Loading...
1/* -*- mode: c; c-basic-offset: 8 -*- */
2
3/* NCR (or Symbios) 53c700 and 53c700-66 Driver
4 *
5 * Copyright (C) 2001 by James.Bottomley@HansenPartnership.com
6**-----------------------------------------------------------------------------
7**
8** This program is free software; you can redistribute it and/or modify
9** it under the terms of the GNU General Public License as published by
10** the Free Software Foundation; either version 2 of the License, or
11** (at your option) any later version.
12**
13** This program is distributed in the hope that it will be useful,
14** but WITHOUT ANY WARRANTY; without even the implied warranty of
15** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16** GNU General Public License for more details.
17**
18** You should have received a copy of the GNU General Public License
19** along with this program; if not, write to the Free Software
20** Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21**
22**-----------------------------------------------------------------------------
23 */
24
25/* Notes:
26 *
27 * This driver is designed exclusively for these chips (virtually the
28 * earliest of the scripts engine chips). They need their own drivers
29 * because they are missing so many of the scripts and snazzy register
30 * features of their elder brothers (the 710, 720 and 770).
31 *
32 * The 700 is the lowliest of the line, it can only do async SCSI.
33 * The 700-66 can at least do synchronous SCSI up to 10MHz.
34 *
35 * The 700 chip has no host bus interface logic of its own. However,
36 * it is usually mapped to a location with well defined register
37 * offsets. Therefore, if you can determine the base address and the
38 * irq your board incorporating this chip uses, you can probably use
39 * this driver to run it (although you'll probably have to write a
40 * minimal wrapper for the purpose---see the NCR_D700 driver for
41 * details about how to do this).
42 *
43 *
44 * TODO List:
45 *
46 * 1. Better statistics in the proc fs
47 *
48 * 2. Implement message queue (queues SCSI messages like commands) and make
49 * the abort and device reset functions use them.
50 * */
51
52/* CHANGELOG
53 *
54 * Version 2.8
55 *
56 * Fixed bad bug affecting tag starvation processing (previously the
57 * driver would hang the system if too many tags starved. Also fixed
58 * bad bug having to do with 10 byte command processing and REQUEST
59 * SENSE (the command would loop forever getting a transfer length
60 * mismatch in the CMD phase).
61 *
62 * Version 2.7
63 *
64 * Fixed scripts problem which caused certain devices (notably CDRWs)
65 * to hang on initial INQUIRY. Updated NCR_700_readl/writel to use
66 * __raw_readl/writel for parisc compatibility (Thomas
67 * Bogendoerfer). Added missing SCp->request_bufflen initialisation
68 * for sense requests (Ryan Bradetich).
69 *
70 * Version 2.6
71 *
72 * Following test of the 64 bit parisc kernel by Richard Hirst,
73 * several problems have now been corrected. Also adds support for
74 * consistent memory allocation.
75 *
76 * Version 2.5
77 *
78 * More Compatibility changes for 710 (now actually works). Enhanced
79 * support for odd clock speeds which constrain SDTR negotiations.
80 * correct cacheline separation for scsi messages and status for
81 * incoherent architectures. Use of the pci mapping functions on
82 * buffers to begin support for 64 bit drivers.
83 *
84 * Version 2.4
85 *
86 * Added support for the 53c710 chip (in 53c700 emulation mode only---no
87 * special 53c710 instructions or registers are used).
88 *
89 * Version 2.3
90 *
91 * More endianness/cache coherency changes.
92 *
93 * Better bad device handling (handles devices lying about tag
94 * queueing support and devices which fail to provide sense data on
95 * contingent allegiance conditions)
96 *
97 * Many thanks to Richard Hirst <rhirst@linuxcare.com> for patiently
98 * debugging this driver on the parisc architecture and suggesting
99 * many improvements and bug fixes.
100 *
101 * Thanks also go to Linuxcare Inc. for providing several PARISC
102 * machines for me to debug the driver on.
103 *
104 * Version 2.2
105 *
106 * Made the driver mem or io mapped; added endian invariance; added
107 * dma cache flushing operations for architectures which need it;
108 * added support for more varied clocking speeds.
109 *
110 * Version 2.1
111 *
112 * Initial modularisation from the D700. See NCR_D700.c for the rest of
113 * the changelog.
114 * */
115#define NCR_700_VERSION "2.8"
116
117#include <linux/kernel.h>
118#include <linux/types.h>
119#include <linux/string.h>
120#include <linux/slab.h>
121#include <linux/ioport.h>
122#include <linux/delay.h>
123#include <linux/spinlock.h>
124#include <linux/completion.h>
125#include <linux/init.h>
126#include <linux/proc_fs.h>
127#include <linux/blkdev.h>
128#include <linux/module.h>
129#include <linux/interrupt.h>
130#include <linux/device.h>
131#include <asm/dma.h>
132#include <asm/io.h>
133#include <asm/pgtable.h>
134#include <asm/byteorder.h>
135
136#include <scsi/scsi.h>
137#include <scsi/scsi_cmnd.h>
138#include <scsi/scsi_dbg.h>
139#include <scsi/scsi_eh.h>
140#include <scsi/scsi_host.h>
141#include <scsi/scsi_tcq.h>
142#include <scsi/scsi_transport.h>
143#include <scsi/scsi_transport_spi.h>
144
145#include "53c700.h"
146
147/* NOTE: For 64 bit drivers there are points in the code where we use
148 * a non dereferenceable pointer to point to a structure in dma-able
149 * memory (which is 32 bits) so that we can use all of the structure
150 * operations but take the address at the end. This macro allows us
151 * to truncate the 64 bit pointer down to 32 bits without the compiler
152 * complaining */
153#define to32bit(x) ((__u32)((unsigned long)(x)))
154
155#ifdef NCR_700_DEBUG
156#define STATIC
157#else
158#define STATIC static
159#endif
160
161MODULE_AUTHOR("James Bottomley");
162MODULE_DESCRIPTION("53c700 and 53c700-66 Driver");
163MODULE_LICENSE("GPL");
164
165/* This is the script */
166#include "53c700_d.h"
167
168
169STATIC int NCR_700_queuecommand(struct Scsi_Host *h, struct scsi_cmnd *);
170STATIC int NCR_700_abort(struct scsi_cmnd * SCpnt);
171STATIC int NCR_700_host_reset(struct scsi_cmnd * SCpnt);
172STATIC void NCR_700_chip_setup(struct Scsi_Host *host);
173STATIC void NCR_700_chip_reset(struct Scsi_Host *host);
174STATIC int NCR_700_slave_alloc(struct scsi_device *SDpnt);
175STATIC int NCR_700_slave_configure(struct scsi_device *SDpnt);
176STATIC void NCR_700_slave_destroy(struct scsi_device *SDpnt);
177static int NCR_700_change_queue_depth(struct scsi_device *SDpnt, int depth);
178
179STATIC struct device_attribute *NCR_700_dev_attrs[];
180
181STATIC struct scsi_transport_template *NCR_700_transport_template = NULL;
182
183static char *NCR_700_phase[] = {
184 "",
185 "after selection",
186 "before command phase",
187 "after command phase",
188 "after status phase",
189 "after data in phase",
190 "after data out phase",
191 "during data phase",
192};
193
194static char *NCR_700_condition[] = {
195 "",
196 "NOT MSG_OUT",
197 "UNEXPECTED PHASE",
198 "NOT MSG_IN",
199 "UNEXPECTED MSG",
200 "MSG_IN",
201 "SDTR_MSG RECEIVED",
202 "REJECT_MSG RECEIVED",
203 "DISCONNECT_MSG RECEIVED",
204 "MSG_OUT",
205 "DATA_IN",
206
207};
208
209static char *NCR_700_fatal_messages[] = {
210 "unexpected message after reselection",
211 "still MSG_OUT after message injection",
212 "not MSG_IN after selection",
213 "Illegal message length received",
214};
215
216static char *NCR_700_SBCL_bits[] = {
217 "IO ",
218 "CD ",
219 "MSG ",
220 "ATN ",
221 "SEL ",
222 "BSY ",
223 "ACK ",
224 "REQ ",
225};
226
227static char *NCR_700_SBCL_to_phase[] = {
228 "DATA_OUT",
229 "DATA_IN",
230 "CMD_OUT",
231 "STATE",
232 "ILLEGAL PHASE",
233 "ILLEGAL PHASE",
234 "MSG OUT",
235 "MSG IN",
236};
237
238/* This translates the SDTR message offset and period to a value
239 * which can be loaded into the SXFER_REG.
240 *
241 * NOTE: According to SCSI-2, the true transfer period (in ns) is
242 * actually four times this period value */
243static inline __u8
244NCR_700_offset_period_to_sxfer(struct NCR_700_Host_Parameters *hostdata,
245 __u8 offset, __u8 period)
246{
247 int XFERP;
248
249 __u8 min_xferp = (hostdata->chip710
250 ? NCR_710_MIN_XFERP : NCR_700_MIN_XFERP);
251 __u8 max_offset = (hostdata->chip710
252 ? NCR_710_MAX_OFFSET : NCR_700_MAX_OFFSET);
253
254 if(offset == 0)
255 return 0;
256
257 if(period < hostdata->min_period) {
258 printk(KERN_WARNING "53c700: Period %dns is less than this chip's minimum, setting to %d\n", period*4, NCR_700_MIN_PERIOD*4);
259 period = hostdata->min_period;
260 }
261 XFERP = (period*4 * hostdata->sync_clock)/1000 - 4;
262 if(offset > max_offset) {
263 printk(KERN_WARNING "53c700: Offset %d exceeds chip maximum, setting to %d\n",
264 offset, max_offset);
265 offset = max_offset;
266 }
267 if(XFERP < min_xferp) {
268 XFERP = min_xferp;
269 }
270 return (offset & 0x0f) | (XFERP & 0x07)<<4;
271}
272
273static inline __u8
274NCR_700_get_SXFER(struct scsi_device *SDp)
275{
276 struct NCR_700_Host_Parameters *hostdata =
277 (struct NCR_700_Host_Parameters *)SDp->host->hostdata[0];
278
279 return NCR_700_offset_period_to_sxfer(hostdata,
280 spi_offset(SDp->sdev_target),
281 spi_period(SDp->sdev_target));
282}
283
284struct Scsi_Host *
285NCR_700_detect(struct scsi_host_template *tpnt,
286 struct NCR_700_Host_Parameters *hostdata, struct device *dev)
287{
288 dma_addr_t pScript, pSlots;
289 __u8 *memory;
290 __u32 *script;
291 struct Scsi_Host *host;
292 static int banner = 0;
293 int j;
294
295 if(tpnt->sdev_attrs == NULL)
296 tpnt->sdev_attrs = NCR_700_dev_attrs;
297
298 memory = dma_alloc_attrs(hostdata->dev, TOTAL_MEM_SIZE, &pScript,
299 GFP_KERNEL, DMA_ATTR_NON_CONSISTENT);
300 if(memory == NULL) {
301 printk(KERN_ERR "53c700: Failed to allocate memory for driver, detaching\n");
302 return NULL;
303 }
304
305 script = (__u32 *)memory;
306 hostdata->msgin = memory + MSGIN_OFFSET;
307 hostdata->msgout = memory + MSGOUT_OFFSET;
308 hostdata->status = memory + STATUS_OFFSET;
309 hostdata->slots = (struct NCR_700_command_slot *)(memory + SLOTS_OFFSET);
310 hostdata->dev = dev;
311
312 pSlots = pScript + SLOTS_OFFSET;
313
314 /* Fill in the missing routines from the host template */
315 tpnt->queuecommand = NCR_700_queuecommand;
316 tpnt->eh_abort_handler = NCR_700_abort;
317 tpnt->eh_host_reset_handler = NCR_700_host_reset;
318 tpnt->can_queue = NCR_700_COMMAND_SLOTS_PER_HOST;
319 tpnt->sg_tablesize = NCR_700_SG_SEGMENTS;
320 tpnt->cmd_per_lun = NCR_700_CMD_PER_LUN;
321 tpnt->use_clustering = ENABLE_CLUSTERING;
322 tpnt->slave_configure = NCR_700_slave_configure;
323 tpnt->slave_destroy = NCR_700_slave_destroy;
324 tpnt->slave_alloc = NCR_700_slave_alloc;
325 tpnt->change_queue_depth = NCR_700_change_queue_depth;
326
327 if(tpnt->name == NULL)
328 tpnt->name = "53c700";
329 if(tpnt->proc_name == NULL)
330 tpnt->proc_name = "53c700";
331
332 host = scsi_host_alloc(tpnt, 4);
333 if (!host)
334 return NULL;
335 memset(hostdata->slots, 0, sizeof(struct NCR_700_command_slot)
336 * NCR_700_COMMAND_SLOTS_PER_HOST);
337 for (j = 0; j < NCR_700_COMMAND_SLOTS_PER_HOST; j++) {
338 dma_addr_t offset = (dma_addr_t)((unsigned long)&hostdata->slots[j].SG[0]
339 - (unsigned long)&hostdata->slots[0].SG[0]);
340 hostdata->slots[j].pSG = (struct NCR_700_SG_List *)((unsigned long)(pSlots + offset));
341 if(j == 0)
342 hostdata->free_list = &hostdata->slots[j];
343 else
344 hostdata->slots[j-1].ITL_forw = &hostdata->slots[j];
345 hostdata->slots[j].state = NCR_700_SLOT_FREE;
346 }
347
348 for (j = 0; j < ARRAY_SIZE(SCRIPT); j++)
349 script[j] = bS_to_host(SCRIPT[j]);
350
351 /* adjust all labels to be bus physical */
352 for (j = 0; j < PATCHES; j++)
353 script[LABELPATCHES[j]] = bS_to_host(pScript + SCRIPT[LABELPATCHES[j]]);
354 /* now patch up fixed addresses. */
355 script_patch_32(hostdata->dev, script, MessageLocation,
356 pScript + MSGOUT_OFFSET);
357 script_patch_32(hostdata->dev, script, StatusAddress,
358 pScript + STATUS_OFFSET);
359 script_patch_32(hostdata->dev, script, ReceiveMsgAddress,
360 pScript + MSGIN_OFFSET);
361
362 hostdata->script = script;
363 hostdata->pScript = pScript;
364 dma_sync_single_for_device(hostdata->dev, pScript, sizeof(SCRIPT), DMA_TO_DEVICE);
365 hostdata->state = NCR_700_HOST_FREE;
366 hostdata->cmd = NULL;
367 host->max_id = 8;
368 host->max_lun = NCR_700_MAX_LUNS;
369 BUG_ON(NCR_700_transport_template == NULL);
370 host->transportt = NCR_700_transport_template;
371 host->unique_id = (unsigned long)hostdata->base;
372 hostdata->eh_complete = NULL;
373 host->hostdata[0] = (unsigned long)hostdata;
374 /* kick the chip */
375 NCR_700_writeb(0xff, host, CTEST9_REG);
376 if (hostdata->chip710)
377 hostdata->rev = (NCR_700_readb(host, CTEST8_REG)>>4) & 0x0f;
378 else
379 hostdata->rev = (NCR_700_readb(host, CTEST7_REG)>>4) & 0x0f;
380 hostdata->fast = (NCR_700_readb(host, CTEST9_REG) == 0);
381 if (banner == 0) {
382 printk(KERN_NOTICE "53c700: Version " NCR_700_VERSION " By James.Bottomley@HansenPartnership.com\n");
383 banner = 1;
384 }
385 printk(KERN_NOTICE "scsi%d: %s rev %d %s\n", host->host_no,
386 hostdata->chip710 ? "53c710" :
387 (hostdata->fast ? "53c700-66" : "53c700"),
388 hostdata->rev, hostdata->differential ?
389 "(Differential)" : "");
390 /* reset the chip */
391 NCR_700_chip_reset(host);
392
393 if (scsi_add_host(host, dev)) {
394 dev_printk(KERN_ERR, dev, "53c700: scsi_add_host failed\n");
395 scsi_host_put(host);
396 return NULL;
397 }
398
399 spi_signalling(host) = hostdata->differential ? SPI_SIGNAL_HVD :
400 SPI_SIGNAL_SE;
401
402 return host;
403}
404
405int
406NCR_700_release(struct Scsi_Host *host)
407{
408 struct NCR_700_Host_Parameters *hostdata =
409 (struct NCR_700_Host_Parameters *)host->hostdata[0];
410
411 dma_free_attrs(hostdata->dev, TOTAL_MEM_SIZE, hostdata->script,
412 hostdata->pScript, DMA_ATTR_NON_CONSISTENT);
413 return 1;
414}
415
416static inline __u8
417NCR_700_identify(int can_disconnect, __u8 lun)
418{
419 return IDENTIFY_BASE |
420 ((can_disconnect) ? 0x40 : 0) |
421 (lun & NCR_700_LUN_MASK);
422}
423
424/*
425 * Function : static int data_residual (Scsi_Host *host)
426 *
427 * Purpose : return residual data count of what's in the chip. If you
428 * really want to know what this function is doing, it's almost a
429 * direct transcription of the algorithm described in the 53c710
430 * guide, except that the DBC and DFIFO registers are only 6 bits
431 * wide on a 53c700.
432 *
433 * Inputs : host - SCSI host */
434static inline int
435NCR_700_data_residual (struct Scsi_Host *host) {
436 struct NCR_700_Host_Parameters *hostdata =
437 (struct NCR_700_Host_Parameters *)host->hostdata[0];
438 int count, synchronous = 0;
439 unsigned int ddir;
440
441 if(hostdata->chip710) {
442 count = ((NCR_700_readb(host, DFIFO_REG) & 0x7f) -
443 (NCR_700_readl(host, DBC_REG) & 0x7f)) & 0x7f;
444 } else {
445 count = ((NCR_700_readb(host, DFIFO_REG) & 0x3f) -
446 (NCR_700_readl(host, DBC_REG) & 0x3f)) & 0x3f;
447 }
448
449 if(hostdata->fast)
450 synchronous = NCR_700_readb(host, SXFER_REG) & 0x0f;
451
452 /* get the data direction */
453 ddir = NCR_700_readb(host, CTEST0_REG) & 0x01;
454
455 if (ddir) {
456 /* Receive */
457 if (synchronous)
458 count += (NCR_700_readb(host, SSTAT2_REG) & 0xf0) >> 4;
459 else
460 if (NCR_700_readb(host, SSTAT1_REG) & SIDL_REG_FULL)
461 ++count;
462 } else {
463 /* Send */
464 __u8 sstat = NCR_700_readb(host, SSTAT1_REG);
465 if (sstat & SODL_REG_FULL)
466 ++count;
467 if (synchronous && (sstat & SODR_REG_FULL))
468 ++count;
469 }
470#ifdef NCR_700_DEBUG
471 if(count)
472 printk("RESIDUAL IS %d (ddir %d)\n", count, ddir);
473#endif
474 return count;
475}
476
477/* print out the SCSI wires and corresponding phase from the SBCL register
478 * in the chip */
479static inline char *
480sbcl_to_string(__u8 sbcl)
481{
482 int i;
483 static char ret[256];
484
485 ret[0]='\0';
486 for(i=0; i<8; i++) {
487 if((1<<i) & sbcl)
488 strcat(ret, NCR_700_SBCL_bits[i]);
489 }
490 strcat(ret, NCR_700_SBCL_to_phase[sbcl & 0x07]);
491 return ret;
492}
493
494static inline __u8
495bitmap_to_number(__u8 bitmap)
496{
497 __u8 i;
498
499 for(i=0; i<8 && !(bitmap &(1<<i)); i++)
500 ;
501 return i;
502}
503
504/* Pull a slot off the free list */
505STATIC struct NCR_700_command_slot *
506find_empty_slot(struct NCR_700_Host_Parameters *hostdata)
507{
508 struct NCR_700_command_slot *slot = hostdata->free_list;
509
510 if(slot == NULL) {
511 /* sanity check */
512 if(hostdata->command_slot_count != NCR_700_COMMAND_SLOTS_PER_HOST)
513 printk(KERN_ERR "SLOTS FULL, but count is %d, should be %d\n", hostdata->command_slot_count, NCR_700_COMMAND_SLOTS_PER_HOST);
514 return NULL;
515 }
516
517 if(slot->state != NCR_700_SLOT_FREE)
518 /* should panic! */
519 printk(KERN_ERR "BUSY SLOT ON FREE LIST!!!\n");
520
521
522 hostdata->free_list = slot->ITL_forw;
523 slot->ITL_forw = NULL;
524
525
526 /* NOTE: set the state to busy here, not queued, since this
527 * indicates the slot is in use and cannot be run by the IRQ
528 * finish routine. If we cannot queue the command when it
529 * is properly build, we then change to NCR_700_SLOT_QUEUED */
530 slot->state = NCR_700_SLOT_BUSY;
531 slot->flags = 0;
532 hostdata->command_slot_count++;
533
534 return slot;
535}
536
537STATIC void
538free_slot(struct NCR_700_command_slot *slot,
539 struct NCR_700_Host_Parameters *hostdata)
540{
541 if((slot->state & NCR_700_SLOT_MASK) != NCR_700_SLOT_MAGIC) {
542 printk(KERN_ERR "53c700: SLOT %p is not MAGIC!!!\n", slot);
543 }
544 if(slot->state == NCR_700_SLOT_FREE) {
545 printk(KERN_ERR "53c700: SLOT %p is FREE!!!\n", slot);
546 }
547
548 slot->resume_offset = 0;
549 slot->cmnd = NULL;
550 slot->state = NCR_700_SLOT_FREE;
551 slot->ITL_forw = hostdata->free_list;
552 hostdata->free_list = slot;
553 hostdata->command_slot_count--;
554}
555
556
557/* This routine really does very little. The command is indexed on
558 the ITL and (if tagged) the ITLQ lists in _queuecommand */
559STATIC void
560save_for_reselection(struct NCR_700_Host_Parameters *hostdata,
561 struct scsi_cmnd *SCp, __u32 dsp)
562{
563 /* Its just possible that this gets executed twice */
564 if(SCp != NULL) {
565 struct NCR_700_command_slot *slot =
566 (struct NCR_700_command_slot *)SCp->host_scribble;
567
568 slot->resume_offset = dsp;
569 }
570 hostdata->state = NCR_700_HOST_FREE;
571 hostdata->cmd = NULL;
572}
573
574STATIC inline void
575NCR_700_unmap(struct NCR_700_Host_Parameters *hostdata, struct scsi_cmnd *SCp,
576 struct NCR_700_command_slot *slot)
577{
578 if(SCp->sc_data_direction != DMA_NONE &&
579 SCp->sc_data_direction != DMA_BIDIRECTIONAL)
580 scsi_dma_unmap(SCp);
581}
582
583STATIC inline void
584NCR_700_scsi_done(struct NCR_700_Host_Parameters *hostdata,
585 struct scsi_cmnd *SCp, int result)
586{
587 hostdata->state = NCR_700_HOST_FREE;
588 hostdata->cmd = NULL;
589
590 if(SCp != NULL) {
591 struct NCR_700_command_slot *slot =
592 (struct NCR_700_command_slot *)SCp->host_scribble;
593
594 dma_unmap_single(hostdata->dev, slot->pCmd,
595 MAX_COMMAND_SIZE, DMA_TO_DEVICE);
596 if (slot->flags == NCR_700_FLAG_AUTOSENSE) {
597 char *cmnd = NCR_700_get_sense_cmnd(SCp->device);
598
599 dma_unmap_single(hostdata->dev, slot->dma_handle,
600 SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE);
601 /* restore the old result if the request sense was
602 * successful */
603 if (result == 0)
604 result = cmnd[7];
605 /* restore the original length */
606 SCp->cmd_len = cmnd[8];
607 } else
608 NCR_700_unmap(hostdata, SCp, slot);
609
610 free_slot(slot, hostdata);
611#ifdef NCR_700_DEBUG
612 if(NCR_700_get_depth(SCp->device) == 0 ||
613 NCR_700_get_depth(SCp->device) > SCp->device->queue_depth)
614 printk(KERN_ERR "Invalid depth in NCR_700_scsi_done(): %d\n",
615 NCR_700_get_depth(SCp->device));
616#endif /* NCR_700_DEBUG */
617 NCR_700_set_depth(SCp->device, NCR_700_get_depth(SCp->device) - 1);
618
619 SCp->host_scribble = NULL;
620 SCp->result = result;
621 SCp->scsi_done(SCp);
622 } else {
623 printk(KERN_ERR "53c700: SCSI DONE HAS NULL SCp\n");
624 }
625}
626
627
628STATIC void
629NCR_700_internal_bus_reset(struct Scsi_Host *host)
630{
631 /* Bus reset */
632 NCR_700_writeb(ASSERT_RST, host, SCNTL1_REG);
633 udelay(50);
634 NCR_700_writeb(0, host, SCNTL1_REG);
635
636}
637
638STATIC void
639NCR_700_chip_setup(struct Scsi_Host *host)
640{
641 struct NCR_700_Host_Parameters *hostdata =
642 (struct NCR_700_Host_Parameters *)host->hostdata[0];
643 __u8 min_period;
644 __u8 min_xferp = (hostdata->chip710 ? NCR_710_MIN_XFERP : NCR_700_MIN_XFERP);
645
646 if(hostdata->chip710) {
647 __u8 burst_disable = 0;
648 __u8 burst_length = 0;
649
650 switch (hostdata->burst_length) {
651 case 1:
652 burst_length = BURST_LENGTH_1;
653 break;
654 case 2:
655 burst_length = BURST_LENGTH_2;
656 break;
657 case 4:
658 burst_length = BURST_LENGTH_4;
659 break;
660 case 8:
661 burst_length = BURST_LENGTH_8;
662 break;
663 default:
664 burst_disable = BURST_DISABLE;
665 break;
666 }
667 hostdata->dcntl_extra |= COMPAT_700_MODE;
668
669 NCR_700_writeb(hostdata->dcntl_extra, host, DCNTL_REG);
670 NCR_700_writeb(burst_length | hostdata->dmode_extra,
671 host, DMODE_710_REG);
672 NCR_700_writeb(burst_disable | hostdata->ctest7_extra |
673 (hostdata->differential ? DIFF : 0),
674 host, CTEST7_REG);
675 NCR_700_writeb(BTB_TIMER_DISABLE, host, CTEST0_REG);
676 NCR_700_writeb(FULL_ARBITRATION | ENABLE_PARITY | PARITY
677 | AUTO_ATN, host, SCNTL0_REG);
678 } else {
679 NCR_700_writeb(BURST_LENGTH_8 | hostdata->dmode_extra,
680 host, DMODE_700_REG);
681 NCR_700_writeb(hostdata->differential ?
682 DIFF : 0, host, CTEST7_REG);
683 if(hostdata->fast) {
684 /* this is for 700-66, does nothing on 700 */
685 NCR_700_writeb(LAST_DIS_ENBL | ENABLE_ACTIVE_NEGATION
686 | GENERATE_RECEIVE_PARITY, host,
687 CTEST8_REG);
688 } else {
689 NCR_700_writeb(FULL_ARBITRATION | ENABLE_PARITY
690 | PARITY | AUTO_ATN, host, SCNTL0_REG);
691 }
692 }
693
694 NCR_700_writeb(1 << host->this_id, host, SCID_REG);
695 NCR_700_writeb(0, host, SBCL_REG);
696 NCR_700_writeb(ASYNC_OPERATION, host, SXFER_REG);
697
698 NCR_700_writeb(PHASE_MM_INT | SEL_TIMEOUT_INT | GROSS_ERR_INT | UX_DISC_INT
699 | RST_INT | PAR_ERR_INT | SELECT_INT, host, SIEN_REG);
700
701 NCR_700_writeb(ABORT_INT | INT_INST_INT | ILGL_INST_INT, host, DIEN_REG);
702 NCR_700_writeb(ENABLE_SELECT, host, SCNTL1_REG);
703 if(hostdata->clock > 75) {
704 printk(KERN_ERR "53c700: Clock speed %dMHz is too high: 75Mhz is the maximum this chip can be driven at\n", hostdata->clock);
705 /* do the best we can, but the async clock will be out
706 * of spec: sync divider 2, async divider 3 */
707 DEBUG(("53c700: sync 2 async 3\n"));
708 NCR_700_writeb(SYNC_DIV_2_0, host, SBCL_REG);
709 NCR_700_writeb(ASYNC_DIV_3_0 | hostdata->dcntl_extra, host, DCNTL_REG);
710 hostdata->sync_clock = hostdata->clock/2;
711 } else if(hostdata->clock > 50 && hostdata->clock <= 75) {
712 /* sync divider 1.5, async divider 3 */
713 DEBUG(("53c700: sync 1.5 async 3\n"));
714 NCR_700_writeb(SYNC_DIV_1_5, host, SBCL_REG);
715 NCR_700_writeb(ASYNC_DIV_3_0 | hostdata->dcntl_extra, host, DCNTL_REG);
716 hostdata->sync_clock = hostdata->clock*2;
717 hostdata->sync_clock /= 3;
718
719 } else if(hostdata->clock > 37 && hostdata->clock <= 50) {
720 /* sync divider 1, async divider 2 */
721 DEBUG(("53c700: sync 1 async 2\n"));
722 NCR_700_writeb(SYNC_DIV_1_0, host, SBCL_REG);
723 NCR_700_writeb(ASYNC_DIV_2_0 | hostdata->dcntl_extra, host, DCNTL_REG);
724 hostdata->sync_clock = hostdata->clock;
725 } else if(hostdata->clock > 25 && hostdata->clock <=37) {
726 /* sync divider 1, async divider 1.5 */
727 DEBUG(("53c700: sync 1 async 1.5\n"));
728 NCR_700_writeb(SYNC_DIV_1_0, host, SBCL_REG);
729 NCR_700_writeb(ASYNC_DIV_1_5 | hostdata->dcntl_extra, host, DCNTL_REG);
730 hostdata->sync_clock = hostdata->clock;
731 } else {
732 DEBUG(("53c700: sync 1 async 1\n"));
733 NCR_700_writeb(SYNC_DIV_1_0, host, SBCL_REG);
734 NCR_700_writeb(ASYNC_DIV_1_0 | hostdata->dcntl_extra, host, DCNTL_REG);
735 /* sync divider 1, async divider 1 */
736 hostdata->sync_clock = hostdata->clock;
737 }
738 /* Calculate the actual minimum period that can be supported
739 * by our synchronous clock speed. See the 710 manual for
740 * exact details of this calculation which is based on a
741 * setting of the SXFER register */
742 min_period = 1000*(4+min_xferp)/(4*hostdata->sync_clock);
743 hostdata->min_period = NCR_700_MIN_PERIOD;
744 if(min_period > NCR_700_MIN_PERIOD)
745 hostdata->min_period = min_period;
746}
747
748STATIC void
749NCR_700_chip_reset(struct Scsi_Host *host)
750{
751 struct NCR_700_Host_Parameters *hostdata =
752 (struct NCR_700_Host_Parameters *)host->hostdata[0];
753 if(hostdata->chip710) {
754 NCR_700_writeb(SOFTWARE_RESET_710, host, ISTAT_REG);
755 udelay(100);
756
757 NCR_700_writeb(0, host, ISTAT_REG);
758 } else {
759 NCR_700_writeb(SOFTWARE_RESET, host, DCNTL_REG);
760 udelay(100);
761
762 NCR_700_writeb(0, host, DCNTL_REG);
763 }
764
765 mdelay(1000);
766
767 NCR_700_chip_setup(host);
768}
769
770/* The heart of the message processing engine is that the instruction
771 * immediately after the INT is the normal case (and so must be CLEAR
772 * ACK). If we want to do something else, we call that routine in
773 * scripts and set temp to be the normal case + 8 (skipping the CLEAR
774 * ACK) so that the routine returns correctly to resume its activity
775 * */
776STATIC __u32
777process_extended_message(struct Scsi_Host *host,
778 struct NCR_700_Host_Parameters *hostdata,
779 struct scsi_cmnd *SCp, __u32 dsp, __u32 dsps)
780{
781 __u32 resume_offset = dsp, temp = dsp + 8;
782 __u8 pun = 0xff, lun = 0xff;
783
784 if(SCp != NULL) {
785 pun = SCp->device->id;
786 lun = SCp->device->lun;
787 }
788
789 switch(hostdata->msgin[2]) {
790 case A_SDTR_MSG:
791 if(SCp != NULL && NCR_700_is_flag_set(SCp->device, NCR_700_DEV_BEGIN_SYNC_NEGOTIATION)) {
792 struct scsi_target *starget = SCp->device->sdev_target;
793 __u8 period = hostdata->msgin[3];
794 __u8 offset = hostdata->msgin[4];
795
796 if(offset == 0 || period == 0) {
797 offset = 0;
798 period = 0;
799 }
800
801 spi_offset(starget) = offset;
802 spi_period(starget) = period;
803
804 if(NCR_700_is_flag_set(SCp->device, NCR_700_DEV_PRINT_SYNC_NEGOTIATION)) {
805 spi_display_xfer_agreement(starget);
806 NCR_700_clear_flag(SCp->device, NCR_700_DEV_PRINT_SYNC_NEGOTIATION);
807 }
808
809 NCR_700_set_flag(SCp->device, NCR_700_DEV_NEGOTIATED_SYNC);
810 NCR_700_clear_flag(SCp->device, NCR_700_DEV_BEGIN_SYNC_NEGOTIATION);
811
812 NCR_700_writeb(NCR_700_get_SXFER(SCp->device),
813 host, SXFER_REG);
814
815 } else {
816 /* SDTR message out of the blue, reject it */
817 shost_printk(KERN_WARNING, host,
818 "Unexpected SDTR msg\n");
819 hostdata->msgout[0] = A_REJECT_MSG;
820 dma_cache_sync(hostdata->dev, hostdata->msgout, 1, DMA_TO_DEVICE);
821 script_patch_16(hostdata->dev, hostdata->script,
822 MessageCount, 1);
823 /* SendMsgOut returns, so set up the return
824 * address */
825 resume_offset = hostdata->pScript + Ent_SendMessageWithATN;
826 }
827 break;
828
829 case A_WDTR_MSG:
830 printk(KERN_INFO "scsi%d: (%d:%d), Unsolicited WDTR after CMD, Rejecting\n",
831 host->host_no, pun, lun);
832 hostdata->msgout[0] = A_REJECT_MSG;
833 dma_cache_sync(hostdata->dev, hostdata->msgout, 1, DMA_TO_DEVICE);
834 script_patch_16(hostdata->dev, hostdata->script, MessageCount,
835 1);
836 resume_offset = hostdata->pScript + Ent_SendMessageWithATN;
837
838 break;
839
840 default:
841 printk(KERN_INFO "scsi%d (%d:%d): Unexpected message %s: ",
842 host->host_no, pun, lun,
843 NCR_700_phase[(dsps & 0xf00) >> 8]);
844 spi_print_msg(hostdata->msgin);
845 printk("\n");
846 /* just reject it */
847 hostdata->msgout[0] = A_REJECT_MSG;
848 dma_cache_sync(hostdata->dev, hostdata->msgout, 1, DMA_TO_DEVICE);
849 script_patch_16(hostdata->dev, hostdata->script, MessageCount,
850 1);
851 /* SendMsgOut returns, so set up the return
852 * address */
853 resume_offset = hostdata->pScript + Ent_SendMessageWithATN;
854 }
855 NCR_700_writel(temp, host, TEMP_REG);
856 return resume_offset;
857}
858
859STATIC __u32
860process_message(struct Scsi_Host *host, struct NCR_700_Host_Parameters *hostdata,
861 struct scsi_cmnd *SCp, __u32 dsp, __u32 dsps)
862{
863 /* work out where to return to */
864 __u32 temp = dsp + 8, resume_offset = dsp;
865 __u8 pun = 0xff, lun = 0xff;
866
867 if(SCp != NULL) {
868 pun = SCp->device->id;
869 lun = SCp->device->lun;
870 }
871
872#ifdef NCR_700_DEBUG
873 printk("scsi%d (%d:%d): message %s: ", host->host_no, pun, lun,
874 NCR_700_phase[(dsps & 0xf00) >> 8]);
875 spi_print_msg(hostdata->msgin);
876 printk("\n");
877#endif
878
879 switch(hostdata->msgin[0]) {
880
881 case A_EXTENDED_MSG:
882 resume_offset = process_extended_message(host, hostdata, SCp,
883 dsp, dsps);
884 break;
885
886 case A_REJECT_MSG:
887 if(SCp != NULL && NCR_700_is_flag_set(SCp->device, NCR_700_DEV_BEGIN_SYNC_NEGOTIATION)) {
888 /* Rejected our sync negotiation attempt */
889 spi_period(SCp->device->sdev_target) =
890 spi_offset(SCp->device->sdev_target) = 0;
891 NCR_700_set_flag(SCp->device, NCR_700_DEV_NEGOTIATED_SYNC);
892 NCR_700_clear_flag(SCp->device, NCR_700_DEV_BEGIN_SYNC_NEGOTIATION);
893 } else if(SCp != NULL && NCR_700_get_tag_neg_state(SCp->device) == NCR_700_DURING_TAG_NEGOTIATION) {
894 /* rejected our first simple tag message */
895 scmd_printk(KERN_WARNING, SCp,
896 "Rejected first tag queue attempt, turning off tag queueing\n");
897 /* we're done negotiating */
898 NCR_700_set_tag_neg_state(SCp->device, NCR_700_FINISHED_TAG_NEGOTIATION);
899 hostdata->tag_negotiated &= ~(1<<scmd_id(SCp));
900
901 SCp->device->tagged_supported = 0;
902 SCp->device->simple_tags = 0;
903 scsi_change_queue_depth(SCp->device, host->cmd_per_lun);
904 } else {
905 shost_printk(KERN_WARNING, host,
906 "(%d:%d) Unexpected REJECT Message %s\n",
907 pun, lun,
908 NCR_700_phase[(dsps & 0xf00) >> 8]);
909 /* however, just ignore it */
910 }
911 break;
912
913 case A_PARITY_ERROR_MSG:
914 printk(KERN_ERR "scsi%d (%d:%d) Parity Error!\n", host->host_no,
915 pun, lun);
916 NCR_700_internal_bus_reset(host);
917 break;
918 case A_SIMPLE_TAG_MSG:
919 printk(KERN_INFO "scsi%d (%d:%d) SIMPLE TAG %d %s\n", host->host_no,
920 pun, lun, hostdata->msgin[1],
921 NCR_700_phase[(dsps & 0xf00) >> 8]);
922 /* just ignore it */
923 break;
924 default:
925 printk(KERN_INFO "scsi%d (%d:%d): Unexpected message %s: ",
926 host->host_no, pun, lun,
927 NCR_700_phase[(dsps & 0xf00) >> 8]);
928
929 spi_print_msg(hostdata->msgin);
930 printk("\n");
931 /* just reject it */
932 hostdata->msgout[0] = A_REJECT_MSG;
933 dma_cache_sync(hostdata->dev, hostdata->msgout, 1, DMA_TO_DEVICE);
934 script_patch_16(hostdata->dev, hostdata->script, MessageCount,
935 1);
936 /* SendMsgOut returns, so set up the return
937 * address */
938 resume_offset = hostdata->pScript + Ent_SendMessageWithATN;
939
940 break;
941 }
942 NCR_700_writel(temp, host, TEMP_REG);
943 /* set us up to receive another message */
944 dma_cache_sync(hostdata->dev, hostdata->msgin, MSG_ARRAY_SIZE, DMA_FROM_DEVICE);
945 return resume_offset;
946}
947
948STATIC __u32
949process_script_interrupt(__u32 dsps, __u32 dsp, struct scsi_cmnd *SCp,
950 struct Scsi_Host *host,
951 struct NCR_700_Host_Parameters *hostdata)
952{
953 __u32 resume_offset = 0;
954 __u8 pun = 0xff, lun=0xff;
955
956 if(SCp != NULL) {
957 pun = SCp->device->id;
958 lun = SCp->device->lun;
959 }
960
961 if(dsps == A_GOOD_STATUS_AFTER_STATUS) {
962 DEBUG((" COMMAND COMPLETE, status=%02x\n",
963 hostdata->status[0]));
964 /* OK, if TCQ still under negotiation, we now know it works */
965 if (NCR_700_get_tag_neg_state(SCp->device) == NCR_700_DURING_TAG_NEGOTIATION)
966 NCR_700_set_tag_neg_state(SCp->device,
967 NCR_700_FINISHED_TAG_NEGOTIATION);
968
969 /* check for contingent allegiance contitions */
970 if(status_byte(hostdata->status[0]) == CHECK_CONDITION ||
971 status_byte(hostdata->status[0]) == COMMAND_TERMINATED) {
972 struct NCR_700_command_slot *slot =
973 (struct NCR_700_command_slot *)SCp->host_scribble;
974 if(slot->flags == NCR_700_FLAG_AUTOSENSE) {
975 /* OOPS: bad device, returning another
976 * contingent allegiance condition */
977 scmd_printk(KERN_ERR, SCp,
978 "broken device is looping in contingent allegiance: ignoring\n");
979 NCR_700_scsi_done(hostdata, SCp, hostdata->status[0]);
980 } else {
981 char *cmnd =
982 NCR_700_get_sense_cmnd(SCp->device);
983#ifdef NCR_DEBUG
984 scsi_print_command(SCp);
985 printk(" cmd %p has status %d, requesting sense\n",
986 SCp, hostdata->status[0]);
987#endif
988 /* we can destroy the command here
989 * because the contingent allegiance
990 * condition will cause a retry which
991 * will re-copy the command from the
992 * saved data_cmnd. We also unmap any
993 * data associated with the command
994 * here */
995 NCR_700_unmap(hostdata, SCp, slot);
996 dma_unmap_single(hostdata->dev, slot->pCmd,
997 MAX_COMMAND_SIZE,
998 DMA_TO_DEVICE);
999
1000 cmnd[0] = REQUEST_SENSE;
1001 cmnd[1] = (lun & 0x7) << 5;
1002 cmnd[2] = 0;
1003 cmnd[3] = 0;
1004 cmnd[4] = SCSI_SENSE_BUFFERSIZE;
1005 cmnd[5] = 0;
1006 /* Here's a quiet hack: the
1007 * REQUEST_SENSE command is six bytes,
1008 * so store a flag indicating that
1009 * this was an internal sense request
1010 * and the original status at the end
1011 * of the command */
1012 cmnd[6] = NCR_700_INTERNAL_SENSE_MAGIC;
1013 cmnd[7] = hostdata->status[0];
1014 cmnd[8] = SCp->cmd_len;
1015 SCp->cmd_len = 6; /* command length for
1016 * REQUEST_SENSE */
1017 slot->pCmd = dma_map_single(hostdata->dev, cmnd, MAX_COMMAND_SIZE, DMA_TO_DEVICE);
1018 slot->dma_handle = dma_map_single(hostdata->dev, SCp->sense_buffer, SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE);
1019 slot->SG[0].ins = bS_to_host(SCRIPT_MOVE_DATA_IN | SCSI_SENSE_BUFFERSIZE);
1020 slot->SG[0].pAddr = bS_to_host(slot->dma_handle);
1021 slot->SG[1].ins = bS_to_host(SCRIPT_RETURN);
1022 slot->SG[1].pAddr = 0;
1023 slot->resume_offset = hostdata->pScript;
1024 dma_cache_sync(hostdata->dev, slot->SG, sizeof(slot->SG[0])*2, DMA_TO_DEVICE);
1025 dma_cache_sync(hostdata->dev, SCp->sense_buffer, SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE);
1026
1027 /* queue the command for reissue */
1028 slot->state = NCR_700_SLOT_QUEUED;
1029 slot->flags = NCR_700_FLAG_AUTOSENSE;
1030 hostdata->state = NCR_700_HOST_FREE;
1031 hostdata->cmd = NULL;
1032 }
1033 } else {
1034 // Currently rely on the mid layer evaluation
1035 // of the tag queuing capability
1036 //
1037 //if(status_byte(hostdata->status[0]) == GOOD &&
1038 // SCp->cmnd[0] == INQUIRY && SCp->use_sg == 0) {
1039 // /* Piggy back the tag queueing support
1040 // * on this command */
1041 // dma_sync_single_for_cpu(hostdata->dev,
1042 // slot->dma_handle,
1043 // SCp->request_bufflen,
1044 // DMA_FROM_DEVICE);
1045 // if(((char *)SCp->request_buffer)[7] & 0x02) {
1046 // scmd_printk(KERN_INFO, SCp,
1047 // "Enabling Tag Command Queuing\n");
1048 // hostdata->tag_negotiated |= (1<<scmd_id(SCp));
1049 // NCR_700_set_flag(SCp->device, NCR_700_DEV_BEGIN_TAG_QUEUEING);
1050 // } else {
1051 // NCR_700_clear_flag(SCp->device, NCR_700_DEV_BEGIN_TAG_QUEUEING);
1052 // hostdata->tag_negotiated &= ~(1<<scmd_id(SCp));
1053 // }
1054 //}
1055 NCR_700_scsi_done(hostdata, SCp, hostdata->status[0]);
1056 }
1057 } else if((dsps & 0xfffff0f0) == A_UNEXPECTED_PHASE) {
1058 __u8 i = (dsps & 0xf00) >> 8;
1059
1060 scmd_printk(KERN_ERR, SCp, "UNEXPECTED PHASE %s (%s)\n",
1061 NCR_700_phase[i],
1062 sbcl_to_string(NCR_700_readb(host, SBCL_REG)));
1063 scmd_printk(KERN_ERR, SCp, " len = %d, cmd =",
1064 SCp->cmd_len);
1065 scsi_print_command(SCp);
1066
1067 NCR_700_internal_bus_reset(host);
1068 } else if((dsps & 0xfffff000) == A_FATAL) {
1069 int i = (dsps & 0xfff);
1070
1071 printk(KERN_ERR "scsi%d: (%d:%d) FATAL ERROR: %s\n",
1072 host->host_no, pun, lun, NCR_700_fatal_messages[i]);
1073 if(dsps == A_FATAL_ILLEGAL_MSG_LENGTH) {
1074 printk(KERN_ERR " msg begins %02x %02x\n",
1075 hostdata->msgin[0], hostdata->msgin[1]);
1076 }
1077 NCR_700_internal_bus_reset(host);
1078 } else if((dsps & 0xfffff0f0) == A_DISCONNECT) {
1079#ifdef NCR_700_DEBUG
1080 __u8 i = (dsps & 0xf00) >> 8;
1081
1082 printk("scsi%d: (%d:%d), DISCONNECTED (%d) %s\n",
1083 host->host_no, pun, lun,
1084 i, NCR_700_phase[i]);
1085#endif
1086 save_for_reselection(hostdata, SCp, dsp);
1087
1088 } else if(dsps == A_RESELECTION_IDENTIFIED) {
1089 __u8 lun;
1090 struct NCR_700_command_slot *slot;
1091 __u8 reselection_id = hostdata->reselection_id;
1092 struct scsi_device *SDp;
1093
1094 lun = hostdata->msgin[0] & 0x1f;
1095
1096 hostdata->reselection_id = 0xff;
1097 DEBUG(("scsi%d: (%d:%d) RESELECTED!\n",
1098 host->host_no, reselection_id, lun));
1099 /* clear the reselection indicator */
1100 SDp = __scsi_device_lookup(host, 0, reselection_id, lun);
1101 if(unlikely(SDp == NULL)) {
1102 printk(KERN_ERR "scsi%d: (%d:%d) HAS NO device\n",
1103 host->host_no, reselection_id, lun);
1104 BUG();
1105 }
1106 if(hostdata->msgin[1] == A_SIMPLE_TAG_MSG) {
1107 struct scsi_cmnd *SCp;
1108
1109 SCp = scsi_host_find_tag(SDp->host, hostdata->msgin[2]);
1110 if(unlikely(SCp == NULL)) {
1111 printk(KERN_ERR "scsi%d: (%d:%d) no saved request for tag %d\n",
1112 host->host_no, reselection_id, lun, hostdata->msgin[2]);
1113 BUG();
1114 }
1115
1116 slot = (struct NCR_700_command_slot *)SCp->host_scribble;
1117 DDEBUG(KERN_DEBUG, SDp,
1118 "reselection is tag %d, slot %p(%d)\n",
1119 hostdata->msgin[2], slot, slot->tag);
1120 } else {
1121 struct NCR_700_Device_Parameters *p = SDp->hostdata;
1122 struct scsi_cmnd *SCp = p->current_cmnd;
1123
1124 if(unlikely(SCp == NULL)) {
1125 sdev_printk(KERN_ERR, SDp,
1126 "no saved request for untagged cmd\n");
1127 BUG();
1128 }
1129 slot = (struct NCR_700_command_slot *)SCp->host_scribble;
1130 }
1131
1132 if(slot == NULL) {
1133 printk(KERN_ERR "scsi%d: (%d:%d) RESELECTED but no saved command (MSG = %02x %02x %02x)!!\n",
1134 host->host_no, reselection_id, lun,
1135 hostdata->msgin[0], hostdata->msgin[1],
1136 hostdata->msgin[2]);
1137 } else {
1138 if(hostdata->state != NCR_700_HOST_BUSY)
1139 printk(KERN_ERR "scsi%d: FATAL, host not busy during valid reselection!\n",
1140 host->host_no);
1141 resume_offset = slot->resume_offset;
1142 hostdata->cmd = slot->cmnd;
1143
1144 /* re-patch for this command */
1145 script_patch_32_abs(hostdata->dev, hostdata->script,
1146 CommandAddress, slot->pCmd);
1147 script_patch_16(hostdata->dev, hostdata->script,
1148 CommandCount, slot->cmnd->cmd_len);
1149 script_patch_32_abs(hostdata->dev, hostdata->script,
1150 SGScriptStartAddress,
1151 to32bit(&slot->pSG[0].ins));
1152
1153 /* Note: setting SXFER only works if we're
1154 * still in the MESSAGE phase, so it is vital
1155 * that ACK is still asserted when we process
1156 * the reselection message. The resume offset
1157 * should therefore always clear ACK */
1158 NCR_700_writeb(NCR_700_get_SXFER(hostdata->cmd->device),
1159 host, SXFER_REG);
1160 dma_cache_sync(hostdata->dev, hostdata->msgin,
1161 MSG_ARRAY_SIZE, DMA_FROM_DEVICE);
1162 dma_cache_sync(hostdata->dev, hostdata->msgout,
1163 MSG_ARRAY_SIZE, DMA_TO_DEVICE);
1164 /* I'm just being paranoid here, the command should
1165 * already have been flushed from the cache */
1166 dma_cache_sync(hostdata->dev, slot->cmnd->cmnd,
1167 slot->cmnd->cmd_len, DMA_TO_DEVICE);
1168
1169
1170
1171 }
1172 } else if(dsps == A_RESELECTED_DURING_SELECTION) {
1173
1174 /* This section is full of debugging code because I've
1175 * never managed to reach it. I think what happens is
1176 * that, because the 700 runs with selection
1177 * interrupts enabled the whole time that we take a
1178 * selection interrupt before we manage to get to the
1179 * reselected script interrupt */
1180
1181 __u8 reselection_id = NCR_700_readb(host, SFBR_REG);
1182 struct NCR_700_command_slot *slot;
1183
1184 /* Take out our own ID */
1185 reselection_id &= ~(1<<host->this_id);
1186
1187 /* I've never seen this happen, so keep this as a printk rather
1188 * than a debug */
1189 printk(KERN_INFO "scsi%d: (%d:%d) RESELECTION DURING SELECTION, dsp=%08x[%04x] state=%d, count=%d\n",
1190 host->host_no, reselection_id, lun, dsp, dsp - hostdata->pScript, hostdata->state, hostdata->command_slot_count);
1191
1192 {
1193 /* FIXME: DEBUGGING CODE */
1194 __u32 SG = (__u32)bS_to_cpu(hostdata->script[A_SGScriptStartAddress_used[0]]);
1195 int i;
1196
1197 for(i=0; i< NCR_700_COMMAND_SLOTS_PER_HOST; i++) {
1198 if(SG >= to32bit(&hostdata->slots[i].pSG[0])
1199 && SG <= to32bit(&hostdata->slots[i].pSG[NCR_700_SG_SEGMENTS]))
1200 break;
1201 }
1202 printk(KERN_INFO "IDENTIFIED SG segment as being %08x in slot %p, cmd %p, slot->resume_offset=%08x\n", SG, &hostdata->slots[i], hostdata->slots[i].cmnd, hostdata->slots[i].resume_offset);
1203 SCp = hostdata->slots[i].cmnd;
1204 }
1205
1206 if(SCp != NULL) {
1207 slot = (struct NCR_700_command_slot *)SCp->host_scribble;
1208 /* change slot from busy to queued to redo command */
1209 slot->state = NCR_700_SLOT_QUEUED;
1210 }
1211 hostdata->cmd = NULL;
1212
1213 if(reselection_id == 0) {
1214 if(hostdata->reselection_id == 0xff) {
1215 printk(KERN_ERR "scsi%d: Invalid reselection during selection!!\n", host->host_no);
1216 return 0;
1217 } else {
1218 printk(KERN_ERR "scsi%d: script reselected and we took a selection interrupt\n",
1219 host->host_no);
1220 reselection_id = hostdata->reselection_id;
1221 }
1222 } else {
1223
1224 /* convert to real ID */
1225 reselection_id = bitmap_to_number(reselection_id);
1226 }
1227 hostdata->reselection_id = reselection_id;
1228 /* just in case we have a stale simple tag message, clear it */
1229 hostdata->msgin[1] = 0;
1230 dma_cache_sync(hostdata->dev, hostdata->msgin,
1231 MSG_ARRAY_SIZE, DMA_BIDIRECTIONAL);
1232 if(hostdata->tag_negotiated & (1<<reselection_id)) {
1233 resume_offset = hostdata->pScript + Ent_GetReselectionWithTag;
1234 } else {
1235 resume_offset = hostdata->pScript + Ent_GetReselectionData;
1236 }
1237 } else if(dsps == A_COMPLETED_SELECTION_AS_TARGET) {
1238 /* we've just disconnected from the bus, do nothing since
1239 * a return here will re-run the queued command slot
1240 * that may have been interrupted by the initial selection */
1241 DEBUG((" SELECTION COMPLETED\n"));
1242 } else if((dsps & 0xfffff0f0) == A_MSG_IN) {
1243 resume_offset = process_message(host, hostdata, SCp,
1244 dsp, dsps);
1245 } else if((dsps & 0xfffff000) == 0) {
1246 __u8 i = (dsps & 0xf0) >> 4, j = (dsps & 0xf00) >> 8;
1247 printk(KERN_ERR "scsi%d: (%d:%d), unhandled script condition %s %s at %04x\n",
1248 host->host_no, pun, lun, NCR_700_condition[i],
1249 NCR_700_phase[j], dsp - hostdata->pScript);
1250 if(SCp != NULL) {
1251 struct scatterlist *sg;
1252
1253 scsi_print_command(SCp);
1254 scsi_for_each_sg(SCp, sg, scsi_sg_count(SCp) + 1, i) {
1255 printk(KERN_INFO " SG[%d].length = %d, move_insn=%08x, addr %08x\n", i, sg->length, ((struct NCR_700_command_slot *)SCp->host_scribble)->SG[i].ins, ((struct NCR_700_command_slot *)SCp->host_scribble)->SG[i].pAddr);
1256 }
1257 }
1258 NCR_700_internal_bus_reset(host);
1259 } else if((dsps & 0xfffff000) == A_DEBUG_INTERRUPT) {
1260 printk(KERN_NOTICE "scsi%d (%d:%d) DEBUG INTERRUPT %d AT %08x[%04x], continuing\n",
1261 host->host_no, pun, lun, dsps & 0xfff, dsp, dsp - hostdata->pScript);
1262 resume_offset = dsp;
1263 } else {
1264 printk(KERN_ERR "scsi%d: (%d:%d), unidentified script interrupt 0x%x at %04x\n",
1265 host->host_no, pun, lun, dsps, dsp - hostdata->pScript);
1266 NCR_700_internal_bus_reset(host);
1267 }
1268 return resume_offset;
1269}
1270
1271/* We run the 53c700 with selection interrupts always enabled. This
1272 * means that the chip may be selected as soon as the bus frees. On a
1273 * busy bus, this can be before the scripts engine finishes its
1274 * processing. Therefore, part of the selection processing has to be
1275 * to find out what the scripts engine is doing and complete the
1276 * function if necessary (i.e. process the pending disconnect or save
1277 * the interrupted initial selection */
1278STATIC inline __u32
1279process_selection(struct Scsi_Host *host, __u32 dsp)
1280{
1281 __u8 id = 0; /* Squash compiler warning */
1282 int count = 0;
1283 __u32 resume_offset = 0;
1284 struct NCR_700_Host_Parameters *hostdata =
1285 (struct NCR_700_Host_Parameters *)host->hostdata[0];
1286 struct scsi_cmnd *SCp = hostdata->cmd;
1287 __u8 sbcl;
1288
1289 for(count = 0; count < 5; count++) {
1290 id = NCR_700_readb(host, hostdata->chip710 ?
1291 CTEST9_REG : SFBR_REG);
1292
1293 /* Take out our own ID */
1294 id &= ~(1<<host->this_id);
1295 if(id != 0)
1296 break;
1297 udelay(5);
1298 }
1299 sbcl = NCR_700_readb(host, SBCL_REG);
1300 if((sbcl & SBCL_IO) == 0) {
1301 /* mark as having been selected rather than reselected */
1302 id = 0xff;
1303 } else {
1304 /* convert to real ID */
1305 hostdata->reselection_id = id = bitmap_to_number(id);
1306 DEBUG(("scsi%d: Reselected by %d\n",
1307 host->host_no, id));
1308 }
1309 if(hostdata->state == NCR_700_HOST_BUSY && SCp != NULL) {
1310 struct NCR_700_command_slot *slot =
1311 (struct NCR_700_command_slot *)SCp->host_scribble;
1312 DEBUG((" ID %d WARNING: RESELECTION OF BUSY HOST, saving cmd %p, slot %p, addr %x [%04x], resume %x!\n", id, hostdata->cmd, slot, dsp, dsp - hostdata->pScript, resume_offset));
1313
1314 switch(dsp - hostdata->pScript) {
1315 case Ent_Disconnect1:
1316 case Ent_Disconnect2:
1317 save_for_reselection(hostdata, SCp, Ent_Disconnect2 + hostdata->pScript);
1318 break;
1319 case Ent_Disconnect3:
1320 case Ent_Disconnect4:
1321 save_for_reselection(hostdata, SCp, Ent_Disconnect4 + hostdata->pScript);
1322 break;
1323 case Ent_Disconnect5:
1324 case Ent_Disconnect6:
1325 save_for_reselection(hostdata, SCp, Ent_Disconnect6 + hostdata->pScript);
1326 break;
1327 case Ent_Disconnect7:
1328 case Ent_Disconnect8:
1329 save_for_reselection(hostdata, SCp, Ent_Disconnect8 + hostdata->pScript);
1330 break;
1331 case Ent_Finish1:
1332 case Ent_Finish2:
1333 process_script_interrupt(A_GOOD_STATUS_AFTER_STATUS, dsp, SCp, host, hostdata);
1334 break;
1335
1336 default:
1337 slot->state = NCR_700_SLOT_QUEUED;
1338 break;
1339 }
1340 }
1341 hostdata->state = NCR_700_HOST_BUSY;
1342 hostdata->cmd = NULL;
1343 /* clear any stale simple tag message */
1344 hostdata->msgin[1] = 0;
1345 dma_cache_sync(hostdata->dev, hostdata->msgin, MSG_ARRAY_SIZE,
1346 DMA_BIDIRECTIONAL);
1347
1348 if(id == 0xff) {
1349 /* Selected as target, Ignore */
1350 resume_offset = hostdata->pScript + Ent_SelectedAsTarget;
1351 } else if(hostdata->tag_negotiated & (1<<id)) {
1352 resume_offset = hostdata->pScript + Ent_GetReselectionWithTag;
1353 } else {
1354 resume_offset = hostdata->pScript + Ent_GetReselectionData;
1355 }
1356 return resume_offset;
1357}
1358
1359static inline void
1360NCR_700_clear_fifo(struct Scsi_Host *host) {
1361 const struct NCR_700_Host_Parameters *hostdata
1362 = (struct NCR_700_Host_Parameters *)host->hostdata[0];
1363 if(hostdata->chip710) {
1364 NCR_700_writeb(CLR_FIFO_710, host, CTEST8_REG);
1365 } else {
1366 NCR_700_writeb(CLR_FIFO, host, DFIFO_REG);
1367 }
1368}
1369
1370static inline void
1371NCR_700_flush_fifo(struct Scsi_Host *host) {
1372 const struct NCR_700_Host_Parameters *hostdata
1373 = (struct NCR_700_Host_Parameters *)host->hostdata[0];
1374 if(hostdata->chip710) {
1375 NCR_700_writeb(FLUSH_DMA_FIFO_710, host, CTEST8_REG);
1376 udelay(10);
1377 NCR_700_writeb(0, host, CTEST8_REG);
1378 } else {
1379 NCR_700_writeb(FLUSH_DMA_FIFO, host, DFIFO_REG);
1380 udelay(10);
1381 NCR_700_writeb(0, host, DFIFO_REG);
1382 }
1383}
1384
1385
1386/* The queue lock with interrupts disabled must be held on entry to
1387 * this function */
1388STATIC int
1389NCR_700_start_command(struct scsi_cmnd *SCp)
1390{
1391 struct NCR_700_command_slot *slot =
1392 (struct NCR_700_command_slot *)SCp->host_scribble;
1393 struct NCR_700_Host_Parameters *hostdata =
1394 (struct NCR_700_Host_Parameters *)SCp->device->host->hostdata[0];
1395 __u16 count = 1; /* for IDENTIFY message */
1396 u8 lun = SCp->device->lun;
1397
1398 if(hostdata->state != NCR_700_HOST_FREE) {
1399 /* keep this inside the lock to close the race window where
1400 * the running command finishes on another CPU while we don't
1401 * change the state to queued on this one */
1402 slot->state = NCR_700_SLOT_QUEUED;
1403
1404 DEBUG(("scsi%d: host busy, queueing command %p, slot %p\n",
1405 SCp->device->host->host_no, slot->cmnd, slot));
1406 return 0;
1407 }
1408 hostdata->state = NCR_700_HOST_BUSY;
1409 hostdata->cmd = SCp;
1410 slot->state = NCR_700_SLOT_BUSY;
1411 /* keep interrupts disabled until we have the command correctly
1412 * set up so we cannot take a selection interrupt */
1413
1414 hostdata->msgout[0] = NCR_700_identify((SCp->cmnd[0] != REQUEST_SENSE &&
1415 slot->flags != NCR_700_FLAG_AUTOSENSE),
1416 lun);
1417 /* for INQUIRY or REQUEST_SENSE commands, we cannot be sure
1418 * if the negotiated transfer parameters still hold, so
1419 * always renegotiate them */
1420 if(SCp->cmnd[0] == INQUIRY || SCp->cmnd[0] == REQUEST_SENSE ||
1421 slot->flags == NCR_700_FLAG_AUTOSENSE) {
1422 NCR_700_clear_flag(SCp->device, NCR_700_DEV_NEGOTIATED_SYNC);
1423 }
1424
1425 /* REQUEST_SENSE is asking for contingent I_T_L(_Q) status.
1426 * If a contingent allegiance condition exists, the device
1427 * will refuse all tags, so send the request sense as untagged
1428 * */
1429 if((hostdata->tag_negotiated & (1<<scmd_id(SCp)))
1430 && (slot->tag != SCSI_NO_TAG && SCp->cmnd[0] != REQUEST_SENSE &&
1431 slot->flags != NCR_700_FLAG_AUTOSENSE)) {
1432 count += spi_populate_tag_msg(&hostdata->msgout[count], SCp);
1433 }
1434
1435 if(hostdata->fast &&
1436 NCR_700_is_flag_clear(SCp->device, NCR_700_DEV_NEGOTIATED_SYNC)) {
1437 count += spi_populate_sync_msg(&hostdata->msgout[count],
1438 spi_period(SCp->device->sdev_target),
1439 spi_offset(SCp->device->sdev_target));
1440 NCR_700_set_flag(SCp->device, NCR_700_DEV_BEGIN_SYNC_NEGOTIATION);
1441 }
1442
1443 script_patch_16(hostdata->dev, hostdata->script, MessageCount, count);
1444
1445
1446 script_patch_ID(hostdata->dev, hostdata->script,
1447 Device_ID, 1<<scmd_id(SCp));
1448
1449 script_patch_32_abs(hostdata->dev, hostdata->script, CommandAddress,
1450 slot->pCmd);
1451 script_patch_16(hostdata->dev, hostdata->script, CommandCount,
1452 SCp->cmd_len);
1453 /* finally plumb the beginning of the SG list into the script
1454 * */
1455 script_patch_32_abs(hostdata->dev, hostdata->script,
1456 SGScriptStartAddress, to32bit(&slot->pSG[0].ins));
1457 NCR_700_clear_fifo(SCp->device->host);
1458
1459 if(slot->resume_offset == 0)
1460 slot->resume_offset = hostdata->pScript;
1461 /* now perform all the writebacks and invalidates */
1462 dma_cache_sync(hostdata->dev, hostdata->msgout, count, DMA_TO_DEVICE);
1463 dma_cache_sync(hostdata->dev, hostdata->msgin, MSG_ARRAY_SIZE,
1464 DMA_FROM_DEVICE);
1465 dma_cache_sync(hostdata->dev, SCp->cmnd, SCp->cmd_len, DMA_TO_DEVICE);
1466 dma_cache_sync(hostdata->dev, hostdata->status, 1, DMA_FROM_DEVICE);
1467
1468 /* set the synchronous period/offset */
1469 NCR_700_writeb(NCR_700_get_SXFER(SCp->device),
1470 SCp->device->host, SXFER_REG);
1471 NCR_700_writel(slot->temp, SCp->device->host, TEMP_REG);
1472 NCR_700_writel(slot->resume_offset, SCp->device->host, DSP_REG);
1473
1474 return 1;
1475}
1476
1477irqreturn_t
1478NCR_700_intr(int irq, void *dev_id)
1479{
1480 struct Scsi_Host *host = (struct Scsi_Host *)dev_id;
1481 struct NCR_700_Host_Parameters *hostdata =
1482 (struct NCR_700_Host_Parameters *)host->hostdata[0];
1483 __u8 istat;
1484 __u32 resume_offset = 0;
1485 __u8 pun = 0xff, lun = 0xff;
1486 unsigned long flags;
1487 int handled = 0;
1488
1489 /* Use the host lock to serialise access to the 53c700
1490 * hardware. Note: In future, we may need to take the queue
1491 * lock to enter the done routines. When that happens, we
1492 * need to ensure that for this driver, the host lock and the
1493 * queue lock point to the same thing. */
1494 spin_lock_irqsave(host->host_lock, flags);
1495 if((istat = NCR_700_readb(host, ISTAT_REG))
1496 & (SCSI_INT_PENDING | DMA_INT_PENDING)) {
1497 __u32 dsps;
1498 __u8 sstat0 = 0, dstat = 0;
1499 __u32 dsp;
1500 struct scsi_cmnd *SCp = hostdata->cmd;
1501 enum NCR_700_Host_State state;
1502
1503 handled = 1;
1504 state = hostdata->state;
1505 SCp = hostdata->cmd;
1506
1507 if(istat & SCSI_INT_PENDING) {
1508 udelay(10);
1509
1510 sstat0 = NCR_700_readb(host, SSTAT0_REG);
1511 }
1512
1513 if(istat & DMA_INT_PENDING) {
1514 udelay(10);
1515
1516 dstat = NCR_700_readb(host, DSTAT_REG);
1517 }
1518
1519 dsps = NCR_700_readl(host, DSPS_REG);
1520 dsp = NCR_700_readl(host, DSP_REG);
1521
1522 DEBUG(("scsi%d: istat %02x sstat0 %02x dstat %02x dsp %04x[%08x] dsps 0x%x\n",
1523 host->host_no, istat, sstat0, dstat,
1524 (dsp - (__u32)(hostdata->pScript))/4,
1525 dsp, dsps));
1526
1527 if(SCp != NULL) {
1528 pun = SCp->device->id;
1529 lun = SCp->device->lun;
1530 }
1531
1532 if(sstat0 & SCSI_RESET_DETECTED) {
1533 struct scsi_device *SDp;
1534 int i;
1535
1536 hostdata->state = NCR_700_HOST_BUSY;
1537
1538 printk(KERN_ERR "scsi%d: Bus Reset detected, executing command %p, slot %p, dsp %08x[%04x]\n",
1539 host->host_no, SCp, SCp == NULL ? NULL : SCp->host_scribble, dsp, dsp - hostdata->pScript);
1540
1541 scsi_report_bus_reset(host, 0);
1542
1543 /* clear all the negotiated parameters */
1544 __shost_for_each_device(SDp, host)
1545 NCR_700_clear_flag(SDp, ~0);
1546
1547 /* clear all the slots and their pending commands */
1548 for(i = 0; i < NCR_700_COMMAND_SLOTS_PER_HOST; i++) {
1549 struct scsi_cmnd *SCp;
1550 struct NCR_700_command_slot *slot =
1551 &hostdata->slots[i];
1552
1553 if(slot->state == NCR_700_SLOT_FREE)
1554 continue;
1555
1556 SCp = slot->cmnd;
1557 printk(KERN_ERR " failing command because of reset, slot %p, cmnd %p\n",
1558 slot, SCp);
1559 free_slot(slot, hostdata);
1560 SCp->host_scribble = NULL;
1561 NCR_700_set_depth(SCp->device, 0);
1562 /* NOTE: deadlock potential here: we
1563 * rely on mid-layer guarantees that
1564 * scsi_done won't try to issue the
1565 * command again otherwise we'll
1566 * deadlock on the
1567 * hostdata->state_lock */
1568 SCp->result = DID_RESET << 16;
1569 SCp->scsi_done(SCp);
1570 }
1571 mdelay(25);
1572 NCR_700_chip_setup(host);
1573
1574 hostdata->state = NCR_700_HOST_FREE;
1575 hostdata->cmd = NULL;
1576 /* signal back if this was an eh induced reset */
1577 if(hostdata->eh_complete != NULL)
1578 complete(hostdata->eh_complete);
1579 goto out_unlock;
1580 } else if(sstat0 & SELECTION_TIMEOUT) {
1581 DEBUG(("scsi%d: (%d:%d) selection timeout\n",
1582 host->host_no, pun, lun));
1583 NCR_700_scsi_done(hostdata, SCp, DID_NO_CONNECT<<16);
1584 } else if(sstat0 & PHASE_MISMATCH) {
1585 struct NCR_700_command_slot *slot = (SCp == NULL) ? NULL :
1586 (struct NCR_700_command_slot *)SCp->host_scribble;
1587
1588 if(dsp == Ent_SendMessage + 8 + hostdata->pScript) {
1589 /* It wants to reply to some part of
1590 * our message */
1591#ifdef NCR_700_DEBUG
1592 __u32 temp = NCR_700_readl(host, TEMP_REG);
1593 int count = (hostdata->script[Ent_SendMessage/4] & 0xffffff) - ((NCR_700_readl(host, DBC_REG) & 0xffffff) + NCR_700_data_residual(host));
1594 printk("scsi%d (%d:%d) PHASE MISMATCH IN SEND MESSAGE %d remain, return %p[%04x], phase %s\n", host->host_no, pun, lun, count, (void *)temp, temp - hostdata->pScript, sbcl_to_string(NCR_700_readb(host, SBCL_REG)));
1595#endif
1596 resume_offset = hostdata->pScript + Ent_SendMessagePhaseMismatch;
1597 } else if(dsp >= to32bit(&slot->pSG[0].ins) &&
1598 dsp <= to32bit(&slot->pSG[NCR_700_SG_SEGMENTS].ins)) {
1599 int data_transfer = NCR_700_readl(host, DBC_REG) & 0xffffff;
1600 int SGcount = (dsp - to32bit(&slot->pSG[0].ins))/sizeof(struct NCR_700_SG_List);
1601 int residual = NCR_700_data_residual(host);
1602 int i;
1603#ifdef NCR_700_DEBUG
1604 __u32 naddr = NCR_700_readl(host, DNAD_REG);
1605
1606 printk("scsi%d: (%d:%d) Expected phase mismatch in slot->SG[%d], transferred 0x%x\n",
1607 host->host_no, pun, lun,
1608 SGcount, data_transfer);
1609 scsi_print_command(SCp);
1610 if(residual) {
1611 printk("scsi%d: (%d:%d) Expected phase mismatch in slot->SG[%d], transferred 0x%x, residual %d\n",
1612 host->host_no, pun, lun,
1613 SGcount, data_transfer, residual);
1614 }
1615#endif
1616 data_transfer += residual;
1617
1618 if(data_transfer != 0) {
1619 int count;
1620 __u32 pAddr;
1621
1622 SGcount--;
1623
1624 count = (bS_to_cpu(slot->SG[SGcount].ins) & 0x00ffffff);
1625 DEBUG(("DATA TRANSFER MISMATCH, count = %d, transferred %d\n", count, count-data_transfer));
1626 slot->SG[SGcount].ins &= bS_to_host(0xff000000);
1627 slot->SG[SGcount].ins |= bS_to_host(data_transfer);
1628 pAddr = bS_to_cpu(slot->SG[SGcount].pAddr);
1629 pAddr += (count - data_transfer);
1630#ifdef NCR_700_DEBUG
1631 if(pAddr != naddr) {
1632 printk("scsi%d (%d:%d) transfer mismatch pAddr=%lx, naddr=%lx, data_transfer=%d, residual=%d\n", host->host_no, pun, lun, (unsigned long)pAddr, (unsigned long)naddr, data_transfer, residual);
1633 }
1634#endif
1635 slot->SG[SGcount].pAddr = bS_to_host(pAddr);
1636 }
1637 /* set the executed moves to nops */
1638 for(i=0; i<SGcount; i++) {
1639 slot->SG[i].ins = bS_to_host(SCRIPT_NOP);
1640 slot->SG[i].pAddr = 0;
1641 }
1642 dma_cache_sync(hostdata->dev, slot->SG, sizeof(slot->SG), DMA_TO_DEVICE);
1643 /* and pretend we disconnected after
1644 * the command phase */
1645 resume_offset = hostdata->pScript + Ent_MsgInDuringData;
1646 /* make sure all the data is flushed */
1647 NCR_700_flush_fifo(host);
1648 } else {
1649 __u8 sbcl = NCR_700_readb(host, SBCL_REG);
1650 printk(KERN_ERR "scsi%d: (%d:%d) phase mismatch at %04x, phase %s\n",
1651 host->host_no, pun, lun, dsp - hostdata->pScript, sbcl_to_string(sbcl));
1652 NCR_700_internal_bus_reset(host);
1653 }
1654
1655 } else if(sstat0 & SCSI_GROSS_ERROR) {
1656 printk(KERN_ERR "scsi%d: (%d:%d) GROSS ERROR\n",
1657 host->host_no, pun, lun);
1658 NCR_700_scsi_done(hostdata, SCp, DID_ERROR<<16);
1659 } else if(sstat0 & PARITY_ERROR) {
1660 printk(KERN_ERR "scsi%d: (%d:%d) PARITY ERROR\n",
1661 host->host_no, pun, lun);
1662 NCR_700_scsi_done(hostdata, SCp, DID_ERROR<<16);
1663 } else if(dstat & SCRIPT_INT_RECEIVED) {
1664 DEBUG(("scsi%d: (%d:%d) ====>SCRIPT INTERRUPT<====\n",
1665 host->host_no, pun, lun));
1666 resume_offset = process_script_interrupt(dsps, dsp, SCp, host, hostdata);
1667 } else if(dstat & (ILGL_INST_DETECTED)) {
1668 printk(KERN_ERR "scsi%d: (%d:%d) Illegal Instruction detected at 0x%08x[0x%x]!!!\n"
1669 " Please email James.Bottomley@HansenPartnership.com with the details\n",
1670 host->host_no, pun, lun,
1671 dsp, dsp - hostdata->pScript);
1672 NCR_700_scsi_done(hostdata, SCp, DID_ERROR<<16);
1673 } else if(dstat & (WATCH_DOG_INTERRUPT|ABORTED)) {
1674 printk(KERN_ERR "scsi%d: (%d:%d) serious DMA problem, dstat=%02x\n",
1675 host->host_no, pun, lun, dstat);
1676 NCR_700_scsi_done(hostdata, SCp, DID_ERROR<<16);
1677 }
1678
1679
1680 /* NOTE: selection interrupt processing MUST occur
1681 * after script interrupt processing to correctly cope
1682 * with the case where we process a disconnect and
1683 * then get reselected before we process the
1684 * disconnection */
1685 if(sstat0 & SELECTED) {
1686 /* FIXME: It currently takes at least FOUR
1687 * interrupts to complete a command that
1688 * disconnects: one for the disconnect, one
1689 * for the reselection, one to get the
1690 * reselection data and one to complete the
1691 * command. If we guess the reselected
1692 * command here and prepare it, we only need
1693 * to get a reselection data interrupt if we
1694 * guessed wrongly. Since the interrupt
1695 * overhead is much greater than the command
1696 * setup, this would be an efficient
1697 * optimisation particularly as we probably
1698 * only have one outstanding command on a
1699 * target most of the time */
1700
1701 resume_offset = process_selection(host, dsp);
1702
1703 }
1704
1705 }
1706
1707 if(resume_offset) {
1708 if(hostdata->state != NCR_700_HOST_BUSY) {
1709 printk(KERN_ERR "scsi%d: Driver error: resume at 0x%08x [0x%04x] with non busy host!\n",
1710 host->host_no, resume_offset, resume_offset - hostdata->pScript);
1711 hostdata->state = NCR_700_HOST_BUSY;
1712 }
1713
1714 DEBUG(("Attempting to resume at %x\n", resume_offset));
1715 NCR_700_clear_fifo(host);
1716 NCR_700_writel(resume_offset, host, DSP_REG);
1717 }
1718 /* There is probably a technical no-no about this: If we're a
1719 * shared interrupt and we got this interrupt because the
1720 * other device needs servicing not us, we're still going to
1721 * check our queued commands here---of course, there shouldn't
1722 * be any outstanding.... */
1723 if(hostdata->state == NCR_700_HOST_FREE) {
1724 int i;
1725
1726 for(i = 0; i < NCR_700_COMMAND_SLOTS_PER_HOST; i++) {
1727 /* fairness: always run the queue from the last
1728 * position we left off */
1729 int j = (i + hostdata->saved_slot_position)
1730 % NCR_700_COMMAND_SLOTS_PER_HOST;
1731
1732 if(hostdata->slots[j].state != NCR_700_SLOT_QUEUED)
1733 continue;
1734 if(NCR_700_start_command(hostdata->slots[j].cmnd)) {
1735 DEBUG(("scsi%d: Issuing saved command slot %p, cmd %p\t\n",
1736 host->host_no, &hostdata->slots[j],
1737 hostdata->slots[j].cmnd));
1738 hostdata->saved_slot_position = j + 1;
1739 }
1740
1741 break;
1742 }
1743 }
1744 out_unlock:
1745 spin_unlock_irqrestore(host->host_lock, flags);
1746 return IRQ_RETVAL(handled);
1747}
1748
1749static int
1750NCR_700_queuecommand_lck(struct scsi_cmnd *SCp, void (*done)(struct scsi_cmnd *))
1751{
1752 struct NCR_700_Host_Parameters *hostdata =
1753 (struct NCR_700_Host_Parameters *)SCp->device->host->hostdata[0];
1754 __u32 move_ins;
1755 enum dma_data_direction direction;
1756 struct NCR_700_command_slot *slot;
1757
1758 if(hostdata->command_slot_count >= NCR_700_COMMAND_SLOTS_PER_HOST) {
1759 /* We're over our allocation, this should never happen
1760 * since we report the max allocation to the mid layer */
1761 printk(KERN_WARNING "scsi%d: Command depth has gone over queue depth\n", SCp->device->host->host_no);
1762 return 1;
1763 }
1764 /* check for untagged commands. We cannot have any outstanding
1765 * commands if we accept them. Commands could be untagged because:
1766 *
1767 * - The tag negotiated bitmap is clear
1768 * - The blk layer sent and untagged command
1769 */
1770 if(NCR_700_get_depth(SCp->device) != 0
1771 && (!(hostdata->tag_negotiated & (1<<scmd_id(SCp)))
1772 || !(SCp->flags & SCMD_TAGGED))) {
1773 CDEBUG(KERN_ERR, SCp, "has non zero depth %d\n",
1774 NCR_700_get_depth(SCp->device));
1775 return SCSI_MLQUEUE_DEVICE_BUSY;
1776 }
1777 if(NCR_700_get_depth(SCp->device) >= SCp->device->queue_depth) {
1778 CDEBUG(KERN_ERR, SCp, "has max tag depth %d\n",
1779 NCR_700_get_depth(SCp->device));
1780 return SCSI_MLQUEUE_DEVICE_BUSY;
1781 }
1782 NCR_700_set_depth(SCp->device, NCR_700_get_depth(SCp->device) + 1);
1783
1784 /* begin the command here */
1785 /* no need to check for NULL, test for command_slot_count above
1786 * ensures a slot is free */
1787 slot = find_empty_slot(hostdata);
1788
1789 slot->cmnd = SCp;
1790
1791 SCp->scsi_done = done;
1792 SCp->host_scribble = (unsigned char *)slot;
1793 SCp->SCp.ptr = NULL;
1794 SCp->SCp.buffer = NULL;
1795
1796#ifdef NCR_700_DEBUG
1797 printk("53c700: scsi%d, command ", SCp->device->host->host_no);
1798 scsi_print_command(SCp);
1799#endif
1800 if ((SCp->flags & SCMD_TAGGED)
1801 && (hostdata->tag_negotiated &(1<<scmd_id(SCp))) == 0
1802 && NCR_700_get_tag_neg_state(SCp->device) == NCR_700_START_TAG_NEGOTIATION) {
1803 scmd_printk(KERN_ERR, SCp, "Enabling Tag Command Queuing\n");
1804 hostdata->tag_negotiated |= (1<<scmd_id(SCp));
1805 NCR_700_set_tag_neg_state(SCp->device, NCR_700_DURING_TAG_NEGOTIATION);
1806 }
1807
1808 /* here we may have to process an untagged command. The gate
1809 * above ensures that this will be the only one outstanding,
1810 * so clear the tag negotiated bit.
1811 *
1812 * FIXME: This will royally screw up on multiple LUN devices
1813 * */
1814 if (!(SCp->flags & SCMD_TAGGED)
1815 && (hostdata->tag_negotiated &(1<<scmd_id(SCp)))) {
1816 scmd_printk(KERN_INFO, SCp, "Disabling Tag Command Queuing\n");
1817 hostdata->tag_negotiated &= ~(1<<scmd_id(SCp));
1818 }
1819
1820 if ((hostdata->tag_negotiated & (1<<scmd_id(SCp))) &&
1821 SCp->device->simple_tags) {
1822 slot->tag = SCp->request->tag;
1823 CDEBUG(KERN_DEBUG, SCp, "sending out tag %d, slot %p\n",
1824 slot->tag, slot);
1825 } else {
1826 struct NCR_700_Device_Parameters *p = SCp->device->hostdata;
1827
1828 slot->tag = SCSI_NO_TAG;
1829 /* save current command for reselection */
1830 p->current_cmnd = SCp;
1831 }
1832 /* sanity check: some of the commands generated by the mid-layer
1833 * have an eccentric idea of their sc_data_direction */
1834 if(!scsi_sg_count(SCp) && !scsi_bufflen(SCp) &&
1835 SCp->sc_data_direction != DMA_NONE) {
1836#ifdef NCR_700_DEBUG
1837 printk("53c700: Command");
1838 scsi_print_command(SCp);
1839 printk("Has wrong data direction %d\n", SCp->sc_data_direction);
1840#endif
1841 SCp->sc_data_direction = DMA_NONE;
1842 }
1843
1844 switch (SCp->cmnd[0]) {
1845 case REQUEST_SENSE:
1846 /* clear the internal sense magic */
1847 SCp->cmnd[6] = 0;
1848 /* fall through */
1849 default:
1850 /* OK, get it from the command */
1851 switch(SCp->sc_data_direction) {
1852 case DMA_BIDIRECTIONAL:
1853 default:
1854 printk(KERN_ERR "53c700: Unknown command for data direction ");
1855 scsi_print_command(SCp);
1856
1857 move_ins = 0;
1858 break;
1859 case DMA_NONE:
1860 move_ins = 0;
1861 break;
1862 case DMA_FROM_DEVICE:
1863 move_ins = SCRIPT_MOVE_DATA_IN;
1864 break;
1865 case DMA_TO_DEVICE:
1866 move_ins = SCRIPT_MOVE_DATA_OUT;
1867 break;
1868 }
1869 }
1870
1871 /* now build the scatter gather list */
1872 direction = SCp->sc_data_direction;
1873 if(move_ins != 0) {
1874 int i;
1875 int sg_count;
1876 dma_addr_t vPtr = 0;
1877 struct scatterlist *sg;
1878 __u32 count = 0;
1879
1880 sg_count = scsi_dma_map(SCp);
1881 BUG_ON(sg_count < 0);
1882
1883 scsi_for_each_sg(SCp, sg, sg_count, i) {
1884 vPtr = sg_dma_address(sg);
1885 count = sg_dma_len(sg);
1886
1887 slot->SG[i].ins = bS_to_host(move_ins | count);
1888 DEBUG((" scatter block %d: move %d[%08x] from 0x%lx\n",
1889 i, count, slot->SG[i].ins, (unsigned long)vPtr));
1890 slot->SG[i].pAddr = bS_to_host(vPtr);
1891 }
1892 slot->SG[i].ins = bS_to_host(SCRIPT_RETURN);
1893 slot->SG[i].pAddr = 0;
1894 dma_cache_sync(hostdata->dev, slot->SG, sizeof(slot->SG), DMA_TO_DEVICE);
1895 DEBUG((" SETTING %p to %x\n",
1896 (&slot->pSG[i].ins),
1897 slot->SG[i].ins));
1898 }
1899 slot->resume_offset = 0;
1900 slot->pCmd = dma_map_single(hostdata->dev, SCp->cmnd,
1901 MAX_COMMAND_SIZE, DMA_TO_DEVICE);
1902 NCR_700_start_command(SCp);
1903 return 0;
1904}
1905
1906STATIC DEF_SCSI_QCMD(NCR_700_queuecommand)
1907
1908STATIC int
1909NCR_700_abort(struct scsi_cmnd * SCp)
1910{
1911 struct NCR_700_command_slot *slot;
1912
1913 scmd_printk(KERN_INFO, SCp, "abort command\n");
1914
1915 slot = (struct NCR_700_command_slot *)SCp->host_scribble;
1916
1917 if(slot == NULL)
1918 /* no outstanding command to abort */
1919 return SUCCESS;
1920 if(SCp->cmnd[0] == TEST_UNIT_READY) {
1921 /* FIXME: This is because of a problem in the new
1922 * error handler. When it is in error recovery, it
1923 * will send a TUR to a device it thinks may still be
1924 * showing a problem. If the TUR isn't responded to,
1925 * it will abort it and mark the device off line.
1926 * Unfortunately, it does no other error recovery, so
1927 * this would leave us with an outstanding command
1928 * occupying a slot. Rather than allow this to
1929 * happen, we issue a bus reset to force all
1930 * outstanding commands to terminate here. */
1931 NCR_700_internal_bus_reset(SCp->device->host);
1932 /* still drop through and return failed */
1933 }
1934 return FAILED;
1935
1936}
1937
1938STATIC int
1939NCR_700_host_reset(struct scsi_cmnd * SCp)
1940{
1941 DECLARE_COMPLETION_ONSTACK(complete);
1942 struct NCR_700_Host_Parameters *hostdata =
1943 (struct NCR_700_Host_Parameters *)SCp->device->host->hostdata[0];
1944
1945 scmd_printk(KERN_INFO, SCp,
1946 "New error handler wants HOST reset, cmd %p\n\t", SCp);
1947 scsi_print_command(SCp);
1948
1949 /* In theory, eh_complete should always be null because the
1950 * eh is single threaded, but just in case we're handling a
1951 * reset via sg or something */
1952 spin_lock_irq(SCp->device->host->host_lock);
1953 while (hostdata->eh_complete != NULL) {
1954 spin_unlock_irq(SCp->device->host->host_lock);
1955 msleep_interruptible(100);
1956 spin_lock_irq(SCp->device->host->host_lock);
1957 }
1958
1959 hostdata->eh_complete = &complete;
1960 NCR_700_internal_bus_reset(SCp->device->host);
1961 NCR_700_chip_reset(SCp->device->host);
1962
1963 spin_unlock_irq(SCp->device->host->host_lock);
1964 wait_for_completion(&complete);
1965 spin_lock_irq(SCp->device->host->host_lock);
1966
1967 hostdata->eh_complete = NULL;
1968 /* Revalidate the transport parameters of the failing device */
1969 if(hostdata->fast)
1970 spi_schedule_dv_device(SCp->device);
1971
1972 spin_unlock_irq(SCp->device->host->host_lock);
1973 return SUCCESS;
1974}
1975
1976STATIC void
1977NCR_700_set_period(struct scsi_target *STp, int period)
1978{
1979 struct Scsi_Host *SHp = dev_to_shost(STp->dev.parent);
1980 struct NCR_700_Host_Parameters *hostdata =
1981 (struct NCR_700_Host_Parameters *)SHp->hostdata[0];
1982
1983 if(!hostdata->fast)
1984 return;
1985
1986 if(period < hostdata->min_period)
1987 period = hostdata->min_period;
1988
1989 spi_period(STp) = period;
1990 spi_flags(STp) &= ~(NCR_700_DEV_NEGOTIATED_SYNC |
1991 NCR_700_DEV_BEGIN_SYNC_NEGOTIATION);
1992 spi_flags(STp) |= NCR_700_DEV_PRINT_SYNC_NEGOTIATION;
1993}
1994
1995STATIC void
1996NCR_700_set_offset(struct scsi_target *STp, int offset)
1997{
1998 struct Scsi_Host *SHp = dev_to_shost(STp->dev.parent);
1999 struct NCR_700_Host_Parameters *hostdata =
2000 (struct NCR_700_Host_Parameters *)SHp->hostdata[0];
2001 int max_offset = hostdata->chip710
2002 ? NCR_710_MAX_OFFSET : NCR_700_MAX_OFFSET;
2003
2004 if(!hostdata->fast)
2005 return;
2006
2007 if(offset > max_offset)
2008 offset = max_offset;
2009
2010 /* if we're currently async, make sure the period is reasonable */
2011 if(spi_offset(STp) == 0 && (spi_period(STp) < hostdata->min_period ||
2012 spi_period(STp) > 0xff))
2013 spi_period(STp) = hostdata->min_period;
2014
2015 spi_offset(STp) = offset;
2016 spi_flags(STp) &= ~(NCR_700_DEV_NEGOTIATED_SYNC |
2017 NCR_700_DEV_BEGIN_SYNC_NEGOTIATION);
2018 spi_flags(STp) |= NCR_700_DEV_PRINT_SYNC_NEGOTIATION;
2019}
2020
2021STATIC int
2022NCR_700_slave_alloc(struct scsi_device *SDp)
2023{
2024 SDp->hostdata = kzalloc(sizeof(struct NCR_700_Device_Parameters),
2025 GFP_KERNEL);
2026
2027 if (!SDp->hostdata)
2028 return -ENOMEM;
2029
2030 return 0;
2031}
2032
2033STATIC int
2034NCR_700_slave_configure(struct scsi_device *SDp)
2035{
2036 struct NCR_700_Host_Parameters *hostdata =
2037 (struct NCR_700_Host_Parameters *)SDp->host->hostdata[0];
2038
2039 /* to do here: allocate memory; build a queue_full list */
2040 if(SDp->tagged_supported) {
2041 scsi_change_queue_depth(SDp, NCR_700_DEFAULT_TAGS);
2042 NCR_700_set_tag_neg_state(SDp, NCR_700_START_TAG_NEGOTIATION);
2043 }
2044
2045 if(hostdata->fast) {
2046 /* Find the correct offset and period via domain validation */
2047 if (!spi_initial_dv(SDp->sdev_target))
2048 spi_dv_device(SDp);
2049 } else {
2050 spi_offset(SDp->sdev_target) = 0;
2051 spi_period(SDp->sdev_target) = 0;
2052 }
2053 return 0;
2054}
2055
2056STATIC void
2057NCR_700_slave_destroy(struct scsi_device *SDp)
2058{
2059 kfree(SDp->hostdata);
2060 SDp->hostdata = NULL;
2061}
2062
2063static int
2064NCR_700_change_queue_depth(struct scsi_device *SDp, int depth)
2065{
2066 if (depth > NCR_700_MAX_TAGS)
2067 depth = NCR_700_MAX_TAGS;
2068 return scsi_change_queue_depth(SDp, depth);
2069}
2070
2071static ssize_t
2072NCR_700_show_active_tags(struct device *dev, struct device_attribute *attr, char *buf)
2073{
2074 struct scsi_device *SDp = to_scsi_device(dev);
2075
2076 return snprintf(buf, 20, "%d\n", NCR_700_get_depth(SDp));
2077}
2078
2079static struct device_attribute NCR_700_active_tags_attr = {
2080 .attr = {
2081 .name = "active_tags",
2082 .mode = S_IRUGO,
2083 },
2084 .show = NCR_700_show_active_tags,
2085};
2086
2087STATIC struct device_attribute *NCR_700_dev_attrs[] = {
2088 &NCR_700_active_tags_attr,
2089 NULL,
2090};
2091
2092EXPORT_SYMBOL(NCR_700_detect);
2093EXPORT_SYMBOL(NCR_700_release);
2094EXPORT_SYMBOL(NCR_700_intr);
2095
2096static struct spi_function_template NCR_700_transport_functions = {
2097 .set_period = NCR_700_set_period,
2098 .show_period = 1,
2099 .set_offset = NCR_700_set_offset,
2100 .show_offset = 1,
2101};
2102
2103static int __init NCR_700_init(void)
2104{
2105 NCR_700_transport_template = spi_attach_transport(&NCR_700_transport_functions);
2106 if(!NCR_700_transport_template)
2107 return -ENODEV;
2108 return 0;
2109}
2110
2111static void __exit NCR_700_exit(void)
2112{
2113 spi_release_transport(NCR_700_transport_template);
2114}
2115
2116module_init(NCR_700_init);
2117module_exit(NCR_700_exit);
2118
1// SPDX-License-Identifier: GPL-2.0-or-later
2
3/* NCR (or Symbios) 53c700 and 53c700-66 Driver
4 *
5 * Copyright (C) 2001 by James.Bottomley@HansenPartnership.com
6**-----------------------------------------------------------------------------
7**
8**
9**-----------------------------------------------------------------------------
10 */
11
12/* Notes:
13 *
14 * This driver is designed exclusively for these chips (virtually the
15 * earliest of the scripts engine chips). They need their own drivers
16 * because they are missing so many of the scripts and snazzy register
17 * features of their elder brothers (the 710, 720 and 770).
18 *
19 * The 700 is the lowliest of the line, it can only do async SCSI.
20 * The 700-66 can at least do synchronous SCSI up to 10MHz.
21 *
22 * The 700 chip has no host bus interface logic of its own. However,
23 * it is usually mapped to a location with well defined register
24 * offsets. Therefore, if you can determine the base address and the
25 * irq your board incorporating this chip uses, you can probably use
26 * this driver to run it (although you'll probably have to write a
27 * minimal wrapper for the purpose---see the NCR_D700 driver for
28 * details about how to do this).
29 *
30 *
31 * TODO List:
32 *
33 * 1. Better statistics in the proc fs
34 *
35 * 2. Implement message queue (queues SCSI messages like commands) and make
36 * the abort and device reset functions use them.
37 * */
38
39/* CHANGELOG
40 *
41 * Version 2.8
42 *
43 * Fixed bad bug affecting tag starvation processing (previously the
44 * driver would hang the system if too many tags starved. Also fixed
45 * bad bug having to do with 10 byte command processing and REQUEST
46 * SENSE (the command would loop forever getting a transfer length
47 * mismatch in the CMD phase).
48 *
49 * Version 2.7
50 *
51 * Fixed scripts problem which caused certain devices (notably CDRWs)
52 * to hang on initial INQUIRY. Updated NCR_700_readl/writel to use
53 * __raw_readl/writel for parisc compatibility (Thomas
54 * Bogendoerfer). Added missing SCp->request_bufflen initialisation
55 * for sense requests (Ryan Bradetich).
56 *
57 * Version 2.6
58 *
59 * Following test of the 64 bit parisc kernel by Richard Hirst,
60 * several problems have now been corrected. Also adds support for
61 * consistent memory allocation.
62 *
63 * Version 2.5
64 *
65 * More Compatibility changes for 710 (now actually works). Enhanced
66 * support for odd clock speeds which constrain SDTR negotiations.
67 * correct cacheline separation for scsi messages and status for
68 * incoherent architectures. Use of the pci mapping functions on
69 * buffers to begin support for 64 bit drivers.
70 *
71 * Version 2.4
72 *
73 * Added support for the 53c710 chip (in 53c700 emulation mode only---no
74 * special 53c710 instructions or registers are used).
75 *
76 * Version 2.3
77 *
78 * More endianness/cache coherency changes.
79 *
80 * Better bad device handling (handles devices lying about tag
81 * queueing support and devices which fail to provide sense data on
82 * contingent allegiance conditions)
83 *
84 * Many thanks to Richard Hirst <rhirst@linuxcare.com> for patiently
85 * debugging this driver on the parisc architecture and suggesting
86 * many improvements and bug fixes.
87 *
88 * Thanks also go to Linuxcare Inc. for providing several PARISC
89 * machines for me to debug the driver on.
90 *
91 * Version 2.2
92 *
93 * Made the driver mem or io mapped; added endian invariance; added
94 * dma cache flushing operations for architectures which need it;
95 * added support for more varied clocking speeds.
96 *
97 * Version 2.1
98 *
99 * Initial modularisation from the D700. See NCR_D700.c for the rest of
100 * the changelog.
101 * */
102#define NCR_700_VERSION "2.8"
103
104#include <linux/kernel.h>
105#include <linux/types.h>
106#include <linux/string.h>
107#include <linux/slab.h>
108#include <linux/ioport.h>
109#include <linux/delay.h>
110#include <linux/spinlock.h>
111#include <linux/completion.h>
112#include <linux/init.h>
113#include <linux/proc_fs.h>
114#include <linux/blkdev.h>
115#include <linux/module.h>
116#include <linux/interrupt.h>
117#include <linux/device.h>
118#include <linux/pgtable.h>
119#include <asm/dma.h>
120#include <asm/io.h>
121#include <asm/byteorder.h>
122
123#include <scsi/scsi.h>
124#include <scsi/scsi_cmnd.h>
125#include <scsi/scsi_dbg.h>
126#include <scsi/scsi_eh.h>
127#include <scsi/scsi_host.h>
128#include <scsi/scsi_tcq.h>
129#include <scsi/scsi_transport.h>
130#include <scsi/scsi_transport_spi.h>
131
132#include "53c700.h"
133
134/* NOTE: For 64 bit drivers there are points in the code where we use
135 * a non dereferenceable pointer to point to a structure in dma-able
136 * memory (which is 32 bits) so that we can use all of the structure
137 * operations but take the address at the end. This macro allows us
138 * to truncate the 64 bit pointer down to 32 bits without the compiler
139 * complaining */
140#define to32bit(x) ((__u32)((unsigned long)(x)))
141
142#ifdef NCR_700_DEBUG
143#define STATIC
144#else
145#define STATIC static
146#endif
147
148MODULE_AUTHOR("James Bottomley");
149MODULE_DESCRIPTION("53c700 and 53c700-66 Driver");
150MODULE_LICENSE("GPL");
151
152/* This is the script */
153#include "53c700_d.h"
154
155
156STATIC int NCR_700_queuecommand(struct Scsi_Host *h, struct scsi_cmnd *);
157STATIC int NCR_700_abort(struct scsi_cmnd * SCpnt);
158STATIC int NCR_700_host_reset(struct scsi_cmnd * SCpnt);
159STATIC void NCR_700_chip_setup(struct Scsi_Host *host);
160STATIC void NCR_700_chip_reset(struct Scsi_Host *host);
161STATIC int NCR_700_slave_alloc(struct scsi_device *SDpnt);
162STATIC int NCR_700_slave_configure(struct scsi_device *SDpnt);
163STATIC void NCR_700_slave_destroy(struct scsi_device *SDpnt);
164static int NCR_700_change_queue_depth(struct scsi_device *SDpnt, int depth);
165
166STATIC const struct attribute_group *NCR_700_dev_groups[];
167
168STATIC struct scsi_transport_template *NCR_700_transport_template = NULL;
169
170static char *NCR_700_phase[] = {
171 "",
172 "after selection",
173 "before command phase",
174 "after command phase",
175 "after status phase",
176 "after data in phase",
177 "after data out phase",
178 "during data phase",
179};
180
181static char *NCR_700_condition[] = {
182 "",
183 "NOT MSG_OUT",
184 "UNEXPECTED PHASE",
185 "NOT MSG_IN",
186 "UNEXPECTED MSG",
187 "MSG_IN",
188 "SDTR_MSG RECEIVED",
189 "REJECT_MSG RECEIVED",
190 "DISCONNECT_MSG RECEIVED",
191 "MSG_OUT",
192 "DATA_IN",
193
194};
195
196static char *NCR_700_fatal_messages[] = {
197 "unexpected message after reselection",
198 "still MSG_OUT after message injection",
199 "not MSG_IN after selection",
200 "Illegal message length received",
201};
202
203static char *NCR_700_SBCL_bits[] = {
204 "IO ",
205 "CD ",
206 "MSG ",
207 "ATN ",
208 "SEL ",
209 "BSY ",
210 "ACK ",
211 "REQ ",
212};
213
214static char *NCR_700_SBCL_to_phase[] = {
215 "DATA_OUT",
216 "DATA_IN",
217 "CMD_OUT",
218 "STATE",
219 "ILLEGAL PHASE",
220 "ILLEGAL PHASE",
221 "MSG OUT",
222 "MSG IN",
223};
224
225/* This translates the SDTR message offset and period to a value
226 * which can be loaded into the SXFER_REG.
227 *
228 * NOTE: According to SCSI-2, the true transfer period (in ns) is
229 * actually four times this period value */
230static inline __u8
231NCR_700_offset_period_to_sxfer(struct NCR_700_Host_Parameters *hostdata,
232 __u8 offset, __u8 period)
233{
234 int XFERP;
235
236 __u8 min_xferp = (hostdata->chip710
237 ? NCR_710_MIN_XFERP : NCR_700_MIN_XFERP);
238 __u8 max_offset = (hostdata->chip710
239 ? NCR_710_MAX_OFFSET : NCR_700_MAX_OFFSET);
240
241 if(offset == 0)
242 return 0;
243
244 if(period < hostdata->min_period) {
245 printk(KERN_WARNING "53c700: Period %dns is less than this chip's minimum, setting to %d\n", period*4, NCR_700_MIN_PERIOD*4);
246 period = hostdata->min_period;
247 }
248 XFERP = (period*4 * hostdata->sync_clock)/1000 - 4;
249 if(offset > max_offset) {
250 printk(KERN_WARNING "53c700: Offset %d exceeds chip maximum, setting to %d\n",
251 offset, max_offset);
252 offset = max_offset;
253 }
254 if(XFERP < min_xferp) {
255 XFERP = min_xferp;
256 }
257 return (offset & 0x0f) | (XFERP & 0x07)<<4;
258}
259
260static inline __u8
261NCR_700_get_SXFER(struct scsi_device *SDp)
262{
263 struct NCR_700_Host_Parameters *hostdata =
264 (struct NCR_700_Host_Parameters *)SDp->host->hostdata[0];
265
266 return NCR_700_offset_period_to_sxfer(hostdata,
267 spi_offset(SDp->sdev_target),
268 spi_period(SDp->sdev_target));
269}
270
271static inline dma_addr_t virt_to_dma(struct NCR_700_Host_Parameters *h, void *p)
272{
273 return h->pScript + ((uintptr_t)p - (uintptr_t)h->script);
274}
275
276static inline void dma_sync_to_dev(struct NCR_700_Host_Parameters *h,
277 void *addr, size_t size)
278{
279 if (h->noncoherent)
280 dma_sync_single_for_device(h->dev, virt_to_dma(h, addr),
281 size, DMA_BIDIRECTIONAL);
282}
283
284static inline void dma_sync_from_dev(struct NCR_700_Host_Parameters *h,
285 void *addr, size_t size)
286{
287 if (h->noncoherent)
288 dma_sync_single_for_device(h->dev, virt_to_dma(h, addr), size,
289 DMA_BIDIRECTIONAL);
290}
291
292struct Scsi_Host *
293NCR_700_detect(struct scsi_host_template *tpnt,
294 struct NCR_700_Host_Parameters *hostdata, struct device *dev)
295{
296 dma_addr_t pScript, pSlots;
297 __u8 *memory;
298 __u32 *script;
299 struct Scsi_Host *host;
300 static int banner = 0;
301 int j;
302
303 if (tpnt->sdev_groups == NULL)
304 tpnt->sdev_groups = NCR_700_dev_groups;
305
306 memory = dma_alloc_coherent(dev, TOTAL_MEM_SIZE, &pScript, GFP_KERNEL);
307 if (!memory) {
308 hostdata->noncoherent = 1;
309 memory = dma_alloc_noncoherent(dev, TOTAL_MEM_SIZE, &pScript,
310 DMA_BIDIRECTIONAL, GFP_KERNEL);
311 }
312 if (!memory) {
313 printk(KERN_ERR "53c700: Failed to allocate memory for driver, detaching\n");
314 return NULL;
315 }
316
317 script = (__u32 *)memory;
318 hostdata->msgin = memory + MSGIN_OFFSET;
319 hostdata->msgout = memory + MSGOUT_OFFSET;
320 hostdata->status = memory + STATUS_OFFSET;
321 hostdata->slots = (struct NCR_700_command_slot *)(memory + SLOTS_OFFSET);
322 hostdata->dev = dev;
323
324 pSlots = pScript + SLOTS_OFFSET;
325
326 /* Fill in the missing routines from the host template */
327 tpnt->queuecommand = NCR_700_queuecommand;
328 tpnt->eh_abort_handler = NCR_700_abort;
329 tpnt->eh_host_reset_handler = NCR_700_host_reset;
330 tpnt->can_queue = NCR_700_COMMAND_SLOTS_PER_HOST;
331 tpnt->sg_tablesize = NCR_700_SG_SEGMENTS;
332 tpnt->cmd_per_lun = NCR_700_CMD_PER_LUN;
333 tpnt->slave_configure = NCR_700_slave_configure;
334 tpnt->slave_destroy = NCR_700_slave_destroy;
335 tpnt->slave_alloc = NCR_700_slave_alloc;
336 tpnt->change_queue_depth = NCR_700_change_queue_depth;
337
338 if(tpnt->name == NULL)
339 tpnt->name = "53c700";
340 if(tpnt->proc_name == NULL)
341 tpnt->proc_name = "53c700";
342
343 host = scsi_host_alloc(tpnt, 4);
344 if (!host)
345 return NULL;
346 memset(hostdata->slots, 0, sizeof(struct NCR_700_command_slot)
347 * NCR_700_COMMAND_SLOTS_PER_HOST);
348 for (j = 0; j < NCR_700_COMMAND_SLOTS_PER_HOST; j++) {
349 dma_addr_t offset = (dma_addr_t)((unsigned long)&hostdata->slots[j].SG[0]
350 - (unsigned long)&hostdata->slots[0].SG[0]);
351 hostdata->slots[j].pSG = (struct NCR_700_SG_List *)((unsigned long)(pSlots + offset));
352 if(j == 0)
353 hostdata->free_list = &hostdata->slots[j];
354 else
355 hostdata->slots[j-1].ITL_forw = &hostdata->slots[j];
356 hostdata->slots[j].state = NCR_700_SLOT_FREE;
357 }
358
359 for (j = 0; j < ARRAY_SIZE(SCRIPT); j++)
360 script[j] = bS_to_host(SCRIPT[j]);
361
362 /* adjust all labels to be bus physical */
363 for (j = 0; j < PATCHES; j++)
364 script[LABELPATCHES[j]] = bS_to_host(pScript + SCRIPT[LABELPATCHES[j]]);
365 /* now patch up fixed addresses. */
366 script_patch_32(hostdata, script, MessageLocation,
367 pScript + MSGOUT_OFFSET);
368 script_patch_32(hostdata, script, StatusAddress,
369 pScript + STATUS_OFFSET);
370 script_patch_32(hostdata, script, ReceiveMsgAddress,
371 pScript + MSGIN_OFFSET);
372
373 hostdata->script = script;
374 hostdata->pScript = pScript;
375 dma_sync_single_for_device(hostdata->dev, pScript, sizeof(SCRIPT), DMA_TO_DEVICE);
376 hostdata->state = NCR_700_HOST_FREE;
377 hostdata->cmd = NULL;
378 host->max_id = 8;
379 host->max_lun = NCR_700_MAX_LUNS;
380 BUG_ON(NCR_700_transport_template == NULL);
381 host->transportt = NCR_700_transport_template;
382 host->unique_id = (unsigned long)hostdata->base;
383 hostdata->eh_complete = NULL;
384 host->hostdata[0] = (unsigned long)hostdata;
385 /* kick the chip */
386 NCR_700_writeb(0xff, host, CTEST9_REG);
387 if (hostdata->chip710)
388 hostdata->rev = (NCR_700_readb(host, CTEST8_REG)>>4) & 0x0f;
389 else
390 hostdata->rev = (NCR_700_readb(host, CTEST7_REG)>>4) & 0x0f;
391 hostdata->fast = (NCR_700_readb(host, CTEST9_REG) == 0);
392 if (banner == 0) {
393 printk(KERN_NOTICE "53c700: Version " NCR_700_VERSION " By James.Bottomley@HansenPartnership.com\n");
394 banner = 1;
395 }
396 printk(KERN_NOTICE "scsi%d: %s rev %d %s\n", host->host_no,
397 hostdata->chip710 ? "53c710" :
398 (hostdata->fast ? "53c700-66" : "53c700"),
399 hostdata->rev, hostdata->differential ?
400 "(Differential)" : "");
401 /* reset the chip */
402 NCR_700_chip_reset(host);
403
404 if (scsi_add_host(host, dev)) {
405 dev_printk(KERN_ERR, dev, "53c700: scsi_add_host failed\n");
406 scsi_host_put(host);
407 return NULL;
408 }
409
410 spi_signalling(host) = hostdata->differential ? SPI_SIGNAL_HVD :
411 SPI_SIGNAL_SE;
412
413 return host;
414}
415
416int
417NCR_700_release(struct Scsi_Host *host)
418{
419 struct NCR_700_Host_Parameters *hostdata =
420 (struct NCR_700_Host_Parameters *)host->hostdata[0];
421
422 if (hostdata->noncoherent)
423 dma_free_noncoherent(hostdata->dev, TOTAL_MEM_SIZE,
424 hostdata->script, hostdata->pScript,
425 DMA_BIDIRECTIONAL);
426 else
427 dma_free_coherent(hostdata->dev, TOTAL_MEM_SIZE,
428 hostdata->script, hostdata->pScript);
429 return 1;
430}
431
432static inline __u8
433NCR_700_identify(int can_disconnect, __u8 lun)
434{
435 return IDENTIFY_BASE |
436 ((can_disconnect) ? 0x40 : 0) |
437 (lun & NCR_700_LUN_MASK);
438}
439
440/*
441 * Function : static int data_residual (Scsi_Host *host)
442 *
443 * Purpose : return residual data count of what's in the chip. If you
444 * really want to know what this function is doing, it's almost a
445 * direct transcription of the algorithm described in the 53c710
446 * guide, except that the DBC and DFIFO registers are only 6 bits
447 * wide on a 53c700.
448 *
449 * Inputs : host - SCSI host */
450static inline int
451NCR_700_data_residual (struct Scsi_Host *host) {
452 struct NCR_700_Host_Parameters *hostdata =
453 (struct NCR_700_Host_Parameters *)host->hostdata[0];
454 int count, synchronous = 0;
455 unsigned int ddir;
456
457 if(hostdata->chip710) {
458 count = ((NCR_700_readb(host, DFIFO_REG) & 0x7f) -
459 (NCR_700_readl(host, DBC_REG) & 0x7f)) & 0x7f;
460 } else {
461 count = ((NCR_700_readb(host, DFIFO_REG) & 0x3f) -
462 (NCR_700_readl(host, DBC_REG) & 0x3f)) & 0x3f;
463 }
464
465 if(hostdata->fast)
466 synchronous = NCR_700_readb(host, SXFER_REG) & 0x0f;
467
468 /* get the data direction */
469 ddir = NCR_700_readb(host, CTEST0_REG) & 0x01;
470
471 if (ddir) {
472 /* Receive */
473 if (synchronous)
474 count += (NCR_700_readb(host, SSTAT2_REG) & 0xf0) >> 4;
475 else
476 if (NCR_700_readb(host, SSTAT1_REG) & SIDL_REG_FULL)
477 ++count;
478 } else {
479 /* Send */
480 __u8 sstat = NCR_700_readb(host, SSTAT1_REG);
481 if (sstat & SODL_REG_FULL)
482 ++count;
483 if (synchronous && (sstat & SODR_REG_FULL))
484 ++count;
485 }
486#ifdef NCR_700_DEBUG
487 if(count)
488 printk("RESIDUAL IS %d (ddir %d)\n", count, ddir);
489#endif
490 return count;
491}
492
493/* print out the SCSI wires and corresponding phase from the SBCL register
494 * in the chip */
495static inline char *
496sbcl_to_string(__u8 sbcl)
497{
498 int i;
499 static char ret[256];
500
501 ret[0]='\0';
502 for(i=0; i<8; i++) {
503 if((1<<i) & sbcl)
504 strcat(ret, NCR_700_SBCL_bits[i]);
505 }
506 strcat(ret, NCR_700_SBCL_to_phase[sbcl & 0x07]);
507 return ret;
508}
509
510static inline __u8
511bitmap_to_number(__u8 bitmap)
512{
513 __u8 i;
514
515 for(i=0; i<8 && !(bitmap &(1<<i)); i++)
516 ;
517 return i;
518}
519
520/* Pull a slot off the free list */
521STATIC struct NCR_700_command_slot *
522find_empty_slot(struct NCR_700_Host_Parameters *hostdata)
523{
524 struct NCR_700_command_slot *slot = hostdata->free_list;
525
526 if(slot == NULL) {
527 /* sanity check */
528 if(hostdata->command_slot_count != NCR_700_COMMAND_SLOTS_PER_HOST)
529 printk(KERN_ERR "SLOTS FULL, but count is %d, should be %d\n", hostdata->command_slot_count, NCR_700_COMMAND_SLOTS_PER_HOST);
530 return NULL;
531 }
532
533 if(slot->state != NCR_700_SLOT_FREE)
534 /* should panic! */
535 printk(KERN_ERR "BUSY SLOT ON FREE LIST!!!\n");
536
537
538 hostdata->free_list = slot->ITL_forw;
539 slot->ITL_forw = NULL;
540
541
542 /* NOTE: set the state to busy here, not queued, since this
543 * indicates the slot is in use and cannot be run by the IRQ
544 * finish routine. If we cannot queue the command when it
545 * is properly build, we then change to NCR_700_SLOT_QUEUED */
546 slot->state = NCR_700_SLOT_BUSY;
547 slot->flags = 0;
548 hostdata->command_slot_count++;
549
550 return slot;
551}
552
553STATIC void
554free_slot(struct NCR_700_command_slot *slot,
555 struct NCR_700_Host_Parameters *hostdata)
556{
557 if((slot->state & NCR_700_SLOT_MASK) != NCR_700_SLOT_MAGIC) {
558 printk(KERN_ERR "53c700: SLOT %p is not MAGIC!!!\n", slot);
559 }
560 if(slot->state == NCR_700_SLOT_FREE) {
561 printk(KERN_ERR "53c700: SLOT %p is FREE!!!\n", slot);
562 }
563
564 slot->resume_offset = 0;
565 slot->cmnd = NULL;
566 slot->state = NCR_700_SLOT_FREE;
567 slot->ITL_forw = hostdata->free_list;
568 hostdata->free_list = slot;
569 hostdata->command_slot_count--;
570}
571
572
573/* This routine really does very little. The command is indexed on
574 the ITL and (if tagged) the ITLQ lists in _queuecommand */
575STATIC void
576save_for_reselection(struct NCR_700_Host_Parameters *hostdata,
577 struct scsi_cmnd *SCp, __u32 dsp)
578{
579 /* Its just possible that this gets executed twice */
580 if(SCp != NULL) {
581 struct NCR_700_command_slot *slot =
582 (struct NCR_700_command_slot *)SCp->host_scribble;
583
584 slot->resume_offset = dsp;
585 }
586 hostdata->state = NCR_700_HOST_FREE;
587 hostdata->cmd = NULL;
588}
589
590STATIC inline void
591NCR_700_unmap(struct NCR_700_Host_Parameters *hostdata, struct scsi_cmnd *SCp,
592 struct NCR_700_command_slot *slot)
593{
594 if(SCp->sc_data_direction != DMA_NONE &&
595 SCp->sc_data_direction != DMA_BIDIRECTIONAL)
596 scsi_dma_unmap(SCp);
597}
598
599STATIC inline void
600NCR_700_scsi_done(struct NCR_700_Host_Parameters *hostdata,
601 struct scsi_cmnd *SCp, int result)
602{
603 hostdata->state = NCR_700_HOST_FREE;
604 hostdata->cmd = NULL;
605
606 if(SCp != NULL) {
607 struct NCR_700_command_slot *slot =
608 (struct NCR_700_command_slot *)SCp->host_scribble;
609
610 dma_unmap_single(hostdata->dev, slot->pCmd,
611 MAX_COMMAND_SIZE, DMA_TO_DEVICE);
612 if (slot->flags == NCR_700_FLAG_AUTOSENSE) {
613 char *cmnd = NCR_700_get_sense_cmnd(SCp->device);
614
615 dma_unmap_single(hostdata->dev, slot->dma_handle,
616 SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE);
617 /* restore the old result if the request sense was
618 * successful */
619 if (result == 0)
620 result = cmnd[7];
621 /* restore the original length */
622 SCp->cmd_len = cmnd[8];
623 } else
624 NCR_700_unmap(hostdata, SCp, slot);
625
626 free_slot(slot, hostdata);
627#ifdef NCR_700_DEBUG
628 if(NCR_700_get_depth(SCp->device) == 0 ||
629 NCR_700_get_depth(SCp->device) > SCp->device->queue_depth)
630 printk(KERN_ERR "Invalid depth in NCR_700_scsi_done(): %d\n",
631 NCR_700_get_depth(SCp->device));
632#endif /* NCR_700_DEBUG */
633 NCR_700_set_depth(SCp->device, NCR_700_get_depth(SCp->device) - 1);
634
635 SCp->host_scribble = NULL;
636 SCp->result = result;
637 scsi_done(SCp);
638 } else {
639 printk(KERN_ERR "53c700: SCSI DONE HAS NULL SCp\n");
640 }
641}
642
643
644STATIC void
645NCR_700_internal_bus_reset(struct Scsi_Host *host)
646{
647 /* Bus reset */
648 NCR_700_writeb(ASSERT_RST, host, SCNTL1_REG);
649 udelay(50);
650 NCR_700_writeb(0, host, SCNTL1_REG);
651
652}
653
654STATIC void
655NCR_700_chip_setup(struct Scsi_Host *host)
656{
657 struct NCR_700_Host_Parameters *hostdata =
658 (struct NCR_700_Host_Parameters *)host->hostdata[0];
659 __u8 min_period;
660 __u8 min_xferp = (hostdata->chip710 ? NCR_710_MIN_XFERP : NCR_700_MIN_XFERP);
661
662 if(hostdata->chip710) {
663 __u8 burst_disable = 0;
664 __u8 burst_length = 0;
665
666 switch (hostdata->burst_length) {
667 case 1:
668 burst_length = BURST_LENGTH_1;
669 break;
670 case 2:
671 burst_length = BURST_LENGTH_2;
672 break;
673 case 4:
674 burst_length = BURST_LENGTH_4;
675 break;
676 case 8:
677 burst_length = BURST_LENGTH_8;
678 break;
679 default:
680 burst_disable = BURST_DISABLE;
681 break;
682 }
683 hostdata->dcntl_extra |= COMPAT_700_MODE;
684
685 NCR_700_writeb(hostdata->dcntl_extra, host, DCNTL_REG);
686 NCR_700_writeb(burst_length | hostdata->dmode_extra,
687 host, DMODE_710_REG);
688 NCR_700_writeb(burst_disable | hostdata->ctest7_extra |
689 (hostdata->differential ? DIFF : 0),
690 host, CTEST7_REG);
691 NCR_700_writeb(BTB_TIMER_DISABLE, host, CTEST0_REG);
692 NCR_700_writeb(FULL_ARBITRATION | ENABLE_PARITY | PARITY
693 | AUTO_ATN, host, SCNTL0_REG);
694 } else {
695 NCR_700_writeb(BURST_LENGTH_8 | hostdata->dmode_extra,
696 host, DMODE_700_REG);
697 NCR_700_writeb(hostdata->differential ?
698 DIFF : 0, host, CTEST7_REG);
699 if(hostdata->fast) {
700 /* this is for 700-66, does nothing on 700 */
701 NCR_700_writeb(LAST_DIS_ENBL | ENABLE_ACTIVE_NEGATION
702 | GENERATE_RECEIVE_PARITY, host,
703 CTEST8_REG);
704 } else {
705 NCR_700_writeb(FULL_ARBITRATION | ENABLE_PARITY
706 | PARITY | AUTO_ATN, host, SCNTL0_REG);
707 }
708 }
709
710 NCR_700_writeb(1 << host->this_id, host, SCID_REG);
711 NCR_700_writeb(0, host, SBCL_REG);
712 NCR_700_writeb(ASYNC_OPERATION, host, SXFER_REG);
713
714 NCR_700_writeb(PHASE_MM_INT | SEL_TIMEOUT_INT | GROSS_ERR_INT | UX_DISC_INT
715 | RST_INT | PAR_ERR_INT | SELECT_INT, host, SIEN_REG);
716
717 NCR_700_writeb(ABORT_INT | INT_INST_INT | ILGL_INST_INT, host, DIEN_REG);
718 NCR_700_writeb(ENABLE_SELECT, host, SCNTL1_REG);
719 if(hostdata->clock > 75) {
720 printk(KERN_ERR "53c700: Clock speed %dMHz is too high: 75Mhz is the maximum this chip can be driven at\n", hostdata->clock);
721 /* do the best we can, but the async clock will be out
722 * of spec: sync divider 2, async divider 3 */
723 DEBUG(("53c700: sync 2 async 3\n"));
724 NCR_700_writeb(SYNC_DIV_2_0, host, SBCL_REG);
725 NCR_700_writeb(ASYNC_DIV_3_0 | hostdata->dcntl_extra, host, DCNTL_REG);
726 hostdata->sync_clock = hostdata->clock/2;
727 } else if(hostdata->clock > 50 && hostdata->clock <= 75) {
728 /* sync divider 1.5, async divider 3 */
729 DEBUG(("53c700: sync 1.5 async 3\n"));
730 NCR_700_writeb(SYNC_DIV_1_5, host, SBCL_REG);
731 NCR_700_writeb(ASYNC_DIV_3_0 | hostdata->dcntl_extra, host, DCNTL_REG);
732 hostdata->sync_clock = hostdata->clock*2;
733 hostdata->sync_clock /= 3;
734
735 } else if(hostdata->clock > 37 && hostdata->clock <= 50) {
736 /* sync divider 1, async divider 2 */
737 DEBUG(("53c700: sync 1 async 2\n"));
738 NCR_700_writeb(SYNC_DIV_1_0, host, SBCL_REG);
739 NCR_700_writeb(ASYNC_DIV_2_0 | hostdata->dcntl_extra, host, DCNTL_REG);
740 hostdata->sync_clock = hostdata->clock;
741 } else if(hostdata->clock > 25 && hostdata->clock <=37) {
742 /* sync divider 1, async divider 1.5 */
743 DEBUG(("53c700: sync 1 async 1.5\n"));
744 NCR_700_writeb(SYNC_DIV_1_0, host, SBCL_REG);
745 NCR_700_writeb(ASYNC_DIV_1_5 | hostdata->dcntl_extra, host, DCNTL_REG);
746 hostdata->sync_clock = hostdata->clock;
747 } else {
748 DEBUG(("53c700: sync 1 async 1\n"));
749 NCR_700_writeb(SYNC_DIV_1_0, host, SBCL_REG);
750 NCR_700_writeb(ASYNC_DIV_1_0 | hostdata->dcntl_extra, host, DCNTL_REG);
751 /* sync divider 1, async divider 1 */
752 hostdata->sync_clock = hostdata->clock;
753 }
754 /* Calculate the actual minimum period that can be supported
755 * by our synchronous clock speed. See the 710 manual for
756 * exact details of this calculation which is based on a
757 * setting of the SXFER register */
758 min_period = 1000*(4+min_xferp)/(4*hostdata->sync_clock);
759 hostdata->min_period = NCR_700_MIN_PERIOD;
760 if(min_period > NCR_700_MIN_PERIOD)
761 hostdata->min_period = min_period;
762}
763
764STATIC void
765NCR_700_chip_reset(struct Scsi_Host *host)
766{
767 struct NCR_700_Host_Parameters *hostdata =
768 (struct NCR_700_Host_Parameters *)host->hostdata[0];
769 if(hostdata->chip710) {
770 NCR_700_writeb(SOFTWARE_RESET_710, host, ISTAT_REG);
771 udelay(100);
772
773 NCR_700_writeb(0, host, ISTAT_REG);
774 } else {
775 NCR_700_writeb(SOFTWARE_RESET, host, DCNTL_REG);
776 udelay(100);
777
778 NCR_700_writeb(0, host, DCNTL_REG);
779 }
780
781 mdelay(1000);
782
783 NCR_700_chip_setup(host);
784}
785
786/* The heart of the message processing engine is that the instruction
787 * immediately after the INT is the normal case (and so must be CLEAR
788 * ACK). If we want to do something else, we call that routine in
789 * scripts and set temp to be the normal case + 8 (skipping the CLEAR
790 * ACK) so that the routine returns correctly to resume its activity
791 * */
792STATIC __u32
793process_extended_message(struct Scsi_Host *host,
794 struct NCR_700_Host_Parameters *hostdata,
795 struct scsi_cmnd *SCp, __u32 dsp, __u32 dsps)
796{
797 __u32 resume_offset = dsp, temp = dsp + 8;
798 __u8 pun = 0xff, lun = 0xff;
799
800 if(SCp != NULL) {
801 pun = SCp->device->id;
802 lun = SCp->device->lun;
803 }
804
805 switch(hostdata->msgin[2]) {
806 case A_SDTR_MSG:
807 if(SCp != NULL && NCR_700_is_flag_set(SCp->device, NCR_700_DEV_BEGIN_SYNC_NEGOTIATION)) {
808 struct scsi_target *starget = SCp->device->sdev_target;
809 __u8 period = hostdata->msgin[3];
810 __u8 offset = hostdata->msgin[4];
811
812 if(offset == 0 || period == 0) {
813 offset = 0;
814 period = 0;
815 }
816
817 spi_offset(starget) = offset;
818 spi_period(starget) = period;
819
820 if(NCR_700_is_flag_set(SCp->device, NCR_700_DEV_PRINT_SYNC_NEGOTIATION)) {
821 spi_display_xfer_agreement(starget);
822 NCR_700_clear_flag(SCp->device, NCR_700_DEV_PRINT_SYNC_NEGOTIATION);
823 }
824
825 NCR_700_set_flag(SCp->device, NCR_700_DEV_NEGOTIATED_SYNC);
826 NCR_700_clear_flag(SCp->device, NCR_700_DEV_BEGIN_SYNC_NEGOTIATION);
827
828 NCR_700_writeb(NCR_700_get_SXFER(SCp->device),
829 host, SXFER_REG);
830
831 } else {
832 /* SDTR message out of the blue, reject it */
833 shost_printk(KERN_WARNING, host,
834 "Unexpected SDTR msg\n");
835 hostdata->msgout[0] = A_REJECT_MSG;
836 dma_sync_to_dev(hostdata, hostdata->msgout, 1);
837 script_patch_16(hostdata, hostdata->script,
838 MessageCount, 1);
839 /* SendMsgOut returns, so set up the return
840 * address */
841 resume_offset = hostdata->pScript + Ent_SendMessageWithATN;
842 }
843 break;
844
845 case A_WDTR_MSG:
846 printk(KERN_INFO "scsi%d: (%d:%d), Unsolicited WDTR after CMD, Rejecting\n",
847 host->host_no, pun, lun);
848 hostdata->msgout[0] = A_REJECT_MSG;
849 dma_sync_to_dev(hostdata, hostdata->msgout, 1);
850 script_patch_16(hostdata, hostdata->script, MessageCount, 1);
851 resume_offset = hostdata->pScript + Ent_SendMessageWithATN;
852
853 break;
854
855 default:
856 printk(KERN_INFO "scsi%d (%d:%d): Unexpected message %s: ",
857 host->host_no, pun, lun,
858 NCR_700_phase[(dsps & 0xf00) >> 8]);
859 spi_print_msg(hostdata->msgin);
860 printk("\n");
861 /* just reject it */
862 hostdata->msgout[0] = A_REJECT_MSG;
863 dma_sync_to_dev(hostdata, hostdata->msgout, 1);
864 script_patch_16(hostdata, hostdata->script, MessageCount, 1);
865 /* SendMsgOut returns, so set up the return
866 * address */
867 resume_offset = hostdata->pScript + Ent_SendMessageWithATN;
868 }
869 NCR_700_writel(temp, host, TEMP_REG);
870 return resume_offset;
871}
872
873STATIC __u32
874process_message(struct Scsi_Host *host, struct NCR_700_Host_Parameters *hostdata,
875 struct scsi_cmnd *SCp, __u32 dsp, __u32 dsps)
876{
877 /* work out where to return to */
878 __u32 temp = dsp + 8, resume_offset = dsp;
879 __u8 pun = 0xff, lun = 0xff;
880
881 if(SCp != NULL) {
882 pun = SCp->device->id;
883 lun = SCp->device->lun;
884 }
885
886#ifdef NCR_700_DEBUG
887 printk("scsi%d (%d:%d): message %s: ", host->host_no, pun, lun,
888 NCR_700_phase[(dsps & 0xf00) >> 8]);
889 spi_print_msg(hostdata->msgin);
890 printk("\n");
891#endif
892
893 switch(hostdata->msgin[0]) {
894
895 case A_EXTENDED_MSG:
896 resume_offset = process_extended_message(host, hostdata, SCp,
897 dsp, dsps);
898 break;
899
900 case A_REJECT_MSG:
901 if(SCp != NULL && NCR_700_is_flag_set(SCp->device, NCR_700_DEV_BEGIN_SYNC_NEGOTIATION)) {
902 /* Rejected our sync negotiation attempt */
903 spi_period(SCp->device->sdev_target) =
904 spi_offset(SCp->device->sdev_target) = 0;
905 NCR_700_set_flag(SCp->device, NCR_700_DEV_NEGOTIATED_SYNC);
906 NCR_700_clear_flag(SCp->device, NCR_700_DEV_BEGIN_SYNC_NEGOTIATION);
907 } else if(SCp != NULL && NCR_700_get_tag_neg_state(SCp->device) == NCR_700_DURING_TAG_NEGOTIATION) {
908 /* rejected our first simple tag message */
909 scmd_printk(KERN_WARNING, SCp,
910 "Rejected first tag queue attempt, turning off tag queueing\n");
911 /* we're done negotiating */
912 NCR_700_set_tag_neg_state(SCp->device, NCR_700_FINISHED_TAG_NEGOTIATION);
913 hostdata->tag_negotiated &= ~(1<<scmd_id(SCp));
914
915 SCp->device->tagged_supported = 0;
916 SCp->device->simple_tags = 0;
917 scsi_change_queue_depth(SCp->device, host->cmd_per_lun);
918 } else {
919 shost_printk(KERN_WARNING, host,
920 "(%d:%d) Unexpected REJECT Message %s\n",
921 pun, lun,
922 NCR_700_phase[(dsps & 0xf00) >> 8]);
923 /* however, just ignore it */
924 }
925 break;
926
927 case A_PARITY_ERROR_MSG:
928 printk(KERN_ERR "scsi%d (%d:%d) Parity Error!\n", host->host_no,
929 pun, lun);
930 NCR_700_internal_bus_reset(host);
931 break;
932 case A_SIMPLE_TAG_MSG:
933 printk(KERN_INFO "scsi%d (%d:%d) SIMPLE TAG %d %s\n", host->host_no,
934 pun, lun, hostdata->msgin[1],
935 NCR_700_phase[(dsps & 0xf00) >> 8]);
936 /* just ignore it */
937 break;
938 default:
939 printk(KERN_INFO "scsi%d (%d:%d): Unexpected message %s: ",
940 host->host_no, pun, lun,
941 NCR_700_phase[(dsps & 0xf00) >> 8]);
942
943 spi_print_msg(hostdata->msgin);
944 printk("\n");
945 /* just reject it */
946 hostdata->msgout[0] = A_REJECT_MSG;
947 dma_sync_to_dev(hostdata, hostdata->msgout, 1);
948 script_patch_16(hostdata, hostdata->script, MessageCount, 1);
949 /* SendMsgOut returns, so set up the return
950 * address */
951 resume_offset = hostdata->pScript + Ent_SendMessageWithATN;
952
953 break;
954 }
955 NCR_700_writel(temp, host, TEMP_REG);
956 /* set us up to receive another message */
957 dma_sync_from_dev(hostdata, hostdata->msgin, MSG_ARRAY_SIZE);
958 return resume_offset;
959}
960
961STATIC __u32
962process_script_interrupt(__u32 dsps, __u32 dsp, struct scsi_cmnd *SCp,
963 struct Scsi_Host *host,
964 struct NCR_700_Host_Parameters *hostdata)
965{
966 __u32 resume_offset = 0;
967 __u8 pun = 0xff, lun=0xff;
968
969 if(SCp != NULL) {
970 pun = SCp->device->id;
971 lun = SCp->device->lun;
972 }
973
974 if(dsps == A_GOOD_STATUS_AFTER_STATUS) {
975 DEBUG((" COMMAND COMPLETE, status=%02x\n",
976 hostdata->status[0]));
977 /* OK, if TCQ still under negotiation, we now know it works */
978 if (NCR_700_get_tag_neg_state(SCp->device) == NCR_700_DURING_TAG_NEGOTIATION)
979 NCR_700_set_tag_neg_state(SCp->device,
980 NCR_700_FINISHED_TAG_NEGOTIATION);
981
982 /* check for contingent allegiance conditions */
983 if (hostdata->status[0] == SAM_STAT_CHECK_CONDITION ||
984 hostdata->status[0] == SAM_STAT_COMMAND_TERMINATED) {
985 struct NCR_700_command_slot *slot =
986 (struct NCR_700_command_slot *)SCp->host_scribble;
987 if(slot->flags == NCR_700_FLAG_AUTOSENSE) {
988 /* OOPS: bad device, returning another
989 * contingent allegiance condition */
990 scmd_printk(KERN_ERR, SCp,
991 "broken device is looping in contingent allegiance: ignoring\n");
992 NCR_700_scsi_done(hostdata, SCp, hostdata->status[0]);
993 } else {
994 char *cmnd =
995 NCR_700_get_sense_cmnd(SCp->device);
996#ifdef NCR_DEBUG
997 scsi_print_command(SCp);
998 printk(" cmd %p has status %d, requesting sense\n",
999 SCp, hostdata->status[0]);
1000#endif
1001 /* we can destroy the command here
1002 * because the contingent allegiance
1003 * condition will cause a retry which
1004 * will re-copy the command from the
1005 * saved data_cmnd. We also unmap any
1006 * data associated with the command
1007 * here */
1008 NCR_700_unmap(hostdata, SCp, slot);
1009 dma_unmap_single(hostdata->dev, slot->pCmd,
1010 MAX_COMMAND_SIZE,
1011 DMA_TO_DEVICE);
1012
1013 cmnd[0] = REQUEST_SENSE;
1014 cmnd[1] = (lun & 0x7) << 5;
1015 cmnd[2] = 0;
1016 cmnd[3] = 0;
1017 cmnd[4] = SCSI_SENSE_BUFFERSIZE;
1018 cmnd[5] = 0;
1019 /* Here's a quiet hack: the
1020 * REQUEST_SENSE command is six bytes,
1021 * so store a flag indicating that
1022 * this was an internal sense request
1023 * and the original status at the end
1024 * of the command */
1025 cmnd[6] = NCR_700_INTERNAL_SENSE_MAGIC;
1026 cmnd[7] = hostdata->status[0];
1027 cmnd[8] = SCp->cmd_len;
1028 SCp->cmd_len = 6; /* command length for
1029 * REQUEST_SENSE */
1030 slot->pCmd = dma_map_single(hostdata->dev, cmnd, MAX_COMMAND_SIZE, DMA_TO_DEVICE);
1031 slot->dma_handle = dma_map_single(hostdata->dev, SCp->sense_buffer, SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE);
1032 slot->SG[0].ins = bS_to_host(SCRIPT_MOVE_DATA_IN | SCSI_SENSE_BUFFERSIZE);
1033 slot->SG[0].pAddr = bS_to_host(slot->dma_handle);
1034 slot->SG[1].ins = bS_to_host(SCRIPT_RETURN);
1035 slot->SG[1].pAddr = 0;
1036 slot->resume_offset = hostdata->pScript;
1037 dma_sync_to_dev(hostdata, slot->SG, sizeof(slot->SG[0])*2);
1038 dma_sync_from_dev(hostdata, SCp->sense_buffer, SCSI_SENSE_BUFFERSIZE);
1039
1040 /* queue the command for reissue */
1041 slot->state = NCR_700_SLOT_QUEUED;
1042 slot->flags = NCR_700_FLAG_AUTOSENSE;
1043 hostdata->state = NCR_700_HOST_FREE;
1044 hostdata->cmd = NULL;
1045 }
1046 } else {
1047 // Currently rely on the mid layer evaluation
1048 // of the tag queuing capability
1049 //
1050 //if(status_byte(hostdata->status[0]) == GOOD &&
1051 // SCp->cmnd[0] == INQUIRY && SCp->use_sg == 0) {
1052 // /* Piggy back the tag queueing support
1053 // * on this command */
1054 // dma_sync_single_for_cpu(hostdata->dev,
1055 // slot->dma_handle,
1056 // SCp->request_bufflen,
1057 // DMA_FROM_DEVICE);
1058 // if(((char *)SCp->request_buffer)[7] & 0x02) {
1059 // scmd_printk(KERN_INFO, SCp,
1060 // "Enabling Tag Command Queuing\n");
1061 // hostdata->tag_negotiated |= (1<<scmd_id(SCp));
1062 // NCR_700_set_flag(SCp->device, NCR_700_DEV_BEGIN_TAG_QUEUEING);
1063 // } else {
1064 // NCR_700_clear_flag(SCp->device, NCR_700_DEV_BEGIN_TAG_QUEUEING);
1065 // hostdata->tag_negotiated &= ~(1<<scmd_id(SCp));
1066 // }
1067 //}
1068 NCR_700_scsi_done(hostdata, SCp, hostdata->status[0]);
1069 }
1070 } else if((dsps & 0xfffff0f0) == A_UNEXPECTED_PHASE) {
1071 __u8 i = (dsps & 0xf00) >> 8;
1072
1073 scmd_printk(KERN_ERR, SCp, "UNEXPECTED PHASE %s (%s)\n",
1074 NCR_700_phase[i],
1075 sbcl_to_string(NCR_700_readb(host, SBCL_REG)));
1076 scmd_printk(KERN_ERR, SCp, " len = %d, cmd =",
1077 SCp->cmd_len);
1078 scsi_print_command(SCp);
1079
1080 NCR_700_internal_bus_reset(host);
1081 } else if((dsps & 0xfffff000) == A_FATAL) {
1082 int i = (dsps & 0xfff);
1083
1084 printk(KERN_ERR "scsi%d: (%d:%d) FATAL ERROR: %s\n",
1085 host->host_no, pun, lun, NCR_700_fatal_messages[i]);
1086 if(dsps == A_FATAL_ILLEGAL_MSG_LENGTH) {
1087 printk(KERN_ERR " msg begins %02x %02x\n",
1088 hostdata->msgin[0], hostdata->msgin[1]);
1089 }
1090 NCR_700_internal_bus_reset(host);
1091 } else if((dsps & 0xfffff0f0) == A_DISCONNECT) {
1092#ifdef NCR_700_DEBUG
1093 __u8 i = (dsps & 0xf00) >> 8;
1094
1095 printk("scsi%d: (%d:%d), DISCONNECTED (%d) %s\n",
1096 host->host_no, pun, lun,
1097 i, NCR_700_phase[i]);
1098#endif
1099 save_for_reselection(hostdata, SCp, dsp);
1100
1101 } else if(dsps == A_RESELECTION_IDENTIFIED) {
1102 __u8 lun;
1103 struct NCR_700_command_slot *slot;
1104 __u8 reselection_id = hostdata->reselection_id;
1105 struct scsi_device *SDp;
1106
1107 lun = hostdata->msgin[0] & 0x1f;
1108
1109 hostdata->reselection_id = 0xff;
1110 DEBUG(("scsi%d: (%d:%d) RESELECTED!\n",
1111 host->host_no, reselection_id, lun));
1112 /* clear the reselection indicator */
1113 SDp = __scsi_device_lookup(host, 0, reselection_id, lun);
1114 if(unlikely(SDp == NULL)) {
1115 printk(KERN_ERR "scsi%d: (%d:%d) HAS NO device\n",
1116 host->host_no, reselection_id, lun);
1117 BUG();
1118 }
1119 if(hostdata->msgin[1] == A_SIMPLE_TAG_MSG) {
1120 struct scsi_cmnd *SCp;
1121
1122 SCp = scsi_host_find_tag(SDp->host, hostdata->msgin[2]);
1123 if(unlikely(SCp == NULL)) {
1124 printk(KERN_ERR "scsi%d: (%d:%d) no saved request for tag %d\n",
1125 host->host_no, reselection_id, lun, hostdata->msgin[2]);
1126 BUG();
1127 }
1128
1129 slot = (struct NCR_700_command_slot *)SCp->host_scribble;
1130 DDEBUG(KERN_DEBUG, SDp,
1131 "reselection is tag %d, slot %p(%d)\n",
1132 hostdata->msgin[2], slot, slot->tag);
1133 } else {
1134 struct NCR_700_Device_Parameters *p = SDp->hostdata;
1135 struct scsi_cmnd *SCp = p->current_cmnd;
1136
1137 if(unlikely(SCp == NULL)) {
1138 sdev_printk(KERN_ERR, SDp,
1139 "no saved request for untagged cmd\n");
1140 BUG();
1141 }
1142 slot = (struct NCR_700_command_slot *)SCp->host_scribble;
1143 }
1144
1145 if(slot == NULL) {
1146 printk(KERN_ERR "scsi%d: (%d:%d) RESELECTED but no saved command (MSG = %02x %02x %02x)!!\n",
1147 host->host_no, reselection_id, lun,
1148 hostdata->msgin[0], hostdata->msgin[1],
1149 hostdata->msgin[2]);
1150 } else {
1151 if(hostdata->state != NCR_700_HOST_BUSY)
1152 printk(KERN_ERR "scsi%d: FATAL, host not busy during valid reselection!\n",
1153 host->host_no);
1154 resume_offset = slot->resume_offset;
1155 hostdata->cmd = slot->cmnd;
1156
1157 /* re-patch for this command */
1158 script_patch_32_abs(hostdata, hostdata->script,
1159 CommandAddress, slot->pCmd);
1160 script_patch_16(hostdata, hostdata->script,
1161 CommandCount, slot->cmnd->cmd_len);
1162 script_patch_32_abs(hostdata, hostdata->script,
1163 SGScriptStartAddress,
1164 to32bit(&slot->pSG[0].ins));
1165
1166 /* Note: setting SXFER only works if we're
1167 * still in the MESSAGE phase, so it is vital
1168 * that ACK is still asserted when we process
1169 * the reselection message. The resume offset
1170 * should therefore always clear ACK */
1171 NCR_700_writeb(NCR_700_get_SXFER(hostdata->cmd->device),
1172 host, SXFER_REG);
1173 dma_sync_from_dev(hostdata, hostdata->msgin,
1174 MSG_ARRAY_SIZE);
1175 dma_sync_to_dev(hostdata, hostdata->msgout,
1176 MSG_ARRAY_SIZE);
1177 /* I'm just being paranoid here, the command should
1178 * already have been flushed from the cache */
1179 dma_sync_to_dev(hostdata, slot->cmnd->cmnd,
1180 slot->cmnd->cmd_len);
1181
1182
1183
1184 }
1185 } else if(dsps == A_RESELECTED_DURING_SELECTION) {
1186
1187 /* This section is full of debugging code because I've
1188 * never managed to reach it. I think what happens is
1189 * that, because the 700 runs with selection
1190 * interrupts enabled the whole time that we take a
1191 * selection interrupt before we manage to get to the
1192 * reselected script interrupt */
1193
1194 __u8 reselection_id = NCR_700_readb(host, SFBR_REG);
1195 struct NCR_700_command_slot *slot;
1196
1197 /* Take out our own ID */
1198 reselection_id &= ~(1<<host->this_id);
1199
1200 /* I've never seen this happen, so keep this as a printk rather
1201 * than a debug */
1202 printk(KERN_INFO "scsi%d: (%d:%d) RESELECTION DURING SELECTION, dsp=%08x[%04x] state=%d, count=%d\n",
1203 host->host_no, reselection_id, lun, dsp, dsp - hostdata->pScript, hostdata->state, hostdata->command_slot_count);
1204
1205 {
1206 /* FIXME: DEBUGGING CODE */
1207 __u32 SG = (__u32)bS_to_cpu(hostdata->script[A_SGScriptStartAddress_used[0]]);
1208 int i;
1209
1210 for(i=0; i< NCR_700_COMMAND_SLOTS_PER_HOST; i++) {
1211 if(SG >= to32bit(&hostdata->slots[i].pSG[0])
1212 && SG <= to32bit(&hostdata->slots[i].pSG[NCR_700_SG_SEGMENTS]))
1213 break;
1214 }
1215 printk(KERN_INFO "IDENTIFIED SG segment as being %08x in slot %p, cmd %p, slot->resume_offset=%08x\n", SG, &hostdata->slots[i], hostdata->slots[i].cmnd, hostdata->slots[i].resume_offset);
1216 SCp = hostdata->slots[i].cmnd;
1217 }
1218
1219 if(SCp != NULL) {
1220 slot = (struct NCR_700_command_slot *)SCp->host_scribble;
1221 /* change slot from busy to queued to redo command */
1222 slot->state = NCR_700_SLOT_QUEUED;
1223 }
1224 hostdata->cmd = NULL;
1225
1226 if(reselection_id == 0) {
1227 if(hostdata->reselection_id == 0xff) {
1228 printk(KERN_ERR "scsi%d: Invalid reselection during selection!!\n", host->host_no);
1229 return 0;
1230 } else {
1231 printk(KERN_ERR "scsi%d: script reselected and we took a selection interrupt\n",
1232 host->host_no);
1233 reselection_id = hostdata->reselection_id;
1234 }
1235 } else {
1236
1237 /* convert to real ID */
1238 reselection_id = bitmap_to_number(reselection_id);
1239 }
1240 hostdata->reselection_id = reselection_id;
1241 /* just in case we have a stale simple tag message, clear it */
1242 hostdata->msgin[1] = 0;
1243 dma_sync_to_dev(hostdata, hostdata->msgin, MSG_ARRAY_SIZE);
1244 if(hostdata->tag_negotiated & (1<<reselection_id)) {
1245 resume_offset = hostdata->pScript + Ent_GetReselectionWithTag;
1246 } else {
1247 resume_offset = hostdata->pScript + Ent_GetReselectionData;
1248 }
1249 } else if(dsps == A_COMPLETED_SELECTION_AS_TARGET) {
1250 /* we've just disconnected from the bus, do nothing since
1251 * a return here will re-run the queued command slot
1252 * that may have been interrupted by the initial selection */
1253 DEBUG((" SELECTION COMPLETED\n"));
1254 } else if((dsps & 0xfffff0f0) == A_MSG_IN) {
1255 resume_offset = process_message(host, hostdata, SCp,
1256 dsp, dsps);
1257 } else if((dsps & 0xfffff000) == 0) {
1258 __u8 i = (dsps & 0xf0) >> 4, j = (dsps & 0xf00) >> 8;
1259 printk(KERN_ERR "scsi%d: (%d:%d), unhandled script condition %s %s at %04x\n",
1260 host->host_no, pun, lun, NCR_700_condition[i],
1261 NCR_700_phase[j], dsp - hostdata->pScript);
1262 if(SCp != NULL) {
1263 struct scatterlist *sg;
1264
1265 scsi_print_command(SCp);
1266 scsi_for_each_sg(SCp, sg, scsi_sg_count(SCp) + 1, i) {
1267 printk(KERN_INFO " SG[%d].length = %d, move_insn=%08x, addr %08x\n", i, sg->length, ((struct NCR_700_command_slot *)SCp->host_scribble)->SG[i].ins, ((struct NCR_700_command_slot *)SCp->host_scribble)->SG[i].pAddr);
1268 }
1269 }
1270 NCR_700_internal_bus_reset(host);
1271 } else if((dsps & 0xfffff000) == A_DEBUG_INTERRUPT) {
1272 printk(KERN_NOTICE "scsi%d (%d:%d) DEBUG INTERRUPT %d AT %08x[%04x], continuing\n",
1273 host->host_no, pun, lun, dsps & 0xfff, dsp, dsp - hostdata->pScript);
1274 resume_offset = dsp;
1275 } else {
1276 printk(KERN_ERR "scsi%d: (%d:%d), unidentified script interrupt 0x%x at %04x\n",
1277 host->host_no, pun, lun, dsps, dsp - hostdata->pScript);
1278 NCR_700_internal_bus_reset(host);
1279 }
1280 return resume_offset;
1281}
1282
1283/* We run the 53c700 with selection interrupts always enabled. This
1284 * means that the chip may be selected as soon as the bus frees. On a
1285 * busy bus, this can be before the scripts engine finishes its
1286 * processing. Therefore, part of the selection processing has to be
1287 * to find out what the scripts engine is doing and complete the
1288 * function if necessary (i.e. process the pending disconnect or save
1289 * the interrupted initial selection */
1290STATIC inline __u32
1291process_selection(struct Scsi_Host *host, __u32 dsp)
1292{
1293 __u8 id = 0; /* Squash compiler warning */
1294 int count = 0;
1295 __u32 resume_offset = 0;
1296 struct NCR_700_Host_Parameters *hostdata =
1297 (struct NCR_700_Host_Parameters *)host->hostdata[0];
1298 struct scsi_cmnd *SCp = hostdata->cmd;
1299 __u8 sbcl;
1300
1301 for(count = 0; count < 5; count++) {
1302 id = NCR_700_readb(host, hostdata->chip710 ?
1303 CTEST9_REG : SFBR_REG);
1304
1305 /* Take out our own ID */
1306 id &= ~(1<<host->this_id);
1307 if(id != 0)
1308 break;
1309 udelay(5);
1310 }
1311 sbcl = NCR_700_readb(host, SBCL_REG);
1312 if((sbcl & SBCL_IO) == 0) {
1313 /* mark as having been selected rather than reselected */
1314 id = 0xff;
1315 } else {
1316 /* convert to real ID */
1317 hostdata->reselection_id = id = bitmap_to_number(id);
1318 DEBUG(("scsi%d: Reselected by %d\n",
1319 host->host_no, id));
1320 }
1321 if(hostdata->state == NCR_700_HOST_BUSY && SCp != NULL) {
1322 struct NCR_700_command_slot *slot =
1323 (struct NCR_700_command_slot *)SCp->host_scribble;
1324 DEBUG((" ID %d WARNING: RESELECTION OF BUSY HOST, saving cmd %p, slot %p, addr %x [%04x], resume %x!\n", id, hostdata->cmd, slot, dsp, dsp - hostdata->pScript, resume_offset));
1325
1326 switch(dsp - hostdata->pScript) {
1327 case Ent_Disconnect1:
1328 case Ent_Disconnect2:
1329 save_for_reselection(hostdata, SCp, Ent_Disconnect2 + hostdata->pScript);
1330 break;
1331 case Ent_Disconnect3:
1332 case Ent_Disconnect4:
1333 save_for_reselection(hostdata, SCp, Ent_Disconnect4 + hostdata->pScript);
1334 break;
1335 case Ent_Disconnect5:
1336 case Ent_Disconnect6:
1337 save_for_reselection(hostdata, SCp, Ent_Disconnect6 + hostdata->pScript);
1338 break;
1339 case Ent_Disconnect7:
1340 case Ent_Disconnect8:
1341 save_for_reselection(hostdata, SCp, Ent_Disconnect8 + hostdata->pScript);
1342 break;
1343 case Ent_Finish1:
1344 case Ent_Finish2:
1345 process_script_interrupt(A_GOOD_STATUS_AFTER_STATUS, dsp, SCp, host, hostdata);
1346 break;
1347
1348 default:
1349 slot->state = NCR_700_SLOT_QUEUED;
1350 break;
1351 }
1352 }
1353 hostdata->state = NCR_700_HOST_BUSY;
1354 hostdata->cmd = NULL;
1355 /* clear any stale simple tag message */
1356 hostdata->msgin[1] = 0;
1357 dma_sync_to_dev(hostdata, hostdata->msgin, MSG_ARRAY_SIZE);
1358
1359 if(id == 0xff) {
1360 /* Selected as target, Ignore */
1361 resume_offset = hostdata->pScript + Ent_SelectedAsTarget;
1362 } else if(hostdata->tag_negotiated & (1<<id)) {
1363 resume_offset = hostdata->pScript + Ent_GetReselectionWithTag;
1364 } else {
1365 resume_offset = hostdata->pScript + Ent_GetReselectionData;
1366 }
1367 return resume_offset;
1368}
1369
1370static inline void
1371NCR_700_clear_fifo(struct Scsi_Host *host) {
1372 const struct NCR_700_Host_Parameters *hostdata
1373 = (struct NCR_700_Host_Parameters *)host->hostdata[0];
1374 if(hostdata->chip710) {
1375 NCR_700_writeb(CLR_FIFO_710, host, CTEST8_REG);
1376 } else {
1377 NCR_700_writeb(CLR_FIFO, host, DFIFO_REG);
1378 }
1379}
1380
1381static inline void
1382NCR_700_flush_fifo(struct Scsi_Host *host) {
1383 const struct NCR_700_Host_Parameters *hostdata
1384 = (struct NCR_700_Host_Parameters *)host->hostdata[0];
1385 if(hostdata->chip710) {
1386 NCR_700_writeb(FLUSH_DMA_FIFO_710, host, CTEST8_REG);
1387 udelay(10);
1388 NCR_700_writeb(0, host, CTEST8_REG);
1389 } else {
1390 NCR_700_writeb(FLUSH_DMA_FIFO, host, DFIFO_REG);
1391 udelay(10);
1392 NCR_700_writeb(0, host, DFIFO_REG);
1393 }
1394}
1395
1396
1397/* The queue lock with interrupts disabled must be held on entry to
1398 * this function */
1399STATIC int
1400NCR_700_start_command(struct scsi_cmnd *SCp)
1401{
1402 struct NCR_700_command_slot *slot =
1403 (struct NCR_700_command_slot *)SCp->host_scribble;
1404 struct NCR_700_Host_Parameters *hostdata =
1405 (struct NCR_700_Host_Parameters *)SCp->device->host->hostdata[0];
1406 __u16 count = 1; /* for IDENTIFY message */
1407 u8 lun = SCp->device->lun;
1408
1409 if(hostdata->state != NCR_700_HOST_FREE) {
1410 /* keep this inside the lock to close the race window where
1411 * the running command finishes on another CPU while we don't
1412 * change the state to queued on this one */
1413 slot->state = NCR_700_SLOT_QUEUED;
1414
1415 DEBUG(("scsi%d: host busy, queueing command %p, slot %p\n",
1416 SCp->device->host->host_no, slot->cmnd, slot));
1417 return 0;
1418 }
1419 hostdata->state = NCR_700_HOST_BUSY;
1420 hostdata->cmd = SCp;
1421 slot->state = NCR_700_SLOT_BUSY;
1422 /* keep interrupts disabled until we have the command correctly
1423 * set up so we cannot take a selection interrupt */
1424
1425 hostdata->msgout[0] = NCR_700_identify((SCp->cmnd[0] != REQUEST_SENSE &&
1426 slot->flags != NCR_700_FLAG_AUTOSENSE),
1427 lun);
1428 /* for INQUIRY or REQUEST_SENSE commands, we cannot be sure
1429 * if the negotiated transfer parameters still hold, so
1430 * always renegotiate them */
1431 if(SCp->cmnd[0] == INQUIRY || SCp->cmnd[0] == REQUEST_SENSE ||
1432 slot->flags == NCR_700_FLAG_AUTOSENSE) {
1433 NCR_700_clear_flag(SCp->device, NCR_700_DEV_NEGOTIATED_SYNC);
1434 }
1435
1436 /* REQUEST_SENSE is asking for contingent I_T_L(_Q) status.
1437 * If a contingent allegiance condition exists, the device
1438 * will refuse all tags, so send the request sense as untagged
1439 * */
1440 if((hostdata->tag_negotiated & (1<<scmd_id(SCp)))
1441 && (slot->tag != SCSI_NO_TAG && SCp->cmnd[0] != REQUEST_SENSE &&
1442 slot->flags != NCR_700_FLAG_AUTOSENSE)) {
1443 count += spi_populate_tag_msg(&hostdata->msgout[count], SCp);
1444 }
1445
1446 if(hostdata->fast &&
1447 NCR_700_is_flag_clear(SCp->device, NCR_700_DEV_NEGOTIATED_SYNC)) {
1448 count += spi_populate_sync_msg(&hostdata->msgout[count],
1449 spi_period(SCp->device->sdev_target),
1450 spi_offset(SCp->device->sdev_target));
1451 NCR_700_set_flag(SCp->device, NCR_700_DEV_BEGIN_SYNC_NEGOTIATION);
1452 }
1453
1454 script_patch_16(hostdata, hostdata->script, MessageCount, count);
1455
1456 script_patch_ID(hostdata, hostdata->script, Device_ID, 1<<scmd_id(SCp));
1457
1458 script_patch_32_abs(hostdata, hostdata->script, CommandAddress,
1459 slot->pCmd);
1460 script_patch_16(hostdata, hostdata->script, CommandCount, SCp->cmd_len);
1461 /* finally plumb the beginning of the SG list into the script
1462 * */
1463 script_patch_32_abs(hostdata, hostdata->script,
1464 SGScriptStartAddress, to32bit(&slot->pSG[0].ins));
1465 NCR_700_clear_fifo(SCp->device->host);
1466
1467 if(slot->resume_offset == 0)
1468 slot->resume_offset = hostdata->pScript;
1469 /* now perform all the writebacks and invalidates */
1470 dma_sync_to_dev(hostdata, hostdata->msgout, count);
1471 dma_sync_from_dev(hostdata, hostdata->msgin, MSG_ARRAY_SIZE);
1472 dma_sync_to_dev(hostdata, SCp->cmnd, SCp->cmd_len);
1473 dma_sync_from_dev(hostdata, hostdata->status, 1);
1474
1475 /* set the synchronous period/offset */
1476 NCR_700_writeb(NCR_700_get_SXFER(SCp->device),
1477 SCp->device->host, SXFER_REG);
1478 NCR_700_writel(slot->temp, SCp->device->host, TEMP_REG);
1479 NCR_700_writel(slot->resume_offset, SCp->device->host, DSP_REG);
1480
1481 return 1;
1482}
1483
1484irqreturn_t
1485NCR_700_intr(int irq, void *dev_id)
1486{
1487 struct Scsi_Host *host = (struct Scsi_Host *)dev_id;
1488 struct NCR_700_Host_Parameters *hostdata =
1489 (struct NCR_700_Host_Parameters *)host->hostdata[0];
1490 __u8 istat;
1491 __u32 resume_offset = 0;
1492 __u8 pun = 0xff, lun = 0xff;
1493 unsigned long flags;
1494 int handled = 0;
1495
1496 /* Use the host lock to serialise access to the 53c700
1497 * hardware. Note: In future, we may need to take the queue
1498 * lock to enter the done routines. When that happens, we
1499 * need to ensure that for this driver, the host lock and the
1500 * queue lock point to the same thing. */
1501 spin_lock_irqsave(host->host_lock, flags);
1502 if((istat = NCR_700_readb(host, ISTAT_REG))
1503 & (SCSI_INT_PENDING | DMA_INT_PENDING)) {
1504 __u32 dsps;
1505 __u8 sstat0 = 0, dstat = 0;
1506 __u32 dsp;
1507 struct scsi_cmnd *SCp = hostdata->cmd;
1508
1509 handled = 1;
1510
1511 if(istat & SCSI_INT_PENDING) {
1512 udelay(10);
1513
1514 sstat0 = NCR_700_readb(host, SSTAT0_REG);
1515 }
1516
1517 if(istat & DMA_INT_PENDING) {
1518 udelay(10);
1519
1520 dstat = NCR_700_readb(host, DSTAT_REG);
1521 }
1522
1523 dsps = NCR_700_readl(host, DSPS_REG);
1524 dsp = NCR_700_readl(host, DSP_REG);
1525
1526 DEBUG(("scsi%d: istat %02x sstat0 %02x dstat %02x dsp %04x[%08x] dsps 0x%x\n",
1527 host->host_no, istat, sstat0, dstat,
1528 (dsp - (__u32)(hostdata->pScript))/4,
1529 dsp, dsps));
1530
1531 if(SCp != NULL) {
1532 pun = SCp->device->id;
1533 lun = SCp->device->lun;
1534 }
1535
1536 if(sstat0 & SCSI_RESET_DETECTED) {
1537 struct scsi_device *SDp;
1538 int i;
1539
1540 hostdata->state = NCR_700_HOST_BUSY;
1541
1542 printk(KERN_ERR "scsi%d: Bus Reset detected, executing command %p, slot %p, dsp %08x[%04x]\n",
1543 host->host_no, SCp, SCp == NULL ? NULL : SCp->host_scribble, dsp, dsp - hostdata->pScript);
1544
1545 scsi_report_bus_reset(host, 0);
1546
1547 /* clear all the negotiated parameters */
1548 __shost_for_each_device(SDp, host)
1549 NCR_700_clear_flag(SDp, ~0);
1550
1551 /* clear all the slots and their pending commands */
1552 for(i = 0; i < NCR_700_COMMAND_SLOTS_PER_HOST; i++) {
1553 struct scsi_cmnd *SCp;
1554 struct NCR_700_command_slot *slot =
1555 &hostdata->slots[i];
1556
1557 if(slot->state == NCR_700_SLOT_FREE)
1558 continue;
1559
1560 SCp = slot->cmnd;
1561 printk(KERN_ERR " failing command because of reset, slot %p, cmnd %p\n",
1562 slot, SCp);
1563 free_slot(slot, hostdata);
1564 SCp->host_scribble = NULL;
1565 NCR_700_set_depth(SCp->device, 0);
1566 /* NOTE: deadlock potential here: we
1567 * rely on mid-layer guarantees that
1568 * scsi_done won't try to issue the
1569 * command again otherwise we'll
1570 * deadlock on the
1571 * hostdata->state_lock */
1572 SCp->result = DID_RESET << 16;
1573 scsi_done(SCp);
1574 }
1575 mdelay(25);
1576 NCR_700_chip_setup(host);
1577
1578 hostdata->state = NCR_700_HOST_FREE;
1579 hostdata->cmd = NULL;
1580 /* signal back if this was an eh induced reset */
1581 if(hostdata->eh_complete != NULL)
1582 complete(hostdata->eh_complete);
1583 goto out_unlock;
1584 } else if(sstat0 & SELECTION_TIMEOUT) {
1585 DEBUG(("scsi%d: (%d:%d) selection timeout\n",
1586 host->host_no, pun, lun));
1587 NCR_700_scsi_done(hostdata, SCp, DID_NO_CONNECT<<16);
1588 } else if(sstat0 & PHASE_MISMATCH) {
1589 struct NCR_700_command_slot *slot = (SCp == NULL) ? NULL :
1590 (struct NCR_700_command_slot *)SCp->host_scribble;
1591
1592 if(dsp == Ent_SendMessage + 8 + hostdata->pScript) {
1593 /* It wants to reply to some part of
1594 * our message */
1595#ifdef NCR_700_DEBUG
1596 __u32 temp = NCR_700_readl(host, TEMP_REG);
1597 int count = (hostdata->script[Ent_SendMessage/4] & 0xffffff) - ((NCR_700_readl(host, DBC_REG) & 0xffffff) + NCR_700_data_residual(host));
1598 printk("scsi%d (%d:%d) PHASE MISMATCH IN SEND MESSAGE %d remain, return %p[%04x], phase %s\n", host->host_no, pun, lun, count, (void *)temp, temp - hostdata->pScript, sbcl_to_string(NCR_700_readb(host, SBCL_REG)));
1599#endif
1600 resume_offset = hostdata->pScript + Ent_SendMessagePhaseMismatch;
1601 } else if (slot && dsp >= to32bit(&slot->pSG[0].ins) &&
1602 dsp <= to32bit(&slot->pSG[NCR_700_SG_SEGMENTS].ins)) {
1603 int data_transfer = NCR_700_readl(host, DBC_REG) & 0xffffff;
1604 int SGcount = (dsp - to32bit(&slot->pSG[0].ins))/sizeof(struct NCR_700_SG_List);
1605 int residual = NCR_700_data_residual(host);
1606 int i;
1607#ifdef NCR_700_DEBUG
1608 __u32 naddr = NCR_700_readl(host, DNAD_REG);
1609
1610 printk("scsi%d: (%d:%d) Expected phase mismatch in slot->SG[%d], transferred 0x%x\n",
1611 host->host_no, pun, lun,
1612 SGcount, data_transfer);
1613 scsi_print_command(SCp);
1614 if(residual) {
1615 printk("scsi%d: (%d:%d) Expected phase mismatch in slot->SG[%d], transferred 0x%x, residual %d\n",
1616 host->host_no, pun, lun,
1617 SGcount, data_transfer, residual);
1618 }
1619#endif
1620 data_transfer += residual;
1621
1622 if(data_transfer != 0) {
1623 int count;
1624 __u32 pAddr;
1625
1626 SGcount--;
1627
1628 count = (bS_to_cpu(slot->SG[SGcount].ins) & 0x00ffffff);
1629 DEBUG(("DATA TRANSFER MISMATCH, count = %d, transferred %d\n", count, count-data_transfer));
1630 slot->SG[SGcount].ins &= bS_to_host(0xff000000);
1631 slot->SG[SGcount].ins |= bS_to_host(data_transfer);
1632 pAddr = bS_to_cpu(slot->SG[SGcount].pAddr);
1633 pAddr += (count - data_transfer);
1634#ifdef NCR_700_DEBUG
1635 if(pAddr != naddr) {
1636 printk("scsi%d (%d:%d) transfer mismatch pAddr=%lx, naddr=%lx, data_transfer=%d, residual=%d\n", host->host_no, pun, lun, (unsigned long)pAddr, (unsigned long)naddr, data_transfer, residual);
1637 }
1638#endif
1639 slot->SG[SGcount].pAddr = bS_to_host(pAddr);
1640 }
1641 /* set the executed moves to nops */
1642 for(i=0; i<SGcount; i++) {
1643 slot->SG[i].ins = bS_to_host(SCRIPT_NOP);
1644 slot->SG[i].pAddr = 0;
1645 }
1646 dma_sync_to_dev(hostdata, slot->SG, sizeof(slot->SG));
1647 /* and pretend we disconnected after
1648 * the command phase */
1649 resume_offset = hostdata->pScript + Ent_MsgInDuringData;
1650 /* make sure all the data is flushed */
1651 NCR_700_flush_fifo(host);
1652 } else {
1653 __u8 sbcl = NCR_700_readb(host, SBCL_REG);
1654 printk(KERN_ERR "scsi%d: (%d:%d) phase mismatch at %04x, phase %s\n",
1655 host->host_no, pun, lun, dsp - hostdata->pScript, sbcl_to_string(sbcl));
1656 NCR_700_internal_bus_reset(host);
1657 }
1658
1659 } else if(sstat0 & SCSI_GROSS_ERROR) {
1660 printk(KERN_ERR "scsi%d: (%d:%d) GROSS ERROR\n",
1661 host->host_no, pun, lun);
1662 NCR_700_scsi_done(hostdata, SCp, DID_ERROR<<16);
1663 } else if(sstat0 & PARITY_ERROR) {
1664 printk(KERN_ERR "scsi%d: (%d:%d) PARITY ERROR\n",
1665 host->host_no, pun, lun);
1666 NCR_700_scsi_done(hostdata, SCp, DID_ERROR<<16);
1667 } else if(dstat & SCRIPT_INT_RECEIVED) {
1668 DEBUG(("scsi%d: (%d:%d) ====>SCRIPT INTERRUPT<====\n",
1669 host->host_no, pun, lun));
1670 resume_offset = process_script_interrupt(dsps, dsp, SCp, host, hostdata);
1671 } else if(dstat & (ILGL_INST_DETECTED)) {
1672 printk(KERN_ERR "scsi%d: (%d:%d) Illegal Instruction detected at 0x%08x[0x%x]!!!\n"
1673 " Please email James.Bottomley@HansenPartnership.com with the details\n",
1674 host->host_no, pun, lun,
1675 dsp, dsp - hostdata->pScript);
1676 NCR_700_scsi_done(hostdata, SCp, DID_ERROR<<16);
1677 } else if(dstat & (WATCH_DOG_INTERRUPT|ABORTED)) {
1678 printk(KERN_ERR "scsi%d: (%d:%d) serious DMA problem, dstat=%02x\n",
1679 host->host_no, pun, lun, dstat);
1680 NCR_700_scsi_done(hostdata, SCp, DID_ERROR<<16);
1681 }
1682
1683
1684 /* NOTE: selection interrupt processing MUST occur
1685 * after script interrupt processing to correctly cope
1686 * with the case where we process a disconnect and
1687 * then get reselected before we process the
1688 * disconnection */
1689 if(sstat0 & SELECTED) {
1690 /* FIXME: It currently takes at least FOUR
1691 * interrupts to complete a command that
1692 * disconnects: one for the disconnect, one
1693 * for the reselection, one to get the
1694 * reselection data and one to complete the
1695 * command. If we guess the reselected
1696 * command here and prepare it, we only need
1697 * to get a reselection data interrupt if we
1698 * guessed wrongly. Since the interrupt
1699 * overhead is much greater than the command
1700 * setup, this would be an efficient
1701 * optimisation particularly as we probably
1702 * only have one outstanding command on a
1703 * target most of the time */
1704
1705 resume_offset = process_selection(host, dsp);
1706
1707 }
1708
1709 }
1710
1711 if(resume_offset) {
1712 if(hostdata->state != NCR_700_HOST_BUSY) {
1713 printk(KERN_ERR "scsi%d: Driver error: resume at 0x%08x [0x%04x] with non busy host!\n",
1714 host->host_no, resume_offset, resume_offset - hostdata->pScript);
1715 hostdata->state = NCR_700_HOST_BUSY;
1716 }
1717
1718 DEBUG(("Attempting to resume at %x\n", resume_offset));
1719 NCR_700_clear_fifo(host);
1720 NCR_700_writel(resume_offset, host, DSP_REG);
1721 }
1722 /* There is probably a technical no-no about this: If we're a
1723 * shared interrupt and we got this interrupt because the
1724 * other device needs servicing not us, we're still going to
1725 * check our queued commands here---of course, there shouldn't
1726 * be any outstanding.... */
1727 if(hostdata->state == NCR_700_HOST_FREE) {
1728 int i;
1729
1730 for(i = 0; i < NCR_700_COMMAND_SLOTS_PER_HOST; i++) {
1731 /* fairness: always run the queue from the last
1732 * position we left off */
1733 int j = (i + hostdata->saved_slot_position)
1734 % NCR_700_COMMAND_SLOTS_PER_HOST;
1735
1736 if(hostdata->slots[j].state != NCR_700_SLOT_QUEUED)
1737 continue;
1738 if(NCR_700_start_command(hostdata->slots[j].cmnd)) {
1739 DEBUG(("scsi%d: Issuing saved command slot %p, cmd %p\t\n",
1740 host->host_no, &hostdata->slots[j],
1741 hostdata->slots[j].cmnd));
1742 hostdata->saved_slot_position = j + 1;
1743 }
1744
1745 break;
1746 }
1747 }
1748 out_unlock:
1749 spin_unlock_irqrestore(host->host_lock, flags);
1750 return IRQ_RETVAL(handled);
1751}
1752
1753static int NCR_700_queuecommand_lck(struct scsi_cmnd *SCp)
1754{
1755 struct NCR_700_Host_Parameters *hostdata =
1756 (struct NCR_700_Host_Parameters *)SCp->device->host->hostdata[0];
1757 __u32 move_ins;
1758 struct NCR_700_command_slot *slot;
1759
1760 if(hostdata->command_slot_count >= NCR_700_COMMAND_SLOTS_PER_HOST) {
1761 /* We're over our allocation, this should never happen
1762 * since we report the max allocation to the mid layer */
1763 printk(KERN_WARNING "scsi%d: Command depth has gone over queue depth\n", SCp->device->host->host_no);
1764 return 1;
1765 }
1766 /* check for untagged commands. We cannot have any outstanding
1767 * commands if we accept them. Commands could be untagged because:
1768 *
1769 * - The tag negotiated bitmap is clear
1770 * - The blk layer sent and untagged command
1771 */
1772 if(NCR_700_get_depth(SCp->device) != 0
1773 && (!(hostdata->tag_negotiated & (1<<scmd_id(SCp)))
1774 || !(SCp->flags & SCMD_TAGGED))) {
1775 CDEBUG(KERN_ERR, SCp, "has non zero depth %d\n",
1776 NCR_700_get_depth(SCp->device));
1777 return SCSI_MLQUEUE_DEVICE_BUSY;
1778 }
1779 if(NCR_700_get_depth(SCp->device) >= SCp->device->queue_depth) {
1780 CDEBUG(KERN_ERR, SCp, "has max tag depth %d\n",
1781 NCR_700_get_depth(SCp->device));
1782 return SCSI_MLQUEUE_DEVICE_BUSY;
1783 }
1784 NCR_700_set_depth(SCp->device, NCR_700_get_depth(SCp->device) + 1);
1785
1786 /* begin the command here */
1787 /* no need to check for NULL, test for command_slot_count above
1788 * ensures a slot is free */
1789 slot = find_empty_slot(hostdata);
1790
1791 slot->cmnd = SCp;
1792
1793 SCp->host_scribble = (unsigned char *)slot;
1794
1795#ifdef NCR_700_DEBUG
1796 printk("53c700: scsi%d, command ", SCp->device->host->host_no);
1797 scsi_print_command(SCp);
1798#endif
1799 if ((SCp->flags & SCMD_TAGGED)
1800 && (hostdata->tag_negotiated &(1<<scmd_id(SCp))) == 0
1801 && NCR_700_get_tag_neg_state(SCp->device) == NCR_700_START_TAG_NEGOTIATION) {
1802 scmd_printk(KERN_ERR, SCp, "Enabling Tag Command Queuing\n");
1803 hostdata->tag_negotiated |= (1<<scmd_id(SCp));
1804 NCR_700_set_tag_neg_state(SCp->device, NCR_700_DURING_TAG_NEGOTIATION);
1805 }
1806
1807 /* here we may have to process an untagged command. The gate
1808 * above ensures that this will be the only one outstanding,
1809 * so clear the tag negotiated bit.
1810 *
1811 * FIXME: This will royally screw up on multiple LUN devices
1812 * */
1813 if (!(SCp->flags & SCMD_TAGGED)
1814 && (hostdata->tag_negotiated &(1<<scmd_id(SCp)))) {
1815 scmd_printk(KERN_INFO, SCp, "Disabling Tag Command Queuing\n");
1816 hostdata->tag_negotiated &= ~(1<<scmd_id(SCp));
1817 }
1818
1819 if ((hostdata->tag_negotiated & (1<<scmd_id(SCp))) &&
1820 SCp->device->simple_tags) {
1821 slot->tag = scsi_cmd_to_rq(SCp)->tag;
1822 CDEBUG(KERN_DEBUG, SCp, "sending out tag %d, slot %p\n",
1823 slot->tag, slot);
1824 } else {
1825 struct NCR_700_Device_Parameters *p = SCp->device->hostdata;
1826
1827 slot->tag = SCSI_NO_TAG;
1828 /* save current command for reselection */
1829 p->current_cmnd = SCp;
1830 }
1831 /* sanity check: some of the commands generated by the mid-layer
1832 * have an eccentric idea of their sc_data_direction */
1833 if(!scsi_sg_count(SCp) && !scsi_bufflen(SCp) &&
1834 SCp->sc_data_direction != DMA_NONE) {
1835#ifdef NCR_700_DEBUG
1836 printk("53c700: Command");
1837 scsi_print_command(SCp);
1838 printk("Has wrong data direction %d\n", SCp->sc_data_direction);
1839#endif
1840 SCp->sc_data_direction = DMA_NONE;
1841 }
1842
1843 switch (SCp->cmnd[0]) {
1844 case REQUEST_SENSE:
1845 /* clear the internal sense magic */
1846 SCp->cmnd[6] = 0;
1847 fallthrough;
1848 default:
1849 /* OK, get it from the command */
1850 switch(SCp->sc_data_direction) {
1851 case DMA_BIDIRECTIONAL:
1852 default:
1853 printk(KERN_ERR "53c700: Unknown command for data direction ");
1854 scsi_print_command(SCp);
1855
1856 move_ins = 0;
1857 break;
1858 case DMA_NONE:
1859 move_ins = 0;
1860 break;
1861 case DMA_FROM_DEVICE:
1862 move_ins = SCRIPT_MOVE_DATA_IN;
1863 break;
1864 case DMA_TO_DEVICE:
1865 move_ins = SCRIPT_MOVE_DATA_OUT;
1866 break;
1867 }
1868 }
1869
1870 /* now build the scatter gather list */
1871 if(move_ins != 0) {
1872 int i;
1873 int sg_count;
1874 dma_addr_t vPtr = 0;
1875 struct scatterlist *sg;
1876 __u32 count = 0;
1877
1878 sg_count = scsi_dma_map(SCp);
1879 BUG_ON(sg_count < 0);
1880
1881 scsi_for_each_sg(SCp, sg, sg_count, i) {
1882 vPtr = sg_dma_address(sg);
1883 count = sg_dma_len(sg);
1884
1885 slot->SG[i].ins = bS_to_host(move_ins | count);
1886 DEBUG((" scatter block %d: move %d[%08x] from 0x%lx\n",
1887 i, count, slot->SG[i].ins, (unsigned long)vPtr));
1888 slot->SG[i].pAddr = bS_to_host(vPtr);
1889 }
1890 slot->SG[i].ins = bS_to_host(SCRIPT_RETURN);
1891 slot->SG[i].pAddr = 0;
1892 dma_sync_to_dev(hostdata, slot->SG, sizeof(slot->SG));
1893 DEBUG((" SETTING %p to %x\n",
1894 (&slot->pSG[i].ins),
1895 slot->SG[i].ins));
1896 }
1897 slot->resume_offset = 0;
1898 slot->pCmd = dma_map_single(hostdata->dev, SCp->cmnd,
1899 MAX_COMMAND_SIZE, DMA_TO_DEVICE);
1900 NCR_700_start_command(SCp);
1901 return 0;
1902}
1903
1904STATIC DEF_SCSI_QCMD(NCR_700_queuecommand)
1905
1906STATIC int
1907NCR_700_abort(struct scsi_cmnd * SCp)
1908{
1909 struct NCR_700_command_slot *slot;
1910
1911 scmd_printk(KERN_INFO, SCp, "abort command\n");
1912
1913 slot = (struct NCR_700_command_slot *)SCp->host_scribble;
1914
1915 if(slot == NULL)
1916 /* no outstanding command to abort */
1917 return SUCCESS;
1918 if(SCp->cmnd[0] == TEST_UNIT_READY) {
1919 /* FIXME: This is because of a problem in the new
1920 * error handler. When it is in error recovery, it
1921 * will send a TUR to a device it thinks may still be
1922 * showing a problem. If the TUR isn't responded to,
1923 * it will abort it and mark the device off line.
1924 * Unfortunately, it does no other error recovery, so
1925 * this would leave us with an outstanding command
1926 * occupying a slot. Rather than allow this to
1927 * happen, we issue a bus reset to force all
1928 * outstanding commands to terminate here. */
1929 NCR_700_internal_bus_reset(SCp->device->host);
1930 /* still drop through and return failed */
1931 }
1932 return FAILED;
1933
1934}
1935
1936STATIC int
1937NCR_700_host_reset(struct scsi_cmnd * SCp)
1938{
1939 DECLARE_COMPLETION_ONSTACK(complete);
1940 struct NCR_700_Host_Parameters *hostdata =
1941 (struct NCR_700_Host_Parameters *)SCp->device->host->hostdata[0];
1942
1943 scmd_printk(KERN_INFO, SCp,
1944 "New error handler wants HOST reset, cmd %p\n\t", SCp);
1945 scsi_print_command(SCp);
1946
1947 /* In theory, eh_complete should always be null because the
1948 * eh is single threaded, but just in case we're handling a
1949 * reset via sg or something */
1950 spin_lock_irq(SCp->device->host->host_lock);
1951 while (hostdata->eh_complete != NULL) {
1952 spin_unlock_irq(SCp->device->host->host_lock);
1953 msleep_interruptible(100);
1954 spin_lock_irq(SCp->device->host->host_lock);
1955 }
1956
1957 hostdata->eh_complete = &complete;
1958 NCR_700_internal_bus_reset(SCp->device->host);
1959 NCR_700_chip_reset(SCp->device->host);
1960
1961 spin_unlock_irq(SCp->device->host->host_lock);
1962 wait_for_completion(&complete);
1963 spin_lock_irq(SCp->device->host->host_lock);
1964
1965 hostdata->eh_complete = NULL;
1966 /* Revalidate the transport parameters of the failing device */
1967 if(hostdata->fast)
1968 spi_schedule_dv_device(SCp->device);
1969
1970 spin_unlock_irq(SCp->device->host->host_lock);
1971 return SUCCESS;
1972}
1973
1974STATIC void
1975NCR_700_set_period(struct scsi_target *STp, int period)
1976{
1977 struct Scsi_Host *SHp = dev_to_shost(STp->dev.parent);
1978 struct NCR_700_Host_Parameters *hostdata =
1979 (struct NCR_700_Host_Parameters *)SHp->hostdata[0];
1980
1981 if(!hostdata->fast)
1982 return;
1983
1984 if(period < hostdata->min_period)
1985 period = hostdata->min_period;
1986
1987 spi_period(STp) = period;
1988 spi_flags(STp) &= ~(NCR_700_DEV_NEGOTIATED_SYNC |
1989 NCR_700_DEV_BEGIN_SYNC_NEGOTIATION);
1990 spi_flags(STp) |= NCR_700_DEV_PRINT_SYNC_NEGOTIATION;
1991}
1992
1993STATIC void
1994NCR_700_set_offset(struct scsi_target *STp, int offset)
1995{
1996 struct Scsi_Host *SHp = dev_to_shost(STp->dev.parent);
1997 struct NCR_700_Host_Parameters *hostdata =
1998 (struct NCR_700_Host_Parameters *)SHp->hostdata[0];
1999 int max_offset = hostdata->chip710
2000 ? NCR_710_MAX_OFFSET : NCR_700_MAX_OFFSET;
2001
2002 if(!hostdata->fast)
2003 return;
2004
2005 if(offset > max_offset)
2006 offset = max_offset;
2007
2008 /* if we're currently async, make sure the period is reasonable */
2009 if(spi_offset(STp) == 0 && (spi_period(STp) < hostdata->min_period ||
2010 spi_period(STp) > 0xff))
2011 spi_period(STp) = hostdata->min_period;
2012
2013 spi_offset(STp) = offset;
2014 spi_flags(STp) &= ~(NCR_700_DEV_NEGOTIATED_SYNC |
2015 NCR_700_DEV_BEGIN_SYNC_NEGOTIATION);
2016 spi_flags(STp) |= NCR_700_DEV_PRINT_SYNC_NEGOTIATION;
2017}
2018
2019STATIC int
2020NCR_700_slave_alloc(struct scsi_device *SDp)
2021{
2022 SDp->hostdata = kzalloc(sizeof(struct NCR_700_Device_Parameters),
2023 GFP_KERNEL);
2024
2025 if (!SDp->hostdata)
2026 return -ENOMEM;
2027
2028 return 0;
2029}
2030
2031STATIC int
2032NCR_700_slave_configure(struct scsi_device *SDp)
2033{
2034 struct NCR_700_Host_Parameters *hostdata =
2035 (struct NCR_700_Host_Parameters *)SDp->host->hostdata[0];
2036
2037 /* to do here: allocate memory; build a queue_full list */
2038 if(SDp->tagged_supported) {
2039 scsi_change_queue_depth(SDp, NCR_700_DEFAULT_TAGS);
2040 NCR_700_set_tag_neg_state(SDp, NCR_700_START_TAG_NEGOTIATION);
2041 }
2042
2043 if(hostdata->fast) {
2044 /* Find the correct offset and period via domain validation */
2045 if (!spi_initial_dv(SDp->sdev_target))
2046 spi_dv_device(SDp);
2047 } else {
2048 spi_offset(SDp->sdev_target) = 0;
2049 spi_period(SDp->sdev_target) = 0;
2050 }
2051 return 0;
2052}
2053
2054STATIC void
2055NCR_700_slave_destroy(struct scsi_device *SDp)
2056{
2057 kfree(SDp->hostdata);
2058 SDp->hostdata = NULL;
2059}
2060
2061static int
2062NCR_700_change_queue_depth(struct scsi_device *SDp, int depth)
2063{
2064 if (depth > NCR_700_MAX_TAGS)
2065 depth = NCR_700_MAX_TAGS;
2066 return scsi_change_queue_depth(SDp, depth);
2067}
2068
2069static ssize_t
2070NCR_700_show_active_tags(struct device *dev, struct device_attribute *attr, char *buf)
2071{
2072 struct scsi_device *SDp = to_scsi_device(dev);
2073
2074 return sysfs_emit(buf, "%d\n", NCR_700_get_depth(SDp));
2075}
2076
2077static struct device_attribute NCR_700_active_tags_attr = {
2078 .attr = {
2079 .name = "active_tags",
2080 .mode = S_IRUGO,
2081 },
2082 .show = NCR_700_show_active_tags,
2083};
2084
2085STATIC struct attribute *NCR_700_dev_attrs[] = {
2086 &NCR_700_active_tags_attr.attr,
2087 NULL,
2088};
2089
2090ATTRIBUTE_GROUPS(NCR_700_dev);
2091
2092EXPORT_SYMBOL(NCR_700_detect);
2093EXPORT_SYMBOL(NCR_700_release);
2094EXPORT_SYMBOL(NCR_700_intr);
2095
2096static struct spi_function_template NCR_700_transport_functions = {
2097 .set_period = NCR_700_set_period,
2098 .show_period = 1,
2099 .set_offset = NCR_700_set_offset,
2100 .show_offset = 1,
2101};
2102
2103static int __init NCR_700_init(void)
2104{
2105 NCR_700_transport_template = spi_attach_transport(&NCR_700_transport_functions);
2106 if(!NCR_700_transport_template)
2107 return -ENODEV;
2108 return 0;
2109}
2110
2111static void __exit NCR_700_exit(void)
2112{
2113 spi_release_transport(NCR_700_transport_template);
2114}
2115
2116module_init(NCR_700_init);
2117module_exit(NCR_700_exit);
2118