Linux Audio

Check our new training course

Loading...
Note: File does not exist in v4.17.
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 2012 ARM Ltd.
   4 * Author: Marc Zyngier <marc.zyngier@arm.com>
   5 */
   6
   7#include <linux/cpu.h>
   8#include <linux/kvm.h>
   9#include <linux/kvm_host.h>
  10#include <linux/interrupt.h>
  11#include <linux/irq.h>
  12#include <linux/irqdomain.h>
  13#include <linux/uaccess.h>
  14
  15#include <clocksource/arm_arch_timer.h>
  16#include <asm/arch_timer.h>
  17#include <asm/kvm_emulate.h>
  18#include <asm/kvm_hyp.h>
  19#include <asm/kvm_nested.h>
  20
  21#include <kvm/arm_vgic.h>
  22#include <kvm/arm_arch_timer.h>
  23
  24#include "trace.h"
  25
  26static struct timecounter *timecounter;
  27static unsigned int host_vtimer_irq;
  28static unsigned int host_ptimer_irq;
  29static u32 host_vtimer_irq_flags;
  30static u32 host_ptimer_irq_flags;
  31
  32static DEFINE_STATIC_KEY_FALSE(has_gic_active_state);
  33
  34static const u8 default_ppi[] = {
  35	[TIMER_PTIMER]  = 30,
  36	[TIMER_VTIMER]  = 27,
  37	[TIMER_HPTIMER] = 26,
  38	[TIMER_HVTIMER] = 28,
  39};
  40
  41static bool kvm_timer_irq_can_fire(struct arch_timer_context *timer_ctx);
  42static void kvm_timer_update_irq(struct kvm_vcpu *vcpu, bool new_level,
  43				 struct arch_timer_context *timer_ctx);
  44static bool kvm_timer_should_fire(struct arch_timer_context *timer_ctx);
  45static void kvm_arm_timer_write(struct kvm_vcpu *vcpu,
  46				struct arch_timer_context *timer,
  47				enum kvm_arch_timer_regs treg,
  48				u64 val);
  49static u64 kvm_arm_timer_read(struct kvm_vcpu *vcpu,
  50			      struct arch_timer_context *timer,
  51			      enum kvm_arch_timer_regs treg);
  52static bool kvm_arch_timer_get_input_level(int vintid);
  53
  54static struct irq_ops arch_timer_irq_ops = {
  55	.get_input_level = kvm_arch_timer_get_input_level,
  56};
  57
  58static int nr_timers(struct kvm_vcpu *vcpu)
  59{
  60	if (!vcpu_has_nv(vcpu))
  61		return NR_KVM_EL0_TIMERS;
  62
  63	return NR_KVM_TIMERS;
  64}
  65
  66u32 timer_get_ctl(struct arch_timer_context *ctxt)
  67{
  68	struct kvm_vcpu *vcpu = ctxt->vcpu;
  69
  70	switch(arch_timer_ctx_index(ctxt)) {
  71	case TIMER_VTIMER:
  72		return __vcpu_sys_reg(vcpu, CNTV_CTL_EL0);
  73	case TIMER_PTIMER:
  74		return __vcpu_sys_reg(vcpu, CNTP_CTL_EL0);
  75	case TIMER_HVTIMER:
  76		return __vcpu_sys_reg(vcpu, CNTHV_CTL_EL2);
  77	case TIMER_HPTIMER:
  78		return __vcpu_sys_reg(vcpu, CNTHP_CTL_EL2);
  79	default:
  80		WARN_ON(1);
  81		return 0;
  82	}
  83}
  84
  85u64 timer_get_cval(struct arch_timer_context *ctxt)
  86{
  87	struct kvm_vcpu *vcpu = ctxt->vcpu;
  88
  89	switch(arch_timer_ctx_index(ctxt)) {
  90	case TIMER_VTIMER:
  91		return __vcpu_sys_reg(vcpu, CNTV_CVAL_EL0);
  92	case TIMER_PTIMER:
  93		return __vcpu_sys_reg(vcpu, CNTP_CVAL_EL0);
  94	case TIMER_HVTIMER:
  95		return __vcpu_sys_reg(vcpu, CNTHV_CVAL_EL2);
  96	case TIMER_HPTIMER:
  97		return __vcpu_sys_reg(vcpu, CNTHP_CVAL_EL2);
  98	default:
  99		WARN_ON(1);
 100		return 0;
 101	}
 102}
 103
 104static u64 timer_get_offset(struct arch_timer_context *ctxt)
 105{
 106	u64 offset = 0;
 107
 108	if (!ctxt)
 109		return 0;
 110
 111	if (ctxt->offset.vm_offset)
 112		offset += *ctxt->offset.vm_offset;
 113	if (ctxt->offset.vcpu_offset)
 114		offset += *ctxt->offset.vcpu_offset;
 115
 116	return offset;
 117}
 118
 119static void timer_set_ctl(struct arch_timer_context *ctxt, u32 ctl)
 120{
 121	struct kvm_vcpu *vcpu = ctxt->vcpu;
 122
 123	switch(arch_timer_ctx_index(ctxt)) {
 124	case TIMER_VTIMER:
 125		__vcpu_sys_reg(vcpu, CNTV_CTL_EL0) = ctl;
 126		break;
 127	case TIMER_PTIMER:
 128		__vcpu_sys_reg(vcpu, CNTP_CTL_EL0) = ctl;
 129		break;
 130	case TIMER_HVTIMER:
 131		__vcpu_sys_reg(vcpu, CNTHV_CTL_EL2) = ctl;
 132		break;
 133	case TIMER_HPTIMER:
 134		__vcpu_sys_reg(vcpu, CNTHP_CTL_EL2) = ctl;
 135		break;
 136	default:
 137		WARN_ON(1);
 138	}
 139}
 140
 141static void timer_set_cval(struct arch_timer_context *ctxt, u64 cval)
 142{
 143	struct kvm_vcpu *vcpu = ctxt->vcpu;
 144
 145	switch(arch_timer_ctx_index(ctxt)) {
 146	case TIMER_VTIMER:
 147		__vcpu_sys_reg(vcpu, CNTV_CVAL_EL0) = cval;
 148		break;
 149	case TIMER_PTIMER:
 150		__vcpu_sys_reg(vcpu, CNTP_CVAL_EL0) = cval;
 151		break;
 152	case TIMER_HVTIMER:
 153		__vcpu_sys_reg(vcpu, CNTHV_CVAL_EL2) = cval;
 154		break;
 155	case TIMER_HPTIMER:
 156		__vcpu_sys_reg(vcpu, CNTHP_CVAL_EL2) = cval;
 157		break;
 158	default:
 159		WARN_ON(1);
 160	}
 161}
 162
 163static void timer_set_offset(struct arch_timer_context *ctxt, u64 offset)
 164{
 165	if (!ctxt->offset.vm_offset) {
 166		WARN(offset, "timer %ld\n", arch_timer_ctx_index(ctxt));
 167		return;
 168	}
 169
 170	WRITE_ONCE(*ctxt->offset.vm_offset, offset);
 171}
 172
 173u64 kvm_phys_timer_read(void)
 174{
 175	return timecounter->cc->read(timecounter->cc);
 176}
 177
 178void get_timer_map(struct kvm_vcpu *vcpu, struct timer_map *map)
 179{
 180	if (vcpu_has_nv(vcpu)) {
 181		if (is_hyp_ctxt(vcpu)) {
 182			map->direct_vtimer = vcpu_hvtimer(vcpu);
 183			map->direct_ptimer = vcpu_hptimer(vcpu);
 184			map->emul_vtimer = vcpu_vtimer(vcpu);
 185			map->emul_ptimer = vcpu_ptimer(vcpu);
 186		} else {
 187			map->direct_vtimer = vcpu_vtimer(vcpu);
 188			map->direct_ptimer = vcpu_ptimer(vcpu);
 189			map->emul_vtimer = vcpu_hvtimer(vcpu);
 190			map->emul_ptimer = vcpu_hptimer(vcpu);
 191		}
 192	} else if (has_vhe()) {
 193		map->direct_vtimer = vcpu_vtimer(vcpu);
 194		map->direct_ptimer = vcpu_ptimer(vcpu);
 195		map->emul_vtimer = NULL;
 196		map->emul_ptimer = NULL;
 197	} else {
 198		map->direct_vtimer = vcpu_vtimer(vcpu);
 199		map->direct_ptimer = NULL;
 200		map->emul_vtimer = NULL;
 201		map->emul_ptimer = vcpu_ptimer(vcpu);
 202	}
 203
 204	trace_kvm_get_timer_map(vcpu->vcpu_id, map);
 205}
 206
 207static inline bool userspace_irqchip(struct kvm *kvm)
 208{
 209	return static_branch_unlikely(&userspace_irqchip_in_use) &&
 210		unlikely(!irqchip_in_kernel(kvm));
 211}
 212
 213static void soft_timer_start(struct hrtimer *hrt, u64 ns)
 214{
 215	hrtimer_start(hrt, ktime_add_ns(ktime_get(), ns),
 216		      HRTIMER_MODE_ABS_HARD);
 217}
 218
 219static void soft_timer_cancel(struct hrtimer *hrt)
 220{
 221	hrtimer_cancel(hrt);
 222}
 223
 224static irqreturn_t kvm_arch_timer_handler(int irq, void *dev_id)
 225{
 226	struct kvm_vcpu *vcpu = *(struct kvm_vcpu **)dev_id;
 227	struct arch_timer_context *ctx;
 228	struct timer_map map;
 229
 230	/*
 231	 * We may see a timer interrupt after vcpu_put() has been called which
 232	 * sets the CPU's vcpu pointer to NULL, because even though the timer
 233	 * has been disabled in timer_save_state(), the hardware interrupt
 234	 * signal may not have been retired from the interrupt controller yet.
 235	 */
 236	if (!vcpu)
 237		return IRQ_HANDLED;
 238
 239	get_timer_map(vcpu, &map);
 240
 241	if (irq == host_vtimer_irq)
 242		ctx = map.direct_vtimer;
 243	else
 244		ctx = map.direct_ptimer;
 245
 246	if (kvm_timer_should_fire(ctx))
 247		kvm_timer_update_irq(vcpu, true, ctx);
 248
 249	if (userspace_irqchip(vcpu->kvm) &&
 250	    !static_branch_unlikely(&has_gic_active_state))
 251		disable_percpu_irq(host_vtimer_irq);
 252
 253	return IRQ_HANDLED;
 254}
 255
 256static u64 kvm_counter_compute_delta(struct arch_timer_context *timer_ctx,
 257				     u64 val)
 258{
 259	u64 now = kvm_phys_timer_read() - timer_get_offset(timer_ctx);
 260
 261	if (now < val) {
 262		u64 ns;
 263
 264		ns = cyclecounter_cyc2ns(timecounter->cc,
 265					 val - now,
 266					 timecounter->mask,
 267					 &timer_ctx->ns_frac);
 268		return ns;
 269	}
 270
 271	return 0;
 272}
 273
 274static u64 kvm_timer_compute_delta(struct arch_timer_context *timer_ctx)
 275{
 276	return kvm_counter_compute_delta(timer_ctx, timer_get_cval(timer_ctx));
 277}
 278
 279static bool kvm_timer_irq_can_fire(struct arch_timer_context *timer_ctx)
 280{
 281	WARN_ON(timer_ctx && timer_ctx->loaded);
 282	return timer_ctx &&
 283		((timer_get_ctl(timer_ctx) &
 284		  (ARCH_TIMER_CTRL_IT_MASK | ARCH_TIMER_CTRL_ENABLE)) == ARCH_TIMER_CTRL_ENABLE);
 285}
 286
 287static bool vcpu_has_wfit_active(struct kvm_vcpu *vcpu)
 288{
 289	return (cpus_have_final_cap(ARM64_HAS_WFXT) &&
 290		vcpu_get_flag(vcpu, IN_WFIT));
 291}
 292
 293static u64 wfit_delay_ns(struct kvm_vcpu *vcpu)
 294{
 295	u64 val = vcpu_get_reg(vcpu, kvm_vcpu_sys_get_rt(vcpu));
 296	struct arch_timer_context *ctx;
 297
 298	ctx = is_hyp_ctxt(vcpu) ? vcpu_hvtimer(vcpu) : vcpu_vtimer(vcpu);
 299
 300	return kvm_counter_compute_delta(ctx, val);
 301}
 302
 303/*
 304 * Returns the earliest expiration time in ns among guest timers.
 305 * Note that it will return 0 if none of timers can fire.
 306 */
 307static u64 kvm_timer_earliest_exp(struct kvm_vcpu *vcpu)
 308{
 309	u64 min_delta = ULLONG_MAX;
 310	int i;
 311
 312	for (i = 0; i < nr_timers(vcpu); i++) {
 313		struct arch_timer_context *ctx = &vcpu->arch.timer_cpu.timers[i];
 314
 315		WARN(ctx->loaded, "timer %d loaded\n", i);
 316		if (kvm_timer_irq_can_fire(ctx))
 317			min_delta = min(min_delta, kvm_timer_compute_delta(ctx));
 318	}
 319
 320	if (vcpu_has_wfit_active(vcpu))
 321		min_delta = min(min_delta, wfit_delay_ns(vcpu));
 322
 323	/* If none of timers can fire, then return 0 */
 324	if (min_delta == ULLONG_MAX)
 325		return 0;
 326
 327	return min_delta;
 328}
 329
 330static enum hrtimer_restart kvm_bg_timer_expire(struct hrtimer *hrt)
 331{
 332	struct arch_timer_cpu *timer;
 333	struct kvm_vcpu *vcpu;
 334	u64 ns;
 335
 336	timer = container_of(hrt, struct arch_timer_cpu, bg_timer);
 337	vcpu = container_of(timer, struct kvm_vcpu, arch.timer_cpu);
 338
 339	/*
 340	 * Check that the timer has really expired from the guest's
 341	 * PoV (NTP on the host may have forced it to expire
 342	 * early). If we should have slept longer, restart it.
 343	 */
 344	ns = kvm_timer_earliest_exp(vcpu);
 345	if (unlikely(ns)) {
 346		hrtimer_forward_now(hrt, ns_to_ktime(ns));
 347		return HRTIMER_RESTART;
 348	}
 349
 350	kvm_vcpu_wake_up(vcpu);
 351	return HRTIMER_NORESTART;
 352}
 353
 354static enum hrtimer_restart kvm_hrtimer_expire(struct hrtimer *hrt)
 355{
 356	struct arch_timer_context *ctx;
 357	struct kvm_vcpu *vcpu;
 358	u64 ns;
 359
 360	ctx = container_of(hrt, struct arch_timer_context, hrtimer);
 361	vcpu = ctx->vcpu;
 362
 363	trace_kvm_timer_hrtimer_expire(ctx);
 364
 365	/*
 366	 * Check that the timer has really expired from the guest's
 367	 * PoV (NTP on the host may have forced it to expire
 368	 * early). If not ready, schedule for a later time.
 369	 */
 370	ns = kvm_timer_compute_delta(ctx);
 371	if (unlikely(ns)) {
 372		hrtimer_forward_now(hrt, ns_to_ktime(ns));
 373		return HRTIMER_RESTART;
 374	}
 375
 376	kvm_timer_update_irq(vcpu, true, ctx);
 377	return HRTIMER_NORESTART;
 378}
 379
 380static bool kvm_timer_should_fire(struct arch_timer_context *timer_ctx)
 381{
 382	enum kvm_arch_timers index;
 383	u64 cval, now;
 384
 385	if (!timer_ctx)
 386		return false;
 387
 388	index = arch_timer_ctx_index(timer_ctx);
 389
 390	if (timer_ctx->loaded) {
 391		u32 cnt_ctl = 0;
 392
 393		switch (index) {
 394		case TIMER_VTIMER:
 395		case TIMER_HVTIMER:
 396			cnt_ctl = read_sysreg_el0(SYS_CNTV_CTL);
 397			break;
 398		case TIMER_PTIMER:
 399		case TIMER_HPTIMER:
 400			cnt_ctl = read_sysreg_el0(SYS_CNTP_CTL);
 401			break;
 402		case NR_KVM_TIMERS:
 403			/* GCC is braindead */
 404			cnt_ctl = 0;
 405			break;
 406		}
 407
 408		return  (cnt_ctl & ARCH_TIMER_CTRL_ENABLE) &&
 409		        (cnt_ctl & ARCH_TIMER_CTRL_IT_STAT) &&
 410		       !(cnt_ctl & ARCH_TIMER_CTRL_IT_MASK);
 411	}
 412
 413	if (!kvm_timer_irq_can_fire(timer_ctx))
 414		return false;
 415
 416	cval = timer_get_cval(timer_ctx);
 417	now = kvm_phys_timer_read() - timer_get_offset(timer_ctx);
 418
 419	return cval <= now;
 420}
 421
 422int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
 423{
 424	return vcpu_has_wfit_active(vcpu) && wfit_delay_ns(vcpu) == 0;
 425}
 426
 427/*
 428 * Reflect the timer output level into the kvm_run structure
 429 */
 430void kvm_timer_update_run(struct kvm_vcpu *vcpu)
 431{
 432	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
 433	struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
 434	struct kvm_sync_regs *regs = &vcpu->run->s.regs;
 435
 436	/* Populate the device bitmap with the timer states */
 437	regs->device_irq_level &= ~(KVM_ARM_DEV_EL1_VTIMER |
 438				    KVM_ARM_DEV_EL1_PTIMER);
 439	if (kvm_timer_should_fire(vtimer))
 440		regs->device_irq_level |= KVM_ARM_DEV_EL1_VTIMER;
 441	if (kvm_timer_should_fire(ptimer))
 442		regs->device_irq_level |= KVM_ARM_DEV_EL1_PTIMER;
 443}
 444
 445static void kvm_timer_update_irq(struct kvm_vcpu *vcpu, bool new_level,
 446				 struct arch_timer_context *timer_ctx)
 447{
 448	int ret;
 449
 450	timer_ctx->irq.level = new_level;
 451	trace_kvm_timer_update_irq(vcpu->vcpu_id, timer_irq(timer_ctx),
 452				   timer_ctx->irq.level);
 453
 454	if (!userspace_irqchip(vcpu->kvm)) {
 455		ret = kvm_vgic_inject_irq(vcpu->kvm, vcpu,
 456					  timer_irq(timer_ctx),
 457					  timer_ctx->irq.level,
 458					  timer_ctx);
 459		WARN_ON(ret);
 460	}
 461}
 462
 463/* Only called for a fully emulated timer */
 464static void timer_emulate(struct arch_timer_context *ctx)
 465{
 466	bool should_fire = kvm_timer_should_fire(ctx);
 467
 468	trace_kvm_timer_emulate(ctx, should_fire);
 469
 470	if (should_fire != ctx->irq.level) {
 471		kvm_timer_update_irq(ctx->vcpu, should_fire, ctx);
 472		return;
 473	}
 474
 475	/*
 476	 * If the timer can fire now, we don't need to have a soft timer
 477	 * scheduled for the future.  If the timer cannot fire at all,
 478	 * then we also don't need a soft timer.
 479	 */
 480	if (should_fire || !kvm_timer_irq_can_fire(ctx))
 481		return;
 482
 483	soft_timer_start(&ctx->hrtimer, kvm_timer_compute_delta(ctx));
 484}
 485
 486static void set_cntvoff(u64 cntvoff)
 487{
 488	kvm_call_hyp(__kvm_timer_set_cntvoff, cntvoff);
 489}
 490
 491static void set_cntpoff(u64 cntpoff)
 492{
 493	if (has_cntpoff())
 494		write_sysreg_s(cntpoff, SYS_CNTPOFF_EL2);
 495}
 496
 497static void timer_save_state(struct arch_timer_context *ctx)
 498{
 499	struct arch_timer_cpu *timer = vcpu_timer(ctx->vcpu);
 500	enum kvm_arch_timers index = arch_timer_ctx_index(ctx);
 501	unsigned long flags;
 502
 503	if (!timer->enabled)
 504		return;
 505
 506	local_irq_save(flags);
 507
 508	if (!ctx->loaded)
 509		goto out;
 510
 511	switch (index) {
 512		u64 cval;
 513
 514	case TIMER_VTIMER:
 515	case TIMER_HVTIMER:
 516		timer_set_ctl(ctx, read_sysreg_el0(SYS_CNTV_CTL));
 517		timer_set_cval(ctx, read_sysreg_el0(SYS_CNTV_CVAL));
 518
 519		/* Disable the timer */
 520		write_sysreg_el0(0, SYS_CNTV_CTL);
 521		isb();
 522
 523		/*
 524		 * The kernel may decide to run userspace after
 525		 * calling vcpu_put, so we reset cntvoff to 0 to
 526		 * ensure a consistent read between user accesses to
 527		 * the virtual counter and kernel access to the
 528		 * physical counter of non-VHE case.
 529		 *
 530		 * For VHE, the virtual counter uses a fixed virtual
 531		 * offset of zero, so no need to zero CNTVOFF_EL2
 532		 * register, but this is actually useful when switching
 533		 * between EL1/vEL2 with NV.
 534		 *
 535		 * Do it unconditionally, as this is either unavoidable
 536		 * or dirt cheap.
 537		 */
 538		set_cntvoff(0);
 539		break;
 540	case TIMER_PTIMER:
 541	case TIMER_HPTIMER:
 542		timer_set_ctl(ctx, read_sysreg_el0(SYS_CNTP_CTL));
 543		cval = read_sysreg_el0(SYS_CNTP_CVAL);
 544
 545		cval -= timer_get_offset(ctx);
 546
 547		timer_set_cval(ctx, cval);
 548
 549		/* Disable the timer */
 550		write_sysreg_el0(0, SYS_CNTP_CTL);
 551		isb();
 552
 553		set_cntpoff(0);
 554		break;
 555	case NR_KVM_TIMERS:
 556		BUG();
 557	}
 558
 559	trace_kvm_timer_save_state(ctx);
 560
 561	ctx->loaded = false;
 562out:
 563	local_irq_restore(flags);
 564}
 565
 566/*
 567 * Schedule the background timer before calling kvm_vcpu_halt, so that this
 568 * thread is removed from its waitqueue and made runnable when there's a timer
 569 * interrupt to handle.
 570 */
 571static void kvm_timer_blocking(struct kvm_vcpu *vcpu)
 572{
 573	struct arch_timer_cpu *timer = vcpu_timer(vcpu);
 574	struct timer_map map;
 575
 576	get_timer_map(vcpu, &map);
 577
 578	/*
 579	 * If no timers are capable of raising interrupts (disabled or
 580	 * masked), then there's no more work for us to do.
 581	 */
 582	if (!kvm_timer_irq_can_fire(map.direct_vtimer) &&
 583	    !kvm_timer_irq_can_fire(map.direct_ptimer) &&
 584	    !kvm_timer_irq_can_fire(map.emul_vtimer) &&
 585	    !kvm_timer_irq_can_fire(map.emul_ptimer) &&
 586	    !vcpu_has_wfit_active(vcpu))
 587		return;
 588
 589	/*
 590	 * At least one guest time will expire. Schedule a background timer.
 591	 * Set the earliest expiration time among the guest timers.
 592	 */
 593	soft_timer_start(&timer->bg_timer, kvm_timer_earliest_exp(vcpu));
 594}
 595
 596static void kvm_timer_unblocking(struct kvm_vcpu *vcpu)
 597{
 598	struct arch_timer_cpu *timer = vcpu_timer(vcpu);
 599
 600	soft_timer_cancel(&timer->bg_timer);
 601}
 602
 603static void timer_restore_state(struct arch_timer_context *ctx)
 604{
 605	struct arch_timer_cpu *timer = vcpu_timer(ctx->vcpu);
 606	enum kvm_arch_timers index = arch_timer_ctx_index(ctx);
 607	unsigned long flags;
 608
 609	if (!timer->enabled)
 610		return;
 611
 612	local_irq_save(flags);
 613
 614	if (ctx->loaded)
 615		goto out;
 616
 617	switch (index) {
 618		u64 cval, offset;
 619
 620	case TIMER_VTIMER:
 621	case TIMER_HVTIMER:
 622		set_cntvoff(timer_get_offset(ctx));
 623		write_sysreg_el0(timer_get_cval(ctx), SYS_CNTV_CVAL);
 624		isb();
 625		write_sysreg_el0(timer_get_ctl(ctx), SYS_CNTV_CTL);
 626		break;
 627	case TIMER_PTIMER:
 628	case TIMER_HPTIMER:
 629		cval = timer_get_cval(ctx);
 630		offset = timer_get_offset(ctx);
 631		set_cntpoff(offset);
 632		cval += offset;
 633		write_sysreg_el0(cval, SYS_CNTP_CVAL);
 634		isb();
 635		write_sysreg_el0(timer_get_ctl(ctx), SYS_CNTP_CTL);
 636		break;
 637	case NR_KVM_TIMERS:
 638		BUG();
 639	}
 640
 641	trace_kvm_timer_restore_state(ctx);
 642
 643	ctx->loaded = true;
 644out:
 645	local_irq_restore(flags);
 646}
 647
 648static inline void set_timer_irq_phys_active(struct arch_timer_context *ctx, bool active)
 649{
 650	int r;
 651	r = irq_set_irqchip_state(ctx->host_timer_irq, IRQCHIP_STATE_ACTIVE, active);
 652	WARN_ON(r);
 653}
 654
 655static void kvm_timer_vcpu_load_gic(struct arch_timer_context *ctx)
 656{
 657	struct kvm_vcpu *vcpu = ctx->vcpu;
 658	bool phys_active = false;
 659
 660	/*
 661	 * Update the timer output so that it is likely to match the
 662	 * state we're about to restore. If the timer expires between
 663	 * this point and the register restoration, we'll take the
 664	 * interrupt anyway.
 665	 */
 666	kvm_timer_update_irq(ctx->vcpu, kvm_timer_should_fire(ctx), ctx);
 667
 668	if (irqchip_in_kernel(vcpu->kvm))
 669		phys_active = kvm_vgic_map_is_active(vcpu, timer_irq(ctx));
 670
 671	phys_active |= ctx->irq.level;
 672
 673	set_timer_irq_phys_active(ctx, phys_active);
 674}
 675
 676static void kvm_timer_vcpu_load_nogic(struct kvm_vcpu *vcpu)
 677{
 678	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
 679
 680	/*
 681	 * Update the timer output so that it is likely to match the
 682	 * state we're about to restore. If the timer expires between
 683	 * this point and the register restoration, we'll take the
 684	 * interrupt anyway.
 685	 */
 686	kvm_timer_update_irq(vcpu, kvm_timer_should_fire(vtimer), vtimer);
 687
 688	/*
 689	 * When using a userspace irqchip with the architected timers and a
 690	 * host interrupt controller that doesn't support an active state, we
 691	 * must still prevent continuously exiting from the guest, and
 692	 * therefore mask the physical interrupt by disabling it on the host
 693	 * interrupt controller when the virtual level is high, such that the
 694	 * guest can make forward progress.  Once we detect the output level
 695	 * being de-asserted, we unmask the interrupt again so that we exit
 696	 * from the guest when the timer fires.
 697	 */
 698	if (vtimer->irq.level)
 699		disable_percpu_irq(host_vtimer_irq);
 700	else
 701		enable_percpu_irq(host_vtimer_irq, host_vtimer_irq_flags);
 702}
 703
 704/* If _pred is true, set bit in _set, otherwise set it in _clr */
 705#define assign_clear_set_bit(_pred, _bit, _clr, _set)			\
 706	do {								\
 707		if (_pred)						\
 708			(_set) |= (_bit);				\
 709		else							\
 710			(_clr) |= (_bit);				\
 711	} while (0)
 712
 713static void kvm_timer_vcpu_load_nested_switch(struct kvm_vcpu *vcpu,
 714					      struct timer_map *map)
 715{
 716	int hw, ret;
 717
 718	if (!irqchip_in_kernel(vcpu->kvm))
 719		return;
 720
 721	/*
 722	 * We only ever unmap the vtimer irq on a VHE system that runs nested
 723	 * virtualization, in which case we have both a valid emul_vtimer,
 724	 * emul_ptimer, direct_vtimer, and direct_ptimer.
 725	 *
 726	 * Since this is called from kvm_timer_vcpu_load(), a change between
 727	 * vEL2 and vEL1/0 will have just happened, and the timer_map will
 728	 * represent this, and therefore we switch the emul/direct mappings
 729	 * below.
 730	 */
 731	hw = kvm_vgic_get_map(vcpu, timer_irq(map->direct_vtimer));
 732	if (hw < 0) {
 733		kvm_vgic_unmap_phys_irq(vcpu, timer_irq(map->emul_vtimer));
 734		kvm_vgic_unmap_phys_irq(vcpu, timer_irq(map->emul_ptimer));
 735
 736		ret = kvm_vgic_map_phys_irq(vcpu,
 737					    map->direct_vtimer->host_timer_irq,
 738					    timer_irq(map->direct_vtimer),
 739					    &arch_timer_irq_ops);
 740		WARN_ON_ONCE(ret);
 741		ret = kvm_vgic_map_phys_irq(vcpu,
 742					    map->direct_ptimer->host_timer_irq,
 743					    timer_irq(map->direct_ptimer),
 744					    &arch_timer_irq_ops);
 745		WARN_ON_ONCE(ret);
 746
 747		/*
 748		 * The virtual offset behaviour is "interesting", as it
 749		 * always applies when HCR_EL2.E2H==0, but only when
 750		 * accessed from EL1 when HCR_EL2.E2H==1. So make sure we
 751		 * track E2H when putting the HV timer in "direct" mode.
 752		 */
 753		if (map->direct_vtimer == vcpu_hvtimer(vcpu)) {
 754			struct arch_timer_offset *offs = &map->direct_vtimer->offset;
 755
 756			if (vcpu_el2_e2h_is_set(vcpu))
 757				offs->vcpu_offset = NULL;
 758			else
 759				offs->vcpu_offset = &__vcpu_sys_reg(vcpu, CNTVOFF_EL2);
 760		}
 761	}
 762}
 763
 764static void timer_set_traps(struct kvm_vcpu *vcpu, struct timer_map *map)
 765{
 766	bool tpt, tpc;
 767	u64 clr, set;
 768
 769	/*
 770	 * No trapping gets configured here with nVHE. See
 771	 * __timer_enable_traps(), which is where the stuff happens.
 772	 */
 773	if (!has_vhe())
 774		return;
 775
 776	/*
 777	 * Our default policy is not to trap anything. As we progress
 778	 * within this function, reality kicks in and we start adding
 779	 * traps based on emulation requirements.
 780	 */
 781	tpt = tpc = false;
 782
 783	/*
 784	 * We have two possibility to deal with a physical offset:
 785	 *
 786	 * - Either we have CNTPOFF (yay!) or the offset is 0:
 787	 *   we let the guest freely access the HW
 788	 *
 789	 * - or neither of these condition apply:
 790	 *   we trap accesses to the HW, but still use it
 791	 *   after correcting the physical offset
 792	 */
 793	if (!has_cntpoff() && timer_get_offset(map->direct_ptimer))
 794		tpt = tpc = true;
 795
 796	/*
 797	 * Apply the enable bits that the guest hypervisor has requested for
 798	 * its own guest. We can only add traps that wouldn't have been set
 799	 * above.
 800	 */
 801	if (vcpu_has_nv(vcpu) && !is_hyp_ctxt(vcpu)) {
 802		u64 val = __vcpu_sys_reg(vcpu, CNTHCTL_EL2);
 803
 804		/* Use the VHE format for mental sanity */
 805		if (!vcpu_el2_e2h_is_set(vcpu))
 806			val = (val & (CNTHCTL_EL1PCEN | CNTHCTL_EL1PCTEN)) << 10;
 807
 808		tpt |= !(val & (CNTHCTL_EL1PCEN << 10));
 809		tpc |= !(val & (CNTHCTL_EL1PCTEN << 10));
 810	}
 811
 812	/*
 813	 * Now that we have collected our requirements, compute the
 814	 * trap and enable bits.
 815	 */
 816	set = 0;
 817	clr = 0;
 818
 819	assign_clear_set_bit(tpt, CNTHCTL_EL1PCEN << 10, set, clr);
 820	assign_clear_set_bit(tpc, CNTHCTL_EL1PCTEN << 10, set, clr);
 821
 822	/* This only happens on VHE, so use the CNTHCTL_EL2 accessor. */
 823	sysreg_clear_set(cnthctl_el2, clr, set);
 824}
 825
 826void kvm_timer_vcpu_load(struct kvm_vcpu *vcpu)
 827{
 828	struct arch_timer_cpu *timer = vcpu_timer(vcpu);
 829	struct timer_map map;
 830
 831	if (unlikely(!timer->enabled))
 832		return;
 833
 834	get_timer_map(vcpu, &map);
 835
 836	if (static_branch_likely(&has_gic_active_state)) {
 837		if (vcpu_has_nv(vcpu))
 838			kvm_timer_vcpu_load_nested_switch(vcpu, &map);
 839
 840		kvm_timer_vcpu_load_gic(map.direct_vtimer);
 841		if (map.direct_ptimer)
 842			kvm_timer_vcpu_load_gic(map.direct_ptimer);
 843	} else {
 844		kvm_timer_vcpu_load_nogic(vcpu);
 845	}
 846
 847	kvm_timer_unblocking(vcpu);
 848
 849	timer_restore_state(map.direct_vtimer);
 850	if (map.direct_ptimer)
 851		timer_restore_state(map.direct_ptimer);
 852	if (map.emul_vtimer)
 853		timer_emulate(map.emul_vtimer);
 854	if (map.emul_ptimer)
 855		timer_emulate(map.emul_ptimer);
 856
 857	timer_set_traps(vcpu, &map);
 858}
 859
 860bool kvm_timer_should_notify_user(struct kvm_vcpu *vcpu)
 861{
 862	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
 863	struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
 864	struct kvm_sync_regs *sregs = &vcpu->run->s.regs;
 865	bool vlevel, plevel;
 866
 867	if (likely(irqchip_in_kernel(vcpu->kvm)))
 868		return false;
 869
 870	vlevel = sregs->device_irq_level & KVM_ARM_DEV_EL1_VTIMER;
 871	plevel = sregs->device_irq_level & KVM_ARM_DEV_EL1_PTIMER;
 872
 873	return kvm_timer_should_fire(vtimer) != vlevel ||
 874	       kvm_timer_should_fire(ptimer) != plevel;
 875}
 876
 877void kvm_timer_vcpu_put(struct kvm_vcpu *vcpu)
 878{
 879	struct arch_timer_cpu *timer = vcpu_timer(vcpu);
 880	struct timer_map map;
 881
 882	if (unlikely(!timer->enabled))
 883		return;
 884
 885	get_timer_map(vcpu, &map);
 886
 887	timer_save_state(map.direct_vtimer);
 888	if (map.direct_ptimer)
 889		timer_save_state(map.direct_ptimer);
 890
 891	/*
 892	 * Cancel soft timer emulation, because the only case where we
 893	 * need it after a vcpu_put is in the context of a sleeping VCPU, and
 894	 * in that case we already factor in the deadline for the physical
 895	 * timer when scheduling the bg_timer.
 896	 *
 897	 * In any case, we re-schedule the hrtimer for the physical timer when
 898	 * coming back to the VCPU thread in kvm_timer_vcpu_load().
 899	 */
 900	if (map.emul_vtimer)
 901		soft_timer_cancel(&map.emul_vtimer->hrtimer);
 902	if (map.emul_ptimer)
 903		soft_timer_cancel(&map.emul_ptimer->hrtimer);
 904
 905	if (kvm_vcpu_is_blocking(vcpu))
 906		kvm_timer_blocking(vcpu);
 907}
 908
 909/*
 910 * With a userspace irqchip we have to check if the guest de-asserted the
 911 * timer and if so, unmask the timer irq signal on the host interrupt
 912 * controller to ensure that we see future timer signals.
 913 */
 914static void unmask_vtimer_irq_user(struct kvm_vcpu *vcpu)
 915{
 916	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
 917
 918	if (!kvm_timer_should_fire(vtimer)) {
 919		kvm_timer_update_irq(vcpu, false, vtimer);
 920		if (static_branch_likely(&has_gic_active_state))
 921			set_timer_irq_phys_active(vtimer, false);
 922		else
 923			enable_percpu_irq(host_vtimer_irq, host_vtimer_irq_flags);
 924	}
 925}
 926
 927void kvm_timer_sync_user(struct kvm_vcpu *vcpu)
 928{
 929	struct arch_timer_cpu *timer = vcpu_timer(vcpu);
 930
 931	if (unlikely(!timer->enabled))
 932		return;
 933
 934	if (unlikely(!irqchip_in_kernel(vcpu->kvm)))
 935		unmask_vtimer_irq_user(vcpu);
 936}
 937
 938void kvm_timer_vcpu_reset(struct kvm_vcpu *vcpu)
 939{
 940	struct arch_timer_cpu *timer = vcpu_timer(vcpu);
 941	struct timer_map map;
 942
 943	get_timer_map(vcpu, &map);
 944
 945	/*
 946	 * The bits in CNTV_CTL are architecturally reset to UNKNOWN for ARMv8
 947	 * and to 0 for ARMv7.  We provide an implementation that always
 948	 * resets the timer to be disabled and unmasked and is compliant with
 949	 * the ARMv7 architecture.
 950	 */
 951	for (int i = 0; i < nr_timers(vcpu); i++)
 952		timer_set_ctl(vcpu_get_timer(vcpu, i), 0);
 953
 954	/*
 955	 * A vcpu running at EL2 is in charge of the offset applied to
 956	 * the virtual timer, so use the physical VM offset, and point
 957	 * the vcpu offset to CNTVOFF_EL2.
 958	 */
 959	if (vcpu_has_nv(vcpu)) {
 960		struct arch_timer_offset *offs = &vcpu_vtimer(vcpu)->offset;
 961
 962		offs->vcpu_offset = &__vcpu_sys_reg(vcpu, CNTVOFF_EL2);
 963		offs->vm_offset = &vcpu->kvm->arch.timer_data.poffset;
 964	}
 965
 966	if (timer->enabled) {
 967		for (int i = 0; i < nr_timers(vcpu); i++)
 968			kvm_timer_update_irq(vcpu, false,
 969					     vcpu_get_timer(vcpu, i));
 970
 971		if (irqchip_in_kernel(vcpu->kvm)) {
 972			kvm_vgic_reset_mapped_irq(vcpu, timer_irq(map.direct_vtimer));
 973			if (map.direct_ptimer)
 974				kvm_vgic_reset_mapped_irq(vcpu, timer_irq(map.direct_ptimer));
 975		}
 976	}
 977
 978	if (map.emul_vtimer)
 979		soft_timer_cancel(&map.emul_vtimer->hrtimer);
 980	if (map.emul_ptimer)
 981		soft_timer_cancel(&map.emul_ptimer->hrtimer);
 982}
 983
 984static void timer_context_init(struct kvm_vcpu *vcpu, int timerid)
 985{
 986	struct arch_timer_context *ctxt = vcpu_get_timer(vcpu, timerid);
 987	struct kvm *kvm = vcpu->kvm;
 988
 989	ctxt->vcpu = vcpu;
 990
 991	if (timerid == TIMER_VTIMER)
 992		ctxt->offset.vm_offset = &kvm->arch.timer_data.voffset;
 993	else
 994		ctxt->offset.vm_offset = &kvm->arch.timer_data.poffset;
 995
 996	hrtimer_init(&ctxt->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
 997	ctxt->hrtimer.function = kvm_hrtimer_expire;
 998
 999	switch (timerid) {
1000	case TIMER_PTIMER:
1001	case TIMER_HPTIMER:
1002		ctxt->host_timer_irq = host_ptimer_irq;
1003		break;
1004	case TIMER_VTIMER:
1005	case TIMER_HVTIMER:
1006		ctxt->host_timer_irq = host_vtimer_irq;
1007		break;
1008	}
1009}
1010
1011void kvm_timer_vcpu_init(struct kvm_vcpu *vcpu)
1012{
1013	struct arch_timer_cpu *timer = vcpu_timer(vcpu);
1014
1015	for (int i = 0; i < NR_KVM_TIMERS; i++)
1016		timer_context_init(vcpu, i);
1017
1018	/* Synchronize offsets across timers of a VM if not already provided */
1019	if (!test_bit(KVM_ARCH_FLAG_VM_COUNTER_OFFSET, &vcpu->kvm->arch.flags)) {
1020		timer_set_offset(vcpu_vtimer(vcpu), kvm_phys_timer_read());
1021		timer_set_offset(vcpu_ptimer(vcpu), 0);
1022	}
1023
1024	hrtimer_init(&timer->bg_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
1025	timer->bg_timer.function = kvm_bg_timer_expire;
1026}
1027
1028void kvm_timer_init_vm(struct kvm *kvm)
1029{
1030	for (int i = 0; i < NR_KVM_TIMERS; i++)
1031		kvm->arch.timer_data.ppi[i] = default_ppi[i];
1032}
1033
1034void kvm_timer_cpu_up(void)
1035{
1036	enable_percpu_irq(host_vtimer_irq, host_vtimer_irq_flags);
1037	if (host_ptimer_irq)
1038		enable_percpu_irq(host_ptimer_irq, host_ptimer_irq_flags);
1039}
1040
1041void kvm_timer_cpu_down(void)
1042{
1043	disable_percpu_irq(host_vtimer_irq);
1044	if (host_ptimer_irq)
1045		disable_percpu_irq(host_ptimer_irq);
1046}
1047
1048int kvm_arm_timer_set_reg(struct kvm_vcpu *vcpu, u64 regid, u64 value)
1049{
1050	struct arch_timer_context *timer;
1051
1052	switch (regid) {
1053	case KVM_REG_ARM_TIMER_CTL:
1054		timer = vcpu_vtimer(vcpu);
1055		kvm_arm_timer_write(vcpu, timer, TIMER_REG_CTL, value);
1056		break;
1057	case KVM_REG_ARM_TIMER_CNT:
1058		if (!test_bit(KVM_ARCH_FLAG_VM_COUNTER_OFFSET,
1059			      &vcpu->kvm->arch.flags)) {
1060			timer = vcpu_vtimer(vcpu);
1061			timer_set_offset(timer, kvm_phys_timer_read() - value);
1062		}
1063		break;
1064	case KVM_REG_ARM_TIMER_CVAL:
1065		timer = vcpu_vtimer(vcpu);
1066		kvm_arm_timer_write(vcpu, timer, TIMER_REG_CVAL, value);
1067		break;
1068	case KVM_REG_ARM_PTIMER_CTL:
1069		timer = vcpu_ptimer(vcpu);
1070		kvm_arm_timer_write(vcpu, timer, TIMER_REG_CTL, value);
1071		break;
1072	case KVM_REG_ARM_PTIMER_CNT:
1073		if (!test_bit(KVM_ARCH_FLAG_VM_COUNTER_OFFSET,
1074			      &vcpu->kvm->arch.flags)) {
1075			timer = vcpu_ptimer(vcpu);
1076			timer_set_offset(timer, kvm_phys_timer_read() - value);
1077		}
1078		break;
1079	case KVM_REG_ARM_PTIMER_CVAL:
1080		timer = vcpu_ptimer(vcpu);
1081		kvm_arm_timer_write(vcpu, timer, TIMER_REG_CVAL, value);
1082		break;
1083
1084	default:
1085		return -1;
1086	}
1087
1088	return 0;
1089}
1090
1091static u64 read_timer_ctl(struct arch_timer_context *timer)
1092{
1093	/*
1094	 * Set ISTATUS bit if it's expired.
1095	 * Note that according to ARMv8 ARM Issue A.k, ISTATUS bit is
1096	 * UNKNOWN when ENABLE bit is 0, so we chose to set ISTATUS bit
1097	 * regardless of ENABLE bit for our implementation convenience.
1098	 */
1099	u32 ctl = timer_get_ctl(timer);
1100
1101	if (!kvm_timer_compute_delta(timer))
1102		ctl |= ARCH_TIMER_CTRL_IT_STAT;
1103
1104	return ctl;
1105}
1106
1107u64 kvm_arm_timer_get_reg(struct kvm_vcpu *vcpu, u64 regid)
1108{
1109	switch (regid) {
1110	case KVM_REG_ARM_TIMER_CTL:
1111		return kvm_arm_timer_read(vcpu,
1112					  vcpu_vtimer(vcpu), TIMER_REG_CTL);
1113	case KVM_REG_ARM_TIMER_CNT:
1114		return kvm_arm_timer_read(vcpu,
1115					  vcpu_vtimer(vcpu), TIMER_REG_CNT);
1116	case KVM_REG_ARM_TIMER_CVAL:
1117		return kvm_arm_timer_read(vcpu,
1118					  vcpu_vtimer(vcpu), TIMER_REG_CVAL);
1119	case KVM_REG_ARM_PTIMER_CTL:
1120		return kvm_arm_timer_read(vcpu,
1121					  vcpu_ptimer(vcpu), TIMER_REG_CTL);
1122	case KVM_REG_ARM_PTIMER_CNT:
1123		return kvm_arm_timer_read(vcpu,
1124					  vcpu_ptimer(vcpu), TIMER_REG_CNT);
1125	case KVM_REG_ARM_PTIMER_CVAL:
1126		return kvm_arm_timer_read(vcpu,
1127					  vcpu_ptimer(vcpu), TIMER_REG_CVAL);
1128	}
1129	return (u64)-1;
1130}
1131
1132static u64 kvm_arm_timer_read(struct kvm_vcpu *vcpu,
1133			      struct arch_timer_context *timer,
1134			      enum kvm_arch_timer_regs treg)
1135{
1136	u64 val;
1137
1138	switch (treg) {
1139	case TIMER_REG_TVAL:
1140		val = timer_get_cval(timer) - kvm_phys_timer_read() + timer_get_offset(timer);
1141		val = lower_32_bits(val);
1142		break;
1143
1144	case TIMER_REG_CTL:
1145		val = read_timer_ctl(timer);
1146		break;
1147
1148	case TIMER_REG_CVAL:
1149		val = timer_get_cval(timer);
1150		break;
1151
1152	case TIMER_REG_CNT:
1153		val = kvm_phys_timer_read() - timer_get_offset(timer);
1154		break;
1155
1156	case TIMER_REG_VOFF:
1157		val = *timer->offset.vcpu_offset;
1158		break;
1159
1160	default:
1161		BUG();
1162	}
1163
1164	return val;
1165}
1166
1167u64 kvm_arm_timer_read_sysreg(struct kvm_vcpu *vcpu,
1168			      enum kvm_arch_timers tmr,
1169			      enum kvm_arch_timer_regs treg)
1170{
1171	struct arch_timer_context *timer;
1172	struct timer_map map;
1173	u64 val;
1174
1175	get_timer_map(vcpu, &map);
1176	timer = vcpu_get_timer(vcpu, tmr);
1177
1178	if (timer == map.emul_vtimer || timer == map.emul_ptimer)
1179		return kvm_arm_timer_read(vcpu, timer, treg);
1180
1181	preempt_disable();
1182	timer_save_state(timer);
1183
1184	val = kvm_arm_timer_read(vcpu, timer, treg);
1185
1186	timer_restore_state(timer);
1187	preempt_enable();
1188
1189	return val;
1190}
1191
1192static void kvm_arm_timer_write(struct kvm_vcpu *vcpu,
1193				struct arch_timer_context *timer,
1194				enum kvm_arch_timer_regs treg,
1195				u64 val)
1196{
1197	switch (treg) {
1198	case TIMER_REG_TVAL:
1199		timer_set_cval(timer, kvm_phys_timer_read() - timer_get_offset(timer) + (s32)val);
1200		break;
1201
1202	case TIMER_REG_CTL:
1203		timer_set_ctl(timer, val & ~ARCH_TIMER_CTRL_IT_STAT);
1204		break;
1205
1206	case TIMER_REG_CVAL:
1207		timer_set_cval(timer, val);
1208		break;
1209
1210	case TIMER_REG_VOFF:
1211		*timer->offset.vcpu_offset = val;
1212		break;
1213
1214	default:
1215		BUG();
1216	}
1217}
1218
1219void kvm_arm_timer_write_sysreg(struct kvm_vcpu *vcpu,
1220				enum kvm_arch_timers tmr,
1221				enum kvm_arch_timer_regs treg,
1222				u64 val)
1223{
1224	struct arch_timer_context *timer;
1225	struct timer_map map;
1226
1227	get_timer_map(vcpu, &map);
1228	timer = vcpu_get_timer(vcpu, tmr);
1229	if (timer == map.emul_vtimer || timer == map.emul_ptimer) {
1230		soft_timer_cancel(&timer->hrtimer);
1231		kvm_arm_timer_write(vcpu, timer, treg, val);
1232		timer_emulate(timer);
1233	} else {
1234		preempt_disable();
1235		timer_save_state(timer);
1236		kvm_arm_timer_write(vcpu, timer, treg, val);
1237		timer_restore_state(timer);
1238		preempt_enable();
1239	}
1240}
1241
1242static int timer_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu)
1243{
1244	if (vcpu)
1245		irqd_set_forwarded_to_vcpu(d);
1246	else
1247		irqd_clr_forwarded_to_vcpu(d);
1248
1249	return 0;
1250}
1251
1252static int timer_irq_set_irqchip_state(struct irq_data *d,
1253				       enum irqchip_irq_state which, bool val)
1254{
1255	if (which != IRQCHIP_STATE_ACTIVE || !irqd_is_forwarded_to_vcpu(d))
1256		return irq_chip_set_parent_state(d, which, val);
1257
1258	if (val)
1259		irq_chip_mask_parent(d);
1260	else
1261		irq_chip_unmask_parent(d);
1262
1263	return 0;
1264}
1265
1266static void timer_irq_eoi(struct irq_data *d)
1267{
1268	if (!irqd_is_forwarded_to_vcpu(d))
1269		irq_chip_eoi_parent(d);
1270}
1271
1272static void timer_irq_ack(struct irq_data *d)
1273{
1274	d = d->parent_data;
1275	if (d->chip->irq_ack)
1276		d->chip->irq_ack(d);
1277}
1278
1279static struct irq_chip timer_chip = {
1280	.name			= "KVM",
1281	.irq_ack		= timer_irq_ack,
1282	.irq_mask		= irq_chip_mask_parent,
1283	.irq_unmask		= irq_chip_unmask_parent,
1284	.irq_eoi		= timer_irq_eoi,
1285	.irq_set_type		= irq_chip_set_type_parent,
1286	.irq_set_vcpu_affinity	= timer_irq_set_vcpu_affinity,
1287	.irq_set_irqchip_state	= timer_irq_set_irqchip_state,
1288};
1289
1290static int timer_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
1291				  unsigned int nr_irqs, void *arg)
1292{
1293	irq_hw_number_t hwirq = (uintptr_t)arg;
1294
1295	return irq_domain_set_hwirq_and_chip(domain, virq, hwirq,
1296					     &timer_chip, NULL);
1297}
1298
1299static void timer_irq_domain_free(struct irq_domain *domain, unsigned int virq,
1300				  unsigned int nr_irqs)
1301{
1302}
1303
1304static const struct irq_domain_ops timer_domain_ops = {
1305	.alloc	= timer_irq_domain_alloc,
1306	.free	= timer_irq_domain_free,
1307};
1308
1309static void kvm_irq_fixup_flags(unsigned int virq, u32 *flags)
1310{
1311	*flags = irq_get_trigger_type(virq);
1312	if (*flags != IRQF_TRIGGER_HIGH && *flags != IRQF_TRIGGER_LOW) {
1313		kvm_err("Invalid trigger for timer IRQ%d, assuming level low\n",
1314			virq);
1315		*flags = IRQF_TRIGGER_LOW;
1316	}
1317}
1318
1319static int kvm_irq_init(struct arch_timer_kvm_info *info)
1320{
1321	struct irq_domain *domain = NULL;
1322
1323	if (info->virtual_irq <= 0) {
1324		kvm_err("kvm_arch_timer: invalid virtual timer IRQ: %d\n",
1325			info->virtual_irq);
1326		return -ENODEV;
1327	}
1328
1329	host_vtimer_irq = info->virtual_irq;
1330	kvm_irq_fixup_flags(host_vtimer_irq, &host_vtimer_irq_flags);
1331
1332	if (kvm_vgic_global_state.no_hw_deactivation) {
1333		struct fwnode_handle *fwnode;
1334		struct irq_data *data;
1335
1336		fwnode = irq_domain_alloc_named_fwnode("kvm-timer");
1337		if (!fwnode)
1338			return -ENOMEM;
1339
1340		/* Assume both vtimer and ptimer in the same parent */
1341		data = irq_get_irq_data(host_vtimer_irq);
1342		domain = irq_domain_create_hierarchy(data->domain, 0,
1343						     NR_KVM_TIMERS, fwnode,
1344						     &timer_domain_ops, NULL);
1345		if (!domain) {
1346			irq_domain_free_fwnode(fwnode);
1347			return -ENOMEM;
1348		}
1349
1350		arch_timer_irq_ops.flags |= VGIC_IRQ_SW_RESAMPLE;
1351		WARN_ON(irq_domain_push_irq(domain, host_vtimer_irq,
1352					    (void *)TIMER_VTIMER));
1353	}
1354
1355	if (info->physical_irq > 0) {
1356		host_ptimer_irq = info->physical_irq;
1357		kvm_irq_fixup_flags(host_ptimer_irq, &host_ptimer_irq_flags);
1358
1359		if (domain)
1360			WARN_ON(irq_domain_push_irq(domain, host_ptimer_irq,
1361						    (void *)TIMER_PTIMER));
1362	}
1363
1364	return 0;
1365}
1366
1367int __init kvm_timer_hyp_init(bool has_gic)
1368{
1369	struct arch_timer_kvm_info *info;
1370	int err;
1371
1372	info = arch_timer_get_kvm_info();
1373	timecounter = &info->timecounter;
1374
1375	if (!timecounter->cc) {
1376		kvm_err("kvm_arch_timer: uninitialized timecounter\n");
1377		return -ENODEV;
1378	}
1379
1380	err = kvm_irq_init(info);
1381	if (err)
1382		return err;
1383
1384	/* First, do the virtual EL1 timer irq */
1385
1386	err = request_percpu_irq(host_vtimer_irq, kvm_arch_timer_handler,
1387				 "kvm guest vtimer", kvm_get_running_vcpus());
1388	if (err) {
1389		kvm_err("kvm_arch_timer: can't request vtimer interrupt %d (%d)\n",
1390			host_vtimer_irq, err);
1391		return err;
1392	}
1393
1394	if (has_gic) {
1395		err = irq_set_vcpu_affinity(host_vtimer_irq,
1396					    kvm_get_running_vcpus());
1397		if (err) {
1398			kvm_err("kvm_arch_timer: error setting vcpu affinity\n");
1399			goto out_free_vtimer_irq;
1400		}
1401
1402		static_branch_enable(&has_gic_active_state);
1403	}
1404
1405	kvm_debug("virtual timer IRQ%d\n", host_vtimer_irq);
1406
1407	/* Now let's do the physical EL1 timer irq */
1408
1409	if (info->physical_irq > 0) {
1410		err = request_percpu_irq(host_ptimer_irq, kvm_arch_timer_handler,
1411					 "kvm guest ptimer", kvm_get_running_vcpus());
1412		if (err) {
1413			kvm_err("kvm_arch_timer: can't request ptimer interrupt %d (%d)\n",
1414				host_ptimer_irq, err);
1415			goto out_free_vtimer_irq;
1416		}
1417
1418		if (has_gic) {
1419			err = irq_set_vcpu_affinity(host_ptimer_irq,
1420						    kvm_get_running_vcpus());
1421			if (err) {
1422				kvm_err("kvm_arch_timer: error setting vcpu affinity\n");
1423				goto out_free_ptimer_irq;
1424			}
1425		}
1426
1427		kvm_debug("physical timer IRQ%d\n", host_ptimer_irq);
1428	} else if (has_vhe()) {
1429		kvm_err("kvm_arch_timer: invalid physical timer IRQ: %d\n",
1430			info->physical_irq);
1431		err = -ENODEV;
1432		goto out_free_vtimer_irq;
1433	}
1434
1435	return 0;
1436
1437out_free_ptimer_irq:
1438	if (info->physical_irq > 0)
1439		free_percpu_irq(host_ptimer_irq, kvm_get_running_vcpus());
1440out_free_vtimer_irq:
1441	free_percpu_irq(host_vtimer_irq, kvm_get_running_vcpus());
1442	return err;
1443}
1444
1445void kvm_timer_vcpu_terminate(struct kvm_vcpu *vcpu)
1446{
1447	struct arch_timer_cpu *timer = vcpu_timer(vcpu);
1448
1449	soft_timer_cancel(&timer->bg_timer);
1450}
1451
1452static bool timer_irqs_are_valid(struct kvm_vcpu *vcpu)
1453{
1454	u32 ppis = 0;
1455	bool valid;
1456
1457	mutex_lock(&vcpu->kvm->arch.config_lock);
1458
1459	for (int i = 0; i < nr_timers(vcpu); i++) {
1460		struct arch_timer_context *ctx;
1461		int irq;
1462
1463		ctx = vcpu_get_timer(vcpu, i);
1464		irq = timer_irq(ctx);
1465		if (kvm_vgic_set_owner(vcpu, irq, ctx))
1466			break;
1467
1468		/*
1469		 * We know by construction that we only have PPIs, so
1470		 * all values are less than 32.
1471		 */
1472		ppis |= BIT(irq);
1473	}
1474
1475	valid = hweight32(ppis) == nr_timers(vcpu);
1476
1477	if (valid)
1478		set_bit(KVM_ARCH_FLAG_TIMER_PPIS_IMMUTABLE, &vcpu->kvm->arch.flags);
1479
1480	mutex_unlock(&vcpu->kvm->arch.config_lock);
1481
1482	return valid;
1483}
1484
1485static bool kvm_arch_timer_get_input_level(int vintid)
1486{
1487	struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
1488
1489	if (WARN(!vcpu, "No vcpu context!\n"))
1490		return false;
1491
1492	for (int i = 0; i < nr_timers(vcpu); i++) {
1493		struct arch_timer_context *ctx;
1494
1495		ctx = vcpu_get_timer(vcpu, i);
1496		if (timer_irq(ctx) == vintid)
1497			return kvm_timer_should_fire(ctx);
1498	}
1499
1500	/* A timer IRQ has fired, but no matching timer was found? */
1501	WARN_RATELIMIT(1, "timer INTID%d unknown\n", vintid);
1502
1503	return false;
1504}
1505
1506int kvm_timer_enable(struct kvm_vcpu *vcpu)
1507{
1508	struct arch_timer_cpu *timer = vcpu_timer(vcpu);
1509	struct timer_map map;
1510	int ret;
1511
1512	if (timer->enabled)
1513		return 0;
1514
1515	/* Without a VGIC we do not map virtual IRQs to physical IRQs */
1516	if (!irqchip_in_kernel(vcpu->kvm))
1517		goto no_vgic;
1518
1519	/*
1520	 * At this stage, we have the guarantee that the vgic is both
1521	 * available and initialized.
1522	 */
1523	if (!timer_irqs_are_valid(vcpu)) {
1524		kvm_debug("incorrectly configured timer irqs\n");
1525		return -EINVAL;
1526	}
1527
1528	get_timer_map(vcpu, &map);
1529
1530	ret = kvm_vgic_map_phys_irq(vcpu,
1531				    map.direct_vtimer->host_timer_irq,
1532				    timer_irq(map.direct_vtimer),
1533				    &arch_timer_irq_ops);
1534	if (ret)
1535		return ret;
1536
1537	if (map.direct_ptimer) {
1538		ret = kvm_vgic_map_phys_irq(vcpu,
1539					    map.direct_ptimer->host_timer_irq,
1540					    timer_irq(map.direct_ptimer),
1541					    &arch_timer_irq_ops);
1542	}
1543
1544	if (ret)
1545		return ret;
1546
1547no_vgic:
1548	timer->enabled = 1;
1549	return 0;
1550}
1551
1552/* If we have CNTPOFF, permanently set ECV to enable it */
1553void kvm_timer_init_vhe(void)
1554{
1555	if (cpus_have_final_cap(ARM64_HAS_ECV_CNTPOFF))
1556		sysreg_clear_set(cnthctl_el2, 0, CNTHCTL_ECV);
1557}
1558
1559int kvm_arm_timer_set_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
1560{
1561	int __user *uaddr = (int __user *)(long)attr->addr;
1562	int irq, idx, ret = 0;
1563
1564	if (!irqchip_in_kernel(vcpu->kvm))
1565		return -EINVAL;
1566
1567	if (get_user(irq, uaddr))
1568		return -EFAULT;
1569
1570	if (!(irq_is_ppi(irq)))
1571		return -EINVAL;
1572
1573	mutex_lock(&vcpu->kvm->arch.config_lock);
1574
1575	if (test_bit(KVM_ARCH_FLAG_TIMER_PPIS_IMMUTABLE,
1576		     &vcpu->kvm->arch.flags)) {
1577		ret = -EBUSY;
1578		goto out;
1579	}
1580
1581	switch (attr->attr) {
1582	case KVM_ARM_VCPU_TIMER_IRQ_VTIMER:
1583		idx = TIMER_VTIMER;
1584		break;
1585	case KVM_ARM_VCPU_TIMER_IRQ_PTIMER:
1586		idx = TIMER_PTIMER;
1587		break;
1588	case KVM_ARM_VCPU_TIMER_IRQ_HVTIMER:
1589		idx = TIMER_HVTIMER;
1590		break;
1591	case KVM_ARM_VCPU_TIMER_IRQ_HPTIMER:
1592		idx = TIMER_HPTIMER;
1593		break;
1594	default:
1595		ret = -ENXIO;
1596		goto out;
1597	}
1598
1599	/*
1600	 * We cannot validate the IRQ unicity before we run, so take it at
1601	 * face value. The verdict will be given on first vcpu run, for each
1602	 * vcpu. Yes this is late. Blame it on the stupid API.
1603	 */
1604	vcpu->kvm->arch.timer_data.ppi[idx] = irq;
1605
1606out:
1607	mutex_unlock(&vcpu->kvm->arch.config_lock);
1608	return ret;
1609}
1610
1611int kvm_arm_timer_get_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
1612{
1613	int __user *uaddr = (int __user *)(long)attr->addr;
1614	struct arch_timer_context *timer;
1615	int irq;
1616
1617	switch (attr->attr) {
1618	case KVM_ARM_VCPU_TIMER_IRQ_VTIMER:
1619		timer = vcpu_vtimer(vcpu);
1620		break;
1621	case KVM_ARM_VCPU_TIMER_IRQ_PTIMER:
1622		timer = vcpu_ptimer(vcpu);
1623		break;
1624	case KVM_ARM_VCPU_TIMER_IRQ_HVTIMER:
1625		timer = vcpu_hvtimer(vcpu);
1626		break;
1627	case KVM_ARM_VCPU_TIMER_IRQ_HPTIMER:
1628		timer = vcpu_hptimer(vcpu);
1629		break;
1630	default:
1631		return -ENXIO;
1632	}
1633
1634	irq = timer_irq(timer);
1635	return put_user(irq, uaddr);
1636}
1637
1638int kvm_arm_timer_has_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
1639{
1640	switch (attr->attr) {
1641	case KVM_ARM_VCPU_TIMER_IRQ_VTIMER:
1642	case KVM_ARM_VCPU_TIMER_IRQ_PTIMER:
1643	case KVM_ARM_VCPU_TIMER_IRQ_HVTIMER:
1644	case KVM_ARM_VCPU_TIMER_IRQ_HPTIMER:
1645		return 0;
1646	}
1647
1648	return -ENXIO;
1649}
1650
1651int kvm_vm_ioctl_set_counter_offset(struct kvm *kvm,
1652				    struct kvm_arm_counter_offset *offset)
1653{
1654	int ret = 0;
1655
1656	if (offset->reserved)
1657		return -EINVAL;
1658
1659	mutex_lock(&kvm->lock);
1660
1661	if (lock_all_vcpus(kvm)) {
1662		set_bit(KVM_ARCH_FLAG_VM_COUNTER_OFFSET, &kvm->arch.flags);
1663
1664		/*
1665		 * If userspace decides to set the offset using this
1666		 * API rather than merely restoring the counter
1667		 * values, the offset applies to both the virtual and
1668		 * physical views.
1669		 */
1670		kvm->arch.timer_data.voffset = offset->counter_offset;
1671		kvm->arch.timer_data.poffset = offset->counter_offset;
1672
1673		unlock_all_vcpus(kvm);
1674	} else {
1675		ret = -EBUSY;
1676	}
1677
1678	mutex_unlock(&kvm->lock);
1679
1680	return ret;
1681}