Linux Audio

Check our new training course

Loading...
v4.17
 
   1/*
   2 * auxtrace.c: AUX area trace support
   3 * Copyright (c) 2013-2015, Intel Corporation.
   4 *
   5 * This program is free software; you can redistribute it and/or modify it
   6 * under the terms and conditions of the GNU General Public License,
   7 * version 2, as published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope it will be useful, but WITHOUT
  10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  12 * more details.
  13 *
  14 */
  15
  16#include <inttypes.h>
  17#include <sys/types.h>
  18#include <sys/mman.h>
  19#include <stdbool.h>
  20#include <string.h>
  21#include <limits.h>
  22#include <errno.h>
  23
  24#include <linux/kernel.h>
  25#include <linux/perf_event.h>
  26#include <linux/types.h>
  27#include <linux/bitops.h>
  28#include <linux/log2.h>
  29#include <linux/string.h>
 
  30
  31#include <sys/param.h>
  32#include <stdlib.h>
  33#include <stdio.h>
  34#include <linux/list.h>
 
  35
  36#include "../perf.h"
  37#include "util.h"
  38#include "evlist.h"
  39#include "dso.h"
  40#include "map.h"
  41#include "pmu.h"
  42#include "evsel.h"
  43#include "cpumap.h"
 
 
 
  44#include "thread_map.h"
  45#include "asm/bug.h"
  46#include "auxtrace.h"
  47
  48#include <linux/hash.h>
  49
  50#include "event.h"
 
  51#include "session.h"
  52#include "debug.h"
  53#include <subcmd/parse-options.h>
  54
  55#include "cs-etm.h"
  56#include "intel-pt.h"
  57#include "intel-bts.h"
  58#include "arm-spe.h"
 
 
 
  59
  60#include "sane_ctype.h"
  61#include "symbol/kallsyms.h"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  62
  63static bool auxtrace__dont_decode(struct perf_session *session)
  64{
  65	return !session->itrace_synth_opts ||
  66	       session->itrace_synth_opts->dont_decode;
  67}
  68
  69int auxtrace_mmap__mmap(struct auxtrace_mmap *mm,
  70			struct auxtrace_mmap_params *mp,
  71			void *userpg, int fd)
  72{
  73	struct perf_event_mmap_page *pc = userpg;
  74
  75	WARN_ONCE(mm->base, "Uninitialized auxtrace_mmap\n");
  76
  77	mm->userpg = userpg;
  78	mm->mask = mp->mask;
  79	mm->len = mp->len;
  80	mm->prev = 0;
  81	mm->idx = mp->idx;
  82	mm->tid = mp->tid;
  83	mm->cpu = mp->cpu;
  84
  85	if (!mp->len) {
  86		mm->base = NULL;
  87		return 0;
  88	}
  89
  90#if BITS_PER_LONG != 64 && !defined(HAVE_SYNC_COMPARE_AND_SWAP_SUPPORT)
  91	pr_err("Cannot use AUX area tracing mmaps\n");
  92	return -1;
  93#endif
  94
  95	pc->aux_offset = mp->offset;
  96	pc->aux_size = mp->len;
  97
  98	mm->base = mmap(NULL, mp->len, mp->prot, MAP_SHARED, fd, mp->offset);
  99	if (mm->base == MAP_FAILED) {
 100		pr_debug2("failed to mmap AUX area\n");
 101		mm->base = NULL;
 102		return -1;
 103	}
 104
 105	return 0;
 106}
 107
 108void auxtrace_mmap__munmap(struct auxtrace_mmap *mm)
 109{
 110	if (mm->base) {
 111		munmap(mm->base, mm->len);
 112		mm->base = NULL;
 113	}
 114}
 115
 116void auxtrace_mmap_params__init(struct auxtrace_mmap_params *mp,
 117				off_t auxtrace_offset,
 118				unsigned int auxtrace_pages,
 119				bool auxtrace_overwrite)
 120{
 121	if (auxtrace_pages) {
 122		mp->offset = auxtrace_offset;
 123		mp->len = auxtrace_pages * (size_t)page_size;
 124		mp->mask = is_power_of_2(mp->len) ? mp->len - 1 : 0;
 125		mp->prot = PROT_READ | (auxtrace_overwrite ? 0 : PROT_WRITE);
 126		pr_debug2("AUX area mmap length %zu\n", mp->len);
 127	} else {
 128		mp->len = 0;
 129	}
 130}
 131
 132void auxtrace_mmap_params__set_idx(struct auxtrace_mmap_params *mp,
 133				   struct perf_evlist *evlist, int idx,
 134				   bool per_cpu)
 135{
 
 
 
 
 
 
 
 136	mp->idx = idx;
 137
 138	if (per_cpu) {
 139		mp->cpu = evlist->cpus->map[idx];
 140		if (evlist->threads)
 141			mp->tid = thread_map__pid(evlist->threads, 0);
 142		else
 143			mp->tid = -1;
 144	} else {
 145		mp->cpu = -1;
 146		mp->tid = thread_map__pid(evlist->threads, idx);
 147	}
 148}
 149
 150#define AUXTRACE_INIT_NR_QUEUES	32
 151
 152static struct auxtrace_queue *auxtrace_alloc_queue_array(unsigned int nr_queues)
 153{
 154	struct auxtrace_queue *queue_array;
 155	unsigned int max_nr_queues, i;
 156
 157	max_nr_queues = UINT_MAX / sizeof(struct auxtrace_queue);
 158	if (nr_queues > max_nr_queues)
 159		return NULL;
 160
 161	queue_array = calloc(nr_queues, sizeof(struct auxtrace_queue));
 162	if (!queue_array)
 163		return NULL;
 164
 165	for (i = 0; i < nr_queues; i++) {
 166		INIT_LIST_HEAD(&queue_array[i].head);
 167		queue_array[i].priv = NULL;
 168	}
 169
 170	return queue_array;
 171}
 172
 173int auxtrace_queues__init(struct auxtrace_queues *queues)
 174{
 175	queues->nr_queues = AUXTRACE_INIT_NR_QUEUES;
 176	queues->queue_array = auxtrace_alloc_queue_array(queues->nr_queues);
 177	if (!queues->queue_array)
 178		return -ENOMEM;
 179	return 0;
 180}
 181
 182static int auxtrace_queues__grow(struct auxtrace_queues *queues,
 183				 unsigned int new_nr_queues)
 184{
 185	unsigned int nr_queues = queues->nr_queues;
 186	struct auxtrace_queue *queue_array;
 187	unsigned int i;
 188
 189	if (!nr_queues)
 190		nr_queues = AUXTRACE_INIT_NR_QUEUES;
 191
 192	while (nr_queues && nr_queues < new_nr_queues)
 193		nr_queues <<= 1;
 194
 195	if (nr_queues < queues->nr_queues || nr_queues < new_nr_queues)
 196		return -EINVAL;
 197
 198	queue_array = auxtrace_alloc_queue_array(nr_queues);
 199	if (!queue_array)
 200		return -ENOMEM;
 201
 202	for (i = 0; i < queues->nr_queues; i++) {
 203		list_splice_tail(&queues->queue_array[i].head,
 204				 &queue_array[i].head);
 
 
 
 205		queue_array[i].priv = queues->queue_array[i].priv;
 206	}
 207
 208	queues->nr_queues = nr_queues;
 209	queues->queue_array = queue_array;
 210
 211	return 0;
 212}
 213
 214static void *auxtrace_copy_data(u64 size, struct perf_session *session)
 215{
 216	int fd = perf_data__fd(session->data);
 217	void *p;
 218	ssize_t ret;
 219
 220	if (size > SSIZE_MAX)
 221		return NULL;
 222
 223	p = malloc(size);
 224	if (!p)
 225		return NULL;
 226
 227	ret = readn(fd, p, size);
 228	if (ret != (ssize_t)size) {
 229		free(p);
 230		return NULL;
 231	}
 232
 233	return p;
 234}
 235
 236static int auxtrace_queues__queue_buffer(struct auxtrace_queues *queues,
 237					 unsigned int idx,
 238					 struct auxtrace_buffer *buffer)
 239{
 240	struct auxtrace_queue *queue;
 241	int err;
 242
 243	if (idx >= queues->nr_queues) {
 244		err = auxtrace_queues__grow(queues, idx + 1);
 245		if (err)
 246			return err;
 247	}
 248
 249	queue = &queues->queue_array[idx];
 250
 251	if (!queue->set) {
 252		queue->set = true;
 253		queue->tid = buffer->tid;
 254		queue->cpu = buffer->cpu;
 255	} else if (buffer->cpu != queue->cpu || buffer->tid != queue->tid) {
 256		pr_err("auxtrace queue conflict: cpu %d, tid %d vs cpu %d, tid %d\n",
 257		       queue->cpu, queue->tid, buffer->cpu, buffer->tid);
 258		return -EINVAL;
 259	}
 260
 261	buffer->buffer_nr = queues->next_buffer_nr++;
 262
 263	list_add_tail(&buffer->list, &queue->head);
 264
 265	queues->new_data = true;
 266	queues->populated = true;
 267
 268	return 0;
 269}
 270
 271/* Limit buffers to 32MiB on 32-bit */
 272#define BUFFER_LIMIT_FOR_32_BIT (32 * 1024 * 1024)
 273
 274static int auxtrace_queues__split_buffer(struct auxtrace_queues *queues,
 275					 unsigned int idx,
 276					 struct auxtrace_buffer *buffer)
 277{
 278	u64 sz = buffer->size;
 279	bool consecutive = false;
 280	struct auxtrace_buffer *b;
 281	int err;
 282
 283	while (sz > BUFFER_LIMIT_FOR_32_BIT) {
 284		b = memdup(buffer, sizeof(struct auxtrace_buffer));
 285		if (!b)
 286			return -ENOMEM;
 287		b->size = BUFFER_LIMIT_FOR_32_BIT;
 288		b->consecutive = consecutive;
 289		err = auxtrace_queues__queue_buffer(queues, idx, b);
 290		if (err) {
 291			auxtrace_buffer__free(b);
 292			return err;
 293		}
 294		buffer->data_offset += BUFFER_LIMIT_FOR_32_BIT;
 295		sz -= BUFFER_LIMIT_FOR_32_BIT;
 296		consecutive = true;
 297	}
 298
 299	buffer->size = sz;
 300	buffer->consecutive = consecutive;
 301
 302	return 0;
 303}
 304
 305static bool filter_cpu(struct perf_session *session, int cpu)
 306{
 307	unsigned long *cpu_bitmap = session->itrace_synth_opts->cpu_bitmap;
 308
 309	return cpu_bitmap && cpu != -1 && !test_bit(cpu, cpu_bitmap);
 310}
 311
 312static int auxtrace_queues__add_buffer(struct auxtrace_queues *queues,
 313				       struct perf_session *session,
 314				       unsigned int idx,
 315				       struct auxtrace_buffer *buffer,
 316				       struct auxtrace_buffer **buffer_ptr)
 317{
 318	int err = -ENOMEM;
 319
 320	if (filter_cpu(session, buffer->cpu))
 321		return 0;
 322
 323	buffer = memdup(buffer, sizeof(*buffer));
 324	if (!buffer)
 325		return -ENOMEM;
 326
 327	if (session->one_mmap) {
 328		buffer->data = buffer->data_offset - session->one_mmap_offset +
 329			       session->one_mmap_addr;
 330	} else if (perf_data__is_pipe(session->data)) {
 331		buffer->data = auxtrace_copy_data(buffer->size, session);
 332		if (!buffer->data)
 333			goto out_free;
 334		buffer->data_needs_freeing = true;
 335	} else if (BITS_PER_LONG == 32 &&
 336		   buffer->size > BUFFER_LIMIT_FOR_32_BIT) {
 337		err = auxtrace_queues__split_buffer(queues, idx, buffer);
 338		if (err)
 339			goto out_free;
 340	}
 341
 342	err = auxtrace_queues__queue_buffer(queues, idx, buffer);
 343	if (err)
 344		goto out_free;
 345
 346	/* FIXME: Doesn't work for split buffer */
 347	if (buffer_ptr)
 348		*buffer_ptr = buffer;
 349
 350	return 0;
 351
 352out_free:
 353	auxtrace_buffer__free(buffer);
 354	return err;
 355}
 356
 357int auxtrace_queues__add_event(struct auxtrace_queues *queues,
 358			       struct perf_session *session,
 359			       union perf_event *event, off_t data_offset,
 360			       struct auxtrace_buffer **buffer_ptr)
 361{
 362	struct auxtrace_buffer buffer = {
 363		.pid = -1,
 364		.tid = event->auxtrace.tid,
 365		.cpu = event->auxtrace.cpu,
 366		.data_offset = data_offset,
 367		.offset = event->auxtrace.offset,
 368		.reference = event->auxtrace.reference,
 369		.size = event->auxtrace.size,
 370	};
 371	unsigned int idx = event->auxtrace.idx;
 372
 373	return auxtrace_queues__add_buffer(queues, session, idx, &buffer,
 374					   buffer_ptr);
 375}
 376
 377static int auxtrace_queues__add_indexed_event(struct auxtrace_queues *queues,
 378					      struct perf_session *session,
 379					      off_t file_offset, size_t sz)
 380{
 381	union perf_event *event;
 382	int err;
 383	char buf[PERF_SAMPLE_MAX_SIZE];
 384
 385	err = perf_session__peek_event(session, file_offset, buf,
 386				       PERF_SAMPLE_MAX_SIZE, &event, NULL);
 387	if (err)
 388		return err;
 389
 390	if (event->header.type == PERF_RECORD_AUXTRACE) {
 391		if (event->header.size < sizeof(struct auxtrace_event) ||
 392		    event->header.size != sz) {
 393			err = -EINVAL;
 394			goto out;
 395		}
 396		file_offset += event->header.size;
 397		err = auxtrace_queues__add_event(queues, session, event,
 398						 file_offset, NULL);
 399	}
 400out:
 401	return err;
 402}
 403
 404void auxtrace_queues__free(struct auxtrace_queues *queues)
 405{
 406	unsigned int i;
 407
 408	for (i = 0; i < queues->nr_queues; i++) {
 409		while (!list_empty(&queues->queue_array[i].head)) {
 410			struct auxtrace_buffer *buffer;
 411
 412			buffer = list_entry(queues->queue_array[i].head.next,
 413					    struct auxtrace_buffer, list);
 414			list_del(&buffer->list);
 415			auxtrace_buffer__free(buffer);
 416		}
 417	}
 418
 419	zfree(&queues->queue_array);
 420	queues->nr_queues = 0;
 421}
 422
 423static void auxtrace_heapify(struct auxtrace_heap_item *heap_array,
 424			     unsigned int pos, unsigned int queue_nr,
 425			     u64 ordinal)
 426{
 427	unsigned int parent;
 428
 429	while (pos) {
 430		parent = (pos - 1) >> 1;
 431		if (heap_array[parent].ordinal <= ordinal)
 432			break;
 433		heap_array[pos] = heap_array[parent];
 434		pos = parent;
 435	}
 436	heap_array[pos].queue_nr = queue_nr;
 437	heap_array[pos].ordinal = ordinal;
 438}
 439
 440int auxtrace_heap__add(struct auxtrace_heap *heap, unsigned int queue_nr,
 441		       u64 ordinal)
 442{
 443	struct auxtrace_heap_item *heap_array;
 444
 445	if (queue_nr >= heap->heap_sz) {
 446		unsigned int heap_sz = AUXTRACE_INIT_NR_QUEUES;
 447
 448		while (heap_sz <= queue_nr)
 449			heap_sz <<= 1;
 450		heap_array = realloc(heap->heap_array,
 451				     heap_sz * sizeof(struct auxtrace_heap_item));
 452		if (!heap_array)
 453			return -ENOMEM;
 454		heap->heap_array = heap_array;
 455		heap->heap_sz = heap_sz;
 456	}
 457
 458	auxtrace_heapify(heap->heap_array, heap->heap_cnt++, queue_nr, ordinal);
 459
 460	return 0;
 461}
 462
 463void auxtrace_heap__free(struct auxtrace_heap *heap)
 464{
 465	zfree(&heap->heap_array);
 466	heap->heap_cnt = 0;
 467	heap->heap_sz = 0;
 468}
 469
 470void auxtrace_heap__pop(struct auxtrace_heap *heap)
 471{
 472	unsigned int pos, last, heap_cnt = heap->heap_cnt;
 473	struct auxtrace_heap_item *heap_array;
 474
 475	if (!heap_cnt)
 476		return;
 477
 478	heap->heap_cnt -= 1;
 479
 480	heap_array = heap->heap_array;
 481
 482	pos = 0;
 483	while (1) {
 484		unsigned int left, right;
 485
 486		left = (pos << 1) + 1;
 487		if (left >= heap_cnt)
 488			break;
 489		right = left + 1;
 490		if (right >= heap_cnt) {
 491			heap_array[pos] = heap_array[left];
 492			return;
 493		}
 494		if (heap_array[left].ordinal < heap_array[right].ordinal) {
 495			heap_array[pos] = heap_array[left];
 496			pos = left;
 497		} else {
 498			heap_array[pos] = heap_array[right];
 499			pos = right;
 500		}
 501	}
 502
 503	last = heap_cnt - 1;
 504	auxtrace_heapify(heap_array, pos, heap_array[last].queue_nr,
 505			 heap_array[last].ordinal);
 506}
 507
 508size_t auxtrace_record__info_priv_size(struct auxtrace_record *itr,
 509				       struct perf_evlist *evlist)
 510{
 511	if (itr)
 512		return itr->info_priv_size(itr, evlist);
 513	return 0;
 514}
 515
 516static int auxtrace_not_supported(void)
 517{
 518	pr_err("AUX area tracing is not supported on this architecture\n");
 519	return -EINVAL;
 520}
 521
 522int auxtrace_record__info_fill(struct auxtrace_record *itr,
 523			       struct perf_session *session,
 524			       struct auxtrace_info_event *auxtrace_info,
 525			       size_t priv_size)
 526{
 527	if (itr)
 528		return itr->info_fill(itr, session, auxtrace_info, priv_size);
 529	return auxtrace_not_supported();
 530}
 531
 532void auxtrace_record__free(struct auxtrace_record *itr)
 533{
 534	if (itr)
 535		itr->free(itr);
 536}
 537
 538int auxtrace_record__snapshot_start(struct auxtrace_record *itr)
 539{
 540	if (itr && itr->snapshot_start)
 541		return itr->snapshot_start(itr);
 542	return 0;
 543}
 544
 545int auxtrace_record__snapshot_finish(struct auxtrace_record *itr)
 546{
 547	if (itr && itr->snapshot_finish)
 548		return itr->snapshot_finish(itr);
 549	return 0;
 550}
 551
 552int auxtrace_record__find_snapshot(struct auxtrace_record *itr, int idx,
 553				   struct auxtrace_mmap *mm,
 554				   unsigned char *data, u64 *head, u64 *old)
 555{
 556	if (itr && itr->find_snapshot)
 557		return itr->find_snapshot(itr, idx, mm, data, head, old);
 558	return 0;
 559}
 560
 561int auxtrace_record__options(struct auxtrace_record *itr,
 562			     struct perf_evlist *evlist,
 563			     struct record_opts *opts)
 564{
 565	if (itr)
 
 566		return itr->recording_options(itr, evlist, opts);
 
 567	return 0;
 568}
 569
 570u64 auxtrace_record__reference(struct auxtrace_record *itr)
 571{
 572	if (itr)
 573		return itr->reference(itr);
 574	return 0;
 575}
 576
 577int auxtrace_parse_snapshot_options(struct auxtrace_record *itr,
 578				    struct record_opts *opts, const char *str)
 579{
 580	if (!str)
 581		return 0;
 582
 583	if (itr)
 
 
 
 
 
 
 
 
 
 
 584		return itr->parse_snapshot_options(itr, opts, str);
 585
 586	pr_err("No AUX area tracing to snapshot\n");
 587	return -EINVAL;
 588}
 589
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 590struct auxtrace_record *__weak
 591auxtrace_record__init(struct perf_evlist *evlist __maybe_unused, int *err)
 592{
 593	*err = 0;
 594	return NULL;
 595}
 596
 597static int auxtrace_index__alloc(struct list_head *head)
 598{
 599	struct auxtrace_index *auxtrace_index;
 600
 601	auxtrace_index = malloc(sizeof(struct auxtrace_index));
 602	if (!auxtrace_index)
 603		return -ENOMEM;
 604
 605	auxtrace_index->nr = 0;
 606	INIT_LIST_HEAD(&auxtrace_index->list);
 607
 608	list_add_tail(&auxtrace_index->list, head);
 609
 610	return 0;
 611}
 612
 613void auxtrace_index__free(struct list_head *head)
 614{
 615	struct auxtrace_index *auxtrace_index, *n;
 616
 617	list_for_each_entry_safe(auxtrace_index, n, head, list) {
 618		list_del(&auxtrace_index->list);
 619		free(auxtrace_index);
 620	}
 621}
 622
 623static struct auxtrace_index *auxtrace_index__last(struct list_head *head)
 624{
 625	struct auxtrace_index *auxtrace_index;
 626	int err;
 627
 628	if (list_empty(head)) {
 629		err = auxtrace_index__alloc(head);
 630		if (err)
 631			return NULL;
 632	}
 633
 634	auxtrace_index = list_entry(head->prev, struct auxtrace_index, list);
 635
 636	if (auxtrace_index->nr >= PERF_AUXTRACE_INDEX_ENTRY_COUNT) {
 637		err = auxtrace_index__alloc(head);
 638		if (err)
 639			return NULL;
 640		auxtrace_index = list_entry(head->prev, struct auxtrace_index,
 641					    list);
 642	}
 643
 644	return auxtrace_index;
 645}
 646
 647int auxtrace_index__auxtrace_event(struct list_head *head,
 648				   union perf_event *event, off_t file_offset)
 649{
 650	struct auxtrace_index *auxtrace_index;
 651	size_t nr;
 652
 653	auxtrace_index = auxtrace_index__last(head);
 654	if (!auxtrace_index)
 655		return -ENOMEM;
 656
 657	nr = auxtrace_index->nr;
 658	auxtrace_index->entries[nr].file_offset = file_offset;
 659	auxtrace_index->entries[nr].sz = event->header.size;
 660	auxtrace_index->nr += 1;
 661
 662	return 0;
 663}
 664
 665static int auxtrace_index__do_write(int fd,
 666				    struct auxtrace_index *auxtrace_index)
 667{
 668	struct auxtrace_index_entry ent;
 669	size_t i;
 670
 671	for (i = 0; i < auxtrace_index->nr; i++) {
 672		ent.file_offset = auxtrace_index->entries[i].file_offset;
 673		ent.sz = auxtrace_index->entries[i].sz;
 674		if (writen(fd, &ent, sizeof(ent)) != sizeof(ent))
 675			return -errno;
 676	}
 677	return 0;
 678}
 679
 680int auxtrace_index__write(int fd, struct list_head *head)
 681{
 682	struct auxtrace_index *auxtrace_index;
 683	u64 total = 0;
 684	int err;
 685
 686	list_for_each_entry(auxtrace_index, head, list)
 687		total += auxtrace_index->nr;
 688
 689	if (writen(fd, &total, sizeof(total)) != sizeof(total))
 690		return -errno;
 691
 692	list_for_each_entry(auxtrace_index, head, list) {
 693		err = auxtrace_index__do_write(fd, auxtrace_index);
 694		if (err)
 695			return err;
 696	}
 697
 698	return 0;
 699}
 700
 701static int auxtrace_index__process_entry(int fd, struct list_head *head,
 702					 bool needs_swap)
 703{
 704	struct auxtrace_index *auxtrace_index;
 705	struct auxtrace_index_entry ent;
 706	size_t nr;
 707
 708	if (readn(fd, &ent, sizeof(ent)) != sizeof(ent))
 709		return -1;
 710
 711	auxtrace_index = auxtrace_index__last(head);
 712	if (!auxtrace_index)
 713		return -1;
 714
 715	nr = auxtrace_index->nr;
 716	if (needs_swap) {
 717		auxtrace_index->entries[nr].file_offset =
 718						bswap_64(ent.file_offset);
 719		auxtrace_index->entries[nr].sz = bswap_64(ent.sz);
 720	} else {
 721		auxtrace_index->entries[nr].file_offset = ent.file_offset;
 722		auxtrace_index->entries[nr].sz = ent.sz;
 723	}
 724
 725	auxtrace_index->nr = nr + 1;
 726
 727	return 0;
 728}
 729
 730int auxtrace_index__process(int fd, u64 size, struct perf_session *session,
 731			    bool needs_swap)
 732{
 733	struct list_head *head = &session->auxtrace_index;
 734	u64 nr;
 735
 736	if (readn(fd, &nr, sizeof(u64)) != sizeof(u64))
 737		return -1;
 738
 739	if (needs_swap)
 740		nr = bswap_64(nr);
 741
 742	if (sizeof(u64) + nr * sizeof(struct auxtrace_index_entry) > size)
 743		return -1;
 744
 745	while (nr--) {
 746		int err;
 747
 748		err = auxtrace_index__process_entry(fd, head, needs_swap);
 749		if (err)
 750			return -1;
 751	}
 752
 753	return 0;
 754}
 755
 756static int auxtrace_queues__process_index_entry(struct auxtrace_queues *queues,
 757						struct perf_session *session,
 758						struct auxtrace_index_entry *ent)
 759{
 760	return auxtrace_queues__add_indexed_event(queues, session,
 761						  ent->file_offset, ent->sz);
 762}
 763
 764int auxtrace_queues__process_index(struct auxtrace_queues *queues,
 765				   struct perf_session *session)
 766{
 767	struct auxtrace_index *auxtrace_index;
 768	struct auxtrace_index_entry *ent;
 769	size_t i;
 770	int err;
 771
 772	if (auxtrace__dont_decode(session))
 773		return 0;
 774
 775	list_for_each_entry(auxtrace_index, &session->auxtrace_index, list) {
 776		for (i = 0; i < auxtrace_index->nr; i++) {
 777			ent = &auxtrace_index->entries[i];
 778			err = auxtrace_queues__process_index_entry(queues,
 779								   session,
 780								   ent);
 781			if (err)
 782				return err;
 783		}
 784	}
 785	return 0;
 786}
 787
 788struct auxtrace_buffer *auxtrace_buffer__next(struct auxtrace_queue *queue,
 789					      struct auxtrace_buffer *buffer)
 790{
 791	if (buffer) {
 792		if (list_is_last(&buffer->list, &queue->head))
 793			return NULL;
 794		return list_entry(buffer->list.next, struct auxtrace_buffer,
 795				  list);
 796	} else {
 797		if (list_empty(&queue->head))
 798			return NULL;
 799		return list_entry(queue->head.next, struct auxtrace_buffer,
 800				  list);
 801	}
 802}
 803
 804void *auxtrace_buffer__get_data(struct auxtrace_buffer *buffer, int fd)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 805{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 806	size_t adj = buffer->data_offset & (page_size - 1);
 807	size_t size = buffer->size + adj;
 808	off_t file_offset = buffer->data_offset - adj;
 809	void *addr;
 810
 811	if (buffer->data)
 812		return buffer->data;
 813
 814	addr = mmap(NULL, size, PROT_READ, MAP_SHARED, fd, file_offset);
 815	if (addr == MAP_FAILED)
 816		return NULL;
 817
 818	buffer->mmap_addr = addr;
 819	buffer->mmap_size = size;
 820
 821	buffer->data = addr + adj;
 822
 823	return buffer->data;
 824}
 825
 826void auxtrace_buffer__put_data(struct auxtrace_buffer *buffer)
 827{
 828	if (!buffer->data || !buffer->mmap_addr)
 829		return;
 830	munmap(buffer->mmap_addr, buffer->mmap_size);
 831	buffer->mmap_addr = NULL;
 832	buffer->mmap_size = 0;
 833	buffer->data = NULL;
 834	buffer->use_data = NULL;
 835}
 836
 837void auxtrace_buffer__drop_data(struct auxtrace_buffer *buffer)
 838{
 839	auxtrace_buffer__put_data(buffer);
 840	if (buffer->data_needs_freeing) {
 841		buffer->data_needs_freeing = false;
 842		zfree(&buffer->data);
 843		buffer->use_data = NULL;
 844		buffer->size = 0;
 845	}
 846}
 847
 848void auxtrace_buffer__free(struct auxtrace_buffer *buffer)
 849{
 850	auxtrace_buffer__drop_data(buffer);
 851	free(buffer);
 852}
 853
 854void auxtrace_synth_error(struct auxtrace_error_event *auxtrace_error, int type,
 855			  int code, int cpu, pid_t pid, pid_t tid, u64 ip,
 856			  const char *msg)
 
 857{
 858	size_t size;
 859
 860	memset(auxtrace_error, 0, sizeof(struct auxtrace_error_event));
 861
 862	auxtrace_error->header.type = PERF_RECORD_AUXTRACE_ERROR;
 863	auxtrace_error->type = type;
 864	auxtrace_error->code = code;
 865	auxtrace_error->cpu = cpu;
 866	auxtrace_error->pid = pid;
 867	auxtrace_error->tid = tid;
 
 868	auxtrace_error->ip = ip;
 
 869	strlcpy(auxtrace_error->msg, msg, MAX_AUXTRACE_ERROR_MSG);
 870
 871	size = (void *)auxtrace_error->msg - (void *)auxtrace_error +
 872	       strlen(auxtrace_error->msg) + 1;
 
 
 
 
 
 
 873	auxtrace_error->header.size = PERF_ALIGN(size, sizeof(u64));
 874}
 875
 
 
 
 
 
 
 
 
 876int perf_event__synthesize_auxtrace_info(struct auxtrace_record *itr,
 877					 struct perf_tool *tool,
 878					 struct perf_session *session,
 879					 perf_event__handler_t process)
 880{
 881	union perf_event *ev;
 882	size_t priv_size;
 883	int err;
 884
 885	pr_debug2("Synthesizing auxtrace information\n");
 886	priv_size = auxtrace_record__info_priv_size(itr, session->evlist);
 887	ev = zalloc(sizeof(struct auxtrace_info_event) + priv_size);
 888	if (!ev)
 889		return -ENOMEM;
 890
 891	ev->auxtrace_info.header.type = PERF_RECORD_AUXTRACE_INFO;
 892	ev->auxtrace_info.header.size = sizeof(struct auxtrace_info_event) +
 893					priv_size;
 894	err = auxtrace_record__info_fill(itr, session, &ev->auxtrace_info,
 895					 priv_size);
 896	if (err)
 897		goto out_free;
 898
 899	err = process(tool, ev, NULL, NULL);
 900out_free:
 901	free(ev);
 902	return err;
 903}
 904
 905int perf_event__process_auxtrace_info(struct perf_tool *tool __maybe_unused,
 906				      union perf_event *event,
 907				      struct perf_session *session)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 908{
 909	enum auxtrace_type type = event->auxtrace_info.type;
 
 910
 911	if (dump_trace)
 912		fprintf(stdout, " type: %u\n", type);
 913
 914	switch (type) {
 915	case PERF_AUXTRACE_INTEL_PT:
 916		return intel_pt_process_auxtrace_info(event, session);
 
 917	case PERF_AUXTRACE_INTEL_BTS:
 918		return intel_bts_process_auxtrace_info(event, session);
 
 919	case PERF_AUXTRACE_ARM_SPE:
 920		return arm_spe_process_auxtrace_info(event, session);
 
 921	case PERF_AUXTRACE_CS_ETM:
 922		return cs_etm__process_auxtrace_info(event, session);
 
 
 
 
 
 
 
 923	case PERF_AUXTRACE_UNKNOWN:
 924	default:
 925		return -EINVAL;
 926	}
 
 
 
 
 
 
 
 927}
 928
 929s64 perf_event__process_auxtrace(struct perf_tool *tool,
 930				 union perf_event *event,
 931				 struct perf_session *session)
 932{
 933	s64 err;
 934
 935	if (dump_trace)
 936		fprintf(stdout, " size: %#"PRIx64"  offset: %#"PRIx64"  ref: %#"PRIx64"  idx: %u  tid: %d  cpu: %d\n",
 937			event->auxtrace.size, event->auxtrace.offset,
 938			event->auxtrace.reference, event->auxtrace.idx,
 939			event->auxtrace.tid, event->auxtrace.cpu);
 940
 941	if (auxtrace__dont_decode(session))
 942		return event->auxtrace.size;
 943
 944	if (!session->auxtrace || event->header.type != PERF_RECORD_AUXTRACE)
 945		return -EINVAL;
 946
 947	err = session->auxtrace->process_auxtrace_event(session, event, tool);
 948	if (err < 0)
 949		return err;
 950
 951	return event->auxtrace.size;
 952}
 953
 954#define PERF_ITRACE_DEFAULT_PERIOD_TYPE		PERF_ITRACE_PERIOD_NANOSECS
 955#define PERF_ITRACE_DEFAULT_PERIOD		100000
 956#define PERF_ITRACE_DEFAULT_CALLCHAIN_SZ	16
 957#define PERF_ITRACE_MAX_CALLCHAIN_SZ		1024
 958#define PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ	64
 959#define PERF_ITRACE_MAX_LAST_BRANCH_SZ		1024
 960
 961void itrace_synth_opts__set_default(struct itrace_synth_opts *synth_opts)
 
 962{
 963	synth_opts->instructions = true;
 964	synth_opts->branches = true;
 965	synth_opts->transactions = true;
 966	synth_opts->ptwrites = true;
 967	synth_opts->pwr_events = true;
 
 
 968	synth_opts->errors = true;
 969	synth_opts->period_type = PERF_ITRACE_DEFAULT_PERIOD_TYPE;
 970	synth_opts->period = PERF_ITRACE_DEFAULT_PERIOD;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 971	synth_opts->callchain_sz = PERF_ITRACE_DEFAULT_CALLCHAIN_SZ;
 972	synth_opts->last_branch_sz = PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ;
 973	synth_opts->initial_skip = 0;
 974}
 975
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 976/*
 977 * Please check tools/perf/Documentation/perf-script.txt for information
 978 * about the options parsed here, which is introduced after this cset,
 979 * when support in 'perf script' for these options is introduced.
 980 */
 981int itrace_parse_synth_opts(const struct option *opt, const char *str,
 982			    int unset)
 983{
 984	struct itrace_synth_opts *synth_opts = opt->value;
 985	const char *p;
 986	char *endptr;
 987	bool period_type_set = false;
 988	bool period_set = false;
 989
 990	synth_opts->set = true;
 991
 992	if (unset) {
 993		synth_opts->dont_decode = true;
 994		return 0;
 995	}
 996
 997	if (!str) {
 998		itrace_synth_opts__set_default(synth_opts);
 
 999		return 0;
1000	}
1001
1002	for (p = str; *p;) {
1003		switch (*p++) {
1004		case 'i':
1005			synth_opts->instructions = true;
 
 
 
 
1006			while (*p == ' ' || *p == ',')
1007				p += 1;
1008			if (isdigit(*p)) {
1009				synth_opts->period = strtoull(p, &endptr, 10);
1010				period_set = true;
1011				p = endptr;
1012				while (*p == ' ' || *p == ',')
1013					p += 1;
1014				switch (*p++) {
1015				case 'i':
1016					synth_opts->period_type =
1017						PERF_ITRACE_PERIOD_INSTRUCTIONS;
1018					period_type_set = true;
1019					break;
1020				case 't':
1021					synth_opts->period_type =
1022						PERF_ITRACE_PERIOD_TICKS;
1023					period_type_set = true;
1024					break;
1025				case 'm':
1026					synth_opts->period *= 1000;
1027					/* Fall through */
1028				case 'u':
1029					synth_opts->period *= 1000;
1030					/* Fall through */
1031				case 'n':
1032					if (*p++ != 's')
1033						goto out_err;
1034					synth_opts->period_type =
1035						PERF_ITRACE_PERIOD_NANOSECS;
1036					period_type_set = true;
1037					break;
1038				case '\0':
1039					goto out;
1040				default:
1041					goto out_err;
1042				}
1043			}
1044			break;
1045		case 'b':
1046			synth_opts->branches = true;
1047			break;
1048		case 'x':
1049			synth_opts->transactions = true;
1050			break;
1051		case 'w':
1052			synth_opts->ptwrites = true;
1053			break;
1054		case 'p':
1055			synth_opts->pwr_events = true;
1056			break;
 
 
 
 
 
 
1057		case 'e':
1058			synth_opts->errors = true;
 
 
 
1059			break;
1060		case 'd':
1061			synth_opts->log = true;
 
 
 
 
 
1062			break;
1063		case 'c':
1064			synth_opts->branches = true;
1065			synth_opts->calls = true;
1066			break;
1067		case 'r':
1068			synth_opts->branches = true;
1069			synth_opts->returns = true;
1070			break;
 
1071		case 'g':
1072			synth_opts->callchain = true;
 
 
 
1073			synth_opts->callchain_sz =
1074					PERF_ITRACE_DEFAULT_CALLCHAIN_SZ;
1075			while (*p == ' ' || *p == ',')
1076				p += 1;
1077			if (isdigit(*p)) {
1078				unsigned int val;
1079
1080				val = strtoul(p, &endptr, 10);
1081				p = endptr;
1082				if (!val || val > PERF_ITRACE_MAX_CALLCHAIN_SZ)
1083					goto out_err;
1084				synth_opts->callchain_sz = val;
1085			}
1086			break;
 
1087		case 'l':
1088			synth_opts->last_branch = true;
 
 
 
1089			synth_opts->last_branch_sz =
1090					PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ;
1091			while (*p == ' ' || *p == ',')
1092				p += 1;
1093			if (isdigit(*p)) {
1094				unsigned int val;
1095
1096				val = strtoul(p, &endptr, 10);
1097				p = endptr;
1098				if (!val ||
1099				    val > PERF_ITRACE_MAX_LAST_BRANCH_SZ)
1100					goto out_err;
1101				synth_opts->last_branch_sz = val;
1102			}
1103			break;
1104		case 's':
1105			synth_opts->initial_skip = strtoul(p, &endptr, 10);
1106			if (p == endptr)
1107				goto out_err;
1108			p = endptr;
1109			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1110		case ' ':
1111		case ',':
1112			break;
1113		default:
1114			goto out_err;
1115		}
1116	}
1117out:
1118	if (synth_opts->instructions) {
1119		if (!period_type_set)
1120			synth_opts->period_type =
1121					PERF_ITRACE_DEFAULT_PERIOD_TYPE;
1122		if (!period_set)
1123			synth_opts->period = PERF_ITRACE_DEFAULT_PERIOD;
1124	}
1125
1126	return 0;
1127
1128out_err:
1129	pr_err("Bad Instruction Tracing options '%s'\n", str);
1130	return -EINVAL;
1131}
1132
 
 
 
 
 
1133static const char * const auxtrace_error_type_name[] = {
1134	[PERF_AUXTRACE_ERROR_ITRACE] = "instruction trace",
1135};
1136
1137static const char *auxtrace_error_name(int type)
1138{
1139	const char *error_type_name = NULL;
1140
1141	if (type < PERF_AUXTRACE_ERROR_MAX)
1142		error_type_name = auxtrace_error_type_name[type];
1143	if (!error_type_name)
1144		error_type_name = "unknown AUX";
1145	return error_type_name;
1146}
1147
1148size_t perf_event__fprintf_auxtrace_error(union perf_event *event, FILE *fp)
1149{
1150	struct auxtrace_error_event *e = &event->auxtrace_error;
 
 
1151	int ret;
1152
1153	ret = fprintf(fp, " %s error type %u",
1154		      auxtrace_error_name(e->type), e->type);
1155	ret += fprintf(fp, " cpu %d pid %d tid %d ip %#"PRIx64" code %u: %s\n",
1156		       e->cpu, e->pid, e->tid, e->ip, e->code, e->msg);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1157	return ret;
1158}
1159
1160void perf_session__auxtrace_error_inc(struct perf_session *session,
1161				      union perf_event *event)
1162{
1163	struct auxtrace_error_event *e = &event->auxtrace_error;
1164
1165	if (e->type < PERF_AUXTRACE_ERROR_MAX)
1166		session->evlist->stats.nr_auxtrace_errors[e->type] += 1;
1167}
1168
1169void events_stats__auxtrace_error_warn(const struct events_stats *stats)
1170{
1171	int i;
1172
1173	for (i = 0; i < PERF_AUXTRACE_ERROR_MAX; i++) {
1174		if (!stats->nr_auxtrace_errors[i])
1175			continue;
1176		ui__warning("%u %s errors\n",
1177			    stats->nr_auxtrace_errors[i],
1178			    auxtrace_error_name(i));
1179	}
1180}
1181
1182int perf_event__process_auxtrace_error(struct perf_tool *tool __maybe_unused,
1183				       union perf_event *event,
1184				       struct perf_session *session)
1185{
1186	if (auxtrace__dont_decode(session))
1187		return 0;
1188
1189	perf_event__fprintf_auxtrace_error(event, stdout);
1190	return 0;
1191}
1192
1193static int __auxtrace_mmap__read(struct auxtrace_mmap *mm,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1194				 struct auxtrace_record *itr,
1195				 struct perf_tool *tool, process_auxtrace_t fn,
1196				 bool snapshot, size_t snapshot_size)
1197{
 
1198	u64 head, old = mm->prev, offset, ref;
1199	unsigned char *data = mm->base;
1200	size_t size, head_off, old_off, len1, len2, padding;
1201	union perf_event ev;
1202	void *data1, *data2;
 
1203
1204	if (snapshot) {
1205		head = auxtrace_mmap__read_snapshot_head(mm);
1206		if (auxtrace_record__find_snapshot(itr, mm->idx, mm, data,
1207						   &head, &old))
1208			return -1;
1209	} else {
1210		head = auxtrace_mmap__read_head(mm);
1211	}
1212
1213	if (old == head)
1214		return 0;
1215
1216	pr_debug3("auxtrace idx %d old %#"PRIx64" head %#"PRIx64" diff %#"PRIx64"\n",
1217		  mm->idx, old, head, head - old);
1218
1219	if (mm->mask) {
1220		head_off = head & mm->mask;
1221		old_off = old & mm->mask;
1222	} else {
1223		head_off = head % mm->len;
1224		old_off = old % mm->len;
1225	}
1226
1227	if (head_off > old_off)
1228		size = head_off - old_off;
1229	else
1230		size = mm->len - (old_off - head_off);
1231
1232	if (snapshot && size > snapshot_size)
1233		size = snapshot_size;
1234
1235	ref = auxtrace_record__reference(itr);
1236
1237	if (head > old || size <= head || mm->mask) {
1238		offset = head - size;
1239	} else {
1240		/*
1241		 * When the buffer size is not a power of 2, 'head' wraps at the
1242		 * highest multiple of the buffer size, so we have to subtract
1243		 * the remainder here.
1244		 */
1245		u64 rem = (0ULL - mm->len) % mm->len;
1246
1247		offset = head - size - rem;
1248	}
1249
1250	if (size > head_off) {
1251		len1 = size - head_off;
1252		data1 = &data[mm->len - len1];
1253		len2 = head_off;
1254		data2 = &data[0];
1255	} else {
1256		len1 = size;
1257		data1 = &data[head_off - len1];
1258		len2 = 0;
1259		data2 = NULL;
1260	}
1261
1262	if (itr->alignment) {
1263		unsigned int unwanted = len1 % itr->alignment;
1264
1265		len1 -= unwanted;
1266		size -= unwanted;
1267	}
1268
1269	/* padding must be written by fn() e.g. record__process_auxtrace() */
1270	padding = size & 7;
1271	if (padding)
1272		padding = 8 - padding;
1273
1274	memset(&ev, 0, sizeof(ev));
1275	ev.auxtrace.header.type = PERF_RECORD_AUXTRACE;
1276	ev.auxtrace.header.size = sizeof(ev.auxtrace);
1277	ev.auxtrace.size = size + padding;
1278	ev.auxtrace.offset = offset;
1279	ev.auxtrace.reference = ref;
1280	ev.auxtrace.idx = mm->idx;
1281	ev.auxtrace.tid = mm->tid;
1282	ev.auxtrace.cpu = mm->cpu;
1283
1284	if (fn(tool, &ev, data1, len1, data2, len2))
1285		return -1;
1286
1287	mm->prev = head;
1288
1289	if (!snapshot) {
1290		auxtrace_mmap__write_tail(mm, head);
1291		if (itr->read_finish) {
1292			int err;
 
 
1293
 
1294			err = itr->read_finish(itr, mm->idx);
1295			if (err < 0)
1296				return err;
1297		}
1298	}
1299
1300	return 1;
1301}
1302
1303int auxtrace_mmap__read(struct auxtrace_mmap *mm, struct auxtrace_record *itr,
1304			struct perf_tool *tool, process_auxtrace_t fn)
1305{
1306	return __auxtrace_mmap__read(mm, itr, tool, fn, false, 0);
1307}
1308
1309int auxtrace_mmap__read_snapshot(struct auxtrace_mmap *mm,
1310				 struct auxtrace_record *itr,
1311				 struct perf_tool *tool, process_auxtrace_t fn,
1312				 size_t snapshot_size)
1313{
1314	return __auxtrace_mmap__read(mm, itr, tool, fn, true, snapshot_size);
1315}
1316
1317/**
1318 * struct auxtrace_cache - hash table to implement a cache
1319 * @hashtable: the hashtable
1320 * @sz: hashtable size (number of hlists)
1321 * @entry_size: size of an entry
1322 * @limit: limit the number of entries to this maximum, when reached the cache
1323 *         is dropped and caching begins again with an empty cache
1324 * @cnt: current number of entries
1325 * @bits: hashtable size (@sz = 2^@bits)
1326 */
1327struct auxtrace_cache {
1328	struct hlist_head *hashtable;
1329	size_t sz;
1330	size_t entry_size;
1331	size_t limit;
1332	size_t cnt;
1333	unsigned int bits;
1334};
1335
1336struct auxtrace_cache *auxtrace_cache__new(unsigned int bits, size_t entry_size,
1337					   unsigned int limit_percent)
1338{
1339	struct auxtrace_cache *c;
1340	struct hlist_head *ht;
1341	size_t sz, i;
1342
1343	c = zalloc(sizeof(struct auxtrace_cache));
1344	if (!c)
1345		return NULL;
1346
1347	sz = 1UL << bits;
1348
1349	ht = calloc(sz, sizeof(struct hlist_head));
1350	if (!ht)
1351		goto out_free;
1352
1353	for (i = 0; i < sz; i++)
1354		INIT_HLIST_HEAD(&ht[i]);
1355
1356	c->hashtable = ht;
1357	c->sz = sz;
1358	c->entry_size = entry_size;
1359	c->limit = (c->sz * limit_percent) / 100;
1360	c->bits = bits;
1361
1362	return c;
1363
1364out_free:
1365	free(c);
1366	return NULL;
1367}
1368
1369static void auxtrace_cache__drop(struct auxtrace_cache *c)
1370{
1371	struct auxtrace_cache_entry *entry;
1372	struct hlist_node *tmp;
1373	size_t i;
1374
1375	if (!c)
1376		return;
1377
1378	for (i = 0; i < c->sz; i++) {
1379		hlist_for_each_entry_safe(entry, tmp, &c->hashtable[i], hash) {
1380			hlist_del(&entry->hash);
1381			auxtrace_cache__free_entry(c, entry);
1382		}
1383	}
1384
1385	c->cnt = 0;
1386}
1387
1388void auxtrace_cache__free(struct auxtrace_cache *c)
1389{
1390	if (!c)
1391		return;
1392
1393	auxtrace_cache__drop(c);
1394	free(c->hashtable);
1395	free(c);
1396}
1397
1398void *auxtrace_cache__alloc_entry(struct auxtrace_cache *c)
1399{
1400	return malloc(c->entry_size);
1401}
1402
1403void auxtrace_cache__free_entry(struct auxtrace_cache *c __maybe_unused,
1404				void *entry)
1405{
1406	free(entry);
1407}
1408
1409int auxtrace_cache__add(struct auxtrace_cache *c, u32 key,
1410			struct auxtrace_cache_entry *entry)
1411{
1412	if (c->limit && ++c->cnt > c->limit)
1413		auxtrace_cache__drop(c);
1414
1415	entry->key = key;
1416	hlist_add_head(&entry->hash, &c->hashtable[hash_32(key, c->bits)]);
1417
1418	return 0;
1419}
1420
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1421void *auxtrace_cache__lookup(struct auxtrace_cache *c, u32 key)
1422{
1423	struct auxtrace_cache_entry *entry;
1424	struct hlist_head *hlist;
1425
1426	if (!c)
1427		return NULL;
1428
1429	hlist = &c->hashtable[hash_32(key, c->bits)];
1430	hlist_for_each_entry(entry, hlist, hash) {
1431		if (entry->key == key)
1432			return entry;
1433	}
1434
1435	return NULL;
1436}
1437
1438static void addr_filter__free_str(struct addr_filter *filt)
1439{
1440	free(filt->str);
1441	filt->action   = NULL;
1442	filt->sym_from = NULL;
1443	filt->sym_to   = NULL;
1444	filt->filename = NULL;
1445	filt->str      = NULL;
1446}
1447
1448static struct addr_filter *addr_filter__new(void)
1449{
1450	struct addr_filter *filt = zalloc(sizeof(*filt));
1451
1452	if (filt)
1453		INIT_LIST_HEAD(&filt->list);
1454
1455	return filt;
1456}
1457
1458static void addr_filter__free(struct addr_filter *filt)
1459{
1460	if (filt)
1461		addr_filter__free_str(filt);
1462	free(filt);
1463}
1464
1465static void addr_filters__add(struct addr_filters *filts,
1466			      struct addr_filter *filt)
1467{
1468	list_add_tail(&filt->list, &filts->head);
1469	filts->cnt += 1;
1470}
1471
1472static void addr_filters__del(struct addr_filters *filts,
1473			      struct addr_filter *filt)
1474{
1475	list_del_init(&filt->list);
1476	filts->cnt -= 1;
1477}
1478
1479void addr_filters__init(struct addr_filters *filts)
1480{
1481	INIT_LIST_HEAD(&filts->head);
1482	filts->cnt = 0;
1483}
1484
1485void addr_filters__exit(struct addr_filters *filts)
1486{
1487	struct addr_filter *filt, *n;
1488
1489	list_for_each_entry_safe(filt, n, &filts->head, list) {
1490		addr_filters__del(filts, filt);
1491		addr_filter__free(filt);
1492	}
1493}
1494
1495static int parse_num_or_str(char **inp, u64 *num, const char **str,
1496			    const char *str_delim)
1497{
1498	*inp += strspn(*inp, " ");
1499
1500	if (isdigit(**inp)) {
1501		char *endptr;
1502
1503		if (!num)
1504			return -EINVAL;
1505		errno = 0;
1506		*num = strtoull(*inp, &endptr, 0);
1507		if (errno)
1508			return -errno;
1509		if (endptr == *inp)
1510			return -EINVAL;
1511		*inp = endptr;
1512	} else {
1513		size_t n;
1514
1515		if (!str)
1516			return -EINVAL;
1517		*inp += strspn(*inp, " ");
1518		*str = *inp;
1519		n = strcspn(*inp, str_delim);
1520		if (!n)
1521			return -EINVAL;
1522		*inp += n;
1523		if (**inp) {
1524			**inp = '\0';
1525			*inp += 1;
1526		}
1527	}
1528	return 0;
1529}
1530
1531static int parse_action(struct addr_filter *filt)
1532{
1533	if (!strcmp(filt->action, "filter")) {
1534		filt->start = true;
1535		filt->range = true;
1536	} else if (!strcmp(filt->action, "start")) {
1537		filt->start = true;
1538	} else if (!strcmp(filt->action, "stop")) {
1539		filt->start = false;
1540	} else if (!strcmp(filt->action, "tracestop")) {
1541		filt->start = false;
1542		filt->range = true;
1543		filt->action += 5; /* Change 'tracestop' to 'stop' */
1544	} else {
1545		return -EINVAL;
1546	}
1547	return 0;
1548}
1549
1550static int parse_sym_idx(char **inp, int *idx)
1551{
1552	*idx = -1;
1553
1554	*inp += strspn(*inp, " ");
1555
1556	if (**inp != '#')
1557		return 0;
1558
1559	*inp += 1;
1560
1561	if (**inp == 'g' || **inp == 'G') {
1562		*inp += 1;
1563		*idx = 0;
1564	} else {
1565		unsigned long num;
1566		char *endptr;
1567
1568		errno = 0;
1569		num = strtoul(*inp, &endptr, 0);
1570		if (errno)
1571			return -errno;
1572		if (endptr == *inp || num > INT_MAX)
1573			return -EINVAL;
1574		*inp = endptr;
1575		*idx = num;
1576	}
1577
1578	return 0;
1579}
1580
1581static int parse_addr_size(char **inp, u64 *num, const char **str, int *idx)
1582{
1583	int err = parse_num_or_str(inp, num, str, " ");
1584
1585	if (!err && *str)
1586		err = parse_sym_idx(inp, idx);
1587
1588	return err;
1589}
1590
1591static int parse_one_filter(struct addr_filter *filt, const char **filter_inp)
1592{
1593	char *fstr;
1594	int err;
1595
1596	filt->str = fstr = strdup(*filter_inp);
1597	if (!fstr)
1598		return -ENOMEM;
1599
1600	err = parse_num_or_str(&fstr, NULL, &filt->action, " ");
1601	if (err)
1602		goto out_err;
1603
1604	err = parse_action(filt);
1605	if (err)
1606		goto out_err;
1607
1608	err = parse_addr_size(&fstr, &filt->addr, &filt->sym_from,
1609			      &filt->sym_from_idx);
1610	if (err)
1611		goto out_err;
1612
1613	fstr += strspn(fstr, " ");
1614
1615	if (*fstr == '/') {
1616		fstr += 1;
1617		err = parse_addr_size(&fstr, &filt->size, &filt->sym_to,
1618				      &filt->sym_to_idx);
1619		if (err)
1620			goto out_err;
1621		filt->range = true;
1622	}
1623
1624	fstr += strspn(fstr, " ");
1625
1626	if (*fstr == '@') {
1627		fstr += 1;
1628		err = parse_num_or_str(&fstr, NULL, &filt->filename, " ,");
1629		if (err)
1630			goto out_err;
1631	}
1632
1633	fstr += strspn(fstr, " ,");
1634
1635	*filter_inp += fstr - filt->str;
1636
1637	return 0;
1638
1639out_err:
1640	addr_filter__free_str(filt);
1641
1642	return err;
1643}
1644
1645int addr_filters__parse_bare_filter(struct addr_filters *filts,
1646				    const char *filter)
1647{
1648	struct addr_filter *filt;
1649	const char *fstr = filter;
1650	int err;
1651
1652	while (*fstr) {
1653		filt = addr_filter__new();
1654		err = parse_one_filter(filt, &fstr);
1655		if (err) {
1656			addr_filter__free(filt);
1657			addr_filters__exit(filts);
1658			return err;
1659		}
1660		addr_filters__add(filts, filt);
1661	}
1662
1663	return 0;
1664}
1665
1666struct sym_args {
1667	const char	*name;
1668	u64		start;
1669	u64		size;
1670	int		idx;
1671	int		cnt;
1672	bool		started;
1673	bool		global;
1674	bool		selected;
1675	bool		duplicate;
1676	bool		near;
1677};
1678
 
 
 
 
 
 
 
 
1679static bool kern_sym_match(struct sym_args *args, const char *name, char type)
1680{
1681	/* A function with the same name, and global or the n'th found or any */
1682	return symbol_type__is_a(type, MAP__FUNCTION) &&
1683	       !strcmp(name, args->name) &&
1684	       ((args->global && isupper(type)) ||
1685		(args->selected && ++(args->cnt) == args->idx) ||
1686		(!args->global && !args->selected));
1687}
1688
1689static int find_kern_sym_cb(void *arg, const char *name, char type, u64 start)
1690{
1691	struct sym_args *args = arg;
1692
1693	if (args->started) {
1694		if (!args->size)
1695			args->size = start - args->start;
1696		if (args->selected) {
1697			if (args->size)
1698				return 1;
1699		} else if (kern_sym_match(args, name, type)) {
1700			args->duplicate = true;
1701			return 1;
1702		}
1703	} else if (kern_sym_match(args, name, type)) {
1704		args->started = true;
1705		args->start = start;
1706	}
1707
1708	return 0;
1709}
1710
1711static int print_kern_sym_cb(void *arg, const char *name, char type, u64 start)
1712{
1713	struct sym_args *args = arg;
1714
1715	if (kern_sym_match(args, name, type)) {
1716		pr_err("#%d\t0x%"PRIx64"\t%c\t%s\n",
1717		       ++args->cnt, start, type, name);
1718		args->near = true;
1719	} else if (args->near) {
1720		args->near = false;
1721		pr_err("\t\twhich is near\t\t%s\n", name);
1722	}
1723
1724	return 0;
1725}
1726
1727static int sym_not_found_error(const char *sym_name, int idx)
1728{
1729	if (idx > 0) {
1730		pr_err("N'th occurrence (N=%d) of symbol '%s' not found.\n",
1731		       idx, sym_name);
1732	} else if (!idx) {
1733		pr_err("Global symbol '%s' not found.\n", sym_name);
1734	} else {
1735		pr_err("Symbol '%s' not found.\n", sym_name);
1736	}
1737	pr_err("Note that symbols must be functions.\n");
1738
1739	return -EINVAL;
1740}
1741
1742static int find_kern_sym(const char *sym_name, u64 *start, u64 *size, int idx)
1743{
1744	struct sym_args args = {
1745		.name = sym_name,
1746		.idx = idx,
1747		.global = !idx,
1748		.selected = idx > 0,
1749	};
1750	int err;
1751
1752	*start = 0;
1753	*size = 0;
1754
1755	err = kallsyms__parse("/proc/kallsyms", &args, find_kern_sym_cb);
1756	if (err < 0) {
1757		pr_err("Failed to parse /proc/kallsyms\n");
1758		return err;
1759	}
1760
1761	if (args.duplicate) {
1762		pr_err("Multiple kernel symbols with name '%s'\n", sym_name);
1763		args.cnt = 0;
1764		kallsyms__parse("/proc/kallsyms", &args, print_kern_sym_cb);
1765		pr_err("Disambiguate symbol name by inserting #n after the name e.g. %s #2\n",
1766		       sym_name);
1767		pr_err("Or select a global symbol by inserting #0 or #g or #G\n");
1768		return -EINVAL;
1769	}
1770
1771	if (!args.started) {
1772		pr_err("Kernel symbol lookup: ");
1773		return sym_not_found_error(sym_name, idx);
1774	}
1775
1776	*start = args.start;
1777	*size = args.size;
1778
1779	return 0;
1780}
1781
1782static int find_entire_kern_cb(void *arg, const char *name __maybe_unused,
1783			       char type, u64 start)
1784{
1785	struct sym_args *args = arg;
 
1786
1787	if (!symbol_type__is_a(type, MAP__FUNCTION))
1788		return 0;
1789
1790	if (!args->started) {
1791		args->started = true;
1792		args->start = start;
1793	}
1794	/* Don't know exactly where the kernel ends, so we add a page */
1795	args->size = round_up(start, page_size) + page_size - args->start;
 
 
1796
1797	return 0;
1798}
1799
1800static int addr_filter__entire_kernel(struct addr_filter *filt)
1801{
1802	struct sym_args args = { .started = false };
1803	int err;
1804
1805	err = kallsyms__parse("/proc/kallsyms", &args, find_entire_kern_cb);
1806	if (err < 0 || !args.started) {
1807		pr_err("Failed to parse /proc/kallsyms\n");
1808		return err;
1809	}
1810
1811	filt->addr = args.start;
1812	filt->size = args.size;
1813
1814	return 0;
1815}
1816
1817static int check_end_after_start(struct addr_filter *filt, u64 start, u64 size)
1818{
1819	if (start + size >= filt->addr)
1820		return 0;
1821
1822	if (filt->sym_from) {
1823		pr_err("Symbol '%s' (0x%"PRIx64") comes before '%s' (0x%"PRIx64")\n",
1824		       filt->sym_to, start, filt->sym_from, filt->addr);
1825	} else {
1826		pr_err("Symbol '%s' (0x%"PRIx64") comes before address 0x%"PRIx64")\n",
1827		       filt->sym_to, start, filt->addr);
1828	}
1829
1830	return -EINVAL;
1831}
1832
1833static int addr_filter__resolve_kernel_syms(struct addr_filter *filt)
1834{
1835	bool no_size = false;
1836	u64 start, size;
1837	int err;
1838
1839	if (symbol_conf.kptr_restrict) {
1840		pr_err("Kernel addresses are restricted. Unable to resolve kernel symbols.\n");
1841		return -EINVAL;
1842	}
1843
1844	if (filt->sym_from && !strcmp(filt->sym_from, "*"))
1845		return addr_filter__entire_kernel(filt);
1846
1847	if (filt->sym_from) {
1848		err = find_kern_sym(filt->sym_from, &start, &size,
1849				    filt->sym_from_idx);
1850		if (err)
1851			return err;
1852		filt->addr = start;
1853		if (filt->range && !filt->size && !filt->sym_to) {
1854			filt->size = size;
1855			no_size = !size;
1856		}
1857	}
1858
1859	if (filt->sym_to) {
1860		err = find_kern_sym(filt->sym_to, &start, &size,
1861				    filt->sym_to_idx);
1862		if (err)
1863			return err;
1864
1865		err = check_end_after_start(filt, start, size);
1866		if (err)
1867			return err;
1868		filt->size = start + size - filt->addr;
1869		no_size = !size;
1870	}
1871
1872	/* The very last symbol in kallsyms does not imply a particular size */
1873	if (no_size) {
1874		pr_err("Cannot determine size of symbol '%s'\n",
1875		       filt->sym_to ? filt->sym_to : filt->sym_from);
1876		return -EINVAL;
1877	}
1878
1879	return 0;
1880}
1881
1882static struct dso *load_dso(const char *name)
1883{
1884	struct map *map;
1885	struct dso *dso;
1886
1887	map = dso__new_map(name);
1888	if (!map)
1889		return NULL;
1890
1891	map__load(map);
 
1892
1893	dso = dso__get(map->dso);
1894
1895	map__put(map);
1896
1897	return dso;
1898}
1899
1900static bool dso_sym_match(struct symbol *sym, const char *name, int *cnt,
1901			  int idx)
1902{
1903	/* Same name, and global or the n'th found or any */
1904	return !arch__compare_symbol_names(name, sym->name) &&
1905	       ((!idx && sym->binding == STB_GLOBAL) ||
1906		(idx > 0 && ++*cnt == idx) ||
1907		idx < 0);
1908}
1909
1910static void print_duplicate_syms(struct dso *dso, const char *sym_name)
1911{
1912	struct symbol *sym;
1913	bool near = false;
1914	int cnt = 0;
1915
1916	pr_err("Multiple symbols with name '%s'\n", sym_name);
1917
1918	sym = dso__first_symbol(dso, MAP__FUNCTION);
1919	while (sym) {
1920		if (dso_sym_match(sym, sym_name, &cnt, -1)) {
1921			pr_err("#%d\t0x%"PRIx64"\t%c\t%s\n",
1922			       ++cnt, sym->start,
1923			       sym->binding == STB_GLOBAL ? 'g' :
1924			       sym->binding == STB_LOCAL  ? 'l' : 'w',
1925			       sym->name);
1926			near = true;
1927		} else if (near) {
1928			near = false;
1929			pr_err("\t\twhich is near\t\t%s\n", sym->name);
1930		}
1931		sym = dso__next_symbol(sym);
1932	}
1933
1934	pr_err("Disambiguate symbol name by inserting #n after the name e.g. %s #2\n",
1935	       sym_name);
1936	pr_err("Or select a global symbol by inserting #0 or #g or #G\n");
1937}
1938
1939static int find_dso_sym(struct dso *dso, const char *sym_name, u64 *start,
1940			u64 *size, int idx)
1941{
1942	struct symbol *sym;
1943	int cnt = 0;
1944
1945	*start = 0;
1946	*size = 0;
1947
1948	sym = dso__first_symbol(dso, MAP__FUNCTION);
1949	while (sym) {
1950		if (*start) {
1951			if (!*size)
1952				*size = sym->start - *start;
1953			if (idx > 0) {
1954				if (*size)
1955					return 1;
1956			} else if (dso_sym_match(sym, sym_name, &cnt, idx)) {
1957				print_duplicate_syms(dso, sym_name);
1958				return -EINVAL;
1959			}
1960		} else if (dso_sym_match(sym, sym_name, &cnt, idx)) {
1961			*start = sym->start;
1962			*size = sym->end - sym->start;
1963		}
1964		sym = dso__next_symbol(sym);
1965	}
1966
1967	if (!*start)
1968		return sym_not_found_error(sym_name, idx);
1969
1970	return 0;
1971}
1972
1973static int addr_filter__entire_dso(struct addr_filter *filt, struct dso *dso)
1974{
1975	struct symbol *first_sym = dso__first_symbol(dso, MAP__FUNCTION);
1976	struct symbol *last_sym = dso__last_symbol(dso, MAP__FUNCTION);
1977
1978	if (!first_sym || !last_sym) {
1979		pr_err("Failed to determine filter for %s\nNo symbols found.\n",
1980		       filt->filename);
1981		return -EINVAL;
1982	}
1983
1984	filt->addr = first_sym->start;
1985	filt->size = last_sym->end - first_sym->start;
1986
1987	return 0;
1988}
1989
1990static int addr_filter__resolve_syms(struct addr_filter *filt)
1991{
1992	u64 start, size;
1993	struct dso *dso;
1994	int err = 0;
1995
1996	if (!filt->sym_from && !filt->sym_to)
1997		return 0;
1998
1999	if (!filt->filename)
2000		return addr_filter__resolve_kernel_syms(filt);
2001
2002	dso = load_dso(filt->filename);
2003	if (!dso) {
2004		pr_err("Failed to load symbols from: %s\n", filt->filename);
2005		return -EINVAL;
2006	}
2007
2008	if (filt->sym_from && !strcmp(filt->sym_from, "*")) {
2009		err = addr_filter__entire_dso(filt, dso);
2010		goto put_dso;
2011	}
2012
2013	if (filt->sym_from) {
2014		err = find_dso_sym(dso, filt->sym_from, &start, &size,
2015				   filt->sym_from_idx);
2016		if (err)
2017			goto put_dso;
2018		filt->addr = start;
2019		if (filt->range && !filt->size && !filt->sym_to)
2020			filt->size = size;
2021	}
2022
2023	if (filt->sym_to) {
2024		err = find_dso_sym(dso, filt->sym_to, &start, &size,
2025				   filt->sym_to_idx);
2026		if (err)
2027			goto put_dso;
2028
2029		err = check_end_after_start(filt, start, size);
2030		if (err)
2031			return err;
2032
2033		filt->size = start + size - filt->addr;
2034	}
2035
2036put_dso:
2037	dso__put(dso);
2038
2039	return err;
2040}
2041
2042static char *addr_filter__to_str(struct addr_filter *filt)
2043{
2044	char filename_buf[PATH_MAX];
2045	const char *at = "";
2046	const char *fn = "";
2047	char *filter;
2048	int err;
2049
2050	if (filt->filename) {
2051		at = "@";
2052		fn = realpath(filt->filename, filename_buf);
2053		if (!fn)
2054			return NULL;
2055	}
2056
2057	if (filt->range) {
2058		err = asprintf(&filter, "%s 0x%"PRIx64"/0x%"PRIx64"%s%s",
2059			       filt->action, filt->addr, filt->size, at, fn);
2060	} else {
2061		err = asprintf(&filter, "%s 0x%"PRIx64"%s%s",
2062			       filt->action, filt->addr, at, fn);
2063	}
2064
2065	return err < 0 ? NULL : filter;
2066}
2067
2068static int parse_addr_filter(struct perf_evsel *evsel, const char *filter,
2069			     int max_nr)
2070{
2071	struct addr_filters filts;
2072	struct addr_filter *filt;
2073	int err;
2074
2075	addr_filters__init(&filts);
2076
2077	err = addr_filters__parse_bare_filter(&filts, filter);
2078	if (err)
2079		goto out_exit;
2080
2081	if (filts.cnt > max_nr) {
2082		pr_err("Error: number of address filters (%d) exceeds maximum (%d)\n",
2083		       filts.cnt, max_nr);
2084		err = -EINVAL;
2085		goto out_exit;
2086	}
2087
2088	list_for_each_entry(filt, &filts.head, list) {
2089		char *new_filter;
2090
2091		err = addr_filter__resolve_syms(filt);
2092		if (err)
2093			goto out_exit;
2094
2095		new_filter = addr_filter__to_str(filt);
2096		if (!new_filter) {
2097			err = -ENOMEM;
2098			goto out_exit;
2099		}
2100
2101		if (perf_evsel__append_addr_filter(evsel, new_filter)) {
2102			err = -ENOMEM;
2103			goto out_exit;
2104		}
2105	}
2106
2107out_exit:
2108	addr_filters__exit(&filts);
2109
2110	if (err) {
2111		pr_err("Failed to parse address filter: '%s'\n", filter);
2112		pr_err("Filter format is: filter|start|stop|tracestop <start symbol or address> [/ <end symbol or size>] [@<file name>]\n");
2113		pr_err("Where multiple filters are separated by space or comma.\n");
2114	}
2115
2116	return err;
2117}
2118
2119static struct perf_pmu *perf_evsel__find_pmu(struct perf_evsel *evsel)
2120{
2121	struct perf_pmu *pmu = NULL;
2122
2123	while ((pmu = perf_pmu__scan(pmu)) != NULL) {
2124		if (pmu->type == evsel->attr.type)
2125			break;
2126	}
2127
2128	return pmu;
2129}
2130
2131static int perf_evsel__nr_addr_filter(struct perf_evsel *evsel)
2132{
2133	struct perf_pmu *pmu = perf_evsel__find_pmu(evsel);
2134	int nr_addr_filters = 0;
2135
2136	if (!pmu)
2137		return 0;
2138
2139	perf_pmu__scan_file(pmu, "nr_addr_filters", "%d", &nr_addr_filters);
2140
2141	return nr_addr_filters;
2142}
2143
2144int auxtrace_parse_filters(struct perf_evlist *evlist)
2145{
2146	struct perf_evsel *evsel;
2147	char *filter;
2148	int err, max_nr;
2149
2150	evlist__for_each_entry(evlist, evsel) {
2151		filter = evsel->filter;
2152		max_nr = perf_evsel__nr_addr_filter(evsel);
2153		if (!filter || !max_nr)
2154			continue;
2155		evsel->filter = NULL;
2156		err = parse_addr_filter(evsel, filter, max_nr);
2157		free(filter);
2158		if (err)
2159			return err;
2160		pr_debug("Address filter: %s\n", evsel->filter);
2161	}
2162
2163	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2164}
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * auxtrace.c: AUX area trace support
   4 * Copyright (c) 2013-2015, Intel Corporation.
 
 
 
 
 
 
 
 
 
 
   5 */
   6
   7#include <inttypes.h>
   8#include <sys/types.h>
   9#include <sys/mman.h>
  10#include <stdbool.h>
  11#include <string.h>
  12#include <limits.h>
  13#include <errno.h>
  14
  15#include <linux/kernel.h>
  16#include <linux/perf_event.h>
  17#include <linux/types.h>
  18#include <linux/bitops.h>
  19#include <linux/log2.h>
  20#include <linux/string.h>
  21#include <linux/time64.h>
  22
  23#include <sys/param.h>
  24#include <stdlib.h>
  25#include <stdio.h>
  26#include <linux/list.h>
  27#include <linux/zalloc.h>
  28
  29#include "config.h"
 
  30#include "evlist.h"
  31#include "dso.h"
  32#include "map.h"
  33#include "pmu.h"
  34#include "evsel.h"
  35#include "evsel_config.h"
  36#include "symbol.h"
  37#include "util/perf_api_probe.h"
  38#include "util/synthetic-events.h"
  39#include "thread_map.h"
  40#include "asm/bug.h"
  41#include "auxtrace.h"
  42
  43#include <linux/hash.h>
  44
  45#include "event.h"
  46#include "record.h"
  47#include "session.h"
  48#include "debug.h"
  49#include <subcmd/parse-options.h>
  50
  51#include "cs-etm.h"
  52#include "intel-pt.h"
  53#include "intel-bts.h"
  54#include "arm-spe.h"
  55#include "hisi-ptt.h"
  56#include "s390-cpumsf.h"
  57#include "util/mmap.h"
  58
  59#include <linux/ctype.h>
  60#include "symbol/kallsyms.h"
  61#include <internal/lib.h>
  62#include "util/sample.h"
  63
  64/*
  65 * Make a group from 'leader' to 'last', requiring that the events were not
  66 * already grouped to a different leader.
  67 */
  68static int evlist__regroup(struct evlist *evlist, struct evsel *leader, struct evsel *last)
  69{
  70	struct evsel *evsel;
  71	bool grp;
  72
  73	if (!evsel__is_group_leader(leader))
  74		return -EINVAL;
  75
  76	grp = false;
  77	evlist__for_each_entry(evlist, evsel) {
  78		if (grp) {
  79			if (!(evsel__leader(evsel) == leader ||
  80			     (evsel__leader(evsel) == evsel &&
  81			      evsel->core.nr_members <= 1)))
  82				return -EINVAL;
  83		} else if (evsel == leader) {
  84			grp = true;
  85		}
  86		if (evsel == last)
  87			break;
  88	}
  89
  90	grp = false;
  91	evlist__for_each_entry(evlist, evsel) {
  92		if (grp) {
  93			if (!evsel__has_leader(evsel, leader)) {
  94				evsel__set_leader(evsel, leader);
  95				if (leader->core.nr_members < 1)
  96					leader->core.nr_members = 1;
  97				leader->core.nr_members += 1;
  98			}
  99		} else if (evsel == leader) {
 100			grp = true;
 101		}
 102		if (evsel == last)
 103			break;
 104	}
 105
 106	return 0;
 107}
 108
 109static bool auxtrace__dont_decode(struct perf_session *session)
 110{
 111	return !session->itrace_synth_opts ||
 112	       session->itrace_synth_opts->dont_decode;
 113}
 114
 115int auxtrace_mmap__mmap(struct auxtrace_mmap *mm,
 116			struct auxtrace_mmap_params *mp,
 117			void *userpg, int fd)
 118{
 119	struct perf_event_mmap_page *pc = userpg;
 120
 121	WARN_ONCE(mm->base, "Uninitialized auxtrace_mmap\n");
 122
 123	mm->userpg = userpg;
 124	mm->mask = mp->mask;
 125	mm->len = mp->len;
 126	mm->prev = 0;
 127	mm->idx = mp->idx;
 128	mm->tid = mp->tid;
 129	mm->cpu = mp->cpu.cpu;
 130
 131	if (!mp->len || !mp->mmap_needed) {
 132		mm->base = NULL;
 133		return 0;
 134	}
 135
 
 
 
 
 
 136	pc->aux_offset = mp->offset;
 137	pc->aux_size = mp->len;
 138
 139	mm->base = mmap(NULL, mp->len, mp->prot, MAP_SHARED, fd, mp->offset);
 140	if (mm->base == MAP_FAILED) {
 141		pr_debug2("failed to mmap AUX area\n");
 142		mm->base = NULL;
 143		return -1;
 144	}
 145
 146	return 0;
 147}
 148
 149void auxtrace_mmap__munmap(struct auxtrace_mmap *mm)
 150{
 151	if (mm->base) {
 152		munmap(mm->base, mm->len);
 153		mm->base = NULL;
 154	}
 155}
 156
 157void auxtrace_mmap_params__init(struct auxtrace_mmap_params *mp,
 158				off_t auxtrace_offset,
 159				unsigned int auxtrace_pages,
 160				bool auxtrace_overwrite)
 161{
 162	if (auxtrace_pages) {
 163		mp->offset = auxtrace_offset;
 164		mp->len = auxtrace_pages * (size_t)page_size;
 165		mp->mask = is_power_of_2(mp->len) ? mp->len - 1 : 0;
 166		mp->prot = PROT_READ | (auxtrace_overwrite ? 0 : PROT_WRITE);
 167		pr_debug2("AUX area mmap length %zu\n", mp->len);
 168	} else {
 169		mp->len = 0;
 170	}
 171}
 172
 173void auxtrace_mmap_params__set_idx(struct auxtrace_mmap_params *mp,
 174				   struct evlist *evlist,
 175				   struct evsel *evsel, int idx)
 176{
 177	bool per_cpu = !perf_cpu_map__has_any_cpu_or_is_empty(evlist->core.user_requested_cpus);
 178
 179	mp->mmap_needed = evsel->needs_auxtrace_mmap;
 180
 181	if (!mp->mmap_needed)
 182		return;
 183
 184	mp->idx = idx;
 185
 186	if (per_cpu) {
 187		mp->cpu = perf_cpu_map__cpu(evlist->core.all_cpus, idx);
 188		if (evlist->core.threads)
 189			mp->tid = perf_thread_map__pid(evlist->core.threads, 0);
 190		else
 191			mp->tid = -1;
 192	} else {
 193		mp->cpu.cpu = -1;
 194		mp->tid = perf_thread_map__pid(evlist->core.threads, idx);
 195	}
 196}
 197
 198#define AUXTRACE_INIT_NR_QUEUES	32
 199
 200static struct auxtrace_queue *auxtrace_alloc_queue_array(unsigned int nr_queues)
 201{
 202	struct auxtrace_queue *queue_array;
 203	unsigned int max_nr_queues, i;
 204
 205	max_nr_queues = UINT_MAX / sizeof(struct auxtrace_queue);
 206	if (nr_queues > max_nr_queues)
 207		return NULL;
 208
 209	queue_array = calloc(nr_queues, sizeof(struct auxtrace_queue));
 210	if (!queue_array)
 211		return NULL;
 212
 213	for (i = 0; i < nr_queues; i++) {
 214		INIT_LIST_HEAD(&queue_array[i].head);
 215		queue_array[i].priv = NULL;
 216	}
 217
 218	return queue_array;
 219}
 220
 221int auxtrace_queues__init(struct auxtrace_queues *queues)
 222{
 223	queues->nr_queues = AUXTRACE_INIT_NR_QUEUES;
 224	queues->queue_array = auxtrace_alloc_queue_array(queues->nr_queues);
 225	if (!queues->queue_array)
 226		return -ENOMEM;
 227	return 0;
 228}
 229
 230static int auxtrace_queues__grow(struct auxtrace_queues *queues,
 231				 unsigned int new_nr_queues)
 232{
 233	unsigned int nr_queues = queues->nr_queues;
 234	struct auxtrace_queue *queue_array;
 235	unsigned int i;
 236
 237	if (!nr_queues)
 238		nr_queues = AUXTRACE_INIT_NR_QUEUES;
 239
 240	while (nr_queues && nr_queues < new_nr_queues)
 241		nr_queues <<= 1;
 242
 243	if (nr_queues < queues->nr_queues || nr_queues < new_nr_queues)
 244		return -EINVAL;
 245
 246	queue_array = auxtrace_alloc_queue_array(nr_queues);
 247	if (!queue_array)
 248		return -ENOMEM;
 249
 250	for (i = 0; i < queues->nr_queues; i++) {
 251		list_splice_tail(&queues->queue_array[i].head,
 252				 &queue_array[i].head);
 253		queue_array[i].tid = queues->queue_array[i].tid;
 254		queue_array[i].cpu = queues->queue_array[i].cpu;
 255		queue_array[i].set = queues->queue_array[i].set;
 256		queue_array[i].priv = queues->queue_array[i].priv;
 257	}
 258
 259	queues->nr_queues = nr_queues;
 260	queues->queue_array = queue_array;
 261
 262	return 0;
 263}
 264
 265static void *auxtrace_copy_data(u64 size, struct perf_session *session)
 266{
 267	int fd = perf_data__fd(session->data);
 268	void *p;
 269	ssize_t ret;
 270
 271	if (size > SSIZE_MAX)
 272		return NULL;
 273
 274	p = malloc(size);
 275	if (!p)
 276		return NULL;
 277
 278	ret = readn(fd, p, size);
 279	if (ret != (ssize_t)size) {
 280		free(p);
 281		return NULL;
 282	}
 283
 284	return p;
 285}
 286
 287static int auxtrace_queues__queue_buffer(struct auxtrace_queues *queues,
 288					 unsigned int idx,
 289					 struct auxtrace_buffer *buffer)
 290{
 291	struct auxtrace_queue *queue;
 292	int err;
 293
 294	if (idx >= queues->nr_queues) {
 295		err = auxtrace_queues__grow(queues, idx + 1);
 296		if (err)
 297			return err;
 298	}
 299
 300	queue = &queues->queue_array[idx];
 301
 302	if (!queue->set) {
 303		queue->set = true;
 304		queue->tid = buffer->tid;
 305		queue->cpu = buffer->cpu.cpu;
 
 
 
 
 306	}
 307
 308	buffer->buffer_nr = queues->next_buffer_nr++;
 309
 310	list_add_tail(&buffer->list, &queue->head);
 311
 312	queues->new_data = true;
 313	queues->populated = true;
 314
 315	return 0;
 316}
 317
 318/* Limit buffers to 32MiB on 32-bit */
 319#define BUFFER_LIMIT_FOR_32_BIT (32 * 1024 * 1024)
 320
 321static int auxtrace_queues__split_buffer(struct auxtrace_queues *queues,
 322					 unsigned int idx,
 323					 struct auxtrace_buffer *buffer)
 324{
 325	u64 sz = buffer->size;
 326	bool consecutive = false;
 327	struct auxtrace_buffer *b;
 328	int err;
 329
 330	while (sz > BUFFER_LIMIT_FOR_32_BIT) {
 331		b = memdup(buffer, sizeof(struct auxtrace_buffer));
 332		if (!b)
 333			return -ENOMEM;
 334		b->size = BUFFER_LIMIT_FOR_32_BIT;
 335		b->consecutive = consecutive;
 336		err = auxtrace_queues__queue_buffer(queues, idx, b);
 337		if (err) {
 338			auxtrace_buffer__free(b);
 339			return err;
 340		}
 341		buffer->data_offset += BUFFER_LIMIT_FOR_32_BIT;
 342		sz -= BUFFER_LIMIT_FOR_32_BIT;
 343		consecutive = true;
 344	}
 345
 346	buffer->size = sz;
 347	buffer->consecutive = consecutive;
 348
 349	return 0;
 350}
 351
 352static bool filter_cpu(struct perf_session *session, struct perf_cpu cpu)
 353{
 354	unsigned long *cpu_bitmap = session->itrace_synth_opts->cpu_bitmap;
 355
 356	return cpu_bitmap && cpu.cpu != -1 && !test_bit(cpu.cpu, cpu_bitmap);
 357}
 358
 359static int auxtrace_queues__add_buffer(struct auxtrace_queues *queues,
 360				       struct perf_session *session,
 361				       unsigned int idx,
 362				       struct auxtrace_buffer *buffer,
 363				       struct auxtrace_buffer **buffer_ptr)
 364{
 365	int err = -ENOMEM;
 366
 367	if (filter_cpu(session, buffer->cpu))
 368		return 0;
 369
 370	buffer = memdup(buffer, sizeof(*buffer));
 371	if (!buffer)
 372		return -ENOMEM;
 373
 374	if (session->one_mmap) {
 375		buffer->data = buffer->data_offset - session->one_mmap_offset +
 376			       session->one_mmap_addr;
 377	} else if (perf_data__is_pipe(session->data)) {
 378		buffer->data = auxtrace_copy_data(buffer->size, session);
 379		if (!buffer->data)
 380			goto out_free;
 381		buffer->data_needs_freeing = true;
 382	} else if (BITS_PER_LONG == 32 &&
 383		   buffer->size > BUFFER_LIMIT_FOR_32_BIT) {
 384		err = auxtrace_queues__split_buffer(queues, idx, buffer);
 385		if (err)
 386			goto out_free;
 387	}
 388
 389	err = auxtrace_queues__queue_buffer(queues, idx, buffer);
 390	if (err)
 391		goto out_free;
 392
 393	/* FIXME: Doesn't work for split buffer */
 394	if (buffer_ptr)
 395		*buffer_ptr = buffer;
 396
 397	return 0;
 398
 399out_free:
 400	auxtrace_buffer__free(buffer);
 401	return err;
 402}
 403
 404int auxtrace_queues__add_event(struct auxtrace_queues *queues,
 405			       struct perf_session *session,
 406			       union perf_event *event, off_t data_offset,
 407			       struct auxtrace_buffer **buffer_ptr)
 408{
 409	struct auxtrace_buffer buffer = {
 410		.pid = -1,
 411		.tid = event->auxtrace.tid,
 412		.cpu = { event->auxtrace.cpu },
 413		.data_offset = data_offset,
 414		.offset = event->auxtrace.offset,
 415		.reference = event->auxtrace.reference,
 416		.size = event->auxtrace.size,
 417	};
 418	unsigned int idx = event->auxtrace.idx;
 419
 420	return auxtrace_queues__add_buffer(queues, session, idx, &buffer,
 421					   buffer_ptr);
 422}
 423
 424static int auxtrace_queues__add_indexed_event(struct auxtrace_queues *queues,
 425					      struct perf_session *session,
 426					      off_t file_offset, size_t sz)
 427{
 428	union perf_event *event;
 429	int err;
 430	char buf[PERF_SAMPLE_MAX_SIZE];
 431
 432	err = perf_session__peek_event(session, file_offset, buf,
 433				       PERF_SAMPLE_MAX_SIZE, &event, NULL);
 434	if (err)
 435		return err;
 436
 437	if (event->header.type == PERF_RECORD_AUXTRACE) {
 438		if (event->header.size < sizeof(struct perf_record_auxtrace) ||
 439		    event->header.size != sz) {
 440			err = -EINVAL;
 441			goto out;
 442		}
 443		file_offset += event->header.size;
 444		err = auxtrace_queues__add_event(queues, session, event,
 445						 file_offset, NULL);
 446	}
 447out:
 448	return err;
 449}
 450
 451void auxtrace_queues__free(struct auxtrace_queues *queues)
 452{
 453	unsigned int i;
 454
 455	for (i = 0; i < queues->nr_queues; i++) {
 456		while (!list_empty(&queues->queue_array[i].head)) {
 457			struct auxtrace_buffer *buffer;
 458
 459			buffer = list_entry(queues->queue_array[i].head.next,
 460					    struct auxtrace_buffer, list);
 461			list_del_init(&buffer->list);
 462			auxtrace_buffer__free(buffer);
 463		}
 464	}
 465
 466	zfree(&queues->queue_array);
 467	queues->nr_queues = 0;
 468}
 469
 470static void auxtrace_heapify(struct auxtrace_heap_item *heap_array,
 471			     unsigned int pos, unsigned int queue_nr,
 472			     u64 ordinal)
 473{
 474	unsigned int parent;
 475
 476	while (pos) {
 477		parent = (pos - 1) >> 1;
 478		if (heap_array[parent].ordinal <= ordinal)
 479			break;
 480		heap_array[pos] = heap_array[parent];
 481		pos = parent;
 482	}
 483	heap_array[pos].queue_nr = queue_nr;
 484	heap_array[pos].ordinal = ordinal;
 485}
 486
 487int auxtrace_heap__add(struct auxtrace_heap *heap, unsigned int queue_nr,
 488		       u64 ordinal)
 489{
 490	struct auxtrace_heap_item *heap_array;
 491
 492	if (queue_nr >= heap->heap_sz) {
 493		unsigned int heap_sz = AUXTRACE_INIT_NR_QUEUES;
 494
 495		while (heap_sz <= queue_nr)
 496			heap_sz <<= 1;
 497		heap_array = realloc(heap->heap_array,
 498				     heap_sz * sizeof(struct auxtrace_heap_item));
 499		if (!heap_array)
 500			return -ENOMEM;
 501		heap->heap_array = heap_array;
 502		heap->heap_sz = heap_sz;
 503	}
 504
 505	auxtrace_heapify(heap->heap_array, heap->heap_cnt++, queue_nr, ordinal);
 506
 507	return 0;
 508}
 509
 510void auxtrace_heap__free(struct auxtrace_heap *heap)
 511{
 512	zfree(&heap->heap_array);
 513	heap->heap_cnt = 0;
 514	heap->heap_sz = 0;
 515}
 516
 517void auxtrace_heap__pop(struct auxtrace_heap *heap)
 518{
 519	unsigned int pos, last, heap_cnt = heap->heap_cnt;
 520	struct auxtrace_heap_item *heap_array;
 521
 522	if (!heap_cnt)
 523		return;
 524
 525	heap->heap_cnt -= 1;
 526
 527	heap_array = heap->heap_array;
 528
 529	pos = 0;
 530	while (1) {
 531		unsigned int left, right;
 532
 533		left = (pos << 1) + 1;
 534		if (left >= heap_cnt)
 535			break;
 536		right = left + 1;
 537		if (right >= heap_cnt) {
 538			heap_array[pos] = heap_array[left];
 539			return;
 540		}
 541		if (heap_array[left].ordinal < heap_array[right].ordinal) {
 542			heap_array[pos] = heap_array[left];
 543			pos = left;
 544		} else {
 545			heap_array[pos] = heap_array[right];
 546			pos = right;
 547		}
 548	}
 549
 550	last = heap_cnt - 1;
 551	auxtrace_heapify(heap_array, pos, heap_array[last].queue_nr,
 552			 heap_array[last].ordinal);
 553}
 554
 555size_t auxtrace_record__info_priv_size(struct auxtrace_record *itr,
 556				       struct evlist *evlist)
 557{
 558	if (itr)
 559		return itr->info_priv_size(itr, evlist);
 560	return 0;
 561}
 562
 563static int auxtrace_not_supported(void)
 564{
 565	pr_err("AUX area tracing is not supported on this architecture\n");
 566	return -EINVAL;
 567}
 568
 569int auxtrace_record__info_fill(struct auxtrace_record *itr,
 570			       struct perf_session *session,
 571			       struct perf_record_auxtrace_info *auxtrace_info,
 572			       size_t priv_size)
 573{
 574	if (itr)
 575		return itr->info_fill(itr, session, auxtrace_info, priv_size);
 576	return auxtrace_not_supported();
 577}
 578
 579void auxtrace_record__free(struct auxtrace_record *itr)
 580{
 581	if (itr)
 582		itr->free(itr);
 583}
 584
 585int auxtrace_record__snapshot_start(struct auxtrace_record *itr)
 586{
 587	if (itr && itr->snapshot_start)
 588		return itr->snapshot_start(itr);
 589	return 0;
 590}
 591
 592int auxtrace_record__snapshot_finish(struct auxtrace_record *itr, bool on_exit)
 593{
 594	if (!on_exit && itr && itr->snapshot_finish)
 595		return itr->snapshot_finish(itr);
 596	return 0;
 597}
 598
 599int auxtrace_record__find_snapshot(struct auxtrace_record *itr, int idx,
 600				   struct auxtrace_mmap *mm,
 601				   unsigned char *data, u64 *head, u64 *old)
 602{
 603	if (itr && itr->find_snapshot)
 604		return itr->find_snapshot(itr, idx, mm, data, head, old);
 605	return 0;
 606}
 607
 608int auxtrace_record__options(struct auxtrace_record *itr,
 609			     struct evlist *evlist,
 610			     struct record_opts *opts)
 611{
 612	if (itr) {
 613		itr->evlist = evlist;
 614		return itr->recording_options(itr, evlist, opts);
 615	}
 616	return 0;
 617}
 618
 619u64 auxtrace_record__reference(struct auxtrace_record *itr)
 620{
 621	if (itr)
 622		return itr->reference(itr);
 623	return 0;
 624}
 625
 626int auxtrace_parse_snapshot_options(struct auxtrace_record *itr,
 627				    struct record_opts *opts, const char *str)
 628{
 629	if (!str)
 630		return 0;
 631
 632	/* PMU-agnostic options */
 633	switch (*str) {
 634	case 'e':
 635		opts->auxtrace_snapshot_on_exit = true;
 636		str++;
 637		break;
 638	default:
 639		break;
 640	}
 641
 642	if (itr && itr->parse_snapshot_options)
 643		return itr->parse_snapshot_options(itr, opts, str);
 644
 645	pr_err("No AUX area tracing to snapshot\n");
 646	return -EINVAL;
 647}
 648
 649static int evlist__enable_event_idx(struct evlist *evlist, struct evsel *evsel, int idx)
 650{
 651	bool per_cpu_mmaps = !perf_cpu_map__has_any_cpu_or_is_empty(evlist->core.user_requested_cpus);
 652
 653	if (per_cpu_mmaps) {
 654		struct perf_cpu evlist_cpu = perf_cpu_map__cpu(evlist->core.all_cpus, idx);
 655		int cpu_map_idx = perf_cpu_map__idx(evsel->core.cpus, evlist_cpu);
 656
 657		if (cpu_map_idx == -1)
 658			return -EINVAL;
 659		return perf_evsel__enable_cpu(&evsel->core, cpu_map_idx);
 660	}
 661
 662	return perf_evsel__enable_thread(&evsel->core, idx);
 663}
 664
 665int auxtrace_record__read_finish(struct auxtrace_record *itr, int idx)
 666{
 667	struct evsel *evsel;
 668
 669	if (!itr->evlist || !itr->pmu)
 670		return -EINVAL;
 671
 672	evlist__for_each_entry(itr->evlist, evsel) {
 673		if (evsel->core.attr.type == itr->pmu->type) {
 674			if (evsel->disabled)
 675				return 0;
 676			return evlist__enable_event_idx(itr->evlist, evsel, idx);
 677		}
 678	}
 679	return -EINVAL;
 680}
 681
 682/*
 683 * Event record size is 16-bit which results in a maximum size of about 64KiB.
 684 * Allow about 4KiB for the rest of the sample record, to give a maximum
 685 * AUX area sample size of 60KiB.
 686 */
 687#define MAX_AUX_SAMPLE_SIZE (60 * 1024)
 688
 689/* Arbitrary default size if no other default provided */
 690#define DEFAULT_AUX_SAMPLE_SIZE (4 * 1024)
 691
 692static int auxtrace_validate_aux_sample_size(struct evlist *evlist,
 693					     struct record_opts *opts)
 694{
 695	struct evsel *evsel;
 696	bool has_aux_leader = false;
 697	u32 sz;
 698
 699	evlist__for_each_entry(evlist, evsel) {
 700		sz = evsel->core.attr.aux_sample_size;
 701		if (evsel__is_group_leader(evsel)) {
 702			has_aux_leader = evsel__is_aux_event(evsel);
 703			if (sz) {
 704				if (has_aux_leader)
 705					pr_err("Cannot add AUX area sampling to an AUX area event\n");
 706				else
 707					pr_err("Cannot add AUX area sampling to a group leader\n");
 708				return -EINVAL;
 709			}
 710		}
 711		if (sz > MAX_AUX_SAMPLE_SIZE) {
 712			pr_err("AUX area sample size %u too big, max. %d\n",
 713			       sz, MAX_AUX_SAMPLE_SIZE);
 714			return -EINVAL;
 715		}
 716		if (sz) {
 717			if (!has_aux_leader) {
 718				pr_err("Cannot add AUX area sampling because group leader is not an AUX area event\n");
 719				return -EINVAL;
 720			}
 721			evsel__set_sample_bit(evsel, AUX);
 722			opts->auxtrace_sample_mode = true;
 723		} else {
 724			evsel__reset_sample_bit(evsel, AUX);
 725		}
 726	}
 727
 728	if (!opts->auxtrace_sample_mode) {
 729		pr_err("AUX area sampling requires an AUX area event group leader plus other events to which to add samples\n");
 730		return -EINVAL;
 731	}
 732
 733	if (!perf_can_aux_sample()) {
 734		pr_err("AUX area sampling is not supported by kernel\n");
 735		return -EINVAL;
 736	}
 737
 738	return 0;
 739}
 740
 741int auxtrace_parse_sample_options(struct auxtrace_record *itr,
 742				  struct evlist *evlist,
 743				  struct record_opts *opts, const char *str)
 744{
 745	struct evsel_config_term *term;
 746	struct evsel *aux_evsel;
 747	bool has_aux_sample_size = false;
 748	bool has_aux_leader = false;
 749	struct evsel *evsel;
 750	char *endptr;
 751	unsigned long sz;
 752
 753	if (!str)
 754		goto no_opt;
 755
 756	if (!itr) {
 757		pr_err("No AUX area event to sample\n");
 758		return -EINVAL;
 759	}
 760
 761	sz = strtoul(str, &endptr, 0);
 762	if (*endptr || sz > UINT_MAX) {
 763		pr_err("Bad AUX area sampling option: '%s'\n", str);
 764		return -EINVAL;
 765	}
 766
 767	if (!sz)
 768		sz = itr->default_aux_sample_size;
 769
 770	if (!sz)
 771		sz = DEFAULT_AUX_SAMPLE_SIZE;
 772
 773	/* Set aux_sample_size based on --aux-sample option */
 774	evlist__for_each_entry(evlist, evsel) {
 775		if (evsel__is_group_leader(evsel)) {
 776			has_aux_leader = evsel__is_aux_event(evsel);
 777		} else if (has_aux_leader) {
 778			evsel->core.attr.aux_sample_size = sz;
 779		}
 780	}
 781no_opt:
 782	aux_evsel = NULL;
 783	/* Override with aux_sample_size from config term */
 784	evlist__for_each_entry(evlist, evsel) {
 785		if (evsel__is_aux_event(evsel))
 786			aux_evsel = evsel;
 787		term = evsel__get_config_term(evsel, AUX_SAMPLE_SIZE);
 788		if (term) {
 789			has_aux_sample_size = true;
 790			evsel->core.attr.aux_sample_size = term->val.aux_sample_size;
 791			/* If possible, group with the AUX event */
 792			if (aux_evsel && evsel->core.attr.aux_sample_size)
 793				evlist__regroup(evlist, aux_evsel, evsel);
 794		}
 795	}
 796
 797	if (!str && !has_aux_sample_size)
 798		return 0;
 799
 800	if (!itr) {
 801		pr_err("No AUX area event to sample\n");
 802		return -EINVAL;
 803	}
 804
 805	return auxtrace_validate_aux_sample_size(evlist, opts);
 806}
 807
 808void auxtrace_regroup_aux_output(struct evlist *evlist)
 809{
 810	struct evsel *evsel, *aux_evsel = NULL;
 811	struct evsel_config_term *term;
 812
 813	evlist__for_each_entry(evlist, evsel) {
 814		if (evsel__is_aux_event(evsel))
 815			aux_evsel = evsel;
 816		term = evsel__get_config_term(evsel, AUX_OUTPUT);
 817		/* If possible, group with the AUX event */
 818		if (term && aux_evsel)
 819			evlist__regroup(evlist, aux_evsel, evsel);
 820	}
 821}
 822
 823struct auxtrace_record *__weak
 824auxtrace_record__init(struct evlist *evlist __maybe_unused, int *err)
 825{
 826	*err = 0;
 827	return NULL;
 828}
 829
 830static int auxtrace_index__alloc(struct list_head *head)
 831{
 832	struct auxtrace_index *auxtrace_index;
 833
 834	auxtrace_index = malloc(sizeof(struct auxtrace_index));
 835	if (!auxtrace_index)
 836		return -ENOMEM;
 837
 838	auxtrace_index->nr = 0;
 839	INIT_LIST_HEAD(&auxtrace_index->list);
 840
 841	list_add_tail(&auxtrace_index->list, head);
 842
 843	return 0;
 844}
 845
 846void auxtrace_index__free(struct list_head *head)
 847{
 848	struct auxtrace_index *auxtrace_index, *n;
 849
 850	list_for_each_entry_safe(auxtrace_index, n, head, list) {
 851		list_del_init(&auxtrace_index->list);
 852		free(auxtrace_index);
 853	}
 854}
 855
 856static struct auxtrace_index *auxtrace_index__last(struct list_head *head)
 857{
 858	struct auxtrace_index *auxtrace_index;
 859	int err;
 860
 861	if (list_empty(head)) {
 862		err = auxtrace_index__alloc(head);
 863		if (err)
 864			return NULL;
 865	}
 866
 867	auxtrace_index = list_entry(head->prev, struct auxtrace_index, list);
 868
 869	if (auxtrace_index->nr >= PERF_AUXTRACE_INDEX_ENTRY_COUNT) {
 870		err = auxtrace_index__alloc(head);
 871		if (err)
 872			return NULL;
 873		auxtrace_index = list_entry(head->prev, struct auxtrace_index,
 874					    list);
 875	}
 876
 877	return auxtrace_index;
 878}
 879
 880int auxtrace_index__auxtrace_event(struct list_head *head,
 881				   union perf_event *event, off_t file_offset)
 882{
 883	struct auxtrace_index *auxtrace_index;
 884	size_t nr;
 885
 886	auxtrace_index = auxtrace_index__last(head);
 887	if (!auxtrace_index)
 888		return -ENOMEM;
 889
 890	nr = auxtrace_index->nr;
 891	auxtrace_index->entries[nr].file_offset = file_offset;
 892	auxtrace_index->entries[nr].sz = event->header.size;
 893	auxtrace_index->nr += 1;
 894
 895	return 0;
 896}
 897
 898static int auxtrace_index__do_write(int fd,
 899				    struct auxtrace_index *auxtrace_index)
 900{
 901	struct auxtrace_index_entry ent;
 902	size_t i;
 903
 904	for (i = 0; i < auxtrace_index->nr; i++) {
 905		ent.file_offset = auxtrace_index->entries[i].file_offset;
 906		ent.sz = auxtrace_index->entries[i].sz;
 907		if (writen(fd, &ent, sizeof(ent)) != sizeof(ent))
 908			return -errno;
 909	}
 910	return 0;
 911}
 912
 913int auxtrace_index__write(int fd, struct list_head *head)
 914{
 915	struct auxtrace_index *auxtrace_index;
 916	u64 total = 0;
 917	int err;
 918
 919	list_for_each_entry(auxtrace_index, head, list)
 920		total += auxtrace_index->nr;
 921
 922	if (writen(fd, &total, sizeof(total)) != sizeof(total))
 923		return -errno;
 924
 925	list_for_each_entry(auxtrace_index, head, list) {
 926		err = auxtrace_index__do_write(fd, auxtrace_index);
 927		if (err)
 928			return err;
 929	}
 930
 931	return 0;
 932}
 933
 934static int auxtrace_index__process_entry(int fd, struct list_head *head,
 935					 bool needs_swap)
 936{
 937	struct auxtrace_index *auxtrace_index;
 938	struct auxtrace_index_entry ent;
 939	size_t nr;
 940
 941	if (readn(fd, &ent, sizeof(ent)) != sizeof(ent))
 942		return -1;
 943
 944	auxtrace_index = auxtrace_index__last(head);
 945	if (!auxtrace_index)
 946		return -1;
 947
 948	nr = auxtrace_index->nr;
 949	if (needs_swap) {
 950		auxtrace_index->entries[nr].file_offset =
 951						bswap_64(ent.file_offset);
 952		auxtrace_index->entries[nr].sz = bswap_64(ent.sz);
 953	} else {
 954		auxtrace_index->entries[nr].file_offset = ent.file_offset;
 955		auxtrace_index->entries[nr].sz = ent.sz;
 956	}
 957
 958	auxtrace_index->nr = nr + 1;
 959
 960	return 0;
 961}
 962
 963int auxtrace_index__process(int fd, u64 size, struct perf_session *session,
 964			    bool needs_swap)
 965{
 966	struct list_head *head = &session->auxtrace_index;
 967	u64 nr;
 968
 969	if (readn(fd, &nr, sizeof(u64)) != sizeof(u64))
 970		return -1;
 971
 972	if (needs_swap)
 973		nr = bswap_64(nr);
 974
 975	if (sizeof(u64) + nr * sizeof(struct auxtrace_index_entry) > size)
 976		return -1;
 977
 978	while (nr--) {
 979		int err;
 980
 981		err = auxtrace_index__process_entry(fd, head, needs_swap);
 982		if (err)
 983			return -1;
 984	}
 985
 986	return 0;
 987}
 988
 989static int auxtrace_queues__process_index_entry(struct auxtrace_queues *queues,
 990						struct perf_session *session,
 991						struct auxtrace_index_entry *ent)
 992{
 993	return auxtrace_queues__add_indexed_event(queues, session,
 994						  ent->file_offset, ent->sz);
 995}
 996
 997int auxtrace_queues__process_index(struct auxtrace_queues *queues,
 998				   struct perf_session *session)
 999{
1000	struct auxtrace_index *auxtrace_index;
1001	struct auxtrace_index_entry *ent;
1002	size_t i;
1003	int err;
1004
1005	if (auxtrace__dont_decode(session))
1006		return 0;
1007
1008	list_for_each_entry(auxtrace_index, &session->auxtrace_index, list) {
1009		for (i = 0; i < auxtrace_index->nr; i++) {
1010			ent = &auxtrace_index->entries[i];
1011			err = auxtrace_queues__process_index_entry(queues,
1012								   session,
1013								   ent);
1014			if (err)
1015				return err;
1016		}
1017	}
1018	return 0;
1019}
1020
1021struct auxtrace_buffer *auxtrace_buffer__next(struct auxtrace_queue *queue,
1022					      struct auxtrace_buffer *buffer)
1023{
1024	if (buffer) {
1025		if (list_is_last(&buffer->list, &queue->head))
1026			return NULL;
1027		return list_entry(buffer->list.next, struct auxtrace_buffer,
1028				  list);
1029	} else {
1030		if (list_empty(&queue->head))
1031			return NULL;
1032		return list_entry(queue->head.next, struct auxtrace_buffer,
1033				  list);
1034	}
1035}
1036
1037struct auxtrace_queue *auxtrace_queues__sample_queue(struct auxtrace_queues *queues,
1038						     struct perf_sample *sample,
1039						     struct perf_session *session)
1040{
1041	struct perf_sample_id *sid;
1042	unsigned int idx;
1043	u64 id;
1044
1045	id = sample->id;
1046	if (!id)
1047		return NULL;
1048
1049	sid = evlist__id2sid(session->evlist, id);
1050	if (!sid)
1051		return NULL;
1052
1053	idx = sid->idx;
1054
1055	if (idx >= queues->nr_queues)
1056		return NULL;
1057
1058	return &queues->queue_array[idx];
1059}
1060
1061int auxtrace_queues__add_sample(struct auxtrace_queues *queues,
1062				struct perf_session *session,
1063				struct perf_sample *sample, u64 data_offset,
1064				u64 reference)
1065{
1066	struct auxtrace_buffer buffer = {
1067		.pid = -1,
1068		.data_offset = data_offset,
1069		.reference = reference,
1070		.size = sample->aux_sample.size,
1071	};
1072	struct perf_sample_id *sid;
1073	u64 id = sample->id;
1074	unsigned int idx;
1075
1076	if (!id)
1077		return -EINVAL;
1078
1079	sid = evlist__id2sid(session->evlist, id);
1080	if (!sid)
1081		return -ENOENT;
1082
1083	idx = sid->idx;
1084	buffer.tid = sid->tid;
1085	buffer.cpu = sid->cpu;
1086
1087	return auxtrace_queues__add_buffer(queues, session, idx, &buffer, NULL);
1088}
1089
1090struct queue_data {
1091	bool samples;
1092	bool events;
1093};
1094
1095static int auxtrace_queue_data_cb(struct perf_session *session,
1096				  union perf_event *event, u64 offset,
1097				  void *data)
1098{
1099	struct queue_data *qd = data;
1100	struct perf_sample sample;
1101	int err;
1102
1103	if (qd->events && event->header.type == PERF_RECORD_AUXTRACE) {
1104		if (event->header.size < sizeof(struct perf_record_auxtrace))
1105			return -EINVAL;
1106		offset += event->header.size;
1107		return session->auxtrace->queue_data(session, NULL, event,
1108						     offset);
1109	}
1110
1111	if (!qd->samples || event->header.type != PERF_RECORD_SAMPLE)
1112		return 0;
1113
1114	err = evlist__parse_sample(session->evlist, event, &sample);
1115	if (err)
1116		return err;
1117
1118	if (!sample.aux_sample.size)
1119		return 0;
1120
1121	offset += sample.aux_sample.data - (void *)event;
1122
1123	return session->auxtrace->queue_data(session, &sample, NULL, offset);
1124}
1125
1126int auxtrace_queue_data(struct perf_session *session, bool samples, bool events)
1127{
1128	struct queue_data qd = {
1129		.samples = samples,
1130		.events = events,
1131	};
1132
1133	if (auxtrace__dont_decode(session))
1134		return 0;
1135
1136	if (perf_data__is_pipe(session->data))
1137		return 0;
1138
1139	if (!session->auxtrace || !session->auxtrace->queue_data)
1140		return -EINVAL;
1141
1142	return perf_session__peek_events(session, session->header.data_offset,
1143					 session->header.data_size,
1144					 auxtrace_queue_data_cb, &qd);
1145}
1146
1147void *auxtrace_buffer__get_data_rw(struct auxtrace_buffer *buffer, int fd, bool rw)
1148{
1149	int prot = rw ? PROT_READ | PROT_WRITE : PROT_READ;
1150	size_t adj = buffer->data_offset & (page_size - 1);
1151	size_t size = buffer->size + adj;
1152	off_t file_offset = buffer->data_offset - adj;
1153	void *addr;
1154
1155	if (buffer->data)
1156		return buffer->data;
1157
1158	addr = mmap(NULL, size, prot, MAP_SHARED, fd, file_offset);
1159	if (addr == MAP_FAILED)
1160		return NULL;
1161
1162	buffer->mmap_addr = addr;
1163	buffer->mmap_size = size;
1164
1165	buffer->data = addr + adj;
1166
1167	return buffer->data;
1168}
1169
1170void auxtrace_buffer__put_data(struct auxtrace_buffer *buffer)
1171{
1172	if (!buffer->data || !buffer->mmap_addr)
1173		return;
1174	munmap(buffer->mmap_addr, buffer->mmap_size);
1175	buffer->mmap_addr = NULL;
1176	buffer->mmap_size = 0;
1177	buffer->data = NULL;
1178	buffer->use_data = NULL;
1179}
1180
1181void auxtrace_buffer__drop_data(struct auxtrace_buffer *buffer)
1182{
1183	auxtrace_buffer__put_data(buffer);
1184	if (buffer->data_needs_freeing) {
1185		buffer->data_needs_freeing = false;
1186		zfree(&buffer->data);
1187		buffer->use_data = NULL;
1188		buffer->size = 0;
1189	}
1190}
1191
1192void auxtrace_buffer__free(struct auxtrace_buffer *buffer)
1193{
1194	auxtrace_buffer__drop_data(buffer);
1195	free(buffer);
1196}
1197
1198void auxtrace_synth_guest_error(struct perf_record_auxtrace_error *auxtrace_error, int type,
1199				int code, int cpu, pid_t pid, pid_t tid, u64 ip,
1200				const char *msg, u64 timestamp,
1201				pid_t machine_pid, int vcpu)
1202{
1203	size_t size;
1204
1205	memset(auxtrace_error, 0, sizeof(struct perf_record_auxtrace_error));
1206
1207	auxtrace_error->header.type = PERF_RECORD_AUXTRACE_ERROR;
1208	auxtrace_error->type = type;
1209	auxtrace_error->code = code;
1210	auxtrace_error->cpu = cpu;
1211	auxtrace_error->pid = pid;
1212	auxtrace_error->tid = tid;
1213	auxtrace_error->fmt = 1;
1214	auxtrace_error->ip = ip;
1215	auxtrace_error->time = timestamp;
1216	strlcpy(auxtrace_error->msg, msg, MAX_AUXTRACE_ERROR_MSG);
1217	if (machine_pid) {
1218		auxtrace_error->fmt = 2;
1219		auxtrace_error->machine_pid = machine_pid;
1220		auxtrace_error->vcpu = vcpu;
1221		size = sizeof(*auxtrace_error);
1222	} else {
1223		size = (void *)auxtrace_error->msg - (void *)auxtrace_error +
1224		       strlen(auxtrace_error->msg) + 1;
1225	}
1226	auxtrace_error->header.size = PERF_ALIGN(size, sizeof(u64));
1227}
1228
1229void auxtrace_synth_error(struct perf_record_auxtrace_error *auxtrace_error, int type,
1230			  int code, int cpu, pid_t pid, pid_t tid, u64 ip,
1231			  const char *msg, u64 timestamp)
1232{
1233	auxtrace_synth_guest_error(auxtrace_error, type, code, cpu, pid, tid,
1234				   ip, msg, timestamp, 0, -1);
1235}
1236
1237int perf_event__synthesize_auxtrace_info(struct auxtrace_record *itr,
1238					 struct perf_tool *tool,
1239					 struct perf_session *session,
1240					 perf_event__handler_t process)
1241{
1242	union perf_event *ev;
1243	size_t priv_size;
1244	int err;
1245
1246	pr_debug2("Synthesizing auxtrace information\n");
1247	priv_size = auxtrace_record__info_priv_size(itr, session->evlist);
1248	ev = zalloc(sizeof(struct perf_record_auxtrace_info) + priv_size);
1249	if (!ev)
1250		return -ENOMEM;
1251
1252	ev->auxtrace_info.header.type = PERF_RECORD_AUXTRACE_INFO;
1253	ev->auxtrace_info.header.size = sizeof(struct perf_record_auxtrace_info) +
1254					priv_size;
1255	err = auxtrace_record__info_fill(itr, session, &ev->auxtrace_info,
1256					 priv_size);
1257	if (err)
1258		goto out_free;
1259
1260	err = process(tool, ev, NULL, NULL);
1261out_free:
1262	free(ev);
1263	return err;
1264}
1265
1266static void unleader_evsel(struct evlist *evlist, struct evsel *leader)
1267{
1268	struct evsel *new_leader = NULL;
1269	struct evsel *evsel;
1270
1271	/* Find new leader for the group */
1272	evlist__for_each_entry(evlist, evsel) {
1273		if (!evsel__has_leader(evsel, leader) || evsel == leader)
1274			continue;
1275		if (!new_leader)
1276			new_leader = evsel;
1277		evsel__set_leader(evsel, new_leader);
1278	}
1279
1280	/* Update group information */
1281	if (new_leader) {
1282		zfree(&new_leader->group_name);
1283		new_leader->group_name = leader->group_name;
1284		leader->group_name = NULL;
1285
1286		new_leader->core.nr_members = leader->core.nr_members - 1;
1287		leader->core.nr_members = 1;
1288	}
1289}
1290
1291static void unleader_auxtrace(struct perf_session *session)
1292{
1293	struct evsel *evsel;
1294
1295	evlist__for_each_entry(session->evlist, evsel) {
1296		if (auxtrace__evsel_is_auxtrace(session, evsel) &&
1297		    evsel__is_group_leader(evsel)) {
1298			unleader_evsel(session->evlist, evsel);
1299		}
1300	}
1301}
1302
1303int perf_event__process_auxtrace_info(struct perf_session *session,
1304				      union perf_event *event)
1305{
1306	enum auxtrace_type type = event->auxtrace_info.type;
1307	int err;
1308
1309	if (dump_trace)
1310		fprintf(stdout, " type: %u\n", type);
1311
1312	switch (type) {
1313	case PERF_AUXTRACE_INTEL_PT:
1314		err = intel_pt_process_auxtrace_info(event, session);
1315		break;
1316	case PERF_AUXTRACE_INTEL_BTS:
1317		err = intel_bts_process_auxtrace_info(event, session);
1318		break;
1319	case PERF_AUXTRACE_ARM_SPE:
1320		err = arm_spe_process_auxtrace_info(event, session);
1321		break;
1322	case PERF_AUXTRACE_CS_ETM:
1323		err = cs_etm__process_auxtrace_info(event, session);
1324		break;
1325	case PERF_AUXTRACE_S390_CPUMSF:
1326		err = s390_cpumsf_process_auxtrace_info(event, session);
1327		break;
1328	case PERF_AUXTRACE_HISI_PTT:
1329		err = hisi_ptt_process_auxtrace_info(event, session);
1330		break;
1331	case PERF_AUXTRACE_UNKNOWN:
1332	default:
1333		return -EINVAL;
1334	}
1335
1336	if (err)
1337		return err;
1338
1339	unleader_auxtrace(session);
1340
1341	return 0;
1342}
1343
1344s64 perf_event__process_auxtrace(struct perf_session *session,
1345				 union perf_event *event)
 
1346{
1347	s64 err;
1348
1349	if (dump_trace)
1350		fprintf(stdout, " size: %#"PRI_lx64"  offset: %#"PRI_lx64"  ref: %#"PRI_lx64"  idx: %u  tid: %d  cpu: %d\n",
1351			event->auxtrace.size, event->auxtrace.offset,
1352			event->auxtrace.reference, event->auxtrace.idx,
1353			event->auxtrace.tid, event->auxtrace.cpu);
1354
1355	if (auxtrace__dont_decode(session))
1356		return event->auxtrace.size;
1357
1358	if (!session->auxtrace || event->header.type != PERF_RECORD_AUXTRACE)
1359		return -EINVAL;
1360
1361	err = session->auxtrace->process_auxtrace_event(session, event, session->tool);
1362	if (err < 0)
1363		return err;
1364
1365	return event->auxtrace.size;
1366}
1367
1368#define PERF_ITRACE_DEFAULT_PERIOD_TYPE		PERF_ITRACE_PERIOD_NANOSECS
1369#define PERF_ITRACE_DEFAULT_PERIOD		100000
1370#define PERF_ITRACE_DEFAULT_CALLCHAIN_SZ	16
1371#define PERF_ITRACE_MAX_CALLCHAIN_SZ		1024
1372#define PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ	64
1373#define PERF_ITRACE_MAX_LAST_BRANCH_SZ		1024
1374
1375void itrace_synth_opts__set_default(struct itrace_synth_opts *synth_opts,
1376				    bool no_sample)
1377{
 
1378	synth_opts->branches = true;
1379	synth_opts->transactions = true;
1380	synth_opts->ptwrites = true;
1381	synth_opts->pwr_events = true;
1382	synth_opts->other_events = true;
1383	synth_opts->intr_events = true;
1384	synth_opts->errors = true;
1385	synth_opts->flc = true;
1386	synth_opts->llc = true;
1387	synth_opts->tlb = true;
1388	synth_opts->mem = true;
1389	synth_opts->remote_access = true;
1390
1391	if (no_sample) {
1392		synth_opts->period_type = PERF_ITRACE_PERIOD_INSTRUCTIONS;
1393		synth_opts->period = 1;
1394		synth_opts->calls = true;
1395	} else {
1396		synth_opts->instructions = true;
1397		synth_opts->cycles = true;
1398		synth_opts->period_type = PERF_ITRACE_DEFAULT_PERIOD_TYPE;
1399		synth_opts->period = PERF_ITRACE_DEFAULT_PERIOD;
1400	}
1401	synth_opts->callchain_sz = PERF_ITRACE_DEFAULT_CALLCHAIN_SZ;
1402	synth_opts->last_branch_sz = PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ;
1403	synth_opts->initial_skip = 0;
1404}
1405
1406static int get_flag(const char **ptr, unsigned int *flags)
1407{
1408	while (1) {
1409		char c = **ptr;
1410
1411		if (c >= 'a' && c <= 'z') {
1412			*flags |= 1 << (c - 'a');
1413			++*ptr;
1414			return 0;
1415		} else if (c == ' ') {
1416			++*ptr;
1417			continue;
1418		} else {
1419			return -1;
1420		}
1421	}
1422}
1423
1424static int get_flags(const char **ptr, unsigned int *plus_flags, unsigned int *minus_flags)
1425{
1426	while (1) {
1427		switch (**ptr) {
1428		case '+':
1429			++*ptr;
1430			if (get_flag(ptr, plus_flags))
1431				return -1;
1432			break;
1433		case '-':
1434			++*ptr;
1435			if (get_flag(ptr, minus_flags))
1436				return -1;
1437			break;
1438		case ' ':
1439			++*ptr;
1440			break;
1441		default:
1442			return 0;
1443		}
1444	}
1445}
1446
1447#define ITRACE_DFLT_LOG_ON_ERROR_SZ 16384
1448
1449static unsigned int itrace_log_on_error_size(void)
1450{
1451	unsigned int sz = 0;
1452
1453	perf_config_scan("itrace.debug-log-buffer-size", "%u", &sz);
1454	return sz ?: ITRACE_DFLT_LOG_ON_ERROR_SZ;
1455}
1456
1457/*
1458 * Please check tools/perf/Documentation/perf-script.txt for information
1459 * about the options parsed here, which is introduced after this cset,
1460 * when support in 'perf script' for these options is introduced.
1461 */
1462int itrace_do_parse_synth_opts(struct itrace_synth_opts *synth_opts,
1463			       const char *str, int unset)
1464{
 
1465	const char *p;
1466	char *endptr;
1467	bool period_type_set = false;
1468	bool period_set = false;
1469
1470	synth_opts->set = true;
1471
1472	if (unset) {
1473		synth_opts->dont_decode = true;
1474		return 0;
1475	}
1476
1477	if (!str) {
1478		itrace_synth_opts__set_default(synth_opts,
1479					       synth_opts->default_no_sample);
1480		return 0;
1481	}
1482
1483	for (p = str; *p;) {
1484		switch (*p++) {
1485		case 'i':
1486		case 'y':
1487			if (p[-1] == 'y')
1488				synth_opts->cycles = true;
1489			else
1490				synth_opts->instructions = true;
1491			while (*p == ' ' || *p == ',')
1492				p += 1;
1493			if (isdigit(*p)) {
1494				synth_opts->period = strtoull(p, &endptr, 10);
1495				period_set = true;
1496				p = endptr;
1497				while (*p == ' ' || *p == ',')
1498					p += 1;
1499				switch (*p++) {
1500				case 'i':
1501					synth_opts->period_type =
1502						PERF_ITRACE_PERIOD_INSTRUCTIONS;
1503					period_type_set = true;
1504					break;
1505				case 't':
1506					synth_opts->period_type =
1507						PERF_ITRACE_PERIOD_TICKS;
1508					period_type_set = true;
1509					break;
1510				case 'm':
1511					synth_opts->period *= 1000;
1512					/* Fall through */
1513				case 'u':
1514					synth_opts->period *= 1000;
1515					/* Fall through */
1516				case 'n':
1517					if (*p++ != 's')
1518						goto out_err;
1519					synth_opts->period_type =
1520						PERF_ITRACE_PERIOD_NANOSECS;
1521					period_type_set = true;
1522					break;
1523				case '\0':
1524					goto out;
1525				default:
1526					goto out_err;
1527				}
1528			}
1529			break;
1530		case 'b':
1531			synth_opts->branches = true;
1532			break;
1533		case 'x':
1534			synth_opts->transactions = true;
1535			break;
1536		case 'w':
1537			synth_opts->ptwrites = true;
1538			break;
1539		case 'p':
1540			synth_opts->pwr_events = true;
1541			break;
1542		case 'o':
1543			synth_opts->other_events = true;
1544			break;
1545		case 'I':
1546			synth_opts->intr_events = true;
1547			break;
1548		case 'e':
1549			synth_opts->errors = true;
1550			if (get_flags(&p, &synth_opts->error_plus_flags,
1551				      &synth_opts->error_minus_flags))
1552				goto out_err;
1553			break;
1554		case 'd':
1555			synth_opts->log = true;
1556			if (get_flags(&p, &synth_opts->log_plus_flags,
1557				      &synth_opts->log_minus_flags))
1558				goto out_err;
1559			if (synth_opts->log_plus_flags & AUXTRACE_LOG_FLG_ON_ERROR)
1560				synth_opts->log_on_error_size = itrace_log_on_error_size();
1561			break;
1562		case 'c':
1563			synth_opts->branches = true;
1564			synth_opts->calls = true;
1565			break;
1566		case 'r':
1567			synth_opts->branches = true;
1568			synth_opts->returns = true;
1569			break;
1570		case 'G':
1571		case 'g':
1572			if (p[-1] == 'G')
1573				synth_opts->add_callchain = true;
1574			else
1575				synth_opts->callchain = true;
1576			synth_opts->callchain_sz =
1577					PERF_ITRACE_DEFAULT_CALLCHAIN_SZ;
1578			while (*p == ' ' || *p == ',')
1579				p += 1;
1580			if (isdigit(*p)) {
1581				unsigned int val;
1582
1583				val = strtoul(p, &endptr, 10);
1584				p = endptr;
1585				if (!val || val > PERF_ITRACE_MAX_CALLCHAIN_SZ)
1586					goto out_err;
1587				synth_opts->callchain_sz = val;
1588			}
1589			break;
1590		case 'L':
1591		case 'l':
1592			if (p[-1] == 'L')
1593				synth_opts->add_last_branch = true;
1594			else
1595				synth_opts->last_branch = true;
1596			synth_opts->last_branch_sz =
1597					PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ;
1598			while (*p == ' ' || *p == ',')
1599				p += 1;
1600			if (isdigit(*p)) {
1601				unsigned int val;
1602
1603				val = strtoul(p, &endptr, 10);
1604				p = endptr;
1605				if (!val ||
1606				    val > PERF_ITRACE_MAX_LAST_BRANCH_SZ)
1607					goto out_err;
1608				synth_opts->last_branch_sz = val;
1609			}
1610			break;
1611		case 's':
1612			synth_opts->initial_skip = strtoul(p, &endptr, 10);
1613			if (p == endptr)
1614				goto out_err;
1615			p = endptr;
1616			break;
1617		case 'f':
1618			synth_opts->flc = true;
1619			break;
1620		case 'm':
1621			synth_opts->llc = true;
1622			break;
1623		case 't':
1624			synth_opts->tlb = true;
1625			break;
1626		case 'a':
1627			synth_opts->remote_access = true;
1628			break;
1629		case 'M':
1630			synth_opts->mem = true;
1631			break;
1632		case 'q':
1633			synth_opts->quick += 1;
1634			break;
1635		case 'A':
1636			synth_opts->approx_ipc = true;
1637			break;
1638		case 'Z':
1639			synth_opts->timeless_decoding = true;
1640			break;
1641		case 'T':
1642			synth_opts->use_timestamp = true;
1643			break;
1644		case ' ':
1645		case ',':
1646			break;
1647		default:
1648			goto out_err;
1649		}
1650	}
1651out:
1652	if (synth_opts->instructions || synth_opts->cycles) {
1653		if (!period_type_set)
1654			synth_opts->period_type =
1655					PERF_ITRACE_DEFAULT_PERIOD_TYPE;
1656		if (!period_set)
1657			synth_opts->period = PERF_ITRACE_DEFAULT_PERIOD;
1658	}
1659
1660	return 0;
1661
1662out_err:
1663	pr_err("Bad Instruction Tracing options '%s'\n", str);
1664	return -EINVAL;
1665}
1666
1667int itrace_parse_synth_opts(const struct option *opt, const char *str, int unset)
1668{
1669	return itrace_do_parse_synth_opts(opt->value, str, unset);
1670}
1671
1672static const char * const auxtrace_error_type_name[] = {
1673	[PERF_AUXTRACE_ERROR_ITRACE] = "instruction trace",
1674};
1675
1676static const char *auxtrace_error_name(int type)
1677{
1678	const char *error_type_name = NULL;
1679
1680	if (type < PERF_AUXTRACE_ERROR_MAX)
1681		error_type_name = auxtrace_error_type_name[type];
1682	if (!error_type_name)
1683		error_type_name = "unknown AUX";
1684	return error_type_name;
1685}
1686
1687size_t perf_event__fprintf_auxtrace_error(union perf_event *event, FILE *fp)
1688{
1689	struct perf_record_auxtrace_error *e = &event->auxtrace_error;
1690	unsigned long long nsecs = e->time;
1691	const char *msg = e->msg;
1692	int ret;
1693
1694	ret = fprintf(fp, " %s error type %u",
1695		      auxtrace_error_name(e->type), e->type);
1696
1697	if (e->fmt && nsecs) {
1698		unsigned long secs = nsecs / NSEC_PER_SEC;
1699
1700		nsecs -= secs * NSEC_PER_SEC;
1701		ret += fprintf(fp, " time %lu.%09llu", secs, nsecs);
1702	} else {
1703		ret += fprintf(fp, " time 0");
1704	}
1705
1706	if (!e->fmt)
1707		msg = (const char *)&e->time;
1708
1709	if (e->fmt >= 2 && e->machine_pid)
1710		ret += fprintf(fp, " machine_pid %d vcpu %d", e->machine_pid, e->vcpu);
1711
1712	ret += fprintf(fp, " cpu %d pid %d tid %d ip %#"PRI_lx64" code %u: %s\n",
1713		       e->cpu, e->pid, e->tid, e->ip, e->code, msg);
1714	return ret;
1715}
1716
1717void perf_session__auxtrace_error_inc(struct perf_session *session,
1718				      union perf_event *event)
1719{
1720	struct perf_record_auxtrace_error *e = &event->auxtrace_error;
1721
1722	if (e->type < PERF_AUXTRACE_ERROR_MAX)
1723		session->evlist->stats.nr_auxtrace_errors[e->type] += 1;
1724}
1725
1726void events_stats__auxtrace_error_warn(const struct events_stats *stats)
1727{
1728	int i;
1729
1730	for (i = 0; i < PERF_AUXTRACE_ERROR_MAX; i++) {
1731		if (!stats->nr_auxtrace_errors[i])
1732			continue;
1733		ui__warning("%u %s errors\n",
1734			    stats->nr_auxtrace_errors[i],
1735			    auxtrace_error_name(i));
1736	}
1737}
1738
1739int perf_event__process_auxtrace_error(struct perf_session *session,
1740				       union perf_event *event)
 
1741{
1742	if (auxtrace__dont_decode(session))
1743		return 0;
1744
1745	perf_event__fprintf_auxtrace_error(event, stdout);
1746	return 0;
1747}
1748
1749/*
1750 * In the compat mode kernel runs in 64-bit and perf tool runs in 32-bit mode,
1751 * 32-bit perf tool cannot access 64-bit value atomically, which might lead to
1752 * the issues caused by the below sequence on multiple CPUs: when perf tool
1753 * accesses either the load operation or the store operation for 64-bit value,
1754 * on some architectures the operation is divided into two instructions, one
1755 * is for accessing the low 32-bit value and another is for the high 32-bit;
1756 * thus these two user operations can give the kernel chances to access the
1757 * 64-bit value, and thus leads to the unexpected load values.
1758 *
1759 *   kernel (64-bit)                        user (32-bit)
1760 *
1761 *   if (LOAD ->aux_tail) { --,             LOAD ->aux_head_lo
1762 *       STORE $aux_data      |       ,--->
1763 *       FLUSH $aux_data      |       |     LOAD ->aux_head_hi
1764 *       STORE ->aux_head   --|-------`     smp_rmb()
1765 *   }                        |             LOAD $data
1766 *                            |             smp_mb()
1767 *                            |             STORE ->aux_tail_lo
1768 *                            `----------->
1769 *                                          STORE ->aux_tail_hi
1770 *
1771 * For this reason, it's impossible for the perf tool to work correctly when
1772 * the AUX head or tail is bigger than 4GB (more than 32 bits length); and we
1773 * can not simply limit the AUX ring buffer to less than 4GB, the reason is
1774 * the pointers can be increased monotonically, whatever the buffer size it is,
1775 * at the end the head and tail can be bigger than 4GB and carry out to the
1776 * high 32-bit.
1777 *
1778 * To mitigate the issues and improve the user experience, we can allow the
1779 * perf tool working in certain conditions and bail out with error if detect
1780 * any overflow cannot be handled.
1781 *
1782 * For reading the AUX head, it reads out the values for three times, and
1783 * compares the high 4 bytes of the values between the first time and the last
1784 * time, if there has no change for high 4 bytes injected by the kernel during
1785 * the user reading sequence, it's safe for use the second value.
1786 *
1787 * When compat_auxtrace_mmap__write_tail() detects any carrying in the high
1788 * 32 bits, it means there have two store operations in user space and it cannot
1789 * promise the atomicity for 64-bit write, so return '-1' in this case to tell
1790 * the caller an overflow error has happened.
1791 */
1792u64 __weak compat_auxtrace_mmap__read_head(struct auxtrace_mmap *mm)
1793{
1794	struct perf_event_mmap_page *pc = mm->userpg;
1795	u64 first, second, last;
1796	u64 mask = (u64)(UINT32_MAX) << 32;
1797
1798	do {
1799		first = READ_ONCE(pc->aux_head);
1800		/* Ensure all reads are done after we read the head */
1801		smp_rmb();
1802		second = READ_ONCE(pc->aux_head);
1803		/* Ensure all reads are done after we read the head */
1804		smp_rmb();
1805		last = READ_ONCE(pc->aux_head);
1806	} while ((first & mask) != (last & mask));
1807
1808	return second;
1809}
1810
1811int __weak compat_auxtrace_mmap__write_tail(struct auxtrace_mmap *mm, u64 tail)
1812{
1813	struct perf_event_mmap_page *pc = mm->userpg;
1814	u64 mask = (u64)(UINT32_MAX) << 32;
1815
1816	if (tail & mask)
1817		return -1;
1818
1819	/* Ensure all reads are done before we write the tail out */
1820	smp_mb();
1821	WRITE_ONCE(pc->aux_tail, tail);
1822	return 0;
1823}
1824
1825static int __auxtrace_mmap__read(struct mmap *map,
1826				 struct auxtrace_record *itr,
1827				 struct perf_tool *tool, process_auxtrace_t fn,
1828				 bool snapshot, size_t snapshot_size)
1829{
1830	struct auxtrace_mmap *mm = &map->auxtrace_mmap;
1831	u64 head, old = mm->prev, offset, ref;
1832	unsigned char *data = mm->base;
1833	size_t size, head_off, old_off, len1, len2, padding;
1834	union perf_event ev;
1835	void *data1, *data2;
1836	int kernel_is_64_bit = perf_env__kernel_is_64_bit(evsel__env(NULL));
1837
1838	head = auxtrace_mmap__read_head(mm, kernel_is_64_bit);
1839
1840	if (snapshot &&
1841	    auxtrace_record__find_snapshot(itr, mm->idx, mm, data, &head, &old))
1842		return -1;
 
 
 
1843
1844	if (old == head)
1845		return 0;
1846
1847	pr_debug3("auxtrace idx %d old %#"PRIx64" head %#"PRIx64" diff %#"PRIx64"\n",
1848		  mm->idx, old, head, head - old);
1849
1850	if (mm->mask) {
1851		head_off = head & mm->mask;
1852		old_off = old & mm->mask;
1853	} else {
1854		head_off = head % mm->len;
1855		old_off = old % mm->len;
1856	}
1857
1858	if (head_off > old_off)
1859		size = head_off - old_off;
1860	else
1861		size = mm->len - (old_off - head_off);
1862
1863	if (snapshot && size > snapshot_size)
1864		size = snapshot_size;
1865
1866	ref = auxtrace_record__reference(itr);
1867
1868	if (head > old || size <= head || mm->mask) {
1869		offset = head - size;
1870	} else {
1871		/*
1872		 * When the buffer size is not a power of 2, 'head' wraps at the
1873		 * highest multiple of the buffer size, so we have to subtract
1874		 * the remainder here.
1875		 */
1876		u64 rem = (0ULL - mm->len) % mm->len;
1877
1878		offset = head - size - rem;
1879	}
1880
1881	if (size > head_off) {
1882		len1 = size - head_off;
1883		data1 = &data[mm->len - len1];
1884		len2 = head_off;
1885		data2 = &data[0];
1886	} else {
1887		len1 = size;
1888		data1 = &data[head_off - len1];
1889		len2 = 0;
1890		data2 = NULL;
1891	}
1892
1893	if (itr->alignment) {
1894		unsigned int unwanted = len1 % itr->alignment;
1895
1896		len1 -= unwanted;
1897		size -= unwanted;
1898	}
1899
1900	/* padding must be written by fn() e.g. record__process_auxtrace() */
1901	padding = size & (PERF_AUXTRACE_RECORD_ALIGNMENT - 1);
1902	if (padding)
1903		padding = PERF_AUXTRACE_RECORD_ALIGNMENT - padding;
1904
1905	memset(&ev, 0, sizeof(ev));
1906	ev.auxtrace.header.type = PERF_RECORD_AUXTRACE;
1907	ev.auxtrace.header.size = sizeof(ev.auxtrace);
1908	ev.auxtrace.size = size + padding;
1909	ev.auxtrace.offset = offset;
1910	ev.auxtrace.reference = ref;
1911	ev.auxtrace.idx = mm->idx;
1912	ev.auxtrace.tid = mm->tid;
1913	ev.auxtrace.cpu = mm->cpu;
1914
1915	if (fn(tool, map, &ev, data1, len1, data2, len2))
1916		return -1;
1917
1918	mm->prev = head;
1919
1920	if (!snapshot) {
1921		int err;
1922
1923		err = auxtrace_mmap__write_tail(mm, head, kernel_is_64_bit);
1924		if (err < 0)
1925			return err;
1926
1927		if (itr->read_finish) {
1928			err = itr->read_finish(itr, mm->idx);
1929			if (err < 0)
1930				return err;
1931		}
1932	}
1933
1934	return 1;
1935}
1936
1937int auxtrace_mmap__read(struct mmap *map, struct auxtrace_record *itr,
1938			struct perf_tool *tool, process_auxtrace_t fn)
1939{
1940	return __auxtrace_mmap__read(map, itr, tool, fn, false, 0);
1941}
1942
1943int auxtrace_mmap__read_snapshot(struct mmap *map,
1944				 struct auxtrace_record *itr,
1945				 struct perf_tool *tool, process_auxtrace_t fn,
1946				 size_t snapshot_size)
1947{
1948	return __auxtrace_mmap__read(map, itr, tool, fn, true, snapshot_size);
1949}
1950
1951/**
1952 * struct auxtrace_cache - hash table to implement a cache
1953 * @hashtable: the hashtable
1954 * @sz: hashtable size (number of hlists)
1955 * @entry_size: size of an entry
1956 * @limit: limit the number of entries to this maximum, when reached the cache
1957 *         is dropped and caching begins again with an empty cache
1958 * @cnt: current number of entries
1959 * @bits: hashtable size (@sz = 2^@bits)
1960 */
1961struct auxtrace_cache {
1962	struct hlist_head *hashtable;
1963	size_t sz;
1964	size_t entry_size;
1965	size_t limit;
1966	size_t cnt;
1967	unsigned int bits;
1968};
1969
1970struct auxtrace_cache *auxtrace_cache__new(unsigned int bits, size_t entry_size,
1971					   unsigned int limit_percent)
1972{
1973	struct auxtrace_cache *c;
1974	struct hlist_head *ht;
1975	size_t sz, i;
1976
1977	c = zalloc(sizeof(struct auxtrace_cache));
1978	if (!c)
1979		return NULL;
1980
1981	sz = 1UL << bits;
1982
1983	ht = calloc(sz, sizeof(struct hlist_head));
1984	if (!ht)
1985		goto out_free;
1986
1987	for (i = 0; i < sz; i++)
1988		INIT_HLIST_HEAD(&ht[i]);
1989
1990	c->hashtable = ht;
1991	c->sz = sz;
1992	c->entry_size = entry_size;
1993	c->limit = (c->sz * limit_percent) / 100;
1994	c->bits = bits;
1995
1996	return c;
1997
1998out_free:
1999	free(c);
2000	return NULL;
2001}
2002
2003static void auxtrace_cache__drop(struct auxtrace_cache *c)
2004{
2005	struct auxtrace_cache_entry *entry;
2006	struct hlist_node *tmp;
2007	size_t i;
2008
2009	if (!c)
2010		return;
2011
2012	for (i = 0; i < c->sz; i++) {
2013		hlist_for_each_entry_safe(entry, tmp, &c->hashtable[i], hash) {
2014			hlist_del(&entry->hash);
2015			auxtrace_cache__free_entry(c, entry);
2016		}
2017	}
2018
2019	c->cnt = 0;
2020}
2021
2022void auxtrace_cache__free(struct auxtrace_cache *c)
2023{
2024	if (!c)
2025		return;
2026
2027	auxtrace_cache__drop(c);
2028	zfree(&c->hashtable);
2029	free(c);
2030}
2031
2032void *auxtrace_cache__alloc_entry(struct auxtrace_cache *c)
2033{
2034	return malloc(c->entry_size);
2035}
2036
2037void auxtrace_cache__free_entry(struct auxtrace_cache *c __maybe_unused,
2038				void *entry)
2039{
2040	free(entry);
2041}
2042
2043int auxtrace_cache__add(struct auxtrace_cache *c, u32 key,
2044			struct auxtrace_cache_entry *entry)
2045{
2046	if (c->limit && ++c->cnt > c->limit)
2047		auxtrace_cache__drop(c);
2048
2049	entry->key = key;
2050	hlist_add_head(&entry->hash, &c->hashtable[hash_32(key, c->bits)]);
2051
2052	return 0;
2053}
2054
2055static struct auxtrace_cache_entry *auxtrace_cache__rm(struct auxtrace_cache *c,
2056						       u32 key)
2057{
2058	struct auxtrace_cache_entry *entry;
2059	struct hlist_head *hlist;
2060	struct hlist_node *n;
2061
2062	if (!c)
2063		return NULL;
2064
2065	hlist = &c->hashtable[hash_32(key, c->bits)];
2066	hlist_for_each_entry_safe(entry, n, hlist, hash) {
2067		if (entry->key == key) {
2068			hlist_del(&entry->hash);
2069			return entry;
2070		}
2071	}
2072
2073	return NULL;
2074}
2075
2076void auxtrace_cache__remove(struct auxtrace_cache *c, u32 key)
2077{
2078	struct auxtrace_cache_entry *entry = auxtrace_cache__rm(c, key);
2079
2080	auxtrace_cache__free_entry(c, entry);
2081}
2082
2083void *auxtrace_cache__lookup(struct auxtrace_cache *c, u32 key)
2084{
2085	struct auxtrace_cache_entry *entry;
2086	struct hlist_head *hlist;
2087
2088	if (!c)
2089		return NULL;
2090
2091	hlist = &c->hashtable[hash_32(key, c->bits)];
2092	hlist_for_each_entry(entry, hlist, hash) {
2093		if (entry->key == key)
2094			return entry;
2095	}
2096
2097	return NULL;
2098}
2099
2100static void addr_filter__free_str(struct addr_filter *filt)
2101{
2102	zfree(&filt->str);
2103	filt->action   = NULL;
2104	filt->sym_from = NULL;
2105	filt->sym_to   = NULL;
2106	filt->filename = NULL;
 
2107}
2108
2109static struct addr_filter *addr_filter__new(void)
2110{
2111	struct addr_filter *filt = zalloc(sizeof(*filt));
2112
2113	if (filt)
2114		INIT_LIST_HEAD(&filt->list);
2115
2116	return filt;
2117}
2118
2119static void addr_filter__free(struct addr_filter *filt)
2120{
2121	if (filt)
2122		addr_filter__free_str(filt);
2123	free(filt);
2124}
2125
2126static void addr_filters__add(struct addr_filters *filts,
2127			      struct addr_filter *filt)
2128{
2129	list_add_tail(&filt->list, &filts->head);
2130	filts->cnt += 1;
2131}
2132
2133static void addr_filters__del(struct addr_filters *filts,
2134			      struct addr_filter *filt)
2135{
2136	list_del_init(&filt->list);
2137	filts->cnt -= 1;
2138}
2139
2140void addr_filters__init(struct addr_filters *filts)
2141{
2142	INIT_LIST_HEAD(&filts->head);
2143	filts->cnt = 0;
2144}
2145
2146void addr_filters__exit(struct addr_filters *filts)
2147{
2148	struct addr_filter *filt, *n;
2149
2150	list_for_each_entry_safe(filt, n, &filts->head, list) {
2151		addr_filters__del(filts, filt);
2152		addr_filter__free(filt);
2153	}
2154}
2155
2156static int parse_num_or_str(char **inp, u64 *num, const char **str,
2157			    const char *str_delim)
2158{
2159	*inp += strspn(*inp, " ");
2160
2161	if (isdigit(**inp)) {
2162		char *endptr;
2163
2164		if (!num)
2165			return -EINVAL;
2166		errno = 0;
2167		*num = strtoull(*inp, &endptr, 0);
2168		if (errno)
2169			return -errno;
2170		if (endptr == *inp)
2171			return -EINVAL;
2172		*inp = endptr;
2173	} else {
2174		size_t n;
2175
2176		if (!str)
2177			return -EINVAL;
2178		*inp += strspn(*inp, " ");
2179		*str = *inp;
2180		n = strcspn(*inp, str_delim);
2181		if (!n)
2182			return -EINVAL;
2183		*inp += n;
2184		if (**inp) {
2185			**inp = '\0';
2186			*inp += 1;
2187		}
2188	}
2189	return 0;
2190}
2191
2192static int parse_action(struct addr_filter *filt)
2193{
2194	if (!strcmp(filt->action, "filter")) {
2195		filt->start = true;
2196		filt->range = true;
2197	} else if (!strcmp(filt->action, "start")) {
2198		filt->start = true;
2199	} else if (!strcmp(filt->action, "stop")) {
2200		filt->start = false;
2201	} else if (!strcmp(filt->action, "tracestop")) {
2202		filt->start = false;
2203		filt->range = true;
2204		filt->action += 5; /* Change 'tracestop' to 'stop' */
2205	} else {
2206		return -EINVAL;
2207	}
2208	return 0;
2209}
2210
2211static int parse_sym_idx(char **inp, int *idx)
2212{
2213	*idx = -1;
2214
2215	*inp += strspn(*inp, " ");
2216
2217	if (**inp != '#')
2218		return 0;
2219
2220	*inp += 1;
2221
2222	if (**inp == 'g' || **inp == 'G') {
2223		*inp += 1;
2224		*idx = 0;
2225	} else {
2226		unsigned long num;
2227		char *endptr;
2228
2229		errno = 0;
2230		num = strtoul(*inp, &endptr, 0);
2231		if (errno)
2232			return -errno;
2233		if (endptr == *inp || num > INT_MAX)
2234			return -EINVAL;
2235		*inp = endptr;
2236		*idx = num;
2237	}
2238
2239	return 0;
2240}
2241
2242static int parse_addr_size(char **inp, u64 *num, const char **str, int *idx)
2243{
2244	int err = parse_num_or_str(inp, num, str, " ");
2245
2246	if (!err && *str)
2247		err = parse_sym_idx(inp, idx);
2248
2249	return err;
2250}
2251
2252static int parse_one_filter(struct addr_filter *filt, const char **filter_inp)
2253{
2254	char *fstr;
2255	int err;
2256
2257	filt->str = fstr = strdup(*filter_inp);
2258	if (!fstr)
2259		return -ENOMEM;
2260
2261	err = parse_num_or_str(&fstr, NULL, &filt->action, " ");
2262	if (err)
2263		goto out_err;
2264
2265	err = parse_action(filt);
2266	if (err)
2267		goto out_err;
2268
2269	err = parse_addr_size(&fstr, &filt->addr, &filt->sym_from,
2270			      &filt->sym_from_idx);
2271	if (err)
2272		goto out_err;
2273
2274	fstr += strspn(fstr, " ");
2275
2276	if (*fstr == '/') {
2277		fstr += 1;
2278		err = parse_addr_size(&fstr, &filt->size, &filt->sym_to,
2279				      &filt->sym_to_idx);
2280		if (err)
2281			goto out_err;
2282		filt->range = true;
2283	}
2284
2285	fstr += strspn(fstr, " ");
2286
2287	if (*fstr == '@') {
2288		fstr += 1;
2289		err = parse_num_or_str(&fstr, NULL, &filt->filename, " ,");
2290		if (err)
2291			goto out_err;
2292	}
2293
2294	fstr += strspn(fstr, " ,");
2295
2296	*filter_inp += fstr - filt->str;
2297
2298	return 0;
2299
2300out_err:
2301	addr_filter__free_str(filt);
2302
2303	return err;
2304}
2305
2306int addr_filters__parse_bare_filter(struct addr_filters *filts,
2307				    const char *filter)
2308{
2309	struct addr_filter *filt;
2310	const char *fstr = filter;
2311	int err;
2312
2313	while (*fstr) {
2314		filt = addr_filter__new();
2315		err = parse_one_filter(filt, &fstr);
2316		if (err) {
2317			addr_filter__free(filt);
2318			addr_filters__exit(filts);
2319			return err;
2320		}
2321		addr_filters__add(filts, filt);
2322	}
2323
2324	return 0;
2325}
2326
2327struct sym_args {
2328	const char	*name;
2329	u64		start;
2330	u64		size;
2331	int		idx;
2332	int		cnt;
2333	bool		started;
2334	bool		global;
2335	bool		selected;
2336	bool		duplicate;
2337	bool		near;
2338};
2339
2340static bool kern_sym_name_match(const char *kname, const char *name)
2341{
2342	size_t n = strlen(name);
2343
2344	return !strcmp(kname, name) ||
2345	       (!strncmp(kname, name, n) && kname[n] == '\t');
2346}
2347
2348static bool kern_sym_match(struct sym_args *args, const char *name, char type)
2349{
2350	/* A function with the same name, and global or the n'th found or any */
2351	return kallsyms__is_function(type) &&
2352	       kern_sym_name_match(name, args->name) &&
2353	       ((args->global && isupper(type)) ||
2354		(args->selected && ++(args->cnt) == args->idx) ||
2355		(!args->global && !args->selected));
2356}
2357
2358static int find_kern_sym_cb(void *arg, const char *name, char type, u64 start)
2359{
2360	struct sym_args *args = arg;
2361
2362	if (args->started) {
2363		if (!args->size)
2364			args->size = start - args->start;
2365		if (args->selected) {
2366			if (args->size)
2367				return 1;
2368		} else if (kern_sym_match(args, name, type)) {
2369			args->duplicate = true;
2370			return 1;
2371		}
2372	} else if (kern_sym_match(args, name, type)) {
2373		args->started = true;
2374		args->start = start;
2375	}
2376
2377	return 0;
2378}
2379
2380static int print_kern_sym_cb(void *arg, const char *name, char type, u64 start)
2381{
2382	struct sym_args *args = arg;
2383
2384	if (kern_sym_match(args, name, type)) {
2385		pr_err("#%d\t0x%"PRIx64"\t%c\t%s\n",
2386		       ++args->cnt, start, type, name);
2387		args->near = true;
2388	} else if (args->near) {
2389		args->near = false;
2390		pr_err("\t\twhich is near\t\t%s\n", name);
2391	}
2392
2393	return 0;
2394}
2395
2396static int sym_not_found_error(const char *sym_name, int idx)
2397{
2398	if (idx > 0) {
2399		pr_err("N'th occurrence (N=%d) of symbol '%s' not found.\n",
2400		       idx, sym_name);
2401	} else if (!idx) {
2402		pr_err("Global symbol '%s' not found.\n", sym_name);
2403	} else {
2404		pr_err("Symbol '%s' not found.\n", sym_name);
2405	}
2406	pr_err("Note that symbols must be functions.\n");
2407
2408	return -EINVAL;
2409}
2410
2411static int find_kern_sym(const char *sym_name, u64 *start, u64 *size, int idx)
2412{
2413	struct sym_args args = {
2414		.name = sym_name,
2415		.idx = idx,
2416		.global = !idx,
2417		.selected = idx > 0,
2418	};
2419	int err;
2420
2421	*start = 0;
2422	*size = 0;
2423
2424	err = kallsyms__parse("/proc/kallsyms", &args, find_kern_sym_cb);
2425	if (err < 0) {
2426		pr_err("Failed to parse /proc/kallsyms\n");
2427		return err;
2428	}
2429
2430	if (args.duplicate) {
2431		pr_err("Multiple kernel symbols with name '%s'\n", sym_name);
2432		args.cnt = 0;
2433		kallsyms__parse("/proc/kallsyms", &args, print_kern_sym_cb);
2434		pr_err("Disambiguate symbol name by inserting #n after the name e.g. %s #2\n",
2435		       sym_name);
2436		pr_err("Or select a global symbol by inserting #0 or #g or #G\n");
2437		return -EINVAL;
2438	}
2439
2440	if (!args.started) {
2441		pr_err("Kernel symbol lookup: ");
2442		return sym_not_found_error(sym_name, idx);
2443	}
2444
2445	*start = args.start;
2446	*size = args.size;
2447
2448	return 0;
2449}
2450
2451static int find_entire_kern_cb(void *arg, const char *name __maybe_unused,
2452			       char type, u64 start)
2453{
2454	struct sym_args *args = arg;
2455	u64 size;
2456
2457	if (!kallsyms__is_function(type))
2458		return 0;
2459
2460	if (!args->started) {
2461		args->started = true;
2462		args->start = start;
2463	}
2464	/* Don't know exactly where the kernel ends, so we add a page */
2465	size = round_up(start, page_size) + page_size - args->start;
2466	if (size > args->size)
2467		args->size = size;
2468
2469	return 0;
2470}
2471
2472static int addr_filter__entire_kernel(struct addr_filter *filt)
2473{
2474	struct sym_args args = { .started = false };
2475	int err;
2476
2477	err = kallsyms__parse("/proc/kallsyms", &args, find_entire_kern_cb);
2478	if (err < 0 || !args.started) {
2479		pr_err("Failed to parse /proc/kallsyms\n");
2480		return err;
2481	}
2482
2483	filt->addr = args.start;
2484	filt->size = args.size;
2485
2486	return 0;
2487}
2488
2489static int check_end_after_start(struct addr_filter *filt, u64 start, u64 size)
2490{
2491	if (start + size >= filt->addr)
2492		return 0;
2493
2494	if (filt->sym_from) {
2495		pr_err("Symbol '%s' (0x%"PRIx64") comes before '%s' (0x%"PRIx64")\n",
2496		       filt->sym_to, start, filt->sym_from, filt->addr);
2497	} else {
2498		pr_err("Symbol '%s' (0x%"PRIx64") comes before address 0x%"PRIx64")\n",
2499		       filt->sym_to, start, filt->addr);
2500	}
2501
2502	return -EINVAL;
2503}
2504
2505static int addr_filter__resolve_kernel_syms(struct addr_filter *filt)
2506{
2507	bool no_size = false;
2508	u64 start, size;
2509	int err;
2510
2511	if (symbol_conf.kptr_restrict) {
2512		pr_err("Kernel addresses are restricted. Unable to resolve kernel symbols.\n");
2513		return -EINVAL;
2514	}
2515
2516	if (filt->sym_from && !strcmp(filt->sym_from, "*"))
2517		return addr_filter__entire_kernel(filt);
2518
2519	if (filt->sym_from) {
2520		err = find_kern_sym(filt->sym_from, &start, &size,
2521				    filt->sym_from_idx);
2522		if (err)
2523			return err;
2524		filt->addr = start;
2525		if (filt->range && !filt->size && !filt->sym_to) {
2526			filt->size = size;
2527			no_size = !size;
2528		}
2529	}
2530
2531	if (filt->sym_to) {
2532		err = find_kern_sym(filt->sym_to, &start, &size,
2533				    filt->sym_to_idx);
2534		if (err)
2535			return err;
2536
2537		err = check_end_after_start(filt, start, size);
2538		if (err)
2539			return err;
2540		filt->size = start + size - filt->addr;
2541		no_size = !size;
2542	}
2543
2544	/* The very last symbol in kallsyms does not imply a particular size */
2545	if (no_size) {
2546		pr_err("Cannot determine size of symbol '%s'\n",
2547		       filt->sym_to ? filt->sym_to : filt->sym_from);
2548		return -EINVAL;
2549	}
2550
2551	return 0;
2552}
2553
2554static struct dso *load_dso(const char *name)
2555{
2556	struct map *map;
2557	struct dso *dso;
2558
2559	map = dso__new_map(name);
2560	if (!map)
2561		return NULL;
2562
2563	if (map__load(map) < 0)
2564		pr_err("File '%s' not found or has no symbols.\n", name);
2565
2566	dso = dso__get(map__dso(map));
2567
2568	map__put(map);
2569
2570	return dso;
2571}
2572
2573static bool dso_sym_match(struct symbol *sym, const char *name, int *cnt,
2574			  int idx)
2575{
2576	/* Same name, and global or the n'th found or any */
2577	return !arch__compare_symbol_names(name, sym->name) &&
2578	       ((!idx && sym->binding == STB_GLOBAL) ||
2579		(idx > 0 && ++*cnt == idx) ||
2580		idx < 0);
2581}
2582
2583static void print_duplicate_syms(struct dso *dso, const char *sym_name)
2584{
2585	struct symbol *sym;
2586	bool near = false;
2587	int cnt = 0;
2588
2589	pr_err("Multiple symbols with name '%s'\n", sym_name);
2590
2591	sym = dso__first_symbol(dso);
2592	while (sym) {
2593		if (dso_sym_match(sym, sym_name, &cnt, -1)) {
2594			pr_err("#%d\t0x%"PRIx64"\t%c\t%s\n",
2595			       ++cnt, sym->start,
2596			       sym->binding == STB_GLOBAL ? 'g' :
2597			       sym->binding == STB_LOCAL  ? 'l' : 'w',
2598			       sym->name);
2599			near = true;
2600		} else if (near) {
2601			near = false;
2602			pr_err("\t\twhich is near\t\t%s\n", sym->name);
2603		}
2604		sym = dso__next_symbol(sym);
2605	}
2606
2607	pr_err("Disambiguate symbol name by inserting #n after the name e.g. %s #2\n",
2608	       sym_name);
2609	pr_err("Or select a global symbol by inserting #0 or #g or #G\n");
2610}
2611
2612static int find_dso_sym(struct dso *dso, const char *sym_name, u64 *start,
2613			u64 *size, int idx)
2614{
2615	struct symbol *sym;
2616	int cnt = 0;
2617
2618	*start = 0;
2619	*size = 0;
2620
2621	sym = dso__first_symbol(dso);
2622	while (sym) {
2623		if (*start) {
2624			if (!*size)
2625				*size = sym->start - *start;
2626			if (idx > 0) {
2627				if (*size)
2628					return 0;
2629			} else if (dso_sym_match(sym, sym_name, &cnt, idx)) {
2630				print_duplicate_syms(dso, sym_name);
2631				return -EINVAL;
2632			}
2633		} else if (dso_sym_match(sym, sym_name, &cnt, idx)) {
2634			*start = sym->start;
2635			*size = sym->end - sym->start;
2636		}
2637		sym = dso__next_symbol(sym);
2638	}
2639
2640	if (!*start)
2641		return sym_not_found_error(sym_name, idx);
2642
2643	return 0;
2644}
2645
2646static int addr_filter__entire_dso(struct addr_filter *filt, struct dso *dso)
2647{
2648	if (dso__data_file_size(dso, NULL)) {
2649		pr_err("Failed to determine filter for %s\nCannot determine file size.\n",
 
 
 
2650		       filt->filename);
2651		return -EINVAL;
2652	}
2653
2654	filt->addr = 0;
2655	filt->size = dso->data.file_size;
2656
2657	return 0;
2658}
2659
2660static int addr_filter__resolve_syms(struct addr_filter *filt)
2661{
2662	u64 start, size;
2663	struct dso *dso;
2664	int err = 0;
2665
2666	if (!filt->sym_from && !filt->sym_to)
2667		return 0;
2668
2669	if (!filt->filename)
2670		return addr_filter__resolve_kernel_syms(filt);
2671
2672	dso = load_dso(filt->filename);
2673	if (!dso) {
2674		pr_err("Failed to load symbols from: %s\n", filt->filename);
2675		return -EINVAL;
2676	}
2677
2678	if (filt->sym_from && !strcmp(filt->sym_from, "*")) {
2679		err = addr_filter__entire_dso(filt, dso);
2680		goto put_dso;
2681	}
2682
2683	if (filt->sym_from) {
2684		err = find_dso_sym(dso, filt->sym_from, &start, &size,
2685				   filt->sym_from_idx);
2686		if (err)
2687			goto put_dso;
2688		filt->addr = start;
2689		if (filt->range && !filt->size && !filt->sym_to)
2690			filt->size = size;
2691	}
2692
2693	if (filt->sym_to) {
2694		err = find_dso_sym(dso, filt->sym_to, &start, &size,
2695				   filt->sym_to_idx);
2696		if (err)
2697			goto put_dso;
2698
2699		err = check_end_after_start(filt, start, size);
2700		if (err)
2701			return err;
2702
2703		filt->size = start + size - filt->addr;
2704	}
2705
2706put_dso:
2707	dso__put(dso);
2708
2709	return err;
2710}
2711
2712static char *addr_filter__to_str(struct addr_filter *filt)
2713{
2714	char filename_buf[PATH_MAX];
2715	const char *at = "";
2716	const char *fn = "";
2717	char *filter;
2718	int err;
2719
2720	if (filt->filename) {
2721		at = "@";
2722		fn = realpath(filt->filename, filename_buf);
2723		if (!fn)
2724			return NULL;
2725	}
2726
2727	if (filt->range) {
2728		err = asprintf(&filter, "%s 0x%"PRIx64"/0x%"PRIx64"%s%s",
2729			       filt->action, filt->addr, filt->size, at, fn);
2730	} else {
2731		err = asprintf(&filter, "%s 0x%"PRIx64"%s%s",
2732			       filt->action, filt->addr, at, fn);
2733	}
2734
2735	return err < 0 ? NULL : filter;
2736}
2737
2738static int parse_addr_filter(struct evsel *evsel, const char *filter,
2739			     int max_nr)
2740{
2741	struct addr_filters filts;
2742	struct addr_filter *filt;
2743	int err;
2744
2745	addr_filters__init(&filts);
2746
2747	err = addr_filters__parse_bare_filter(&filts, filter);
2748	if (err)
2749		goto out_exit;
2750
2751	if (filts.cnt > max_nr) {
2752		pr_err("Error: number of address filters (%d) exceeds maximum (%d)\n",
2753		       filts.cnt, max_nr);
2754		err = -EINVAL;
2755		goto out_exit;
2756	}
2757
2758	list_for_each_entry(filt, &filts.head, list) {
2759		char *new_filter;
2760
2761		err = addr_filter__resolve_syms(filt);
2762		if (err)
2763			goto out_exit;
2764
2765		new_filter = addr_filter__to_str(filt);
2766		if (!new_filter) {
2767			err = -ENOMEM;
2768			goto out_exit;
2769		}
2770
2771		if (evsel__append_addr_filter(evsel, new_filter)) {
2772			err = -ENOMEM;
2773			goto out_exit;
2774		}
2775	}
2776
2777out_exit:
2778	addr_filters__exit(&filts);
2779
2780	if (err) {
2781		pr_err("Failed to parse address filter: '%s'\n", filter);
2782		pr_err("Filter format is: filter|start|stop|tracestop <start symbol or address> [/ <end symbol or size>] [@<file name>]\n");
2783		pr_err("Where multiple filters are separated by space or comma.\n");
2784	}
2785
2786	return err;
2787}
2788
2789static int evsel__nr_addr_filter(struct evsel *evsel)
2790{
2791	struct perf_pmu *pmu = evsel__find_pmu(evsel);
 
 
 
 
 
 
 
 
 
 
 
 
2792	int nr_addr_filters = 0;
2793
2794	if (!pmu)
2795		return 0;
2796
2797	perf_pmu__scan_file(pmu, "nr_addr_filters", "%d", &nr_addr_filters);
2798
2799	return nr_addr_filters;
2800}
2801
2802int auxtrace_parse_filters(struct evlist *evlist)
2803{
2804	struct evsel *evsel;
2805	char *filter;
2806	int err, max_nr;
2807
2808	evlist__for_each_entry(evlist, evsel) {
2809		filter = evsel->filter;
2810		max_nr = evsel__nr_addr_filter(evsel);
2811		if (!filter || !max_nr)
2812			continue;
2813		evsel->filter = NULL;
2814		err = parse_addr_filter(evsel, filter, max_nr);
2815		free(filter);
2816		if (err)
2817			return err;
2818		pr_debug("Address filter: %s\n", evsel->filter);
2819	}
2820
2821	return 0;
2822}
2823
2824int auxtrace__process_event(struct perf_session *session, union perf_event *event,
2825			    struct perf_sample *sample, struct perf_tool *tool)
2826{
2827	if (!session->auxtrace)
2828		return 0;
2829
2830	return session->auxtrace->process_event(session, event, sample, tool);
2831}
2832
2833void auxtrace__dump_auxtrace_sample(struct perf_session *session,
2834				    struct perf_sample *sample)
2835{
2836	if (!session->auxtrace || !session->auxtrace->dump_auxtrace_sample ||
2837	    auxtrace__dont_decode(session))
2838		return;
2839
2840	session->auxtrace->dump_auxtrace_sample(session, sample);
2841}
2842
2843int auxtrace__flush_events(struct perf_session *session, struct perf_tool *tool)
2844{
2845	if (!session->auxtrace)
2846		return 0;
2847
2848	return session->auxtrace->flush_events(session, tool);
2849}
2850
2851void auxtrace__free_events(struct perf_session *session)
2852{
2853	if (!session->auxtrace)
2854		return;
2855
2856	return session->auxtrace->free_events(session);
2857}
2858
2859void auxtrace__free(struct perf_session *session)
2860{
2861	if (!session->auxtrace)
2862		return;
2863
2864	return session->auxtrace->free(session);
2865}
2866
2867bool auxtrace__evsel_is_auxtrace(struct perf_session *session,
2868				 struct evsel *evsel)
2869{
2870	if (!session->auxtrace || !session->auxtrace->evsel_is_auxtrace)
2871		return false;
2872
2873	return session->auxtrace->evsel_is_auxtrace(session, evsel);
2874}