Linux Audio

Check our new training course

Loading...
v4.17
  1// SPDX-License-Identifier: GPL-2.0
  2#include <linux/mm.h>
  3#include <linux/gfp.h>
  4#include <linux/hugetlb.h>
  5#include <asm/pgalloc.h>
  6#include <asm/pgtable.h>
  7#include <asm/tlb.h>
  8#include <asm/fixmap.h>
  9#include <asm/mtrr.h>
 10
 11#define PGALLOC_GFP (GFP_KERNEL_ACCOUNT | __GFP_ZERO)
 
 
 
 12
 13#ifdef CONFIG_HIGHPTE
 14#define PGALLOC_USER_GFP __GFP_HIGHMEM
 15#else
 16#define PGALLOC_USER_GFP 0
 17#endif
 18
 19gfp_t __userpte_alloc_gfp = PGALLOC_GFP | PGALLOC_USER_GFP;
 20
 21pte_t *pte_alloc_one_kernel(struct mm_struct *mm, unsigned long address)
 22{
 23	return (pte_t *)__get_free_page(PGALLOC_GFP & ~__GFP_ACCOUNT);
 24}
 
 25
 26pgtable_t pte_alloc_one(struct mm_struct *mm, unsigned long address)
 27{
 28	struct page *pte;
 29
 30	pte = alloc_pages(__userpte_alloc_gfp, 0);
 31	if (!pte)
 32		return NULL;
 33	if (!pgtable_page_ctor(pte)) {
 34		__free_page(pte);
 35		return NULL;
 36	}
 37	return pte;
 38}
 39
 40static int __init setup_userpte(char *arg)
 41{
 42	if (!arg)
 43		return -EINVAL;
 44
 45	/*
 46	 * "userpte=nohigh" disables allocation of user pagetables in
 47	 * high memory.
 48	 */
 49	if (strcmp(arg, "nohigh") == 0)
 50		__userpte_alloc_gfp &= ~__GFP_HIGHMEM;
 51	else
 52		return -EINVAL;
 53	return 0;
 54}
 55early_param("userpte", setup_userpte);
 56
 57void ___pte_free_tlb(struct mmu_gather *tlb, struct page *pte)
 58{
 59	pgtable_page_dtor(pte);
 60	paravirt_release_pte(page_to_pfn(pte));
 61	tlb_remove_table(tlb, pte);
 62}
 63
 64#if CONFIG_PGTABLE_LEVELS > 2
 65void ___pmd_free_tlb(struct mmu_gather *tlb, pmd_t *pmd)
 66{
 67	struct page *page = virt_to_page(pmd);
 68	paravirt_release_pmd(__pa(pmd) >> PAGE_SHIFT);
 69	/*
 70	 * NOTE! For PAE, any changes to the top page-directory-pointer-table
 71	 * entries need a full cr3 reload to flush.
 72	 */
 73#ifdef CONFIG_X86_PAE
 74	tlb->need_flush_all = 1;
 75#endif
 76	pgtable_pmd_page_dtor(page);
 77	tlb_remove_table(tlb, page);
 78}
 79
 80#if CONFIG_PGTABLE_LEVELS > 3
 81void ___pud_free_tlb(struct mmu_gather *tlb, pud_t *pud)
 82{
 
 
 
 83	paravirt_release_pud(__pa(pud) >> PAGE_SHIFT);
 84	tlb_remove_table(tlb, virt_to_page(pud));
 85}
 86
 87#if CONFIG_PGTABLE_LEVELS > 4
 88void ___p4d_free_tlb(struct mmu_gather *tlb, p4d_t *p4d)
 89{
 90	paravirt_release_p4d(__pa(p4d) >> PAGE_SHIFT);
 91	tlb_remove_table(tlb, virt_to_page(p4d));
 92}
 93#endif	/* CONFIG_PGTABLE_LEVELS > 4 */
 94#endif	/* CONFIG_PGTABLE_LEVELS > 3 */
 95#endif	/* CONFIG_PGTABLE_LEVELS > 2 */
 96
 97static inline void pgd_list_add(pgd_t *pgd)
 98{
 99	struct page *page = virt_to_page(pgd);
100
101	list_add(&page->lru, &pgd_list);
102}
103
104static inline void pgd_list_del(pgd_t *pgd)
105{
106	struct page *page = virt_to_page(pgd);
107
108	list_del(&page->lru);
109}
110
111#define UNSHARED_PTRS_PER_PGD				\
112	(SHARED_KERNEL_PMD ? KERNEL_PGD_BOUNDARY : PTRS_PER_PGD)
 
 
113
114
115static void pgd_set_mm(pgd_t *pgd, struct mm_struct *mm)
116{
117	BUILD_BUG_ON(sizeof(virt_to_page(pgd)->index) < sizeof(mm));
118	virt_to_page(pgd)->index = (pgoff_t)mm;
119}
120
121struct mm_struct *pgd_page_get_mm(struct page *page)
122{
123	return (struct mm_struct *)page->index;
124}
125
126static void pgd_ctor(struct mm_struct *mm, pgd_t *pgd)
127{
128	/* If the pgd points to a shared pagetable level (either the
129	   ptes in non-PAE, or shared PMD in PAE), then just copy the
130	   references from swapper_pg_dir. */
131	if (CONFIG_PGTABLE_LEVELS == 2 ||
132	    (CONFIG_PGTABLE_LEVELS == 3 && SHARED_KERNEL_PMD) ||
133	    CONFIG_PGTABLE_LEVELS >= 4) {
134		clone_pgd_range(pgd + KERNEL_PGD_BOUNDARY,
135				swapper_pg_dir + KERNEL_PGD_BOUNDARY,
136				KERNEL_PGD_PTRS);
137	}
138
139	/* list required to sync kernel mapping updates */
140	if (!SHARED_KERNEL_PMD) {
141		pgd_set_mm(pgd, mm);
142		pgd_list_add(pgd);
143	}
144}
145
146static void pgd_dtor(pgd_t *pgd)
147{
148	if (SHARED_KERNEL_PMD)
149		return;
150
151	spin_lock(&pgd_lock);
152	pgd_list_del(pgd);
153	spin_unlock(&pgd_lock);
154}
155
156/*
157 * List of all pgd's needed for non-PAE so it can invalidate entries
158 * in both cached and uncached pgd's; not needed for PAE since the
159 * kernel pmd is shared. If PAE were not to share the pmd a similar
160 * tactic would be needed. This is essentially codepath-based locking
161 * against pageattr.c; it is the unique case in which a valid change
162 * of kernel pagetables can't be lazily synchronized by vmalloc faults.
163 * vmalloc faults work because attached pagetables are never freed.
164 * -- nyc
165 */
166
167#ifdef CONFIG_X86_PAE
168/*
169 * In PAE mode, we need to do a cr3 reload (=tlb flush) when
170 * updating the top-level pagetable entries to guarantee the
171 * processor notices the update.  Since this is expensive, and
172 * all 4 top-level entries are used almost immediately in a
173 * new process's life, we just pre-populate them here.
174 *
175 * Also, if we're in a paravirt environment where the kernel pmd is
176 * not shared between pagetables (!SHARED_KERNEL_PMDS), we allocate
177 * and initialize the kernel pmds here.
178 */
179#define PREALLOCATED_PMDS	UNSHARED_PTRS_PER_PGD
 
 
 
 
 
 
 
 
 
 
180
181void pud_populate(struct mm_struct *mm, pud_t *pudp, pmd_t *pmd)
182{
183	paravirt_alloc_pmd(mm, __pa(pmd) >> PAGE_SHIFT);
184
185	/* Note: almost everything apart from _PAGE_PRESENT is
186	   reserved at the pmd (PDPT) level. */
187	set_pud(pudp, __pud(__pa(pmd) | _PAGE_PRESENT));
188
189	/*
190	 * According to Intel App note "TLBs, Paging-Structure Caches,
191	 * and Their Invalidation", April 2007, document 317080-001,
192	 * section 8.1: in PAE mode we explicitly have to flush the
193	 * TLB via cr3 if the top-level pgd is changed...
194	 */
195	flush_tlb_mm(mm);
196}
197#else  /* !CONFIG_X86_PAE */
198
199/* No need to prepopulate any pagetable entries in non-PAE modes. */
200#define PREALLOCATED_PMDS	0
201
 
 
202#endif	/* CONFIG_X86_PAE */
203
204static void free_pmds(struct mm_struct *mm, pmd_t *pmds[])
205{
206	int i;
 
207
208	for(i = 0; i < PREALLOCATED_PMDS; i++)
209		if (pmds[i]) {
210			pgtable_pmd_page_dtor(virt_to_page(pmds[i]));
211			free_page((unsigned long)pmds[i]);
 
 
212			mm_dec_nr_pmds(mm);
213		}
214}
215
216static int preallocate_pmds(struct mm_struct *mm, pmd_t *pmds[])
217{
218	int i;
219	bool failed = false;
220	gfp_t gfp = PGALLOC_GFP;
221
222	if (mm == &init_mm)
223		gfp &= ~__GFP_ACCOUNT;
 
224
225	for(i = 0; i < PREALLOCATED_PMDS; i++) {
226		pmd_t *pmd = (pmd_t *)__get_free_page(gfp);
227		if (!pmd)
 
 
228			failed = true;
229		if (pmd && !pgtable_pmd_page_ctor(virt_to_page(pmd))) {
230			free_page((unsigned long)pmd);
231			pmd = NULL;
232			failed = true;
233		}
234		if (pmd)
235			mm_inc_nr_pmds(mm);
 
 
 
236		pmds[i] = pmd;
237	}
238
239	if (failed) {
240		free_pmds(mm, pmds);
241		return -ENOMEM;
242	}
243
244	return 0;
245}
246
247/*
248 * Mop up any pmd pages which may still be attached to the pgd.
249 * Normally they will be freed by munmap/exit_mmap, but any pmd we
250 * preallocate which never got a corresponding vma will need to be
251 * freed manually.
252 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
253static void pgd_mop_up_pmds(struct mm_struct *mm, pgd_t *pgdp)
254{
255	int i;
256
257	for(i = 0; i < PREALLOCATED_PMDS; i++) {
258		pgd_t pgd = pgdp[i];
259
260		if (pgd_val(pgd) != 0) {
261			pmd_t *pmd = (pmd_t *)pgd_page_vaddr(pgd);
262
263			pgdp[i] = native_make_pgd(0);
 
264
265			paravirt_release_pmd(pgd_val(pgd) >> PAGE_SHIFT);
266			pmd_free(mm, pmd);
267			mm_dec_nr_pmds(mm);
268		}
269	}
270}
271
272static void pgd_prepopulate_pmd(struct mm_struct *mm, pgd_t *pgd, pmd_t *pmds[])
273{
274	p4d_t *p4d;
275	pud_t *pud;
276	int i;
277
278	if (PREALLOCATED_PMDS == 0) /* Work around gcc-3.4.x bug */
279		return;
280
281	p4d = p4d_offset(pgd, 0);
282	pud = pud_offset(p4d, 0);
283
284	for (i = 0; i < PREALLOCATED_PMDS; i++, pud++) {
285		pmd_t *pmd = pmds[i];
286
287		if (i >= KERNEL_PGD_BOUNDARY)
288			memcpy(pmd, (pmd_t *)pgd_page_vaddr(swapper_pg_dir[i]),
289			       sizeof(pmd_t) * PTRS_PER_PMD);
290
291		pud_populate(mm, pud, pmd);
292	}
293}
294
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
295/*
296 * Xen paravirt assumes pgd table should be in one page. 64 bit kernel also
297 * assumes that pgd should be in one page.
298 *
299 * But kernel with PAE paging that is not running as a Xen domain
300 * only needs to allocate 32 bytes for pgd instead of one page.
301 */
302#ifdef CONFIG_X86_PAE
303
304#include <linux/slab.h>
305
306#define PGD_SIZE	(PTRS_PER_PGD * sizeof(pgd_t))
307#define PGD_ALIGN	32
308
309static struct kmem_cache *pgd_cache;
310
311static int __init pgd_cache_init(void)
312{
313	/*
314	 * When PAE kernel is running as a Xen domain, it does not use
315	 * shared kernel pmd. And this requires a whole page for pgd.
316	 */
317	if (!SHARED_KERNEL_PMD)
318		return 0;
319
320	/*
321	 * when PAE kernel is not running as a Xen domain, it uses
322	 * shared kernel pmd. Shared kernel pmd does not require a whole
323	 * page for pgd. We are able to just allocate a 32-byte for pgd.
324	 * During boot time, we create a 32-byte slab for pgd table allocation.
325	 */
326	pgd_cache = kmem_cache_create("pgd_cache", PGD_SIZE, PGD_ALIGN,
327				      SLAB_PANIC, NULL);
328	if (!pgd_cache)
329		return -ENOMEM;
330
331	return 0;
332}
333core_initcall(pgd_cache_init);
334
335static inline pgd_t *_pgd_alloc(void)
336{
337	/*
338	 * If no SHARED_KERNEL_PMD, PAE kernel is running as a Xen domain.
339	 * We allocate one page for pgd.
340	 */
341	if (!SHARED_KERNEL_PMD)
342		return (pgd_t *)__get_free_page(PGALLOC_GFP);
 
343
344	/*
345	 * Now PAE kernel is not running as a Xen domain. We can allocate
346	 * a 32-byte slab for pgd to save memory space.
347	 */
348	return kmem_cache_alloc(pgd_cache, PGALLOC_GFP);
349}
350
351static inline void _pgd_free(pgd_t *pgd)
352{
353	if (!SHARED_KERNEL_PMD)
354		free_page((unsigned long)pgd);
355	else
356		kmem_cache_free(pgd_cache, pgd);
357}
358#else
359
360static inline pgd_t *_pgd_alloc(void)
361{
362	return (pgd_t *)__get_free_pages(PGALLOC_GFP, PGD_ALLOCATION_ORDER);
 
363}
364
365static inline void _pgd_free(pgd_t *pgd)
366{
367	free_pages((unsigned long)pgd, PGD_ALLOCATION_ORDER);
368}
369#endif /* CONFIG_X86_PAE */
370
371pgd_t *pgd_alloc(struct mm_struct *mm)
372{
373	pgd_t *pgd;
374	pmd_t *pmds[PREALLOCATED_PMDS];
 
375
376	pgd = _pgd_alloc();
377
378	if (pgd == NULL)
379		goto out;
380
381	mm->pgd = pgd;
382
383	if (preallocate_pmds(mm, pmds) != 0)
 
384		goto out_free_pgd;
385
386	if (paravirt_pgd_alloc(mm) != 0)
 
387		goto out_free_pmds;
388
 
 
 
389	/*
390	 * Make sure that pre-populating the pmds is atomic with
391	 * respect to anything walking the pgd_list, so that they
392	 * never see a partially populated pgd.
393	 */
394	spin_lock(&pgd_lock);
395
396	pgd_ctor(mm, pgd);
397	pgd_prepopulate_pmd(mm, pgd, pmds);
 
 
 
 
398
399	spin_unlock(&pgd_lock);
400
401	return pgd;
402
 
 
 
403out_free_pmds:
404	free_pmds(mm, pmds);
 
405out_free_pgd:
406	_pgd_free(pgd);
407out:
408	return NULL;
409}
410
411void pgd_free(struct mm_struct *mm, pgd_t *pgd)
412{
413	pgd_mop_up_pmds(mm, pgd);
414	pgd_dtor(pgd);
415	paravirt_pgd_free(mm, pgd);
416	_pgd_free(pgd);
417}
418
419/*
420 * Used to set accessed or dirty bits in the page table entries
421 * on other architectures. On x86, the accessed and dirty bits
422 * are tracked by hardware. However, do_wp_page calls this function
423 * to also make the pte writeable at the same time the dirty bit is
424 * set. In that case we do actually need to write the PTE.
425 */
426int ptep_set_access_flags(struct vm_area_struct *vma,
427			  unsigned long address, pte_t *ptep,
428			  pte_t entry, int dirty)
429{
430	int changed = !pte_same(*ptep, entry);
431
432	if (changed && dirty)
433		*ptep = entry;
434
435	return changed;
436}
437
438#ifdef CONFIG_TRANSPARENT_HUGEPAGE
439int pmdp_set_access_flags(struct vm_area_struct *vma,
440			  unsigned long address, pmd_t *pmdp,
441			  pmd_t entry, int dirty)
442{
443	int changed = !pmd_same(*pmdp, entry);
444
445	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
446
447	if (changed && dirty) {
448		*pmdp = entry;
449		/*
450		 * We had a write-protection fault here and changed the pmd
451		 * to to more permissive. No need to flush the TLB for that,
452		 * #PF is architecturally guaranteed to do that and in the
453		 * worst-case we'll generate a spurious fault.
454		 */
455	}
456
457	return changed;
458}
459
460int pudp_set_access_flags(struct vm_area_struct *vma, unsigned long address,
461			  pud_t *pudp, pud_t entry, int dirty)
462{
463	int changed = !pud_same(*pudp, entry);
464
465	VM_BUG_ON(address & ~HPAGE_PUD_MASK);
466
467	if (changed && dirty) {
468		*pudp = entry;
469		/*
470		 * We had a write-protection fault here and changed the pud
471		 * to to more permissive. No need to flush the TLB for that,
472		 * #PF is architecturally guaranteed to do that and in the
473		 * worst-case we'll generate a spurious fault.
474		 */
475	}
476
477	return changed;
478}
479#endif
480
481int ptep_test_and_clear_young(struct vm_area_struct *vma,
482			      unsigned long addr, pte_t *ptep)
483{
484	int ret = 0;
485
486	if (pte_young(*ptep))
487		ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
488					 (unsigned long *) &ptep->pte);
489
490	return ret;
491}
492
493#ifdef CONFIG_TRANSPARENT_HUGEPAGE
494int pmdp_test_and_clear_young(struct vm_area_struct *vma,
495			      unsigned long addr, pmd_t *pmdp)
496{
497	int ret = 0;
498
499	if (pmd_young(*pmdp))
500		ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
501					 (unsigned long *)pmdp);
502
503	return ret;
504}
 
 
 
505int pudp_test_and_clear_young(struct vm_area_struct *vma,
506			      unsigned long addr, pud_t *pudp)
507{
508	int ret = 0;
509
510	if (pud_young(*pudp))
511		ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
512					 (unsigned long *)pudp);
513
514	return ret;
515}
516#endif
517
518int ptep_clear_flush_young(struct vm_area_struct *vma,
519			   unsigned long address, pte_t *ptep)
520{
521	/*
522	 * On x86 CPUs, clearing the accessed bit without a TLB flush
523	 * doesn't cause data corruption. [ It could cause incorrect
524	 * page aging and the (mistaken) reclaim of hot pages, but the
525	 * chance of that should be relatively low. ]
526	 *
527	 * So as a performance optimization don't flush the TLB when
528	 * clearing the accessed bit, it will eventually be flushed by
529	 * a context switch or a VM operation anyway. [ In the rare
530	 * event of it not getting flushed for a long time the delay
531	 * shouldn't really matter because there's no real memory
532	 * pressure for swapout to react to. ]
533	 */
534	return ptep_test_and_clear_young(vma, address, ptep);
535}
536
537#ifdef CONFIG_TRANSPARENT_HUGEPAGE
538int pmdp_clear_flush_young(struct vm_area_struct *vma,
539			   unsigned long address, pmd_t *pmdp)
540{
541	int young;
542
543	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
544
545	young = pmdp_test_and_clear_young(vma, address, pmdp);
546	if (young)
547		flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
548
549	return young;
550}
 
 
 
 
 
 
 
 
 
 
551#endif
552
553/**
554 * reserve_top_address - reserves a hole in the top of kernel address space
555 * @reserve - size of hole to reserve
556 *
557 * Can be used to relocate the fixmap area and poke a hole in the top
558 * of kernel address space to make room for a hypervisor.
559 */
560void __init reserve_top_address(unsigned long reserve)
561{
562#ifdef CONFIG_X86_32
563	BUG_ON(fixmaps_set > 0);
564	__FIXADDR_TOP = round_down(-reserve, 1 << PMD_SHIFT) - PAGE_SIZE;
565	printk(KERN_INFO "Reserving virtual address space above 0x%08lx (rounded to 0x%08lx)\n",
566	       -reserve, __FIXADDR_TOP + PAGE_SIZE);
567#endif
568}
569
570int fixmaps_set;
571
572void __native_set_fixmap(enum fixed_addresses idx, pte_t pte)
573{
574	unsigned long address = __fix_to_virt(idx);
575
 
 
 
 
 
 
 
 
 
576	if (idx >= __end_of_fixed_addresses) {
577		BUG();
578		return;
579	}
580	set_pte_vaddr(address, pte);
581	fixmaps_set++;
582}
583
584void native_set_fixmap(enum fixed_addresses idx, phys_addr_t phys,
585		       pgprot_t flags)
586{
587	/* Sanitize 'prot' against any unsupported bits: */
588	pgprot_val(flags) &= __default_kernel_pte_mask;
589
590	__native_set_fixmap(idx, pfn_pte(phys >> PAGE_SHIFT, flags));
591}
592
593#ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
594#ifdef CONFIG_X86_5LEVEL
595/**
596 * p4d_set_huge - setup kernel P4D mapping
597 *
598 * No 512GB pages yet -- always return 0
599 */
600int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
601{
602	return 0;
603}
604
605/**
606 * p4d_clear_huge - clear kernel P4D mapping when it is set
607 *
608 * No 512GB pages yet -- always return 0
609 */
610int p4d_clear_huge(p4d_t *p4d)
611{
612	return 0;
613}
614#endif
615
616/**
617 * pud_set_huge - setup kernel PUD mapping
618 *
619 * MTRRs can override PAT memory types with 4KiB granularity. Therefore, this
620 * function sets up a huge page only if any of the following conditions are met:
621 *
622 * - MTRRs are disabled, or
623 *
624 * - MTRRs are enabled and the range is completely covered by a single MTRR, or
625 *
626 * - MTRRs are enabled and the corresponding MTRR memory type is WB, which
627 *   has no effect on the requested PAT memory type.
628 *
629 * Callers should try to decrease page size (1GB -> 2MB -> 4K) if the bigger
630 * page mapping attempt fails.
631 *
632 * Returns 1 on success and 0 on failure.
633 */
634int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot)
635{
636	u8 mtrr, uniform;
637
638	mtrr = mtrr_type_lookup(addr, addr + PUD_SIZE, &uniform);
639	if ((mtrr != MTRR_TYPE_INVALID) && (!uniform) &&
640	    (mtrr != MTRR_TYPE_WRBACK))
641		return 0;
642
643	/* Bail out if we are we on a populated non-leaf entry: */
644	if (pud_present(*pud) && !pud_huge(*pud))
645		return 0;
646
647	prot = pgprot_4k_2_large(prot);
648
649	set_pte((pte_t *)pud, pfn_pte(
650		(u64)addr >> PAGE_SHIFT,
651		__pgprot(pgprot_val(prot) | _PAGE_PSE)));
652
653	return 1;
654}
655
656/**
657 * pmd_set_huge - setup kernel PMD mapping
658 *
659 * See text over pud_set_huge() above.
660 *
661 * Returns 1 on success and 0 on failure.
662 */
663int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot)
664{
665	u8 mtrr, uniform;
666
667	mtrr = mtrr_type_lookup(addr, addr + PMD_SIZE, &uniform);
668	if ((mtrr != MTRR_TYPE_INVALID) && (!uniform) &&
669	    (mtrr != MTRR_TYPE_WRBACK)) {
670		pr_warn_once("%s: Cannot satisfy [mem %#010llx-%#010llx] with a huge-page mapping due to MTRR override.\n",
671			     __func__, addr, addr + PMD_SIZE);
672		return 0;
673	}
674
675	/* Bail out if we are we on a populated non-leaf entry: */
676	if (pmd_present(*pmd) && !pmd_huge(*pmd))
677		return 0;
678
679	prot = pgprot_4k_2_large(prot);
680
681	set_pte((pte_t *)pmd, pfn_pte(
682		(u64)addr >> PAGE_SHIFT,
683		__pgprot(pgprot_val(prot) | _PAGE_PSE)));
684
685	return 1;
686}
687
688/**
689 * pud_clear_huge - clear kernel PUD mapping when it is set
690 *
691 * Returns 1 on success and 0 on failure (no PUD map is found).
692 */
693int pud_clear_huge(pud_t *pud)
694{
695	if (pud_large(*pud)) {
696		pud_clear(pud);
697		return 1;
698	}
699
700	return 0;
701}
702
703/**
704 * pmd_clear_huge - clear kernel PMD mapping when it is set
705 *
706 * Returns 1 on success and 0 on failure (no PMD map is found).
707 */
708int pmd_clear_huge(pmd_t *pmd)
709{
710	if (pmd_large(*pmd)) {
711		pmd_clear(pmd);
712		return 1;
713	}
714
715	return 0;
716}
717
 
718/**
719 * pud_free_pmd_page - Clear pud entry and free pmd page.
720 * @pud: Pointer to a PUD.
 
721 *
722 * Context: The pud range has been unmaped and TLB purged.
723 * Return: 1 if clearing the entry succeeded. 0 otherwise.
 
 
724 */
725int pud_free_pmd_page(pud_t *pud)
726{
727	pmd_t *pmd;
 
728	int i;
729
730	if (pud_none(*pud))
731		return 1;
732
733	pmd = (pmd_t *)pud_page_vaddr(*pud);
734
735	for (i = 0; i < PTRS_PER_PMD; i++)
736		if (!pmd_free_pte_page(&pmd[i]))
737			return 0;
 
 
738
739	pud_clear(pud);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
740	free_page((unsigned long)pmd);
741
742	return 1;
743}
744
745/**
746 * pmd_free_pte_page - Clear pmd entry and free pte page.
747 * @pmd: Pointer to a PMD.
 
748 *
749 * Context: The pmd range has been unmaped and TLB purged.
750 * Return: 1 if clearing the entry succeeded. 0 otherwise.
751 */
752int pmd_free_pte_page(pmd_t *pmd)
753{
754	pte_t *pte;
755
756	if (pmd_none(*pmd))
757		return 1;
758
759	pte = (pte_t *)pmd_page_vaddr(*pmd);
760	pmd_clear(pmd);
 
 
 
 
761	free_page((unsigned long)pte);
762
763	return 1;
764}
 
 
 
 
 
 
 
 
 
 
 
 
 
765#endif	/* CONFIG_HAVE_ARCH_HUGE_VMAP */
v6.9.4
  1// SPDX-License-Identifier: GPL-2.0
  2#include <linux/mm.h>
  3#include <linux/gfp.h>
  4#include <linux/hugetlb.h>
  5#include <asm/pgalloc.h>
 
  6#include <asm/tlb.h>
  7#include <asm/fixmap.h>
  8#include <asm/mtrr.h>
  9
 10#ifdef CONFIG_DYNAMIC_PHYSICAL_MASK
 11phys_addr_t physical_mask __ro_after_init = (1ULL << __PHYSICAL_MASK_SHIFT) - 1;
 12EXPORT_SYMBOL(physical_mask);
 13#endif
 14
 15#ifdef CONFIG_HIGHPTE
 16#define PGTABLE_HIGHMEM __GFP_HIGHMEM
 17#else
 18#define PGTABLE_HIGHMEM 0
 19#endif
 20
 21#ifndef CONFIG_PARAVIRT
 22static inline
 23void paravirt_tlb_remove_table(struct mmu_gather *tlb, void *table)
 24{
 25	tlb_remove_page(tlb, table);
 26}
 27#endif
 28
 29gfp_t __userpte_alloc_gfp = GFP_PGTABLE_USER | PGTABLE_HIGHMEM;
 
 
 30
 31pgtable_t pte_alloc_one(struct mm_struct *mm)
 32{
 33	return __pte_alloc_one(mm, __userpte_alloc_gfp);
 
 
 
 
 
 34}
 35
 36static int __init setup_userpte(char *arg)
 37{
 38	if (!arg)
 39		return -EINVAL;
 40
 41	/*
 42	 * "userpte=nohigh" disables allocation of user pagetables in
 43	 * high memory.
 44	 */
 45	if (strcmp(arg, "nohigh") == 0)
 46		__userpte_alloc_gfp &= ~__GFP_HIGHMEM;
 47	else
 48		return -EINVAL;
 49	return 0;
 50}
 51early_param("userpte", setup_userpte);
 52
 53void ___pte_free_tlb(struct mmu_gather *tlb, struct page *pte)
 54{
 55	pagetable_pte_dtor(page_ptdesc(pte));
 56	paravirt_release_pte(page_to_pfn(pte));
 57	paravirt_tlb_remove_table(tlb, pte);
 58}
 59
 60#if CONFIG_PGTABLE_LEVELS > 2
 61void ___pmd_free_tlb(struct mmu_gather *tlb, pmd_t *pmd)
 62{
 63	struct ptdesc *ptdesc = virt_to_ptdesc(pmd);
 64	paravirt_release_pmd(__pa(pmd) >> PAGE_SHIFT);
 65	/*
 66	 * NOTE! For PAE, any changes to the top page-directory-pointer-table
 67	 * entries need a full cr3 reload to flush.
 68	 */
 69#ifdef CONFIG_X86_PAE
 70	tlb->need_flush_all = 1;
 71#endif
 72	pagetable_pmd_dtor(ptdesc);
 73	paravirt_tlb_remove_table(tlb, ptdesc_page(ptdesc));
 74}
 75
 76#if CONFIG_PGTABLE_LEVELS > 3
 77void ___pud_free_tlb(struct mmu_gather *tlb, pud_t *pud)
 78{
 79	struct ptdesc *ptdesc = virt_to_ptdesc(pud);
 80
 81	pagetable_pud_dtor(ptdesc);
 82	paravirt_release_pud(__pa(pud) >> PAGE_SHIFT);
 83	paravirt_tlb_remove_table(tlb, virt_to_page(pud));
 84}
 85
 86#if CONFIG_PGTABLE_LEVELS > 4
 87void ___p4d_free_tlb(struct mmu_gather *tlb, p4d_t *p4d)
 88{
 89	paravirt_release_p4d(__pa(p4d) >> PAGE_SHIFT);
 90	paravirt_tlb_remove_table(tlb, virt_to_page(p4d));
 91}
 92#endif	/* CONFIG_PGTABLE_LEVELS > 4 */
 93#endif	/* CONFIG_PGTABLE_LEVELS > 3 */
 94#endif	/* CONFIG_PGTABLE_LEVELS > 2 */
 95
 96static inline void pgd_list_add(pgd_t *pgd)
 97{
 98	struct ptdesc *ptdesc = virt_to_ptdesc(pgd);
 99
100	list_add(&ptdesc->pt_list, &pgd_list);
101}
102
103static inline void pgd_list_del(pgd_t *pgd)
104{
105	struct ptdesc *ptdesc = virt_to_ptdesc(pgd);
106
107	list_del(&ptdesc->pt_list);
108}
109
110#define UNSHARED_PTRS_PER_PGD				\
111	(SHARED_KERNEL_PMD ? KERNEL_PGD_BOUNDARY : PTRS_PER_PGD)
112#define MAX_UNSHARED_PTRS_PER_PGD			\
113	max_t(size_t, KERNEL_PGD_BOUNDARY, PTRS_PER_PGD)
114
115
116static void pgd_set_mm(pgd_t *pgd, struct mm_struct *mm)
117{
118	virt_to_ptdesc(pgd)->pt_mm = mm;
 
119}
120
121struct mm_struct *pgd_page_get_mm(struct page *page)
122{
123	return page_ptdesc(page)->pt_mm;
124}
125
126static void pgd_ctor(struct mm_struct *mm, pgd_t *pgd)
127{
128	/* If the pgd points to a shared pagetable level (either the
129	   ptes in non-PAE, or shared PMD in PAE), then just copy the
130	   references from swapper_pg_dir. */
131	if (CONFIG_PGTABLE_LEVELS == 2 ||
132	    (CONFIG_PGTABLE_LEVELS == 3 && SHARED_KERNEL_PMD) ||
133	    CONFIG_PGTABLE_LEVELS >= 4) {
134		clone_pgd_range(pgd + KERNEL_PGD_BOUNDARY,
135				swapper_pg_dir + KERNEL_PGD_BOUNDARY,
136				KERNEL_PGD_PTRS);
137	}
138
139	/* list required to sync kernel mapping updates */
140	if (!SHARED_KERNEL_PMD) {
141		pgd_set_mm(pgd, mm);
142		pgd_list_add(pgd);
143	}
144}
145
146static void pgd_dtor(pgd_t *pgd)
147{
148	if (SHARED_KERNEL_PMD)
149		return;
150
151	spin_lock(&pgd_lock);
152	pgd_list_del(pgd);
153	spin_unlock(&pgd_lock);
154}
155
156/*
157 * List of all pgd's needed for non-PAE so it can invalidate entries
158 * in both cached and uncached pgd's; not needed for PAE since the
159 * kernel pmd is shared. If PAE were not to share the pmd a similar
160 * tactic would be needed. This is essentially codepath-based locking
161 * against pageattr.c; it is the unique case in which a valid change
162 * of kernel pagetables can't be lazily synchronized by vmalloc faults.
163 * vmalloc faults work because attached pagetables are never freed.
164 * -- nyc
165 */
166
167#ifdef CONFIG_X86_PAE
168/*
169 * In PAE mode, we need to do a cr3 reload (=tlb flush) when
170 * updating the top-level pagetable entries to guarantee the
171 * processor notices the update.  Since this is expensive, and
172 * all 4 top-level entries are used almost immediately in a
173 * new process's life, we just pre-populate them here.
174 *
175 * Also, if we're in a paravirt environment where the kernel pmd is
176 * not shared between pagetables (!SHARED_KERNEL_PMDS), we allocate
177 * and initialize the kernel pmds here.
178 */
179#define PREALLOCATED_PMDS	UNSHARED_PTRS_PER_PGD
180#define MAX_PREALLOCATED_PMDS	MAX_UNSHARED_PTRS_PER_PGD
181
182/*
183 * We allocate separate PMDs for the kernel part of the user page-table
184 * when PTI is enabled. We need them to map the per-process LDT into the
185 * user-space page-table.
186 */
187#define PREALLOCATED_USER_PMDS	 (boot_cpu_has(X86_FEATURE_PTI) ? \
188					KERNEL_PGD_PTRS : 0)
189#define MAX_PREALLOCATED_USER_PMDS KERNEL_PGD_PTRS
190
191void pud_populate(struct mm_struct *mm, pud_t *pudp, pmd_t *pmd)
192{
193	paravirt_alloc_pmd(mm, __pa(pmd) >> PAGE_SHIFT);
194
195	/* Note: almost everything apart from _PAGE_PRESENT is
196	   reserved at the pmd (PDPT) level. */
197	set_pud(pudp, __pud(__pa(pmd) | _PAGE_PRESENT));
198
199	/*
200	 * According to Intel App note "TLBs, Paging-Structure Caches,
201	 * and Their Invalidation", April 2007, document 317080-001,
202	 * section 8.1: in PAE mode we explicitly have to flush the
203	 * TLB via cr3 if the top-level pgd is changed...
204	 */
205	flush_tlb_mm(mm);
206}
207#else  /* !CONFIG_X86_PAE */
208
209/* No need to prepopulate any pagetable entries in non-PAE modes. */
210#define PREALLOCATED_PMDS	0
211#define MAX_PREALLOCATED_PMDS	0
212#define PREALLOCATED_USER_PMDS	 0
213#define MAX_PREALLOCATED_USER_PMDS 0
214#endif	/* CONFIG_X86_PAE */
215
216static void free_pmds(struct mm_struct *mm, pmd_t *pmds[], int count)
217{
218	int i;
219	struct ptdesc *ptdesc;
220
221	for (i = 0; i < count; i++)
222		if (pmds[i]) {
223			ptdesc = virt_to_ptdesc(pmds[i]);
224
225			pagetable_pmd_dtor(ptdesc);
226			pagetable_free(ptdesc);
227			mm_dec_nr_pmds(mm);
228		}
229}
230
231static int preallocate_pmds(struct mm_struct *mm, pmd_t *pmds[], int count)
232{
233	int i;
234	bool failed = false;
235	gfp_t gfp = GFP_PGTABLE_USER;
236
237	if (mm == &init_mm)
238		gfp &= ~__GFP_ACCOUNT;
239	gfp &= ~__GFP_HIGHMEM;
240
241	for (i = 0; i < count; i++) {
242		pmd_t *pmd = NULL;
243		struct ptdesc *ptdesc = pagetable_alloc(gfp, 0);
244
245		if (!ptdesc)
246			failed = true;
247		if (ptdesc && !pagetable_pmd_ctor(ptdesc)) {
248			pagetable_free(ptdesc);
249			ptdesc = NULL;
250			failed = true;
251		}
252		if (ptdesc) {
253			mm_inc_nr_pmds(mm);
254			pmd = ptdesc_address(ptdesc);
255		}
256
257		pmds[i] = pmd;
258	}
259
260	if (failed) {
261		free_pmds(mm, pmds, count);
262		return -ENOMEM;
263	}
264
265	return 0;
266}
267
268/*
269 * Mop up any pmd pages which may still be attached to the pgd.
270 * Normally they will be freed by munmap/exit_mmap, but any pmd we
271 * preallocate which never got a corresponding vma will need to be
272 * freed manually.
273 */
274static void mop_up_one_pmd(struct mm_struct *mm, pgd_t *pgdp)
275{
276	pgd_t pgd = *pgdp;
277
278	if (pgd_val(pgd) != 0) {
279		pmd_t *pmd = (pmd_t *)pgd_page_vaddr(pgd);
280
281		pgd_clear(pgdp);
282
283		paravirt_release_pmd(pgd_val(pgd) >> PAGE_SHIFT);
284		pmd_free(mm, pmd);
285		mm_dec_nr_pmds(mm);
286	}
287}
288
289static void pgd_mop_up_pmds(struct mm_struct *mm, pgd_t *pgdp)
290{
291	int i;
292
293	for (i = 0; i < PREALLOCATED_PMDS; i++)
294		mop_up_one_pmd(mm, &pgdp[i]);
295
296#ifdef CONFIG_MITIGATION_PAGE_TABLE_ISOLATION
 
297
298	if (!boot_cpu_has(X86_FEATURE_PTI))
299		return;
300
301	pgdp = kernel_to_user_pgdp(pgdp);
302
303	for (i = 0; i < PREALLOCATED_USER_PMDS; i++)
304		mop_up_one_pmd(mm, &pgdp[i + KERNEL_PGD_BOUNDARY]);
305#endif
306}
307
308static void pgd_prepopulate_pmd(struct mm_struct *mm, pgd_t *pgd, pmd_t *pmds[])
309{
310	p4d_t *p4d;
311	pud_t *pud;
312	int i;
313
 
 
 
314	p4d = p4d_offset(pgd, 0);
315	pud = pud_offset(p4d, 0);
316
317	for (i = 0; i < PREALLOCATED_PMDS; i++, pud++) {
318		pmd_t *pmd = pmds[i];
319
320		if (i >= KERNEL_PGD_BOUNDARY)
321			memcpy(pmd, (pmd_t *)pgd_page_vaddr(swapper_pg_dir[i]),
322			       sizeof(pmd_t) * PTRS_PER_PMD);
323
324		pud_populate(mm, pud, pmd);
325	}
326}
327
328#ifdef CONFIG_MITIGATION_PAGE_TABLE_ISOLATION
329static void pgd_prepopulate_user_pmd(struct mm_struct *mm,
330				     pgd_t *k_pgd, pmd_t *pmds[])
331{
332	pgd_t *s_pgd = kernel_to_user_pgdp(swapper_pg_dir);
333	pgd_t *u_pgd = kernel_to_user_pgdp(k_pgd);
334	p4d_t *u_p4d;
335	pud_t *u_pud;
336	int i;
337
338	u_p4d = p4d_offset(u_pgd, 0);
339	u_pud = pud_offset(u_p4d, 0);
340
341	s_pgd += KERNEL_PGD_BOUNDARY;
342	u_pud += KERNEL_PGD_BOUNDARY;
343
344	for (i = 0; i < PREALLOCATED_USER_PMDS; i++, u_pud++, s_pgd++) {
345		pmd_t *pmd = pmds[i];
346
347		memcpy(pmd, (pmd_t *)pgd_page_vaddr(*s_pgd),
348		       sizeof(pmd_t) * PTRS_PER_PMD);
349
350		pud_populate(mm, u_pud, pmd);
351	}
352
353}
354#else
355static void pgd_prepopulate_user_pmd(struct mm_struct *mm,
356				     pgd_t *k_pgd, pmd_t *pmds[])
357{
358}
359#endif
360/*
361 * Xen paravirt assumes pgd table should be in one page. 64 bit kernel also
362 * assumes that pgd should be in one page.
363 *
364 * But kernel with PAE paging that is not running as a Xen domain
365 * only needs to allocate 32 bytes for pgd instead of one page.
366 */
367#ifdef CONFIG_X86_PAE
368
369#include <linux/slab.h>
370
371#define PGD_SIZE	(PTRS_PER_PGD * sizeof(pgd_t))
372#define PGD_ALIGN	32
373
374static struct kmem_cache *pgd_cache;
375
376void __init pgtable_cache_init(void)
377{
378	/*
379	 * When PAE kernel is running as a Xen domain, it does not use
380	 * shared kernel pmd. And this requires a whole page for pgd.
381	 */
382	if (!SHARED_KERNEL_PMD)
383		return;
384
385	/*
386	 * when PAE kernel is not running as a Xen domain, it uses
387	 * shared kernel pmd. Shared kernel pmd does not require a whole
388	 * page for pgd. We are able to just allocate a 32-byte for pgd.
389	 * During boot time, we create a 32-byte slab for pgd table allocation.
390	 */
391	pgd_cache = kmem_cache_create("pgd_cache", PGD_SIZE, PGD_ALIGN,
392				      SLAB_PANIC, NULL);
 
 
 
 
393}
 
394
395static inline pgd_t *_pgd_alloc(void)
396{
397	/*
398	 * If no SHARED_KERNEL_PMD, PAE kernel is running as a Xen domain.
399	 * We allocate one page for pgd.
400	 */
401	if (!SHARED_KERNEL_PMD)
402		return (pgd_t *)__get_free_pages(GFP_PGTABLE_USER,
403						 PGD_ALLOCATION_ORDER);
404
405	/*
406	 * Now PAE kernel is not running as a Xen domain. We can allocate
407	 * a 32-byte slab for pgd to save memory space.
408	 */
409	return kmem_cache_alloc(pgd_cache, GFP_PGTABLE_USER);
410}
411
412static inline void _pgd_free(pgd_t *pgd)
413{
414	if (!SHARED_KERNEL_PMD)
415		free_pages((unsigned long)pgd, PGD_ALLOCATION_ORDER);
416	else
417		kmem_cache_free(pgd_cache, pgd);
418}
419#else
420
421static inline pgd_t *_pgd_alloc(void)
422{
423	return (pgd_t *)__get_free_pages(GFP_PGTABLE_USER,
424					 PGD_ALLOCATION_ORDER);
425}
426
427static inline void _pgd_free(pgd_t *pgd)
428{
429	free_pages((unsigned long)pgd, PGD_ALLOCATION_ORDER);
430}
431#endif /* CONFIG_X86_PAE */
432
433pgd_t *pgd_alloc(struct mm_struct *mm)
434{
435	pgd_t *pgd;
436	pmd_t *u_pmds[MAX_PREALLOCATED_USER_PMDS];
437	pmd_t *pmds[MAX_PREALLOCATED_PMDS];
438
439	pgd = _pgd_alloc();
440
441	if (pgd == NULL)
442		goto out;
443
444	mm->pgd = pgd;
445
446	if (sizeof(pmds) != 0 &&
447			preallocate_pmds(mm, pmds, PREALLOCATED_PMDS) != 0)
448		goto out_free_pgd;
449
450	if (sizeof(u_pmds) != 0 &&
451			preallocate_pmds(mm, u_pmds, PREALLOCATED_USER_PMDS) != 0)
452		goto out_free_pmds;
453
454	if (paravirt_pgd_alloc(mm) != 0)
455		goto out_free_user_pmds;
456
457	/*
458	 * Make sure that pre-populating the pmds is atomic with
459	 * respect to anything walking the pgd_list, so that they
460	 * never see a partially populated pgd.
461	 */
462	spin_lock(&pgd_lock);
463
464	pgd_ctor(mm, pgd);
465	if (sizeof(pmds) != 0)
466		pgd_prepopulate_pmd(mm, pgd, pmds);
467
468	if (sizeof(u_pmds) != 0)
469		pgd_prepopulate_user_pmd(mm, pgd, u_pmds);
470
471	spin_unlock(&pgd_lock);
472
473	return pgd;
474
475out_free_user_pmds:
476	if (sizeof(u_pmds) != 0)
477		free_pmds(mm, u_pmds, PREALLOCATED_USER_PMDS);
478out_free_pmds:
479	if (sizeof(pmds) != 0)
480		free_pmds(mm, pmds, PREALLOCATED_PMDS);
481out_free_pgd:
482	_pgd_free(pgd);
483out:
484	return NULL;
485}
486
487void pgd_free(struct mm_struct *mm, pgd_t *pgd)
488{
489	pgd_mop_up_pmds(mm, pgd);
490	pgd_dtor(pgd);
491	paravirt_pgd_free(mm, pgd);
492	_pgd_free(pgd);
493}
494
495/*
496 * Used to set accessed or dirty bits in the page table entries
497 * on other architectures. On x86, the accessed and dirty bits
498 * are tracked by hardware. However, do_wp_page calls this function
499 * to also make the pte writeable at the same time the dirty bit is
500 * set. In that case we do actually need to write the PTE.
501 */
502int ptep_set_access_flags(struct vm_area_struct *vma,
503			  unsigned long address, pte_t *ptep,
504			  pte_t entry, int dirty)
505{
506	int changed = !pte_same(*ptep, entry);
507
508	if (changed && dirty)
509		set_pte(ptep, entry);
510
511	return changed;
512}
513
514#ifdef CONFIG_TRANSPARENT_HUGEPAGE
515int pmdp_set_access_flags(struct vm_area_struct *vma,
516			  unsigned long address, pmd_t *pmdp,
517			  pmd_t entry, int dirty)
518{
519	int changed = !pmd_same(*pmdp, entry);
520
521	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
522
523	if (changed && dirty) {
524		set_pmd(pmdp, entry);
525		/*
526		 * We had a write-protection fault here and changed the pmd
527		 * to to more permissive. No need to flush the TLB for that,
528		 * #PF is architecturally guaranteed to do that and in the
529		 * worst-case we'll generate a spurious fault.
530		 */
531	}
532
533	return changed;
534}
535
536int pudp_set_access_flags(struct vm_area_struct *vma, unsigned long address,
537			  pud_t *pudp, pud_t entry, int dirty)
538{
539	int changed = !pud_same(*pudp, entry);
540
541	VM_BUG_ON(address & ~HPAGE_PUD_MASK);
542
543	if (changed && dirty) {
544		set_pud(pudp, entry);
545		/*
546		 * We had a write-protection fault here and changed the pud
547		 * to to more permissive. No need to flush the TLB for that,
548		 * #PF is architecturally guaranteed to do that and in the
549		 * worst-case we'll generate a spurious fault.
550		 */
551	}
552
553	return changed;
554}
555#endif
556
557int ptep_test_and_clear_young(struct vm_area_struct *vma,
558			      unsigned long addr, pte_t *ptep)
559{
560	int ret = 0;
561
562	if (pte_young(*ptep))
563		ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
564					 (unsigned long *) &ptep->pte);
565
566	return ret;
567}
568
569#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG)
570int pmdp_test_and_clear_young(struct vm_area_struct *vma,
571			      unsigned long addr, pmd_t *pmdp)
572{
573	int ret = 0;
574
575	if (pmd_young(*pmdp))
576		ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
577					 (unsigned long *)pmdp);
578
579	return ret;
580}
581#endif
582
583#ifdef CONFIG_TRANSPARENT_HUGEPAGE
584int pudp_test_and_clear_young(struct vm_area_struct *vma,
585			      unsigned long addr, pud_t *pudp)
586{
587	int ret = 0;
588
589	if (pud_young(*pudp))
590		ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
591					 (unsigned long *)pudp);
592
593	return ret;
594}
595#endif
596
597int ptep_clear_flush_young(struct vm_area_struct *vma,
598			   unsigned long address, pte_t *ptep)
599{
600	/*
601	 * On x86 CPUs, clearing the accessed bit without a TLB flush
602	 * doesn't cause data corruption. [ It could cause incorrect
603	 * page aging and the (mistaken) reclaim of hot pages, but the
604	 * chance of that should be relatively low. ]
605	 *
606	 * So as a performance optimization don't flush the TLB when
607	 * clearing the accessed bit, it will eventually be flushed by
608	 * a context switch or a VM operation anyway. [ In the rare
609	 * event of it not getting flushed for a long time the delay
610	 * shouldn't really matter because there's no real memory
611	 * pressure for swapout to react to. ]
612	 */
613	return ptep_test_and_clear_young(vma, address, ptep);
614}
615
616#ifdef CONFIG_TRANSPARENT_HUGEPAGE
617int pmdp_clear_flush_young(struct vm_area_struct *vma,
618			   unsigned long address, pmd_t *pmdp)
619{
620	int young;
621
622	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
623
624	young = pmdp_test_and_clear_young(vma, address, pmdp);
625	if (young)
626		flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
627
628	return young;
629}
630
631pmd_t pmdp_invalidate_ad(struct vm_area_struct *vma, unsigned long address,
632			 pmd_t *pmdp)
633{
634	/*
635	 * No flush is necessary. Once an invalid PTE is established, the PTE's
636	 * access and dirty bits cannot be updated.
637	 */
638	return pmdp_establish(vma, address, pmdp, pmd_mkinvalid(*pmdp));
639}
640#endif
641
642/**
643 * reserve_top_address - reserves a hole in the top of kernel address space
644 * @reserve - size of hole to reserve
645 *
646 * Can be used to relocate the fixmap area and poke a hole in the top
647 * of kernel address space to make room for a hypervisor.
648 */
649void __init reserve_top_address(unsigned long reserve)
650{
651#ifdef CONFIG_X86_32
652	BUG_ON(fixmaps_set > 0);
653	__FIXADDR_TOP = round_down(-reserve, 1 << PMD_SHIFT) - PAGE_SIZE;
654	printk(KERN_INFO "Reserving virtual address space above 0x%08lx (rounded to 0x%08lx)\n",
655	       -reserve, __FIXADDR_TOP + PAGE_SIZE);
656#endif
657}
658
659int fixmaps_set;
660
661void __native_set_fixmap(enum fixed_addresses idx, pte_t pte)
662{
663	unsigned long address = __fix_to_virt(idx);
664
665#ifdef CONFIG_X86_64
666       /*
667	* Ensure that the static initial page tables are covering the
668	* fixmap completely.
669	*/
670	BUILD_BUG_ON(__end_of_permanent_fixed_addresses >
671		     (FIXMAP_PMD_NUM * PTRS_PER_PTE));
672#endif
673
674	if (idx >= __end_of_fixed_addresses) {
675		BUG();
676		return;
677	}
678	set_pte_vaddr(address, pte);
679	fixmaps_set++;
680}
681
682void native_set_fixmap(unsigned /* enum fixed_addresses */ idx,
683		       phys_addr_t phys, pgprot_t flags)
684{
685	/* Sanitize 'prot' against any unsupported bits: */
686	pgprot_val(flags) &= __default_kernel_pte_mask;
687
688	__native_set_fixmap(idx, pfn_pte(phys >> PAGE_SHIFT, flags));
689}
690
691#ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
692#ifdef CONFIG_X86_5LEVEL
693/**
694 * p4d_set_huge - setup kernel P4D mapping
695 *
696 * No 512GB pages yet -- always return 0
697 */
698int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
699{
700	return 0;
701}
702
703/**
704 * p4d_clear_huge - clear kernel P4D mapping when it is set
705 *
706 * No 512GB pages yet -- always return 0
707 */
708void p4d_clear_huge(p4d_t *p4d)
709{
 
710}
711#endif
712
713/**
714 * pud_set_huge - setup kernel PUD mapping
715 *
716 * MTRRs can override PAT memory types with 4KiB granularity. Therefore, this
717 * function sets up a huge page only if the complete range has the same MTRR
718 * caching mode.
 
 
 
 
 
 
719 *
720 * Callers should try to decrease page size (1GB -> 2MB -> 4K) if the bigger
721 * page mapping attempt fails.
722 *
723 * Returns 1 on success and 0 on failure.
724 */
725int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot)
726{
727	u8 uniform;
728
729	mtrr_type_lookup(addr, addr + PUD_SIZE, &uniform);
730	if (!uniform)
 
731		return 0;
732
733	/* Bail out if we are we on a populated non-leaf entry: */
734	if (pud_present(*pud) && !pud_huge(*pud))
735		return 0;
736
 
 
737	set_pte((pte_t *)pud, pfn_pte(
738		(u64)addr >> PAGE_SHIFT,
739		__pgprot(protval_4k_2_large(pgprot_val(prot)) | _PAGE_PSE)));
740
741	return 1;
742}
743
744/**
745 * pmd_set_huge - setup kernel PMD mapping
746 *
747 * See text over pud_set_huge() above.
748 *
749 * Returns 1 on success and 0 on failure.
750 */
751int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot)
752{
753	u8 uniform;
754
755	mtrr_type_lookup(addr, addr + PMD_SIZE, &uniform);
756	if (!uniform) {
 
757		pr_warn_once("%s: Cannot satisfy [mem %#010llx-%#010llx] with a huge-page mapping due to MTRR override.\n",
758			     __func__, addr, addr + PMD_SIZE);
759		return 0;
760	}
761
762	/* Bail out if we are we on a populated non-leaf entry: */
763	if (pmd_present(*pmd) && !pmd_huge(*pmd))
764		return 0;
765
 
 
766	set_pte((pte_t *)pmd, pfn_pte(
767		(u64)addr >> PAGE_SHIFT,
768		__pgprot(protval_4k_2_large(pgprot_val(prot)) | _PAGE_PSE)));
769
770	return 1;
771}
772
773/**
774 * pud_clear_huge - clear kernel PUD mapping when it is set
775 *
776 * Returns 1 on success and 0 on failure (no PUD map is found).
777 */
778int pud_clear_huge(pud_t *pud)
779{
780	if (pud_leaf(*pud)) {
781		pud_clear(pud);
782		return 1;
783	}
784
785	return 0;
786}
787
788/**
789 * pmd_clear_huge - clear kernel PMD mapping when it is set
790 *
791 * Returns 1 on success and 0 on failure (no PMD map is found).
792 */
793int pmd_clear_huge(pmd_t *pmd)
794{
795	if (pmd_leaf(*pmd)) {
796		pmd_clear(pmd);
797		return 1;
798	}
799
800	return 0;
801}
802
803#ifdef CONFIG_X86_64
804/**
805 * pud_free_pmd_page - Clear pud entry and free pmd page.
806 * @pud: Pointer to a PUD.
807 * @addr: Virtual address associated with pud.
808 *
809 * Context: The pud range has been unmapped and TLB purged.
810 * Return: 1 if clearing the entry succeeded. 0 otherwise.
811 *
812 * NOTE: Callers must allow a single page allocation.
813 */
814int pud_free_pmd_page(pud_t *pud, unsigned long addr)
815{
816	pmd_t *pmd, *pmd_sv;
817	pte_t *pte;
818	int i;
819
820	pmd = pud_pgtable(*pud);
821	pmd_sv = (pmd_t *)__get_free_page(GFP_KERNEL);
822	if (!pmd_sv)
823		return 0;
824
825	for (i = 0; i < PTRS_PER_PMD; i++) {
826		pmd_sv[i] = pmd[i];
827		if (!pmd_none(pmd[i]))
828			pmd_clear(&pmd[i]);
829	}
830
831	pud_clear(pud);
832
833	/* INVLPG to clear all paging-structure caches */
834	flush_tlb_kernel_range(addr, addr + PAGE_SIZE-1);
835
836	for (i = 0; i < PTRS_PER_PMD; i++) {
837		if (!pmd_none(pmd_sv[i])) {
838			pte = (pte_t *)pmd_page_vaddr(pmd_sv[i]);
839			free_page((unsigned long)pte);
840		}
841	}
842
843	free_page((unsigned long)pmd_sv);
844
845	pagetable_pmd_dtor(virt_to_ptdesc(pmd));
846	free_page((unsigned long)pmd);
847
848	return 1;
849}
850
851/**
852 * pmd_free_pte_page - Clear pmd entry and free pte page.
853 * @pmd: Pointer to a PMD.
854 * @addr: Virtual address associated with pmd.
855 *
856 * Context: The pmd range has been unmapped and TLB purged.
857 * Return: 1 if clearing the entry succeeded. 0 otherwise.
858 */
859int pmd_free_pte_page(pmd_t *pmd, unsigned long addr)
860{
861	pte_t *pte;
862
 
 
 
863	pte = (pte_t *)pmd_page_vaddr(*pmd);
864	pmd_clear(pmd);
865
866	/* INVLPG to clear all paging-structure caches */
867	flush_tlb_kernel_range(addr, addr + PAGE_SIZE-1);
868
869	free_page((unsigned long)pte);
870
871	return 1;
872}
873
874#else /* !CONFIG_X86_64 */
875
876/*
877 * Disable free page handling on x86-PAE. This assures that ioremap()
878 * does not update sync'd pmd entries. See vmalloc_sync_one().
879 */
880int pmd_free_pte_page(pmd_t *pmd, unsigned long addr)
881{
882	return pmd_none(*pmd);
883}
884
885#endif /* CONFIG_X86_64 */
886#endif	/* CONFIG_HAVE_ARCH_HUGE_VMAP */
887
888pte_t pte_mkwrite(pte_t pte, struct vm_area_struct *vma)
889{
890	if (vma->vm_flags & VM_SHADOW_STACK)
891		return pte_mkwrite_shstk(pte);
892
893	pte = pte_mkwrite_novma(pte);
894
895	return pte_clear_saveddirty(pte);
896}
897
898pmd_t pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
899{
900	if (vma->vm_flags & VM_SHADOW_STACK)
901		return pmd_mkwrite_shstk(pmd);
902
903	pmd = pmd_mkwrite_novma(pmd);
904
905	return pmd_clear_saveddirty(pmd);
906}
907
908void arch_check_zapped_pte(struct vm_area_struct *vma, pte_t pte)
909{
910	/*
911	 * Hardware before shadow stack can (rarely) set Dirty=1
912	 * on a Write=0 PTE. So the below condition
913	 * only indicates a software bug when shadow stack is
914	 * supported by the HW. This checking is covered in
915	 * pte_shstk().
916	 */
917	VM_WARN_ON_ONCE(!(vma->vm_flags & VM_SHADOW_STACK) &&
918			pte_shstk(pte));
919}
920
921void arch_check_zapped_pmd(struct vm_area_struct *vma, pmd_t pmd)
922{
923	/* See note in arch_check_zapped_pte() */
924	VM_WARN_ON_ONCE(!(vma->vm_flags & VM_SHADOW_STACK) &&
925			pmd_shstk(pmd));
926}