Linux Audio

Check our new training course

Open-source upstreaming

Need help get the support for your hardware in upstream Linux?
Loading...
v4.17
 
   1/*
   2 * Copyright (C) 1991, 1992 Linus Torvalds
   3 * Copyright (C) 1994,      Karl Keyte: Added support for disk statistics
   4 * Elevator latency, (C) 2000  Andrea Arcangeli <andrea@suse.de> SuSE
   5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
   6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
   7 *	-  July2000
   8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
   9 */
  10
  11/*
  12 * This handles all read/write requests to block devices
  13 */
  14#include <linux/kernel.h>
  15#include <linux/module.h>
  16#include <linux/backing-dev.h>
  17#include <linux/bio.h>
  18#include <linux/blkdev.h>
  19#include <linux/blk-mq.h>
 
  20#include <linux/highmem.h>
  21#include <linux/mm.h>
 
  22#include <linux/kernel_stat.h>
  23#include <linux/string.h>
  24#include <linux/init.h>
  25#include <linux/completion.h>
  26#include <linux/slab.h>
  27#include <linux/swap.h>
  28#include <linux/writeback.h>
  29#include <linux/task_io_accounting_ops.h>
  30#include <linux/fault-inject.h>
  31#include <linux/list_sort.h>
  32#include <linux/delay.h>
  33#include <linux/ratelimit.h>
  34#include <linux/pm_runtime.h>
  35#include <linux/blk-cgroup.h>
  36#include <linux/debugfs.h>
  37#include <linux/bpf.h>
 
 
 
  38
  39#define CREATE_TRACE_POINTS
  40#include <trace/events/block.h>
  41
  42#include "blk.h"
  43#include "blk-mq.h"
  44#include "blk-mq-sched.h"
  45#include "blk-wbt.h"
 
 
 
  46
  47#ifdef CONFIG_DEBUG_FS
  48struct dentry *blk_debugfs_root;
  49#endif
  50
  51EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
  52EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
  53EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
  54EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
  55EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
 
  56
  57DEFINE_IDA(blk_queue_ida);
  58
  59/*
  60 * For the allocated request tables
  61 */
  62struct kmem_cache *request_cachep;
  63
  64/*
  65 * For queue allocation
  66 */
  67struct kmem_cache *blk_requestq_cachep;
  68
  69/*
  70 * Controlling structure to kblockd
  71 */
  72static struct workqueue_struct *kblockd_workqueue;
  73
  74/**
  75 * blk_queue_flag_set - atomically set a queue flag
  76 * @flag: flag to be set
  77 * @q: request queue
  78 */
  79void blk_queue_flag_set(unsigned int flag, struct request_queue *q)
  80{
  81	unsigned long flags;
  82
  83	spin_lock_irqsave(q->queue_lock, flags);
  84	queue_flag_set(flag, q);
  85	spin_unlock_irqrestore(q->queue_lock, flags);
  86}
  87EXPORT_SYMBOL(blk_queue_flag_set);
  88
  89/**
  90 * blk_queue_flag_clear - atomically clear a queue flag
  91 * @flag: flag to be cleared
  92 * @q: request queue
  93 */
  94void blk_queue_flag_clear(unsigned int flag, struct request_queue *q)
  95{
  96	unsigned long flags;
  97
  98	spin_lock_irqsave(q->queue_lock, flags);
  99	queue_flag_clear(flag, q);
 100	spin_unlock_irqrestore(q->queue_lock, flags);
 101}
 102EXPORT_SYMBOL(blk_queue_flag_clear);
 103
 104/**
 105 * blk_queue_flag_test_and_set - atomically test and set a queue flag
 106 * @flag: flag to be set
 107 * @q: request queue
 108 *
 109 * Returns the previous value of @flag - 0 if the flag was not set and 1 if
 110 * the flag was already set.
 111 */
 112bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q)
 113{
 114	unsigned long flags;
 115	bool res;
 116
 117	spin_lock_irqsave(q->queue_lock, flags);
 118	res = queue_flag_test_and_set(flag, q);
 119	spin_unlock_irqrestore(q->queue_lock, flags);
 120
 121	return res;
 122}
 123EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set);
 124
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 125/**
 126 * blk_queue_flag_test_and_clear - atomically test and clear a queue flag
 127 * @flag: flag to be cleared
 128 * @q: request queue
 129 *
 130 * Returns the previous value of @flag - 0 if the flag was not set and 1 if
 131 * the flag was set.
 
 132 */
 133bool blk_queue_flag_test_and_clear(unsigned int flag, struct request_queue *q)
 134{
 135	unsigned long flags;
 136	bool res;
 137
 138	spin_lock_irqsave(q->queue_lock, flags);
 139	res = queue_flag_test_and_clear(flag, q);
 140	spin_unlock_irqrestore(q->queue_lock, flags);
 141
 142	return res;
 143}
 144EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_clear);
 145
 146static void blk_clear_congested(struct request_list *rl, int sync)
 147{
 148#ifdef CONFIG_CGROUP_WRITEBACK
 149	clear_wb_congested(rl->blkg->wb_congested, sync);
 150#else
 151	/*
 152	 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't
 153	 * flip its congestion state for events on other blkcgs.
 154	 */
 155	if (rl == &rl->q->root_rl)
 156		clear_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
 157#endif
 158}
 159
 160static void blk_set_congested(struct request_list *rl, int sync)
 161{
 162#ifdef CONFIG_CGROUP_WRITEBACK
 163	set_wb_congested(rl->blkg->wb_congested, sync);
 164#else
 165	/* see blk_clear_congested() */
 166	if (rl == &rl->q->root_rl)
 167		set_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
 168#endif
 169}
 170
 171void blk_queue_congestion_threshold(struct request_queue *q)
 172{
 173	int nr;
 174
 175	nr = q->nr_requests - (q->nr_requests / 8) + 1;
 176	if (nr > q->nr_requests)
 177		nr = q->nr_requests;
 178	q->nr_congestion_on = nr;
 179
 180	nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
 181	if (nr < 1)
 182		nr = 1;
 183	q->nr_congestion_off = nr;
 184}
 185
 186void blk_rq_init(struct request_queue *q, struct request *rq)
 187{
 188	memset(rq, 0, sizeof(*rq));
 189
 190	INIT_LIST_HEAD(&rq->queuelist);
 191	INIT_LIST_HEAD(&rq->timeout_list);
 192	rq->cpu = -1;
 193	rq->q = q;
 194	rq->__sector = (sector_t) -1;
 195	INIT_HLIST_NODE(&rq->hash);
 196	RB_CLEAR_NODE(&rq->rb_node);
 197	rq->tag = -1;
 198	rq->internal_tag = -1;
 199	rq->start_time = jiffies;
 200	set_start_time_ns(rq);
 201	rq->part = NULL;
 202	seqcount_init(&rq->gstate_seq);
 203	u64_stats_init(&rq->aborted_gstate_sync);
 204	/*
 205	 * See comment of blk_mq_init_request
 206	 */
 207	WRITE_ONCE(rq->gstate, MQ_RQ_GEN_INC);
 208}
 209EXPORT_SYMBOL(blk_rq_init);
 210
 211static const struct {
 212	int		errno;
 213	const char	*name;
 214} blk_errors[] = {
 215	[BLK_STS_OK]		= { 0,		"" },
 216	[BLK_STS_NOTSUPP]	= { -EOPNOTSUPP, "operation not supported" },
 217	[BLK_STS_TIMEOUT]	= { -ETIMEDOUT,	"timeout" },
 218	[BLK_STS_NOSPC]		= { -ENOSPC,	"critical space allocation" },
 219	[BLK_STS_TRANSPORT]	= { -ENOLINK,	"recoverable transport" },
 220	[BLK_STS_TARGET]	= { -EREMOTEIO,	"critical target" },
 221	[BLK_STS_NEXUS]		= { -EBADE,	"critical nexus" },
 222	[BLK_STS_MEDIUM]	= { -ENODATA,	"critical medium" },
 223	[BLK_STS_PROTECTION]	= { -EILSEQ,	"protection" },
 224	[BLK_STS_RESOURCE]	= { -ENOMEM,	"kernel resource" },
 225	[BLK_STS_DEV_RESOURCE]	= { -EBUSY,	"device resource" },
 226	[BLK_STS_AGAIN]		= { -EAGAIN,	"nonblocking retry" },
 
 227
 228	/* device mapper special case, should not leak out: */
 229	[BLK_STS_DM_REQUEUE]	= { -EREMCHG, "dm internal retry" },
 230
 
 
 
 
 
 
 
 231	/* everything else not covered above: */
 232	[BLK_STS_IOERR]		= { -EIO,	"I/O" },
 233};
 234
 235blk_status_t errno_to_blk_status(int errno)
 236{
 237	int i;
 238
 239	for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
 240		if (blk_errors[i].errno == errno)
 241			return (__force blk_status_t)i;
 242	}
 243
 244	return BLK_STS_IOERR;
 245}
 246EXPORT_SYMBOL_GPL(errno_to_blk_status);
 247
 248int blk_status_to_errno(blk_status_t status)
 249{
 250	int idx = (__force int)status;
 251
 252	if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
 253		return -EIO;
 254	return blk_errors[idx].errno;
 255}
 256EXPORT_SYMBOL_GPL(blk_status_to_errno);
 257
 258static void print_req_error(struct request *req, blk_status_t status)
 259{
 260	int idx = (__force int)status;
 261
 262	if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
 263		return;
 264
 265	printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n",
 266			   __func__, blk_errors[idx].name, req->rq_disk ?
 267			   req->rq_disk->disk_name : "?",
 268			   (unsigned long long)blk_rq_pos(req));
 269}
 270
 271static void req_bio_endio(struct request *rq, struct bio *bio,
 272			  unsigned int nbytes, blk_status_t error)
 273{
 274	if (error)
 275		bio->bi_status = error;
 276
 277	if (unlikely(rq->rq_flags & RQF_QUIET))
 278		bio_set_flag(bio, BIO_QUIET);
 279
 280	bio_advance(bio, nbytes);
 281
 282	/* don't actually finish bio if it's part of flush sequence */
 283	if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
 284		bio_endio(bio);
 285}
 286
 287void blk_dump_rq_flags(struct request *rq, char *msg)
 288{
 289	printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
 290		rq->rq_disk ? rq->rq_disk->disk_name : "?",
 291		(unsigned long long) rq->cmd_flags);
 292
 293	printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
 294	       (unsigned long long)blk_rq_pos(rq),
 295	       blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
 296	printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
 297	       rq->bio, rq->biotail, blk_rq_bytes(rq));
 298}
 299EXPORT_SYMBOL(blk_dump_rq_flags);
 300
 301static void blk_delay_work(struct work_struct *work)
 302{
 303	struct request_queue *q;
 304
 305	q = container_of(work, struct request_queue, delay_work.work);
 306	spin_lock_irq(q->queue_lock);
 307	__blk_run_queue(q);
 308	spin_unlock_irq(q->queue_lock);
 309}
 310
 311/**
 312 * blk_delay_queue - restart queueing after defined interval
 313 * @q:		The &struct request_queue in question
 314 * @msecs:	Delay in msecs
 315 *
 316 * Description:
 317 *   Sometimes queueing needs to be postponed for a little while, to allow
 318 *   resources to come back. This function will make sure that queueing is
 319 *   restarted around the specified time.
 320 */
 321void blk_delay_queue(struct request_queue *q, unsigned long msecs)
 322{
 323	lockdep_assert_held(q->queue_lock);
 324	WARN_ON_ONCE(q->mq_ops);
 325
 326	if (likely(!blk_queue_dead(q)))
 327		queue_delayed_work(kblockd_workqueue, &q->delay_work,
 328				   msecs_to_jiffies(msecs));
 329}
 330EXPORT_SYMBOL(blk_delay_queue);
 331
 332/**
 333 * blk_start_queue_async - asynchronously restart a previously stopped queue
 334 * @q:    The &struct request_queue in question
 335 *
 336 * Description:
 337 *   blk_start_queue_async() will clear the stop flag on the queue, and
 338 *   ensure that the request_fn for the queue is run from an async
 339 *   context.
 340 **/
 341void blk_start_queue_async(struct request_queue *q)
 342{
 343	lockdep_assert_held(q->queue_lock);
 344	WARN_ON_ONCE(q->mq_ops);
 345
 346	queue_flag_clear(QUEUE_FLAG_STOPPED, q);
 347	blk_run_queue_async(q);
 348}
 349EXPORT_SYMBOL(blk_start_queue_async);
 350
 351/**
 352 * blk_start_queue - restart a previously stopped queue
 353 * @q:    The &struct request_queue in question
 354 *
 355 * Description:
 356 *   blk_start_queue() will clear the stop flag on the queue, and call
 357 *   the request_fn for the queue if it was in a stopped state when
 358 *   entered. Also see blk_stop_queue().
 359 **/
 360void blk_start_queue(struct request_queue *q)
 361{
 362	lockdep_assert_held(q->queue_lock);
 363	WARN_ON(!in_interrupt() && !irqs_disabled());
 364	WARN_ON_ONCE(q->mq_ops);
 365
 366	queue_flag_clear(QUEUE_FLAG_STOPPED, q);
 367	__blk_run_queue(q);
 368}
 369EXPORT_SYMBOL(blk_start_queue);
 370
 371/**
 372 * blk_stop_queue - stop a queue
 373 * @q:    The &struct request_queue in question
 374 *
 375 * Description:
 376 *   The Linux block layer assumes that a block driver will consume all
 377 *   entries on the request queue when the request_fn strategy is called.
 378 *   Often this will not happen, because of hardware limitations (queue
 379 *   depth settings). If a device driver gets a 'queue full' response,
 380 *   or if it simply chooses not to queue more I/O at one point, it can
 381 *   call this function to prevent the request_fn from being called until
 382 *   the driver has signalled it's ready to go again. This happens by calling
 383 *   blk_start_queue() to restart queue operations.
 384 **/
 385void blk_stop_queue(struct request_queue *q)
 386{
 387	lockdep_assert_held(q->queue_lock);
 388	WARN_ON_ONCE(q->mq_ops);
 389
 390	cancel_delayed_work(&q->delay_work);
 391	queue_flag_set(QUEUE_FLAG_STOPPED, q);
 392}
 393EXPORT_SYMBOL(blk_stop_queue);
 394
 395/**
 396 * blk_sync_queue - cancel any pending callbacks on a queue
 397 * @q: the queue
 398 *
 399 * Description:
 400 *     The block layer may perform asynchronous callback activity
 401 *     on a queue, such as calling the unplug function after a timeout.
 402 *     A block device may call blk_sync_queue to ensure that any
 403 *     such activity is cancelled, thus allowing it to release resources
 404 *     that the callbacks might use. The caller must already have made sure
 405 *     that its ->make_request_fn will not re-add plugging prior to calling
 406 *     this function.
 407 *
 408 *     This function does not cancel any asynchronous activity arising
 409 *     out of elevator or throttling code. That would require elevator_exit()
 410 *     and blkcg_exit_queue() to be called with queue lock initialized.
 411 *
 412 */
 413void blk_sync_queue(struct request_queue *q)
 414{
 415	del_timer_sync(&q->timeout);
 416	cancel_work_sync(&q->timeout_work);
 417
 418	if (q->mq_ops) {
 419		struct blk_mq_hw_ctx *hctx;
 420		int i;
 421
 422		cancel_delayed_work_sync(&q->requeue_work);
 423		queue_for_each_hw_ctx(q, hctx, i)
 424			cancel_delayed_work_sync(&hctx->run_work);
 425	} else {
 426		cancel_delayed_work_sync(&q->delay_work);
 427	}
 428}
 429EXPORT_SYMBOL(blk_sync_queue);
 430
 431/**
 432 * blk_set_preempt_only - set QUEUE_FLAG_PREEMPT_ONLY
 433 * @q: request queue pointer
 434 *
 435 * Returns the previous value of the PREEMPT_ONLY flag - 0 if the flag was not
 436 * set and 1 if the flag was already set.
 437 */
 438int blk_set_preempt_only(struct request_queue *q)
 439{
 440	return blk_queue_flag_test_and_set(QUEUE_FLAG_PREEMPT_ONLY, q);
 441}
 442EXPORT_SYMBOL_GPL(blk_set_preempt_only);
 443
 444void blk_clear_preempt_only(struct request_queue *q)
 445{
 446	blk_queue_flag_clear(QUEUE_FLAG_PREEMPT_ONLY, q);
 447	wake_up_all(&q->mq_freeze_wq);
 448}
 449EXPORT_SYMBOL_GPL(blk_clear_preempt_only);
 450
 451/**
 452 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
 453 * @q:	The queue to run
 454 *
 455 * Description:
 456 *    Invoke request handling on a queue if there are any pending requests.
 457 *    May be used to restart request handling after a request has completed.
 458 *    This variant runs the queue whether or not the queue has been
 459 *    stopped. Must be called with the queue lock held and interrupts
 460 *    disabled. See also @blk_run_queue.
 461 */
 462inline void __blk_run_queue_uncond(struct request_queue *q)
 463{
 464	lockdep_assert_held(q->queue_lock);
 465	WARN_ON_ONCE(q->mq_ops);
 466
 467	if (unlikely(blk_queue_dead(q)))
 468		return;
 469
 470	/*
 471	 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
 472	 * the queue lock internally. As a result multiple threads may be
 473	 * running such a request function concurrently. Keep track of the
 474	 * number of active request_fn invocations such that blk_drain_queue()
 475	 * can wait until all these request_fn calls have finished.
 476	 */
 477	q->request_fn_active++;
 478	q->request_fn(q);
 479	q->request_fn_active--;
 480}
 481EXPORT_SYMBOL_GPL(__blk_run_queue_uncond);
 482
 483/**
 484 * __blk_run_queue - run a single device queue
 485 * @q:	The queue to run
 486 *
 487 * Description:
 488 *    See @blk_run_queue.
 489 */
 490void __blk_run_queue(struct request_queue *q)
 491{
 492	lockdep_assert_held(q->queue_lock);
 493	WARN_ON_ONCE(q->mq_ops);
 494
 495	if (unlikely(blk_queue_stopped(q)))
 496		return;
 497
 498	__blk_run_queue_uncond(q);
 499}
 500EXPORT_SYMBOL(__blk_run_queue);
 501
 502/**
 503 * blk_run_queue_async - run a single device queue in workqueue context
 504 * @q:	The queue to run
 505 *
 506 * Description:
 507 *    Tells kblockd to perform the equivalent of @blk_run_queue on behalf
 508 *    of us.
 509 *
 510 * Note:
 511 *    Since it is not allowed to run q->delay_work after blk_cleanup_queue()
 512 *    has canceled q->delay_work, callers must hold the queue lock to avoid
 513 *    race conditions between blk_cleanup_queue() and blk_run_queue_async().
 514 */
 515void blk_run_queue_async(struct request_queue *q)
 516{
 517	lockdep_assert_held(q->queue_lock);
 518	WARN_ON_ONCE(q->mq_ops);
 
 519
 520	if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
 521		mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
 522}
 523EXPORT_SYMBOL(blk_run_queue_async);
 524
 525/**
 526 * blk_run_queue - run a single device queue
 527 * @q: The queue to run
 528 *
 529 * Description:
 530 *    Invoke request handling on this queue, if it has pending work to do.
 531 *    May be used to restart queueing when a request has completed.
 532 */
 533void blk_run_queue(struct request_queue *q)
 534{
 535	unsigned long flags;
 536
 537	WARN_ON_ONCE(q->mq_ops);
 538
 539	spin_lock_irqsave(q->queue_lock, flags);
 540	__blk_run_queue(q);
 541	spin_unlock_irqrestore(q->queue_lock, flags);
 542}
 543EXPORT_SYMBOL(blk_run_queue);
 544
 545void blk_put_queue(struct request_queue *q)
 546{
 547	kobject_put(&q->kobj);
 
 548}
 549EXPORT_SYMBOL(blk_put_queue);
 550
 551/**
 552 * __blk_drain_queue - drain requests from request_queue
 553 * @q: queue to drain
 554 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
 555 *
 556 * Drain requests from @q.  If @drain_all is set, all requests are drained.
 557 * If not, only ELVPRIV requests are drained.  The caller is responsible
 558 * for ensuring that no new requests which need to be drained are queued.
 559 */
 560static void __blk_drain_queue(struct request_queue *q, bool drain_all)
 561	__releases(q->queue_lock)
 562	__acquires(q->queue_lock)
 563{
 564	int i;
 565
 566	lockdep_assert_held(q->queue_lock);
 567	WARN_ON_ONCE(q->mq_ops);
 568
 569	while (true) {
 570		bool drain = false;
 571
 572		/*
 573		 * The caller might be trying to drain @q before its
 574		 * elevator is initialized.
 575		 */
 576		if (q->elevator)
 577			elv_drain_elevator(q);
 578
 579		blkcg_drain_queue(q);
 580
 581		/*
 582		 * This function might be called on a queue which failed
 583		 * driver init after queue creation or is not yet fully
 584		 * active yet.  Some drivers (e.g. fd and loop) get unhappy
 585		 * in such cases.  Kick queue iff dispatch queue has
 586		 * something on it and @q has request_fn set.
 587		 */
 588		if (!list_empty(&q->queue_head) && q->request_fn)
 589			__blk_run_queue(q);
 590
 591		drain |= q->nr_rqs_elvpriv;
 592		drain |= q->request_fn_active;
 593
 594		/*
 595		 * Unfortunately, requests are queued at and tracked from
 596		 * multiple places and there's no single counter which can
 597		 * be drained.  Check all the queues and counters.
 598		 */
 599		if (drain_all) {
 600			struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
 601			drain |= !list_empty(&q->queue_head);
 602			for (i = 0; i < 2; i++) {
 603				drain |= q->nr_rqs[i];
 604				drain |= q->in_flight[i];
 605				if (fq)
 606				    drain |= !list_empty(&fq->flush_queue[i]);
 607			}
 608		}
 609
 610		if (!drain)
 611			break;
 612
 613		spin_unlock_irq(q->queue_lock);
 614
 615		msleep(10);
 616
 617		spin_lock_irq(q->queue_lock);
 618	}
 619
 620	/*
 621	 * With queue marked dead, any woken up waiter will fail the
 622	 * allocation path, so the wakeup chaining is lost and we're
 623	 * left with hung waiters. We need to wake up those waiters.
 624	 */
 625	if (q->request_fn) {
 626		struct request_list *rl;
 627
 628		blk_queue_for_each_rl(rl, q)
 629			for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
 630				wake_up_all(&rl->wait[i]);
 631	}
 632}
 633
 634void blk_drain_queue(struct request_queue *q)
 635{
 636	spin_lock_irq(q->queue_lock);
 637	__blk_drain_queue(q, true);
 638	spin_unlock_irq(q->queue_lock);
 639}
 640
 641/**
 642 * blk_queue_bypass_start - enter queue bypass mode
 643 * @q: queue of interest
 644 *
 645 * In bypass mode, only the dispatch FIFO queue of @q is used.  This
 646 * function makes @q enter bypass mode and drains all requests which were
 647 * throttled or issued before.  On return, it's guaranteed that no request
 648 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
 649 * inside queue or RCU read lock.
 650 */
 651void blk_queue_bypass_start(struct request_queue *q)
 652{
 653	WARN_ON_ONCE(q->mq_ops);
 654
 655	spin_lock_irq(q->queue_lock);
 656	q->bypass_depth++;
 657	queue_flag_set(QUEUE_FLAG_BYPASS, q);
 658	spin_unlock_irq(q->queue_lock);
 659
 660	/*
 661	 * Queues start drained.  Skip actual draining till init is
 662	 * complete.  This avoids lenghty delays during queue init which
 663	 * can happen many times during boot.
 664	 */
 665	if (blk_queue_init_done(q)) {
 666		spin_lock_irq(q->queue_lock);
 667		__blk_drain_queue(q, false);
 668		spin_unlock_irq(q->queue_lock);
 669
 670		/* ensure blk_queue_bypass() is %true inside RCU read lock */
 671		synchronize_rcu();
 672	}
 673}
 674EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
 675
 676/**
 677 * blk_queue_bypass_end - leave queue bypass mode
 678 * @q: queue of interest
 679 *
 680 * Leave bypass mode and restore the normal queueing behavior.
 681 *
 682 * Note: although blk_queue_bypass_start() is only called for blk-sq queues,
 683 * this function is called for both blk-sq and blk-mq queues.
 684 */
 685void blk_queue_bypass_end(struct request_queue *q)
 686{
 687	spin_lock_irq(q->queue_lock);
 688	if (!--q->bypass_depth)
 689		queue_flag_clear(QUEUE_FLAG_BYPASS, q);
 690	WARN_ON_ONCE(q->bypass_depth < 0);
 691	spin_unlock_irq(q->queue_lock);
 692}
 693EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
 694
 695void blk_set_queue_dying(struct request_queue *q)
 696{
 697	blk_queue_flag_set(QUEUE_FLAG_DYING, q);
 698
 699	/*
 700	 * When queue DYING flag is set, we need to block new req
 701	 * entering queue, so we call blk_freeze_queue_start() to
 702	 * prevent I/O from crossing blk_queue_enter().
 703	 */
 704	blk_freeze_queue_start(q);
 705
 706	if (q->mq_ops)
 707		blk_mq_wake_waiters(q);
 708	else {
 709		struct request_list *rl;
 710
 711		spin_lock_irq(q->queue_lock);
 712		blk_queue_for_each_rl(rl, q) {
 713			if (rl->rq_pool) {
 714				wake_up_all(&rl->wait[BLK_RW_SYNC]);
 715				wake_up_all(&rl->wait[BLK_RW_ASYNC]);
 716			}
 717		}
 718		spin_unlock_irq(q->queue_lock);
 719	}
 720
 721	/* Make blk_queue_enter() reexamine the DYING flag. */
 722	wake_up_all(&q->mq_freeze_wq);
 723}
 724EXPORT_SYMBOL_GPL(blk_set_queue_dying);
 725
 726/**
 727 * blk_cleanup_queue - shutdown a request queue
 728 * @q: request queue to shutdown
 729 *
 730 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
 731 * put it.  All future requests will be failed immediately with -ENODEV.
 732 */
 733void blk_cleanup_queue(struct request_queue *q)
 734{
 735	spinlock_t *lock = q->queue_lock;
 736
 737	/* mark @q DYING, no new request or merges will be allowed afterwards */
 738	mutex_lock(&q->sysfs_lock);
 739	blk_set_queue_dying(q);
 740	spin_lock_irq(lock);
 741
 742	/*
 743	 * A dying queue is permanently in bypass mode till released.  Note
 744	 * that, unlike blk_queue_bypass_start(), we aren't performing
 745	 * synchronize_rcu() after entering bypass mode to avoid the delay
 746	 * as some drivers create and destroy a lot of queues while
 747	 * probing.  This is still safe because blk_release_queue() will be
 748	 * called only after the queue refcnt drops to zero and nothing,
 749	 * RCU or not, would be traversing the queue by then.
 750	 */
 751	q->bypass_depth++;
 752	queue_flag_set(QUEUE_FLAG_BYPASS, q);
 753
 754	queue_flag_set(QUEUE_FLAG_NOMERGES, q);
 755	queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
 756	queue_flag_set(QUEUE_FLAG_DYING, q);
 757	spin_unlock_irq(lock);
 758	mutex_unlock(&q->sysfs_lock);
 759
 760	/*
 761	 * Drain all requests queued before DYING marking. Set DEAD flag to
 762	 * prevent that q->request_fn() gets invoked after draining finished.
 763	 */
 764	blk_freeze_queue(q);
 765	spin_lock_irq(lock);
 766	queue_flag_set(QUEUE_FLAG_DEAD, q);
 767	spin_unlock_irq(lock);
 768
 769	/*
 770	 * make sure all in-progress dispatch are completed because
 771	 * blk_freeze_queue() can only complete all requests, and
 772	 * dispatch may still be in-progress since we dispatch requests
 773	 * from more than one contexts
 774	 */
 775	if (q->mq_ops)
 776		blk_mq_quiesce_queue(q);
 777
 778	/* for synchronous bio-based driver finish in-flight integrity i/o */
 779	blk_flush_integrity();
 780
 781	/* @q won't process any more request, flush async actions */
 782	del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer);
 783	blk_sync_queue(q);
 784
 785	/*
 786	 * I/O scheduler exit is only safe after the sysfs scheduler attribute
 787	 * has been removed.
 788	 */
 789	WARN_ON_ONCE(q->kobj.state_in_sysfs);
 790
 791	/*
 792	 * Since the I/O scheduler exit code may access cgroup information,
 793	 * perform I/O scheduler exit before disassociating from the block
 794	 * cgroup controller.
 795	 */
 796	if (q->elevator) {
 797		ioc_clear_queue(q);
 798		elevator_exit(q, q->elevator);
 799		q->elevator = NULL;
 800	}
 801
 802	/*
 803	 * Remove all references to @q from the block cgroup controller before
 804	 * restoring @q->queue_lock to avoid that restoring this pointer causes
 805	 * e.g. blkcg_print_blkgs() to crash.
 806	 */
 807	blkcg_exit_queue(q);
 808
 809	/*
 810	 * Since the cgroup code may dereference the @q->backing_dev_info
 811	 * pointer, only decrease its reference count after having removed the
 812	 * association with the block cgroup controller.
 813	 */
 814	bdi_put(q->backing_dev_info);
 815
 816	if (q->mq_ops)
 817		blk_mq_free_queue(q);
 818	percpu_ref_exit(&q->q_usage_counter);
 819
 820	spin_lock_irq(lock);
 821	if (q->queue_lock != &q->__queue_lock)
 822		q->queue_lock = &q->__queue_lock;
 823	spin_unlock_irq(lock);
 824
 825	/* @q is and will stay empty, shutdown and put */
 826	blk_put_queue(q);
 827}
 828EXPORT_SYMBOL(blk_cleanup_queue);
 829
 830/* Allocate memory local to the request queue */
 831static void *alloc_request_simple(gfp_t gfp_mask, void *data)
 832{
 833	struct request_queue *q = data;
 834
 835	return kmem_cache_alloc_node(request_cachep, gfp_mask, q->node);
 836}
 837
 838static void free_request_simple(void *element, void *data)
 839{
 840	kmem_cache_free(request_cachep, element);
 841}
 842
 843static void *alloc_request_size(gfp_t gfp_mask, void *data)
 844{
 845	struct request_queue *q = data;
 846	struct request *rq;
 847
 848	rq = kmalloc_node(sizeof(struct request) + q->cmd_size, gfp_mask,
 849			q->node);
 850	if (rq && q->init_rq_fn && q->init_rq_fn(q, rq, gfp_mask) < 0) {
 851		kfree(rq);
 852		rq = NULL;
 853	}
 854	return rq;
 855}
 856
 857static void free_request_size(void *element, void *data)
 858{
 859	struct request_queue *q = data;
 860
 861	if (q->exit_rq_fn)
 862		q->exit_rq_fn(q, element);
 863	kfree(element);
 864}
 865
 866int blk_init_rl(struct request_list *rl, struct request_queue *q,
 867		gfp_t gfp_mask)
 868{
 869	if (unlikely(rl->rq_pool) || q->mq_ops)
 870		return 0;
 871
 872	rl->q = q;
 873	rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
 874	rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
 875	init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
 876	init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
 877
 878	if (q->cmd_size) {
 879		rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
 880				alloc_request_size, free_request_size,
 881				q, gfp_mask, q->node);
 882	} else {
 883		rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
 884				alloc_request_simple, free_request_simple,
 885				q, gfp_mask, q->node);
 886	}
 887	if (!rl->rq_pool)
 888		return -ENOMEM;
 889
 890	if (rl != &q->root_rl)
 891		WARN_ON_ONCE(!blk_get_queue(q));
 892
 893	return 0;
 894}
 895
 896void blk_exit_rl(struct request_queue *q, struct request_list *rl)
 897{
 898	if (rl->rq_pool) {
 899		mempool_destroy(rl->rq_pool);
 900		if (rl != &q->root_rl)
 901			blk_put_queue(q);
 902	}
 903}
 904
 905struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
 906{
 907	return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE, NULL);
 908}
 909EXPORT_SYMBOL(blk_alloc_queue);
 910
 911/**
 912 * blk_queue_enter() - try to increase q->q_usage_counter
 913 * @q: request queue pointer
 914 * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PREEMPT
 915 */
 916int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
 917{
 918	const bool preempt = flags & BLK_MQ_REQ_PREEMPT;
 919
 920	while (true) {
 921		bool success = false;
 922
 923		rcu_read_lock();
 924		if (percpu_ref_tryget_live(&q->q_usage_counter)) {
 925			/*
 926			 * The code that sets the PREEMPT_ONLY flag is
 927			 * responsible for ensuring that that flag is globally
 928			 * visible before the queue is unfrozen.
 929			 */
 930			if (preempt || !blk_queue_preempt_only(q)) {
 931				success = true;
 932			} else {
 933				percpu_ref_put(&q->q_usage_counter);
 934			}
 935		}
 936		rcu_read_unlock();
 937
 938		if (success)
 939			return 0;
 940
 941		if (flags & BLK_MQ_REQ_NOWAIT)
 942			return -EBUSY;
 943
 944		/*
 945		 * read pair of barrier in blk_freeze_queue_start(),
 946		 * we need to order reading __PERCPU_REF_DEAD flag of
 947		 * .q_usage_counter and reading .mq_freeze_depth or
 948		 * queue dying flag, otherwise the following wait may
 949		 * never return if the two reads are reordered.
 950		 */
 951		smp_rmb();
 952
 953		wait_event(q->mq_freeze_wq,
 954			   (atomic_read(&q->mq_freeze_depth) == 0 &&
 955			    (preempt || !blk_queue_preempt_only(q))) ||
 956			   blk_queue_dying(q));
 957		if (blk_queue_dying(q))
 958			return -ENODEV;
 959	}
 
 
 
 
 
 960}
 961
 962void blk_queue_exit(struct request_queue *q)
 963{
 964	percpu_ref_put(&q->q_usage_counter);
 965}
 966
 967static void blk_queue_usage_counter_release(struct percpu_ref *ref)
 968{
 969	struct request_queue *q =
 970		container_of(ref, struct request_queue, q_usage_counter);
 971
 972	wake_up_all(&q->mq_freeze_wq);
 973}
 974
 975static void blk_rq_timed_out_timer(struct timer_list *t)
 976{
 977	struct request_queue *q = from_timer(q, t, timeout);
 978
 979	kblockd_schedule_work(&q->timeout_work);
 980}
 981
 982/**
 983 * blk_alloc_queue_node - allocate a request queue
 984 * @gfp_mask: memory allocation flags
 985 * @node_id: NUMA node to allocate memory from
 986 * @lock: For legacy queues, pointer to a spinlock that will be used to e.g.
 987 *        serialize calls to the legacy .request_fn() callback. Ignored for
 988 *	  blk-mq request queues.
 989 *
 990 * Note: pass the queue lock as the third argument to this function instead of
 991 * setting the queue lock pointer explicitly to avoid triggering a sporadic
 992 * crash in the blkcg code. This function namely calls blkcg_init_queue() and
 993 * the queue lock pointer must be set before blkcg_init_queue() is called.
 994 */
 995struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id,
 996					   spinlock_t *lock)
 997{
 998	struct request_queue *q;
 
 999
1000	q = kmem_cache_alloc_node(blk_requestq_cachep,
1001				gfp_mask | __GFP_ZERO, node_id);
1002	if (!q)
1003		return NULL;
 
 
1004
1005	q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
1006	if (q->id < 0)
 
1007		goto fail_q;
 
1008
1009	q->bio_split = bioset_create(BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
1010	if (!q->bio_split)
 
1011		goto fail_id;
 
1012
1013	q->backing_dev_info = bdi_alloc_node(gfp_mask, node_id);
1014	if (!q->backing_dev_info)
1015		goto fail_split;
1016
1017	q->stats = blk_alloc_queue_stats();
1018	if (!q->stats)
1019		goto fail_stats;
 
1020
1021	q->backing_dev_info->ra_pages =
1022			(VM_MAX_READAHEAD * 1024) / PAGE_SIZE;
1023	q->backing_dev_info->capabilities = BDI_CAP_CGROUP_WRITEBACK;
1024	q->backing_dev_info->name = "block";
1025	q->node = node_id;
1026
1027	timer_setup(&q->backing_dev_info->laptop_mode_wb_timer,
1028		    laptop_mode_timer_fn, 0);
1029	timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
1030	INIT_WORK(&q->timeout_work, NULL);
1031	INIT_LIST_HEAD(&q->queue_head);
1032	INIT_LIST_HEAD(&q->timeout_list);
1033	INIT_LIST_HEAD(&q->icq_list);
1034#ifdef CONFIG_BLK_CGROUP
1035	INIT_LIST_HEAD(&q->blkg_list);
1036#endif
1037	INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
1038
1039	kobject_init(&q->kobj, &blk_queue_ktype);
1040
1041#ifdef CONFIG_BLK_DEV_IO_TRACE
1042	mutex_init(&q->blk_trace_mutex);
1043#endif
1044	mutex_init(&q->sysfs_lock);
1045	spin_lock_init(&q->__queue_lock);
1046
1047	if (!q->mq_ops)
1048		q->queue_lock = lock ? : &q->__queue_lock;
1049
1050	/*
1051	 * A queue starts its life with bypass turned on to avoid
1052	 * unnecessary bypass on/off overhead and nasty surprises during
1053	 * init.  The initial bypass will be finished when the queue is
1054	 * registered by blk_register_queue().
1055	 */
1056	q->bypass_depth = 1;
1057	queue_flag_set_unlocked(QUEUE_FLAG_BYPASS, q);
1058
1059	init_waitqueue_head(&q->mq_freeze_wq);
 
 
 
1060
1061	/*
1062	 * Init percpu_ref in atomic mode so that it's faster to shutdown.
1063	 * See blk_register_queue() for details.
1064	 */
1065	if (percpu_ref_init(&q->q_usage_counter,
1066				blk_queue_usage_counter_release,
1067				PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
1068		goto fail_bdi;
 
1069
1070	if (blkcg_init_queue(q))
1071		goto fail_ref;
1072
1073	return q;
1074
1075fail_ref:
1076	percpu_ref_exit(&q->q_usage_counter);
1077fail_bdi:
1078	blk_free_queue_stats(q->stats);
1079fail_stats:
1080	bdi_put(q->backing_dev_info);
1081fail_split:
1082	bioset_free(q->bio_split);
1083fail_id:
1084	ida_simple_remove(&blk_queue_ida, q->id);
1085fail_q:
1086	kmem_cache_free(blk_requestq_cachep, q);
1087	return NULL;
1088}
1089EXPORT_SYMBOL(blk_alloc_queue_node);
1090
1091/**
1092 * blk_init_queue  - prepare a request queue for use with a block device
1093 * @rfn:  The function to be called to process requests that have been
1094 *        placed on the queue.
1095 * @lock: Request queue spin lock
1096 *
1097 * Description:
1098 *    If a block device wishes to use the standard request handling procedures,
1099 *    which sorts requests and coalesces adjacent requests, then it must
1100 *    call blk_init_queue().  The function @rfn will be called when there
1101 *    are requests on the queue that need to be processed.  If the device
1102 *    supports plugging, then @rfn may not be called immediately when requests
1103 *    are available on the queue, but may be called at some time later instead.
1104 *    Plugged queues are generally unplugged when a buffer belonging to one
1105 *    of the requests on the queue is needed, or due to memory pressure.
1106 *
1107 *    @rfn is not required, or even expected, to remove all requests off the
1108 *    queue, but only as many as it can handle at a time.  If it does leave
1109 *    requests on the queue, it is responsible for arranging that the requests
1110 *    get dealt with eventually.
1111 *
1112 *    The queue spin lock must be held while manipulating the requests on the
1113 *    request queue; this lock will be taken also from interrupt context, so irq
1114 *    disabling is needed for it.
1115 *
1116 *    Function returns a pointer to the initialized request queue, or %NULL if
1117 *    it didn't succeed.
1118 *
1119 * Note:
1120 *    blk_init_queue() must be paired with a blk_cleanup_queue() call
1121 *    when the block device is deactivated (such as at module unload).
1122 **/
1123
1124struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1125{
1126	return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
1127}
1128EXPORT_SYMBOL(blk_init_queue);
1129
1130struct request_queue *
1131blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
1132{
1133	struct request_queue *q;
1134
1135	q = blk_alloc_queue_node(GFP_KERNEL, node_id, lock);
1136	if (!q)
1137		return NULL;
1138
1139	q->request_fn = rfn;
1140	if (blk_init_allocated_queue(q) < 0) {
1141		blk_cleanup_queue(q);
1142		return NULL;
1143	}
1144
1145	return q;
1146}
1147EXPORT_SYMBOL(blk_init_queue_node);
1148
1149static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio);
1150
1151
1152int blk_init_allocated_queue(struct request_queue *q)
1153{
1154	WARN_ON_ONCE(q->mq_ops);
1155
1156	q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, q->cmd_size);
1157	if (!q->fq)
1158		return -ENOMEM;
1159
1160	if (q->init_rq_fn && q->init_rq_fn(q, q->fq->flush_rq, GFP_KERNEL))
1161		goto out_free_flush_queue;
1162
1163	if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
1164		goto out_exit_flush_rq;
1165
1166	INIT_WORK(&q->timeout_work, blk_timeout_work);
1167	q->queue_flags		|= QUEUE_FLAG_DEFAULT;
1168
1169	/*
1170	 * This also sets hw/phys segments, boundary and size
1171	 */
1172	blk_queue_make_request(q, blk_queue_bio);
1173
1174	q->sg_reserved_size = INT_MAX;
1175
1176	/* Protect q->elevator from elevator_change */
1177	mutex_lock(&q->sysfs_lock);
1178
1179	/* init elevator */
1180	if (elevator_init(q, NULL)) {
1181		mutex_unlock(&q->sysfs_lock);
1182		goto out_exit_flush_rq;
1183	}
1184
1185	mutex_unlock(&q->sysfs_lock);
1186	return 0;
1187
1188out_exit_flush_rq:
1189	if (q->exit_rq_fn)
1190		q->exit_rq_fn(q, q->fq->flush_rq);
1191out_free_flush_queue:
1192	blk_free_flush_queue(q->fq);
1193	return -ENOMEM;
1194}
1195EXPORT_SYMBOL(blk_init_allocated_queue);
1196
1197bool blk_get_queue(struct request_queue *q)
1198{
1199	if (likely(!blk_queue_dying(q))) {
1200		__blk_get_queue(q);
1201		return true;
1202	}
1203
1204	return false;
1205}
1206EXPORT_SYMBOL(blk_get_queue);
1207
1208static inline void blk_free_request(struct request_list *rl, struct request *rq)
1209{
1210	if (rq->rq_flags & RQF_ELVPRIV) {
1211		elv_put_request(rl->q, rq);
1212		if (rq->elv.icq)
1213			put_io_context(rq->elv.icq->ioc);
1214	}
1215
1216	mempool_free(rq, rl->rq_pool);
1217}
1218
1219/*
1220 * ioc_batching returns true if the ioc is a valid batching request and
1221 * should be given priority access to a request.
1222 */
1223static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1224{
1225	if (!ioc)
1226		return 0;
1227
1228	/*
1229	 * Make sure the process is able to allocate at least 1 request
1230	 * even if the batch times out, otherwise we could theoretically
1231	 * lose wakeups.
1232	 */
1233	return ioc->nr_batch_requests == q->nr_batching ||
1234		(ioc->nr_batch_requests > 0
1235		&& time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
1236}
1237
1238/*
1239 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
1240 * will cause the process to be a "batcher" on all queues in the system. This
1241 * is the behaviour we want though - once it gets a wakeup it should be given
1242 * a nice run.
1243 */
1244static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1245{
1246	if (!ioc || ioc_batching(q, ioc))
1247		return;
1248
1249	ioc->nr_batch_requests = q->nr_batching;
1250	ioc->last_waited = jiffies;
1251}
1252
1253static void __freed_request(struct request_list *rl, int sync)
1254{
1255	struct request_queue *q = rl->q;
1256
1257	if (rl->count[sync] < queue_congestion_off_threshold(q))
1258		blk_clear_congested(rl, sync);
1259
1260	if (rl->count[sync] + 1 <= q->nr_requests) {
1261		if (waitqueue_active(&rl->wait[sync]))
1262			wake_up(&rl->wait[sync]);
1263
1264		blk_clear_rl_full(rl, sync);
1265	}
1266}
1267
1268/*
1269 * A request has just been released.  Account for it, update the full and
1270 * congestion status, wake up any waiters.   Called under q->queue_lock.
1271 */
1272static void freed_request(struct request_list *rl, bool sync,
1273		req_flags_t rq_flags)
1274{
1275	struct request_queue *q = rl->q;
1276
1277	q->nr_rqs[sync]--;
1278	rl->count[sync]--;
1279	if (rq_flags & RQF_ELVPRIV)
1280		q->nr_rqs_elvpriv--;
1281
1282	__freed_request(rl, sync);
1283
1284	if (unlikely(rl->starved[sync ^ 1]))
1285		__freed_request(rl, sync ^ 1);
1286}
1287
1288int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
1289{
1290	struct request_list *rl;
1291	int on_thresh, off_thresh;
1292
1293	WARN_ON_ONCE(q->mq_ops);
1294
1295	spin_lock_irq(q->queue_lock);
1296	q->nr_requests = nr;
1297	blk_queue_congestion_threshold(q);
1298	on_thresh = queue_congestion_on_threshold(q);
1299	off_thresh = queue_congestion_off_threshold(q);
1300
1301	blk_queue_for_each_rl(rl, q) {
1302		if (rl->count[BLK_RW_SYNC] >= on_thresh)
1303			blk_set_congested(rl, BLK_RW_SYNC);
1304		else if (rl->count[BLK_RW_SYNC] < off_thresh)
1305			blk_clear_congested(rl, BLK_RW_SYNC);
1306
1307		if (rl->count[BLK_RW_ASYNC] >= on_thresh)
1308			blk_set_congested(rl, BLK_RW_ASYNC);
1309		else if (rl->count[BLK_RW_ASYNC] < off_thresh)
1310			blk_clear_congested(rl, BLK_RW_ASYNC);
1311
1312		if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
1313			blk_set_rl_full(rl, BLK_RW_SYNC);
1314		} else {
1315			blk_clear_rl_full(rl, BLK_RW_SYNC);
1316			wake_up(&rl->wait[BLK_RW_SYNC]);
1317		}
1318
1319		if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
1320			blk_set_rl_full(rl, BLK_RW_ASYNC);
1321		} else {
1322			blk_clear_rl_full(rl, BLK_RW_ASYNC);
1323			wake_up(&rl->wait[BLK_RW_ASYNC]);
1324		}
1325	}
1326
1327	spin_unlock_irq(q->queue_lock);
1328	return 0;
1329}
1330
1331/**
1332 * __get_request - get a free request
1333 * @rl: request list to allocate from
1334 * @op: operation and flags
1335 * @bio: bio to allocate request for (can be %NULL)
1336 * @flags: BLQ_MQ_REQ_* flags
1337 *
1338 * Get a free request from @q.  This function may fail under memory
1339 * pressure or if @q is dead.
1340 *
1341 * Must be called with @q->queue_lock held and,
1342 * Returns ERR_PTR on failure, with @q->queue_lock held.
1343 * Returns request pointer on success, with @q->queue_lock *not held*.
1344 */
1345static struct request *__get_request(struct request_list *rl, unsigned int op,
1346				     struct bio *bio, blk_mq_req_flags_t flags)
1347{
1348	struct request_queue *q = rl->q;
1349	struct request *rq;
1350	struct elevator_type *et = q->elevator->type;
1351	struct io_context *ioc = rq_ioc(bio);
1352	struct io_cq *icq = NULL;
1353	const bool is_sync = op_is_sync(op);
1354	int may_queue;
1355	gfp_t gfp_mask = flags & BLK_MQ_REQ_NOWAIT ? GFP_ATOMIC :
1356			 __GFP_DIRECT_RECLAIM;
1357	req_flags_t rq_flags = RQF_ALLOCED;
1358
1359	lockdep_assert_held(q->queue_lock);
1360
1361	if (unlikely(blk_queue_dying(q)))
1362		return ERR_PTR(-ENODEV);
1363
1364	may_queue = elv_may_queue(q, op);
1365	if (may_queue == ELV_MQUEUE_NO)
1366		goto rq_starved;
1367
1368	if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
1369		if (rl->count[is_sync]+1 >= q->nr_requests) {
1370			/*
1371			 * The queue will fill after this allocation, so set
1372			 * it as full, and mark this process as "batching".
1373			 * This process will be allowed to complete a batch of
1374			 * requests, others will be blocked.
1375			 */
1376			if (!blk_rl_full(rl, is_sync)) {
1377				ioc_set_batching(q, ioc);
1378				blk_set_rl_full(rl, is_sync);
1379			} else {
1380				if (may_queue != ELV_MQUEUE_MUST
1381						&& !ioc_batching(q, ioc)) {
1382					/*
1383					 * The queue is full and the allocating
1384					 * process is not a "batcher", and not
1385					 * exempted by the IO scheduler
1386					 */
1387					return ERR_PTR(-ENOMEM);
1388				}
1389			}
1390		}
1391		blk_set_congested(rl, is_sync);
1392	}
1393
1394	/*
1395	 * Only allow batching queuers to allocate up to 50% over the defined
1396	 * limit of requests, otherwise we could have thousands of requests
1397	 * allocated with any setting of ->nr_requests
1398	 */
1399	if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
1400		return ERR_PTR(-ENOMEM);
1401
1402	q->nr_rqs[is_sync]++;
1403	rl->count[is_sync]++;
1404	rl->starved[is_sync] = 0;
1405
1406	/*
1407	 * Decide whether the new request will be managed by elevator.  If
1408	 * so, mark @rq_flags and increment elvpriv.  Non-zero elvpriv will
1409	 * prevent the current elevator from being destroyed until the new
1410	 * request is freed.  This guarantees icq's won't be destroyed and
1411	 * makes creating new ones safe.
1412	 *
1413	 * Flush requests do not use the elevator so skip initialization.
1414	 * This allows a request to share the flush and elevator data.
1415	 *
1416	 * Also, lookup icq while holding queue_lock.  If it doesn't exist,
1417	 * it will be created after releasing queue_lock.
1418	 */
1419	if (!op_is_flush(op) && !blk_queue_bypass(q)) {
1420		rq_flags |= RQF_ELVPRIV;
1421		q->nr_rqs_elvpriv++;
1422		if (et->icq_cache && ioc)
1423			icq = ioc_lookup_icq(ioc, q);
1424	}
1425
1426	if (blk_queue_io_stat(q))
1427		rq_flags |= RQF_IO_STAT;
1428	spin_unlock_irq(q->queue_lock);
1429
1430	/* allocate and init request */
1431	rq = mempool_alloc(rl->rq_pool, gfp_mask);
1432	if (!rq)
1433		goto fail_alloc;
1434
1435	blk_rq_init(q, rq);
1436	blk_rq_set_rl(rq, rl);
1437	rq->cmd_flags = op;
1438	rq->rq_flags = rq_flags;
1439	if (flags & BLK_MQ_REQ_PREEMPT)
1440		rq->rq_flags |= RQF_PREEMPT;
1441
1442	/* init elvpriv */
1443	if (rq_flags & RQF_ELVPRIV) {
1444		if (unlikely(et->icq_cache && !icq)) {
1445			if (ioc)
1446				icq = ioc_create_icq(ioc, q, gfp_mask);
1447			if (!icq)
1448				goto fail_elvpriv;
1449		}
1450
1451		rq->elv.icq = icq;
1452		if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1453			goto fail_elvpriv;
1454
1455		/* @rq->elv.icq holds io_context until @rq is freed */
1456		if (icq)
1457			get_io_context(icq->ioc);
1458	}
1459out:
1460	/*
1461	 * ioc may be NULL here, and ioc_batching will be false. That's
1462	 * OK, if the queue is under the request limit then requests need
1463	 * not count toward the nr_batch_requests limit. There will always
1464	 * be some limit enforced by BLK_BATCH_TIME.
1465	 */
1466	if (ioc_batching(q, ioc))
1467		ioc->nr_batch_requests--;
1468
1469	trace_block_getrq(q, bio, op);
1470	return rq;
1471
1472fail_elvpriv:
1473	/*
1474	 * elvpriv init failed.  ioc, icq and elvpriv aren't mempool backed
1475	 * and may fail indefinitely under memory pressure and thus
1476	 * shouldn't stall IO.  Treat this request as !elvpriv.  This will
1477	 * disturb iosched and blkcg but weird is bettern than dead.
1478	 */
1479	printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
1480			   __func__, dev_name(q->backing_dev_info->dev));
1481
1482	rq->rq_flags &= ~RQF_ELVPRIV;
1483	rq->elv.icq = NULL;
1484
1485	spin_lock_irq(q->queue_lock);
1486	q->nr_rqs_elvpriv--;
1487	spin_unlock_irq(q->queue_lock);
1488	goto out;
1489
1490fail_alloc:
1491	/*
1492	 * Allocation failed presumably due to memory. Undo anything we
1493	 * might have messed up.
1494	 *
1495	 * Allocating task should really be put onto the front of the wait
1496	 * queue, but this is pretty rare.
1497	 */
1498	spin_lock_irq(q->queue_lock);
1499	freed_request(rl, is_sync, rq_flags);
1500
1501	/*
1502	 * in the very unlikely event that allocation failed and no
1503	 * requests for this direction was pending, mark us starved so that
1504	 * freeing of a request in the other direction will notice
1505	 * us. another possible fix would be to split the rq mempool into
1506	 * READ and WRITE
1507	 */
1508rq_starved:
1509	if (unlikely(rl->count[is_sync] == 0))
1510		rl->starved[is_sync] = 1;
1511	return ERR_PTR(-ENOMEM);
1512}
1513
1514/**
1515 * get_request - get a free request
1516 * @q: request_queue to allocate request from
1517 * @op: operation and flags
1518 * @bio: bio to allocate request for (can be %NULL)
1519 * @flags: BLK_MQ_REQ_* flags.
1520 *
1521 * Get a free request from @q.  If %__GFP_DIRECT_RECLAIM is set in @gfp_mask,
1522 * this function keeps retrying under memory pressure and fails iff @q is dead.
1523 *
1524 * Must be called with @q->queue_lock held and,
1525 * Returns ERR_PTR on failure, with @q->queue_lock held.
1526 * Returns request pointer on success, with @q->queue_lock *not held*.
1527 */
1528static struct request *get_request(struct request_queue *q, unsigned int op,
1529				   struct bio *bio, blk_mq_req_flags_t flags)
1530{
1531	const bool is_sync = op_is_sync(op);
1532	DEFINE_WAIT(wait);
1533	struct request_list *rl;
1534	struct request *rq;
1535
1536	lockdep_assert_held(q->queue_lock);
1537	WARN_ON_ONCE(q->mq_ops);
1538
1539	rl = blk_get_rl(q, bio);	/* transferred to @rq on success */
1540retry:
1541	rq = __get_request(rl, op, bio, flags);
1542	if (!IS_ERR(rq))
1543		return rq;
1544
1545	if (op & REQ_NOWAIT) {
1546		blk_put_rl(rl);
1547		return ERR_PTR(-EAGAIN);
1548	}
1549
1550	if ((flags & BLK_MQ_REQ_NOWAIT) || unlikely(blk_queue_dying(q))) {
1551		blk_put_rl(rl);
1552		return rq;
1553	}
1554
1555	/* wait on @rl and retry */
1556	prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1557				  TASK_UNINTERRUPTIBLE);
1558
1559	trace_block_sleeprq(q, bio, op);
1560
1561	spin_unlock_irq(q->queue_lock);
1562	io_schedule();
1563
1564	/*
1565	 * After sleeping, we become a "batching" process and will be able
1566	 * to allocate at least one request, and up to a big batch of them
1567	 * for a small period time.  See ioc_batching, ioc_set_batching
1568	 */
1569	ioc_set_batching(q, current->io_context);
1570
1571	spin_lock_irq(q->queue_lock);
1572	finish_wait(&rl->wait[is_sync], &wait);
1573
1574	goto retry;
1575}
1576
1577/* flags: BLK_MQ_REQ_PREEMPT and/or BLK_MQ_REQ_NOWAIT. */
1578static struct request *blk_old_get_request(struct request_queue *q,
1579				unsigned int op, blk_mq_req_flags_t flags)
1580{
1581	struct request *rq;
1582	gfp_t gfp_mask = flags & BLK_MQ_REQ_NOWAIT ? GFP_ATOMIC :
1583			 __GFP_DIRECT_RECLAIM;
1584	int ret = 0;
1585
1586	WARN_ON_ONCE(q->mq_ops);
1587
1588	/* create ioc upfront */
1589	create_io_context(gfp_mask, q->node);
1590
1591	ret = blk_queue_enter(q, flags);
1592	if (ret)
1593		return ERR_PTR(ret);
1594	spin_lock_irq(q->queue_lock);
1595	rq = get_request(q, op, NULL, flags);
1596	if (IS_ERR(rq)) {
1597		spin_unlock_irq(q->queue_lock);
1598		blk_queue_exit(q);
1599		return rq;
1600	}
1601
1602	/* q->queue_lock is unlocked at this point */
1603	rq->__data_len = 0;
1604	rq->__sector = (sector_t) -1;
1605	rq->bio = rq->biotail = NULL;
1606	return rq;
1607}
1608
1609/**
1610 * blk_get_request_flags - allocate a request
1611 * @q: request queue to allocate a request for
1612 * @op: operation (REQ_OP_*) and REQ_* flags, e.g. REQ_SYNC.
1613 * @flags: BLK_MQ_REQ_* flags, e.g. BLK_MQ_REQ_NOWAIT.
1614 */
1615struct request *blk_get_request_flags(struct request_queue *q, unsigned int op,
1616				      blk_mq_req_flags_t flags)
1617{
1618	struct request *req;
1619
1620	WARN_ON_ONCE(op & REQ_NOWAIT);
1621	WARN_ON_ONCE(flags & ~(BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_PREEMPT));
1622
1623	if (q->mq_ops) {
1624		req = blk_mq_alloc_request(q, op, flags);
1625		if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn)
1626			q->mq_ops->initialize_rq_fn(req);
1627	} else {
1628		req = blk_old_get_request(q, op, flags);
1629		if (!IS_ERR(req) && q->initialize_rq_fn)
1630			q->initialize_rq_fn(req);
1631	}
1632
1633	return req;
1634}
1635EXPORT_SYMBOL(blk_get_request_flags);
1636
1637struct request *blk_get_request(struct request_queue *q, unsigned int op,
1638				gfp_t gfp_mask)
1639{
1640	return blk_get_request_flags(q, op, gfp_mask & __GFP_DIRECT_RECLAIM ?
1641				     0 : BLK_MQ_REQ_NOWAIT);
1642}
1643EXPORT_SYMBOL(blk_get_request);
1644
1645/**
1646 * blk_requeue_request - put a request back on queue
1647 * @q:		request queue where request should be inserted
1648 * @rq:		request to be inserted
1649 *
1650 * Description:
1651 *    Drivers often keep queueing requests until the hardware cannot accept
1652 *    more, when that condition happens we need to put the request back
1653 *    on the queue. Must be called with queue lock held.
1654 */
1655void blk_requeue_request(struct request_queue *q, struct request *rq)
1656{
1657	lockdep_assert_held(q->queue_lock);
1658	WARN_ON_ONCE(q->mq_ops);
1659
1660	blk_delete_timer(rq);
1661	blk_clear_rq_complete(rq);
1662	trace_block_rq_requeue(q, rq);
1663	wbt_requeue(q->rq_wb, &rq->issue_stat);
1664
1665	if (rq->rq_flags & RQF_QUEUED)
1666		blk_queue_end_tag(q, rq);
1667
1668	BUG_ON(blk_queued_rq(rq));
1669
1670	elv_requeue_request(q, rq);
1671}
1672EXPORT_SYMBOL(blk_requeue_request);
1673
1674static void add_acct_request(struct request_queue *q, struct request *rq,
1675			     int where)
1676{
1677	blk_account_io_start(rq, true);
1678	__elv_add_request(q, rq, where);
1679}
1680
1681static void part_round_stats_single(struct request_queue *q, int cpu,
1682				    struct hd_struct *part, unsigned long now,
1683				    unsigned int inflight)
1684{
1685	if (inflight) {
1686		__part_stat_add(cpu, part, time_in_queue,
1687				inflight * (now - part->stamp));
1688		__part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1689	}
1690	part->stamp = now;
1691}
1692
1693/**
1694 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1695 * @q: target block queue
1696 * @cpu: cpu number for stats access
1697 * @part: target partition
1698 *
1699 * The average IO queue length and utilisation statistics are maintained
1700 * by observing the current state of the queue length and the amount of
1701 * time it has been in this state for.
1702 *
1703 * Normally, that accounting is done on IO completion, but that can result
1704 * in more than a second's worth of IO being accounted for within any one
1705 * second, leading to >100% utilisation.  To deal with that, we call this
1706 * function to do a round-off before returning the results when reading
1707 * /proc/diskstats.  This accounts immediately for all queue usage up to
1708 * the current jiffies and restarts the counters again.
1709 */
1710void part_round_stats(struct request_queue *q, int cpu, struct hd_struct *part)
1711{
1712	struct hd_struct *part2 = NULL;
1713	unsigned long now = jiffies;
1714	unsigned int inflight[2];
1715	int stats = 0;
1716
1717	if (part->stamp != now)
1718		stats |= 1;
1719
1720	if (part->partno) {
1721		part2 = &part_to_disk(part)->part0;
1722		if (part2->stamp != now)
1723			stats |= 2;
1724	}
1725
1726	if (!stats)
1727		return;
1728
1729	part_in_flight(q, part, inflight);
1730
1731	if (stats & 2)
1732		part_round_stats_single(q, cpu, part2, now, inflight[1]);
1733	if (stats & 1)
1734		part_round_stats_single(q, cpu, part, now, inflight[0]);
1735}
1736EXPORT_SYMBOL_GPL(part_round_stats);
1737
1738#ifdef CONFIG_PM
1739static void blk_pm_put_request(struct request *rq)
1740{
1741	if (rq->q->dev && !(rq->rq_flags & RQF_PM) && !--rq->q->nr_pending)
1742		pm_runtime_mark_last_busy(rq->q->dev);
1743}
1744#else
1745static inline void blk_pm_put_request(struct request *rq) {}
1746#endif
1747
1748void __blk_put_request(struct request_queue *q, struct request *req)
1749{
1750	req_flags_t rq_flags = req->rq_flags;
1751
1752	if (unlikely(!q))
1753		return;
1754
1755	if (q->mq_ops) {
1756		blk_mq_free_request(req);
1757		return;
1758	}
1759
1760	lockdep_assert_held(q->queue_lock);
1761
1762	blk_req_zone_write_unlock(req);
1763	blk_pm_put_request(req);
1764
1765	elv_completed_request(q, req);
1766
1767	/* this is a bio leak */
1768	WARN_ON(req->bio != NULL);
1769
1770	wbt_done(q->rq_wb, &req->issue_stat);
1771
1772	/*
1773	 * Request may not have originated from ll_rw_blk. if not,
1774	 * it didn't come out of our reserved rq pools
1775	 */
1776	if (rq_flags & RQF_ALLOCED) {
1777		struct request_list *rl = blk_rq_rl(req);
1778		bool sync = op_is_sync(req->cmd_flags);
1779
1780		BUG_ON(!list_empty(&req->queuelist));
1781		BUG_ON(ELV_ON_HASH(req));
1782
1783		blk_free_request(rl, req);
1784		freed_request(rl, sync, rq_flags);
1785		blk_put_rl(rl);
1786		blk_queue_exit(q);
1787	}
1788}
1789EXPORT_SYMBOL_GPL(__blk_put_request);
1790
1791void blk_put_request(struct request *req)
1792{
1793	struct request_queue *q = req->q;
1794
1795	if (q->mq_ops)
1796		blk_mq_free_request(req);
1797	else {
1798		unsigned long flags;
1799
1800		spin_lock_irqsave(q->queue_lock, flags);
1801		__blk_put_request(q, req);
1802		spin_unlock_irqrestore(q->queue_lock, flags);
1803	}
1804}
1805EXPORT_SYMBOL(blk_put_request);
1806
1807bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1808			    struct bio *bio)
1809{
1810	const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
1811
1812	if (!ll_back_merge_fn(q, req, bio))
1813		return false;
1814
1815	trace_block_bio_backmerge(q, req, bio);
1816
1817	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1818		blk_rq_set_mixed_merge(req);
1819
1820	req->biotail->bi_next = bio;
1821	req->biotail = bio;
1822	req->__data_len += bio->bi_iter.bi_size;
1823	req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1824
1825	blk_account_io_start(req, false);
1826	return true;
1827}
1828
1829bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1830			     struct bio *bio)
1831{
1832	const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
1833
1834	if (!ll_front_merge_fn(q, req, bio))
1835		return false;
1836
1837	trace_block_bio_frontmerge(q, req, bio);
1838
1839	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1840		blk_rq_set_mixed_merge(req);
1841
1842	bio->bi_next = req->bio;
1843	req->bio = bio;
1844
1845	req->__sector = bio->bi_iter.bi_sector;
1846	req->__data_len += bio->bi_iter.bi_size;
1847	req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1848
1849	blk_account_io_start(req, false);
1850	return true;
1851}
1852
1853bool bio_attempt_discard_merge(struct request_queue *q, struct request *req,
1854		struct bio *bio)
1855{
1856	unsigned short segments = blk_rq_nr_discard_segments(req);
1857
1858	if (segments >= queue_max_discard_segments(q))
1859		goto no_merge;
1860	if (blk_rq_sectors(req) + bio_sectors(bio) >
1861	    blk_rq_get_max_sectors(req, blk_rq_pos(req)))
1862		goto no_merge;
1863
1864	req->biotail->bi_next = bio;
1865	req->biotail = bio;
1866	req->__data_len += bio->bi_iter.bi_size;
1867	req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1868	req->nr_phys_segments = segments + 1;
1869
1870	blk_account_io_start(req, false);
1871	return true;
1872no_merge:
1873	req_set_nomerge(q, req);
1874	return false;
1875}
1876
1877/**
1878 * blk_attempt_plug_merge - try to merge with %current's plugged list
1879 * @q: request_queue new bio is being queued at
1880 * @bio: new bio being queued
1881 * @request_count: out parameter for number of traversed plugged requests
1882 * @same_queue_rq: pointer to &struct request that gets filled in when
1883 * another request associated with @q is found on the plug list
1884 * (optional, may be %NULL)
1885 *
1886 * Determine whether @bio being queued on @q can be merged with a request
1887 * on %current's plugged list.  Returns %true if merge was successful,
1888 * otherwise %false.
1889 *
1890 * Plugging coalesces IOs from the same issuer for the same purpose without
1891 * going through @q->queue_lock.  As such it's more of an issuing mechanism
1892 * than scheduling, and the request, while may have elvpriv data, is not
1893 * added on the elevator at this point.  In addition, we don't have
1894 * reliable access to the elevator outside queue lock.  Only check basic
1895 * merging parameters without querying the elevator.
1896 *
1897 * Caller must ensure !blk_queue_nomerges(q) beforehand.
1898 */
1899bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1900			    unsigned int *request_count,
1901			    struct request **same_queue_rq)
1902{
1903	struct blk_plug *plug;
1904	struct request *rq;
1905	struct list_head *plug_list;
1906
1907	plug = current->plug;
1908	if (!plug)
1909		return false;
1910	*request_count = 0;
1911
1912	if (q->mq_ops)
1913		plug_list = &plug->mq_list;
1914	else
1915		plug_list = &plug->list;
1916
1917	list_for_each_entry_reverse(rq, plug_list, queuelist) {
1918		bool merged = false;
1919
1920		if (rq->q == q) {
1921			(*request_count)++;
1922			/*
1923			 * Only blk-mq multiple hardware queues case checks the
1924			 * rq in the same queue, there should be only one such
1925			 * rq in a queue
1926			 **/
1927			if (same_queue_rq)
1928				*same_queue_rq = rq;
1929		}
1930
1931		if (rq->q != q || !blk_rq_merge_ok(rq, bio))
1932			continue;
1933
1934		switch (blk_try_merge(rq, bio)) {
1935		case ELEVATOR_BACK_MERGE:
1936			merged = bio_attempt_back_merge(q, rq, bio);
1937			break;
1938		case ELEVATOR_FRONT_MERGE:
1939			merged = bio_attempt_front_merge(q, rq, bio);
1940			break;
1941		case ELEVATOR_DISCARD_MERGE:
1942			merged = bio_attempt_discard_merge(q, rq, bio);
1943			break;
1944		default:
1945			break;
1946		}
1947
1948		if (merged)
1949			return true;
1950	}
1951
1952	return false;
1953}
1954
1955unsigned int blk_plug_queued_count(struct request_queue *q)
1956{
1957	struct blk_plug *plug;
1958	struct request *rq;
1959	struct list_head *plug_list;
1960	unsigned int ret = 0;
1961
1962	plug = current->plug;
1963	if (!plug)
1964		goto out;
1965
1966	if (q->mq_ops)
1967		plug_list = &plug->mq_list;
1968	else
1969		plug_list = &plug->list;
1970
1971	list_for_each_entry(rq, plug_list, queuelist) {
1972		if (rq->q == q)
1973			ret++;
1974	}
1975out:
1976	return ret;
1977}
1978
1979void blk_init_request_from_bio(struct request *req, struct bio *bio)
1980{
1981	struct io_context *ioc = rq_ioc(bio);
1982
1983	if (bio->bi_opf & REQ_RAHEAD)
1984		req->cmd_flags |= REQ_FAILFAST_MASK;
1985
1986	req->__sector = bio->bi_iter.bi_sector;
1987	if (ioprio_valid(bio_prio(bio)))
1988		req->ioprio = bio_prio(bio);
1989	else if (ioc)
1990		req->ioprio = ioc->ioprio;
1991	else
1992		req->ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0);
1993	req->write_hint = bio->bi_write_hint;
1994	blk_rq_bio_prep(req->q, req, bio);
1995}
1996EXPORT_SYMBOL_GPL(blk_init_request_from_bio);
1997
1998static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio)
1999{
2000	struct blk_plug *plug;
2001	int where = ELEVATOR_INSERT_SORT;
2002	struct request *req, *free;
2003	unsigned int request_count = 0;
2004	unsigned int wb_acct;
2005
2006	/*
2007	 * low level driver can indicate that it wants pages above a
2008	 * certain limit bounced to low memory (ie for highmem, or even
2009	 * ISA dma in theory)
2010	 */
2011	blk_queue_bounce(q, &bio);
2012
2013	blk_queue_split(q, &bio);
2014
2015	if (!bio_integrity_prep(bio))
2016		return BLK_QC_T_NONE;
2017
2018	if (op_is_flush(bio->bi_opf)) {
2019		spin_lock_irq(q->queue_lock);
2020		where = ELEVATOR_INSERT_FLUSH;
2021		goto get_rq;
2022	}
2023
2024	/*
2025	 * Check if we can merge with the plugged list before grabbing
2026	 * any locks.
2027	 */
2028	if (!blk_queue_nomerges(q)) {
2029		if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
2030			return BLK_QC_T_NONE;
2031	} else
2032		request_count = blk_plug_queued_count(q);
2033
2034	spin_lock_irq(q->queue_lock);
2035
2036	switch (elv_merge(q, &req, bio)) {
2037	case ELEVATOR_BACK_MERGE:
2038		if (!bio_attempt_back_merge(q, req, bio))
2039			break;
2040		elv_bio_merged(q, req, bio);
2041		free = attempt_back_merge(q, req);
2042		if (free)
2043			__blk_put_request(q, free);
2044		else
2045			elv_merged_request(q, req, ELEVATOR_BACK_MERGE);
2046		goto out_unlock;
2047	case ELEVATOR_FRONT_MERGE:
2048		if (!bio_attempt_front_merge(q, req, bio))
2049			break;
2050		elv_bio_merged(q, req, bio);
2051		free = attempt_front_merge(q, req);
2052		if (free)
2053			__blk_put_request(q, free);
2054		else
2055			elv_merged_request(q, req, ELEVATOR_FRONT_MERGE);
2056		goto out_unlock;
2057	default:
2058		break;
2059	}
2060
2061get_rq:
2062	wb_acct = wbt_wait(q->rq_wb, bio, q->queue_lock);
2063
2064	/*
2065	 * Grab a free request. This is might sleep but can not fail.
2066	 * Returns with the queue unlocked.
2067	 */
2068	blk_queue_enter_live(q);
2069	req = get_request(q, bio->bi_opf, bio, 0);
2070	if (IS_ERR(req)) {
2071		blk_queue_exit(q);
2072		__wbt_done(q->rq_wb, wb_acct);
2073		if (PTR_ERR(req) == -ENOMEM)
2074			bio->bi_status = BLK_STS_RESOURCE;
2075		else
2076			bio->bi_status = BLK_STS_IOERR;
2077		bio_endio(bio);
2078		goto out_unlock;
2079	}
2080
2081	wbt_track(&req->issue_stat, wb_acct);
2082
2083	/*
2084	 * After dropping the lock and possibly sleeping here, our request
2085	 * may now be mergeable after it had proven unmergeable (above).
2086	 * We don't worry about that case for efficiency. It won't happen
2087	 * often, and the elevators are able to handle it.
2088	 */
2089	blk_init_request_from_bio(req, bio);
2090
2091	if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
2092		req->cpu = raw_smp_processor_id();
2093
2094	plug = current->plug;
2095	if (plug) {
2096		/*
2097		 * If this is the first request added after a plug, fire
2098		 * of a plug trace.
2099		 *
2100		 * @request_count may become stale because of schedule
2101		 * out, so check plug list again.
2102		 */
2103		if (!request_count || list_empty(&plug->list))
2104			trace_block_plug(q);
2105		else {
2106			struct request *last = list_entry_rq(plug->list.prev);
2107			if (request_count >= BLK_MAX_REQUEST_COUNT ||
2108			    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE) {
2109				blk_flush_plug_list(plug, false);
2110				trace_block_plug(q);
2111			}
2112		}
2113		list_add_tail(&req->queuelist, &plug->list);
2114		blk_account_io_start(req, true);
2115	} else {
2116		spin_lock_irq(q->queue_lock);
2117		add_acct_request(q, req, where);
2118		__blk_run_queue(q);
2119out_unlock:
2120		spin_unlock_irq(q->queue_lock);
2121	}
2122
2123	return BLK_QC_T_NONE;
2124}
2125
2126static void handle_bad_sector(struct bio *bio, sector_t maxsector)
2127{
2128	char b[BDEVNAME_SIZE];
2129
2130	printk(KERN_INFO "attempt to access beyond end of device\n");
2131	printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n",
2132			bio_devname(bio, b), bio->bi_opf,
2133			(unsigned long long)bio_end_sector(bio),
2134			(long long)maxsector);
2135}
2136
2137#ifdef CONFIG_FAIL_MAKE_REQUEST
2138
2139static DECLARE_FAULT_ATTR(fail_make_request);
2140
2141static int __init setup_fail_make_request(char *str)
2142{
2143	return setup_fault_attr(&fail_make_request, str);
2144}
2145__setup("fail_make_request=", setup_fail_make_request);
2146
2147static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
2148{
2149	return part->make_it_fail && should_fail(&fail_make_request, bytes);
2150}
2151
2152static int __init fail_make_request_debugfs(void)
2153{
2154	struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
2155						NULL, &fail_make_request);
2156
2157	return PTR_ERR_OR_ZERO(dir);
2158}
2159
2160late_initcall(fail_make_request_debugfs);
2161
2162#else /* CONFIG_FAIL_MAKE_REQUEST */
2163
2164static inline bool should_fail_request(struct hd_struct *part,
2165					unsigned int bytes)
2166{
2167	return false;
2168}
2169
2170#endif /* CONFIG_FAIL_MAKE_REQUEST */
2171
2172static inline bool bio_check_ro(struct bio *bio, struct hd_struct *part)
2173{
2174	if (part->policy && op_is_write(bio_op(bio))) {
2175		char b[BDEVNAME_SIZE];
 
2176
2177		printk(KERN_ERR
2178		       "generic_make_request: Trying to write "
2179			"to read-only block-device %s (partno %d)\n",
2180			bio_devname(bio, b), part->partno);
2181		return true;
2182	}
2183
2184	return false;
 
 
 
 
 
 
 
2185}
2186
2187static noinline int should_fail_bio(struct bio *bio)
2188{
2189	if (should_fail_request(&bio->bi_disk->part0, bio->bi_iter.bi_size))
2190		return -EIO;
2191	return 0;
2192}
2193ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO);
2194
2195/*
2196 * Check whether this bio extends beyond the end of the device or partition.
2197 * This may well happen - the kernel calls bread() without checking the size of
2198 * the device, e.g., when mounting a file system.
2199 */
2200static inline int bio_check_eod(struct bio *bio, sector_t maxsector)
2201{
 
2202	unsigned int nr_sectors = bio_sectors(bio);
2203
2204	if (nr_sectors && maxsector &&
2205	    (nr_sectors > maxsector ||
2206	     bio->bi_iter.bi_sector > maxsector - nr_sectors)) {
2207		handle_bad_sector(bio, maxsector);
 
 
 
2208		return -EIO;
2209	}
2210	return 0;
2211}
2212
2213/*
2214 * Remap block n of partition p to block n+start(p) of the disk.
2215 */
2216static inline int blk_partition_remap(struct bio *bio)
2217{
2218	struct hd_struct *p;
2219	int ret = -EIO;
2220
2221	rcu_read_lock();
2222	p = __disk_get_part(bio->bi_disk, bio->bi_partno);
2223	if (unlikely(!p))
2224		goto out;
2225	if (unlikely(should_fail_request(p, bio->bi_iter.bi_size)))
2226		goto out;
2227	if (unlikely(bio_check_ro(bio, p)))
2228		goto out;
2229
2230	/*
2231	 * Zone reset does not include bi_size so bio_sectors() is always 0.
2232	 * Include a test for the reset op code and perform the remap if needed.
2233	 */
2234	if (bio_sectors(bio) || bio_op(bio) == REQ_OP_ZONE_RESET) {
2235		if (bio_check_eod(bio, part_nr_sects_read(p)))
2236			goto out;
2237		bio->bi_iter.bi_sector += p->start_sect;
2238		bio->bi_partno = 0;
2239		trace_block_bio_remap(bio->bi_disk->queue, bio, part_devt(p),
2240				      bio->bi_iter.bi_sector - p->start_sect);
2241	}
2242	ret = 0;
2243out:
2244	rcu_read_unlock();
2245	return ret;
2246}
2247
2248static noinline_for_stack bool
2249generic_make_request_checks(struct bio *bio)
 
 
 
2250{
2251	struct request_queue *q;
2252	int nr_sectors = bio_sectors(bio);
2253	blk_status_t status = BLK_STS_IOERR;
2254	char b[BDEVNAME_SIZE];
2255
2256	might_sleep();
2257
2258	q = bio->bi_disk->queue;
2259	if (unlikely(!q)) {
2260		printk(KERN_ERR
2261		       "generic_make_request: Trying to access "
2262			"nonexistent block-device %s (%Lu)\n",
2263			bio_devname(bio, b), (long long)bio->bi_iter.bi_sector);
2264		goto end_io;
2265	}
2266
2267	/*
2268	 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
2269	 * if queue is not a request based queue.
 
2270	 */
2271	if ((bio->bi_opf & REQ_NOWAIT) && !queue_is_rq_based(q))
2272		goto not_supported;
2273
2274	if (should_fail_bio(bio))
2275		goto end_io;
2276
2277	if (bio->bi_partno) {
2278		if (unlikely(blk_partition_remap(bio)))
2279			goto end_io;
2280	} else {
2281		if (unlikely(bio_check_ro(bio, &bio->bi_disk->part0)))
2282			goto end_io;
2283		if (unlikely(bio_check_eod(bio, get_capacity(bio->bi_disk))))
2284			goto end_io;
2285	}
2286
2287	/*
2288	 * Filter flush bio's early so that make_request based
2289	 * drivers without flush support don't have to worry
2290	 * about them.
2291	 */
2292	if (op_is_flush(bio->bi_opf) &&
2293	    !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
2294		bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
2295		if (!nr_sectors) {
2296			status = BLK_STS_OK;
2297			goto end_io;
2298		}
2299	}
2300
2301	switch (bio_op(bio)) {
2302	case REQ_OP_DISCARD:
2303		if (!blk_queue_discard(q))
2304			goto not_supported;
2305		break;
2306	case REQ_OP_SECURE_ERASE:
2307		if (!blk_queue_secure_erase(q))
2308			goto not_supported;
2309		break;
2310	case REQ_OP_WRITE_SAME:
2311		if (!q->limits.max_write_same_sectors)
2312			goto not_supported;
2313		break;
2314	case REQ_OP_ZONE_REPORT:
2315	case REQ_OP_ZONE_RESET:
2316		if (!blk_queue_is_zoned(q))
2317			goto not_supported;
2318		break;
2319	case REQ_OP_WRITE_ZEROES:
2320		if (!q->limits.max_write_zeroes_sectors)
2321			goto not_supported;
2322		break;
2323	default:
2324		break;
2325	}
2326
2327	/*
2328	 * Various block parts want %current->io_context and lazy ioc
2329	 * allocation ends up trading a lot of pain for a small amount of
2330	 * memory.  Just allocate it upfront.  This may fail and block
2331	 * layer knows how to live with it.
2332	 */
2333	create_io_context(GFP_ATOMIC, q->node);
2334
2335	if (!blkcg_bio_issue_check(q, bio))
2336		return false;
 
 
2337
2338	if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
2339		trace_block_bio_queue(q, bio);
2340		/* Now that enqueuing has been traced, we need to trace
2341		 * completion as well.
2342		 */
2343		bio_set_flag(bio, BIO_TRACE_COMPLETION);
2344	}
2345	return true;
2346
2347not_supported:
2348	status = BLK_STS_NOTSUPP;
2349end_io:
2350	bio->bi_status = status;
2351	bio_endio(bio);
2352	return false;
2353}
2354
2355/**
2356 * generic_make_request - hand a buffer to its device driver for I/O
2357 * @bio:  The bio describing the location in memory and on the device.
2358 *
2359 * generic_make_request() is used to make I/O requests of block
2360 * devices. It is passed a &struct bio, which describes the I/O that needs
2361 * to be done.
2362 *
2363 * generic_make_request() does not return any status.  The
2364 * success/failure status of the request, along with notification of
2365 * completion, is delivered asynchronously through the bio->bi_end_io
2366 * function described (one day) else where.
2367 *
2368 * The caller of generic_make_request must make sure that bi_io_vec
2369 * are set to describe the memory buffer, and that bi_dev and bi_sector are
2370 * set to describe the device address, and the
2371 * bi_end_io and optionally bi_private are set to describe how
2372 * completion notification should be signaled.
2373 *
2374 * generic_make_request and the drivers it calls may use bi_next if this
2375 * bio happens to be merged with someone else, and may resubmit the bio to
2376 * a lower device by calling into generic_make_request recursively, which
2377 * means the bio should NOT be touched after the call to ->make_request_fn.
2378 */
2379blk_qc_t generic_make_request(struct bio *bio)
2380{
2381	/*
2382	 * bio_list_on_stack[0] contains bios submitted by the current
2383	 * make_request_fn.
2384	 * bio_list_on_stack[1] contains bios that were submitted before
2385	 * the current make_request_fn, but that haven't been processed
2386	 * yet.
2387	 */
2388	struct bio_list bio_list_on_stack[2];
2389	blk_mq_req_flags_t flags = 0;
2390	struct request_queue *q = bio->bi_disk->queue;
2391	blk_qc_t ret = BLK_QC_T_NONE;
2392
2393	if (bio->bi_opf & REQ_NOWAIT)
2394		flags = BLK_MQ_REQ_NOWAIT;
2395	if (blk_queue_enter(q, flags) < 0) {
2396		if (!blk_queue_dying(q) && (bio->bi_opf & REQ_NOWAIT))
2397			bio_wouldblock_error(bio);
2398		else
2399			bio_io_error(bio);
2400		return ret;
2401	}
2402
2403	if (!generic_make_request_checks(bio))
2404		goto out;
2405
2406	/*
2407	 * We only want one ->make_request_fn to be active at a time, else
2408	 * stack usage with stacked devices could be a problem.  So use
2409	 * current->bio_list to keep a list of requests submited by a
2410	 * make_request_fn function.  current->bio_list is also used as a
2411	 * flag to say if generic_make_request is currently active in this
2412	 * task or not.  If it is NULL, then no make_request is active.  If
2413	 * it is non-NULL, then a make_request is active, and new requests
2414	 * should be added at the tail
2415	 */
2416	if (current->bio_list) {
2417		bio_list_add(&current->bio_list[0], bio);
2418		goto out;
2419	}
2420
2421	/* following loop may be a bit non-obvious, and so deserves some
2422	 * explanation.
2423	 * Before entering the loop, bio->bi_next is NULL (as all callers
2424	 * ensure that) so we have a list with a single bio.
2425	 * We pretend that we have just taken it off a longer list, so
2426	 * we assign bio_list to a pointer to the bio_list_on_stack,
2427	 * thus initialising the bio_list of new bios to be
2428	 * added.  ->make_request() may indeed add some more bios
2429	 * through a recursive call to generic_make_request.  If it
2430	 * did, we find a non-NULL value in bio_list and re-enter the loop
2431	 * from the top.  In this case we really did just take the bio
2432	 * of the top of the list (no pretending) and so remove it from
2433	 * bio_list, and call into ->make_request() again.
2434	 */
2435	BUG_ON(bio->bi_next);
 
2436	bio_list_init(&bio_list_on_stack[0]);
2437	current->bio_list = bio_list_on_stack;
 
2438	do {
2439		bool enter_succeeded = true;
 
2440
2441		if (unlikely(q != bio->bi_disk->queue)) {
2442			if (q)
2443				blk_queue_exit(q);
2444			q = bio->bi_disk->queue;
2445			flags = 0;
2446			if (bio->bi_opf & REQ_NOWAIT)
2447				flags = BLK_MQ_REQ_NOWAIT;
2448			if (blk_queue_enter(q, flags) < 0) {
2449				enter_succeeded = false;
2450				q = NULL;
2451			}
2452		}
2453
2454		if (enter_succeeded) {
2455			struct bio_list lower, same;
2456
2457			/* Create a fresh bio_list for all subordinate requests */
2458			bio_list_on_stack[1] = bio_list_on_stack[0];
2459			bio_list_init(&bio_list_on_stack[0]);
2460			ret = q->make_request_fn(q, bio);
2461
2462			/* sort new bios into those for a lower level
2463			 * and those for the same level
2464			 */
2465			bio_list_init(&lower);
2466			bio_list_init(&same);
2467			while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
2468				if (q == bio->bi_disk->queue)
2469					bio_list_add(&same, bio);
2470				else
2471					bio_list_add(&lower, bio);
2472			/* now assemble so we handle the lowest level first */
2473			bio_list_merge(&bio_list_on_stack[0], &lower);
2474			bio_list_merge(&bio_list_on_stack[0], &same);
2475			bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
2476		} else {
2477			if (unlikely(!blk_queue_dying(q) &&
2478					(bio->bi_opf & REQ_NOWAIT)))
2479				bio_wouldblock_error(bio);
2480			else
2481				bio_io_error(bio);
2482		}
2483		bio = bio_list_pop(&bio_list_on_stack[0]);
2484	} while (bio);
2485	current->bio_list = NULL; /* deactivate */
2486
2487out:
2488	if (q)
2489		blk_queue_exit(q);
2490	return ret;
2491}
2492EXPORT_SYMBOL(generic_make_request);
2493
2494/**
2495 * direct_make_request - hand a buffer directly to its device driver for I/O
2496 * @bio:  The bio describing the location in memory and on the device.
2497 *
2498 * This function behaves like generic_make_request(), but does not protect
2499 * against recursion.  Must only be used if the called driver is known
2500 * to not call generic_make_request (or direct_make_request) again from
2501 * its make_request function.  (Calling direct_make_request again from
2502 * a workqueue is perfectly fine as that doesn't recurse).
2503 */
2504blk_qc_t direct_make_request(struct bio *bio)
2505{
2506	struct request_queue *q = bio->bi_disk->queue;
2507	bool nowait = bio->bi_opf & REQ_NOWAIT;
2508	blk_qc_t ret;
2509
2510	if (!generic_make_request_checks(bio))
2511		return BLK_QC_T_NONE;
2512
2513	if (unlikely(blk_queue_enter(q, nowait ? BLK_MQ_REQ_NOWAIT : 0))) {
2514		if (nowait && !blk_queue_dying(q))
2515			bio->bi_status = BLK_STS_AGAIN;
2516		else
2517			bio->bi_status = BLK_STS_IOERR;
2518		bio_endio(bio);
2519		return BLK_QC_T_NONE;
2520	}
2521
2522	ret = q->make_request_fn(q, bio);
2523	blk_queue_exit(q);
2524	return ret;
2525}
2526EXPORT_SYMBOL_GPL(direct_make_request);
2527
2528/**
2529 * submit_bio - submit a bio to the block device layer for I/O
2530 * @bio: The &struct bio which describes the I/O
2531 *
2532 * submit_bio() is very similar in purpose to generic_make_request(), and
2533 * uses that function to do most of the work. Both are fairly rough
2534 * interfaces; @bio must be presetup and ready for I/O.
2535 *
2536 */
2537blk_qc_t submit_bio(struct bio *bio)
2538{
2539	/*
2540	 * If it's a regular read/write or a barrier with data attached,
2541	 * go through the normal accounting stuff before submission.
2542	 */
2543	if (bio_has_data(bio)) {
2544		unsigned int count;
2545
2546		if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
2547			count = queue_logical_block_size(bio->bi_disk->queue) >> 9;
2548		else
2549			count = bio_sectors(bio);
2550
2551		if (op_is_write(bio_op(bio))) {
2552			count_vm_events(PGPGOUT, count);
2553		} else {
2554			task_io_account_read(bio->bi_iter.bi_size);
2555			count_vm_events(PGPGIN, count);
2556		}
2557
2558		if (unlikely(block_dump)) {
2559			char b[BDEVNAME_SIZE];
2560			printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
2561			current->comm, task_pid_nr(current),
2562				op_is_write(bio_op(bio)) ? "WRITE" : "READ",
2563				(unsigned long long)bio->bi_iter.bi_sector,
2564				bio_devname(bio, b), count);
2565		}
2566	}
2567
2568	return generic_make_request(bio);
2569}
2570EXPORT_SYMBOL(submit_bio);
2571
2572bool blk_poll(struct request_queue *q, blk_qc_t cookie)
2573{
2574	if (!q->poll_fn || !blk_qc_t_valid(cookie))
2575		return false;
2576
2577	if (current->plug)
2578		blk_flush_plug_list(current->plug, false);
2579	return q->poll_fn(q, cookie);
2580}
2581EXPORT_SYMBOL_GPL(blk_poll);
2582
2583/**
2584 * blk_cloned_rq_check_limits - Helper function to check a cloned request
2585 *                              for new the queue limits
2586 * @q:  the queue
2587 * @rq: the request being checked
2588 *
2589 * Description:
2590 *    @rq may have been made based on weaker limitations of upper-level queues
2591 *    in request stacking drivers, and it may violate the limitation of @q.
2592 *    Since the block layer and the underlying device driver trust @rq
2593 *    after it is inserted to @q, it should be checked against @q before
2594 *    the insertion using this generic function.
2595 *
2596 *    Request stacking drivers like request-based dm may change the queue
2597 *    limits when retrying requests on other queues. Those requests need
2598 *    to be checked against the new queue limits again during dispatch.
2599 */
2600static int blk_cloned_rq_check_limits(struct request_queue *q,
2601				      struct request *rq)
2602{
2603	if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) {
2604		printk(KERN_ERR "%s: over max size limit.\n", __func__);
2605		return -EIO;
2606	}
2607
2608	/*
2609	 * queue's settings related to segment counting like q->bounce_pfn
2610	 * may differ from that of other stacking queues.
2611	 * Recalculate it to check the request correctly on this queue's
2612	 * limitation.
2613	 */
2614	blk_recalc_rq_segments(rq);
2615	if (rq->nr_phys_segments > queue_max_segments(q)) {
2616		printk(KERN_ERR "%s: over max segments limit.\n", __func__);
2617		return -EIO;
2618	}
2619
2620	return 0;
2621}
2622
2623/**
2624 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2625 * @q:  the queue to submit the request
2626 * @rq: the request being queued
2627 */
2628blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq)
2629{
2630	unsigned long flags;
2631	int where = ELEVATOR_INSERT_BACK;
2632
2633	if (blk_cloned_rq_check_limits(q, rq))
2634		return BLK_STS_IOERR;
2635
2636	if (rq->rq_disk &&
2637	    should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
2638		return BLK_STS_IOERR;
2639
2640	if (q->mq_ops) {
2641		if (blk_queue_io_stat(q))
2642			blk_account_io_start(rq, true);
2643		/*
2644		 * Since we have a scheduler attached on the top device,
2645		 * bypass a potential scheduler on the bottom device for
2646		 * insert.
2647		 */
2648		return blk_mq_request_issue_directly(rq);
2649	}
2650
2651	spin_lock_irqsave(q->queue_lock, flags);
2652	if (unlikely(blk_queue_dying(q))) {
2653		spin_unlock_irqrestore(q->queue_lock, flags);
2654		return BLK_STS_IOERR;
2655	}
2656
2657	/*
2658	 * Submitting request must be dequeued before calling this function
2659	 * because it will be linked to another request_queue
 
 
2660	 */
2661	BUG_ON(blk_queued_rq(rq));
2662
2663	if (op_is_flush(rq->cmd_flags))
2664		where = ELEVATOR_INSERT_FLUSH;
2665
2666	add_acct_request(q, rq, where);
2667	if (where == ELEVATOR_INSERT_FLUSH)
2668		__blk_run_queue(q);
2669	spin_unlock_irqrestore(q->queue_lock, flags);
2670
2671	return BLK_STS_OK;
2672}
2673EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2674
2675/**
2676 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2677 * @rq: request to examine
2678 *
2679 * Description:
2680 *     A request could be merge of IOs which require different failure
2681 *     handling.  This function determines the number of bytes which
2682 *     can be failed from the beginning of the request without
2683 *     crossing into area which need to be retried further.
2684 *
2685 * Return:
2686 *     The number of bytes to fail.
 
 
2687 */
2688unsigned int blk_rq_err_bytes(const struct request *rq)
2689{
2690	unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2691	unsigned int bytes = 0;
2692	struct bio *bio;
2693
2694	if (!(rq->rq_flags & RQF_MIXED_MERGE))
2695		return blk_rq_bytes(rq);
2696
2697	/*
2698	 * Currently the only 'mixing' which can happen is between
2699	 * different fastfail types.  We can safely fail portions
2700	 * which have all the failfast bits that the first one has -
2701	 * the ones which are at least as eager to fail as the first
2702	 * one.
2703	 */
2704	for (bio = rq->bio; bio; bio = bio->bi_next) {
2705		if ((bio->bi_opf & ff) != ff)
2706			break;
2707		bytes += bio->bi_iter.bi_size;
2708	}
2709
2710	/* this could lead to infinite loop */
2711	BUG_ON(blk_rq_bytes(rq) && !bytes);
2712	return bytes;
2713}
2714EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2715
2716void blk_account_io_completion(struct request *req, unsigned int bytes)
2717{
2718	if (blk_do_io_stat(req)) {
2719		const int rw = rq_data_dir(req);
2720		struct hd_struct *part;
2721		int cpu;
2722
2723		cpu = part_stat_lock();
2724		part = req->part;
2725		part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2726		part_stat_unlock();
2727	}
2728}
2729
2730void blk_account_io_done(struct request *req)
2731{
2732	/*
2733	 * Account IO completion.  flush_rq isn't accounted as a
2734	 * normal IO on queueing nor completion.  Accounting the
2735	 * containing request is enough.
2736	 */
2737	if (blk_do_io_stat(req) && !(req->rq_flags & RQF_FLUSH_SEQ)) {
2738		unsigned long duration = jiffies - req->start_time;
2739		const int rw = rq_data_dir(req);
2740		struct hd_struct *part;
2741		int cpu;
2742
2743		cpu = part_stat_lock();
2744		part = req->part;
2745
2746		part_stat_inc(cpu, part, ios[rw]);
2747		part_stat_add(cpu, part, ticks[rw], duration);
2748		part_round_stats(req->q, cpu, part);
2749		part_dec_in_flight(req->q, part, rw);
2750
2751		hd_struct_put(part);
2752		part_stat_unlock();
2753	}
2754}
2755
2756#ifdef CONFIG_PM
2757/*
2758 * Don't process normal requests when queue is suspended
2759 * or in the process of suspending/resuming
2760 */
2761static bool blk_pm_allow_request(struct request *rq)
2762{
2763	switch (rq->q->rpm_status) {
2764	case RPM_RESUMING:
2765	case RPM_SUSPENDING:
2766		return rq->rq_flags & RQF_PM;
2767	case RPM_SUSPENDED:
2768		return false;
2769	}
2770
2771	return true;
2772}
2773#else
2774static bool blk_pm_allow_request(struct request *rq)
2775{
2776	return true;
2777}
2778#endif
2779
2780void blk_account_io_start(struct request *rq, bool new_io)
2781{
2782	struct hd_struct *part;
2783	int rw = rq_data_dir(rq);
2784	int cpu;
2785
2786	if (!blk_do_io_stat(rq))
2787		return;
2788
2789	cpu = part_stat_lock();
2790
2791	if (!new_io) {
2792		part = rq->part;
2793		part_stat_inc(cpu, part, merges[rw]);
2794	} else {
2795		part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2796		if (!hd_struct_try_get(part)) {
2797			/*
2798			 * The partition is already being removed,
2799			 * the request will be accounted on the disk only
2800			 *
2801			 * We take a reference on disk->part0 although that
2802			 * partition will never be deleted, so we can treat
2803			 * it as any other partition.
2804			 */
2805			part = &rq->rq_disk->part0;
2806			hd_struct_get(part);
2807		}
2808		part_round_stats(rq->q, cpu, part);
2809		part_inc_in_flight(rq->q, part, rw);
2810		rq->part = part;
2811	}
2812
2813	part_stat_unlock();
2814}
2815
2816static struct request *elv_next_request(struct request_queue *q)
2817{
2818	struct request *rq;
2819	struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
2820
2821	WARN_ON_ONCE(q->mq_ops);
2822
2823	while (1) {
2824		list_for_each_entry(rq, &q->queue_head, queuelist) {
2825			if (blk_pm_allow_request(rq))
2826				return rq;
2827
2828			if (rq->rq_flags & RQF_SOFTBARRIER)
2829				break;
2830		}
2831
 
 
 
 
 
2832		/*
2833		 * Flush request is running and flush request isn't queueable
2834		 * in the drive, we can hold the queue till flush request is
2835		 * finished. Even we don't do this, driver can't dispatch next
2836		 * requests and will requeue them. And this can improve
2837		 * throughput too. For example, we have request flush1, write1,
2838		 * flush 2. flush1 is dispatched, then queue is hold, write1
2839		 * isn't inserted to queue. After flush1 is finished, flush2
2840		 * will be dispatched. Since disk cache is already clean,
2841		 * flush2 will be finished very soon, so looks like flush2 is
2842		 * folded to flush1.
2843		 * Since the queue is hold, a flag is set to indicate the queue
2844		 * should be restarted later. Please see flush_end_io() for
2845		 * details.
2846		 */
2847		if (fq->flush_pending_idx != fq->flush_running_idx &&
2848				!queue_flush_queueable(q)) {
2849			fq->flush_queue_delayed = 1;
2850			return NULL;
2851		}
2852		if (unlikely(blk_queue_bypass(q)) ||
2853		    !q->elevator->type->ops.sq.elevator_dispatch_fn(q, 0))
2854			return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2855	}
2856}
2857
2858/**
2859 * blk_peek_request - peek at the top of a request queue
2860 * @q: request queue to peek at
2861 *
2862 * Description:
2863 *     Return the request at the top of @q.  The returned request
2864 *     should be started using blk_start_request() before LLD starts
2865 *     processing it.
2866 *
2867 * Return:
2868 *     Pointer to the request at the top of @q if available.  Null
2869 *     otherwise.
2870 */
2871struct request *blk_peek_request(struct request_queue *q)
2872{
2873	struct request *rq;
2874	int ret;
2875
2876	lockdep_assert_held(q->queue_lock);
2877	WARN_ON_ONCE(q->mq_ops);
2878
2879	while ((rq = elv_next_request(q)) != NULL) {
2880		if (!(rq->rq_flags & RQF_STARTED)) {
2881			/*
2882			 * This is the first time the device driver
2883			 * sees this request (possibly after
2884			 * requeueing).  Notify IO scheduler.
2885			 */
2886			if (rq->rq_flags & RQF_SORTED)
2887				elv_activate_rq(q, rq);
2888
2889			/*
2890			 * just mark as started even if we don't start
2891			 * it, a request that has been delayed should
2892			 * not be passed by new incoming requests
2893			 */
2894			rq->rq_flags |= RQF_STARTED;
2895			trace_block_rq_issue(q, rq);
2896		}
2897
2898		if (!q->boundary_rq || q->boundary_rq == rq) {
2899			q->end_sector = rq_end_sector(rq);
2900			q->boundary_rq = NULL;
2901		}
2902
2903		if (rq->rq_flags & RQF_DONTPREP)
2904			break;
2905
2906		if (q->dma_drain_size && blk_rq_bytes(rq)) {
2907			/*
2908			 * make sure space for the drain appears we
2909			 * know we can do this because max_hw_segments
2910			 * has been adjusted to be one fewer than the
2911			 * device can handle
2912			 */
2913			rq->nr_phys_segments++;
2914		}
2915
2916		if (!q->prep_rq_fn)
2917			break;
2918
2919		ret = q->prep_rq_fn(q, rq);
2920		if (ret == BLKPREP_OK) {
2921			break;
2922		} else if (ret == BLKPREP_DEFER) {
2923			/*
2924			 * the request may have been (partially) prepped.
2925			 * we need to keep this request in the front to
2926			 * avoid resource deadlock.  RQF_STARTED will
2927			 * prevent other fs requests from passing this one.
2928			 */
2929			if (q->dma_drain_size && blk_rq_bytes(rq) &&
2930			    !(rq->rq_flags & RQF_DONTPREP)) {
2931				/*
2932				 * remove the space for the drain we added
2933				 * so that we don't add it again
2934				 */
2935				--rq->nr_phys_segments;
2936			}
2937
2938			rq = NULL;
2939			break;
2940		} else if (ret == BLKPREP_KILL || ret == BLKPREP_INVALID) {
2941			rq->rq_flags |= RQF_QUIET;
2942			/*
2943			 * Mark this request as started so we don't trigger
2944			 * any debug logic in the end I/O path.
2945			 */
2946			blk_start_request(rq);
2947			__blk_end_request_all(rq, ret == BLKPREP_INVALID ?
2948					BLK_STS_TARGET : BLK_STS_IOERR);
2949		} else {
2950			printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2951			break;
2952		}
2953	}
2954
2955	return rq;
 
 
 
 
2956}
2957EXPORT_SYMBOL(blk_peek_request);
2958
2959static void blk_dequeue_request(struct request *rq)
2960{
2961	struct request_queue *q = rq->q;
2962
2963	BUG_ON(list_empty(&rq->queuelist));
2964	BUG_ON(ELV_ON_HASH(rq));
2965
2966	list_del_init(&rq->queuelist);
2967
2968	/*
2969	 * the time frame between a request being removed from the lists
2970	 * and to it is freed is accounted as io that is in progress at
2971	 * the driver side.
2972	 */
2973	if (blk_account_rq(rq)) {
2974		q->in_flight[rq_is_sync(rq)]++;
2975		set_io_start_time_ns(rq);
2976	}
2977}
2978
2979/**
2980 * blk_start_request - start request processing on the driver
2981 * @req: request to dequeue
2982 *
2983 * Description:
2984 *     Dequeue @req and start timeout timer on it.  This hands off the
2985 *     request to the driver.
2986 */
2987void blk_start_request(struct request *req)
2988{
2989	lockdep_assert_held(req->q->queue_lock);
2990	WARN_ON_ONCE(req->q->mq_ops);
2991
2992	blk_dequeue_request(req);
2993
2994	if (test_bit(QUEUE_FLAG_STATS, &req->q->queue_flags)) {
2995		blk_stat_set_issue(&req->issue_stat, blk_rq_sectors(req));
2996		req->rq_flags |= RQF_STATS;
2997		wbt_issue(req->q->rq_wb, &req->issue_stat);
 
2998	}
2999
3000	BUG_ON(blk_rq_is_complete(req));
3001	blk_add_timer(req);
3002}
3003EXPORT_SYMBOL(blk_start_request);
3004
3005/**
3006 * blk_fetch_request - fetch a request from a request queue
3007 * @q: request queue to fetch a request from
 
 
3008 *
3009 * Description:
3010 *     Return the request at the top of @q.  The request is started on
3011 *     return and LLD can start processing it immediately.
3012 *
3013 * Return:
3014 *     Pointer to the request at the top of @q if available.  Null
3015 *     otherwise.
3016 */
3017struct request *blk_fetch_request(struct request_queue *q)
3018{
3019	struct request *rq;
3020
3021	lockdep_assert_held(q->queue_lock);
3022	WARN_ON_ONCE(q->mq_ops);
3023
3024	rq = blk_peek_request(q);
3025	if (rq)
3026		blk_start_request(rq);
3027	return rq;
3028}
3029EXPORT_SYMBOL(blk_fetch_request);
3030
3031/*
3032 * Steal bios from a request and add them to a bio list.
3033 * The request must not have been partially completed before.
3034 */
3035void blk_steal_bios(struct bio_list *list, struct request *rq)
3036{
3037	if (rq->bio) {
3038		if (list->tail)
3039			list->tail->bi_next = rq->bio;
3040		else
3041			list->head = rq->bio;
3042		list->tail = rq->biotail;
3043
3044		rq->bio = NULL;
3045		rq->biotail = NULL;
3046	}
3047
3048	rq->__data_len = 0;
3049}
3050EXPORT_SYMBOL_GPL(blk_steal_bios);
3051
3052/**
3053 * blk_update_request - Special helper function for request stacking drivers
3054 * @req:      the request being processed
3055 * @error:    block status code
3056 * @nr_bytes: number of bytes to complete @req
3057 *
3058 * Description:
3059 *     Ends I/O on a number of bytes attached to @req, but doesn't complete
3060 *     the request structure even if @req doesn't have leftover.
3061 *     If @req has leftover, sets it up for the next range of segments.
3062 *
3063 *     This special helper function is only for request stacking drivers
3064 *     (e.g. request-based dm) so that they can handle partial completion.
3065 *     Actual device drivers should use blk_end_request instead.
3066 *
3067 *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
3068 *     %false return from this function.
3069 *
3070 * Return:
3071 *     %false - this request doesn't have any more data
3072 *     %true  - this request has more data
3073 **/
3074bool blk_update_request(struct request *req, blk_status_t error,
3075		unsigned int nr_bytes)
3076{
3077	int total_bytes;
3078
3079	trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes);
3080
3081	if (!req->bio)
3082		return false;
3083
3084	if (unlikely(error && !blk_rq_is_passthrough(req) &&
3085		     !(req->rq_flags & RQF_QUIET)))
3086		print_req_error(req, error);
3087
3088	blk_account_io_completion(req, nr_bytes);
3089
3090	total_bytes = 0;
3091	while (req->bio) {
3092		struct bio *bio = req->bio;
3093		unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
3094
3095		if (bio_bytes == bio->bi_iter.bi_size)
3096			req->bio = bio->bi_next;
3097
3098		/* Completion has already been traced */
3099		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
3100		req_bio_endio(req, bio, bio_bytes, error);
3101
3102		total_bytes += bio_bytes;
3103		nr_bytes -= bio_bytes;
 
3104
3105		if (!nr_bytes)
3106			break;
3107	}
 
3108
3109	/*
3110	 * completely done
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3111	 */
3112	if (!req->bio) {
3113		/*
3114		 * Reset counters so that the request stacking driver
3115		 * can find how many bytes remain in the request
3116		 * later.
3117		 */
3118		req->__data_len = 0;
3119		return false;
3120	}
3121
3122	req->__data_len -= total_bytes;
3123
3124	/* update sector only for requests with clear definition of sector */
3125	if (!blk_rq_is_passthrough(req))
3126		req->__sector += total_bytes >> 9;
3127
3128	/* mixed attributes always follow the first bio */
3129	if (req->rq_flags & RQF_MIXED_MERGE) {
3130		req->cmd_flags &= ~REQ_FAILFAST_MASK;
3131		req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
3132	}
3133
3134	if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
3135		/*
3136		 * If total number of sectors is less than the first segment
3137		 * size, something has gone terribly wrong.
3138		 */
3139		if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
3140			blk_dump_rq_flags(req, "request botched");
3141			req->__data_len = blk_rq_cur_bytes(req);
3142		}
3143
3144		/* recalculate the number of segments */
3145		blk_recalc_rq_segments(req);
3146	}
3147
3148	return true;
3149}
3150EXPORT_SYMBOL_GPL(blk_update_request);
3151
3152static bool blk_update_bidi_request(struct request *rq, blk_status_t error,
3153				    unsigned int nr_bytes,
3154				    unsigned int bidi_bytes)
3155{
3156	if (blk_update_request(rq, error, nr_bytes))
3157		return true;
3158
3159	/* Bidi request must be completed as a whole */
3160	if (unlikely(blk_bidi_rq(rq)) &&
3161	    blk_update_request(rq->next_rq, error, bidi_bytes))
3162		return true;
3163
3164	if (blk_queue_add_random(rq->q))
3165		add_disk_randomness(rq->rq_disk);
3166
3167	return false;
3168}
3169
3170/**
3171 * blk_unprep_request - unprepare a request
3172 * @req:	the request
3173 *
3174 * This function makes a request ready for complete resubmission (or
3175 * completion).  It happens only after all error handling is complete,
3176 * so represents the appropriate moment to deallocate any resources
3177 * that were allocated to the request in the prep_rq_fn.  The queue
3178 * lock is held when calling this.
3179 */
3180void blk_unprep_request(struct request *req)
3181{
3182	struct request_queue *q = req->q;
3183
3184	req->rq_flags &= ~RQF_DONTPREP;
3185	if (q->unprep_rq_fn)
3186		q->unprep_rq_fn(q, req);
3187}
3188EXPORT_SYMBOL_GPL(blk_unprep_request);
3189
3190void blk_finish_request(struct request *req, blk_status_t error)
3191{
3192	struct request_queue *q = req->q;
3193
3194	lockdep_assert_held(req->q->queue_lock);
3195	WARN_ON_ONCE(q->mq_ops);
3196
3197	if (req->rq_flags & RQF_STATS)
3198		blk_stat_add(req);
3199
3200	if (req->rq_flags & RQF_QUEUED)
3201		blk_queue_end_tag(q, req);
3202
3203	BUG_ON(blk_queued_rq(req));
3204
3205	if (unlikely(laptop_mode) && !blk_rq_is_passthrough(req))
3206		laptop_io_completion(req->q->backing_dev_info);
3207
3208	blk_delete_timer(req);
3209
3210	if (req->rq_flags & RQF_DONTPREP)
3211		blk_unprep_request(req);
3212
3213	blk_account_io_done(req);
3214
3215	if (req->end_io) {
3216		wbt_done(req->q->rq_wb, &req->issue_stat);
3217		req->end_io(req, error);
3218	} else {
3219		if (blk_bidi_rq(req))
3220			__blk_put_request(req->next_rq->q, req->next_rq);
3221
3222		__blk_put_request(q, req);
 
3223	}
 
 
3224}
3225EXPORT_SYMBOL(blk_finish_request);
3226
3227/**
3228 * blk_end_bidi_request - Complete a bidi request
3229 * @rq:         the request to complete
3230 * @error:      block status code
3231 * @nr_bytes:   number of bytes to complete @rq
3232 * @bidi_bytes: number of bytes to complete @rq->next_rq
3233 *
3234 * Description:
3235 *     Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
3236 *     Drivers that supports bidi can safely call this member for any
3237 *     type of request, bidi or uni.  In the later case @bidi_bytes is
3238 *     just ignored.
3239 *
3240 * Return:
3241 *     %false - we are done with this request
3242 *     %true  - still buffers pending for this request
3243 **/
3244static bool blk_end_bidi_request(struct request *rq, blk_status_t error,
3245				 unsigned int nr_bytes, unsigned int bidi_bytes)
3246{
3247	struct request_queue *q = rq->q;
3248	unsigned long flags;
3249
3250	WARN_ON_ONCE(q->mq_ops);
3251
3252	if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
3253		return true;
3254
3255	spin_lock_irqsave(q->queue_lock, flags);
3256	blk_finish_request(rq, error);
3257	spin_unlock_irqrestore(q->queue_lock, flags);
3258
3259	return false;
3260}
3261
3262/**
3263 * __blk_end_bidi_request - Complete a bidi request with queue lock held
3264 * @rq:         the request to complete
3265 * @error:      block status code
3266 * @nr_bytes:   number of bytes to complete @rq
3267 * @bidi_bytes: number of bytes to complete @rq->next_rq
3268 *
3269 * Description:
3270 *     Identical to blk_end_bidi_request() except that queue lock is
3271 *     assumed to be locked on entry and remains so on return.
3272 *
3273 * Return:
3274 *     %false - we are done with this request
3275 *     %true  - still buffers pending for this request
3276 **/
3277static bool __blk_end_bidi_request(struct request *rq, blk_status_t error,
3278				   unsigned int nr_bytes, unsigned int bidi_bytes)
3279{
3280	lockdep_assert_held(rq->q->queue_lock);
3281	WARN_ON_ONCE(rq->q->mq_ops);
3282
3283	if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
3284		return true;
3285
3286	blk_finish_request(rq, error);
3287
3288	return false;
3289}
3290
3291/**
3292 * blk_end_request - Helper function for drivers to complete the request.
3293 * @rq:       the request being processed
3294 * @error:    block status code
3295 * @nr_bytes: number of bytes to complete
3296 *
3297 * Description:
3298 *     Ends I/O on a number of bytes attached to @rq.
3299 *     If @rq has leftover, sets it up for the next range of segments.
3300 *
3301 * Return:
3302 *     %false - we are done with this request
3303 *     %true  - still buffers pending for this request
3304 **/
3305bool blk_end_request(struct request *rq, blk_status_t error,
3306		unsigned int nr_bytes)
3307{
3308	WARN_ON_ONCE(rq->q->mq_ops);
3309	return blk_end_bidi_request(rq, error, nr_bytes, 0);
3310}
3311EXPORT_SYMBOL(blk_end_request);
3312
3313/**
3314 * blk_end_request_all - Helper function for drives to finish the request.
3315 * @rq: the request to finish
3316 * @error: block status code
3317 *
3318 * Description:
3319 *     Completely finish @rq.
3320 */
3321void blk_end_request_all(struct request *rq, blk_status_t error)
 
3322{
3323	bool pending;
3324	unsigned int bidi_bytes = 0;
3325
3326	if (unlikely(blk_bidi_rq(rq)))
3327		bidi_bytes = blk_rq_bytes(rq->next_rq);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3328
3329	pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
3330	BUG_ON(pending);
3331}
3332EXPORT_SYMBOL(blk_end_request_all);
3333
3334/**
3335 * __blk_end_request - Helper function for drivers to complete the request.
3336 * @rq:       the request being processed
3337 * @error:    block status code
3338 * @nr_bytes: number of bytes to complete
3339 *
3340 * Description:
3341 *     Must be called with queue lock held unlike blk_end_request().
3342 *
3343 * Return:
3344 *     %false - we are done with this request
3345 *     %true  - still buffers pending for this request
3346 **/
3347bool __blk_end_request(struct request *rq, blk_status_t error,
3348		unsigned int nr_bytes)
3349{
3350	lockdep_assert_held(rq->q->queue_lock);
3351	WARN_ON_ONCE(rq->q->mq_ops);
 
 
 
 
 
3352
3353	return __blk_end_bidi_request(rq, error, nr_bytes, 0);
 
 
 
3354}
3355EXPORT_SYMBOL(__blk_end_request);
3356
3357/**
3358 * __blk_end_request_all - Helper function for drives to finish the request.
3359 * @rq: the request to finish
3360 * @error:    block status code
3361 *
3362 * Description:
3363 *     Completely finish @rq.  Must be called with queue lock held.
3364 */
3365void __blk_end_request_all(struct request *rq, blk_status_t error)
3366{
3367	bool pending;
3368	unsigned int bidi_bytes = 0;
3369
3370	lockdep_assert_held(rq->q->queue_lock);
3371	WARN_ON_ONCE(rq->q->mq_ops);
3372
3373	if (unlikely(blk_bidi_rq(rq)))
3374		bidi_bytes = blk_rq_bytes(rq->next_rq);
3375
3376	pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
3377	BUG_ON(pending);
3378}
3379EXPORT_SYMBOL(__blk_end_request_all);
3380
3381/**
3382 * __blk_end_request_cur - Helper function to finish the current request chunk.
3383 * @rq: the request to finish the current chunk for
3384 * @error:    block status code
3385 *
3386 * Description:
3387 *     Complete the current consecutively mapped chunk from @rq.  Must
3388 *     be called with queue lock held.
3389 *
3390 * Return:
3391 *     %false - we are done with this request
3392 *     %true  - still buffers pending for this request
3393 */
3394bool __blk_end_request_cur(struct request *rq, blk_status_t error)
3395{
3396	return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
3397}
3398EXPORT_SYMBOL(__blk_end_request_cur);
3399
3400void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
3401		     struct bio *bio)
3402{
3403	if (bio_has_data(bio))
3404		rq->nr_phys_segments = bio_phys_segments(q, bio);
3405	else if (bio_op(bio) == REQ_OP_DISCARD)
3406		rq->nr_phys_segments = 1;
3407
3408	rq->__data_len = bio->bi_iter.bi_size;
3409	rq->bio = rq->biotail = bio;
3410
3411	if (bio->bi_disk)
3412		rq->rq_disk = bio->bi_disk;
 
 
3413}
 
3414
3415#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
3416/**
3417 * rq_flush_dcache_pages - Helper function to flush all pages in a request
3418 * @rq: the request to be flushed
3419 *
3420 * Description:
3421 *     Flush all pages in @rq.
3422 */
3423void rq_flush_dcache_pages(struct request *rq)
3424{
3425	struct req_iterator iter;
3426	struct bio_vec bvec;
3427
3428	rq_for_each_segment(bvec, rq, iter)
3429		flush_dcache_page(bvec.bv_page);
3430}
3431EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
3432#endif
3433
3434/**
3435 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
3436 * @q : the queue of the device being checked
3437 *
3438 * Description:
3439 *    Check if underlying low-level drivers of a device are busy.
3440 *    If the drivers want to export their busy state, they must set own
3441 *    exporting function using blk_queue_lld_busy() first.
3442 *
3443 *    Basically, this function is used only by request stacking drivers
3444 *    to stop dispatching requests to underlying devices when underlying
3445 *    devices are busy.  This behavior helps more I/O merging on the queue
3446 *    of the request stacking driver and prevents I/O throughput regression
3447 *    on burst I/O load.
3448 *
3449 * Return:
3450 *    0 - Not busy (The request stacking driver should dispatch request)
3451 *    1 - Busy (The request stacking driver should stop dispatching request)
3452 */
3453int blk_lld_busy(struct request_queue *q)
3454{
3455	if (q->lld_busy_fn)
3456		return q->lld_busy_fn(q);
3457
3458	return 0;
3459}
3460EXPORT_SYMBOL_GPL(blk_lld_busy);
3461
3462/**
3463 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3464 * @rq: the clone request to be cleaned up
3465 *
3466 * Description:
3467 *     Free all bios in @rq for a cloned request.
3468 */
3469void blk_rq_unprep_clone(struct request *rq)
3470{
3471	struct bio *bio;
3472
3473	while ((bio = rq->bio) != NULL) {
3474		rq->bio = bio->bi_next;
3475
3476		bio_put(bio);
3477	}
3478}
3479EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3480
3481/*
3482 * Copy attributes of the original request to the clone request.
3483 * The actual data parts (e.g. ->cmd, ->sense) are not copied.
3484 */
3485static void __blk_rq_prep_clone(struct request *dst, struct request *src)
3486{
3487	dst->cpu = src->cpu;
3488	dst->__sector = blk_rq_pos(src);
3489	dst->__data_len = blk_rq_bytes(src);
3490	dst->nr_phys_segments = src->nr_phys_segments;
3491	dst->ioprio = src->ioprio;
3492	dst->extra_len = src->extra_len;
3493}
3494
3495/**
3496 * blk_rq_prep_clone - Helper function to setup clone request
3497 * @rq: the request to be setup
3498 * @rq_src: original request to be cloned
3499 * @bs: bio_set that bios for clone are allocated from
3500 * @gfp_mask: memory allocation mask for bio
3501 * @bio_ctr: setup function to be called for each clone bio.
3502 *           Returns %0 for success, non %0 for failure.
3503 * @data: private data to be passed to @bio_ctr
3504 *
3505 * Description:
3506 *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3507 *     The actual data parts of @rq_src (e.g. ->cmd, ->sense)
3508 *     are not copied, and copying such parts is the caller's responsibility.
3509 *     Also, pages which the original bios are pointing to are not copied
3510 *     and the cloned bios just point same pages.
3511 *     So cloned bios must be completed before original bios, which means
3512 *     the caller must complete @rq before @rq_src.
3513 */
3514int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3515		      struct bio_set *bs, gfp_t gfp_mask,
3516		      int (*bio_ctr)(struct bio *, struct bio *, void *),
3517		      void *data)
3518{
3519	struct bio *bio, *bio_src;
3520
3521	if (!bs)
3522		bs = fs_bio_set;
3523
3524	__rq_for_each_bio(bio_src, rq_src) {
3525		bio = bio_clone_fast(bio_src, gfp_mask, bs);
3526		if (!bio)
3527			goto free_and_out;
3528
3529		if (bio_ctr && bio_ctr(bio, bio_src, data))
3530			goto free_and_out;
3531
3532		if (rq->bio) {
3533			rq->biotail->bi_next = bio;
3534			rq->biotail = bio;
3535		} else
3536			rq->bio = rq->biotail = bio;
3537	}
3538
3539	__blk_rq_prep_clone(rq, rq_src);
3540
3541	return 0;
3542
3543free_and_out:
3544	if (bio)
3545		bio_put(bio);
3546	blk_rq_unprep_clone(rq);
3547
3548	return -ENOMEM;
3549}
3550EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3551
3552int kblockd_schedule_work(struct work_struct *work)
3553{
3554	return queue_work(kblockd_workqueue, work);
3555}
3556EXPORT_SYMBOL(kblockd_schedule_work);
3557
3558int kblockd_schedule_work_on(int cpu, struct work_struct *work)
3559{
3560	return queue_work_on(cpu, kblockd_workqueue, work);
3561}
3562EXPORT_SYMBOL(kblockd_schedule_work_on);
3563
3564int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
3565				unsigned long delay)
3566{
3567	return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3568}
3569EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
3570
3571/**
3572 * blk_start_plug - initialize blk_plug and track it inside the task_struct
3573 * @plug:	The &struct blk_plug that needs to be initialized
3574 *
3575 * Description:
3576 *   Tracking blk_plug inside the task_struct will help with auto-flushing the
3577 *   pending I/O should the task end up blocking between blk_start_plug() and
3578 *   blk_finish_plug(). This is important from a performance perspective, but
3579 *   also ensures that we don't deadlock. For instance, if the task is blocking
3580 *   for a memory allocation, memory reclaim could end up wanting to free a
3581 *   page belonging to that request that is currently residing in our private
3582 *   plug. By flushing the pending I/O when the process goes to sleep, we avoid
3583 *   this kind of deadlock.
3584 */
3585void blk_start_plug(struct blk_plug *plug)
3586{
3587	struct task_struct *tsk = current;
3588
3589	/*
3590	 * If this is a nested plug, don't actually assign it.
3591	 */
3592	if (tsk->plug)
3593		return;
3594
3595	INIT_LIST_HEAD(&plug->list);
3596	INIT_LIST_HEAD(&plug->mq_list);
 
 
 
 
 
3597	INIT_LIST_HEAD(&plug->cb_list);
 
3598	/*
3599	 * Store ordering should not be needed here, since a potential
3600	 * preempt will imply a full memory barrier
3601	 */
3602	tsk->plug = plug;
3603}
3604EXPORT_SYMBOL(blk_start_plug);
3605
3606static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
3607{
3608	struct request *rqa = container_of(a, struct request, queuelist);
3609	struct request *rqb = container_of(b, struct request, queuelist);
3610
3611	return !(rqa->q < rqb->q ||
3612		(rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
3613}
3614
3615/*
3616 * If 'from_schedule' is true, then postpone the dispatch of requests
3617 * until a safe kblockd context. We due this to avoid accidental big
3618 * additional stack usage in driver dispatch, in places where the originally
3619 * plugger did not intend it.
 
 
 
 
 
 
 
 
 
 
 
 
 
3620 */
3621static void queue_unplugged(struct request_queue *q, unsigned int depth,
3622			    bool from_schedule)
3623	__releases(q->queue_lock)
3624{
3625	lockdep_assert_held(q->queue_lock);
3626
3627	trace_block_unplug(q, depth, !from_schedule);
3628
3629	if (from_schedule)
3630		blk_run_queue_async(q);
3631	else
3632		__blk_run_queue(q);
3633	spin_unlock(q->queue_lock);
3634}
 
3635
3636static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
3637{
3638	LIST_HEAD(callbacks);
3639
3640	while (!list_empty(&plug->cb_list)) {
3641		list_splice_init(&plug->cb_list, &callbacks);
3642
3643		while (!list_empty(&callbacks)) {
3644			struct blk_plug_cb *cb = list_first_entry(&callbacks,
3645							  struct blk_plug_cb,
3646							  list);
3647			list_del(&cb->list);
3648			cb->callback(cb, from_schedule);
3649		}
3650	}
3651}
3652
3653struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3654				      int size)
3655{
3656	struct blk_plug *plug = current->plug;
3657	struct blk_plug_cb *cb;
3658
3659	if (!plug)
3660		return NULL;
3661
3662	list_for_each_entry(cb, &plug->cb_list, list)
3663		if (cb->callback == unplug && cb->data == data)
3664			return cb;
3665
3666	/* Not currently on the callback list */
3667	BUG_ON(size < sizeof(*cb));
3668	cb = kzalloc(size, GFP_ATOMIC);
3669	if (cb) {
3670		cb->data = data;
3671		cb->callback = unplug;
3672		list_add(&cb->list, &plug->cb_list);
3673	}
3674	return cb;
3675}
3676EXPORT_SYMBOL(blk_check_plugged);
3677
3678void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
3679{
3680	struct request_queue *q;
3681	unsigned long flags;
3682	struct request *rq;
3683	LIST_HEAD(list);
3684	unsigned int depth;
3685
3686	flush_plug_callbacks(plug, from_schedule);
3687
3688	if (!list_empty(&plug->mq_list))
3689		blk_mq_flush_plug_list(plug, from_schedule);
3690
3691	if (list_empty(&plug->list))
3692		return;
3693
3694	list_splice_init(&plug->list, &list);
3695
3696	list_sort(NULL, &list, plug_rq_cmp);
3697
3698	q = NULL;
3699	depth = 0;
3700
3701	/*
3702	 * Save and disable interrupts here, to avoid doing it for every
3703	 * queue lock we have to take.
 
 
3704	 */
3705	local_irq_save(flags);
3706	while (!list_empty(&list)) {
3707		rq = list_entry_rq(list.next);
3708		list_del_init(&rq->queuelist);
3709		BUG_ON(!rq->q);
3710		if (rq->q != q) {
3711			/*
3712			 * This drops the queue lock
3713			 */
3714			if (q)
3715				queue_unplugged(q, depth, from_schedule);
3716			q = rq->q;
3717			depth = 0;
3718			spin_lock(q->queue_lock);
3719		}
3720
3721		/*
3722		 * Short-circuit if @q is dead
3723		 */
3724		if (unlikely(blk_queue_dying(q))) {
3725			__blk_end_request_all(rq, BLK_STS_IOERR);
3726			continue;
3727		}
3728
3729		/*
3730		 * rq is already accounted, so use raw insert
3731		 */
3732		if (op_is_flush(rq->cmd_flags))
3733			__elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3734		else
3735			__elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
3736
3737		depth++;
3738	}
3739
3740	/*
3741	 * This drops the queue lock
3742	 */
3743	if (q)
3744		queue_unplugged(q, depth, from_schedule);
3745
3746	local_irq_restore(flags);
3747}
3748
3749void blk_finish_plug(struct blk_plug *plug)
3750{
3751	if (plug != current->plug)
3752		return;
3753	blk_flush_plug_list(plug, false);
3754
3755	current->plug = NULL;
3756}
3757EXPORT_SYMBOL(blk_finish_plug);
3758
3759#ifdef CONFIG_PM
3760/**
3761 * blk_pm_runtime_init - Block layer runtime PM initialization routine
3762 * @q: the queue of the device
3763 * @dev: the device the queue belongs to
3764 *
3765 * Description:
3766 *    Initialize runtime-PM-related fields for @q and start auto suspend for
3767 *    @dev. Drivers that want to take advantage of request-based runtime PM
3768 *    should call this function after @dev has been initialized, and its
3769 *    request queue @q has been allocated, and runtime PM for it can not happen
3770 *    yet(either due to disabled/forbidden or its usage_count > 0). In most
3771 *    cases, driver should call this function before any I/O has taken place.
3772 *
3773 *    This function takes care of setting up using auto suspend for the device,
3774 *    the autosuspend delay is set to -1 to make runtime suspend impossible
3775 *    until an updated value is either set by user or by driver. Drivers do
3776 *    not need to touch other autosuspend settings.
3777 *
3778 *    The block layer runtime PM is request based, so only works for drivers
3779 *    that use request as their IO unit instead of those directly use bio's.
3780 */
3781void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3782{
3783	/* not support for RQF_PM and ->rpm_status in blk-mq yet */
3784	if (q->mq_ops)
3785		return;
3786
3787	q->dev = dev;
3788	q->rpm_status = RPM_ACTIVE;
3789	pm_runtime_set_autosuspend_delay(q->dev, -1);
3790	pm_runtime_use_autosuspend(q->dev);
3791}
3792EXPORT_SYMBOL(blk_pm_runtime_init);
3793
3794/**
3795 * blk_pre_runtime_suspend - Pre runtime suspend check
3796 * @q: the queue of the device
3797 *
3798 * Description:
3799 *    This function will check if runtime suspend is allowed for the device
3800 *    by examining if there are any requests pending in the queue. If there
3801 *    are requests pending, the device can not be runtime suspended; otherwise,
3802 *    the queue's status will be updated to SUSPENDING and the driver can
3803 *    proceed to suspend the device.
3804 *
3805 *    For the not allowed case, we mark last busy for the device so that
3806 *    runtime PM core will try to autosuspend it some time later.
3807 *
3808 *    This function should be called near the start of the device's
3809 *    runtime_suspend callback.
3810 *
3811 * Return:
3812 *    0		- OK to runtime suspend the device
3813 *    -EBUSY	- Device should not be runtime suspended
3814 */
3815int blk_pre_runtime_suspend(struct request_queue *q)
3816{
3817	int ret = 0;
3818
3819	if (!q->dev)
3820		return ret;
3821
3822	spin_lock_irq(q->queue_lock);
3823	if (q->nr_pending) {
3824		ret = -EBUSY;
3825		pm_runtime_mark_last_busy(q->dev);
3826	} else {
3827		q->rpm_status = RPM_SUSPENDING;
3828	}
3829	spin_unlock_irq(q->queue_lock);
3830	return ret;
3831}
3832EXPORT_SYMBOL(blk_pre_runtime_suspend);
3833
3834/**
3835 * blk_post_runtime_suspend - Post runtime suspend processing
3836 * @q: the queue of the device
3837 * @err: return value of the device's runtime_suspend function
3838 *
3839 * Description:
3840 *    Update the queue's runtime status according to the return value of the
3841 *    device's runtime suspend function and mark last busy for the device so
3842 *    that PM core will try to auto suspend the device at a later time.
3843 *
3844 *    This function should be called near the end of the device's
3845 *    runtime_suspend callback.
3846 */
3847void blk_post_runtime_suspend(struct request_queue *q, int err)
3848{
3849	if (!q->dev)
3850		return;
3851
3852	spin_lock_irq(q->queue_lock);
3853	if (!err) {
3854		q->rpm_status = RPM_SUSPENDED;
3855	} else {
3856		q->rpm_status = RPM_ACTIVE;
3857		pm_runtime_mark_last_busy(q->dev);
3858	}
3859	spin_unlock_irq(q->queue_lock);
3860}
3861EXPORT_SYMBOL(blk_post_runtime_suspend);
3862
3863/**
3864 * blk_pre_runtime_resume - Pre runtime resume processing
3865 * @q: the queue of the device
3866 *
3867 * Description:
3868 *    Update the queue's runtime status to RESUMING in preparation for the
3869 *    runtime resume of the device.
3870 *
3871 *    This function should be called near the start of the device's
3872 *    runtime_resume callback.
3873 */
3874void blk_pre_runtime_resume(struct request_queue *q)
3875{
3876	if (!q->dev)
3877		return;
3878
3879	spin_lock_irq(q->queue_lock);
3880	q->rpm_status = RPM_RESUMING;
3881	spin_unlock_irq(q->queue_lock);
3882}
3883EXPORT_SYMBOL(blk_pre_runtime_resume);
3884
3885/**
3886 * blk_post_runtime_resume - Post runtime resume processing
3887 * @q: the queue of the device
3888 * @err: return value of the device's runtime_resume function
3889 *
3890 * Description:
3891 *    Update the queue's runtime status according to the return value of the
3892 *    device's runtime_resume function. If it is successfully resumed, process
3893 *    the requests that are queued into the device's queue when it is resuming
3894 *    and then mark last busy and initiate autosuspend for it.
3895 *
3896 *    This function should be called near the end of the device's
3897 *    runtime_resume callback.
3898 */
3899void blk_post_runtime_resume(struct request_queue *q, int err)
3900{
3901	if (!q->dev)
3902		return;
3903
3904	spin_lock_irq(q->queue_lock);
3905	if (!err) {
3906		q->rpm_status = RPM_ACTIVE;
3907		__blk_run_queue(q);
3908		pm_runtime_mark_last_busy(q->dev);
3909		pm_request_autosuspend(q->dev);
3910	} else {
3911		q->rpm_status = RPM_SUSPENDED;
3912	}
3913	spin_unlock_irq(q->queue_lock);
3914}
3915EXPORT_SYMBOL(blk_post_runtime_resume);
3916
3917/**
3918 * blk_set_runtime_active - Force runtime status of the queue to be active
3919 * @q: the queue of the device
3920 *
3921 * If the device is left runtime suspended during system suspend the resume
3922 * hook typically resumes the device and corrects runtime status
3923 * accordingly. However, that does not affect the queue runtime PM status
3924 * which is still "suspended". This prevents processing requests from the
3925 * queue.
3926 *
3927 * This function can be used in driver's resume hook to correct queue
3928 * runtime PM status and re-enable peeking requests from the queue. It
3929 * should be called before first request is added to the queue.
3930 */
3931void blk_set_runtime_active(struct request_queue *q)
3932{
3933	spin_lock_irq(q->queue_lock);
3934	q->rpm_status = RPM_ACTIVE;
3935	pm_runtime_mark_last_busy(q->dev);
3936	pm_request_autosuspend(q->dev);
3937	spin_unlock_irq(q->queue_lock);
3938}
3939EXPORT_SYMBOL(blk_set_runtime_active);
3940#endif
3941
3942int __init blk_dev_init(void)
3943{
3944	BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
3945	BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3946			FIELD_SIZEOF(struct request, cmd_flags));
3947	BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3948			FIELD_SIZEOF(struct bio, bi_opf));
3949
3950	/* used for unplugging and affects IO latency/throughput - HIGHPRI */
3951	kblockd_workqueue = alloc_workqueue("kblockd",
3952					    WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
3953	if (!kblockd_workqueue)
3954		panic("Failed to create kblockd\n");
3955
3956	request_cachep = kmem_cache_create("blkdev_requests",
3957			sizeof(struct request), 0, SLAB_PANIC, NULL);
3958
3959	blk_requestq_cachep = kmem_cache_create("request_queue",
3960			sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
3961
3962#ifdef CONFIG_DEBUG_FS
3963	blk_debugfs_root = debugfs_create_dir("block", NULL);
3964#endif
3965
3966	return 0;
3967}
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 1991, 1992 Linus Torvalds
   4 * Copyright (C) 1994,      Karl Keyte: Added support for disk statistics
   5 * Elevator latency, (C) 2000  Andrea Arcangeli <andrea@suse.de> SuSE
   6 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
   7 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
   8 *	-  July2000
   9 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
  10 */
  11
  12/*
  13 * This handles all read/write requests to block devices
  14 */
  15#include <linux/kernel.h>
  16#include <linux/module.h>
 
  17#include <linux/bio.h>
  18#include <linux/blkdev.h>
  19#include <linux/blk-pm.h>
  20#include <linux/blk-integrity.h>
  21#include <linux/highmem.h>
  22#include <linux/mm.h>
  23#include <linux/pagemap.h>
  24#include <linux/kernel_stat.h>
  25#include <linux/string.h>
  26#include <linux/init.h>
  27#include <linux/completion.h>
  28#include <linux/slab.h>
  29#include <linux/swap.h>
  30#include <linux/writeback.h>
  31#include <linux/task_io_accounting_ops.h>
  32#include <linux/fault-inject.h>
  33#include <linux/list_sort.h>
  34#include <linux/delay.h>
  35#include <linux/ratelimit.h>
  36#include <linux/pm_runtime.h>
  37#include <linux/t10-pi.h>
  38#include <linux/debugfs.h>
  39#include <linux/bpf.h>
  40#include <linux/part_stat.h>
  41#include <linux/sched/sysctl.h>
  42#include <linux/blk-crypto.h>
  43
  44#define CREATE_TRACE_POINTS
  45#include <trace/events/block.h>
  46
  47#include "blk.h"
 
  48#include "blk-mq-sched.h"
  49#include "blk-pm.h"
  50#include "blk-cgroup.h"
  51#include "blk-throttle.h"
  52#include "blk-ioprio.h"
  53
 
  54struct dentry *blk_debugfs_root;
 
  55
  56EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
  57EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
  58EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
  59EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
  60EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
  61EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_insert);
  62
  63static DEFINE_IDA(blk_queue_ida);
 
 
 
 
 
  64
  65/*
  66 * For queue allocation
  67 */
  68static struct kmem_cache *blk_requestq_cachep;
  69
  70/*
  71 * Controlling structure to kblockd
  72 */
  73static struct workqueue_struct *kblockd_workqueue;
  74
  75/**
  76 * blk_queue_flag_set - atomically set a queue flag
  77 * @flag: flag to be set
  78 * @q: request queue
  79 */
  80void blk_queue_flag_set(unsigned int flag, struct request_queue *q)
  81{
  82	set_bit(flag, &q->queue_flags);
 
 
 
 
  83}
  84EXPORT_SYMBOL(blk_queue_flag_set);
  85
  86/**
  87 * blk_queue_flag_clear - atomically clear a queue flag
  88 * @flag: flag to be cleared
  89 * @q: request queue
  90 */
  91void blk_queue_flag_clear(unsigned int flag, struct request_queue *q)
  92{
  93	clear_bit(flag, &q->queue_flags);
 
 
 
 
  94}
  95EXPORT_SYMBOL(blk_queue_flag_clear);
  96
  97/**
  98 * blk_queue_flag_test_and_set - atomically test and set a queue flag
  99 * @flag: flag to be set
 100 * @q: request queue
 101 *
 102 * Returns the previous value of @flag - 0 if the flag was not set and 1 if
 103 * the flag was already set.
 104 */
 105bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q)
 106{
 107	return test_and_set_bit(flag, &q->queue_flags);
 
 
 
 
 
 
 
 108}
 109EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set);
 110
 111#define REQ_OP_NAME(name) [REQ_OP_##name] = #name
 112static const char *const blk_op_name[] = {
 113	REQ_OP_NAME(READ),
 114	REQ_OP_NAME(WRITE),
 115	REQ_OP_NAME(FLUSH),
 116	REQ_OP_NAME(DISCARD),
 117	REQ_OP_NAME(SECURE_ERASE),
 118	REQ_OP_NAME(ZONE_RESET),
 119	REQ_OP_NAME(ZONE_RESET_ALL),
 120	REQ_OP_NAME(ZONE_OPEN),
 121	REQ_OP_NAME(ZONE_CLOSE),
 122	REQ_OP_NAME(ZONE_FINISH),
 123	REQ_OP_NAME(ZONE_APPEND),
 124	REQ_OP_NAME(WRITE_ZEROES),
 125	REQ_OP_NAME(DRV_IN),
 126	REQ_OP_NAME(DRV_OUT),
 127};
 128#undef REQ_OP_NAME
 129
 130/**
 131 * blk_op_str - Return string XXX in the REQ_OP_XXX.
 132 * @op: REQ_OP_XXX.
 
 133 *
 134 * Description: Centralize block layer function to convert REQ_OP_XXX into
 135 * string format. Useful in the debugging and tracing bio or request. For
 136 * invalid REQ_OP_XXX it returns string "UNKNOWN".
 137 */
 138inline const char *blk_op_str(enum req_op op)
 139{
 140	const char *op_str = "UNKNOWN";
 
 141
 142	if (op < ARRAY_SIZE(blk_op_name) && blk_op_name[op])
 143		op_str = blk_op_name[op];
 
 144
 145	return op_str;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 146}
 147EXPORT_SYMBOL_GPL(blk_op_str);
 148
 149static const struct {
 150	int		errno;
 151	const char	*name;
 152} blk_errors[] = {
 153	[BLK_STS_OK]		= { 0,		"" },
 154	[BLK_STS_NOTSUPP]	= { -EOPNOTSUPP, "operation not supported" },
 155	[BLK_STS_TIMEOUT]	= { -ETIMEDOUT,	"timeout" },
 156	[BLK_STS_NOSPC]		= { -ENOSPC,	"critical space allocation" },
 157	[BLK_STS_TRANSPORT]	= { -ENOLINK,	"recoverable transport" },
 158	[BLK_STS_TARGET]	= { -EREMOTEIO,	"critical target" },
 159	[BLK_STS_RESV_CONFLICT]	= { -EBADE,	"reservation conflict" },
 160	[BLK_STS_MEDIUM]	= { -ENODATA,	"critical medium" },
 161	[BLK_STS_PROTECTION]	= { -EILSEQ,	"protection" },
 162	[BLK_STS_RESOURCE]	= { -ENOMEM,	"kernel resource" },
 163	[BLK_STS_DEV_RESOURCE]	= { -EBUSY,	"device resource" },
 164	[BLK_STS_AGAIN]		= { -EAGAIN,	"nonblocking retry" },
 165	[BLK_STS_OFFLINE]	= { -ENODEV,	"device offline" },
 166
 167	/* device mapper special case, should not leak out: */
 168	[BLK_STS_DM_REQUEUE]	= { -EREMCHG, "dm internal retry" },
 169
 170	/* zone device specific errors */
 171	[BLK_STS_ZONE_OPEN_RESOURCE]	= { -ETOOMANYREFS, "open zones exceeded" },
 172	[BLK_STS_ZONE_ACTIVE_RESOURCE]	= { -EOVERFLOW, "active zones exceeded" },
 173
 174	/* Command duration limit device-side timeout */
 175	[BLK_STS_DURATION_LIMIT]	= { -ETIME, "duration limit exceeded" },
 176
 177	/* everything else not covered above: */
 178	[BLK_STS_IOERR]		= { -EIO,	"I/O" },
 179};
 180
 181blk_status_t errno_to_blk_status(int errno)
 182{
 183	int i;
 184
 185	for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
 186		if (blk_errors[i].errno == errno)
 187			return (__force blk_status_t)i;
 188	}
 189
 190	return BLK_STS_IOERR;
 191}
 192EXPORT_SYMBOL_GPL(errno_to_blk_status);
 193
 194int blk_status_to_errno(blk_status_t status)
 195{
 196	int idx = (__force int)status;
 197
 198	if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
 199		return -EIO;
 200	return blk_errors[idx].errno;
 201}
 202EXPORT_SYMBOL_GPL(blk_status_to_errno);
 203
 204const char *blk_status_to_str(blk_status_t status)
 205{
 206	int idx = (__force int)status;
 207
 208	if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
 209		return "<null>";
 210	return blk_errors[idx].name;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 211}
 212EXPORT_SYMBOL_GPL(blk_status_to_str);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 213
 214/**
 215 * blk_sync_queue - cancel any pending callbacks on a queue
 216 * @q: the queue
 217 *
 218 * Description:
 219 *     The block layer may perform asynchronous callback activity
 220 *     on a queue, such as calling the unplug function after a timeout.
 221 *     A block device may call blk_sync_queue to ensure that any
 222 *     such activity is cancelled, thus allowing it to release resources
 223 *     that the callbacks might use. The caller must already have made sure
 224 *     that its ->submit_bio will not re-add plugging prior to calling
 225 *     this function.
 226 *
 227 *     This function does not cancel any asynchronous activity arising
 228 *     out of elevator or throttling code. That would require elevator_exit()
 229 *     and blkcg_exit_queue() to be called with queue lock initialized.
 230 *
 231 */
 232void blk_sync_queue(struct request_queue *q)
 233{
 234	del_timer_sync(&q->timeout);
 235	cancel_work_sync(&q->timeout_work);
 
 
 
 
 
 
 
 
 
 
 
 236}
 237EXPORT_SYMBOL(blk_sync_queue);
 238
 239/**
 240 * blk_set_pm_only - increment pm_only counter
 241 * @q: request queue pointer
 
 
 
 242 */
 243void blk_set_pm_only(struct request_queue *q)
 
 
 
 
 
 
 244{
 245	atomic_inc(&q->pm_only);
 
 246}
 247EXPORT_SYMBOL_GPL(blk_set_pm_only);
 248
 249void blk_clear_pm_only(struct request_queue *q)
 
 
 
 
 
 
 
 
 
 
 
 250{
 251	int pm_only;
 
 
 
 
 252
 253	pm_only = atomic_dec_return(&q->pm_only);
 254	WARN_ON_ONCE(pm_only < 0);
 255	if (pm_only == 0)
 256		wake_up_all(&q->mq_freeze_wq);
 
 
 
 
 
 
 257}
 258EXPORT_SYMBOL_GPL(blk_clear_pm_only);
 259
 260static void blk_free_queue_rcu(struct rcu_head *rcu_head)
 
 
 
 
 
 
 
 261{
 262	struct request_queue *q = container_of(rcu_head,
 263			struct request_queue, rcu_head);
 264
 265	percpu_ref_exit(&q->q_usage_counter);
 266	kmem_cache_free(blk_requestq_cachep, q);
 
 
 267}
 
 268
 269static void blk_free_queue(struct request_queue *q)
 
 
 
 
 
 
 
 
 
 
 
 
 
 270{
 271	blk_free_queue_stats(q->stats);
 272	if (queue_is_mq(q))
 273		blk_mq_release(q);
 274
 275	ida_free(&blk_queue_ida, q->id);
 276	call_rcu(&q->rcu_head, blk_free_queue_rcu);
 277}
 
 278
 279/**
 280 * blk_put_queue - decrement the request_queue refcount
 281 * @q: the request_queue structure to decrement the refcount for
 282 *
 283 * Decrements the refcount of the request_queue and free it when the refcount
 284 * reaches 0.
 
 285 */
 
 
 
 
 
 
 
 
 
 
 
 
 286void blk_put_queue(struct request_queue *q)
 287{
 288	if (refcount_dec_and_test(&q->refs))
 289		blk_free_queue(q);
 290}
 291EXPORT_SYMBOL(blk_put_queue);
 292
 293void blk_queue_start_drain(struct request_queue *q)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 294{
 
 
 295	/*
 296	 * When queue DYING flag is set, we need to block new req
 297	 * entering queue, so we call blk_freeze_queue_start() to
 298	 * prevent I/O from crossing blk_queue_enter().
 299	 */
 300	blk_freeze_queue_start(q);
 301	if (queue_is_mq(q))
 
 302		blk_mq_wake_waiters(q);
 
 
 
 
 
 
 
 
 
 
 
 
 
 303	/* Make blk_queue_enter() reexamine the DYING flag. */
 304	wake_up_all(&q->mq_freeze_wq);
 305}
 
 306
 307/**
 308 * blk_queue_enter() - try to increase q->q_usage_counter
 309 * @q: request queue pointer
 310 * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PM
 
 
 311 */
 312int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 313{
 314	const bool pm = flags & BLK_MQ_REQ_PM;
 
 
 
 
 
 315
 316	while (!blk_try_enter_queue(q, pm)) {
 317		if (flags & BLK_MQ_REQ_NOWAIT)
 318			return -EAGAIN;
 
 
 319
 320		/*
 321		 * read pair of barrier in blk_freeze_queue_start(), we need to
 322		 * order reading __PERCPU_REF_DEAD flag of .q_usage_counter and
 323		 * reading .mq_freeze_depth or queue dying flag, otherwise the
 324		 * following wait may never return if the two reads are
 325		 * reordered.
 326		 */
 327		smp_rmb();
 328		wait_event(q->mq_freeze_wq,
 329			   (!q->mq_freeze_depth &&
 330			    blk_pm_resume_queue(pm, q)) ||
 331			   blk_queue_dying(q));
 332		if (blk_queue_dying(q))
 333			return -ENODEV;
 334	}
 
 
 
 
 
 335
 336	return 0;
 337}
 338
 339int __bio_queue_enter(struct request_queue *q, struct bio *bio)
 
 
 
 
 
 
 
 
 
 340{
 341	while (!blk_try_enter_queue(q, false)) {
 342		struct gendisk *disk = bio->bi_bdev->bd_disk;
 
 343
 344		if (bio->bi_opf & REQ_NOWAIT) {
 345			if (test_bit(GD_DEAD, &disk->state))
 346				goto dead;
 347			bio_wouldblock_error(bio);
 348			return -EAGAIN;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 349		}
 
 
 
 
 
 
 
 350
 351		/*
 352		 * read pair of barrier in blk_freeze_queue_start(), we need to
 353		 * order reading __PERCPU_REF_DEAD flag of .q_usage_counter and
 354		 * reading .mq_freeze_depth or queue dying flag, otherwise the
 355		 * following wait may never return if the two reads are
 356		 * reordered.
 357		 */
 358		smp_rmb();
 
 359		wait_event(q->mq_freeze_wq,
 360			   (!q->mq_freeze_depth &&
 361			    blk_pm_resume_queue(false, q)) ||
 362			   test_bit(GD_DEAD, &disk->state));
 363		if (test_bit(GD_DEAD, &disk->state))
 364			goto dead;
 365	}
 366
 367	return 0;
 368dead:
 369	bio_io_error(bio);
 370	return -ENODEV;
 371}
 372
 373void blk_queue_exit(struct request_queue *q)
 374{
 375	percpu_ref_put(&q->q_usage_counter);
 376}
 377
 378static void blk_queue_usage_counter_release(struct percpu_ref *ref)
 379{
 380	struct request_queue *q =
 381		container_of(ref, struct request_queue, q_usage_counter);
 382
 383	wake_up_all(&q->mq_freeze_wq);
 384}
 385
 386static void blk_rq_timed_out_timer(struct timer_list *t)
 387{
 388	struct request_queue *q = from_timer(q, t, timeout);
 389
 390	kblockd_schedule_work(&q->timeout_work);
 391}
 392
 393static void blk_timeout_work(struct work_struct *work)
 394{
 395}
 396
 397struct request_queue *blk_alloc_queue(struct queue_limits *lim, int node_id)
 
 
 
 
 
 
 
 
 
 
 398{
 399	struct request_queue *q;
 400	int error;
 401
 402	q = kmem_cache_alloc_node(blk_requestq_cachep, GFP_KERNEL | __GFP_ZERO,
 403				  node_id);
 404	if (!q)
 405		return ERR_PTR(-ENOMEM);
 406
 407	q->last_merge = NULL;
 408
 409	q->id = ida_alloc(&blk_queue_ida, GFP_KERNEL);
 410	if (q->id < 0) {
 411		error = q->id;
 412		goto fail_q;
 413	}
 414
 415	q->stats = blk_alloc_queue_stats();
 416	if (!q->stats) {
 417		error = -ENOMEM;
 418		goto fail_id;
 419	}
 420
 421	error = blk_set_default_limits(lim);
 422	if (error)
 
 
 
 
 423		goto fail_stats;
 424	q->limits = *lim;
 425
 
 
 
 
 426	q->node = node_id;
 427
 428	atomic_set(&q->nr_active_requests_shared_tags, 0);
 429
 430	timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
 431	INIT_WORK(&q->timeout_work, blk_timeout_work);
 
 
 432	INIT_LIST_HEAD(&q->icq_list);
 
 
 
 
 
 
 
 
 
 
 
 
 433
 434	refcount_set(&q->refs, 1);
 435	mutex_init(&q->debugfs_mutex);
 436	mutex_init(&q->sysfs_lock);
 437	mutex_init(&q->sysfs_dir_lock);
 438	mutex_init(&q->limits_lock);
 439	mutex_init(&q->rq_qos_mutex);
 440	spin_lock_init(&q->queue_lock);
 
 
 
 
 441
 442	init_waitqueue_head(&q->mq_freeze_wq);
 443	mutex_init(&q->mq_freeze_lock);
 444
 445	blkg_init_queue(q);
 446
 447	/*
 448	 * Init percpu_ref in atomic mode so that it's faster to shutdown.
 449	 * See blk_register_queue() for details.
 450	 */
 451	error = percpu_ref_init(&q->q_usage_counter,
 452				blk_queue_usage_counter_release,
 453				PERCPU_REF_INIT_ATOMIC, GFP_KERNEL);
 454	if (error)
 455		goto fail_stats;
 456
 457	q->nr_requests = BLKDEV_DEFAULT_RQ;
 
 458
 459	return q;
 460
 
 
 
 
 461fail_stats:
 462	blk_free_queue_stats(q->stats);
 
 
 463fail_id:
 464	ida_free(&blk_queue_ida, q->id);
 465fail_q:
 466	kmem_cache_free(blk_requestq_cachep, q);
 467	return ERR_PTR(error);
 468}
 
 469
 470/**
 471 * blk_get_queue - increment the request_queue refcount
 472 * @q: the request_queue structure to increment the refcount for
 
 
 473 *
 474 * Increment the refcount of the request_queue kobject.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 475 *
 476 * Context: Any context.
 
 
 
 477 */
 478bool blk_get_queue(struct request_queue *q)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 479{
 480	if (unlikely(blk_queue_dying(q)))
 
 
 481		return false;
 482	refcount_inc(&q->refs);
 
 
 
 
 
 
 
 
 
 
 
 
 
 483	return true;
 484}
 485EXPORT_SYMBOL(blk_get_queue);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 486
 487#ifdef CONFIG_FAIL_MAKE_REQUEST
 488
 489static DECLARE_FAULT_ATTR(fail_make_request);
 490
 491static int __init setup_fail_make_request(char *str)
 492{
 493	return setup_fault_attr(&fail_make_request, str);
 494}
 495__setup("fail_make_request=", setup_fail_make_request);
 496
 497bool should_fail_request(struct block_device *part, unsigned int bytes)
 498{
 499	return part->bd_make_it_fail && should_fail(&fail_make_request, bytes);
 500}
 501
 502static int __init fail_make_request_debugfs(void)
 503{
 504	struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
 505						NULL, &fail_make_request);
 506
 507	return PTR_ERR_OR_ZERO(dir);
 508}
 509
 510late_initcall(fail_make_request_debugfs);
 
 
 
 
 
 
 
 
 
 511#endif /* CONFIG_FAIL_MAKE_REQUEST */
 512
 513static inline void bio_check_ro(struct bio *bio)
 514{
 515	if (op_is_write(bio_op(bio)) && bdev_read_only(bio->bi_bdev)) {
 516		if (op_is_flush(bio->bi_opf) && !bio_sectors(bio))
 517			return;
 518
 519		if (bio->bi_bdev->bd_ro_warned)
 520			return;
 
 
 
 
 521
 522		bio->bi_bdev->bd_ro_warned = true;
 523		/*
 524		 * Use ioctl to set underlying disk of raid/dm to read-only
 525		 * will trigger this.
 526		 */
 527		pr_warn("Trying to write to read-only block-device %pg\n",
 528			bio->bi_bdev);
 529	}
 530}
 531
 532static noinline int should_fail_bio(struct bio *bio)
 533{
 534	if (should_fail_request(bdev_whole(bio->bi_bdev), bio->bi_iter.bi_size))
 535		return -EIO;
 536	return 0;
 537}
 538ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO);
 539
 540/*
 541 * Check whether this bio extends beyond the end of the device or partition.
 542 * This may well happen - the kernel calls bread() without checking the size of
 543 * the device, e.g., when mounting a file system.
 544 */
 545static inline int bio_check_eod(struct bio *bio)
 546{
 547	sector_t maxsector = bdev_nr_sectors(bio->bi_bdev);
 548	unsigned int nr_sectors = bio_sectors(bio);
 549
 550	if (nr_sectors &&
 551	    (nr_sectors > maxsector ||
 552	     bio->bi_iter.bi_sector > maxsector - nr_sectors)) {
 553		pr_info_ratelimited("%s: attempt to access beyond end of device\n"
 554				    "%pg: rw=%d, sector=%llu, nr_sectors = %u limit=%llu\n",
 555				    current->comm, bio->bi_bdev, bio->bi_opf,
 556				    bio->bi_iter.bi_sector, nr_sectors, maxsector);
 557		return -EIO;
 558	}
 559	return 0;
 560}
 561
 562/*
 563 * Remap block n of partition p to block n+start(p) of the disk.
 564 */
 565static int blk_partition_remap(struct bio *bio)
 566{
 567	struct block_device *p = bio->bi_bdev;
 
 568
 
 
 
 
 569	if (unlikely(should_fail_request(p, bio->bi_iter.bi_size)))
 570		return -EIO;
 571	if (bio_sectors(bio)) {
 572		bio->bi_iter.bi_sector += p->bd_start_sect;
 573		trace_block_bio_remap(bio, p->bd_dev,
 574				      bio->bi_iter.bi_sector -
 575				      p->bd_start_sect);
 
 
 
 
 
 
 
 
 
 576	}
 577	bio_set_flag(bio, BIO_REMAPPED);
 578	return 0;
 
 
 579}
 580
 581/*
 582 * Check write append to a zoned block device.
 583 */
 584static inline blk_status_t blk_check_zone_append(struct request_queue *q,
 585						 struct bio *bio)
 586{
 
 587	int nr_sectors = bio_sectors(bio);
 
 
 588
 589	/* Only applicable to zoned block devices */
 590	if (!bdev_is_zoned(bio->bi_bdev))
 591		return BLK_STS_NOTSUPP;
 592
 593	/* The bio sector must point to the start of a sequential zone */
 594	if (!bdev_is_zone_start(bio->bi_bdev, bio->bi_iter.bi_sector) ||
 595	    !bio_zone_is_seq(bio))
 596		return BLK_STS_IOERR;
 
 
 597
 598	/*
 599	 * Not allowed to cross zone boundaries. Otherwise, the BIO will be
 600	 * split and could result in non-contiguous sectors being written in
 601	 * different zones.
 602	 */
 603	if (nr_sectors > q->limits.chunk_sectors)
 604		return BLK_STS_IOERR;
 
 
 
 605
 606	/* Make sure the BIO is small enough and will not get split */
 607	if (nr_sectors > q->limits.max_zone_append_sectors)
 608		return BLK_STS_IOERR;
 
 
 
 
 
 
 609
 610	bio->bi_opf |= REQ_NOMERGE;
 
 
 
 
 
 
 
 
 
 
 
 
 611
 612	return BLK_STS_OK;
 613}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 614
 615static void __submit_bio(struct bio *bio)
 616{
 617	if (unlikely(!blk_crypto_bio_prep(&bio)))
 618		return;
 
 
 
 619
 620	if (!bio->bi_bdev->bd_has_submit_bio) {
 621		blk_mq_submit_bio(bio);
 622	} else if (likely(bio_queue_enter(bio) == 0)) {
 623		struct gendisk *disk = bio->bi_bdev->bd_disk;
 624
 625		disk->fops->submit_bio(bio);
 626		blk_queue_exit(disk->queue);
 
 
 
 
 627	}
 
 
 
 
 
 
 
 
 628}
 629
 630/*
 631 * The loop in this function may be a bit non-obvious, and so deserves some
 632 * explanation:
 633 *
 634 *  - Before entering the loop, bio->bi_next is NULL (as all callers ensure
 635 *    that), so we have a list with a single bio.
 636 *  - We pretend that we have just taken it off a longer list, so we assign
 637 *    bio_list to a pointer to the bio_list_on_stack, thus initialising the
 638 *    bio_list of new bios to be added.  ->submit_bio() may indeed add some more
 639 *    bios through a recursive call to submit_bio_noacct.  If it did, we find a
 640 *    non-NULL value in bio_list and re-enter the loop from the top.
 641 *  - In this case we really did just take the bio of the top of the list (no
 642 *    pretending) and so remove it from bio_list, and call into ->submit_bio()
 643 *    again.
 644 *
 645 * bio_list_on_stack[0] contains bios submitted by the current ->submit_bio.
 646 * bio_list_on_stack[1] contains bios that were submitted before the current
 647 *	->submit_bio, but that haven't been processed yet.
 
 
 
 
 
 648 */
 649static void __submit_bio_noacct(struct bio *bio)
 650{
 
 
 
 
 
 
 
 651	struct bio_list bio_list_on_stack[2];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 652
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 653	BUG_ON(bio->bi_next);
 654
 655	bio_list_init(&bio_list_on_stack[0]);
 656	current->bio_list = bio_list_on_stack;
 657
 658	do {
 659		struct request_queue *q = bdev_get_queue(bio->bi_bdev);
 660		struct bio_list lower, same;
 661
 662		/*
 663		 * Create a fresh bio_list for all subordinate requests.
 664		 */
 665		bio_list_on_stack[1] = bio_list_on_stack[0];
 666		bio_list_init(&bio_list_on_stack[0]);
 
 
 
 
 
 
 
 667
 668		__submit_bio(bio);
 
 669
 670		/*
 671		 * Sort new bios into those for a lower level and those for the
 672		 * same level.
 673		 */
 674		bio_list_init(&lower);
 675		bio_list_init(&same);
 676		while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
 677			if (q == bdev_get_queue(bio->bi_bdev))
 678				bio_list_add(&same, bio);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 679			else
 680				bio_list_add(&lower, bio);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 681
 682		/*
 683		 * Now assemble so we handle the lowest level first.
 684		 */
 685		bio_list_merge(&bio_list_on_stack[0], &lower);
 686		bio_list_merge(&bio_list_on_stack[0], &same);
 687		bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
 688	} while ((bio = bio_list_pop(&bio_list_on_stack[0])));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 689
 690	current->bio_list = NULL;
 691}
 
 692
 693static void __submit_bio_noacct_mq(struct bio *bio)
 694{
 695	struct bio_list bio_list[2] = { };
 
 696
 697	current->bio_list = bio_list;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 698
 699	do {
 700		__submit_bio(bio);
 701	} while ((bio = bio_list_pop(&bio_list[0])));
 
 
 
 
 
 
 
 
 702
 703	current->bio_list = NULL;
 704}
 705
 706void submit_bio_noacct_nocheck(struct bio *bio)
 
 
 
 
 
 707{
 708	blk_cgroup_bio_start(bio);
 709	blkcg_bio_issue_init(bio);
 
 
 
 710
 711	if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
 712		trace_block_bio_queue(bio);
 
 
 
 
 
 713		/*
 714		 * Now that enqueuing has been traced, we need to trace
 715		 * completion as well.
 
 716		 */
 717		bio_set_flag(bio, BIO_TRACE_COMPLETION);
 
 
 
 
 
 
 718	}
 719
 720	/*
 721	 * We only want one ->submit_bio to be active at a time, else stack
 722	 * usage with stacked devices could be a problem.  Use current->bio_list
 723	 * to collect a list of requests submited by a ->submit_bio method while
 724	 * it is active, and then process them after it returned.
 725	 */
 726	if (current->bio_list)
 727		bio_list_add(&current->bio_list[0], bio);
 728	else if (!bio->bi_bdev->bd_has_submit_bio)
 729		__submit_bio_noacct_mq(bio);
 730	else
 731		__submit_bio_noacct(bio);
 
 
 
 
 
 732}
 
 733
 734/**
 735 * submit_bio_noacct - re-submit a bio to the block device layer for I/O
 736 * @bio:  The bio describing the location in memory and on the device.
 
 
 
 
 
 
 737 *
 738 * This is a version of submit_bio() that shall only be used for I/O that is
 739 * resubmitted to lower level drivers by stacking block drivers.  All file
 740 * systems and other upper level users of the block layer should use
 741 * submit_bio() instead.
 742 */
 743void submit_bio_noacct(struct bio *bio)
 744{
 745	struct block_device *bdev = bio->bi_bdev;
 746	struct request_queue *q = bdev_get_queue(bdev);
 747	blk_status_t status = BLK_STS_IOERR;
 748
 749	might_sleep();
 
 750
 751	/*
 752	 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
 753	 * if queue does not support NOWAIT.
 
 
 
 754	 */
 755	if ((bio->bi_opf & REQ_NOWAIT) && !bdev_nowait(bdev))
 756		goto not_supported;
 
 
 
 757
 758	if (should_fail_bio(bio))
 759		goto end_io;
 760	bio_check_ro(bio);
 761	if (!bio_flagged(bio, BIO_REMAPPED)) {
 762		if (unlikely(bio_check_eod(bio)))
 763			goto end_io;
 764		if (bdev->bd_partno && unlikely(blk_partition_remap(bio)))
 765			goto end_io;
 
 
 
 
 
 
 
 
 
 766	}
 
 767
 
 
 768	/*
 769	 * Filter flush bio's early so that bio based drivers without flush
 770	 * support don't have to worry about them.
 
 771	 */
 772	if (op_is_flush(bio->bi_opf)) {
 773		if (WARN_ON_ONCE(bio_op(bio) != REQ_OP_WRITE &&
 774				 bio_op(bio) != REQ_OP_ZONE_APPEND))
 775			goto end_io;
 776		if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
 777			bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
 778			if (!bio_sectors(bio)) {
 779				status = BLK_STS_OK;
 780				goto end_io;
 781			}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 782		}
 
 
 
 783	}
 784
 785	if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
 786		bio_clear_polled(bio);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 787
 788	switch (bio_op(bio)) {
 789	case REQ_OP_READ:
 790	case REQ_OP_WRITE:
 791		break;
 792	case REQ_OP_FLUSH:
 793		/*
 794		 * REQ_OP_FLUSH can't be submitted through bios, it is only
 795		 * synthetized in struct request by the flush state machine.
 
 
 
 
 
 
 
 
 
 
 
 796		 */
 797		goto not_supported;
 798	case REQ_OP_DISCARD:
 799		if (!bdev_max_discard_sectors(bdev))
 800			goto not_supported;
 801		break;
 802	case REQ_OP_SECURE_ERASE:
 803		if (!bdev_max_secure_erase_sectors(bdev))
 804			goto not_supported;
 805		break;
 806	case REQ_OP_ZONE_APPEND:
 807		status = blk_check_zone_append(q, bio);
 808		if (status != BLK_STS_OK)
 809			goto end_io;
 810		break;
 811	case REQ_OP_WRITE_ZEROES:
 812		if (!q->limits.max_write_zeroes_sectors)
 813			goto not_supported;
 814		break;
 815	case REQ_OP_ZONE_RESET:
 816	case REQ_OP_ZONE_OPEN:
 817	case REQ_OP_ZONE_CLOSE:
 818	case REQ_OP_ZONE_FINISH:
 819		if (!bdev_is_zoned(bio->bi_bdev))
 820			goto not_supported;
 821		break;
 822	case REQ_OP_ZONE_RESET_ALL:
 823		if (!bdev_is_zoned(bio->bi_bdev) || !blk_queue_zone_resetall(q))
 824			goto not_supported;
 825		break;
 826	case REQ_OP_DRV_IN:
 827	case REQ_OP_DRV_OUT:
 828		/*
 829		 * Driver private operations are only used with passthrough
 830		 * requests.
 831		 */
 832		fallthrough;
 833	default:
 834		goto not_supported;
 835	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 836
 837	if (blk_throtl_bio(bio))
 838		return;
 839	submit_bio_noacct_nocheck(bio);
 840	return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 841
 842not_supported:
 843	status = BLK_STS_NOTSUPP;
 844end_io:
 845	bio->bi_status = status;
 846	bio_endio(bio);
 847}
 848EXPORT_SYMBOL(submit_bio_noacct);
 849
 850static void bio_set_ioprio(struct bio *bio)
 851{
 852	/* Nobody set ioprio so far? Initialize it based on task's nice value */
 853	if (IOPRIO_PRIO_CLASS(bio->bi_ioprio) == IOPRIO_CLASS_NONE)
 854		bio->bi_ioprio = get_current_ioprio();
 855	blkcg_set_ioprio(bio);
 
 
 
 
 
 
 
 
 
 
 
 
 856}
 857
 858/**
 859 * submit_bio - submit a bio to the block device layer for I/O
 860 * @bio: The &struct bio which describes the I/O
 861 *
 862 * submit_bio() is used to submit I/O requests to block devices.  It is passed a
 863 * fully set up &struct bio that describes the I/O that needs to be done.  The
 864 * bio will be send to the device described by the bi_bdev field.
 865 *
 866 * The success/failure status of the request, along with notification of
 867 * completion, is delivered asynchronously through the ->bi_end_io() callback
 868 * in @bio.  The bio must NOT be touched by the caller until ->bi_end_io() has
 869 * been called.
 870 */
 871void submit_bio(struct bio *bio)
 872{
 873	if (bio_op(bio) == REQ_OP_READ) {
 874		task_io_account_read(bio->bi_iter.bi_size);
 875		count_vm_events(PGPGIN, bio_sectors(bio));
 876	} else if (bio_op(bio) == REQ_OP_WRITE) {
 877		count_vm_events(PGPGOUT, bio_sectors(bio));
 878	}
 879
 880	bio_set_ioprio(bio);
 881	submit_bio_noacct(bio);
 882}
 883EXPORT_SYMBOL(submit_bio);
 884
 885/**
 886 * bio_poll - poll for BIO completions
 887 * @bio: bio to poll for
 888 * @iob: batches of IO
 889 * @flags: BLK_POLL_* flags that control the behavior
 890 *
 891 * Poll for completions on queue associated with the bio. Returns number of
 892 * completed entries found.
 
 893 *
 894 * Note: the caller must either be the context that submitted @bio, or
 895 * be in a RCU critical section to prevent freeing of @bio.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 896 */
 897int bio_poll(struct bio *bio, struct io_comp_batch *iob, unsigned int flags)
 898{
 899	blk_qc_t cookie = READ_ONCE(bio->bi_cookie);
 900	struct block_device *bdev;
 901	struct request_queue *q;
 902	int ret = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 903
 904	bdev = READ_ONCE(bio->bi_bdev);
 905	if (!bdev)
 906		return 0;
 907
 908	q = bdev_get_queue(bdev);
 909	if (cookie == BLK_QC_T_NONE ||
 910	    !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
 911		return 0;
 912
 913	/*
 914	 * As the requests that require a zone lock are not plugged in the
 915	 * first place, directly accessing the plug instead of using
 916	 * blk_mq_plug() should not have any consequences during flushing for
 917	 * zoned devices.
 918	 */
 919	blk_flush_plug(current->plug, false);
 920
 921	/*
 922	 * We need to be able to enter a frozen queue, similar to how
 923	 * timeouts also need to do that. If that is blocked, then we can
 924	 * have pending IO when a queue freeze is started, and then the
 925	 * wait for the freeze to finish will wait for polled requests to
 926	 * timeout as the poller is preventer from entering the queue and
 927	 * completing them. As long as we prevent new IO from being queued,
 928	 * that should be all that matters.
 929	 */
 930	if (!percpu_ref_tryget(&q->q_usage_counter))
 931		return 0;
 932	if (queue_is_mq(q)) {
 933		ret = blk_mq_poll(q, cookie, iob, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 934	} else {
 935		struct gendisk *disk = q->disk;
 
 936
 937		if (disk && disk->fops->poll_bio)
 938			ret = disk->fops->poll_bio(bio, iob, flags);
 939	}
 940	blk_queue_exit(q);
 941	return ret;
 942}
 943EXPORT_SYMBOL_GPL(bio_poll);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 944
 945/*
 946 * Helper to implement file_operations.iopoll.  Requires the bio to be stored
 947 * in iocb->private, and cleared before freeing the bio.
 
 
 
 
 948 */
 949int iocb_bio_iopoll(struct kiocb *kiocb, struct io_comp_batch *iob,
 950		    unsigned int flags)
 951{
 952	struct bio *bio;
 953	int ret = 0;
 954
 955	/*
 956	 * Note: the bio cache only uses SLAB_TYPESAFE_BY_RCU, so bio can
 957	 * point to a freshly allocated bio at this point.  If that happens
 958	 * we have a few cases to consider:
 959	 *
 960	 *  1) the bio is beeing initialized and bi_bdev is NULL.  We can just
 961	 *     simply nothing in this case
 962	 *  2) the bio points to a not poll enabled device.  bio_poll will catch
 963	 *     this and return 0
 964	 *  3) the bio points to a poll capable device, including but not
 965	 *     limited to the one that the original bio pointed to.  In this
 966	 *     case we will call into the actual poll method and poll for I/O,
 967	 *     even if we don't need to, but it won't cause harm either.
 968	 *
 969	 * For cases 2) and 3) above the RCU grace period ensures that bi_bdev
 970	 * is still allocated. Because partitions hold a reference to the whole
 971	 * device bdev and thus disk, the disk is also still valid.  Grabbing
 972	 * a reference to the queue in bio_poll() ensures the hctxs and requests
 973	 * are still valid as well.
 974	 */
 975	rcu_read_lock();
 976	bio = READ_ONCE(kiocb->private);
 977	if (bio)
 978		ret = bio_poll(bio, iob, flags);
 979	rcu_read_unlock();
 980
 981	return ret;
 
 982}
 983EXPORT_SYMBOL_GPL(iocb_bio_iopoll);
 984
 985void update_io_ticks(struct block_device *part, unsigned long now, bool end)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 986{
 987	unsigned long stamp;
 988again:
 989	stamp = READ_ONCE(part->bd_stamp);
 990	if (unlikely(time_after(now, stamp)) &&
 991	    likely(try_cmpxchg(&part->bd_stamp, &stamp, now)) &&
 992	    (end || part_in_flight(part)))
 993		__part_stat_add(part, io_ticks, now - stamp);
 994
 995	if (part->bd_partno) {
 996		part = bdev_whole(part);
 997		goto again;
 998	}
 999}
 
1000
1001unsigned long bdev_start_io_acct(struct block_device *bdev, enum req_op op,
1002				 unsigned long start_time)
 
 
 
 
 
 
 
1003{
1004	part_stat_lock();
1005	update_io_ticks(bdev, start_time, false);
1006	part_stat_local_inc(bdev, in_flight[op_is_write(op)]);
1007	part_stat_unlock();
 
 
 
 
1008
1009	return start_time;
 
1010}
1011EXPORT_SYMBOL(bdev_start_io_acct);
1012
1013/**
1014 * bio_start_io_acct - start I/O accounting for bio based drivers
1015 * @bio:	bio to start account for
 
1016 *
1017 * Returns the start time that should be passed back to bio_end_io_acct().
 
 
 
 
 
 
1018 */
1019unsigned long bio_start_io_acct(struct bio *bio)
1020{
1021	return bdev_start_io_acct(bio->bi_bdev, bio_op(bio), jiffies);
1022}
1023EXPORT_SYMBOL_GPL(bio_start_io_acct);
1024
1025void bdev_end_io_acct(struct block_device *bdev, enum req_op op,
1026		      unsigned int sectors, unsigned long start_time)
1027{
1028	const int sgrp = op_stat_group(op);
1029	unsigned long now = READ_ONCE(jiffies);
1030	unsigned long duration = now - start_time;
 
1031
1032	part_stat_lock();
1033	update_io_ticks(bdev, now, true);
1034	part_stat_inc(bdev, ios[sgrp]);
1035	part_stat_add(bdev, sectors[sgrp], sectors);
1036	part_stat_add(bdev, nsecs[sgrp], jiffies_to_nsecs(duration));
1037	part_stat_local_dec(bdev, in_flight[op_is_write(op)]);
1038	part_stat_unlock();
1039}
1040EXPORT_SYMBOL(bdev_end_io_acct);
1041
1042void bio_end_io_acct_remapped(struct bio *bio, unsigned long start_time,
1043			      struct block_device *orig_bdev)
 
 
 
 
 
 
 
1044{
1045	bdev_end_io_acct(orig_bdev, bio_op(bio), bio_sectors(bio), start_time);
 
 
 
 
1046}
1047EXPORT_SYMBOL_GPL(bio_end_io_acct_remapped);
 
1048
1049/**
1050 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
1051 * @q : the queue of the device being checked
1052 *
1053 * Description:
1054 *    Check if underlying low-level drivers of a device are busy.
1055 *    If the drivers want to export their busy state, they must set own
1056 *    exporting function using blk_queue_lld_busy() first.
1057 *
1058 *    Basically, this function is used only by request stacking drivers
1059 *    to stop dispatching requests to underlying devices when underlying
1060 *    devices are busy.  This behavior helps more I/O merging on the queue
1061 *    of the request stacking driver and prevents I/O throughput regression
1062 *    on burst I/O load.
1063 *
1064 * Return:
1065 *    0 - Not busy (The request stacking driver should dispatch request)
1066 *    1 - Busy (The request stacking driver should stop dispatching request)
1067 */
1068int blk_lld_busy(struct request_queue *q)
1069{
1070	if (queue_is_mq(q) && q->mq_ops->busy)
1071		return q->mq_ops->busy(q);
1072
1073	return 0;
1074}
1075EXPORT_SYMBOL_GPL(blk_lld_busy);
1076
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1077int kblockd_schedule_work(struct work_struct *work)
1078{
1079	return queue_work(kblockd_workqueue, work);
1080}
1081EXPORT_SYMBOL(kblockd_schedule_work);
1082
 
 
 
 
 
 
1083int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
1084				unsigned long delay)
1085{
1086	return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
1087}
1088EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
1089
1090void blk_start_plug_nr_ios(struct blk_plug *plug, unsigned short nr_ios)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1091{
1092	struct task_struct *tsk = current;
1093
1094	/*
1095	 * If this is a nested plug, don't actually assign it.
1096	 */
1097	if (tsk->plug)
1098		return;
1099
1100	plug->cur_ktime = 0;
1101	plug->mq_list = NULL;
1102	plug->cached_rq = NULL;
1103	plug->nr_ios = min_t(unsigned short, nr_ios, BLK_MAX_REQUEST_COUNT);
1104	plug->rq_count = 0;
1105	plug->multiple_queues = false;
1106	plug->has_elevator = false;
1107	INIT_LIST_HEAD(&plug->cb_list);
1108
1109	/*
1110	 * Store ordering should not be needed here, since a potential
1111	 * preempt will imply a full memory barrier
1112	 */
1113	tsk->plug = plug;
1114}
 
 
 
 
 
 
1115
1116/**
1117 * blk_start_plug - initialize blk_plug and track it inside the task_struct
1118 * @plug:	The &struct blk_plug that needs to be initialized
1119 *
1120 * Description:
1121 *   blk_start_plug() indicates to the block layer an intent by the caller
1122 *   to submit multiple I/O requests in a batch.  The block layer may use
1123 *   this hint to defer submitting I/Os from the caller until blk_finish_plug()
1124 *   is called.  However, the block layer may choose to submit requests
1125 *   before a call to blk_finish_plug() if the number of queued I/Os
1126 *   exceeds %BLK_MAX_REQUEST_COUNT, or if the size of the I/O is larger than
1127 *   %BLK_PLUG_FLUSH_SIZE.  The queued I/Os may also be submitted early if
1128 *   the task schedules (see below).
1129 *
1130 *   Tracking blk_plug inside the task_struct will help with auto-flushing the
1131 *   pending I/O should the task end up blocking between blk_start_plug() and
1132 *   blk_finish_plug(). This is important from a performance perspective, but
1133 *   also ensures that we don't deadlock. For instance, if the task is blocking
1134 *   for a memory allocation, memory reclaim could end up wanting to free a
1135 *   page belonging to that request that is currently residing in our private
1136 *   plug. By flushing the pending I/O when the process goes to sleep, we avoid
1137 *   this kind of deadlock.
1138 */
1139void blk_start_plug(struct blk_plug *plug)
 
 
1140{
1141	blk_start_plug_nr_ios(plug, 1);
 
 
 
 
 
 
 
 
1142}
1143EXPORT_SYMBOL(blk_start_plug);
1144
1145static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
1146{
1147	LIST_HEAD(callbacks);
1148
1149	while (!list_empty(&plug->cb_list)) {
1150		list_splice_init(&plug->cb_list, &callbacks);
1151
1152		while (!list_empty(&callbacks)) {
1153			struct blk_plug_cb *cb = list_first_entry(&callbacks,
1154							  struct blk_plug_cb,
1155							  list);
1156			list_del(&cb->list);
1157			cb->callback(cb, from_schedule);
1158		}
1159	}
1160}
1161
1162struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
1163				      int size)
1164{
1165	struct blk_plug *plug = current->plug;
1166	struct blk_plug_cb *cb;
1167
1168	if (!plug)
1169		return NULL;
1170
1171	list_for_each_entry(cb, &plug->cb_list, list)
1172		if (cb->callback == unplug && cb->data == data)
1173			return cb;
1174
1175	/* Not currently on the callback list */
1176	BUG_ON(size < sizeof(*cb));
1177	cb = kzalloc(size, GFP_ATOMIC);
1178	if (cb) {
1179		cb->data = data;
1180		cb->callback = unplug;
1181		list_add(&cb->list, &plug->cb_list);
1182	}
1183	return cb;
1184}
1185EXPORT_SYMBOL(blk_check_plugged);
1186
1187void __blk_flush_plug(struct blk_plug *plug, bool from_schedule)
1188{
1189	if (!list_empty(&plug->cb_list))
1190		flush_plug_callbacks(plug, from_schedule);
1191	blk_mq_flush_plug_list(plug, from_schedule);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1192	/*
1193	 * Unconditionally flush out cached requests, even if the unplug
1194	 * event came from schedule. Since we know hold references to the
1195	 * queue for cached requests, we don't want a blocked task holding
1196	 * up a queue freeze/quiesce event.
1197	 */
1198	if (unlikely(!rq_list_empty(plug->cached_rq)))
1199		blk_mq_free_plug_rqs(plug);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1200
1201	plug->cur_ktime = 0;
1202	current->flags &= ~PF_BLOCK_TS;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1203}
 
1204
1205/**
1206 * blk_finish_plug - mark the end of a batch of submitted I/O
1207 * @plug:	The &struct blk_plug passed to blk_start_plug()
 
1208 *
1209 * Description:
1210 * Indicate that a batch of I/O submissions is complete.  This function
1211 * must be paired with an initial call to blk_start_plug().  The intent
1212 * is to allow the block layer to optimize I/O submission.  See the
1213 * documentation for blk_start_plug() for more information.
 
 
1214 */
1215void blk_finish_plug(struct blk_plug *plug)
1216{
1217	if (plug == current->plug) {
1218		__blk_flush_plug(plug, false);
1219		current->plug = NULL;
 
 
 
 
 
 
1220	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1221}
1222EXPORT_SYMBOL(blk_finish_plug);
1223
1224void blk_io_schedule(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1225{
1226	/* Prevent hang_check timer from firing at us during very long I/O */
1227	unsigned long timeout = sysctl_hung_task_timeout_secs * HZ / 2;
 
 
 
 
 
 
 
 
 
 
 
 
 
1228
1229	if (timeout)
1230		io_schedule_timeout(timeout);
1231	else
1232		io_schedule();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1233}
1234EXPORT_SYMBOL_GPL(blk_io_schedule);
 
1235
1236int __init blk_dev_init(void)
1237{
1238	BUILD_BUG_ON((__force u32)REQ_OP_LAST >= (1 << REQ_OP_BITS));
1239	BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1240			sizeof_field(struct request, cmd_flags));
1241	BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1242			sizeof_field(struct bio, bi_opf));
1243
1244	/* used for unplugging and affects IO latency/throughput - HIGHPRI */
1245	kblockd_workqueue = alloc_workqueue("kblockd",
1246					    WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1247	if (!kblockd_workqueue)
1248		panic("Failed to create kblockd\n");
1249
1250	blk_requestq_cachep = KMEM_CACHE(request_queue, SLAB_PANIC);
 
 
 
 
1251
 
1252	blk_debugfs_root = debugfs_create_dir("block", NULL);
 
1253
1254	return 0;
1255}