE_6, BIT_USER_OOB_R2_MODE);
 966		break;
 967	default:
 968		wil_err(wil, "invalid oob_mode: %d\n", mode);
 969	}
 970}
 971
 972static int wil_wait_device_ready(struct wil6210_priv *wil, int no_flash)
 973{
 974	int delay = 0;
 975	u32 x, x1 = 0;
 976
 977	/* wait until device ready. */
 978	if (no_flash) {
 979		msleep(PMU_READY_DELAY_MS);
 980
 981		wil_dbg_misc(wil, "Reset completed\n");
 982	} else {
 983		do {
 984			msleep(RST_DELAY);
 985			x = wil_r(wil, RGF_USER_BL +
 986				  offsetof(struct bl_dedicated_registers_v0,
 987					   boot_loader_ready));
 988			if (x1 != x) {
 989				wil_dbg_misc(wil, "BL.ready 0x%08x => 0x%08x\n",
 990					     x1, x);
 991				x1 = x;
 992			}
 993			if (delay++ > RST_COUNT) {
 994				wil_err(wil, "Reset not completed, bl.ready 0x%08x\n",
 995					x);
 996				return -ETIME;
 997			}
 998		} while (x != BL_READY);
 999
1000		wil_dbg_misc(wil, "Reset completed in %d ms\n",
1001			     delay * RST_DELAY);
1002	}
1003
1004	return 0;
1005}
1006
1007static int wil_wait_device_ready_talyn_mb(struct wil6210_priv *wil)
1008{
1009	u32 otp_hw;
1010	u8 signature_status;
1011	bool otp_signature_err;
1012	bool hw_section_done;
1013	u32 otp_qc_secured;
1014	int delay = 0;
1015
1016	/* Wait for OTP signature test to complete */
1017	usleep_range(2000, 2200);
1018
1019	wil->boot_config = WIL_BOOT_ERR;
1020
1021	/* Poll until OTP signature status is valid.
1022	 * In vanilla and development modes, when signature test is complete
1023	 * HW sets BIT_OTP_SIGNATURE_ERR_TALYN_MB.
1024	 * In production mode BIT_OTP_SIGNATURE_ERR_TALYN_MB remains 0, poll
1025	 * for signature status change to 2 or 3.
1026	 */
1027	do {
1028		otp_hw = wil_r(wil, RGF_USER_OTP_HW_RD_MACHINE_1);
1029		signature_status = WIL_GET_BITS(otp_hw, 8, 9);
1030		otp_signature_err = otp_hw & BIT_OTP_SIGNATURE_ERR_TALYN_MB;
1031
1032		if (otp_signature_err &&
1033		    signature_status == WIL_SIG_STATUS_VANILLA) {
1034			wil->boot_config = WIL_BOOT_VANILLA;
1035			break;
1036		}
1037		if (otp_signature_err &&
1038		    signature_status == WIL_SIG_STATUS_DEVELOPMENT) {
1039			wil->boot_config = WIL_BOOT_DEVELOPMENT;
1040			break;
1041		}
1042		if (!otp_signature_err &&
1043		    signature_status == WIL_SIG_STATUS_PRODUCTION) {
1044			wil->boot_config = WIL_BOOT_PRODUCTION;
1045			break;
1046		}
1047		if  (!otp_signature_err &&
1048		     signature_status ==
1049		     WIL_SIG_STATUS_CORRUPTED_PRODUCTION) {
1050			/* Unrecognized OTP signature found. Possibly a
1051			 * corrupted production signature, access control
1052			 * is applied as in production mode, therefore
1053			 * do not fail
1054			 */
1055			wil->boot_config = WIL_BOOT_PRODUCTION;
1056			break;
1057		}
1058		if (delay++ > OTP_HW_COUNT)
1059			break;
1060
1061		usleep_range(OTP_HW_DELAY, OTP_HW_DELAY + 10);
1062	} while (!otp_signature_err && signature_status == 0);
1063
1064	if (wil->boot_config == WIL_BOOT_ERR) {
1065		wil_err(wil,
1066			"invalid boot config, signature_status %d otp_signature_err %d\n",
1067			signature_status, otp_signature_err);
1068		return -ETIME;
1069	}
1070
1071	wil_dbg_misc(wil,
1072		     "signature test done in %d usec, otp_hw 0x%x, boot_config %d\n",
1073		     delay * OTP_HW_DELAY, otp_hw, wil->boot_config);
1074
1075	if (wil->boot_config == WIL_BOOT_VANILLA)
1076		/* Assuming not SPI boot (currently not supported) */
1077		goto out;
1078
1079	hw_section_done = otp_hw & BIT_OTP_HW_SECTION_DONE_TALYN_MB;
1080	delay = 0;
1081
1082	while (!hw_section_done) {
1083		msleep(RST_DELAY);
1084
1085		otp_hw = wil_r(wil, RGF_USER_OTP_HW_RD_MACHINE_1);
1086		hw_section_done = otp_hw & BIT_OTP_HW_SECTION_DONE_TALYN_MB;
1087
1088		if (delay++ > RST_COUNT) {
1089			wil_err(wil, "TO waiting for hw_section_done\n");
1090			return -ETIME;
1091		}
1092	}
1093
1094	wil_dbg_misc(wil, "HW section done in %d ms\n", delay * RST_DELAY);
1095
1096	otp_qc_secured = wil_r(wil, RGF_OTP_QC_SECURED);
1097	wil->secured_boot = otp_qc_secured & BIT_BOOT_FROM_ROM ? 1 : 0;
1098	wil_dbg_misc(wil, "secured boot is %sabled\n",
1099		     wil->secured_boot ? "en" : "dis");
1100
1101out:
1102	wil_dbg_misc(wil, "Reset completed\n");
1103
1104	return 0;
1105}
1106
1107static int wil_target_reset(struct wil6210_priv *wil, int no_flash)
1108{
1109	u32 x;
1110	int rc;
1111
1112	wil_dbg_misc(wil, "Resetting \"%s\"...\n", wil->hw_name);
1113
1114	if (wil->hw_version < HW_VER_TALYN) {
1115		/* Clear MAC link up */
1116		wil_s(wil, RGF_HP_CTRL, BIT(15));
1117		wil_s(wil, RGF_USER_CLKS_CTL_SW_RST_MASK_0,
1118		      BIT_HPAL_PERST_FROM_PAD);
1119		wil_s(wil, RGF_USER_CLKS_CTL_SW_RST_MASK_0, BIT_CAR_PERST_RST);
1120	}
1121
1122	wil_halt_cpu(wil);
1123
1124	if (!no_flash) {
1125		/* clear all boot loader "ready" bits */
1126		wil_w(wil, RGF_USER_BL +
1127		      offsetof(struct bl_dedicated_registers_v0,
1128			       boot_loader_ready), 0);
1129		/* this should be safe to write even with old BLs */
1130		wil_w(wil, RGF_USER_BL +
1131		      offsetof(struct bl_dedicated_registers_v1,
1132			       bl_shutdown_handshake), 0);
1133	}
1134	/* Clear Fw Download notification */
1135	wil_c(wil, RGF_USER_USAGE_6, BIT(0));
1136
1137	wil_s(wil, RGF_CAF_OSC_CONTROL, BIT_CAF_OSC_XTAL_EN);
1138	/* XTAL stabilization should take about 3ms */
1139	usleep_range(5000, 7000);
1140	x = wil_r(wil, RGF_CAF_PLL_LOCK_STATUS);
1141	if (!(x & BIT_CAF_OSC_DIG_XTAL_STABLE)) {
1142		wil_err(wil, "Xtal stabilization timeout\n"
1143			"RGF_CAF_PLL_LOCK_STATUS = 0x%08x\n", x);
1144		return -ETIME;
1145	}
1146	/* switch 10k to XTAL*/
1147	wil_c(wil, RGF_USER_SPARROW_M_4, BIT_SPARROW_M_4_SEL_SLEEP_OR_REF);
1148	/* 40 MHz */
1149	wil_c(wil, RGF_USER_CLKS_CTL_0, BIT_USER_CLKS_CAR_AHB_SW_SEL);
1150
1151	wil_w(wil, RGF_USER_CLKS_CTL_EXT_SW_RST_VEC_0, 0x3ff81f);
1152	wil_w(wil, RGF_USER_CLKS_CTL_EXT_SW_RST_VEC_1, 0xf);
1153
1154	if (wil->hw_version >= HW_VER_TALYN_MB) {
1155		wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_2, 0x7e000000);
1156		wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_1, 0x0000003f);
1157		wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_3, 0xc00000f0);
1158		wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_0, 0xffe7fe00);
1159	} else {
1160		wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_2, 0xfe000000);
1161		wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_1, 0x0000003f);
1162		wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_3, 0x000000f0);
1163		wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_0, 0xffe7fe00);
1164	}
1165
1166	wil_w(wil, RGF_USER_CLKS_CTL_EXT_SW_RST_VEC_0, 0x0);
1167	wil_w(wil, RGF_USER_CLKS_CTL_EXT_SW_RST_VEC_1, 0x0);
1168
1169	wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_3, 0);
1170	wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_2, 0);
1171	wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_1, 0);
1172	wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_0, 0);
1173
1174	wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_3, 0x00000003);
1175	/* reset A2 PCIE AHB */
1176	wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_2, 0x00008000);
1177
1178	wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_0, 0);
1179
1180	if (wil->hw_version == HW_VER_TALYN_MB)
1181		rc = wil_wait_device_ready_talyn_mb(wil);
 
 
 
 
 
 
 
 
 
1182	else
1183		rc = wil_wait_device_ready(wil, no_flash);
1184	if (rc)
1185		return rc;
 
 
 
 
 
 
 
 
 
 
 
 
 
1186
1187	wil_c(wil, RGF_USER_CLKS_CTL_0, BIT_USER_CLKS_RST_PWGD);
1188
1189	/* enable fix for HW bug related to the SA/DA swap in AP Rx */
1190	wil_s(wil, RGF_DMA_OFUL_NID_0, BIT_DMA_OFUL_NID_0_RX_EXT_TR_EN |
1191	      BIT_DMA_OFUL_NID_0_RX_EXT_A3_SRC);
1192
1193	if (wil->hw_version < HW_VER_TALYN_MB && no_flash) {
1194		/* Reset OTP HW vectors to fit 40MHz */
1195		wil_w(wil, RGF_USER_XPM_IFC_RD_TIME1, 0x60001);
1196		wil_w(wil, RGF_USER_XPM_IFC_RD_TIME2, 0x20027);
1197		wil_w(wil, RGF_USER_XPM_IFC_RD_TIME3, 0x1);
1198		wil_w(wil, RGF_USER_XPM_IFC_RD_TIME4, 0x20027);
1199		wil_w(wil, RGF_USER_XPM_IFC_RD_TIME5, 0x30003);
1200		wil_w(wil, RGF_USER_XPM_IFC_RD_TIME6, 0x20002);
1201		wil_w(wil, RGF_USER_XPM_IFC_RD_TIME7, 0x60001);
1202		wil_w(wil, RGF_USER_XPM_IFC_RD_TIME8, 0x60001);
1203		wil_w(wil, RGF_USER_XPM_IFC_RD_TIME9, 0x60001);
1204		wil_w(wil, RGF_USER_XPM_IFC_RD_TIME10, 0x60001);
1205		wil_w(wil, RGF_USER_XPM_RD_DOUT_SAMPLE_TIME, 0x57);
1206	}
1207
 
1208	return 0;
1209}
1210
1211static void wil_collect_fw_info(struct wil6210_priv *wil)
1212{
1213	struct wiphy *wiphy = wil_to_wiphy(wil);
1214	u8 retry_short;
1215	int rc;
1216
1217	wil_refresh_fw_capabilities(wil);
1218
1219	rc = wmi_get_mgmt_retry(wil, &retry_short);
1220	if (!rc) {
1221		wiphy->retry_short = retry_short;
1222		wil_dbg_misc(wil, "FW retry_short: %d\n", retry_short);
1223	}
1224}
1225
1226void wil_refresh_fw_capabilities(struct wil6210_priv *wil)
1227{
1228	struct wiphy *wiphy = wil_to_wiphy(wil);
1229	int features;
1230
1231	wil->keep_radio_on_during_sleep =
1232		test_bit(WIL_PLATFORM_CAPA_RADIO_ON_IN_SUSPEND,
1233			 wil->platform_capa) &&
1234		test_bit(WMI_FW_CAPABILITY_D3_SUSPEND, wil->fw_capabilities);
1235
1236	wil_info(wil, "keep_radio_on_during_sleep (%d)\n",
1237		 wil->keep_radio_on_during_sleep);
1238
1239	if (test_bit(WMI_FW_CAPABILITY_RSSI_REPORTING, wil->fw_capabilities))
1240		wiphy->signal_type = CFG80211_SIGNAL_TYPE_MBM;
1241	else
1242		wiphy->signal_type = CFG80211_SIGNAL_TYPE_UNSPEC;
1243
1244	if (test_bit(WMI_FW_CAPABILITY_PNO, wil->fw_capabilities)) {
1245		wiphy->max_sched_scan_reqs = 1;
1246		wiphy->max_sched_scan_ssids = WMI_MAX_PNO_SSID_NUM;
1247		wiphy->max_match_sets = WMI_MAX_PNO_SSID_NUM;
1248		wiphy->max_sched_scan_ie_len = WMI_MAX_IE_LEN;
1249		wiphy->max_sched_scan_plans = WMI_MAX_PLANS_NUM;
1250	}
1251
1252	if (test_bit(WMI_FW_CAPABILITY_TX_REQ_EXT, wil->fw_capabilities))
1253		wiphy->flags |= WIPHY_FLAG_OFFCHAN_TX;
1254
1255	if (wil->platform_ops.set_features) {
1256		features = (test_bit(WMI_FW_CAPABILITY_REF_CLOCK_CONTROL,
1257				     wil->fw_capabilities) &&
1258			    test_bit(WIL_PLATFORM_CAPA_EXT_CLK,
1259				     wil->platform_capa)) ?
1260			BIT(WIL_PLATFORM_FEATURE_FW_EXT_CLK_CONTROL) : 0;
1261
1262		if (wil->n_msi == 3)
1263			features |= BIT(WIL_PLATFORM_FEATURE_TRIPLE_MSI);
1264
1265		wil->platform_ops.set_features(wil->platform_handle, features);
1266	}
1267
1268	if (test_bit(WMI_FW_CAPABILITY_BACK_WIN_SIZE_64,
1269		     wil->fw_capabilities)) {
1270		wil->max_agg_wsize = WIL_MAX_AGG_WSIZE_64;
1271		wil->max_ampdu_size = WIL_MAX_AMPDU_SIZE_128;
1272	} else {
1273		wil->max_agg_wsize = WIL_MAX_AGG_WSIZE;
1274		wil->max_ampdu_size = WIL_MAX_AMPDU_SIZE;
1275	}
1276
1277	update_supported_bands(wil);
1278}
1279
1280void wil_mbox_ring_le2cpus(struct wil6210_mbox_ring *r)
1281{
1282	le32_to_cpus(&r->base);
1283	le16_to_cpus(&r->entry_size);
1284	le16_to_cpus(&r->size);
1285	le32_to_cpus(&r->tail);
1286	le32_to_cpus(&r->head);
1287}
1288
1289/* construct actual board file name to use */
1290void wil_get_board_file(struct wil6210_priv *wil, char *buf, size_t len)
1291{
1292	const char *board_file;
1293	const char *wil_talyn_fw_name = ftm_mode ? WIL_FW_NAME_FTM_TALYN :
1294			      WIL_FW_NAME_TALYN;
1295
1296	if (wil->board_file) {
1297		board_file = wil->board_file;
1298	} else {
1299		/* If specific FW file is used for Talyn,
1300		 * use specific board file
1301		 */
1302		if (strcmp(wil->wil_fw_name, wil_talyn_fw_name) == 0)
1303			board_file = WIL_BRD_NAME_TALYN;
1304		else
1305			board_file = WIL_BOARD_FILE_NAME;
1306	}
1307
1308	strscpy(buf, board_file, len);
1309}
1310
1311static int wil_get_bl_info(struct wil6210_priv *wil)
1312{
1313	struct net_device *ndev = wil->main_ndev;
1314	struct wiphy *wiphy = wil_to_wiphy(wil);
1315	union {
1316		struct bl_dedicated_registers_v0 bl0;
1317		struct bl_dedicated_registers_v1 bl1;
1318	} bl;
1319	u32 bl_ver;
1320	u8 *mac;
1321	u16 rf_status;
1322
1323	wil_memcpy_fromio_32(&bl, wil->csr + HOSTADDR(RGF_USER_BL),
1324			     sizeof(bl));
1325	bl_ver = le32_to_cpu(bl.bl0.boot_loader_struct_version);
1326	mac = bl.bl0.mac_address;
1327
1328	if (bl_ver == 0) {
1329		le32_to_cpus(&bl.bl0.rf_type);
1330		le32_to_cpus(&bl.bl0.baseband_type);
1331		rf_status = 0; /* actually, unknown */
1332		wil_info(wil,
1333			 "Boot Loader struct v%d: MAC = %pM RF = 0x%08x bband = 0x%08x\n",
1334			 bl_ver, mac,
1335			 bl.bl0.rf_type, bl.bl0.baseband_type);
1336		wil_info(wil, "Boot Loader build unknown for struct v0\n");
1337	} else {
1338		le16_to_cpus(&bl.bl1.rf_type);
1339		rf_status = le16_to_cpu(bl.bl1.rf_status);
1340		le32_to_cpus(&bl.bl1.baseband_type);
1341		le16_to_cpus(&bl.bl1.bl_version_subminor);
1342		le16_to_cpus(&bl.bl1.bl_version_build);
1343		wil_info(wil,
1344			 "Boot Loader struct v%d: MAC = %pM RF = 0x%04x (status 0x%04x) bband = 0x%08x\n",
1345			 bl_ver, mac,
1346			 bl.bl1.rf_type, rf_status,
1347			 bl.bl1.baseband_type);
1348		wil_info(wil, "Boot Loader build %d.%d.%d.%d\n",
1349			 bl.bl1.bl_version_major, bl.bl1.bl_version_minor,
1350			 bl.bl1.bl_version_subminor, bl.bl1.bl_version_build);
1351	}
1352
1353	if (!is_valid_ether_addr(mac)) {
1354		wil_err(wil, "BL: Invalid MAC %pM\n", mac);
1355		return -EINVAL;
1356	}
1357
1358	ether_addr_copy(ndev->perm_addr, mac);
1359	ether_addr_copy(wiphy->perm_addr, mac);
1360	if (!is_valid_ether_addr(ndev->dev_addr))
1361		eth_hw_addr_set(ndev, mac);
1362
1363	if (rf_status) {/* bad RF cable? */
1364		wil_err(wil, "RF communication error 0x%04x",
1365			rf_status);
1366		return -EAGAIN;
1367	}
1368
1369	return 0;
1370}
1371
1372static void wil_bl_crash_info(struct wil6210_priv *wil, bool is_err)
1373{
1374	u32 bl_assert_code, bl_assert_blink, bl_magic_number;
1375	u32 bl_ver = wil_r(wil, RGF_USER_BL +
1376			   offsetof(struct bl_dedicated_registers_v0,
1377				    boot_loader_struct_version));
1378
1379	if (bl_ver < 2)
1380		return;
1381
1382	bl_assert_code = wil_r(wil, RGF_USER_BL +
1383			       offsetof(struct bl_dedicated_registers_v1,
1384					bl_assert_code));
1385	bl_assert_blink = wil_r(wil, RGF_USER_BL +
1386				offsetof(struct bl_dedicated_registers_v1,
1387					 bl_assert_blink));
1388	bl_magic_number = wil_r(wil, RGF_USER_BL +
1389				offsetof(struct bl_dedicated_registers_v1,
1390					 bl_magic_number));
1391
1392	if (is_err) {
1393		wil_err(wil,
1394			"BL assert code 0x%08x blink 0x%08x magic 0x%08x\n",
1395			bl_assert_code, bl_assert_blink, bl_magic_number);
1396	} else {
1397		wil_dbg_misc(wil,
1398			     "BL assert code 0x%08x blink 0x%08x magic 0x%08x\n",
1399			     bl_assert_code, bl_assert_blink, bl_magic_number);
1400	}
1401}
1402
1403static int wil_get_otp_info(struct wil6210_priv *wil)
1404{
1405	struct net_device *ndev = wil->main_ndev;
1406	struct wiphy *wiphy = wil_to_wiphy(wil);
1407	u8 mac[8];
1408	int mac_addr;
1409
1410	/* OEM MAC has precedence */
1411	mac_addr = RGF_OTP_OEM_MAC;
1412	wil_memcpy_fromio_32(mac, wil->csr + HOSTADDR(mac_addr), sizeof(mac));
1413
1414	if (is_valid_ether_addr(mac)) {
1415		wil_info(wil, "using OEM MAC %pM\n", mac);
1416	} else {
1417		if (wil->hw_version >= HW_VER_TALYN_MB)
1418			mac_addr = RGF_OTP_MAC_TALYN_MB;
1419		else
1420			mac_addr = RGF_OTP_MAC;
1421
1422		wil_memcpy_fromio_32(mac, wil->csr + HOSTADDR(mac_addr),
1423				     sizeof(mac));
1424	}
1425
 
 
1426	if (!is_valid_ether_addr(mac)) {
1427		wil_err(wil, "Invalid MAC %pM\n", mac);
1428		return -EINVAL;
1429	}
1430
1431	ether_addr_copy(ndev->perm_addr, mac);
1432	ether_addr_copy(wiphy->perm_addr, mac);
1433	if (!is_valid_ether_addr(ndev->dev_addr))
1434		eth_hw_addr_set(ndev, mac);
1435
1436	return 0;
1437}
1438
1439static int wil_wait_for_fw_ready(struct wil6210_priv *wil)
1440{
1441	ulong to = msecs_to_jiffies(2000);
1442	ulong left = wait_for_completion_timeout(&wil->wmi_ready, to);
1443
1444	if (0 == left) {
1445		wil_err(wil, "Firmware not ready\n");
1446		return -ETIME;
1447	} else {
1448		wil_info(wil, "FW ready after %d ms. HW version 0x%08x\n",
1449			 jiffies_to_msecs(to-left), wil->hw_version);
1450	}
1451	return 0;
1452}
1453
1454void wil_abort_scan(struct wil6210_vif *vif, bool sync)
1455{
1456	struct wil6210_priv *wil = vif_to_wil(vif);
1457	int rc;
1458	struct cfg80211_scan_info info = {
1459		.aborted = true,
1460	};
1461
1462	lockdep_assert_held(&wil->vif_mutex);
1463
1464	if (!vif->scan_request)
1465		return;
1466
1467	wil_dbg_misc(wil, "Abort scan_request 0x%p\n", vif->scan_request);
1468	del_timer_sync(&vif->scan_timer);
1469	mutex_unlock(&wil->vif_mutex);
1470	rc = wmi_abort_scan(vif);
1471	if (!rc && sync)
1472		wait_event_interruptible_timeout(wil->wq, !vif->scan_request,
1473						 msecs_to_jiffies(
1474						 WAIT_FOR_SCAN_ABORT_MS));
1475
1476	mutex_lock(&wil->vif_mutex);
1477	if (vif->scan_request) {
1478		cfg80211_scan_done(vif->scan_request, &info);
1479		vif->scan_request = NULL;
1480	}
1481}
1482
1483void wil_abort_scan_all_vifs(struct wil6210_priv *wil, bool sync)
1484{
1485	int i;
1486
1487	lockdep_assert_held(&wil->vif_mutex);
1488
1489	for (i = 0; i < GET_MAX_VIFS(wil); i++) {
1490		struct wil6210_vif *vif = wil->vifs[i];
1491
1492		if (vif)
1493			wil_abort_scan(vif, sync);
1494	}
1495}
1496
1497int wil_ps_update(struct wil6210_priv *wil, enum wmi_ps_profile_type ps_profile)
1498{
1499	int rc;
1500
1501	if (!test_bit(WMI_FW_CAPABILITY_PS_CONFIG, wil->fw_capabilities)) {
1502		wil_err(wil, "set_power_mgmt not supported\n");
1503		return -EOPNOTSUPP;
1504	}
1505
1506	rc  = wmi_ps_dev_profile_cfg(wil, ps_profile);
1507	if (rc)
1508		wil_err(wil, "wmi_ps_dev_profile_cfg failed (%d)\n", rc);
1509	else
1510		wil->ps_profile = ps_profile;
1511
1512	return rc;
1513}
1514
1515static void wil_pre_fw_config(struct wil6210_priv *wil)
1516{
1517	wil_clear_fw_log_addr(wil);
1518	/* Mark FW as loaded from host */
1519	wil_s(wil, RGF_USER_USAGE_6, 1);
1520
1521	/* clear any interrupts which on-card-firmware
1522	 * may have set
1523	 */
1524	wil6210_clear_irq(wil);
1525	/* CAF_ICR - clear and mask */
1526	/* it is W1C, clear by writing back same value */
1527	if (wil->hw_version < HW_VER_TALYN_MB) {
1528		wil_s(wil, RGF_CAF_ICR + offsetof(struct RGF_ICR, ICR), 0);
1529		wil_w(wil, RGF_CAF_ICR + offsetof(struct RGF_ICR, IMV), ~0);
1530	}
1531	/* clear PAL_UNIT_ICR (potential D0->D3 leftover)
1532	 * In Talyn-MB host cannot access this register due to
1533	 * access control, hence PAL_UNIT_ICR is cleared by the FW
1534	 */
1535	if (wil->hw_version < HW_VER_TALYN_MB)
1536		wil_s(wil, RGF_PAL_UNIT_ICR + offsetof(struct RGF_ICR, ICR),
1537		      0);
1538
1539	if (wil->fw_calib_result > 0) {
1540		__le32 val = cpu_to_le32(wil->fw_calib_result |
1541						(CALIB_RESULT_SIGNATURE << 8));
1542		wil_w(wil, RGF_USER_FW_CALIB_RESULT, (u32 __force)val);
1543	}
1544}
1545
1546static int wil_restore_vifs(struct wil6210_priv *wil)
1547{
1548	struct wil6210_vif *vif;
1549	struct net_device *ndev;
1550	struct wireless_dev *wdev;
1551	int i, rc;
1552
1553	for (i = 0; i < GET_MAX_VIFS(wil); i++) {
1554		vif = wil->vifs[i];
1555		if (!vif)
1556			continue;
1557		vif->ap_isolate = 0;
1558		if (vif->mid) {
1559			ndev = vif_to_ndev(vif);
1560			wdev = vif_to_wdev(vif);
1561			rc = wmi_port_allocate(wil, vif->mid, ndev->dev_addr,
1562					       wdev->iftype);
1563			if (rc) {
1564				wil_err(wil, "fail to restore VIF %d type %d, rc %d\n",
1565					i, wdev->iftype, rc);
1566				return rc;
1567			}
1568		}
1569	}
1570
1571	return 0;
1572}
1573
1574/*
1575 * Clear FW and ucode log start addr to indicate FW log is not ready. The host
1576 * driver clears the addresses before FW starts and FW initializes the address
1577 * when it is ready to send logs.
1578 */
1579void wil_clear_fw_log_addr(struct wil6210_priv *wil)
1580{
1581	/* FW log addr */
1582	wil_w(wil, RGF_USER_USAGE_1, 0);
1583	/* ucode log addr */
1584	wil_w(wil, RGF_USER_USAGE_2, 0);
1585	wil_dbg_misc(wil, "Cleared FW and ucode log address");
1586}
1587
1588/*
1589 * We reset all the structures, and we reset the UMAC.
1590 * After calling this routine, you're expected to reload
1591 * the firmware.
1592 */
1593int wil_reset(struct wil6210_priv *wil, bool load_fw)
1594{
1595	int rc, i;
1596	unsigned long status_flags = BIT(wil_status_resetting);
1597	int no_flash;
1598	struct wil6210_vif *vif;
1599
1600	wil_dbg_misc(wil, "reset\n");
1601
1602	WARN_ON(!mutex_is_locked(&wil->mutex));
1603	WARN_ON(test_bit(wil_status_napi_en, wil->status));
1604
1605	if (debug_fw) {
1606		static const u8 mac[ETH_ALEN] = {
1607			0x00, 0xde, 0xad, 0x12, 0x34, 0x56,
1608		};
1609		struct net_device *ndev = wil->main_ndev;
1610
1611		ether_addr_copy(ndev->perm_addr, mac);
1612		eth_hw_addr_set(ndev, ndev->perm_addr);
1613		return 0;
1614	}
1615
1616	if (wil->hw_version == HW_VER_UNKNOWN)
1617		return -ENODEV;
1618
1619	if (test_bit(WIL_PLATFORM_CAPA_T_PWR_ON_0, wil->platform_capa) &&
1620	    wil->hw_version < HW_VER_TALYN_MB) {
1621		wil_dbg_misc(wil, "Notify FW to set T_POWER_ON=0\n");
1622		wil_s(wil, RGF_USER_USAGE_8, BIT_USER_SUPPORT_T_POWER_ON_0);
1623	}
1624
1625	if (test_bit(WIL_PLATFORM_CAPA_EXT_CLK, wil->platform_capa)) {
1626		wil_dbg_misc(wil, "Notify FW on ext clock configuration\n");
1627		wil_s(wil, RGF_USER_USAGE_8, BIT_USER_EXT_CLK);
1628	}
1629
1630	if (wil->platform_ops.notify) {
1631		rc = wil->platform_ops.notify(wil->platform_handle,
1632					      WIL_PLATFORM_EVT_PRE_RESET);
1633		if (rc)
1634			wil_err(wil, "PRE_RESET platform notify failed, rc %d\n",
1635				rc);
1636	}
1637
1638	set_bit(wil_status_resetting, wil->status);
 
 
 
 
 
 
 
 
 
1639	mutex_lock(&wil->vif_mutex);
1640	wil_abort_scan_all_vifs(wil, false);
1641	mutex_unlock(&wil->vif_mutex);
1642
1643	for (i = 0; i < GET_MAX_VIFS(wil); i++) {
1644		vif = wil->vifs[i];
1645		if (vif) {
1646			cancel_work_sync(&vif->disconnect_worker);
1647			wil6210_disconnect(vif, NULL,
1648					   WLAN_REASON_DEAUTH_LEAVING);
1649			vif->ptk_rekey_state = WIL_REKEY_IDLE;
1650		}
1651	}
1652	wil_bcast_fini_all(wil);
1653
1654	/* Disable device led before reset*/
1655	wmi_led_cfg(wil, false);
1656
1657	down_write(&wil->mem_lock);
1658
1659	/* prevent NAPI from being scheduled and prevent wmi commands */
1660	mutex_lock(&wil->wmi_mutex);
1661	if (test_bit(wil_status_suspending, wil->status))
1662		status_flags |= BIT(wil_status_suspending);
1663	bitmap_and(wil->status, wil->status, &status_flags,
1664		   wil_status_last);
1665	wil_dbg_misc(wil, "wil->status (0x%lx)\n", *wil->status);
1666	mutex_unlock(&wil->wmi_mutex);
1667
1668	wil_mask_irq(wil);
1669
1670	wmi_event_flush(wil);
1671
1672	flush_workqueue(wil->wq_service);
1673	flush_workqueue(wil->wmi_wq);
1674
1675	no_flash = test_bit(hw_capa_no_flash, wil->hw_capa);
1676	if (!no_flash)
1677		wil_bl_crash_info(wil, false);
1678	wil_disable_irq(wil);
1679	rc = wil_target_reset(wil, no_flash);
1680	wil6210_clear_irq(wil);
1681	wil_enable_irq(wil);
1682	wil->txrx_ops.rx_fini(wil);
1683	wil->txrx_ops.tx_fini(wil);
1684	if (rc) {
1685		if (!no_flash)
1686			wil_bl_crash_info(wil, true);
1687		goto out;
1688	}
1689
1690	if (no_flash) {
1691		rc = wil_get_otp_info(wil);
1692	} else {
1693		rc = wil_get_bl_info(wil);
1694		if (rc == -EAGAIN && !load_fw)
1695			/* ignore RF error if not going up */
1696			rc = 0;
1697	}
1698	if (rc)
1699		goto out;
1700
1701	wil_set_oob_mode(wil, oob_mode);
1702	if (load_fw) {
1703		char board_file[WIL_BOARD_FILE_MAX_NAMELEN];
1704
1705		if  (wil->secured_boot) {
1706			wil_err(wil, "secured boot is not supported\n");
1707			up_write(&wil->mem_lock);
1708			return -ENOTSUPP;
1709		}
1710
1711		board_file[0] = '\0';
1712		wil_get_board_file(wil, board_file, sizeof(board_file));
1713		wil_info(wil, "Use firmware <%s> + board <%s>\n",
1714			 wil->wil_fw_name, board_file);
1715
1716		if (!no_flash)
1717			wil_bl_prepare_halt(wil);
1718
1719		wil_halt_cpu(wil);
1720		memset(wil->fw_version, 0, sizeof(wil->fw_version));
1721		/* Loading f/w from the file */
1722		rc = wil_request_firmware(wil, wil->wil_fw_name, true);
1723		if (rc)
1724			goto out;
1725		if (wil->num_of_brd_entries)
1726			rc = wil_request_board(wil, board_file);
1727		else
1728			rc = wil_request_firmware(wil, board_file, true);
 
 
1729		if (rc)
1730			goto out;
1731
1732		wil_pre_fw_config(wil);
1733		wil_release_cpu(wil);
1734	}
1735
1736	/* init after reset */
1737	reinit_completion(&wil->wmi_ready);
1738	reinit_completion(&wil->wmi_call);
1739	reinit_completion(&wil->halp.comp);
1740
1741	clear_bit(wil_status_resetting, wil->status);
1742
1743	up_write(&wil->mem_lock);
1744
1745	if (load_fw) {
 
1746		wil_unmask_irq(wil);
1747
1748		/* we just started MAC, wait for FW ready */
1749		rc = wil_wait_for_fw_ready(wil);
1750		if (rc)
1751			return rc;
1752
1753		/* check FW is responsive */
1754		rc = wmi_echo(wil);
1755		if (rc) {
1756			wil_err(wil, "wmi_echo failed, rc %d\n", rc);
1757			return rc;
1758		}
1759
1760		wil->txrx_ops.configure_interrupt_moderation(wil);
1761
1762		/* Enable OFU rdy valid bug fix, to prevent hang in oful34_rx
1763		 * while there is back-pressure from Host during RX
1764		 */
1765		if (wil->hw_version >= HW_VER_TALYN_MB)
1766			wil_s(wil, RGF_DMA_MISC_CTL,
1767			      BIT_OFUL34_RDY_VALID_BUG_FIX_EN);
1768
1769		rc = wil_restore_vifs(wil);
1770		if (rc) {
1771			wil_err(wil, "failed to restore vifs, rc %d\n", rc);
1772			return rc;
1773		}
1774
1775		wil_collect_fw_info(wil);
1776
1777		if (wil->ps_profile != WMI_PS_PROFILE_TYPE_DEFAULT)
1778			wil_ps_update(wil, wil->ps_profile);
1779
1780		if (wil->platform_ops.notify) {
1781			rc = wil->platform_ops.notify(wil->platform_handle,
1782						      WIL_PLATFORM_EVT_FW_RDY);
1783			if (rc) {
1784				wil_err(wil, "FW_RDY notify failed, rc %d\n",
1785					rc);
1786				rc = 0;
1787			}
1788		}
1789	}
1790
1791	return rc;
1792
1793out:
1794	up_write(&wil->mem_lock);
1795	clear_bit(wil_status_resetting, wil->status);
1796	return rc;
1797}
1798
1799void wil_fw_error_recovery(struct wil6210_priv *wil)
1800{
1801	wil_dbg_misc(wil, "starting fw error recovery\n");
1802
1803	if (test_bit(wil_status_resetting, wil->status)) {
1804		wil_info(wil, "Reset already in progress\n");
1805		return;
1806	}
1807
1808	wil->recovery_state = fw_recovery_pending;
1809	schedule_work(&wil->fw_error_worker);
1810}
1811
1812int __wil_up(struct wil6210_priv *wil)
1813{
1814	struct net_device *ndev = wil->main_ndev;
1815	struct wireless_dev *wdev = ndev->ieee80211_ptr;
1816	int rc;
1817
1818	WARN_ON(!mutex_is_locked(&wil->mutex));
1819
1820	rc = wil_reset(wil, true);
1821	if (rc)
1822		return rc;
1823
1824	/* Rx RING. After MAC and beacon */
1825	if (rx_ring_order == 0)
1826		rx_ring_order = wil->hw_version < HW_VER_TALYN_MB ?
1827			WIL_RX_RING_SIZE_ORDER_DEFAULT :
1828			WIL_RX_RING_SIZE_ORDER_TALYN_DEFAULT;
1829
1830	rc = wil->txrx_ops.rx_init(wil, rx_ring_order);
1831	if (rc)
1832		return rc;
1833
1834	rc = wil->txrx_ops.tx_init(wil);
1835	if (rc)
1836		return rc;
1837
1838	switch (wdev->iftype) {
1839	case NL80211_IFTYPE_STATION:
1840		wil_dbg_misc(wil, "type: STATION\n");
1841		ndev->type = ARPHRD_ETHER;
1842		break;
1843	case NL80211_IFTYPE_AP:
1844		wil_dbg_misc(wil, "type: AP\n");
1845		ndev->type = ARPHRD_ETHER;
1846		break;
1847	case NL80211_IFTYPE_P2P_CLIENT:
1848		wil_dbg_misc(wil, "type: P2P_CLIENT\n");
1849		ndev->type = ARPHRD_ETHER;
1850		break;
1851	case NL80211_IFTYPE_P2P_GO:
1852		wil_dbg_misc(wil, "type: P2P_GO\n");
1853		ndev->type = ARPHRD_ETHER;
1854		break;
1855	case NL80211_IFTYPE_MONITOR:
1856		wil_dbg_misc(wil, "type: Monitor\n");
1857		ndev->type = ARPHRD_IEEE80211_RADIOTAP;
1858		/* ARPHRD_IEEE80211 or ARPHRD_IEEE80211_RADIOTAP ? */
1859		break;
1860	default:
1861		return -EOPNOTSUPP;
1862	}
1863
1864	/* MAC address - pre-requisite for other commands */
1865	wmi_set_mac_address(wil, ndev->dev_addr);
1866
1867	wil_dbg_misc(wil, "NAPI enable\n");
1868	napi_enable(&wil->napi_rx);
1869	napi_enable(&wil->napi_tx);
1870	set_bit(wil_status_napi_en, wil->status);
1871
1872	wil6210_bus_request(wil, WIL_DEFAULT_BUS_REQUEST_KBPS);
1873
1874	return 0;
1875}
1876
1877int wil_up(struct wil6210_priv *wil)
1878{
1879	int rc;
1880
1881	wil_dbg_misc(wil, "up\n");
1882
1883	mutex_lock(&wil->mutex);
1884	rc = __wil_up(wil);
1885	mutex_unlock(&wil->mutex);
1886
1887	return rc;
1888}
1889
1890int __wil_down(struct wil6210_priv *wil)
1891{
1892	int rc;
1893	WARN_ON(!mutex_is_locked(&wil->mutex));
1894
1895	set_bit(wil_status_resetting, wil->status);
1896
1897	wil6210_bus_request(wil, 0);
1898
1899	wil_disable_irq(wil);
1900	if (test_and_clear_bit(wil_status_napi_en, wil->status)) {
1901		napi_disable(&wil->napi_rx);
1902		napi_disable(&wil->napi_tx);
1903		wil_dbg_misc(wil, "NAPI disable\n");
1904	}
1905	wil_enable_irq(wil);
1906
1907	mutex_lock(&wil->vif_mutex);
1908	wil_p2p_stop_radio_operations(wil);
1909	wil_abort_scan_all_vifs(wil, false);
1910	mutex_unlock(&wil->vif_mutex);
1911
1912	rc = wil_reset(wil, false);
1913
1914	return rc;
1915}
1916
1917int wil_down(struct wil6210_priv *wil)
1918{
1919	int rc;
1920
1921	wil_dbg_misc(wil, "down\n");
1922
1923	wil_set_recovery_state(wil, fw_recovery_idle);
1924	mutex_lock(&wil->mutex);
1925	rc = __wil_down(wil);
1926	mutex_unlock(&wil->mutex);
1927
1928	return rc;
1929}
1930
1931int wil_find_cid(struct wil6210_priv *wil, u8 mid, const u8 *mac)
1932{
1933	int i;
1934	int rc = -ENOENT;
1935
1936	for (i = 0; i < wil->max_assoc_sta; i++) {
1937		if (wil->sta[i].mid == mid &&
1938		    wil->sta[i].status != wil_sta_unused &&
1939		    ether_addr_equal(wil->sta[i].addr, mac)) {
1940			rc = i;
1941			break;
1942		}
1943	}
1944
1945	return rc;
1946}
1947
1948void wil_halp_vote(struct wil6210_priv *wil)
1949{
1950	unsigned long rc;
1951	unsigned long to_jiffies = msecs_to_jiffies(WAIT_FOR_HALP_VOTE_MS);
1952
1953	if (wil->hw_version >= HW_VER_TALYN_MB)
1954		return;
1955
1956	mutex_lock(&wil->halp.lock);
1957
1958	wil_dbg_irq(wil, "halp_vote: start, HALP ref_cnt (%d)\n",
1959		    wil->halp.ref_cnt);
1960
1961	if (++wil->halp.ref_cnt == 1) {
1962		reinit_completion(&wil->halp.comp);
1963		/* mark to IRQ context to handle HALP ICR */
1964		wil->halp.handle_icr = true;
1965		wil6210_set_halp(wil);
1966		rc = wait_for_completion_timeout(&wil->halp.comp, to_jiffies);
1967		if (!rc) {
1968			wil_err(wil, "HALP vote timed out\n");
1969			/* Mask HALP as done in case the interrupt is raised */
1970			wil->halp.handle_icr = false;
1971			wil6210_mask_halp(wil);
1972		} else {
1973			wil_dbg_irq(wil,
1974				    "halp_vote: HALP vote completed after %d ms\n",
1975				    jiffies_to_msecs(to_jiffies - rc));
1976		}
1977	}
1978
1979	wil_dbg_irq(wil, "halp_vote: end, HALP ref_cnt (%d)\n",
1980		    wil->halp.ref_cnt);
1981
1982	mutex_unlock(&wil->halp.lock);
1983}
1984
1985void wil_halp_unvote(struct wil6210_priv *wil)
1986{
1987	if (wil->hw_version >= HW_VER_TALYN_MB)
1988		return;
1989
1990	WARN_ON(wil->halp.ref_cnt == 0);
1991
1992	mutex_lock(&wil->halp.lock);
1993
1994	wil_dbg_irq(wil, "halp_unvote: start, HALP ref_cnt (%d)\n",
1995		    wil->halp.ref_cnt);
1996
1997	if (--wil->halp.ref_cnt == 0) {
1998		wil6210_clear_halp(wil);
1999		wil_dbg_irq(wil, "HALP unvote\n");
2000	}
2001
2002	wil_dbg_irq(wil, "halp_unvote:end, HALP ref_cnt (%d)\n",
2003		    wil->halp.ref_cnt);
2004
2005	mutex_unlock(&wil->halp.lock);
2006}
2007
2008void wil_init_txrx_ops(struct wil6210_priv *wil)
2009{
2010	if (wil->use_enhanced_dma_hw)
2011		wil_init_txrx_ops_edma(wil);
2012	else
2013		wil_init_txrx_ops_legacy_dma(wil);
2014}