Linux Audio

Check our new training course

Loading...
v4.17
   1// SPDX-License-Identifier: GPL-2.0
   2#include "builtin.h"
   3#include "perf.h"
   4
   5#include "util/util.h"
   6#include "util/evlist.h"
   7#include "util/cache.h"
   8#include "util/evsel.h"
 
 
   9#include "util/symbol.h"
  10#include "util/thread.h"
  11#include "util/header.h"
  12#include "util/session.h"
  13#include "util/tool.h"
  14#include "util/cloexec.h"
  15#include "util/thread_map.h"
  16#include "util/color.h"
  17#include "util/stat.h"
 
  18#include "util/callchain.h"
  19#include "util/time-utils.h"
  20
 
  21#include <subcmd/parse-options.h>
  22#include "util/trace-event.h"
  23
  24#include "util/debug.h"
 
 
  25
  26#include <linux/kernel.h>
  27#include <linux/log2.h>
 
  28#include <sys/prctl.h>
  29#include <sys/resource.h>
  30#include <inttypes.h>
  31
  32#include <errno.h>
  33#include <semaphore.h>
  34#include <pthread.h>
  35#include <math.h>
  36#include <api/fs/fs.h>
 
  37#include <linux/time64.h>
 
  38
  39#include "sane_ctype.h"
  40
  41#define PR_SET_NAME		15               /* Set process name */
  42#define MAX_CPUS		4096
  43#define COMM_LEN		20
  44#define SYM_LEN			129
  45#define MAX_PID			1024000
  46
 
 
 
  47struct sched_atom;
  48
  49struct task_desc {
  50	unsigned long		nr;
  51	unsigned long		pid;
  52	char			comm[COMM_LEN];
  53
  54	unsigned long		nr_events;
  55	unsigned long		curr_event;
  56	struct sched_atom	**atoms;
  57
  58	pthread_t		thread;
  59	sem_t			sleep_sem;
  60
  61	sem_t			ready_for_work;
  62	sem_t			work_done_sem;
  63
  64	u64			cpu_usage;
  65};
  66
  67enum sched_event_type {
  68	SCHED_EVENT_RUN,
  69	SCHED_EVENT_SLEEP,
  70	SCHED_EVENT_WAKEUP,
  71	SCHED_EVENT_MIGRATION,
  72};
  73
  74struct sched_atom {
  75	enum sched_event_type	type;
  76	int			specific_wait;
  77	u64			timestamp;
  78	u64			duration;
  79	unsigned long		nr;
  80	sem_t			*wait_sem;
  81	struct task_desc	*wakee;
  82};
  83
  84#define TASK_STATE_TO_CHAR_STR "RSDTtZXxKWP"
  85
  86/* task state bitmask, copied from include/linux/sched.h */
  87#define TASK_RUNNING		0
  88#define TASK_INTERRUPTIBLE	1
  89#define TASK_UNINTERRUPTIBLE	2
  90#define __TASK_STOPPED		4
  91#define __TASK_TRACED		8
  92/* in tsk->exit_state */
  93#define EXIT_DEAD		16
  94#define EXIT_ZOMBIE		32
  95#define EXIT_TRACE		(EXIT_ZOMBIE | EXIT_DEAD)
  96/* in tsk->state again */
  97#define TASK_DEAD		64
  98#define TASK_WAKEKILL		128
  99#define TASK_WAKING		256
 100#define TASK_PARKED		512
 101
 102enum thread_state {
 103	THREAD_SLEEPING = 0,
 104	THREAD_WAIT_CPU,
 105	THREAD_SCHED_IN,
 106	THREAD_IGNORE
 107};
 108
 109struct work_atom {
 110	struct list_head	list;
 111	enum thread_state	state;
 112	u64			sched_out_time;
 113	u64			wake_up_time;
 114	u64			sched_in_time;
 115	u64			runtime;
 116};
 117
 118struct work_atoms {
 119	struct list_head	work_list;
 120	struct thread		*thread;
 121	struct rb_node		node;
 122	u64			max_lat;
 123	u64			max_lat_at;
 
 124	u64			total_lat;
 125	u64			nb_atoms;
 126	u64			total_runtime;
 127	int			num_merged;
 128};
 129
 130typedef int (*sort_fn_t)(struct work_atoms *, struct work_atoms *);
 131
 132struct perf_sched;
 133
 134struct trace_sched_handler {
 135	int (*switch_event)(struct perf_sched *sched, struct perf_evsel *evsel,
 136			    struct perf_sample *sample, struct machine *machine);
 137
 138	int (*runtime_event)(struct perf_sched *sched, struct perf_evsel *evsel,
 139			     struct perf_sample *sample, struct machine *machine);
 140
 141	int (*wakeup_event)(struct perf_sched *sched, struct perf_evsel *evsel,
 142			    struct perf_sample *sample, struct machine *machine);
 143
 144	/* PERF_RECORD_FORK event, not sched_process_fork tracepoint */
 145	int (*fork_event)(struct perf_sched *sched, union perf_event *event,
 146			  struct machine *machine);
 147
 148	int (*migrate_task_event)(struct perf_sched *sched,
 149				  struct perf_evsel *evsel,
 150				  struct perf_sample *sample,
 151				  struct machine *machine);
 152};
 153
 154#define COLOR_PIDS PERF_COLOR_BLUE
 155#define COLOR_CPUS PERF_COLOR_BG_RED
 156
 157struct perf_sched_map {
 158	DECLARE_BITMAP(comp_cpus_mask, MAX_CPUS);
 159	int			*comp_cpus;
 160	bool			 comp;
 161	struct thread_map	*color_pids;
 162	const char		*color_pids_str;
 163	struct cpu_map		*color_cpus;
 164	const char		*color_cpus_str;
 165	struct cpu_map		*cpus;
 166	const char		*cpus_str;
 167};
 168
 169struct perf_sched {
 170	struct perf_tool tool;
 171	const char	 *sort_order;
 172	unsigned long	 nr_tasks;
 173	struct task_desc **pid_to_task;
 174	struct task_desc **tasks;
 175	const struct trace_sched_handler *tp_handler;
 176	pthread_mutex_t	 start_work_mutex;
 177	pthread_mutex_t	 work_done_wait_mutex;
 178	int		 profile_cpu;
 179/*
 180 * Track the current task - that way we can know whether there's any
 181 * weird events, such as a task being switched away that is not current.
 182 */
 183	int		 max_cpu;
 184	u32		 curr_pid[MAX_CPUS];
 185	struct thread	 *curr_thread[MAX_CPUS];
 186	char		 next_shortname1;
 187	char		 next_shortname2;
 188	unsigned int	 replay_repeat;
 189	unsigned long	 nr_run_events;
 190	unsigned long	 nr_sleep_events;
 191	unsigned long	 nr_wakeup_events;
 192	unsigned long	 nr_sleep_corrections;
 193	unsigned long	 nr_run_events_optimized;
 194	unsigned long	 targetless_wakeups;
 195	unsigned long	 multitarget_wakeups;
 196	unsigned long	 nr_runs;
 197	unsigned long	 nr_timestamps;
 198	unsigned long	 nr_unordered_timestamps;
 199	unsigned long	 nr_context_switch_bugs;
 200	unsigned long	 nr_events;
 201	unsigned long	 nr_lost_chunks;
 202	unsigned long	 nr_lost_events;
 203	u64		 run_measurement_overhead;
 204	u64		 sleep_measurement_overhead;
 205	u64		 start_time;
 206	u64		 cpu_usage;
 207	u64		 runavg_cpu_usage;
 208	u64		 parent_cpu_usage;
 209	u64		 runavg_parent_cpu_usage;
 210	u64		 sum_runtime;
 211	u64		 sum_fluct;
 212	u64		 run_avg;
 213	u64		 all_runtime;
 214	u64		 all_count;
 215	u64		 cpu_last_switched[MAX_CPUS];
 216	struct rb_root	 atom_root, sorted_atom_root, merged_atom_root;
 217	struct list_head sort_list, cmp_pid;
 218	bool force;
 219	bool skip_merge;
 220	struct perf_sched_map map;
 221
 222	/* options for timehist command */
 223	bool		summary;
 224	bool		summary_only;
 225	bool		idle_hist;
 226	bool		show_callchain;
 227	unsigned int	max_stack;
 228	bool		show_cpu_visual;
 229	bool		show_wakeups;
 230	bool		show_next;
 231	bool		show_migrations;
 232	bool		show_state;
 233	u64		skipped_samples;
 234	const char	*time_str;
 235	struct perf_time_interval ptime;
 236	struct perf_time_interval hist_time;
 
 237};
 238
 239/* per thread run time data */
 240struct thread_runtime {
 241	u64 last_time;      /* time of previous sched in/out event */
 242	u64 dt_run;         /* run time */
 243	u64 dt_sleep;       /* time between CPU access by sleep (off cpu) */
 244	u64 dt_iowait;      /* time between CPU access by iowait (off cpu) */
 245	u64 dt_preempt;     /* time between CPU access by preempt (off cpu) */
 246	u64 dt_delay;       /* time between wakeup and sched-in */
 247	u64 ready_to_run;   /* time of wakeup */
 248
 249	struct stats run_stats;
 250	u64 total_run_time;
 251	u64 total_sleep_time;
 252	u64 total_iowait_time;
 253	u64 total_preempt_time;
 254	u64 total_delay_time;
 255
 256	int last_state;
 257
 258	char shortname[3];
 259	bool comm_changed;
 260
 261	u64 migrations;
 262};
 263
 264/* per event run time data */
 265struct evsel_runtime {
 266	u64 *last_time; /* time this event was last seen per cpu */
 267	u32 ncpu;       /* highest cpu slot allocated */
 268};
 269
 270/* per cpu idle time data */
 271struct idle_thread_runtime {
 272	struct thread_runtime	tr;
 273	struct thread		*last_thread;
 274	struct rb_root		sorted_root;
 275	struct callchain_root	callchain;
 276	struct callchain_cursor	cursor;
 277};
 278
 279/* track idle times per cpu */
 280static struct thread **idle_threads;
 281static int idle_max_cpu;
 282static char idle_comm[] = "<idle>";
 283
 284static u64 get_nsecs(void)
 285{
 286	struct timespec ts;
 287
 288	clock_gettime(CLOCK_MONOTONIC, &ts);
 289
 290	return ts.tv_sec * NSEC_PER_SEC + ts.tv_nsec;
 291}
 292
 293static void burn_nsecs(struct perf_sched *sched, u64 nsecs)
 294{
 295	u64 T0 = get_nsecs(), T1;
 296
 297	do {
 298		T1 = get_nsecs();
 299	} while (T1 + sched->run_measurement_overhead < T0 + nsecs);
 300}
 301
 302static void sleep_nsecs(u64 nsecs)
 303{
 304	struct timespec ts;
 305
 306	ts.tv_nsec = nsecs % 999999999;
 307	ts.tv_sec = nsecs / 999999999;
 308
 309	nanosleep(&ts, NULL);
 310}
 311
 312static void calibrate_run_measurement_overhead(struct perf_sched *sched)
 313{
 314	u64 T0, T1, delta, min_delta = NSEC_PER_SEC;
 315	int i;
 316
 317	for (i = 0; i < 10; i++) {
 318		T0 = get_nsecs();
 319		burn_nsecs(sched, 0);
 320		T1 = get_nsecs();
 321		delta = T1-T0;
 322		min_delta = min(min_delta, delta);
 323	}
 324	sched->run_measurement_overhead = min_delta;
 325
 326	printf("run measurement overhead: %" PRIu64 " nsecs\n", min_delta);
 327}
 328
 329static void calibrate_sleep_measurement_overhead(struct perf_sched *sched)
 330{
 331	u64 T0, T1, delta, min_delta = NSEC_PER_SEC;
 332	int i;
 333
 334	for (i = 0; i < 10; i++) {
 335		T0 = get_nsecs();
 336		sleep_nsecs(10000);
 337		T1 = get_nsecs();
 338		delta = T1-T0;
 339		min_delta = min(min_delta, delta);
 340	}
 341	min_delta -= 10000;
 342	sched->sleep_measurement_overhead = min_delta;
 343
 344	printf("sleep measurement overhead: %" PRIu64 " nsecs\n", min_delta);
 345}
 346
 347static struct sched_atom *
 348get_new_event(struct task_desc *task, u64 timestamp)
 349{
 350	struct sched_atom *event = zalloc(sizeof(*event));
 351	unsigned long idx = task->nr_events;
 352	size_t size;
 353
 354	event->timestamp = timestamp;
 355	event->nr = idx;
 356
 357	task->nr_events++;
 358	size = sizeof(struct sched_atom *) * task->nr_events;
 359	task->atoms = realloc(task->atoms, size);
 360	BUG_ON(!task->atoms);
 361
 362	task->atoms[idx] = event;
 363
 364	return event;
 365}
 366
 367static struct sched_atom *last_event(struct task_desc *task)
 368{
 369	if (!task->nr_events)
 370		return NULL;
 371
 372	return task->atoms[task->nr_events - 1];
 373}
 374
 375static void add_sched_event_run(struct perf_sched *sched, struct task_desc *task,
 376				u64 timestamp, u64 duration)
 377{
 378	struct sched_atom *event, *curr_event = last_event(task);
 379
 380	/*
 381	 * optimize an existing RUN event by merging this one
 382	 * to it:
 383	 */
 384	if (curr_event && curr_event->type == SCHED_EVENT_RUN) {
 385		sched->nr_run_events_optimized++;
 386		curr_event->duration += duration;
 387		return;
 388	}
 389
 390	event = get_new_event(task, timestamp);
 391
 392	event->type = SCHED_EVENT_RUN;
 393	event->duration = duration;
 394
 395	sched->nr_run_events++;
 396}
 397
 398static void add_sched_event_wakeup(struct perf_sched *sched, struct task_desc *task,
 399				   u64 timestamp, struct task_desc *wakee)
 400{
 401	struct sched_atom *event, *wakee_event;
 402
 403	event = get_new_event(task, timestamp);
 404	event->type = SCHED_EVENT_WAKEUP;
 405	event->wakee = wakee;
 406
 407	wakee_event = last_event(wakee);
 408	if (!wakee_event || wakee_event->type != SCHED_EVENT_SLEEP) {
 409		sched->targetless_wakeups++;
 410		return;
 411	}
 412	if (wakee_event->wait_sem) {
 413		sched->multitarget_wakeups++;
 414		return;
 415	}
 416
 417	wakee_event->wait_sem = zalloc(sizeof(*wakee_event->wait_sem));
 418	sem_init(wakee_event->wait_sem, 0, 0);
 419	wakee_event->specific_wait = 1;
 420	event->wait_sem = wakee_event->wait_sem;
 421
 422	sched->nr_wakeup_events++;
 423}
 424
 425static void add_sched_event_sleep(struct perf_sched *sched, struct task_desc *task,
 426				  u64 timestamp, u64 task_state __maybe_unused)
 427{
 428	struct sched_atom *event = get_new_event(task, timestamp);
 429
 430	event->type = SCHED_EVENT_SLEEP;
 431
 432	sched->nr_sleep_events++;
 433}
 434
 435static struct task_desc *register_pid(struct perf_sched *sched,
 436				      unsigned long pid, const char *comm)
 437{
 438	struct task_desc *task;
 439	static int pid_max;
 440
 441	if (sched->pid_to_task == NULL) {
 442		if (sysctl__read_int("kernel/pid_max", &pid_max) < 0)
 443			pid_max = MAX_PID;
 444		BUG_ON((sched->pid_to_task = calloc(pid_max, sizeof(struct task_desc *))) == NULL);
 445	}
 446	if (pid >= (unsigned long)pid_max) {
 447		BUG_ON((sched->pid_to_task = realloc(sched->pid_to_task, (pid + 1) *
 448			sizeof(struct task_desc *))) == NULL);
 449		while (pid >= (unsigned long)pid_max)
 450			sched->pid_to_task[pid_max++] = NULL;
 451	}
 452
 453	task = sched->pid_to_task[pid];
 454
 455	if (task)
 456		return task;
 457
 458	task = zalloc(sizeof(*task));
 459	task->pid = pid;
 460	task->nr = sched->nr_tasks;
 461	strcpy(task->comm, comm);
 462	/*
 463	 * every task starts in sleeping state - this gets ignored
 464	 * if there's no wakeup pointing to this sleep state:
 465	 */
 466	add_sched_event_sleep(sched, task, 0, 0);
 467
 468	sched->pid_to_task[pid] = task;
 469	sched->nr_tasks++;
 470	sched->tasks = realloc(sched->tasks, sched->nr_tasks * sizeof(struct task_desc *));
 471	BUG_ON(!sched->tasks);
 472	sched->tasks[task->nr] = task;
 473
 474	if (verbose > 0)
 475		printf("registered task #%ld, PID %ld (%s)\n", sched->nr_tasks, pid, comm);
 476
 477	return task;
 478}
 479
 480
 481static void print_task_traces(struct perf_sched *sched)
 482{
 483	struct task_desc *task;
 484	unsigned long i;
 485
 486	for (i = 0; i < sched->nr_tasks; i++) {
 487		task = sched->tasks[i];
 488		printf("task %6ld (%20s:%10ld), nr_events: %ld\n",
 489			task->nr, task->comm, task->pid, task->nr_events);
 490	}
 491}
 492
 493static void add_cross_task_wakeups(struct perf_sched *sched)
 494{
 495	struct task_desc *task1, *task2;
 496	unsigned long i, j;
 497
 498	for (i = 0; i < sched->nr_tasks; i++) {
 499		task1 = sched->tasks[i];
 500		j = i + 1;
 501		if (j == sched->nr_tasks)
 502			j = 0;
 503		task2 = sched->tasks[j];
 504		add_sched_event_wakeup(sched, task1, 0, task2);
 505	}
 506}
 507
 508static void perf_sched__process_event(struct perf_sched *sched,
 509				      struct sched_atom *atom)
 510{
 511	int ret = 0;
 512
 513	switch (atom->type) {
 514		case SCHED_EVENT_RUN:
 515			burn_nsecs(sched, atom->duration);
 516			break;
 517		case SCHED_EVENT_SLEEP:
 518			if (atom->wait_sem)
 519				ret = sem_wait(atom->wait_sem);
 520			BUG_ON(ret);
 521			break;
 522		case SCHED_EVENT_WAKEUP:
 523			if (atom->wait_sem)
 524				ret = sem_post(atom->wait_sem);
 525			BUG_ON(ret);
 526			break;
 527		case SCHED_EVENT_MIGRATION:
 528			break;
 529		default:
 530			BUG_ON(1);
 531	}
 532}
 533
 534static u64 get_cpu_usage_nsec_parent(void)
 535{
 536	struct rusage ru;
 537	u64 sum;
 538	int err;
 539
 540	err = getrusage(RUSAGE_SELF, &ru);
 541	BUG_ON(err);
 542
 543	sum =  ru.ru_utime.tv_sec * NSEC_PER_SEC + ru.ru_utime.tv_usec * NSEC_PER_USEC;
 544	sum += ru.ru_stime.tv_sec * NSEC_PER_SEC + ru.ru_stime.tv_usec * NSEC_PER_USEC;
 545
 546	return sum;
 547}
 548
 549static int self_open_counters(struct perf_sched *sched, unsigned long cur_task)
 550{
 551	struct perf_event_attr attr;
 552	char sbuf[STRERR_BUFSIZE], info[STRERR_BUFSIZE];
 553	int fd;
 554	struct rlimit limit;
 555	bool need_privilege = false;
 556
 557	memset(&attr, 0, sizeof(attr));
 558
 559	attr.type = PERF_TYPE_SOFTWARE;
 560	attr.config = PERF_COUNT_SW_TASK_CLOCK;
 561
 562force_again:
 563	fd = sys_perf_event_open(&attr, 0, -1, -1,
 564				 perf_event_open_cloexec_flag());
 565
 566	if (fd < 0) {
 567		if (errno == EMFILE) {
 568			if (sched->force) {
 569				BUG_ON(getrlimit(RLIMIT_NOFILE, &limit) == -1);
 570				limit.rlim_cur += sched->nr_tasks - cur_task;
 571				if (limit.rlim_cur > limit.rlim_max) {
 572					limit.rlim_max = limit.rlim_cur;
 573					need_privilege = true;
 574				}
 575				if (setrlimit(RLIMIT_NOFILE, &limit) == -1) {
 576					if (need_privilege && errno == EPERM)
 577						strcpy(info, "Need privilege\n");
 578				} else
 579					goto force_again;
 580			} else
 581				strcpy(info, "Have a try with -f option\n");
 582		}
 583		pr_err("Error: sys_perf_event_open() syscall returned "
 584		       "with %d (%s)\n%s", fd,
 585		       str_error_r(errno, sbuf, sizeof(sbuf)), info);
 586		exit(EXIT_FAILURE);
 587	}
 588	return fd;
 589}
 590
 591static u64 get_cpu_usage_nsec_self(int fd)
 592{
 593	u64 runtime;
 594	int ret;
 595
 596	ret = read(fd, &runtime, sizeof(runtime));
 597	BUG_ON(ret != sizeof(runtime));
 598
 599	return runtime;
 600}
 601
 602struct sched_thread_parms {
 603	struct task_desc  *task;
 604	struct perf_sched *sched;
 605	int fd;
 606};
 607
 608static void *thread_func(void *ctx)
 609{
 610	struct sched_thread_parms *parms = ctx;
 611	struct task_desc *this_task = parms->task;
 612	struct perf_sched *sched = parms->sched;
 613	u64 cpu_usage_0, cpu_usage_1;
 614	unsigned long i, ret;
 615	char comm2[22];
 616	int fd = parms->fd;
 617
 618	zfree(&parms);
 619
 620	sprintf(comm2, ":%s", this_task->comm);
 621	prctl(PR_SET_NAME, comm2);
 622	if (fd < 0)
 623		return NULL;
 624again:
 625	ret = sem_post(&this_task->ready_for_work);
 626	BUG_ON(ret);
 627	ret = pthread_mutex_lock(&sched->start_work_mutex);
 628	BUG_ON(ret);
 629	ret = pthread_mutex_unlock(&sched->start_work_mutex);
 630	BUG_ON(ret);
 631
 632	cpu_usage_0 = get_cpu_usage_nsec_self(fd);
 633
 634	for (i = 0; i < this_task->nr_events; i++) {
 635		this_task->curr_event = i;
 636		perf_sched__process_event(sched, this_task->atoms[i]);
 637	}
 638
 639	cpu_usage_1 = get_cpu_usage_nsec_self(fd);
 640	this_task->cpu_usage = cpu_usage_1 - cpu_usage_0;
 641	ret = sem_post(&this_task->work_done_sem);
 642	BUG_ON(ret);
 643
 644	ret = pthread_mutex_lock(&sched->work_done_wait_mutex);
 645	BUG_ON(ret);
 646	ret = pthread_mutex_unlock(&sched->work_done_wait_mutex);
 647	BUG_ON(ret);
 648
 649	goto again;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 650}
 651
 652static void create_tasks(struct perf_sched *sched)
 
 
 653{
 654	struct task_desc *task;
 655	pthread_attr_t attr;
 656	unsigned long i;
 657	int err;
 658
 659	err = pthread_attr_init(&attr);
 660	BUG_ON(err);
 661	err = pthread_attr_setstacksize(&attr,
 662			(size_t) max(16 * 1024, PTHREAD_STACK_MIN));
 663	BUG_ON(err);
 664	err = pthread_mutex_lock(&sched->start_work_mutex);
 665	BUG_ON(err);
 666	err = pthread_mutex_lock(&sched->work_done_wait_mutex);
 667	BUG_ON(err);
 
 
 668	for (i = 0; i < sched->nr_tasks; i++) {
 669		struct sched_thread_parms *parms = malloc(sizeof(*parms));
 670		BUG_ON(parms == NULL);
 671		parms->task = task = sched->tasks[i];
 672		parms->sched = sched;
 673		parms->fd = self_open_counters(sched, i);
 674		sem_init(&task->sleep_sem, 0, 0);
 675		sem_init(&task->ready_for_work, 0, 0);
 676		sem_init(&task->work_done_sem, 0, 0);
 677		task->curr_event = 0;
 678		err = pthread_create(&task->thread, &attr, thread_func, parms);
 679		BUG_ON(err);
 680	}
 681}
 682
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 683static void wait_for_tasks(struct perf_sched *sched)
 
 
 684{
 685	u64 cpu_usage_0, cpu_usage_1;
 686	struct task_desc *task;
 687	unsigned long i, ret;
 688
 689	sched->start_time = get_nsecs();
 690	sched->cpu_usage = 0;
 691	pthread_mutex_unlock(&sched->work_done_wait_mutex);
 692
 693	for (i = 0; i < sched->nr_tasks; i++) {
 694		task = sched->tasks[i];
 695		ret = sem_wait(&task->ready_for_work);
 696		BUG_ON(ret);
 697		sem_init(&task->ready_for_work, 0, 0);
 698	}
 699	ret = pthread_mutex_lock(&sched->work_done_wait_mutex);
 700	BUG_ON(ret);
 701
 702	cpu_usage_0 = get_cpu_usage_nsec_parent();
 703
 704	pthread_mutex_unlock(&sched->start_work_mutex);
 705
 706	for (i = 0; i < sched->nr_tasks; i++) {
 707		task = sched->tasks[i];
 708		ret = sem_wait(&task->work_done_sem);
 709		BUG_ON(ret);
 710		sem_init(&task->work_done_sem, 0, 0);
 711		sched->cpu_usage += task->cpu_usage;
 712		task->cpu_usage = 0;
 713	}
 714
 715	cpu_usage_1 = get_cpu_usage_nsec_parent();
 716	if (!sched->runavg_cpu_usage)
 717		sched->runavg_cpu_usage = sched->cpu_usage;
 718	sched->runavg_cpu_usage = (sched->runavg_cpu_usage * (sched->replay_repeat - 1) + sched->cpu_usage) / sched->replay_repeat;
 719
 720	sched->parent_cpu_usage = cpu_usage_1 - cpu_usage_0;
 721	if (!sched->runavg_parent_cpu_usage)
 722		sched->runavg_parent_cpu_usage = sched->parent_cpu_usage;
 723	sched->runavg_parent_cpu_usage = (sched->runavg_parent_cpu_usage * (sched->replay_repeat - 1) +
 724					 sched->parent_cpu_usage)/sched->replay_repeat;
 725
 726	ret = pthread_mutex_lock(&sched->start_work_mutex);
 727	BUG_ON(ret);
 728
 729	for (i = 0; i < sched->nr_tasks; i++) {
 730		task = sched->tasks[i];
 731		sem_init(&task->sleep_sem, 0, 0);
 732		task->curr_event = 0;
 733	}
 734}
 735
 736static void run_one_test(struct perf_sched *sched)
 
 
 737{
 738	u64 T0, T1, delta, avg_delta, fluct;
 739
 740	T0 = get_nsecs();
 741	wait_for_tasks(sched);
 742	T1 = get_nsecs();
 743
 744	delta = T1 - T0;
 745	sched->sum_runtime += delta;
 746	sched->nr_runs++;
 747
 748	avg_delta = sched->sum_runtime / sched->nr_runs;
 749	if (delta < avg_delta)
 750		fluct = avg_delta - delta;
 751	else
 752		fluct = delta - avg_delta;
 753	sched->sum_fluct += fluct;
 754	if (!sched->run_avg)
 755		sched->run_avg = delta;
 756	sched->run_avg = (sched->run_avg * (sched->replay_repeat - 1) + delta) / sched->replay_repeat;
 757
 758	printf("#%-3ld: %0.3f, ", sched->nr_runs, (double)delta / NSEC_PER_MSEC);
 759
 760	printf("ravg: %0.2f, ", (double)sched->run_avg / NSEC_PER_MSEC);
 761
 762	printf("cpu: %0.2f / %0.2f",
 763		(double)sched->cpu_usage / NSEC_PER_MSEC, (double)sched->runavg_cpu_usage / NSEC_PER_MSEC);
 764
 765#if 0
 766	/*
 767	 * rusage statistics done by the parent, these are less
 768	 * accurate than the sched->sum_exec_runtime based statistics:
 769	 */
 770	printf(" [%0.2f / %0.2f]",
 771		(double)sched->parent_cpu_usage / NSEC_PER_MSEC,
 772		(double)sched->runavg_parent_cpu_usage / NSEC_PER_MSEC);
 773#endif
 774
 775	printf("\n");
 776
 777	if (sched->nr_sleep_corrections)
 778		printf(" (%ld sleep corrections)\n", sched->nr_sleep_corrections);
 779	sched->nr_sleep_corrections = 0;
 780}
 781
 782static void test_calibrations(struct perf_sched *sched)
 783{
 784	u64 T0, T1;
 785
 786	T0 = get_nsecs();
 787	burn_nsecs(sched, NSEC_PER_MSEC);
 788	T1 = get_nsecs();
 789
 790	printf("the run test took %" PRIu64 " nsecs\n", T1 - T0);
 791
 792	T0 = get_nsecs();
 793	sleep_nsecs(NSEC_PER_MSEC);
 794	T1 = get_nsecs();
 795
 796	printf("the sleep test took %" PRIu64 " nsecs\n", T1 - T0);
 797}
 798
 799static int
 800replay_wakeup_event(struct perf_sched *sched,
 801		    struct perf_evsel *evsel, struct perf_sample *sample,
 802		    struct machine *machine __maybe_unused)
 803{
 804	const char *comm = perf_evsel__strval(evsel, sample, "comm");
 805	const u32 pid	 = perf_evsel__intval(evsel, sample, "pid");
 806	struct task_desc *waker, *wakee;
 807
 808	if (verbose > 0) {
 809		printf("sched_wakeup event %p\n", evsel);
 810
 811		printf(" ... pid %d woke up %s/%d\n", sample->tid, comm, pid);
 812	}
 813
 814	waker = register_pid(sched, sample->tid, "<unknown>");
 815	wakee = register_pid(sched, pid, comm);
 816
 817	add_sched_event_wakeup(sched, waker, sample->time, wakee);
 818	return 0;
 819}
 820
 821static int replay_switch_event(struct perf_sched *sched,
 822			       struct perf_evsel *evsel,
 823			       struct perf_sample *sample,
 824			       struct machine *machine __maybe_unused)
 825{
 826	const char *prev_comm  = perf_evsel__strval(evsel, sample, "prev_comm"),
 827		   *next_comm  = perf_evsel__strval(evsel, sample, "next_comm");
 828	const u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
 829		  next_pid = perf_evsel__intval(evsel, sample, "next_pid");
 830	const u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
 831	struct task_desc *prev, __maybe_unused *next;
 832	u64 timestamp0, timestamp = sample->time;
 833	int cpu = sample->cpu;
 834	s64 delta;
 835
 836	if (verbose > 0)
 837		printf("sched_switch event %p\n", evsel);
 838
 839	if (cpu >= MAX_CPUS || cpu < 0)
 840		return 0;
 841
 842	timestamp0 = sched->cpu_last_switched[cpu];
 843	if (timestamp0)
 844		delta = timestamp - timestamp0;
 845	else
 846		delta = 0;
 847
 848	if (delta < 0) {
 849		pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
 850		return -1;
 851	}
 852
 853	pr_debug(" ... switch from %s/%d to %s/%d [ran %" PRIu64 " nsecs]\n",
 854		 prev_comm, prev_pid, next_comm, next_pid, delta);
 855
 856	prev = register_pid(sched, prev_pid, prev_comm);
 857	next = register_pid(sched, next_pid, next_comm);
 858
 859	sched->cpu_last_switched[cpu] = timestamp;
 860
 861	add_sched_event_run(sched, prev, timestamp, delta);
 862	add_sched_event_sleep(sched, prev, timestamp, prev_state);
 863
 864	return 0;
 865}
 866
 867static int replay_fork_event(struct perf_sched *sched,
 868			     union perf_event *event,
 869			     struct machine *machine)
 870{
 871	struct thread *child, *parent;
 872
 873	child = machine__findnew_thread(machine, event->fork.pid,
 874					event->fork.tid);
 875	parent = machine__findnew_thread(machine, event->fork.ppid,
 876					 event->fork.ptid);
 877
 878	if (child == NULL || parent == NULL) {
 879		pr_debug("thread does not exist on fork event: child %p, parent %p\n",
 880				 child, parent);
 881		goto out_put;
 882	}
 883
 884	if (verbose > 0) {
 885		printf("fork event\n");
 886		printf("... parent: %s/%d\n", thread__comm_str(parent), parent->tid);
 887		printf("...  child: %s/%d\n", thread__comm_str(child), child->tid);
 888	}
 889
 890	register_pid(sched, parent->tid, thread__comm_str(parent));
 891	register_pid(sched, child->tid, thread__comm_str(child));
 892out_put:
 893	thread__put(child);
 894	thread__put(parent);
 895	return 0;
 896}
 897
 898struct sort_dimension {
 899	const char		*name;
 900	sort_fn_t		cmp;
 901	struct list_head	list;
 902};
 903
 904/*
 905 * handle runtime stats saved per thread
 906 */
 907static struct thread_runtime *thread__init_runtime(struct thread *thread)
 908{
 909	struct thread_runtime *r;
 910
 911	r = zalloc(sizeof(struct thread_runtime));
 912	if (!r)
 913		return NULL;
 914
 915	init_stats(&r->run_stats);
 916	thread__set_priv(thread, r);
 917
 918	return r;
 919}
 920
 921static struct thread_runtime *thread__get_runtime(struct thread *thread)
 922{
 923	struct thread_runtime *tr;
 924
 925	tr = thread__priv(thread);
 926	if (tr == NULL) {
 927		tr = thread__init_runtime(thread);
 928		if (tr == NULL)
 929			pr_debug("Failed to malloc memory for runtime data.\n");
 930	}
 931
 932	return tr;
 933}
 934
 935static int
 936thread_lat_cmp(struct list_head *list, struct work_atoms *l, struct work_atoms *r)
 937{
 938	struct sort_dimension *sort;
 939	int ret = 0;
 940
 941	BUG_ON(list_empty(list));
 942
 943	list_for_each_entry(sort, list, list) {
 944		ret = sort->cmp(l, r);
 945		if (ret)
 946			return ret;
 947	}
 948
 949	return ret;
 950}
 951
 952static struct work_atoms *
 953thread_atoms_search(struct rb_root *root, struct thread *thread,
 954			 struct list_head *sort_list)
 955{
 956	struct rb_node *node = root->rb_node;
 957	struct work_atoms key = { .thread = thread };
 958
 959	while (node) {
 960		struct work_atoms *atoms;
 961		int cmp;
 962
 963		atoms = container_of(node, struct work_atoms, node);
 964
 965		cmp = thread_lat_cmp(sort_list, &key, atoms);
 966		if (cmp > 0)
 967			node = node->rb_left;
 968		else if (cmp < 0)
 969			node = node->rb_right;
 970		else {
 971			BUG_ON(thread != atoms->thread);
 972			return atoms;
 973		}
 974	}
 975	return NULL;
 976}
 977
 978static void
 979__thread_latency_insert(struct rb_root *root, struct work_atoms *data,
 980			 struct list_head *sort_list)
 981{
 982	struct rb_node **new = &(root->rb_node), *parent = NULL;
 
 983
 984	while (*new) {
 985		struct work_atoms *this;
 986		int cmp;
 987
 988		this = container_of(*new, struct work_atoms, node);
 989		parent = *new;
 990
 991		cmp = thread_lat_cmp(sort_list, data, this);
 992
 993		if (cmp > 0)
 994			new = &((*new)->rb_left);
 995		else
 996			new = &((*new)->rb_right);
 
 
 997	}
 998
 999	rb_link_node(&data->node, parent, new);
1000	rb_insert_color(&data->node, root);
1001}
1002
1003static int thread_atoms_insert(struct perf_sched *sched, struct thread *thread)
1004{
1005	struct work_atoms *atoms = zalloc(sizeof(*atoms));
1006	if (!atoms) {
1007		pr_err("No memory at %s\n", __func__);
1008		return -1;
1009	}
1010
1011	atoms->thread = thread__get(thread);
1012	INIT_LIST_HEAD(&atoms->work_list);
1013	__thread_latency_insert(&sched->atom_root, atoms, &sched->cmp_pid);
1014	return 0;
1015}
1016
1017static char sched_out_state(u64 prev_state)
1018{
1019	const char *str = TASK_STATE_TO_CHAR_STR;
1020
1021	return str[prev_state];
1022}
1023
1024static int
1025add_sched_out_event(struct work_atoms *atoms,
1026		    char run_state,
1027		    u64 timestamp)
1028{
1029	struct work_atom *atom = zalloc(sizeof(*atom));
1030	if (!atom) {
1031		pr_err("Non memory at %s", __func__);
1032		return -1;
1033	}
1034
1035	atom->sched_out_time = timestamp;
1036
1037	if (run_state == 'R') {
1038		atom->state = THREAD_WAIT_CPU;
1039		atom->wake_up_time = atom->sched_out_time;
1040	}
1041
1042	list_add_tail(&atom->list, &atoms->work_list);
1043	return 0;
1044}
1045
1046static void
1047add_runtime_event(struct work_atoms *atoms, u64 delta,
1048		  u64 timestamp __maybe_unused)
1049{
1050	struct work_atom *atom;
1051
1052	BUG_ON(list_empty(&atoms->work_list));
1053
1054	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1055
1056	atom->runtime += delta;
1057	atoms->total_runtime += delta;
1058}
1059
1060static void
1061add_sched_in_event(struct work_atoms *atoms, u64 timestamp)
1062{
1063	struct work_atom *atom;
1064	u64 delta;
1065
1066	if (list_empty(&atoms->work_list))
1067		return;
1068
1069	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1070
1071	if (atom->state != THREAD_WAIT_CPU)
1072		return;
1073
1074	if (timestamp < atom->wake_up_time) {
1075		atom->state = THREAD_IGNORE;
1076		return;
1077	}
1078
1079	atom->state = THREAD_SCHED_IN;
1080	atom->sched_in_time = timestamp;
1081
1082	delta = atom->sched_in_time - atom->wake_up_time;
1083	atoms->total_lat += delta;
1084	if (delta > atoms->max_lat) {
1085		atoms->max_lat = delta;
1086		atoms->max_lat_at = timestamp;
 
1087	}
1088	atoms->nb_atoms++;
1089}
1090
1091static int latency_switch_event(struct perf_sched *sched,
1092				struct perf_evsel *evsel,
1093				struct perf_sample *sample,
1094				struct machine *machine)
1095{
1096	const u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
1097		  next_pid = perf_evsel__intval(evsel, sample, "next_pid");
1098	const u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
1099	struct work_atoms *out_events, *in_events;
1100	struct thread *sched_out, *sched_in;
1101	u64 timestamp0, timestamp = sample->time;
1102	int cpu = sample->cpu, err = -1;
1103	s64 delta;
1104
1105	BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1106
1107	timestamp0 = sched->cpu_last_switched[cpu];
1108	sched->cpu_last_switched[cpu] = timestamp;
1109	if (timestamp0)
1110		delta = timestamp - timestamp0;
1111	else
1112		delta = 0;
1113
1114	if (delta < 0) {
1115		pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1116		return -1;
1117	}
1118
1119	sched_out = machine__findnew_thread(machine, -1, prev_pid);
1120	sched_in = machine__findnew_thread(machine, -1, next_pid);
1121	if (sched_out == NULL || sched_in == NULL)
1122		goto out_put;
1123
1124	out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
1125	if (!out_events) {
1126		if (thread_atoms_insert(sched, sched_out))
1127			goto out_put;
1128		out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
1129		if (!out_events) {
1130			pr_err("out-event: Internal tree error");
1131			goto out_put;
1132		}
1133	}
1134	if (add_sched_out_event(out_events, sched_out_state(prev_state), timestamp))
1135		return -1;
1136
1137	in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
1138	if (!in_events) {
1139		if (thread_atoms_insert(sched, sched_in))
1140			goto out_put;
1141		in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
1142		if (!in_events) {
1143			pr_err("in-event: Internal tree error");
1144			goto out_put;
1145		}
1146		/*
1147		 * Take came in we have not heard about yet,
1148		 * add in an initial atom in runnable state:
1149		 */
1150		if (add_sched_out_event(in_events, 'R', timestamp))
1151			goto out_put;
1152	}
1153	add_sched_in_event(in_events, timestamp);
1154	err = 0;
1155out_put:
1156	thread__put(sched_out);
1157	thread__put(sched_in);
1158	return err;
1159}
1160
1161static int latency_runtime_event(struct perf_sched *sched,
1162				 struct perf_evsel *evsel,
1163				 struct perf_sample *sample,
1164				 struct machine *machine)
1165{
1166	const u32 pid	   = perf_evsel__intval(evsel, sample, "pid");
1167	const u64 runtime  = perf_evsel__intval(evsel, sample, "runtime");
1168	struct thread *thread = machine__findnew_thread(machine, -1, pid);
1169	struct work_atoms *atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
1170	u64 timestamp = sample->time;
1171	int cpu = sample->cpu, err = -1;
1172
1173	if (thread == NULL)
1174		return -1;
1175
1176	BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1177	if (!atoms) {
1178		if (thread_atoms_insert(sched, thread))
1179			goto out_put;
1180		atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
1181		if (!atoms) {
1182			pr_err("in-event: Internal tree error");
1183			goto out_put;
1184		}
1185		if (add_sched_out_event(atoms, 'R', timestamp))
1186			goto out_put;
1187	}
1188
1189	add_runtime_event(atoms, runtime, timestamp);
1190	err = 0;
1191out_put:
1192	thread__put(thread);
1193	return err;
1194}
1195
1196static int latency_wakeup_event(struct perf_sched *sched,
1197				struct perf_evsel *evsel,
1198				struct perf_sample *sample,
1199				struct machine *machine)
1200{
1201	const u32 pid	  = perf_evsel__intval(evsel, sample, "pid");
1202	struct work_atoms *atoms;
1203	struct work_atom *atom;
1204	struct thread *wakee;
1205	u64 timestamp = sample->time;
1206	int err = -1;
1207
1208	wakee = machine__findnew_thread(machine, -1, pid);
1209	if (wakee == NULL)
1210		return -1;
1211	atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1212	if (!atoms) {
1213		if (thread_atoms_insert(sched, wakee))
1214			goto out_put;
1215		atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1216		if (!atoms) {
1217			pr_err("wakeup-event: Internal tree error");
1218			goto out_put;
1219		}
1220		if (add_sched_out_event(atoms, 'S', timestamp))
1221			goto out_put;
1222	}
1223
1224	BUG_ON(list_empty(&atoms->work_list));
1225
1226	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1227
1228	/*
1229	 * As we do not guarantee the wakeup event happens when
1230	 * task is out of run queue, also may happen when task is
1231	 * on run queue and wakeup only change ->state to TASK_RUNNING,
1232	 * then we should not set the ->wake_up_time when wake up a
1233	 * task which is on run queue.
1234	 *
1235	 * You WILL be missing events if you've recorded only
1236	 * one CPU, or are only looking at only one, so don't
1237	 * skip in this case.
1238	 */
1239	if (sched->profile_cpu == -1 && atom->state != THREAD_SLEEPING)
1240		goto out_ok;
1241
1242	sched->nr_timestamps++;
1243	if (atom->sched_out_time > timestamp) {
1244		sched->nr_unordered_timestamps++;
1245		goto out_ok;
1246	}
1247
1248	atom->state = THREAD_WAIT_CPU;
1249	atom->wake_up_time = timestamp;
1250out_ok:
1251	err = 0;
1252out_put:
1253	thread__put(wakee);
1254	return err;
1255}
1256
1257static int latency_migrate_task_event(struct perf_sched *sched,
1258				      struct perf_evsel *evsel,
1259				      struct perf_sample *sample,
1260				      struct machine *machine)
1261{
1262	const u32 pid = perf_evsel__intval(evsel, sample, "pid");
1263	u64 timestamp = sample->time;
1264	struct work_atoms *atoms;
1265	struct work_atom *atom;
1266	struct thread *migrant;
1267	int err = -1;
1268
1269	/*
1270	 * Only need to worry about migration when profiling one CPU.
1271	 */
1272	if (sched->profile_cpu == -1)
1273		return 0;
1274
1275	migrant = machine__findnew_thread(machine, -1, pid);
1276	if (migrant == NULL)
1277		return -1;
1278	atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1279	if (!atoms) {
1280		if (thread_atoms_insert(sched, migrant))
1281			goto out_put;
1282		register_pid(sched, migrant->tid, thread__comm_str(migrant));
1283		atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1284		if (!atoms) {
1285			pr_err("migration-event: Internal tree error");
1286			goto out_put;
1287		}
1288		if (add_sched_out_event(atoms, 'R', timestamp))
1289			goto out_put;
1290	}
1291
1292	BUG_ON(list_empty(&atoms->work_list));
1293
1294	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1295	atom->sched_in_time = atom->sched_out_time = atom->wake_up_time = timestamp;
1296
1297	sched->nr_timestamps++;
1298
1299	if (atom->sched_out_time > timestamp)
1300		sched->nr_unordered_timestamps++;
1301	err = 0;
1302out_put:
1303	thread__put(migrant);
1304	return err;
1305}
1306
1307static void output_lat_thread(struct perf_sched *sched, struct work_atoms *work_list)
1308{
1309	int i;
1310	int ret;
1311	u64 avg;
1312	char max_lat_at[32];
1313
1314	if (!work_list->nb_atoms)
1315		return;
1316	/*
1317	 * Ignore idle threads:
1318	 */
1319	if (!strcmp(thread__comm_str(work_list->thread), "swapper"))
1320		return;
1321
1322	sched->all_runtime += work_list->total_runtime;
1323	sched->all_count   += work_list->nb_atoms;
1324
1325	if (work_list->num_merged > 1)
1326		ret = printf("  %s:(%d) ", thread__comm_str(work_list->thread), work_list->num_merged);
1327	else
1328		ret = printf("  %s:%d ", thread__comm_str(work_list->thread), work_list->thread->tid);
 
 
 
1329
1330	for (i = 0; i < 24 - ret; i++)
1331		printf(" ");
1332
1333	avg = work_list->total_lat / work_list->nb_atoms;
1334	timestamp__scnprintf_usec(work_list->max_lat_at, max_lat_at, sizeof(max_lat_at));
 
1335
1336	printf("|%11.3f ms |%9" PRIu64 " | avg:%9.3f ms | max:%9.3f ms | max at: %13s s\n",
1337	      (double)work_list->total_runtime / NSEC_PER_MSEC,
1338		 work_list->nb_atoms, (double)avg / NSEC_PER_MSEC,
1339		 (double)work_list->max_lat / NSEC_PER_MSEC,
1340		 max_lat_at);
1341}
1342
1343static int pid_cmp(struct work_atoms *l, struct work_atoms *r)
1344{
1345	if (l->thread == r->thread)
 
 
1346		return 0;
1347	if (l->thread->tid < r->thread->tid)
 
 
1348		return -1;
1349	if (l->thread->tid > r->thread->tid)
1350		return 1;
1351	return (int)(l->thread - r->thread);
1352}
1353
1354static int avg_cmp(struct work_atoms *l, struct work_atoms *r)
1355{
1356	u64 avgl, avgr;
1357
1358	if (!l->nb_atoms)
1359		return -1;
1360
1361	if (!r->nb_atoms)
1362		return 1;
1363
1364	avgl = l->total_lat / l->nb_atoms;
1365	avgr = r->total_lat / r->nb_atoms;
1366
1367	if (avgl < avgr)
1368		return -1;
1369	if (avgl > avgr)
1370		return 1;
1371
1372	return 0;
1373}
1374
1375static int max_cmp(struct work_atoms *l, struct work_atoms *r)
1376{
1377	if (l->max_lat < r->max_lat)
1378		return -1;
1379	if (l->max_lat > r->max_lat)
1380		return 1;
1381
1382	return 0;
1383}
1384
1385static int switch_cmp(struct work_atoms *l, struct work_atoms *r)
1386{
1387	if (l->nb_atoms < r->nb_atoms)
1388		return -1;
1389	if (l->nb_atoms > r->nb_atoms)
1390		return 1;
1391
1392	return 0;
1393}
1394
1395static int runtime_cmp(struct work_atoms *l, struct work_atoms *r)
1396{
1397	if (l->total_runtime < r->total_runtime)
1398		return -1;
1399	if (l->total_runtime > r->total_runtime)
1400		return 1;
1401
1402	return 0;
1403}
1404
1405static int sort_dimension__add(const char *tok, struct list_head *list)
1406{
1407	size_t i;
1408	static struct sort_dimension avg_sort_dimension = {
1409		.name = "avg",
1410		.cmp  = avg_cmp,
1411	};
1412	static struct sort_dimension max_sort_dimension = {
1413		.name = "max",
1414		.cmp  = max_cmp,
1415	};
1416	static struct sort_dimension pid_sort_dimension = {
1417		.name = "pid",
1418		.cmp  = pid_cmp,
1419	};
1420	static struct sort_dimension runtime_sort_dimension = {
1421		.name = "runtime",
1422		.cmp  = runtime_cmp,
1423	};
1424	static struct sort_dimension switch_sort_dimension = {
1425		.name = "switch",
1426		.cmp  = switch_cmp,
1427	};
1428	struct sort_dimension *available_sorts[] = {
1429		&pid_sort_dimension,
1430		&avg_sort_dimension,
1431		&max_sort_dimension,
1432		&switch_sort_dimension,
1433		&runtime_sort_dimension,
1434	};
1435
1436	for (i = 0; i < ARRAY_SIZE(available_sorts); i++) {
1437		if (!strcmp(available_sorts[i]->name, tok)) {
1438			list_add_tail(&available_sorts[i]->list, list);
1439
1440			return 0;
1441		}
1442	}
1443
1444	return -1;
1445}
1446
1447static void perf_sched__sort_lat(struct perf_sched *sched)
1448{
1449	struct rb_node *node;
1450	struct rb_root *root = &sched->atom_root;
1451again:
1452	for (;;) {
1453		struct work_atoms *data;
1454		node = rb_first(root);
1455		if (!node)
1456			break;
1457
1458		rb_erase(node, root);
1459		data = rb_entry(node, struct work_atoms, node);
1460		__thread_latency_insert(&sched->sorted_atom_root, data, &sched->sort_list);
1461	}
1462	if (root == &sched->atom_root) {
1463		root = &sched->merged_atom_root;
1464		goto again;
1465	}
1466}
1467
1468static int process_sched_wakeup_event(struct perf_tool *tool,
1469				      struct perf_evsel *evsel,
1470				      struct perf_sample *sample,
1471				      struct machine *machine)
1472{
1473	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1474
1475	if (sched->tp_handler->wakeup_event)
1476		return sched->tp_handler->wakeup_event(sched, evsel, sample, machine);
1477
1478	return 0;
1479}
1480
 
 
 
 
 
 
 
 
1481union map_priv {
1482	void	*ptr;
1483	bool	 color;
1484};
1485
1486static bool thread__has_color(struct thread *thread)
1487{
1488	union map_priv priv = {
1489		.ptr = thread__priv(thread),
1490	};
1491
1492	return priv.color;
1493}
1494
1495static struct thread*
1496map__findnew_thread(struct perf_sched *sched, struct machine *machine, pid_t pid, pid_t tid)
1497{
1498	struct thread *thread = machine__findnew_thread(machine, pid, tid);
1499	union map_priv priv = {
1500		.color = false,
1501	};
1502
1503	if (!sched->map.color_pids || !thread || thread__priv(thread))
1504		return thread;
1505
1506	if (thread_map__has(sched->map.color_pids, tid))
1507		priv.color = true;
1508
1509	thread__set_priv(thread, priv.ptr);
1510	return thread;
1511}
1512
1513static int map_switch_event(struct perf_sched *sched, struct perf_evsel *evsel,
1514			    struct perf_sample *sample, struct machine *machine)
1515{
1516	const u32 next_pid = perf_evsel__intval(evsel, sample, "next_pid");
1517	struct thread *sched_in;
1518	struct thread_runtime *tr;
1519	int new_shortname;
1520	u64 timestamp0, timestamp = sample->time;
1521	s64 delta;
1522	int i, this_cpu = sample->cpu;
 
 
 
1523	int cpus_nr;
1524	bool new_cpu = false;
1525	const char *color = PERF_COLOR_NORMAL;
1526	char stimestamp[32];
1527
1528	BUG_ON(this_cpu >= MAX_CPUS || this_cpu < 0);
1529
1530	if (this_cpu > sched->max_cpu)
1531		sched->max_cpu = this_cpu;
1532
1533	if (sched->map.comp) {
1534		cpus_nr = bitmap_weight(sched->map.comp_cpus_mask, MAX_CPUS);
1535		if (!test_and_set_bit(this_cpu, sched->map.comp_cpus_mask)) {
1536			sched->map.comp_cpus[cpus_nr++] = this_cpu;
1537			new_cpu = true;
1538		}
1539	} else
1540		cpus_nr = sched->max_cpu;
1541
1542	timestamp0 = sched->cpu_last_switched[this_cpu];
1543	sched->cpu_last_switched[this_cpu] = timestamp;
1544	if (timestamp0)
1545		delta = timestamp - timestamp0;
1546	else
1547		delta = 0;
1548
1549	if (delta < 0) {
1550		pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1551		return -1;
1552	}
1553
1554	sched_in = map__findnew_thread(sched, machine, -1, next_pid);
1555	if (sched_in == NULL)
1556		return -1;
1557
1558	tr = thread__get_runtime(sched_in);
1559	if (tr == NULL) {
1560		thread__put(sched_in);
1561		return -1;
1562	}
1563
1564	sched->curr_thread[this_cpu] = thread__get(sched_in);
1565
1566	printf("  ");
1567
1568	new_shortname = 0;
1569	if (!tr->shortname[0]) {
1570		if (!strcmp(thread__comm_str(sched_in), "swapper")) {
1571			/*
1572			 * Don't allocate a letter-number for swapper:0
1573			 * as a shortname. Instead, we use '.' for it.
1574			 */
1575			tr->shortname[0] = '.';
1576			tr->shortname[1] = ' ';
1577		} else {
1578			tr->shortname[0] = sched->next_shortname1;
1579			tr->shortname[1] = sched->next_shortname2;
1580
1581			if (sched->next_shortname1 < 'Z') {
1582				sched->next_shortname1++;
1583			} else {
1584				sched->next_shortname1 = 'A';
1585				if (sched->next_shortname2 < '9')
1586					sched->next_shortname2++;
1587				else
1588					sched->next_shortname2 = '0';
1589			}
1590		}
1591		new_shortname = 1;
1592	}
1593
1594	for (i = 0; i < cpus_nr; i++) {
1595		int cpu = sched->map.comp ? sched->map.comp_cpus[i] : i;
1596		struct thread *curr_thread = sched->curr_thread[cpu];
 
 
1597		struct thread_runtime *curr_tr;
1598		const char *pid_color = color;
1599		const char *cpu_color = color;
1600
1601		if (curr_thread && thread__has_color(curr_thread))
1602			pid_color = COLOR_PIDS;
1603
1604		if (sched->map.cpus && !cpu_map__has(sched->map.cpus, cpu))
1605			continue;
1606
1607		if (sched->map.color_cpus && cpu_map__has(sched->map.color_cpus, cpu))
1608			cpu_color = COLOR_CPUS;
1609
1610		if (cpu != this_cpu)
1611			color_fprintf(stdout, color, " ");
1612		else
1613			color_fprintf(stdout, cpu_color, "*");
1614
1615		if (sched->curr_thread[cpu]) {
1616			curr_tr = thread__get_runtime(sched->curr_thread[cpu]);
1617			if (curr_tr == NULL) {
1618				thread__put(sched_in);
1619				return -1;
1620			}
1621			color_fprintf(stdout, pid_color, "%2s ", curr_tr->shortname);
1622		} else
1623			color_fprintf(stdout, color, "   ");
1624	}
1625
1626	if (sched->map.cpus && !cpu_map__has(sched->map.cpus, this_cpu))
1627		goto out;
1628
1629	timestamp__scnprintf_usec(timestamp, stimestamp, sizeof(stimestamp));
1630	color_fprintf(stdout, color, "  %12s secs ", stimestamp);
1631	if (new_shortname || tr->comm_changed || (verbose > 0 && sched_in->tid)) {
1632		const char *pid_color = color;
1633
1634		if (thread__has_color(sched_in))
1635			pid_color = COLOR_PIDS;
1636
1637		color_fprintf(stdout, pid_color, "%s => %s:%d",
1638		       tr->shortname, thread__comm_str(sched_in), sched_in->tid);
1639		tr->comm_changed = false;
1640	}
1641
1642	if (sched->map.comp && new_cpu)
1643		color_fprintf(stdout, color, " (CPU %d)", this_cpu);
1644
1645out:
1646	color_fprintf(stdout, color, "\n");
1647
1648	thread__put(sched_in);
1649
1650	return 0;
1651}
1652
1653static int process_sched_switch_event(struct perf_tool *tool,
1654				      struct perf_evsel *evsel,
1655				      struct perf_sample *sample,
1656				      struct machine *machine)
1657{
1658	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1659	int this_cpu = sample->cpu, err = 0;
1660	u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
1661	    next_pid = perf_evsel__intval(evsel, sample, "next_pid");
1662
1663	if (sched->curr_pid[this_cpu] != (u32)-1) {
1664		/*
1665		 * Are we trying to switch away a PID that is
1666		 * not current?
1667		 */
1668		if (sched->curr_pid[this_cpu] != prev_pid)
1669			sched->nr_context_switch_bugs++;
1670	}
1671
1672	if (sched->tp_handler->switch_event)
1673		err = sched->tp_handler->switch_event(sched, evsel, sample, machine);
1674
1675	sched->curr_pid[this_cpu] = next_pid;
1676	return err;
1677}
1678
1679static int process_sched_runtime_event(struct perf_tool *tool,
1680				       struct perf_evsel *evsel,
1681				       struct perf_sample *sample,
1682				       struct machine *machine)
1683{
1684	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1685
1686	if (sched->tp_handler->runtime_event)
1687		return sched->tp_handler->runtime_event(sched, evsel, sample, machine);
1688
1689	return 0;
1690}
1691
1692static int perf_sched__process_fork_event(struct perf_tool *tool,
1693					  union perf_event *event,
1694					  struct perf_sample *sample,
1695					  struct machine *machine)
1696{
1697	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1698
1699	/* run the fork event through the perf machineruy */
1700	perf_event__process_fork(tool, event, sample, machine);
1701
1702	/* and then run additional processing needed for this command */
1703	if (sched->tp_handler->fork_event)
1704		return sched->tp_handler->fork_event(sched, event, machine);
1705
1706	return 0;
1707}
1708
1709static int process_sched_migrate_task_event(struct perf_tool *tool,
1710					    struct perf_evsel *evsel,
1711					    struct perf_sample *sample,
1712					    struct machine *machine)
1713{
1714	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1715
1716	if (sched->tp_handler->migrate_task_event)
1717		return sched->tp_handler->migrate_task_event(sched, evsel, sample, machine);
1718
1719	return 0;
1720}
1721
1722typedef int (*tracepoint_handler)(struct perf_tool *tool,
1723				  struct perf_evsel *evsel,
1724				  struct perf_sample *sample,
1725				  struct machine *machine);
1726
1727static int perf_sched__process_tracepoint_sample(struct perf_tool *tool __maybe_unused,
1728						 union perf_event *event __maybe_unused,
1729						 struct perf_sample *sample,
1730						 struct perf_evsel *evsel,
1731						 struct machine *machine)
1732{
1733	int err = 0;
1734
1735	if (evsel->handler != NULL) {
1736		tracepoint_handler f = evsel->handler;
1737		err = f(tool, evsel, sample, machine);
1738	}
1739
1740	return err;
1741}
1742
1743static int perf_sched__process_comm(struct perf_tool *tool __maybe_unused,
1744				    union perf_event *event,
1745				    struct perf_sample *sample,
1746				    struct machine *machine)
1747{
1748	struct thread *thread;
1749	struct thread_runtime *tr;
1750	int err;
1751
1752	err = perf_event__process_comm(tool, event, sample, machine);
1753	if (err)
1754		return err;
1755
1756	thread = machine__find_thread(machine, sample->pid, sample->tid);
1757	if (!thread) {
1758		pr_err("Internal error: can't find thread\n");
1759		return -1;
1760	}
1761
1762	tr = thread__get_runtime(thread);
1763	if (tr == NULL) {
1764		thread__put(thread);
1765		return -1;
1766	}
1767
1768	tr->comm_changed = true;
1769	thread__put(thread);
1770
1771	return 0;
1772}
1773
1774static int perf_sched__read_events(struct perf_sched *sched)
1775{
1776	const struct perf_evsel_str_handler handlers[] = {
1777		{ "sched:sched_switch",	      process_sched_switch_event, },
1778		{ "sched:sched_stat_runtime", process_sched_runtime_event, },
1779		{ "sched:sched_wakeup",	      process_sched_wakeup_event, },
 
1780		{ "sched:sched_wakeup_new",   process_sched_wakeup_event, },
1781		{ "sched:sched_migrate_task", process_sched_migrate_task_event, },
1782	};
1783	struct perf_session *session;
1784	struct perf_data data = {
1785		.file      = {
1786			.path = input_name,
1787		},
1788		.mode      = PERF_DATA_MODE_READ,
1789		.force     = sched->force,
1790	};
1791	int rc = -1;
1792
1793	session = perf_session__new(&data, false, &sched->tool);
1794	if (session == NULL) {
1795		pr_debug("No Memory for session\n");
1796		return -1;
1797	}
1798
1799	symbol__init(&session->header.env);
1800
 
 
 
 
1801	if (perf_session__set_tracepoints_handlers(session, handlers))
1802		goto out_delete;
1803
1804	if (perf_session__has_traces(session, "record -R")) {
1805		int err = perf_session__process_events(session);
1806		if (err) {
1807			pr_err("Failed to process events, error %d", err);
1808			goto out_delete;
1809		}
1810
1811		sched->nr_events      = session->evlist->stats.nr_events[0];
1812		sched->nr_lost_events = session->evlist->stats.total_lost;
1813		sched->nr_lost_chunks = session->evlist->stats.nr_events[PERF_RECORD_LOST];
1814	}
1815
1816	rc = 0;
1817out_delete:
1818	perf_session__delete(session);
1819	return rc;
1820}
1821
1822/*
1823 * scheduling times are printed as msec.usec
1824 */
1825static inline void print_sched_time(unsigned long long nsecs, int width)
1826{
1827	unsigned long msecs;
1828	unsigned long usecs;
1829
1830	msecs  = nsecs / NSEC_PER_MSEC;
1831	nsecs -= msecs * NSEC_PER_MSEC;
1832	usecs  = nsecs / NSEC_PER_USEC;
1833	printf("%*lu.%03lu ", width, msecs, usecs);
1834}
1835
1836/*
1837 * returns runtime data for event, allocating memory for it the
1838 * first time it is used.
1839 */
1840static struct evsel_runtime *perf_evsel__get_runtime(struct perf_evsel *evsel)
1841{
1842	struct evsel_runtime *r = evsel->priv;
1843
1844	if (r == NULL) {
1845		r = zalloc(sizeof(struct evsel_runtime));
1846		evsel->priv = r;
1847	}
1848
1849	return r;
1850}
1851
1852/*
1853 * save last time event was seen per cpu
1854 */
1855static void perf_evsel__save_time(struct perf_evsel *evsel,
1856				  u64 timestamp, u32 cpu)
1857{
1858	struct evsel_runtime *r = perf_evsel__get_runtime(evsel);
1859
1860	if (r == NULL)
1861		return;
1862
1863	if ((cpu >= r->ncpu) || (r->last_time == NULL)) {
1864		int i, n = __roundup_pow_of_two(cpu+1);
1865		void *p = r->last_time;
1866
1867		p = realloc(r->last_time, n * sizeof(u64));
1868		if (!p)
1869			return;
1870
1871		r->last_time = p;
1872		for (i = r->ncpu; i < n; ++i)
1873			r->last_time[i] = (u64) 0;
1874
1875		r->ncpu = n;
1876	}
1877
1878	r->last_time[cpu] = timestamp;
1879}
1880
1881/* returns last time this event was seen on the given cpu */
1882static u64 perf_evsel__get_time(struct perf_evsel *evsel, u32 cpu)
1883{
1884	struct evsel_runtime *r = perf_evsel__get_runtime(evsel);
1885
1886	if ((r == NULL) || (r->last_time == NULL) || (cpu >= r->ncpu))
1887		return 0;
1888
1889	return r->last_time[cpu];
1890}
1891
1892static int comm_width = 30;
1893
1894static char *timehist_get_commstr(struct thread *thread)
1895{
1896	static char str[32];
1897	const char *comm = thread__comm_str(thread);
1898	pid_t tid = thread->tid;
1899	pid_t pid = thread->pid_;
1900	int n;
1901
1902	if (pid == 0)
1903		n = scnprintf(str, sizeof(str), "%s", comm);
1904
1905	else if (tid != pid)
1906		n = scnprintf(str, sizeof(str), "%s[%d/%d]", comm, tid, pid);
1907
1908	else
1909		n = scnprintf(str, sizeof(str), "%s[%d]", comm, tid);
1910
1911	if (n > comm_width)
1912		comm_width = n;
1913
1914	return str;
1915}
1916
1917static void timehist_header(struct perf_sched *sched)
1918{
1919	u32 ncpus = sched->max_cpu + 1;
1920	u32 i, j;
1921
1922	printf("%15s %6s ", "time", "cpu");
1923
1924	if (sched->show_cpu_visual) {
1925		printf(" ");
1926		for (i = 0, j = 0; i < ncpus; ++i) {
1927			printf("%x", j++);
1928			if (j > 15)
1929				j = 0;
1930		}
1931		printf(" ");
1932	}
1933
1934	printf(" %-*s  %9s  %9s  %9s", comm_width,
1935		"task name", "wait time", "sch delay", "run time");
1936
1937	if (sched->show_state)
1938		printf("  %s", "state");
1939
1940	printf("\n");
1941
1942	/*
1943	 * units row
1944	 */
1945	printf("%15s %-6s ", "", "");
1946
1947	if (sched->show_cpu_visual)
1948		printf(" %*s ", ncpus, "");
1949
1950	printf(" %-*s  %9s  %9s  %9s", comm_width,
1951	       "[tid/pid]", "(msec)", "(msec)", "(msec)");
1952
1953	if (sched->show_state)
1954		printf("  %5s", "");
1955
1956	printf("\n");
1957
1958	/*
1959	 * separator
1960	 */
1961	printf("%.15s %.6s ", graph_dotted_line, graph_dotted_line);
1962
1963	if (sched->show_cpu_visual)
1964		printf(" %.*s ", ncpus, graph_dotted_line);
1965
1966	printf(" %.*s  %.9s  %.9s  %.9s", comm_width,
1967		graph_dotted_line, graph_dotted_line, graph_dotted_line,
1968		graph_dotted_line);
1969
1970	if (sched->show_state)
1971		printf("  %.5s", graph_dotted_line);
1972
1973	printf("\n");
1974}
1975
1976static char task_state_char(struct thread *thread, int state)
1977{
1978	static const char state_to_char[] = TASK_STATE_TO_CHAR_STR;
1979	unsigned bit = state ? ffs(state) : 0;
1980
1981	/* 'I' for idle */
1982	if (thread->tid == 0)
1983		return 'I';
1984
1985	return bit < sizeof(state_to_char) - 1 ? state_to_char[bit] : '?';
1986}
1987
1988static void timehist_print_sample(struct perf_sched *sched,
1989				  struct perf_evsel *evsel,
1990				  struct perf_sample *sample,
1991				  struct addr_location *al,
1992				  struct thread *thread,
1993				  u64 t, int state)
1994{
1995	struct thread_runtime *tr = thread__priv(thread);
1996	const char *next_comm = perf_evsel__strval(evsel, sample, "next_comm");
1997	const u32 next_pid = perf_evsel__intval(evsel, sample, "next_pid");
1998	u32 max_cpus = sched->max_cpu + 1;
1999	char tstr[64];
2000	char nstr[30];
2001	u64 wait_time;
2002
 
 
 
2003	timestamp__scnprintf_usec(t, tstr, sizeof(tstr));
2004	printf("%15s [%04d] ", tstr, sample->cpu);
2005
2006	if (sched->show_cpu_visual) {
2007		u32 i;
2008		char c;
2009
2010		printf(" ");
2011		for (i = 0; i < max_cpus; ++i) {
2012			/* flag idle times with 'i'; others are sched events */
2013			if (i == sample->cpu)
2014				c = (thread->tid == 0) ? 'i' : 's';
2015			else
2016				c = ' ';
2017			printf("%c", c);
2018		}
2019		printf(" ");
2020	}
2021
2022	printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2023
2024	wait_time = tr->dt_sleep + tr->dt_iowait + tr->dt_preempt;
2025	print_sched_time(wait_time, 6);
2026
2027	print_sched_time(tr->dt_delay, 6);
2028	print_sched_time(tr->dt_run, 6);
2029
2030	if (sched->show_state)
2031		printf(" %5c ", task_state_char(thread, state));
2032
2033	if (sched->show_next) {
2034		snprintf(nstr, sizeof(nstr), "next: %s[%d]", next_comm, next_pid);
2035		printf(" %-*s", comm_width, nstr);
2036	}
2037
2038	if (sched->show_wakeups && !sched->show_next)
2039		printf("  %-*s", comm_width, "");
2040
2041	if (thread->tid == 0)
2042		goto out;
2043
2044	if (sched->show_callchain)
2045		printf("  ");
2046
2047	sample__fprintf_sym(sample, al, 0,
2048			    EVSEL__PRINT_SYM | EVSEL__PRINT_ONELINE |
2049			    EVSEL__PRINT_CALLCHAIN_ARROW |
2050			    EVSEL__PRINT_SKIP_IGNORED,
2051			    &callchain_cursor, stdout);
2052
2053out:
2054	printf("\n");
2055}
2056
2057/*
2058 * Explanation of delta-time stats:
2059 *
2060 *            t = time of current schedule out event
2061 *        tprev = time of previous sched out event
2062 *                also time of schedule-in event for current task
2063 *    last_time = time of last sched change event for current task
2064 *                (i.e, time process was last scheduled out)
2065 * ready_to_run = time of wakeup for current task
2066 *
2067 * -----|------------|------------|------------|------
2068 *    last         ready        tprev          t
2069 *    time         to run
2070 *
2071 *      |-------- dt_wait --------|
2072 *                   |- dt_delay -|-- dt_run --|
2073 *
2074 *   dt_run = run time of current task
2075 *  dt_wait = time between last schedule out event for task and tprev
2076 *            represents time spent off the cpu
2077 * dt_delay = time between wakeup and schedule-in of task
2078 */
2079
2080static void timehist_update_runtime_stats(struct thread_runtime *r,
2081					 u64 t, u64 tprev)
2082{
2083	r->dt_delay   = 0;
2084	r->dt_sleep   = 0;
2085	r->dt_iowait  = 0;
2086	r->dt_preempt = 0;
2087	r->dt_run     = 0;
2088
2089	if (tprev) {
2090		r->dt_run = t - tprev;
2091		if (r->ready_to_run) {
2092			if (r->ready_to_run > tprev)
2093				pr_debug("time travel: wakeup time for task > previous sched_switch event\n");
2094			else
2095				r->dt_delay = tprev - r->ready_to_run;
2096		}
2097
2098		if (r->last_time > tprev)
2099			pr_debug("time travel: last sched out time for task > previous sched_switch event\n");
2100		else if (r->last_time) {
2101			u64 dt_wait = tprev - r->last_time;
2102
2103			if (r->last_state == TASK_RUNNING)
2104				r->dt_preempt = dt_wait;
2105			else if (r->last_state == TASK_UNINTERRUPTIBLE)
2106				r->dt_iowait = dt_wait;
2107			else
2108				r->dt_sleep = dt_wait;
2109		}
2110	}
2111
2112	update_stats(&r->run_stats, r->dt_run);
2113
2114	r->total_run_time     += r->dt_run;
2115	r->total_delay_time   += r->dt_delay;
2116	r->total_sleep_time   += r->dt_sleep;
2117	r->total_iowait_time  += r->dt_iowait;
2118	r->total_preempt_time += r->dt_preempt;
2119}
2120
2121static bool is_idle_sample(struct perf_sample *sample,
2122			   struct perf_evsel *evsel)
2123{
2124	/* pid 0 == swapper == idle task */
2125	if (strcmp(perf_evsel__name(evsel), "sched:sched_switch") == 0)
2126		return perf_evsel__intval(evsel, sample, "prev_pid") == 0;
2127
2128	return sample->pid == 0;
2129}
2130
2131static void save_task_callchain(struct perf_sched *sched,
2132				struct perf_sample *sample,
2133				struct perf_evsel *evsel,
2134				struct machine *machine)
2135{
2136	struct callchain_cursor *cursor = &callchain_cursor;
2137	struct thread *thread;
2138
2139	/* want main thread for process - has maps */
2140	thread = machine__findnew_thread(machine, sample->pid, sample->pid);
2141	if (thread == NULL) {
2142		pr_debug("Failed to get thread for pid %d.\n", sample->pid);
2143		return;
2144	}
2145
2146	if (!symbol_conf.use_callchain || sample->callchain == NULL)
2147		return;
2148
 
 
2149	if (thread__resolve_callchain(thread, cursor, evsel, sample,
2150				      NULL, NULL, sched->max_stack + 2) != 0) {
2151		if (verbose > 0)
2152			pr_err("Failed to resolve callchain. Skipping\n");
2153
2154		return;
2155	}
2156
2157	callchain_cursor_commit(cursor);
2158
2159	while (true) {
2160		struct callchain_cursor_node *node;
2161		struct symbol *sym;
2162
2163		node = callchain_cursor_current(cursor);
2164		if (node == NULL)
2165			break;
2166
2167		sym = node->sym;
2168		if (sym) {
2169			if (!strcmp(sym->name, "schedule") ||
2170			    !strcmp(sym->name, "__schedule") ||
2171			    !strcmp(sym->name, "preempt_schedule"))
2172				sym->ignore = 1;
2173		}
2174
2175		callchain_cursor_advance(cursor);
2176	}
2177}
2178
2179static int init_idle_thread(struct thread *thread)
2180{
2181	struct idle_thread_runtime *itr;
2182
2183	thread__set_comm(thread, idle_comm, 0);
2184
2185	itr = zalloc(sizeof(*itr));
2186	if (itr == NULL)
2187		return -ENOMEM;
2188
2189	init_stats(&itr->tr.run_stats);
2190	callchain_init(&itr->callchain);
2191	callchain_cursor_reset(&itr->cursor);
2192	thread__set_priv(thread, itr);
2193
2194	return 0;
2195}
2196
2197/*
2198 * Track idle stats per cpu by maintaining a local thread
2199 * struct for the idle task on each cpu.
2200 */
2201static int init_idle_threads(int ncpu)
2202{
2203	int i, ret;
2204
2205	idle_threads = zalloc(ncpu * sizeof(struct thread *));
2206	if (!idle_threads)
2207		return -ENOMEM;
2208
2209	idle_max_cpu = ncpu;
2210
2211	/* allocate the actual thread struct if needed */
2212	for (i = 0; i < ncpu; ++i) {
2213		idle_threads[i] = thread__new(0, 0);
2214		if (idle_threads[i] == NULL)
2215			return -ENOMEM;
2216
2217		ret = init_idle_thread(idle_threads[i]);
2218		if (ret < 0)
2219			return ret;
2220	}
2221
2222	return 0;
2223}
2224
2225static void free_idle_threads(void)
2226{
2227	int i;
2228
2229	if (idle_threads == NULL)
2230		return;
2231
2232	for (i = 0; i < idle_max_cpu; ++i) {
2233		if ((idle_threads[i]))
2234			thread__delete(idle_threads[i]);
2235	}
2236
2237	free(idle_threads);
2238}
2239
2240static struct thread *get_idle_thread(int cpu)
2241{
2242	/*
2243	 * expand/allocate array of pointers to local thread
2244	 * structs if needed
2245	 */
2246	if ((cpu >= idle_max_cpu) || (idle_threads == NULL)) {
2247		int i, j = __roundup_pow_of_two(cpu+1);
2248		void *p;
2249
2250		p = realloc(idle_threads, j * sizeof(struct thread *));
2251		if (!p)
2252			return NULL;
2253
2254		idle_threads = (struct thread **) p;
2255		for (i = idle_max_cpu; i < j; ++i)
2256			idle_threads[i] = NULL;
2257
2258		idle_max_cpu = j;
2259	}
2260
2261	/* allocate a new thread struct if needed */
2262	if (idle_threads[cpu] == NULL) {
2263		idle_threads[cpu] = thread__new(0, 0);
2264
2265		if (idle_threads[cpu]) {
2266			if (init_idle_thread(idle_threads[cpu]) < 0)
2267				return NULL;
2268		}
2269	}
2270
2271	return idle_threads[cpu];
2272}
2273
2274static void save_idle_callchain(struct idle_thread_runtime *itr,
 
2275				struct perf_sample *sample)
2276{
2277	if (!symbol_conf.use_callchain || sample->callchain == NULL)
 
 
 
 
 
 
2278		return;
2279
2280	callchain_cursor__copy(&itr->cursor, &callchain_cursor);
2281}
2282
2283static struct thread *timehist_get_thread(struct perf_sched *sched,
2284					  struct perf_sample *sample,
2285					  struct machine *machine,
2286					  struct perf_evsel *evsel)
2287{
2288	struct thread *thread;
2289
2290	if (is_idle_sample(sample, evsel)) {
2291		thread = get_idle_thread(sample->cpu);
2292		if (thread == NULL)
2293			pr_err("Failed to get idle thread for cpu %d.\n", sample->cpu);
2294
2295	} else {
2296		/* there were samples with tid 0 but non-zero pid */
2297		thread = machine__findnew_thread(machine, sample->pid,
2298						 sample->tid ?: sample->pid);
2299		if (thread == NULL) {
2300			pr_debug("Failed to get thread for tid %d. skipping sample.\n",
2301				 sample->tid);
2302		}
2303
2304		save_task_callchain(sched, sample, evsel, machine);
2305		if (sched->idle_hist) {
2306			struct thread *idle;
2307			struct idle_thread_runtime *itr;
2308
2309			idle = get_idle_thread(sample->cpu);
2310			if (idle == NULL) {
2311				pr_err("Failed to get idle thread for cpu %d.\n", sample->cpu);
2312				return NULL;
2313			}
2314
2315			itr = thread__priv(idle);
2316			if (itr == NULL)
2317				return NULL;
2318
2319			itr->last_thread = thread;
2320
2321			/* copy task callchain when entering to idle */
2322			if (perf_evsel__intval(evsel, sample, "next_pid") == 0)
2323				save_idle_callchain(itr, sample);
2324		}
2325	}
2326
2327	return thread;
2328}
2329
2330static bool timehist_skip_sample(struct perf_sched *sched,
2331				 struct thread *thread,
2332				 struct perf_evsel *evsel,
2333				 struct perf_sample *sample)
2334{
2335	bool rc = false;
2336
2337	if (thread__is_filtered(thread)) {
2338		rc = true;
2339		sched->skipped_samples++;
2340	}
2341
2342	if (sched->idle_hist) {
2343		if (strcmp(perf_evsel__name(evsel), "sched:sched_switch"))
2344			rc = true;
2345		else if (perf_evsel__intval(evsel, sample, "prev_pid") != 0 &&
2346			 perf_evsel__intval(evsel, sample, "next_pid") != 0)
2347			rc = true;
2348	}
2349
2350	return rc;
2351}
2352
2353static void timehist_print_wakeup_event(struct perf_sched *sched,
2354					struct perf_evsel *evsel,
2355					struct perf_sample *sample,
2356					struct machine *machine,
2357					struct thread *awakened)
2358{
2359	struct thread *thread;
2360	char tstr[64];
2361
2362	thread = machine__findnew_thread(machine, sample->pid, sample->tid);
2363	if (thread == NULL)
2364		return;
2365
2366	/* show wakeup unless both awakee and awaker are filtered */
2367	if (timehist_skip_sample(sched, thread, evsel, sample) &&
2368	    timehist_skip_sample(sched, awakened, evsel, sample)) {
2369		return;
2370	}
2371
2372	timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2373	printf("%15s [%04d] ", tstr, sample->cpu);
2374	if (sched->show_cpu_visual)
2375		printf(" %*s ", sched->max_cpu + 1, "");
2376
2377	printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2378
2379	/* dt spacer */
2380	printf("  %9s  %9s  %9s ", "", "", "");
2381
2382	printf("awakened: %s", timehist_get_commstr(awakened));
2383
2384	printf("\n");
2385}
2386
 
 
 
 
 
 
 
 
 
2387static int timehist_sched_wakeup_event(struct perf_tool *tool,
2388				       union perf_event *event __maybe_unused,
2389				       struct perf_evsel *evsel,
2390				       struct perf_sample *sample,
2391				       struct machine *machine)
2392{
2393	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2394	struct thread *thread;
2395	struct thread_runtime *tr = NULL;
2396	/* want pid of awakened task not pid in sample */
2397	const u32 pid = perf_evsel__intval(evsel, sample, "pid");
2398
2399	thread = machine__findnew_thread(machine, 0, pid);
2400	if (thread == NULL)
2401		return -1;
2402
2403	tr = thread__get_runtime(thread);
2404	if (tr == NULL)
2405		return -1;
2406
2407	if (tr->ready_to_run == 0)
2408		tr->ready_to_run = sample->time;
2409
2410	/* show wakeups if requested */
2411	if (sched->show_wakeups &&
2412	    !perf_time__skip_sample(&sched->ptime, sample->time))
2413		timehist_print_wakeup_event(sched, evsel, sample, machine, thread);
2414
2415	return 0;
2416}
2417
2418static void timehist_print_migration_event(struct perf_sched *sched,
2419					struct perf_evsel *evsel,
2420					struct perf_sample *sample,
2421					struct machine *machine,
2422					struct thread *migrated)
2423{
2424	struct thread *thread;
2425	char tstr[64];
2426	u32 max_cpus = sched->max_cpu + 1;
2427	u32 ocpu, dcpu;
2428
2429	if (sched->summary_only)
2430		return;
2431
2432	max_cpus = sched->max_cpu + 1;
2433	ocpu = perf_evsel__intval(evsel, sample, "orig_cpu");
2434	dcpu = perf_evsel__intval(evsel, sample, "dest_cpu");
2435
2436	thread = machine__findnew_thread(machine, sample->pid, sample->tid);
2437	if (thread == NULL)
2438		return;
2439
2440	if (timehist_skip_sample(sched, thread, evsel, sample) &&
2441	    timehist_skip_sample(sched, migrated, evsel, sample)) {
2442		return;
2443	}
2444
2445	timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2446	printf("%15s [%04d] ", tstr, sample->cpu);
2447
2448	if (sched->show_cpu_visual) {
2449		u32 i;
2450		char c;
2451
2452		printf("  ");
2453		for (i = 0; i < max_cpus; ++i) {
2454			c = (i == sample->cpu) ? 'm' : ' ';
2455			printf("%c", c);
2456		}
2457		printf("  ");
2458	}
2459
2460	printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2461
2462	/* dt spacer */
2463	printf("  %9s  %9s  %9s ", "", "", "");
2464
2465	printf("migrated: %s", timehist_get_commstr(migrated));
2466	printf(" cpu %d => %d", ocpu, dcpu);
2467
2468	printf("\n");
2469}
2470
2471static int timehist_migrate_task_event(struct perf_tool *tool,
2472				       union perf_event *event __maybe_unused,
2473				       struct perf_evsel *evsel,
2474				       struct perf_sample *sample,
2475				       struct machine *machine)
2476{
2477	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2478	struct thread *thread;
2479	struct thread_runtime *tr = NULL;
2480	/* want pid of migrated task not pid in sample */
2481	const u32 pid = perf_evsel__intval(evsel, sample, "pid");
2482
2483	thread = machine__findnew_thread(machine, 0, pid);
2484	if (thread == NULL)
2485		return -1;
2486
2487	tr = thread__get_runtime(thread);
2488	if (tr == NULL)
2489		return -1;
2490
2491	tr->migrations++;
2492
2493	/* show migrations if requested */
2494	timehist_print_migration_event(sched, evsel, sample, machine, thread);
2495
2496	return 0;
2497}
2498
2499static int timehist_sched_change_event(struct perf_tool *tool,
2500				       union perf_event *event,
2501				       struct perf_evsel *evsel,
2502				       struct perf_sample *sample,
2503				       struct machine *machine)
2504{
2505	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2506	struct perf_time_interval *ptime = &sched->ptime;
2507	struct addr_location al;
2508	struct thread *thread;
2509	struct thread_runtime *tr = NULL;
2510	u64 tprev, t = sample->time;
2511	int rc = 0;
2512	int state = perf_evsel__intval(evsel, sample, "prev_state");
2513
2514
 
2515	if (machine__resolve(machine, &al, sample) < 0) {
2516		pr_err("problem processing %d event. skipping it\n",
2517		       event->header.type);
2518		rc = -1;
2519		goto out;
2520	}
2521
2522	thread = timehist_get_thread(sched, sample, machine, evsel);
2523	if (thread == NULL) {
2524		rc = -1;
2525		goto out;
2526	}
2527
2528	if (timehist_skip_sample(sched, thread, evsel, sample))
2529		goto out;
2530
2531	tr = thread__get_runtime(thread);
2532	if (tr == NULL) {
2533		rc = -1;
2534		goto out;
2535	}
2536
2537	tprev = perf_evsel__get_time(evsel, sample->cpu);
2538
2539	/*
2540	 * If start time given:
2541	 * - sample time is under window user cares about - skip sample
2542	 * - tprev is under window user cares about  - reset to start of window
2543	 */
2544	if (ptime->start && ptime->start > t)
2545		goto out;
2546
2547	if (tprev && ptime->start > tprev)
2548		tprev = ptime->start;
2549
2550	/*
2551	 * If end time given:
2552	 * - previous sched event is out of window - we are done
2553	 * - sample time is beyond window user cares about - reset it
2554	 *   to close out stats for time window interest
2555	 */
2556	if (ptime->end) {
2557		if (tprev > ptime->end)
2558			goto out;
2559
2560		if (t > ptime->end)
2561			t = ptime->end;
2562	}
2563
2564	if (!sched->idle_hist || thread->tid == 0) {
2565		timehist_update_runtime_stats(tr, t, tprev);
 
2566
2567		if (sched->idle_hist) {
2568			struct idle_thread_runtime *itr = (void *)tr;
2569			struct thread_runtime *last_tr;
2570
2571			BUG_ON(thread->tid != 0);
2572
2573			if (itr->last_thread == NULL)
2574				goto out;
2575
2576			/* add current idle time as last thread's runtime */
2577			last_tr = thread__get_runtime(itr->last_thread);
2578			if (last_tr == NULL)
2579				goto out;
2580
2581			timehist_update_runtime_stats(last_tr, t, tprev);
2582			/*
2583			 * remove delta time of last thread as it's not updated
2584			 * and otherwise it will show an invalid value next
2585			 * time.  we only care total run time and run stat.
2586			 */
2587			last_tr->dt_run = 0;
2588			last_tr->dt_delay = 0;
2589			last_tr->dt_sleep = 0;
2590			last_tr->dt_iowait = 0;
2591			last_tr->dt_preempt = 0;
2592
2593			if (itr->cursor.nr)
2594				callchain_append(&itr->callchain, &itr->cursor, t - tprev);
2595
2596			itr->last_thread = NULL;
2597		}
2598	}
2599
2600	if (!sched->summary_only)
2601		timehist_print_sample(sched, evsel, sample, &al, thread, t, state);
2602
2603out:
2604	if (sched->hist_time.start == 0 && t >= ptime->start)
2605		sched->hist_time.start = t;
2606	if (ptime->end == 0 || t <= ptime->end)
2607		sched->hist_time.end = t;
2608
2609	if (tr) {
2610		/* time of this sched_switch event becomes last time task seen */
2611		tr->last_time = sample->time;
2612
2613		/* last state is used to determine where to account wait time */
2614		tr->last_state = state;
2615
2616		/* sched out event for task so reset ready to run time */
2617		tr->ready_to_run = 0;
2618	}
2619
2620	perf_evsel__save_time(evsel, sample->time, sample->cpu);
2621
 
2622	return rc;
2623}
2624
2625static int timehist_sched_switch_event(struct perf_tool *tool,
2626			     union perf_event *event,
2627			     struct perf_evsel *evsel,
2628			     struct perf_sample *sample,
2629			     struct machine *machine __maybe_unused)
2630{
2631	return timehist_sched_change_event(tool, event, evsel, sample, machine);
2632}
2633
2634static int process_lost(struct perf_tool *tool __maybe_unused,
2635			union perf_event *event,
2636			struct perf_sample *sample,
2637			struct machine *machine __maybe_unused)
2638{
2639	char tstr[64];
2640
2641	timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2642	printf("%15s ", tstr);
2643	printf("lost %" PRIu64 " events on cpu %d\n", event->lost.lost, sample->cpu);
2644
2645	return 0;
2646}
2647
2648
2649static void print_thread_runtime(struct thread *t,
2650				 struct thread_runtime *r)
2651{
2652	double mean = avg_stats(&r->run_stats);
2653	float stddev;
2654
2655	printf("%*s   %5d  %9" PRIu64 " ",
2656	       comm_width, timehist_get_commstr(t), t->ppid,
2657	       (u64) r->run_stats.n);
2658
2659	print_sched_time(r->total_run_time, 8);
2660	stddev = rel_stddev_stats(stddev_stats(&r->run_stats), mean);
2661	print_sched_time(r->run_stats.min, 6);
2662	printf(" ");
2663	print_sched_time((u64) mean, 6);
2664	printf(" ");
2665	print_sched_time(r->run_stats.max, 6);
2666	printf("  ");
2667	printf("%5.2f", stddev);
2668	printf("   %5" PRIu64, r->migrations);
2669	printf("\n");
2670}
2671
2672static void print_thread_waittime(struct thread *t,
2673				  struct thread_runtime *r)
2674{
2675	printf("%*s   %5d  %9" PRIu64 " ",
2676	       comm_width, timehist_get_commstr(t), t->ppid,
2677	       (u64) r->run_stats.n);
2678
2679	print_sched_time(r->total_run_time, 8);
2680	print_sched_time(r->total_sleep_time, 6);
2681	printf(" ");
2682	print_sched_time(r->total_iowait_time, 6);
2683	printf(" ");
2684	print_sched_time(r->total_preempt_time, 6);
2685	printf(" ");
2686	print_sched_time(r->total_delay_time, 6);
2687	printf("\n");
2688}
2689
2690struct total_run_stats {
2691	struct perf_sched *sched;
2692	u64  sched_count;
2693	u64  task_count;
2694	u64  total_run_time;
2695};
2696
2697static int __show_thread_runtime(struct thread *t, void *priv)
2698{
2699	struct total_run_stats *stats = priv;
2700	struct thread_runtime *r;
2701
2702	if (thread__is_filtered(t))
2703		return 0;
2704
2705	r = thread__priv(t);
2706	if (r && r->run_stats.n) {
2707		stats->task_count++;
2708		stats->sched_count += r->run_stats.n;
2709		stats->total_run_time += r->total_run_time;
2710
2711		if (stats->sched->show_state)
2712			print_thread_waittime(t, r);
2713		else
2714			print_thread_runtime(t, r);
2715	}
2716
2717	return 0;
2718}
2719
2720static int show_thread_runtime(struct thread *t, void *priv)
2721{
2722	if (t->dead)
2723		return 0;
2724
2725	return __show_thread_runtime(t, priv);
2726}
2727
2728static int show_deadthread_runtime(struct thread *t, void *priv)
2729{
2730	if (!t->dead)
2731		return 0;
2732
2733	return __show_thread_runtime(t, priv);
2734}
2735
2736static size_t callchain__fprintf_folded(FILE *fp, struct callchain_node *node)
2737{
2738	const char *sep = " <- ";
2739	struct callchain_list *chain;
2740	size_t ret = 0;
2741	char bf[1024];
2742	bool first;
2743
2744	if (node == NULL)
2745		return 0;
2746
2747	ret = callchain__fprintf_folded(fp, node->parent);
2748	first = (ret == 0);
2749
2750	list_for_each_entry(chain, &node->val, list) {
2751		if (chain->ip >= PERF_CONTEXT_MAX)
2752			continue;
2753		if (chain->ms.sym && chain->ms.sym->ignore)
2754			continue;
2755		ret += fprintf(fp, "%s%s", first ? "" : sep,
2756			       callchain_list__sym_name(chain, bf, sizeof(bf),
2757							false));
2758		first = false;
2759	}
2760
2761	return ret;
2762}
2763
2764static size_t timehist_print_idlehist_callchain(struct rb_root *root)
2765{
2766	size_t ret = 0;
2767	FILE *fp = stdout;
2768	struct callchain_node *chain;
2769	struct rb_node *rb_node = rb_first(root);
2770
2771	printf("  %16s  %8s  %s\n", "Idle time (msec)", "Count", "Callchains");
2772	printf("  %.16s  %.8s  %.50s\n", graph_dotted_line, graph_dotted_line,
2773	       graph_dotted_line);
2774
2775	while (rb_node) {
2776		chain = rb_entry(rb_node, struct callchain_node, rb_node);
2777		rb_node = rb_next(rb_node);
2778
2779		ret += fprintf(fp, "  ");
2780		print_sched_time(chain->hit, 12);
2781		ret += 16;  /* print_sched_time returns 2nd arg + 4 */
2782		ret += fprintf(fp, " %8d  ", chain->count);
2783		ret += callchain__fprintf_folded(fp, chain);
2784		ret += fprintf(fp, "\n");
2785	}
2786
2787	return ret;
2788}
2789
2790static void timehist_print_summary(struct perf_sched *sched,
2791				   struct perf_session *session)
2792{
2793	struct machine *m = &session->machines.host;
2794	struct total_run_stats totals;
2795	u64 task_count;
2796	struct thread *t;
2797	struct thread_runtime *r;
2798	int i;
2799	u64 hist_time = sched->hist_time.end - sched->hist_time.start;
2800
2801	memset(&totals, 0, sizeof(totals));
2802	totals.sched = sched;
2803
2804	if (sched->idle_hist) {
2805		printf("\nIdle-time summary\n");
2806		printf("%*s  parent  sched-out  ", comm_width, "comm");
2807		printf("  idle-time   min-idle    avg-idle    max-idle  stddev  migrations\n");
2808	} else if (sched->show_state) {
2809		printf("\nWait-time summary\n");
2810		printf("%*s  parent   sched-in  ", comm_width, "comm");
2811		printf("   run-time      sleep      iowait     preempt       delay\n");
2812	} else {
2813		printf("\nRuntime summary\n");
2814		printf("%*s  parent   sched-in  ", comm_width, "comm");
2815		printf("   run-time    min-run     avg-run     max-run  stddev  migrations\n");
2816	}
2817	printf("%*s            (count)  ", comm_width, "");
2818	printf("     (msec)     (msec)      (msec)      (msec)       %s\n",
2819	       sched->show_state ? "(msec)" : "%");
2820	printf("%.117s\n", graph_dotted_line);
2821
2822	machine__for_each_thread(m, show_thread_runtime, &totals);
2823	task_count = totals.task_count;
2824	if (!task_count)
2825		printf("<no still running tasks>\n");
2826
2827	printf("\nTerminated tasks:\n");
2828	machine__for_each_thread(m, show_deadthread_runtime, &totals);
2829	if (task_count == totals.task_count)
2830		printf("<no terminated tasks>\n");
2831
2832	/* CPU idle stats not tracked when samples were skipped */
2833	if (sched->skipped_samples && !sched->idle_hist)
2834		return;
2835
2836	printf("\nIdle stats:\n");
2837	for (i = 0; i < idle_max_cpu; ++i) {
 
 
 
2838		t = idle_threads[i];
2839		if (!t)
2840			continue;
2841
2842		r = thread__priv(t);
2843		if (r && r->run_stats.n) {
2844			totals.sched_count += r->run_stats.n;
2845			printf("    CPU %2d idle for ", i);
2846			print_sched_time(r->total_run_time, 6);
2847			printf(" msec  (%6.2f%%)\n", 100.0 * r->total_run_time / hist_time);
2848		} else
2849			printf("    CPU %2d idle entire time window\n", i);
2850	}
2851
2852	if (sched->idle_hist && symbol_conf.use_callchain) {
2853		callchain_param.mode  = CHAIN_FOLDED;
2854		callchain_param.value = CCVAL_PERIOD;
2855
2856		callchain_register_param(&callchain_param);
2857
2858		printf("\nIdle stats by callchain:\n");
2859		for (i = 0; i < idle_max_cpu; ++i) {
2860			struct idle_thread_runtime *itr;
2861
2862			t = idle_threads[i];
2863			if (!t)
2864				continue;
2865
2866			itr = thread__priv(t);
2867			if (itr == NULL)
2868				continue;
2869
2870			callchain_param.sort(&itr->sorted_root, &itr->callchain,
2871					     0, &callchain_param);
2872
2873			printf("  CPU %2d:", i);
2874			print_sched_time(itr->tr.total_run_time, 6);
2875			printf(" msec\n");
2876			timehist_print_idlehist_callchain(&itr->sorted_root);
2877			printf("\n");
2878		}
2879	}
2880
2881	printf("\n"
2882	       "    Total number of unique tasks: %" PRIu64 "\n"
2883	       "Total number of context switches: %" PRIu64 "\n",
2884	       totals.task_count, totals.sched_count);
2885
2886	printf("           Total run time (msec): ");
2887	print_sched_time(totals.total_run_time, 2);
2888	printf("\n");
2889
2890	printf("    Total scheduling time (msec): ");
2891	print_sched_time(hist_time, 2);
2892	printf(" (x %d)\n", sched->max_cpu);
2893}
2894
2895typedef int (*sched_handler)(struct perf_tool *tool,
2896			  union perf_event *event,
2897			  struct perf_evsel *evsel,
2898			  struct perf_sample *sample,
2899			  struct machine *machine);
2900
2901static int perf_timehist__process_sample(struct perf_tool *tool,
2902					 union perf_event *event,
2903					 struct perf_sample *sample,
2904					 struct perf_evsel *evsel,
2905					 struct machine *machine)
2906{
2907	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2908	int err = 0;
2909	int this_cpu = sample->cpu;
 
 
2910
2911	if (this_cpu > sched->max_cpu)
2912		sched->max_cpu = this_cpu;
2913
2914	if (evsel->handler != NULL) {
2915		sched_handler f = evsel->handler;
2916
2917		err = f(tool, event, evsel, sample, machine);
2918	}
2919
2920	return err;
2921}
2922
2923static int timehist_check_attr(struct perf_sched *sched,
2924			       struct perf_evlist *evlist)
2925{
2926	struct perf_evsel *evsel;
2927	struct evsel_runtime *er;
2928
2929	list_for_each_entry(evsel, &evlist->entries, node) {
2930		er = perf_evsel__get_runtime(evsel);
2931		if (er == NULL) {
2932			pr_err("Failed to allocate memory for evsel runtime data\n");
2933			return -1;
2934		}
2935
2936		if (sched->show_callchain &&
2937		    !(evsel->attr.sample_type & PERF_SAMPLE_CALLCHAIN)) {
2938			pr_info("Samples do not have callchains.\n");
2939			sched->show_callchain = 0;
2940			symbol_conf.use_callchain = 0;
2941		}
2942	}
2943
2944	return 0;
2945}
2946
2947static int perf_sched__timehist(struct perf_sched *sched)
2948{
2949	const struct perf_evsel_str_handler handlers[] = {
2950		{ "sched:sched_switch",       timehist_sched_switch_event, },
2951		{ "sched:sched_wakeup",	      timehist_sched_wakeup_event, },
 
2952		{ "sched:sched_wakeup_new",   timehist_sched_wakeup_event, },
2953	};
2954	const struct perf_evsel_str_handler migrate_handlers[] = {
2955		{ "sched:sched_migrate_task", timehist_migrate_task_event, },
2956	};
2957	struct perf_data data = {
2958		.file      = {
2959			.path = input_name,
2960		},
2961		.mode      = PERF_DATA_MODE_READ,
2962		.force     = sched->force,
2963	};
2964
2965	struct perf_session *session;
2966	struct perf_evlist *evlist;
2967	int err = -1;
2968
2969	/*
2970	 * event handlers for timehist option
2971	 */
2972	sched->tool.sample	 = perf_timehist__process_sample;
2973	sched->tool.mmap	 = perf_event__process_mmap;
2974	sched->tool.comm	 = perf_event__process_comm;
2975	sched->tool.exit	 = perf_event__process_exit;
2976	sched->tool.fork	 = perf_event__process_fork;
2977	sched->tool.lost	 = process_lost;
2978	sched->tool.attr	 = perf_event__process_attr;
2979	sched->tool.tracing_data = perf_event__process_tracing_data;
2980	sched->tool.build_id	 = perf_event__process_build_id;
2981
2982	sched->tool.ordered_events = true;
2983	sched->tool.ordering_requires_timestamps = true;
2984
2985	symbol_conf.use_callchain = sched->show_callchain;
2986
2987	session = perf_session__new(&data, false, &sched->tool);
2988	if (session == NULL)
2989		return -ENOMEM;
 
 
 
 
 
 
2990
2991	evlist = session->evlist;
2992
2993	symbol__init(&session->header.env);
2994
2995	if (perf_time__parse_str(&sched->ptime, sched->time_str) != 0) {
2996		pr_err("Invalid time string\n");
2997		return -EINVAL;
2998	}
2999
3000	if (timehist_check_attr(sched, evlist) != 0)
3001		goto out;
3002
3003	setup_pager();
3004
 
 
 
 
3005	/* setup per-evsel handlers */
3006	if (perf_session__set_tracepoints_handlers(session, handlers))
3007		goto out;
3008
3009	/* sched_switch event at a minimum needs to exist */
3010	if (!perf_evlist__find_tracepoint_by_name(session->evlist,
3011						  "sched:sched_switch")) {
3012		pr_err("No sched_switch events found. Have you run 'perf sched record'?\n");
3013		goto out;
3014	}
3015
3016	if (sched->show_migrations &&
3017	    perf_session__set_tracepoints_handlers(session, migrate_handlers))
3018		goto out;
3019
3020	/* pre-allocate struct for per-CPU idle stats */
3021	sched->max_cpu = session->header.env.nr_cpus_online;
3022	if (sched->max_cpu == 0)
3023		sched->max_cpu = 4;
3024	if (init_idle_threads(sched->max_cpu))
3025		goto out;
3026
3027	/* summary_only implies summary option, but don't overwrite summary if set */
3028	if (sched->summary_only)
3029		sched->summary = sched->summary_only;
3030
3031	if (!sched->summary_only)
3032		timehist_header(sched);
3033
3034	err = perf_session__process_events(session);
3035	if (err) {
3036		pr_err("Failed to process events, error %d", err);
3037		goto out;
3038	}
3039
3040	sched->nr_events      = evlist->stats.nr_events[0];
3041	sched->nr_lost_events = evlist->stats.total_lost;
3042	sched->nr_lost_chunks = evlist->stats.nr_events[PERF_RECORD_LOST];
3043
3044	if (sched->summary)
3045		timehist_print_summary(sched, session);
3046
3047out:
3048	free_idle_threads();
3049	perf_session__delete(session);
3050
3051	return err;
3052}
3053
3054
3055static void print_bad_events(struct perf_sched *sched)
3056{
3057	if (sched->nr_unordered_timestamps && sched->nr_timestamps) {
3058		printf("  INFO: %.3f%% unordered timestamps (%ld out of %ld)\n",
3059			(double)sched->nr_unordered_timestamps/(double)sched->nr_timestamps*100.0,
3060			sched->nr_unordered_timestamps, sched->nr_timestamps);
3061	}
3062	if (sched->nr_lost_events && sched->nr_events) {
3063		printf("  INFO: %.3f%% lost events (%ld out of %ld, in %ld chunks)\n",
3064			(double)sched->nr_lost_events/(double)sched->nr_events * 100.0,
3065			sched->nr_lost_events, sched->nr_events, sched->nr_lost_chunks);
3066	}
3067	if (sched->nr_context_switch_bugs && sched->nr_timestamps) {
3068		printf("  INFO: %.3f%% context switch bugs (%ld out of %ld)",
3069			(double)sched->nr_context_switch_bugs/(double)sched->nr_timestamps*100.0,
3070			sched->nr_context_switch_bugs, sched->nr_timestamps);
3071		if (sched->nr_lost_events)
3072			printf(" (due to lost events?)");
3073		printf("\n");
3074	}
3075}
3076
3077static void __merge_work_atoms(struct rb_root *root, struct work_atoms *data)
3078{
3079	struct rb_node **new = &(root->rb_node), *parent = NULL;
3080	struct work_atoms *this;
3081	const char *comm = thread__comm_str(data->thread), *this_comm;
 
3082
3083	while (*new) {
3084		int cmp;
3085
3086		this = container_of(*new, struct work_atoms, node);
3087		parent = *new;
3088
3089		this_comm = thread__comm_str(this->thread);
3090		cmp = strcmp(comm, this_comm);
3091		if (cmp > 0) {
3092			new = &((*new)->rb_left);
3093		} else if (cmp < 0) {
3094			new = &((*new)->rb_right);
 
3095		} else {
3096			this->num_merged++;
3097			this->total_runtime += data->total_runtime;
3098			this->nb_atoms += data->nb_atoms;
3099			this->total_lat += data->total_lat;
3100			list_splice(&data->work_list, &this->work_list);
3101			if (this->max_lat < data->max_lat) {
3102				this->max_lat = data->max_lat;
3103				this->max_lat_at = data->max_lat_at;
 
3104			}
3105			zfree(&data);
3106			return;
3107		}
3108	}
3109
3110	data->num_merged++;
3111	rb_link_node(&data->node, parent, new);
3112	rb_insert_color(&data->node, root);
3113}
3114
3115static void perf_sched__merge_lat(struct perf_sched *sched)
3116{
3117	struct work_atoms *data;
3118	struct rb_node *node;
3119
3120	if (sched->skip_merge)
3121		return;
3122
3123	while ((node = rb_first(&sched->atom_root))) {
3124		rb_erase(node, &sched->atom_root);
3125		data = rb_entry(node, struct work_atoms, node);
3126		__merge_work_atoms(&sched->merged_atom_root, data);
3127	}
3128}
3129
3130static int perf_sched__lat(struct perf_sched *sched)
3131{
3132	struct rb_node *next;
3133
3134	setup_pager();
3135
3136	if (perf_sched__read_events(sched))
3137		return -1;
3138
3139	perf_sched__merge_lat(sched);
3140	perf_sched__sort_lat(sched);
3141
3142	printf("\n -----------------------------------------------------------------------------------------------------------------\n");
3143	printf("  Task                  |   Runtime ms  | Switches | Average delay ms | Maximum delay ms | Maximum delay at       |\n");
3144	printf(" -----------------------------------------------------------------------------------------------------------------\n");
3145
3146	next = rb_first(&sched->sorted_atom_root);
3147
3148	while (next) {
3149		struct work_atoms *work_list;
3150
3151		work_list = rb_entry(next, struct work_atoms, node);
3152		output_lat_thread(sched, work_list);
3153		next = rb_next(next);
3154		thread__zput(work_list->thread);
3155	}
3156
3157	printf(" -----------------------------------------------------------------------------------------------------------------\n");
3158	printf("  TOTAL:                |%11.3f ms |%9" PRIu64 " |\n",
3159		(double)sched->all_runtime / NSEC_PER_MSEC, sched->all_count);
3160
3161	printf(" ---------------------------------------------------\n");
3162
3163	print_bad_events(sched);
3164	printf("\n");
3165
3166	return 0;
3167}
3168
3169static int setup_map_cpus(struct perf_sched *sched)
3170{
3171	struct cpu_map *map;
3172
3173	sched->max_cpu  = sysconf(_SC_NPROCESSORS_CONF);
3174
3175	if (sched->map.comp) {
3176		sched->map.comp_cpus = zalloc(sched->max_cpu * sizeof(int));
3177		if (!sched->map.comp_cpus)
3178			return -1;
3179	}
3180
3181	if (!sched->map.cpus_str)
3182		return 0;
3183
3184	map = cpu_map__new(sched->map.cpus_str);
3185	if (!map) {
3186		pr_err("failed to get cpus map from %s\n", sched->map.cpus_str);
3187		return -1;
3188	}
3189
3190	sched->map.cpus = map;
3191	return 0;
3192}
3193
3194static int setup_color_pids(struct perf_sched *sched)
3195{
3196	struct thread_map *map;
3197
3198	if (!sched->map.color_pids_str)
3199		return 0;
3200
3201	map = thread_map__new_by_tid_str(sched->map.color_pids_str);
3202	if (!map) {
3203		pr_err("failed to get thread map from %s\n", sched->map.color_pids_str);
3204		return -1;
3205	}
3206
3207	sched->map.color_pids = map;
3208	return 0;
3209}
3210
3211static int setup_color_cpus(struct perf_sched *sched)
3212{
3213	struct cpu_map *map;
3214
3215	if (!sched->map.color_cpus_str)
3216		return 0;
3217
3218	map = cpu_map__new(sched->map.color_cpus_str);
3219	if (!map) {
3220		pr_err("failed to get thread map from %s\n", sched->map.color_cpus_str);
3221		return -1;
3222	}
3223
3224	sched->map.color_cpus = map;
3225	return 0;
3226}
3227
3228static int perf_sched__map(struct perf_sched *sched)
3229{
3230	if (setup_map_cpus(sched))
3231		return -1;
3232
3233	if (setup_color_pids(sched))
3234		return -1;
3235
3236	if (setup_color_cpus(sched))
3237		return -1;
3238
3239	setup_pager();
3240	if (perf_sched__read_events(sched))
3241		return -1;
3242	print_bad_events(sched);
3243	return 0;
3244}
3245
3246static int perf_sched__replay(struct perf_sched *sched)
3247{
3248	unsigned long i;
3249
3250	calibrate_run_measurement_overhead(sched);
3251	calibrate_sleep_measurement_overhead(sched);
3252
3253	test_calibrations(sched);
3254
3255	if (perf_sched__read_events(sched))
3256		return -1;
3257
3258	printf("nr_run_events:        %ld\n", sched->nr_run_events);
3259	printf("nr_sleep_events:      %ld\n", sched->nr_sleep_events);
3260	printf("nr_wakeup_events:     %ld\n", sched->nr_wakeup_events);
3261
3262	if (sched->targetless_wakeups)
3263		printf("target-less wakeups:  %ld\n", sched->targetless_wakeups);
3264	if (sched->multitarget_wakeups)
3265		printf("multi-target wakeups: %ld\n", sched->multitarget_wakeups);
3266	if (sched->nr_run_events_optimized)
3267		printf("run atoms optimized: %ld\n",
3268			sched->nr_run_events_optimized);
3269
3270	print_task_traces(sched);
3271	add_cross_task_wakeups(sched);
3272
 
3273	create_tasks(sched);
3274	printf("------------------------------------------------------------\n");
3275	for (i = 0; i < sched->replay_repeat; i++)
3276		run_one_test(sched);
3277
 
 
3278	return 0;
3279}
3280
3281static void setup_sorting(struct perf_sched *sched, const struct option *options,
3282			  const char * const usage_msg[])
3283{
3284	char *tmp, *tok, *str = strdup(sched->sort_order);
3285
3286	for (tok = strtok_r(str, ", ", &tmp);
3287			tok; tok = strtok_r(NULL, ", ", &tmp)) {
3288		if (sort_dimension__add(tok, &sched->sort_list) < 0) {
3289			usage_with_options_msg(usage_msg, options,
3290					"Unknown --sort key: `%s'", tok);
3291		}
3292	}
3293
3294	free(str);
3295
3296	sort_dimension__add("pid", &sched->cmp_pid);
3297}
3298
 
 
 
 
 
 
 
 
 
 
3299static int __cmd_record(int argc, const char **argv)
3300{
3301	unsigned int rec_argc, i, j;
3302	const char **rec_argv;
 
3303	const char * const record_args[] = {
3304		"record",
3305		"-a",
3306		"-R",
3307		"-m", "1024",
3308		"-c", "1",
3309		"-e", "sched:sched_switch",
3310		"-e", "sched:sched_stat_wait",
3311		"-e", "sched:sched_stat_sleep",
3312		"-e", "sched:sched_stat_iowait",
3313		"-e", "sched:sched_stat_runtime",
3314		"-e", "sched:sched_process_fork",
3315		"-e", "sched:sched_wakeup",
3316		"-e", "sched:sched_wakeup_new",
3317		"-e", "sched:sched_migrate_task",
3318	};
3319
3320	rec_argc = ARRAY_SIZE(record_args) + argc - 1;
3321	rec_argv = calloc(rec_argc + 1, sizeof(char *));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3322
 
 
 
 
 
 
3323	if (rec_argv == NULL)
3324		return -ENOMEM;
 
 
 
 
 
3325
3326	for (i = 0; i < ARRAY_SIZE(record_args); i++)
3327		rec_argv[i] = strdup(record_args[i]);
3328
 
 
 
 
 
 
 
 
 
 
3329	for (j = 1; j < (unsigned int)argc; j++, i++)
3330		rec_argv[i] = argv[j];
3331
3332	BUG_ON(i != rec_argc);
3333
3334	return cmd_record(i, rec_argv);
 
 
 
 
 
 
 
 
3335}
3336
3337int cmd_sched(int argc, const char **argv)
3338{
3339	const char default_sort_order[] = "avg, max, switch, runtime";
3340	struct perf_sched sched = {
3341		.tool = {
3342			.sample		 = perf_sched__process_tracepoint_sample,
3343			.comm		 = perf_sched__process_comm,
3344			.namespaces	 = perf_event__process_namespaces,
3345			.lost		 = perf_event__process_lost,
3346			.fork		 = perf_sched__process_fork_event,
3347			.ordered_events = true,
3348		},
3349		.cmp_pid	      = LIST_HEAD_INIT(sched.cmp_pid),
3350		.sort_list	      = LIST_HEAD_INIT(sched.sort_list),
3351		.start_work_mutex     = PTHREAD_MUTEX_INITIALIZER,
3352		.work_done_wait_mutex = PTHREAD_MUTEX_INITIALIZER,
3353		.sort_order	      = default_sort_order,
3354		.replay_repeat	      = 10,
3355		.profile_cpu	      = -1,
3356		.next_shortname1      = 'A',
3357		.next_shortname2      = '0',
3358		.skip_merge           = 0,
3359		.show_callchain	      = 1,
3360		.max_stack            = 5,
3361	};
3362	const struct option sched_options[] = {
3363	OPT_STRING('i', "input", &input_name, "file",
3364		    "input file name"),
3365	OPT_INCR('v', "verbose", &verbose,
3366		    "be more verbose (show symbol address, etc)"),
3367	OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
3368		    "dump raw trace in ASCII"),
3369	OPT_BOOLEAN('f', "force", &sched.force, "don't complain, do it"),
3370	OPT_END()
3371	};
3372	const struct option latency_options[] = {
3373	OPT_STRING('s', "sort", &sched.sort_order, "key[,key2...]",
3374		   "sort by key(s): runtime, switch, avg, max"),
3375	OPT_INTEGER('C', "CPU", &sched.profile_cpu,
3376		    "CPU to profile on"),
3377	OPT_BOOLEAN('p', "pids", &sched.skip_merge,
3378		    "latency stats per pid instead of per comm"),
3379	OPT_PARENT(sched_options)
3380	};
3381	const struct option replay_options[] = {
3382	OPT_UINTEGER('r', "repeat", &sched.replay_repeat,
3383		     "repeat the workload replay N times (-1: infinite)"),
3384	OPT_PARENT(sched_options)
3385	};
3386	const struct option map_options[] = {
3387	OPT_BOOLEAN(0, "compact", &sched.map.comp,
3388		    "map output in compact mode"),
3389	OPT_STRING(0, "color-pids", &sched.map.color_pids_str, "pids",
3390		   "highlight given pids in map"),
3391	OPT_STRING(0, "color-cpus", &sched.map.color_cpus_str, "cpus",
3392                    "highlight given CPUs in map"),
3393	OPT_STRING(0, "cpus", &sched.map.cpus_str, "cpus",
3394                    "display given CPUs in map"),
3395	OPT_PARENT(sched_options)
3396	};
3397	const struct option timehist_options[] = {
3398	OPT_STRING('k', "vmlinux", &symbol_conf.vmlinux_name,
3399		   "file", "vmlinux pathname"),
3400	OPT_STRING(0, "kallsyms", &symbol_conf.kallsyms_name,
3401		   "file", "kallsyms pathname"),
3402	OPT_BOOLEAN('g', "call-graph", &sched.show_callchain,
3403		    "Display call chains if present (default on)"),
3404	OPT_UINTEGER(0, "max-stack", &sched.max_stack,
3405		   "Maximum number of functions to display backtrace."),
3406	OPT_STRING(0, "symfs", &symbol_conf.symfs, "directory",
3407		    "Look for files with symbols relative to this directory"),
3408	OPT_BOOLEAN('s', "summary", &sched.summary_only,
3409		    "Show only syscall summary with statistics"),
3410	OPT_BOOLEAN('S', "with-summary", &sched.summary,
3411		    "Show all syscalls and summary with statistics"),
3412	OPT_BOOLEAN('w', "wakeups", &sched.show_wakeups, "Show wakeup events"),
3413	OPT_BOOLEAN('n', "next", &sched.show_next, "Show next task"),
3414	OPT_BOOLEAN('M', "migrations", &sched.show_migrations, "Show migration events"),
3415	OPT_BOOLEAN('V', "cpu-visual", &sched.show_cpu_visual, "Add CPU visual"),
3416	OPT_BOOLEAN('I', "idle-hist", &sched.idle_hist, "Show idle events only"),
3417	OPT_STRING(0, "time", &sched.time_str, "str",
3418		   "Time span for analysis (start,stop)"),
3419	OPT_BOOLEAN(0, "state", &sched.show_state, "Show task state when sched-out"),
3420	OPT_STRING('p', "pid", &symbol_conf.pid_list_str, "pid[,pid...]",
3421		   "analyze events only for given process id(s)"),
3422	OPT_STRING('t', "tid", &symbol_conf.tid_list_str, "tid[,tid...]",
3423		   "analyze events only for given thread id(s)"),
 
3424	OPT_PARENT(sched_options)
3425	};
3426
3427	const char * const latency_usage[] = {
3428		"perf sched latency [<options>]",
3429		NULL
3430	};
3431	const char * const replay_usage[] = {
3432		"perf sched replay [<options>]",
3433		NULL
3434	};
3435	const char * const map_usage[] = {
3436		"perf sched map [<options>]",
3437		NULL
3438	};
3439	const char * const timehist_usage[] = {
3440		"perf sched timehist [<options>]",
3441		NULL
3442	};
3443	const char *const sched_subcommands[] = { "record", "latency", "map",
3444						  "replay", "script",
3445						  "timehist", NULL };
3446	const char *sched_usage[] = {
3447		NULL,
3448		NULL
3449	};
3450	struct trace_sched_handler lat_ops  = {
3451		.wakeup_event	    = latency_wakeup_event,
3452		.switch_event	    = latency_switch_event,
3453		.runtime_event	    = latency_runtime_event,
3454		.migrate_task_event = latency_migrate_task_event,
3455	};
3456	struct trace_sched_handler map_ops  = {
3457		.switch_event	    = map_switch_event,
3458	};
3459	struct trace_sched_handler replay_ops  = {
3460		.wakeup_event	    = replay_wakeup_event,
3461		.switch_event	    = replay_switch_event,
3462		.fork_event	    = replay_fork_event,
3463	};
3464	unsigned int i;
 
3465
3466	for (i = 0; i < ARRAY_SIZE(sched.curr_pid); i++)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3467		sched.curr_pid[i] = -1;
3468
3469	argc = parse_options_subcommand(argc, argv, sched_options, sched_subcommands,
3470					sched_usage, PARSE_OPT_STOP_AT_NON_OPTION);
3471	if (!argc)
3472		usage_with_options(sched_usage, sched_options);
3473
3474	/*
3475	 * Aliased to 'perf script' for now:
3476	 */
3477	if (!strcmp(argv[0], "script"))
3478		return cmd_script(argc, argv);
3479
3480	if (!strncmp(argv[0], "rec", 3)) {
3481		return __cmd_record(argc, argv);
3482	} else if (!strncmp(argv[0], "lat", 3)) {
3483		sched.tp_handler = &lat_ops;
3484		if (argc > 1) {
3485			argc = parse_options(argc, argv, latency_options, latency_usage, 0);
3486			if (argc)
3487				usage_with_options(latency_usage, latency_options);
3488		}
3489		setup_sorting(&sched, latency_options, latency_usage);
3490		return perf_sched__lat(&sched);
3491	} else if (!strcmp(argv[0], "map")) {
3492		if (argc) {
3493			argc = parse_options(argc, argv, map_options, map_usage, 0);
3494			if (argc)
3495				usage_with_options(map_usage, map_options);
3496		}
3497		sched.tp_handler = &map_ops;
3498		setup_sorting(&sched, latency_options, latency_usage);
3499		return perf_sched__map(&sched);
3500	} else if (!strncmp(argv[0], "rep", 3)) {
3501		sched.tp_handler = &replay_ops;
3502		if (argc) {
3503			argc = parse_options(argc, argv, replay_options, replay_usage, 0);
3504			if (argc)
3505				usage_with_options(replay_usage, replay_options);
3506		}
3507		return perf_sched__replay(&sched);
3508	} else if (!strcmp(argv[0], "timehist")) {
3509		if (argc) {
3510			argc = parse_options(argc, argv, timehist_options,
3511					     timehist_usage, 0);
3512			if (argc)
3513				usage_with_options(timehist_usage, timehist_options);
3514		}
3515		if ((sched.show_wakeups || sched.show_next) &&
3516		    sched.summary_only) {
3517			pr_err(" Error: -s and -[n|w] are mutually exclusive.\n");
3518			parse_options_usage(timehist_usage, timehist_options, "s", true);
3519			if (sched.show_wakeups)
3520				parse_options_usage(NULL, timehist_options, "w", true);
3521			if (sched.show_next)
3522				parse_options_usage(NULL, timehist_options, "n", true);
3523			return -EINVAL;
 
3524		}
 
 
 
3525
3526		return perf_sched__timehist(&sched);
3527	} else {
3528		usage_with_options(sched_usage, sched_options);
3529	}
3530
3531	return 0;
 
 
 
 
 
 
 
3532}
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2#include "builtin.h"
   3#include "perf-sys.h"
   4
   5#include "util/cpumap.h"
   6#include "util/evlist.h"
 
   7#include "util/evsel.h"
   8#include "util/evsel_fprintf.h"
   9#include "util/mutex.h"
  10#include "util/symbol.h"
  11#include "util/thread.h"
  12#include "util/header.h"
  13#include "util/session.h"
  14#include "util/tool.h"
  15#include "util/cloexec.h"
  16#include "util/thread_map.h"
  17#include "util/color.h"
  18#include "util/stat.h"
  19#include "util/string2.h"
  20#include "util/callchain.h"
  21#include "util/time-utils.h"
  22
  23#include <subcmd/pager.h>
  24#include <subcmd/parse-options.h>
  25#include "util/trace-event.h"
  26
  27#include "util/debug.h"
  28#include "util/event.h"
  29#include "util/util.h"
  30
  31#include <linux/kernel.h>
  32#include <linux/log2.h>
  33#include <linux/zalloc.h>
  34#include <sys/prctl.h>
  35#include <sys/resource.h>
  36#include <inttypes.h>
  37
  38#include <errno.h>
  39#include <semaphore.h>
  40#include <pthread.h>
  41#include <math.h>
  42#include <api/fs/fs.h>
  43#include <perf/cpumap.h>
  44#include <linux/time64.h>
  45#include <linux/err.h>
  46
  47#include <linux/ctype.h>
  48
  49#define PR_SET_NAME		15               /* Set process name */
  50#define MAX_CPUS		4096
  51#define COMM_LEN		20
  52#define SYM_LEN			129
  53#define MAX_PID			1024000
  54
  55static const char *cpu_list;
  56static DECLARE_BITMAP(cpu_bitmap, MAX_NR_CPUS);
  57
  58struct sched_atom;
  59
  60struct task_desc {
  61	unsigned long		nr;
  62	unsigned long		pid;
  63	char			comm[COMM_LEN];
  64
  65	unsigned long		nr_events;
  66	unsigned long		curr_event;
  67	struct sched_atom	**atoms;
  68
  69	pthread_t		thread;
  70	sem_t			sleep_sem;
  71
  72	sem_t			ready_for_work;
  73	sem_t			work_done_sem;
  74
  75	u64			cpu_usage;
  76};
  77
  78enum sched_event_type {
  79	SCHED_EVENT_RUN,
  80	SCHED_EVENT_SLEEP,
  81	SCHED_EVENT_WAKEUP,
  82	SCHED_EVENT_MIGRATION,
  83};
  84
  85struct sched_atom {
  86	enum sched_event_type	type;
  87	int			specific_wait;
  88	u64			timestamp;
  89	u64			duration;
  90	unsigned long		nr;
  91	sem_t			*wait_sem;
  92	struct task_desc	*wakee;
  93};
  94
  95#define TASK_STATE_TO_CHAR_STR "RSDTtZXxKWP"
  96
  97/* task state bitmask, copied from include/linux/sched.h */
  98#define TASK_RUNNING		0
  99#define TASK_INTERRUPTIBLE	1
 100#define TASK_UNINTERRUPTIBLE	2
 101#define __TASK_STOPPED		4
 102#define __TASK_TRACED		8
 103/* in tsk->exit_state */
 104#define EXIT_DEAD		16
 105#define EXIT_ZOMBIE		32
 106#define EXIT_TRACE		(EXIT_ZOMBIE | EXIT_DEAD)
 107/* in tsk->state again */
 108#define TASK_DEAD		64
 109#define TASK_WAKEKILL		128
 110#define TASK_WAKING		256
 111#define TASK_PARKED		512
 112
 113enum thread_state {
 114	THREAD_SLEEPING = 0,
 115	THREAD_WAIT_CPU,
 116	THREAD_SCHED_IN,
 117	THREAD_IGNORE
 118};
 119
 120struct work_atom {
 121	struct list_head	list;
 122	enum thread_state	state;
 123	u64			sched_out_time;
 124	u64			wake_up_time;
 125	u64			sched_in_time;
 126	u64			runtime;
 127};
 128
 129struct work_atoms {
 130	struct list_head	work_list;
 131	struct thread		*thread;
 132	struct rb_node		node;
 133	u64			max_lat;
 134	u64			max_lat_start;
 135	u64			max_lat_end;
 136	u64			total_lat;
 137	u64			nb_atoms;
 138	u64			total_runtime;
 139	int			num_merged;
 140};
 141
 142typedef int (*sort_fn_t)(struct work_atoms *, struct work_atoms *);
 143
 144struct perf_sched;
 145
 146struct trace_sched_handler {
 147	int (*switch_event)(struct perf_sched *sched, struct evsel *evsel,
 148			    struct perf_sample *sample, struct machine *machine);
 149
 150	int (*runtime_event)(struct perf_sched *sched, struct evsel *evsel,
 151			     struct perf_sample *sample, struct machine *machine);
 152
 153	int (*wakeup_event)(struct perf_sched *sched, struct evsel *evsel,
 154			    struct perf_sample *sample, struct machine *machine);
 155
 156	/* PERF_RECORD_FORK event, not sched_process_fork tracepoint */
 157	int (*fork_event)(struct perf_sched *sched, union perf_event *event,
 158			  struct machine *machine);
 159
 160	int (*migrate_task_event)(struct perf_sched *sched,
 161				  struct evsel *evsel,
 162				  struct perf_sample *sample,
 163				  struct machine *machine);
 164};
 165
 166#define COLOR_PIDS PERF_COLOR_BLUE
 167#define COLOR_CPUS PERF_COLOR_BG_RED
 168
 169struct perf_sched_map {
 170	DECLARE_BITMAP(comp_cpus_mask, MAX_CPUS);
 171	struct perf_cpu		*comp_cpus;
 172	bool			 comp;
 173	struct perf_thread_map *color_pids;
 174	const char		*color_pids_str;
 175	struct perf_cpu_map	*color_cpus;
 176	const char		*color_cpus_str;
 177	struct perf_cpu_map	*cpus;
 178	const char		*cpus_str;
 179};
 180
 181struct perf_sched {
 182	struct perf_tool tool;
 183	const char	 *sort_order;
 184	unsigned long	 nr_tasks;
 185	struct task_desc **pid_to_task;
 186	struct task_desc **tasks;
 187	const struct trace_sched_handler *tp_handler;
 188	struct mutex	 start_work_mutex;
 189	struct mutex	 work_done_wait_mutex;
 190	int		 profile_cpu;
 191/*
 192 * Track the current task - that way we can know whether there's any
 193 * weird events, such as a task being switched away that is not current.
 194 */
 195	struct perf_cpu	 max_cpu;
 196	u32		 *curr_pid;
 197	struct thread	 **curr_thread;
 198	char		 next_shortname1;
 199	char		 next_shortname2;
 200	unsigned int	 replay_repeat;
 201	unsigned long	 nr_run_events;
 202	unsigned long	 nr_sleep_events;
 203	unsigned long	 nr_wakeup_events;
 204	unsigned long	 nr_sleep_corrections;
 205	unsigned long	 nr_run_events_optimized;
 206	unsigned long	 targetless_wakeups;
 207	unsigned long	 multitarget_wakeups;
 208	unsigned long	 nr_runs;
 209	unsigned long	 nr_timestamps;
 210	unsigned long	 nr_unordered_timestamps;
 211	unsigned long	 nr_context_switch_bugs;
 212	unsigned long	 nr_events;
 213	unsigned long	 nr_lost_chunks;
 214	unsigned long	 nr_lost_events;
 215	u64		 run_measurement_overhead;
 216	u64		 sleep_measurement_overhead;
 217	u64		 start_time;
 218	u64		 cpu_usage;
 219	u64		 runavg_cpu_usage;
 220	u64		 parent_cpu_usage;
 221	u64		 runavg_parent_cpu_usage;
 222	u64		 sum_runtime;
 223	u64		 sum_fluct;
 224	u64		 run_avg;
 225	u64		 all_runtime;
 226	u64		 all_count;
 227	u64		 *cpu_last_switched;
 228	struct rb_root_cached atom_root, sorted_atom_root, merged_atom_root;
 229	struct list_head sort_list, cmp_pid;
 230	bool force;
 231	bool skip_merge;
 232	struct perf_sched_map map;
 233
 234	/* options for timehist command */
 235	bool		summary;
 236	bool		summary_only;
 237	bool		idle_hist;
 238	bool		show_callchain;
 239	unsigned int	max_stack;
 240	bool		show_cpu_visual;
 241	bool		show_wakeups;
 242	bool		show_next;
 243	bool		show_migrations;
 244	bool		show_state;
 245	u64		skipped_samples;
 246	const char	*time_str;
 247	struct perf_time_interval ptime;
 248	struct perf_time_interval hist_time;
 249	volatile bool   thread_funcs_exit;
 250};
 251
 252/* per thread run time data */
 253struct thread_runtime {
 254	u64 last_time;      /* time of previous sched in/out event */
 255	u64 dt_run;         /* run time */
 256	u64 dt_sleep;       /* time between CPU access by sleep (off cpu) */
 257	u64 dt_iowait;      /* time between CPU access by iowait (off cpu) */
 258	u64 dt_preempt;     /* time between CPU access by preempt (off cpu) */
 259	u64 dt_delay;       /* time between wakeup and sched-in */
 260	u64 ready_to_run;   /* time of wakeup */
 261
 262	struct stats run_stats;
 263	u64 total_run_time;
 264	u64 total_sleep_time;
 265	u64 total_iowait_time;
 266	u64 total_preempt_time;
 267	u64 total_delay_time;
 268
 269	int last_state;
 270
 271	char shortname[3];
 272	bool comm_changed;
 273
 274	u64 migrations;
 275};
 276
 277/* per event run time data */
 278struct evsel_runtime {
 279	u64 *last_time; /* time this event was last seen per cpu */
 280	u32 ncpu;       /* highest cpu slot allocated */
 281};
 282
 283/* per cpu idle time data */
 284struct idle_thread_runtime {
 285	struct thread_runtime	tr;
 286	struct thread		*last_thread;
 287	struct rb_root_cached	sorted_root;
 288	struct callchain_root	callchain;
 289	struct callchain_cursor	cursor;
 290};
 291
 292/* track idle times per cpu */
 293static struct thread **idle_threads;
 294static int idle_max_cpu;
 295static char idle_comm[] = "<idle>";
 296
 297static u64 get_nsecs(void)
 298{
 299	struct timespec ts;
 300
 301	clock_gettime(CLOCK_MONOTONIC, &ts);
 302
 303	return ts.tv_sec * NSEC_PER_SEC + ts.tv_nsec;
 304}
 305
 306static void burn_nsecs(struct perf_sched *sched, u64 nsecs)
 307{
 308	u64 T0 = get_nsecs(), T1;
 309
 310	do {
 311		T1 = get_nsecs();
 312	} while (T1 + sched->run_measurement_overhead < T0 + nsecs);
 313}
 314
 315static void sleep_nsecs(u64 nsecs)
 316{
 317	struct timespec ts;
 318
 319	ts.tv_nsec = nsecs % 999999999;
 320	ts.tv_sec = nsecs / 999999999;
 321
 322	nanosleep(&ts, NULL);
 323}
 324
 325static void calibrate_run_measurement_overhead(struct perf_sched *sched)
 326{
 327	u64 T0, T1, delta, min_delta = NSEC_PER_SEC;
 328	int i;
 329
 330	for (i = 0; i < 10; i++) {
 331		T0 = get_nsecs();
 332		burn_nsecs(sched, 0);
 333		T1 = get_nsecs();
 334		delta = T1-T0;
 335		min_delta = min(min_delta, delta);
 336	}
 337	sched->run_measurement_overhead = min_delta;
 338
 339	printf("run measurement overhead: %" PRIu64 " nsecs\n", min_delta);
 340}
 341
 342static void calibrate_sleep_measurement_overhead(struct perf_sched *sched)
 343{
 344	u64 T0, T1, delta, min_delta = NSEC_PER_SEC;
 345	int i;
 346
 347	for (i = 0; i < 10; i++) {
 348		T0 = get_nsecs();
 349		sleep_nsecs(10000);
 350		T1 = get_nsecs();
 351		delta = T1-T0;
 352		min_delta = min(min_delta, delta);
 353	}
 354	min_delta -= 10000;
 355	sched->sleep_measurement_overhead = min_delta;
 356
 357	printf("sleep measurement overhead: %" PRIu64 " nsecs\n", min_delta);
 358}
 359
 360static struct sched_atom *
 361get_new_event(struct task_desc *task, u64 timestamp)
 362{
 363	struct sched_atom *event = zalloc(sizeof(*event));
 364	unsigned long idx = task->nr_events;
 365	size_t size;
 366
 367	event->timestamp = timestamp;
 368	event->nr = idx;
 369
 370	task->nr_events++;
 371	size = sizeof(struct sched_atom *) * task->nr_events;
 372	task->atoms = realloc(task->atoms, size);
 373	BUG_ON(!task->atoms);
 374
 375	task->atoms[idx] = event;
 376
 377	return event;
 378}
 379
 380static struct sched_atom *last_event(struct task_desc *task)
 381{
 382	if (!task->nr_events)
 383		return NULL;
 384
 385	return task->atoms[task->nr_events - 1];
 386}
 387
 388static void add_sched_event_run(struct perf_sched *sched, struct task_desc *task,
 389				u64 timestamp, u64 duration)
 390{
 391	struct sched_atom *event, *curr_event = last_event(task);
 392
 393	/*
 394	 * optimize an existing RUN event by merging this one
 395	 * to it:
 396	 */
 397	if (curr_event && curr_event->type == SCHED_EVENT_RUN) {
 398		sched->nr_run_events_optimized++;
 399		curr_event->duration += duration;
 400		return;
 401	}
 402
 403	event = get_new_event(task, timestamp);
 404
 405	event->type = SCHED_EVENT_RUN;
 406	event->duration = duration;
 407
 408	sched->nr_run_events++;
 409}
 410
 411static void add_sched_event_wakeup(struct perf_sched *sched, struct task_desc *task,
 412				   u64 timestamp, struct task_desc *wakee)
 413{
 414	struct sched_atom *event, *wakee_event;
 415
 416	event = get_new_event(task, timestamp);
 417	event->type = SCHED_EVENT_WAKEUP;
 418	event->wakee = wakee;
 419
 420	wakee_event = last_event(wakee);
 421	if (!wakee_event || wakee_event->type != SCHED_EVENT_SLEEP) {
 422		sched->targetless_wakeups++;
 423		return;
 424	}
 425	if (wakee_event->wait_sem) {
 426		sched->multitarget_wakeups++;
 427		return;
 428	}
 429
 430	wakee_event->wait_sem = zalloc(sizeof(*wakee_event->wait_sem));
 431	sem_init(wakee_event->wait_sem, 0, 0);
 432	wakee_event->specific_wait = 1;
 433	event->wait_sem = wakee_event->wait_sem;
 434
 435	sched->nr_wakeup_events++;
 436}
 437
 438static void add_sched_event_sleep(struct perf_sched *sched, struct task_desc *task,
 439				  u64 timestamp, u64 task_state __maybe_unused)
 440{
 441	struct sched_atom *event = get_new_event(task, timestamp);
 442
 443	event->type = SCHED_EVENT_SLEEP;
 444
 445	sched->nr_sleep_events++;
 446}
 447
 448static struct task_desc *register_pid(struct perf_sched *sched,
 449				      unsigned long pid, const char *comm)
 450{
 451	struct task_desc *task;
 452	static int pid_max;
 453
 454	if (sched->pid_to_task == NULL) {
 455		if (sysctl__read_int("kernel/pid_max", &pid_max) < 0)
 456			pid_max = MAX_PID;
 457		BUG_ON((sched->pid_to_task = calloc(pid_max, sizeof(struct task_desc *))) == NULL);
 458	}
 459	if (pid >= (unsigned long)pid_max) {
 460		BUG_ON((sched->pid_to_task = realloc(sched->pid_to_task, (pid + 1) *
 461			sizeof(struct task_desc *))) == NULL);
 462		while (pid >= (unsigned long)pid_max)
 463			sched->pid_to_task[pid_max++] = NULL;
 464	}
 465
 466	task = sched->pid_to_task[pid];
 467
 468	if (task)
 469		return task;
 470
 471	task = zalloc(sizeof(*task));
 472	task->pid = pid;
 473	task->nr = sched->nr_tasks;
 474	strcpy(task->comm, comm);
 475	/*
 476	 * every task starts in sleeping state - this gets ignored
 477	 * if there's no wakeup pointing to this sleep state:
 478	 */
 479	add_sched_event_sleep(sched, task, 0, 0);
 480
 481	sched->pid_to_task[pid] = task;
 482	sched->nr_tasks++;
 483	sched->tasks = realloc(sched->tasks, sched->nr_tasks * sizeof(struct task_desc *));
 484	BUG_ON(!sched->tasks);
 485	sched->tasks[task->nr] = task;
 486
 487	if (verbose > 0)
 488		printf("registered task #%ld, PID %ld (%s)\n", sched->nr_tasks, pid, comm);
 489
 490	return task;
 491}
 492
 493
 494static void print_task_traces(struct perf_sched *sched)
 495{
 496	struct task_desc *task;
 497	unsigned long i;
 498
 499	for (i = 0; i < sched->nr_tasks; i++) {
 500		task = sched->tasks[i];
 501		printf("task %6ld (%20s:%10ld), nr_events: %ld\n",
 502			task->nr, task->comm, task->pid, task->nr_events);
 503	}
 504}
 505
 506static void add_cross_task_wakeups(struct perf_sched *sched)
 507{
 508	struct task_desc *task1, *task2;
 509	unsigned long i, j;
 510
 511	for (i = 0; i < sched->nr_tasks; i++) {
 512		task1 = sched->tasks[i];
 513		j = i + 1;
 514		if (j == sched->nr_tasks)
 515			j = 0;
 516		task2 = sched->tasks[j];
 517		add_sched_event_wakeup(sched, task1, 0, task2);
 518	}
 519}
 520
 521static void perf_sched__process_event(struct perf_sched *sched,
 522				      struct sched_atom *atom)
 523{
 524	int ret = 0;
 525
 526	switch (atom->type) {
 527		case SCHED_EVENT_RUN:
 528			burn_nsecs(sched, atom->duration);
 529			break;
 530		case SCHED_EVENT_SLEEP:
 531			if (atom->wait_sem)
 532				ret = sem_wait(atom->wait_sem);
 533			BUG_ON(ret);
 534			break;
 535		case SCHED_EVENT_WAKEUP:
 536			if (atom->wait_sem)
 537				ret = sem_post(atom->wait_sem);
 538			BUG_ON(ret);
 539			break;
 540		case SCHED_EVENT_MIGRATION:
 541			break;
 542		default:
 543			BUG_ON(1);
 544	}
 545}
 546
 547static u64 get_cpu_usage_nsec_parent(void)
 548{
 549	struct rusage ru;
 550	u64 sum;
 551	int err;
 552
 553	err = getrusage(RUSAGE_SELF, &ru);
 554	BUG_ON(err);
 555
 556	sum =  ru.ru_utime.tv_sec * NSEC_PER_SEC + ru.ru_utime.tv_usec * NSEC_PER_USEC;
 557	sum += ru.ru_stime.tv_sec * NSEC_PER_SEC + ru.ru_stime.tv_usec * NSEC_PER_USEC;
 558
 559	return sum;
 560}
 561
 562static int self_open_counters(struct perf_sched *sched, unsigned long cur_task)
 563{
 564	struct perf_event_attr attr;
 565	char sbuf[STRERR_BUFSIZE], info[STRERR_BUFSIZE];
 566	int fd;
 567	struct rlimit limit;
 568	bool need_privilege = false;
 569
 570	memset(&attr, 0, sizeof(attr));
 571
 572	attr.type = PERF_TYPE_SOFTWARE;
 573	attr.config = PERF_COUNT_SW_TASK_CLOCK;
 574
 575force_again:
 576	fd = sys_perf_event_open(&attr, 0, -1, -1,
 577				 perf_event_open_cloexec_flag());
 578
 579	if (fd < 0) {
 580		if (errno == EMFILE) {
 581			if (sched->force) {
 582				BUG_ON(getrlimit(RLIMIT_NOFILE, &limit) == -1);
 583				limit.rlim_cur += sched->nr_tasks - cur_task;
 584				if (limit.rlim_cur > limit.rlim_max) {
 585					limit.rlim_max = limit.rlim_cur;
 586					need_privilege = true;
 587				}
 588				if (setrlimit(RLIMIT_NOFILE, &limit) == -1) {
 589					if (need_privilege && errno == EPERM)
 590						strcpy(info, "Need privilege\n");
 591				} else
 592					goto force_again;
 593			} else
 594				strcpy(info, "Have a try with -f option\n");
 595		}
 596		pr_err("Error: sys_perf_event_open() syscall returned "
 597		       "with %d (%s)\n%s", fd,
 598		       str_error_r(errno, sbuf, sizeof(sbuf)), info);
 599		exit(EXIT_FAILURE);
 600	}
 601	return fd;
 602}
 603
 604static u64 get_cpu_usage_nsec_self(int fd)
 605{
 606	u64 runtime;
 607	int ret;
 608
 609	ret = read(fd, &runtime, sizeof(runtime));
 610	BUG_ON(ret != sizeof(runtime));
 611
 612	return runtime;
 613}
 614
 615struct sched_thread_parms {
 616	struct task_desc  *task;
 617	struct perf_sched *sched;
 618	int fd;
 619};
 620
 621static void *thread_func(void *ctx)
 622{
 623	struct sched_thread_parms *parms = ctx;
 624	struct task_desc *this_task = parms->task;
 625	struct perf_sched *sched = parms->sched;
 626	u64 cpu_usage_0, cpu_usage_1;
 627	unsigned long i, ret;
 628	char comm2[22];
 629	int fd = parms->fd;
 630
 631	zfree(&parms);
 632
 633	sprintf(comm2, ":%s", this_task->comm);
 634	prctl(PR_SET_NAME, comm2);
 635	if (fd < 0)
 636		return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 637
 638	while (!sched->thread_funcs_exit) {
 639		ret = sem_post(&this_task->ready_for_work);
 640		BUG_ON(ret);
 641		mutex_lock(&sched->start_work_mutex);
 642		mutex_unlock(&sched->start_work_mutex);
 643
 644		cpu_usage_0 = get_cpu_usage_nsec_self(fd);
 645
 646		for (i = 0; i < this_task->nr_events; i++) {
 647			this_task->curr_event = i;
 648			perf_sched__process_event(sched, this_task->atoms[i]);
 649		}
 650
 651		cpu_usage_1 = get_cpu_usage_nsec_self(fd);
 652		this_task->cpu_usage = cpu_usage_1 - cpu_usage_0;
 653		ret = sem_post(&this_task->work_done_sem);
 654		BUG_ON(ret);
 655
 656		mutex_lock(&sched->work_done_wait_mutex);
 657		mutex_unlock(&sched->work_done_wait_mutex);
 658	}
 659	return NULL;
 660}
 661
 662static void create_tasks(struct perf_sched *sched)
 663	EXCLUSIVE_LOCK_FUNCTION(sched->start_work_mutex)
 664	EXCLUSIVE_LOCK_FUNCTION(sched->work_done_wait_mutex)
 665{
 666	struct task_desc *task;
 667	pthread_attr_t attr;
 668	unsigned long i;
 669	int err;
 670
 671	err = pthread_attr_init(&attr);
 672	BUG_ON(err);
 673	err = pthread_attr_setstacksize(&attr,
 674			(size_t) max(16 * 1024, (int)PTHREAD_STACK_MIN));
 
 
 
 
 675	BUG_ON(err);
 676	mutex_lock(&sched->start_work_mutex);
 677	mutex_lock(&sched->work_done_wait_mutex);
 678	for (i = 0; i < sched->nr_tasks; i++) {
 679		struct sched_thread_parms *parms = malloc(sizeof(*parms));
 680		BUG_ON(parms == NULL);
 681		parms->task = task = sched->tasks[i];
 682		parms->sched = sched;
 683		parms->fd = self_open_counters(sched, i);
 684		sem_init(&task->sleep_sem, 0, 0);
 685		sem_init(&task->ready_for_work, 0, 0);
 686		sem_init(&task->work_done_sem, 0, 0);
 687		task->curr_event = 0;
 688		err = pthread_create(&task->thread, &attr, thread_func, parms);
 689		BUG_ON(err);
 690	}
 691}
 692
 693static void destroy_tasks(struct perf_sched *sched)
 694	UNLOCK_FUNCTION(sched->start_work_mutex)
 695	UNLOCK_FUNCTION(sched->work_done_wait_mutex)
 696{
 697	struct task_desc *task;
 698	unsigned long i;
 699	int err;
 700
 701	mutex_unlock(&sched->start_work_mutex);
 702	mutex_unlock(&sched->work_done_wait_mutex);
 703	/* Get rid of threads so they won't be upset by mutex destrunction */
 704	for (i = 0; i < sched->nr_tasks; i++) {
 705		task = sched->tasks[i];
 706		err = pthread_join(task->thread, NULL);
 707		BUG_ON(err);
 708		sem_destroy(&task->sleep_sem);
 709		sem_destroy(&task->ready_for_work);
 710		sem_destroy(&task->work_done_sem);
 711	}
 712}
 713
 714static void wait_for_tasks(struct perf_sched *sched)
 715	EXCLUSIVE_LOCKS_REQUIRED(sched->work_done_wait_mutex)
 716	EXCLUSIVE_LOCKS_REQUIRED(sched->start_work_mutex)
 717{
 718	u64 cpu_usage_0, cpu_usage_1;
 719	struct task_desc *task;
 720	unsigned long i, ret;
 721
 722	sched->start_time = get_nsecs();
 723	sched->cpu_usage = 0;
 724	mutex_unlock(&sched->work_done_wait_mutex);
 725
 726	for (i = 0; i < sched->nr_tasks; i++) {
 727		task = sched->tasks[i];
 728		ret = sem_wait(&task->ready_for_work);
 729		BUG_ON(ret);
 730		sem_init(&task->ready_for_work, 0, 0);
 731	}
 732	mutex_lock(&sched->work_done_wait_mutex);
 
 733
 734	cpu_usage_0 = get_cpu_usage_nsec_parent();
 735
 736	mutex_unlock(&sched->start_work_mutex);
 737
 738	for (i = 0; i < sched->nr_tasks; i++) {
 739		task = sched->tasks[i];
 740		ret = sem_wait(&task->work_done_sem);
 741		BUG_ON(ret);
 742		sem_init(&task->work_done_sem, 0, 0);
 743		sched->cpu_usage += task->cpu_usage;
 744		task->cpu_usage = 0;
 745	}
 746
 747	cpu_usage_1 = get_cpu_usage_nsec_parent();
 748	if (!sched->runavg_cpu_usage)
 749		sched->runavg_cpu_usage = sched->cpu_usage;
 750	sched->runavg_cpu_usage = (sched->runavg_cpu_usage * (sched->replay_repeat - 1) + sched->cpu_usage) / sched->replay_repeat;
 751
 752	sched->parent_cpu_usage = cpu_usage_1 - cpu_usage_0;
 753	if (!sched->runavg_parent_cpu_usage)
 754		sched->runavg_parent_cpu_usage = sched->parent_cpu_usage;
 755	sched->runavg_parent_cpu_usage = (sched->runavg_parent_cpu_usage * (sched->replay_repeat - 1) +
 756					 sched->parent_cpu_usage)/sched->replay_repeat;
 757
 758	mutex_lock(&sched->start_work_mutex);
 
 759
 760	for (i = 0; i < sched->nr_tasks; i++) {
 761		task = sched->tasks[i];
 762		sem_init(&task->sleep_sem, 0, 0);
 763		task->curr_event = 0;
 764	}
 765}
 766
 767static void run_one_test(struct perf_sched *sched)
 768	EXCLUSIVE_LOCKS_REQUIRED(sched->work_done_wait_mutex)
 769	EXCLUSIVE_LOCKS_REQUIRED(sched->start_work_mutex)
 770{
 771	u64 T0, T1, delta, avg_delta, fluct;
 772
 773	T0 = get_nsecs();
 774	wait_for_tasks(sched);
 775	T1 = get_nsecs();
 776
 777	delta = T1 - T0;
 778	sched->sum_runtime += delta;
 779	sched->nr_runs++;
 780
 781	avg_delta = sched->sum_runtime / sched->nr_runs;
 782	if (delta < avg_delta)
 783		fluct = avg_delta - delta;
 784	else
 785		fluct = delta - avg_delta;
 786	sched->sum_fluct += fluct;
 787	if (!sched->run_avg)
 788		sched->run_avg = delta;
 789	sched->run_avg = (sched->run_avg * (sched->replay_repeat - 1) + delta) / sched->replay_repeat;
 790
 791	printf("#%-3ld: %0.3f, ", sched->nr_runs, (double)delta / NSEC_PER_MSEC);
 792
 793	printf("ravg: %0.2f, ", (double)sched->run_avg / NSEC_PER_MSEC);
 794
 795	printf("cpu: %0.2f / %0.2f",
 796		(double)sched->cpu_usage / NSEC_PER_MSEC, (double)sched->runavg_cpu_usage / NSEC_PER_MSEC);
 797
 798#if 0
 799	/*
 800	 * rusage statistics done by the parent, these are less
 801	 * accurate than the sched->sum_exec_runtime based statistics:
 802	 */
 803	printf(" [%0.2f / %0.2f]",
 804		(double)sched->parent_cpu_usage / NSEC_PER_MSEC,
 805		(double)sched->runavg_parent_cpu_usage / NSEC_PER_MSEC);
 806#endif
 807
 808	printf("\n");
 809
 810	if (sched->nr_sleep_corrections)
 811		printf(" (%ld sleep corrections)\n", sched->nr_sleep_corrections);
 812	sched->nr_sleep_corrections = 0;
 813}
 814
 815static void test_calibrations(struct perf_sched *sched)
 816{
 817	u64 T0, T1;
 818
 819	T0 = get_nsecs();
 820	burn_nsecs(sched, NSEC_PER_MSEC);
 821	T1 = get_nsecs();
 822
 823	printf("the run test took %" PRIu64 " nsecs\n", T1 - T0);
 824
 825	T0 = get_nsecs();
 826	sleep_nsecs(NSEC_PER_MSEC);
 827	T1 = get_nsecs();
 828
 829	printf("the sleep test took %" PRIu64 " nsecs\n", T1 - T0);
 830}
 831
 832static int
 833replay_wakeup_event(struct perf_sched *sched,
 834		    struct evsel *evsel, struct perf_sample *sample,
 835		    struct machine *machine __maybe_unused)
 836{
 837	const char *comm = evsel__strval(evsel, sample, "comm");
 838	const u32 pid	 = evsel__intval(evsel, sample, "pid");
 839	struct task_desc *waker, *wakee;
 840
 841	if (verbose > 0) {
 842		printf("sched_wakeup event %p\n", evsel);
 843
 844		printf(" ... pid %d woke up %s/%d\n", sample->tid, comm, pid);
 845	}
 846
 847	waker = register_pid(sched, sample->tid, "<unknown>");
 848	wakee = register_pid(sched, pid, comm);
 849
 850	add_sched_event_wakeup(sched, waker, sample->time, wakee);
 851	return 0;
 852}
 853
 854static int replay_switch_event(struct perf_sched *sched,
 855			       struct evsel *evsel,
 856			       struct perf_sample *sample,
 857			       struct machine *machine __maybe_unused)
 858{
 859	const char *prev_comm  = evsel__strval(evsel, sample, "prev_comm"),
 860		   *next_comm  = evsel__strval(evsel, sample, "next_comm");
 861	const u32 prev_pid = evsel__intval(evsel, sample, "prev_pid"),
 862		  next_pid = evsel__intval(evsel, sample, "next_pid");
 863	const u64 prev_state = evsel__intval(evsel, sample, "prev_state");
 864	struct task_desc *prev, __maybe_unused *next;
 865	u64 timestamp0, timestamp = sample->time;
 866	int cpu = sample->cpu;
 867	s64 delta;
 868
 869	if (verbose > 0)
 870		printf("sched_switch event %p\n", evsel);
 871
 872	if (cpu >= MAX_CPUS || cpu < 0)
 873		return 0;
 874
 875	timestamp0 = sched->cpu_last_switched[cpu];
 876	if (timestamp0)
 877		delta = timestamp - timestamp0;
 878	else
 879		delta = 0;
 880
 881	if (delta < 0) {
 882		pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
 883		return -1;
 884	}
 885
 886	pr_debug(" ... switch from %s/%d to %s/%d [ran %" PRIu64 " nsecs]\n",
 887		 prev_comm, prev_pid, next_comm, next_pid, delta);
 888
 889	prev = register_pid(sched, prev_pid, prev_comm);
 890	next = register_pid(sched, next_pid, next_comm);
 891
 892	sched->cpu_last_switched[cpu] = timestamp;
 893
 894	add_sched_event_run(sched, prev, timestamp, delta);
 895	add_sched_event_sleep(sched, prev, timestamp, prev_state);
 896
 897	return 0;
 898}
 899
 900static int replay_fork_event(struct perf_sched *sched,
 901			     union perf_event *event,
 902			     struct machine *machine)
 903{
 904	struct thread *child, *parent;
 905
 906	child = machine__findnew_thread(machine, event->fork.pid,
 907					event->fork.tid);
 908	parent = machine__findnew_thread(machine, event->fork.ppid,
 909					 event->fork.ptid);
 910
 911	if (child == NULL || parent == NULL) {
 912		pr_debug("thread does not exist on fork event: child %p, parent %p\n",
 913				 child, parent);
 914		goto out_put;
 915	}
 916
 917	if (verbose > 0) {
 918		printf("fork event\n");
 919		printf("... parent: %s/%d\n", thread__comm_str(parent), thread__tid(parent));
 920		printf("...  child: %s/%d\n", thread__comm_str(child), thread__tid(child));
 921	}
 922
 923	register_pid(sched, thread__tid(parent), thread__comm_str(parent));
 924	register_pid(sched, thread__tid(child), thread__comm_str(child));
 925out_put:
 926	thread__put(child);
 927	thread__put(parent);
 928	return 0;
 929}
 930
 931struct sort_dimension {
 932	const char		*name;
 933	sort_fn_t		cmp;
 934	struct list_head	list;
 935};
 936
 937/*
 938 * handle runtime stats saved per thread
 939 */
 940static struct thread_runtime *thread__init_runtime(struct thread *thread)
 941{
 942	struct thread_runtime *r;
 943
 944	r = zalloc(sizeof(struct thread_runtime));
 945	if (!r)
 946		return NULL;
 947
 948	init_stats(&r->run_stats);
 949	thread__set_priv(thread, r);
 950
 951	return r;
 952}
 953
 954static struct thread_runtime *thread__get_runtime(struct thread *thread)
 955{
 956	struct thread_runtime *tr;
 957
 958	tr = thread__priv(thread);
 959	if (tr == NULL) {
 960		tr = thread__init_runtime(thread);
 961		if (tr == NULL)
 962			pr_debug("Failed to malloc memory for runtime data.\n");
 963	}
 964
 965	return tr;
 966}
 967
 968static int
 969thread_lat_cmp(struct list_head *list, struct work_atoms *l, struct work_atoms *r)
 970{
 971	struct sort_dimension *sort;
 972	int ret = 0;
 973
 974	BUG_ON(list_empty(list));
 975
 976	list_for_each_entry(sort, list, list) {
 977		ret = sort->cmp(l, r);
 978		if (ret)
 979			return ret;
 980	}
 981
 982	return ret;
 983}
 984
 985static struct work_atoms *
 986thread_atoms_search(struct rb_root_cached *root, struct thread *thread,
 987			 struct list_head *sort_list)
 988{
 989	struct rb_node *node = root->rb_root.rb_node;
 990	struct work_atoms key = { .thread = thread };
 991
 992	while (node) {
 993		struct work_atoms *atoms;
 994		int cmp;
 995
 996		atoms = container_of(node, struct work_atoms, node);
 997
 998		cmp = thread_lat_cmp(sort_list, &key, atoms);
 999		if (cmp > 0)
1000			node = node->rb_left;
1001		else if (cmp < 0)
1002			node = node->rb_right;
1003		else {
1004			BUG_ON(thread != atoms->thread);
1005			return atoms;
1006		}
1007	}
1008	return NULL;
1009}
1010
1011static void
1012__thread_latency_insert(struct rb_root_cached *root, struct work_atoms *data,
1013			 struct list_head *sort_list)
1014{
1015	struct rb_node **new = &(root->rb_root.rb_node), *parent = NULL;
1016	bool leftmost = true;
1017
1018	while (*new) {
1019		struct work_atoms *this;
1020		int cmp;
1021
1022		this = container_of(*new, struct work_atoms, node);
1023		parent = *new;
1024
1025		cmp = thread_lat_cmp(sort_list, data, this);
1026
1027		if (cmp > 0)
1028			new = &((*new)->rb_left);
1029		else {
1030			new = &((*new)->rb_right);
1031			leftmost = false;
1032		}
1033	}
1034
1035	rb_link_node(&data->node, parent, new);
1036	rb_insert_color_cached(&data->node, root, leftmost);
1037}
1038
1039static int thread_atoms_insert(struct perf_sched *sched, struct thread *thread)
1040{
1041	struct work_atoms *atoms = zalloc(sizeof(*atoms));
1042	if (!atoms) {
1043		pr_err("No memory at %s\n", __func__);
1044		return -1;
1045	}
1046
1047	atoms->thread = thread__get(thread);
1048	INIT_LIST_HEAD(&atoms->work_list);
1049	__thread_latency_insert(&sched->atom_root, atoms, &sched->cmp_pid);
1050	return 0;
1051}
1052
1053static char sched_out_state(u64 prev_state)
1054{
1055	const char *str = TASK_STATE_TO_CHAR_STR;
1056
1057	return str[prev_state];
1058}
1059
1060static int
1061add_sched_out_event(struct work_atoms *atoms,
1062		    char run_state,
1063		    u64 timestamp)
1064{
1065	struct work_atom *atom = zalloc(sizeof(*atom));
1066	if (!atom) {
1067		pr_err("Non memory at %s", __func__);
1068		return -1;
1069	}
1070
1071	atom->sched_out_time = timestamp;
1072
1073	if (run_state == 'R') {
1074		atom->state = THREAD_WAIT_CPU;
1075		atom->wake_up_time = atom->sched_out_time;
1076	}
1077
1078	list_add_tail(&atom->list, &atoms->work_list);
1079	return 0;
1080}
1081
1082static void
1083add_runtime_event(struct work_atoms *atoms, u64 delta,
1084		  u64 timestamp __maybe_unused)
1085{
1086	struct work_atom *atom;
1087
1088	BUG_ON(list_empty(&atoms->work_list));
1089
1090	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1091
1092	atom->runtime += delta;
1093	atoms->total_runtime += delta;
1094}
1095
1096static void
1097add_sched_in_event(struct work_atoms *atoms, u64 timestamp)
1098{
1099	struct work_atom *atom;
1100	u64 delta;
1101
1102	if (list_empty(&atoms->work_list))
1103		return;
1104
1105	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1106
1107	if (atom->state != THREAD_WAIT_CPU)
1108		return;
1109
1110	if (timestamp < atom->wake_up_time) {
1111		atom->state = THREAD_IGNORE;
1112		return;
1113	}
1114
1115	atom->state = THREAD_SCHED_IN;
1116	atom->sched_in_time = timestamp;
1117
1118	delta = atom->sched_in_time - atom->wake_up_time;
1119	atoms->total_lat += delta;
1120	if (delta > atoms->max_lat) {
1121		atoms->max_lat = delta;
1122		atoms->max_lat_start = atom->wake_up_time;
1123		atoms->max_lat_end = timestamp;
1124	}
1125	atoms->nb_atoms++;
1126}
1127
1128static int latency_switch_event(struct perf_sched *sched,
1129				struct evsel *evsel,
1130				struct perf_sample *sample,
1131				struct machine *machine)
1132{
1133	const u32 prev_pid = evsel__intval(evsel, sample, "prev_pid"),
1134		  next_pid = evsel__intval(evsel, sample, "next_pid");
1135	const u64 prev_state = evsel__intval(evsel, sample, "prev_state");
1136	struct work_atoms *out_events, *in_events;
1137	struct thread *sched_out, *sched_in;
1138	u64 timestamp0, timestamp = sample->time;
1139	int cpu = sample->cpu, err = -1;
1140	s64 delta;
1141
1142	BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1143
1144	timestamp0 = sched->cpu_last_switched[cpu];
1145	sched->cpu_last_switched[cpu] = timestamp;
1146	if (timestamp0)
1147		delta = timestamp - timestamp0;
1148	else
1149		delta = 0;
1150
1151	if (delta < 0) {
1152		pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1153		return -1;
1154	}
1155
1156	sched_out = machine__findnew_thread(machine, -1, prev_pid);
1157	sched_in = machine__findnew_thread(machine, -1, next_pid);
1158	if (sched_out == NULL || sched_in == NULL)
1159		goto out_put;
1160
1161	out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
1162	if (!out_events) {
1163		if (thread_atoms_insert(sched, sched_out))
1164			goto out_put;
1165		out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
1166		if (!out_events) {
1167			pr_err("out-event: Internal tree error");
1168			goto out_put;
1169		}
1170	}
1171	if (add_sched_out_event(out_events, sched_out_state(prev_state), timestamp))
1172		return -1;
1173
1174	in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
1175	if (!in_events) {
1176		if (thread_atoms_insert(sched, sched_in))
1177			goto out_put;
1178		in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
1179		if (!in_events) {
1180			pr_err("in-event: Internal tree error");
1181			goto out_put;
1182		}
1183		/*
1184		 * Take came in we have not heard about yet,
1185		 * add in an initial atom in runnable state:
1186		 */
1187		if (add_sched_out_event(in_events, 'R', timestamp))
1188			goto out_put;
1189	}
1190	add_sched_in_event(in_events, timestamp);
1191	err = 0;
1192out_put:
1193	thread__put(sched_out);
1194	thread__put(sched_in);
1195	return err;
1196}
1197
1198static int latency_runtime_event(struct perf_sched *sched,
1199				 struct evsel *evsel,
1200				 struct perf_sample *sample,
1201				 struct machine *machine)
1202{
1203	const u32 pid	   = evsel__intval(evsel, sample, "pid");
1204	const u64 runtime  = evsel__intval(evsel, sample, "runtime");
1205	struct thread *thread = machine__findnew_thread(machine, -1, pid);
1206	struct work_atoms *atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
1207	u64 timestamp = sample->time;
1208	int cpu = sample->cpu, err = -1;
1209
1210	if (thread == NULL)
1211		return -1;
1212
1213	BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1214	if (!atoms) {
1215		if (thread_atoms_insert(sched, thread))
1216			goto out_put;
1217		atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
1218		if (!atoms) {
1219			pr_err("in-event: Internal tree error");
1220			goto out_put;
1221		}
1222		if (add_sched_out_event(atoms, 'R', timestamp))
1223			goto out_put;
1224	}
1225
1226	add_runtime_event(atoms, runtime, timestamp);
1227	err = 0;
1228out_put:
1229	thread__put(thread);
1230	return err;
1231}
1232
1233static int latency_wakeup_event(struct perf_sched *sched,
1234				struct evsel *evsel,
1235				struct perf_sample *sample,
1236				struct machine *machine)
1237{
1238	const u32 pid	  = evsel__intval(evsel, sample, "pid");
1239	struct work_atoms *atoms;
1240	struct work_atom *atom;
1241	struct thread *wakee;
1242	u64 timestamp = sample->time;
1243	int err = -1;
1244
1245	wakee = machine__findnew_thread(machine, -1, pid);
1246	if (wakee == NULL)
1247		return -1;
1248	atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1249	if (!atoms) {
1250		if (thread_atoms_insert(sched, wakee))
1251			goto out_put;
1252		atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1253		if (!atoms) {
1254			pr_err("wakeup-event: Internal tree error");
1255			goto out_put;
1256		}
1257		if (add_sched_out_event(atoms, 'S', timestamp))
1258			goto out_put;
1259	}
1260
1261	BUG_ON(list_empty(&atoms->work_list));
1262
1263	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1264
1265	/*
1266	 * As we do not guarantee the wakeup event happens when
1267	 * task is out of run queue, also may happen when task is
1268	 * on run queue and wakeup only change ->state to TASK_RUNNING,
1269	 * then we should not set the ->wake_up_time when wake up a
1270	 * task which is on run queue.
1271	 *
1272	 * You WILL be missing events if you've recorded only
1273	 * one CPU, or are only looking at only one, so don't
1274	 * skip in this case.
1275	 */
1276	if (sched->profile_cpu == -1 && atom->state != THREAD_SLEEPING)
1277		goto out_ok;
1278
1279	sched->nr_timestamps++;
1280	if (atom->sched_out_time > timestamp) {
1281		sched->nr_unordered_timestamps++;
1282		goto out_ok;
1283	}
1284
1285	atom->state = THREAD_WAIT_CPU;
1286	atom->wake_up_time = timestamp;
1287out_ok:
1288	err = 0;
1289out_put:
1290	thread__put(wakee);
1291	return err;
1292}
1293
1294static int latency_migrate_task_event(struct perf_sched *sched,
1295				      struct evsel *evsel,
1296				      struct perf_sample *sample,
1297				      struct machine *machine)
1298{
1299	const u32 pid = evsel__intval(evsel, sample, "pid");
1300	u64 timestamp = sample->time;
1301	struct work_atoms *atoms;
1302	struct work_atom *atom;
1303	struct thread *migrant;
1304	int err = -1;
1305
1306	/*
1307	 * Only need to worry about migration when profiling one CPU.
1308	 */
1309	if (sched->profile_cpu == -1)
1310		return 0;
1311
1312	migrant = machine__findnew_thread(machine, -1, pid);
1313	if (migrant == NULL)
1314		return -1;
1315	atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1316	if (!atoms) {
1317		if (thread_atoms_insert(sched, migrant))
1318			goto out_put;
1319		register_pid(sched, thread__tid(migrant), thread__comm_str(migrant));
1320		atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1321		if (!atoms) {
1322			pr_err("migration-event: Internal tree error");
1323			goto out_put;
1324		}
1325		if (add_sched_out_event(atoms, 'R', timestamp))
1326			goto out_put;
1327	}
1328
1329	BUG_ON(list_empty(&atoms->work_list));
1330
1331	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1332	atom->sched_in_time = atom->sched_out_time = atom->wake_up_time = timestamp;
1333
1334	sched->nr_timestamps++;
1335
1336	if (atom->sched_out_time > timestamp)
1337		sched->nr_unordered_timestamps++;
1338	err = 0;
1339out_put:
1340	thread__put(migrant);
1341	return err;
1342}
1343
1344static void output_lat_thread(struct perf_sched *sched, struct work_atoms *work_list)
1345{
1346	int i;
1347	int ret;
1348	u64 avg;
1349	char max_lat_start[32], max_lat_end[32];
1350
1351	if (!work_list->nb_atoms)
1352		return;
1353	/*
1354	 * Ignore idle threads:
1355	 */
1356	if (!strcmp(thread__comm_str(work_list->thread), "swapper"))
1357		return;
1358
1359	sched->all_runtime += work_list->total_runtime;
1360	sched->all_count   += work_list->nb_atoms;
1361
1362	if (work_list->num_merged > 1) {
1363		ret = printf("  %s:(%d) ", thread__comm_str(work_list->thread),
1364			     work_list->num_merged);
1365	} else {
1366		ret = printf("  %s:%d ", thread__comm_str(work_list->thread),
1367			     thread__tid(work_list->thread));
1368	}
1369
1370	for (i = 0; i < 24 - ret; i++)
1371		printf(" ");
1372
1373	avg = work_list->total_lat / work_list->nb_atoms;
1374	timestamp__scnprintf_usec(work_list->max_lat_start, max_lat_start, sizeof(max_lat_start));
1375	timestamp__scnprintf_usec(work_list->max_lat_end, max_lat_end, sizeof(max_lat_end));
1376
1377	printf("|%11.3f ms |%9" PRIu64 " | avg:%8.3f ms | max:%8.3f ms | max start: %12s s | max end: %12s s\n",
1378	      (double)work_list->total_runtime / NSEC_PER_MSEC,
1379		 work_list->nb_atoms, (double)avg / NSEC_PER_MSEC,
1380		 (double)work_list->max_lat / NSEC_PER_MSEC,
1381		 max_lat_start, max_lat_end);
1382}
1383
1384static int pid_cmp(struct work_atoms *l, struct work_atoms *r)
1385{
1386	pid_t l_tid, r_tid;
1387
1388	if (RC_CHK_EQUAL(l->thread, r->thread))
1389		return 0;
1390	l_tid = thread__tid(l->thread);
1391	r_tid = thread__tid(r->thread);
1392	if (l_tid < r_tid)
1393		return -1;
1394	if (l_tid > r_tid)
1395		return 1;
1396	return (int)(RC_CHK_ACCESS(l->thread) - RC_CHK_ACCESS(r->thread));
1397}
1398
1399static int avg_cmp(struct work_atoms *l, struct work_atoms *r)
1400{
1401	u64 avgl, avgr;
1402
1403	if (!l->nb_atoms)
1404		return -1;
1405
1406	if (!r->nb_atoms)
1407		return 1;
1408
1409	avgl = l->total_lat / l->nb_atoms;
1410	avgr = r->total_lat / r->nb_atoms;
1411
1412	if (avgl < avgr)
1413		return -1;
1414	if (avgl > avgr)
1415		return 1;
1416
1417	return 0;
1418}
1419
1420static int max_cmp(struct work_atoms *l, struct work_atoms *r)
1421{
1422	if (l->max_lat < r->max_lat)
1423		return -1;
1424	if (l->max_lat > r->max_lat)
1425		return 1;
1426
1427	return 0;
1428}
1429
1430static int switch_cmp(struct work_atoms *l, struct work_atoms *r)
1431{
1432	if (l->nb_atoms < r->nb_atoms)
1433		return -1;
1434	if (l->nb_atoms > r->nb_atoms)
1435		return 1;
1436
1437	return 0;
1438}
1439
1440static int runtime_cmp(struct work_atoms *l, struct work_atoms *r)
1441{
1442	if (l->total_runtime < r->total_runtime)
1443		return -1;
1444	if (l->total_runtime > r->total_runtime)
1445		return 1;
1446
1447	return 0;
1448}
1449
1450static int sort_dimension__add(const char *tok, struct list_head *list)
1451{
1452	size_t i;
1453	static struct sort_dimension avg_sort_dimension = {
1454		.name = "avg",
1455		.cmp  = avg_cmp,
1456	};
1457	static struct sort_dimension max_sort_dimension = {
1458		.name = "max",
1459		.cmp  = max_cmp,
1460	};
1461	static struct sort_dimension pid_sort_dimension = {
1462		.name = "pid",
1463		.cmp  = pid_cmp,
1464	};
1465	static struct sort_dimension runtime_sort_dimension = {
1466		.name = "runtime",
1467		.cmp  = runtime_cmp,
1468	};
1469	static struct sort_dimension switch_sort_dimension = {
1470		.name = "switch",
1471		.cmp  = switch_cmp,
1472	};
1473	struct sort_dimension *available_sorts[] = {
1474		&pid_sort_dimension,
1475		&avg_sort_dimension,
1476		&max_sort_dimension,
1477		&switch_sort_dimension,
1478		&runtime_sort_dimension,
1479	};
1480
1481	for (i = 0; i < ARRAY_SIZE(available_sorts); i++) {
1482		if (!strcmp(available_sorts[i]->name, tok)) {
1483			list_add_tail(&available_sorts[i]->list, list);
1484
1485			return 0;
1486		}
1487	}
1488
1489	return -1;
1490}
1491
1492static void perf_sched__sort_lat(struct perf_sched *sched)
1493{
1494	struct rb_node *node;
1495	struct rb_root_cached *root = &sched->atom_root;
1496again:
1497	for (;;) {
1498		struct work_atoms *data;
1499		node = rb_first_cached(root);
1500		if (!node)
1501			break;
1502
1503		rb_erase_cached(node, root);
1504		data = rb_entry(node, struct work_atoms, node);
1505		__thread_latency_insert(&sched->sorted_atom_root, data, &sched->sort_list);
1506	}
1507	if (root == &sched->atom_root) {
1508		root = &sched->merged_atom_root;
1509		goto again;
1510	}
1511}
1512
1513static int process_sched_wakeup_event(struct perf_tool *tool,
1514				      struct evsel *evsel,
1515				      struct perf_sample *sample,
1516				      struct machine *machine)
1517{
1518	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1519
1520	if (sched->tp_handler->wakeup_event)
1521		return sched->tp_handler->wakeup_event(sched, evsel, sample, machine);
1522
1523	return 0;
1524}
1525
1526static int process_sched_wakeup_ignore(struct perf_tool *tool __maybe_unused,
1527				      struct evsel *evsel __maybe_unused,
1528				      struct perf_sample *sample __maybe_unused,
1529				      struct machine *machine __maybe_unused)
1530{
1531	return 0;
1532}
1533
1534union map_priv {
1535	void	*ptr;
1536	bool	 color;
1537};
1538
1539static bool thread__has_color(struct thread *thread)
1540{
1541	union map_priv priv = {
1542		.ptr = thread__priv(thread),
1543	};
1544
1545	return priv.color;
1546}
1547
1548static struct thread*
1549map__findnew_thread(struct perf_sched *sched, struct machine *machine, pid_t pid, pid_t tid)
1550{
1551	struct thread *thread = machine__findnew_thread(machine, pid, tid);
1552	union map_priv priv = {
1553		.color = false,
1554	};
1555
1556	if (!sched->map.color_pids || !thread || thread__priv(thread))
1557		return thread;
1558
1559	if (thread_map__has(sched->map.color_pids, tid))
1560		priv.color = true;
1561
1562	thread__set_priv(thread, priv.ptr);
1563	return thread;
1564}
1565
1566static int map_switch_event(struct perf_sched *sched, struct evsel *evsel,
1567			    struct perf_sample *sample, struct machine *machine)
1568{
1569	const u32 next_pid = evsel__intval(evsel, sample, "next_pid");
1570	struct thread *sched_in;
1571	struct thread_runtime *tr;
1572	int new_shortname;
1573	u64 timestamp0, timestamp = sample->time;
1574	s64 delta;
1575	int i;
1576	struct perf_cpu this_cpu = {
1577		.cpu = sample->cpu,
1578	};
1579	int cpus_nr;
1580	bool new_cpu = false;
1581	const char *color = PERF_COLOR_NORMAL;
1582	char stimestamp[32];
1583
1584	BUG_ON(this_cpu.cpu >= MAX_CPUS || this_cpu.cpu < 0);
1585
1586	if (this_cpu.cpu > sched->max_cpu.cpu)
1587		sched->max_cpu = this_cpu;
1588
1589	if (sched->map.comp) {
1590		cpus_nr = bitmap_weight(sched->map.comp_cpus_mask, MAX_CPUS);
1591		if (!__test_and_set_bit(this_cpu.cpu, sched->map.comp_cpus_mask)) {
1592			sched->map.comp_cpus[cpus_nr++] = this_cpu;
1593			new_cpu = true;
1594		}
1595	} else
1596		cpus_nr = sched->max_cpu.cpu;
1597
1598	timestamp0 = sched->cpu_last_switched[this_cpu.cpu];
1599	sched->cpu_last_switched[this_cpu.cpu] = timestamp;
1600	if (timestamp0)
1601		delta = timestamp - timestamp0;
1602	else
1603		delta = 0;
1604
1605	if (delta < 0) {
1606		pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1607		return -1;
1608	}
1609
1610	sched_in = map__findnew_thread(sched, machine, -1, next_pid);
1611	if (sched_in == NULL)
1612		return -1;
1613
1614	tr = thread__get_runtime(sched_in);
1615	if (tr == NULL) {
1616		thread__put(sched_in);
1617		return -1;
1618	}
1619
1620	sched->curr_thread[this_cpu.cpu] = thread__get(sched_in);
1621
1622	printf("  ");
1623
1624	new_shortname = 0;
1625	if (!tr->shortname[0]) {
1626		if (!strcmp(thread__comm_str(sched_in), "swapper")) {
1627			/*
1628			 * Don't allocate a letter-number for swapper:0
1629			 * as a shortname. Instead, we use '.' for it.
1630			 */
1631			tr->shortname[0] = '.';
1632			tr->shortname[1] = ' ';
1633		} else {
1634			tr->shortname[0] = sched->next_shortname1;
1635			tr->shortname[1] = sched->next_shortname2;
1636
1637			if (sched->next_shortname1 < 'Z') {
1638				sched->next_shortname1++;
1639			} else {
1640				sched->next_shortname1 = 'A';
1641				if (sched->next_shortname2 < '9')
1642					sched->next_shortname2++;
1643				else
1644					sched->next_shortname2 = '0';
1645			}
1646		}
1647		new_shortname = 1;
1648	}
1649
1650	for (i = 0; i < cpus_nr; i++) {
1651		struct perf_cpu cpu = {
1652			.cpu = sched->map.comp ? sched->map.comp_cpus[i].cpu : i,
1653		};
1654		struct thread *curr_thread = sched->curr_thread[cpu.cpu];
1655		struct thread_runtime *curr_tr;
1656		const char *pid_color = color;
1657		const char *cpu_color = color;
1658
1659		if (curr_thread && thread__has_color(curr_thread))
1660			pid_color = COLOR_PIDS;
1661
1662		if (sched->map.cpus && !perf_cpu_map__has(sched->map.cpus, cpu))
1663			continue;
1664
1665		if (sched->map.color_cpus && perf_cpu_map__has(sched->map.color_cpus, cpu))
1666			cpu_color = COLOR_CPUS;
1667
1668		if (cpu.cpu != this_cpu.cpu)
1669			color_fprintf(stdout, color, " ");
1670		else
1671			color_fprintf(stdout, cpu_color, "*");
1672
1673		if (sched->curr_thread[cpu.cpu]) {
1674			curr_tr = thread__get_runtime(sched->curr_thread[cpu.cpu]);
1675			if (curr_tr == NULL) {
1676				thread__put(sched_in);
1677				return -1;
1678			}
1679			color_fprintf(stdout, pid_color, "%2s ", curr_tr->shortname);
1680		} else
1681			color_fprintf(stdout, color, "   ");
1682	}
1683
1684	if (sched->map.cpus && !perf_cpu_map__has(sched->map.cpus, this_cpu))
1685		goto out;
1686
1687	timestamp__scnprintf_usec(timestamp, stimestamp, sizeof(stimestamp));
1688	color_fprintf(stdout, color, "  %12s secs ", stimestamp);
1689	if (new_shortname || tr->comm_changed || (verbose > 0 && thread__tid(sched_in))) {
1690		const char *pid_color = color;
1691
1692		if (thread__has_color(sched_in))
1693			pid_color = COLOR_PIDS;
1694
1695		color_fprintf(stdout, pid_color, "%s => %s:%d",
1696			tr->shortname, thread__comm_str(sched_in), thread__tid(sched_in));
1697		tr->comm_changed = false;
1698	}
1699
1700	if (sched->map.comp && new_cpu)
1701		color_fprintf(stdout, color, " (CPU %d)", this_cpu);
1702
1703out:
1704	color_fprintf(stdout, color, "\n");
1705
1706	thread__put(sched_in);
1707
1708	return 0;
1709}
1710
1711static int process_sched_switch_event(struct perf_tool *tool,
1712				      struct evsel *evsel,
1713				      struct perf_sample *sample,
1714				      struct machine *machine)
1715{
1716	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1717	int this_cpu = sample->cpu, err = 0;
1718	u32 prev_pid = evsel__intval(evsel, sample, "prev_pid"),
1719	    next_pid = evsel__intval(evsel, sample, "next_pid");
1720
1721	if (sched->curr_pid[this_cpu] != (u32)-1) {
1722		/*
1723		 * Are we trying to switch away a PID that is
1724		 * not current?
1725		 */
1726		if (sched->curr_pid[this_cpu] != prev_pid)
1727			sched->nr_context_switch_bugs++;
1728	}
1729
1730	if (sched->tp_handler->switch_event)
1731		err = sched->tp_handler->switch_event(sched, evsel, sample, machine);
1732
1733	sched->curr_pid[this_cpu] = next_pid;
1734	return err;
1735}
1736
1737static int process_sched_runtime_event(struct perf_tool *tool,
1738				       struct evsel *evsel,
1739				       struct perf_sample *sample,
1740				       struct machine *machine)
1741{
1742	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1743
1744	if (sched->tp_handler->runtime_event)
1745		return sched->tp_handler->runtime_event(sched, evsel, sample, machine);
1746
1747	return 0;
1748}
1749
1750static int perf_sched__process_fork_event(struct perf_tool *tool,
1751					  union perf_event *event,
1752					  struct perf_sample *sample,
1753					  struct machine *machine)
1754{
1755	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1756
1757	/* run the fork event through the perf machinery */
1758	perf_event__process_fork(tool, event, sample, machine);
1759
1760	/* and then run additional processing needed for this command */
1761	if (sched->tp_handler->fork_event)
1762		return sched->tp_handler->fork_event(sched, event, machine);
1763
1764	return 0;
1765}
1766
1767static int process_sched_migrate_task_event(struct perf_tool *tool,
1768					    struct evsel *evsel,
1769					    struct perf_sample *sample,
1770					    struct machine *machine)
1771{
1772	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1773
1774	if (sched->tp_handler->migrate_task_event)
1775		return sched->tp_handler->migrate_task_event(sched, evsel, sample, machine);
1776
1777	return 0;
1778}
1779
1780typedef int (*tracepoint_handler)(struct perf_tool *tool,
1781				  struct evsel *evsel,
1782				  struct perf_sample *sample,
1783				  struct machine *machine);
1784
1785static int perf_sched__process_tracepoint_sample(struct perf_tool *tool __maybe_unused,
1786						 union perf_event *event __maybe_unused,
1787						 struct perf_sample *sample,
1788						 struct evsel *evsel,
1789						 struct machine *machine)
1790{
1791	int err = 0;
1792
1793	if (evsel->handler != NULL) {
1794		tracepoint_handler f = evsel->handler;
1795		err = f(tool, evsel, sample, machine);
1796	}
1797
1798	return err;
1799}
1800
1801static int perf_sched__process_comm(struct perf_tool *tool __maybe_unused,
1802				    union perf_event *event,
1803				    struct perf_sample *sample,
1804				    struct machine *machine)
1805{
1806	struct thread *thread;
1807	struct thread_runtime *tr;
1808	int err;
1809
1810	err = perf_event__process_comm(tool, event, sample, machine);
1811	if (err)
1812		return err;
1813
1814	thread = machine__find_thread(machine, sample->pid, sample->tid);
1815	if (!thread) {
1816		pr_err("Internal error: can't find thread\n");
1817		return -1;
1818	}
1819
1820	tr = thread__get_runtime(thread);
1821	if (tr == NULL) {
1822		thread__put(thread);
1823		return -1;
1824	}
1825
1826	tr->comm_changed = true;
1827	thread__put(thread);
1828
1829	return 0;
1830}
1831
1832static int perf_sched__read_events(struct perf_sched *sched)
1833{
1834	struct evsel_str_handler handlers[] = {
1835		{ "sched:sched_switch",	      process_sched_switch_event, },
1836		{ "sched:sched_stat_runtime", process_sched_runtime_event, },
1837		{ "sched:sched_wakeup",	      process_sched_wakeup_event, },
1838		{ "sched:sched_waking",	      process_sched_wakeup_event, },
1839		{ "sched:sched_wakeup_new",   process_sched_wakeup_event, },
1840		{ "sched:sched_migrate_task", process_sched_migrate_task_event, },
1841	};
1842	struct perf_session *session;
1843	struct perf_data data = {
1844		.path  = input_name,
1845		.mode  = PERF_DATA_MODE_READ,
1846		.force = sched->force,
 
 
1847	};
1848	int rc = -1;
1849
1850	session = perf_session__new(&data, &sched->tool);
1851	if (IS_ERR(session)) {
1852		pr_debug("Error creating perf session");
1853		return PTR_ERR(session);
1854	}
1855
1856	symbol__init(&session->header.env);
1857
1858	/* prefer sched_waking if it is captured */
1859	if (evlist__find_tracepoint_by_name(session->evlist, "sched:sched_waking"))
1860		handlers[2].handler = process_sched_wakeup_ignore;
1861
1862	if (perf_session__set_tracepoints_handlers(session, handlers))
1863		goto out_delete;
1864
1865	if (perf_session__has_traces(session, "record -R")) {
1866		int err = perf_session__process_events(session);
1867		if (err) {
1868			pr_err("Failed to process events, error %d", err);
1869			goto out_delete;
1870		}
1871
1872		sched->nr_events      = session->evlist->stats.nr_events[0];
1873		sched->nr_lost_events = session->evlist->stats.total_lost;
1874		sched->nr_lost_chunks = session->evlist->stats.nr_events[PERF_RECORD_LOST];
1875	}
1876
1877	rc = 0;
1878out_delete:
1879	perf_session__delete(session);
1880	return rc;
1881}
1882
1883/*
1884 * scheduling times are printed as msec.usec
1885 */
1886static inline void print_sched_time(unsigned long long nsecs, int width)
1887{
1888	unsigned long msecs;
1889	unsigned long usecs;
1890
1891	msecs  = nsecs / NSEC_PER_MSEC;
1892	nsecs -= msecs * NSEC_PER_MSEC;
1893	usecs  = nsecs / NSEC_PER_USEC;
1894	printf("%*lu.%03lu ", width, msecs, usecs);
1895}
1896
1897/*
1898 * returns runtime data for event, allocating memory for it the
1899 * first time it is used.
1900 */
1901static struct evsel_runtime *evsel__get_runtime(struct evsel *evsel)
1902{
1903	struct evsel_runtime *r = evsel->priv;
1904
1905	if (r == NULL) {
1906		r = zalloc(sizeof(struct evsel_runtime));
1907		evsel->priv = r;
1908	}
1909
1910	return r;
1911}
1912
1913/*
1914 * save last time event was seen per cpu
1915 */
1916static void evsel__save_time(struct evsel *evsel, u64 timestamp, u32 cpu)
 
1917{
1918	struct evsel_runtime *r = evsel__get_runtime(evsel);
1919
1920	if (r == NULL)
1921		return;
1922
1923	if ((cpu >= r->ncpu) || (r->last_time == NULL)) {
1924		int i, n = __roundup_pow_of_two(cpu+1);
1925		void *p = r->last_time;
1926
1927		p = realloc(r->last_time, n * sizeof(u64));
1928		if (!p)
1929			return;
1930
1931		r->last_time = p;
1932		for (i = r->ncpu; i < n; ++i)
1933			r->last_time[i] = (u64) 0;
1934
1935		r->ncpu = n;
1936	}
1937
1938	r->last_time[cpu] = timestamp;
1939}
1940
1941/* returns last time this event was seen on the given cpu */
1942static u64 evsel__get_time(struct evsel *evsel, u32 cpu)
1943{
1944	struct evsel_runtime *r = evsel__get_runtime(evsel);
1945
1946	if ((r == NULL) || (r->last_time == NULL) || (cpu >= r->ncpu))
1947		return 0;
1948
1949	return r->last_time[cpu];
1950}
1951
1952static int comm_width = 30;
1953
1954static char *timehist_get_commstr(struct thread *thread)
1955{
1956	static char str[32];
1957	const char *comm = thread__comm_str(thread);
1958	pid_t tid = thread__tid(thread);
1959	pid_t pid = thread__pid(thread);
1960	int n;
1961
1962	if (pid == 0)
1963		n = scnprintf(str, sizeof(str), "%s", comm);
1964
1965	else if (tid != pid)
1966		n = scnprintf(str, sizeof(str), "%s[%d/%d]", comm, tid, pid);
1967
1968	else
1969		n = scnprintf(str, sizeof(str), "%s[%d]", comm, tid);
1970
1971	if (n > comm_width)
1972		comm_width = n;
1973
1974	return str;
1975}
1976
1977static void timehist_header(struct perf_sched *sched)
1978{
1979	u32 ncpus = sched->max_cpu.cpu + 1;
1980	u32 i, j;
1981
1982	printf("%15s %6s ", "time", "cpu");
1983
1984	if (sched->show_cpu_visual) {
1985		printf(" ");
1986		for (i = 0, j = 0; i < ncpus; ++i) {
1987			printf("%x", j++);
1988			if (j > 15)
1989				j = 0;
1990		}
1991		printf(" ");
1992	}
1993
1994	printf(" %-*s  %9s  %9s  %9s", comm_width,
1995		"task name", "wait time", "sch delay", "run time");
1996
1997	if (sched->show_state)
1998		printf("  %s", "state");
1999
2000	printf("\n");
2001
2002	/*
2003	 * units row
2004	 */
2005	printf("%15s %-6s ", "", "");
2006
2007	if (sched->show_cpu_visual)
2008		printf(" %*s ", ncpus, "");
2009
2010	printf(" %-*s  %9s  %9s  %9s", comm_width,
2011	       "[tid/pid]", "(msec)", "(msec)", "(msec)");
2012
2013	if (sched->show_state)
2014		printf("  %5s", "");
2015
2016	printf("\n");
2017
2018	/*
2019	 * separator
2020	 */
2021	printf("%.15s %.6s ", graph_dotted_line, graph_dotted_line);
2022
2023	if (sched->show_cpu_visual)
2024		printf(" %.*s ", ncpus, graph_dotted_line);
2025
2026	printf(" %.*s  %.9s  %.9s  %.9s", comm_width,
2027		graph_dotted_line, graph_dotted_line, graph_dotted_line,
2028		graph_dotted_line);
2029
2030	if (sched->show_state)
2031		printf("  %.5s", graph_dotted_line);
2032
2033	printf("\n");
2034}
2035
2036static char task_state_char(struct thread *thread, int state)
2037{
2038	static const char state_to_char[] = TASK_STATE_TO_CHAR_STR;
2039	unsigned bit = state ? ffs(state) : 0;
2040
2041	/* 'I' for idle */
2042	if (thread__tid(thread) == 0)
2043		return 'I';
2044
2045	return bit < sizeof(state_to_char) - 1 ? state_to_char[bit] : '?';
2046}
2047
2048static void timehist_print_sample(struct perf_sched *sched,
2049				  struct evsel *evsel,
2050				  struct perf_sample *sample,
2051				  struct addr_location *al,
2052				  struct thread *thread,
2053				  u64 t, int state)
2054{
2055	struct thread_runtime *tr = thread__priv(thread);
2056	const char *next_comm = evsel__strval(evsel, sample, "next_comm");
2057	const u32 next_pid = evsel__intval(evsel, sample, "next_pid");
2058	u32 max_cpus = sched->max_cpu.cpu + 1;
2059	char tstr[64];
2060	char nstr[30];
2061	u64 wait_time;
2062
2063	if (cpu_list && !test_bit(sample->cpu, cpu_bitmap))
2064		return;
2065
2066	timestamp__scnprintf_usec(t, tstr, sizeof(tstr));
2067	printf("%15s [%04d] ", tstr, sample->cpu);
2068
2069	if (sched->show_cpu_visual) {
2070		u32 i;
2071		char c;
2072
2073		printf(" ");
2074		for (i = 0; i < max_cpus; ++i) {
2075			/* flag idle times with 'i'; others are sched events */
2076			if (i == sample->cpu)
2077				c = (thread__tid(thread) == 0) ? 'i' : 's';
2078			else
2079				c = ' ';
2080			printf("%c", c);
2081		}
2082		printf(" ");
2083	}
2084
2085	printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2086
2087	wait_time = tr->dt_sleep + tr->dt_iowait + tr->dt_preempt;
2088	print_sched_time(wait_time, 6);
2089
2090	print_sched_time(tr->dt_delay, 6);
2091	print_sched_time(tr->dt_run, 6);
2092
2093	if (sched->show_state)
2094		printf(" %5c ", task_state_char(thread, state));
2095
2096	if (sched->show_next) {
2097		snprintf(nstr, sizeof(nstr), "next: %s[%d]", next_comm, next_pid);
2098		printf(" %-*s", comm_width, nstr);
2099	}
2100
2101	if (sched->show_wakeups && !sched->show_next)
2102		printf("  %-*s", comm_width, "");
2103
2104	if (thread__tid(thread) == 0)
2105		goto out;
2106
2107	if (sched->show_callchain)
2108		printf("  ");
2109
2110	sample__fprintf_sym(sample, al, 0,
2111			    EVSEL__PRINT_SYM | EVSEL__PRINT_ONELINE |
2112			    EVSEL__PRINT_CALLCHAIN_ARROW |
2113			    EVSEL__PRINT_SKIP_IGNORED,
2114			    get_tls_callchain_cursor(), symbol_conf.bt_stop_list,  stdout);
2115
2116out:
2117	printf("\n");
2118}
2119
2120/*
2121 * Explanation of delta-time stats:
2122 *
2123 *            t = time of current schedule out event
2124 *        tprev = time of previous sched out event
2125 *                also time of schedule-in event for current task
2126 *    last_time = time of last sched change event for current task
2127 *                (i.e, time process was last scheduled out)
2128 * ready_to_run = time of wakeup for current task
2129 *
2130 * -----|------------|------------|------------|------
2131 *    last         ready        tprev          t
2132 *    time         to run
2133 *
2134 *      |-------- dt_wait --------|
2135 *                   |- dt_delay -|-- dt_run --|
2136 *
2137 *   dt_run = run time of current task
2138 *  dt_wait = time between last schedule out event for task and tprev
2139 *            represents time spent off the cpu
2140 * dt_delay = time between wakeup and schedule-in of task
2141 */
2142
2143static void timehist_update_runtime_stats(struct thread_runtime *r,
2144					 u64 t, u64 tprev)
2145{
2146	r->dt_delay   = 0;
2147	r->dt_sleep   = 0;
2148	r->dt_iowait  = 0;
2149	r->dt_preempt = 0;
2150	r->dt_run     = 0;
2151
2152	if (tprev) {
2153		r->dt_run = t - tprev;
2154		if (r->ready_to_run) {
2155			if (r->ready_to_run > tprev)
2156				pr_debug("time travel: wakeup time for task > previous sched_switch event\n");
2157			else
2158				r->dt_delay = tprev - r->ready_to_run;
2159		}
2160
2161		if (r->last_time > tprev)
2162			pr_debug("time travel: last sched out time for task > previous sched_switch event\n");
2163		else if (r->last_time) {
2164			u64 dt_wait = tprev - r->last_time;
2165
2166			if (r->last_state == TASK_RUNNING)
2167				r->dt_preempt = dt_wait;
2168			else if (r->last_state == TASK_UNINTERRUPTIBLE)
2169				r->dt_iowait = dt_wait;
2170			else
2171				r->dt_sleep = dt_wait;
2172		}
2173	}
2174
2175	update_stats(&r->run_stats, r->dt_run);
2176
2177	r->total_run_time     += r->dt_run;
2178	r->total_delay_time   += r->dt_delay;
2179	r->total_sleep_time   += r->dt_sleep;
2180	r->total_iowait_time  += r->dt_iowait;
2181	r->total_preempt_time += r->dt_preempt;
2182}
2183
2184static bool is_idle_sample(struct perf_sample *sample,
2185			   struct evsel *evsel)
2186{
2187	/* pid 0 == swapper == idle task */
2188	if (strcmp(evsel__name(evsel), "sched:sched_switch") == 0)
2189		return evsel__intval(evsel, sample, "prev_pid") == 0;
2190
2191	return sample->pid == 0;
2192}
2193
2194static void save_task_callchain(struct perf_sched *sched,
2195				struct perf_sample *sample,
2196				struct evsel *evsel,
2197				struct machine *machine)
2198{
2199	struct callchain_cursor *cursor;
2200	struct thread *thread;
2201
2202	/* want main thread for process - has maps */
2203	thread = machine__findnew_thread(machine, sample->pid, sample->pid);
2204	if (thread == NULL) {
2205		pr_debug("Failed to get thread for pid %d.\n", sample->pid);
2206		return;
2207	}
2208
2209	if (!sched->show_callchain || sample->callchain == NULL)
2210		return;
2211
2212	cursor = get_tls_callchain_cursor();
2213
2214	if (thread__resolve_callchain(thread, cursor, evsel, sample,
2215				      NULL, NULL, sched->max_stack + 2) != 0) {
2216		if (verbose > 0)
2217			pr_err("Failed to resolve callchain. Skipping\n");
2218
2219		return;
2220	}
2221
2222	callchain_cursor_commit(cursor);
2223
2224	while (true) {
2225		struct callchain_cursor_node *node;
2226		struct symbol *sym;
2227
2228		node = callchain_cursor_current(cursor);
2229		if (node == NULL)
2230			break;
2231
2232		sym = node->ms.sym;
2233		if (sym) {
2234			if (!strcmp(sym->name, "schedule") ||
2235			    !strcmp(sym->name, "__schedule") ||
2236			    !strcmp(sym->name, "preempt_schedule"))
2237				sym->ignore = 1;
2238		}
2239
2240		callchain_cursor_advance(cursor);
2241	}
2242}
2243
2244static int init_idle_thread(struct thread *thread)
2245{
2246	struct idle_thread_runtime *itr;
2247
2248	thread__set_comm(thread, idle_comm, 0);
2249
2250	itr = zalloc(sizeof(*itr));
2251	if (itr == NULL)
2252		return -ENOMEM;
2253
2254	init_stats(&itr->tr.run_stats);
2255	callchain_init(&itr->callchain);
2256	callchain_cursor_reset(&itr->cursor);
2257	thread__set_priv(thread, itr);
2258
2259	return 0;
2260}
2261
2262/*
2263 * Track idle stats per cpu by maintaining a local thread
2264 * struct for the idle task on each cpu.
2265 */
2266static int init_idle_threads(int ncpu)
2267{
2268	int i, ret;
2269
2270	idle_threads = zalloc(ncpu * sizeof(struct thread *));
2271	if (!idle_threads)
2272		return -ENOMEM;
2273
2274	idle_max_cpu = ncpu;
2275
2276	/* allocate the actual thread struct if needed */
2277	for (i = 0; i < ncpu; ++i) {
2278		idle_threads[i] = thread__new(0, 0);
2279		if (idle_threads[i] == NULL)
2280			return -ENOMEM;
2281
2282		ret = init_idle_thread(idle_threads[i]);
2283		if (ret < 0)
2284			return ret;
2285	}
2286
2287	return 0;
2288}
2289
2290static void free_idle_threads(void)
2291{
2292	int i;
2293
2294	if (idle_threads == NULL)
2295		return;
2296
2297	for (i = 0; i < idle_max_cpu; ++i) {
2298		if ((idle_threads[i]))
2299			thread__delete(idle_threads[i]);
2300	}
2301
2302	free(idle_threads);
2303}
2304
2305static struct thread *get_idle_thread(int cpu)
2306{
2307	/*
2308	 * expand/allocate array of pointers to local thread
2309	 * structs if needed
2310	 */
2311	if ((cpu >= idle_max_cpu) || (idle_threads == NULL)) {
2312		int i, j = __roundup_pow_of_two(cpu+1);
2313		void *p;
2314
2315		p = realloc(idle_threads, j * sizeof(struct thread *));
2316		if (!p)
2317			return NULL;
2318
2319		idle_threads = (struct thread **) p;
2320		for (i = idle_max_cpu; i < j; ++i)
2321			idle_threads[i] = NULL;
2322
2323		idle_max_cpu = j;
2324	}
2325
2326	/* allocate a new thread struct if needed */
2327	if (idle_threads[cpu] == NULL) {
2328		idle_threads[cpu] = thread__new(0, 0);
2329
2330		if (idle_threads[cpu]) {
2331			if (init_idle_thread(idle_threads[cpu]) < 0)
2332				return NULL;
2333		}
2334	}
2335
2336	return idle_threads[cpu];
2337}
2338
2339static void save_idle_callchain(struct perf_sched *sched,
2340				struct idle_thread_runtime *itr,
2341				struct perf_sample *sample)
2342{
2343	struct callchain_cursor *cursor;
2344
2345	if (!sched->show_callchain || sample->callchain == NULL)
2346		return;
2347
2348	cursor = get_tls_callchain_cursor();
2349	if (cursor == NULL)
2350		return;
2351
2352	callchain_cursor__copy(&itr->cursor, cursor);
2353}
2354
2355static struct thread *timehist_get_thread(struct perf_sched *sched,
2356					  struct perf_sample *sample,
2357					  struct machine *machine,
2358					  struct evsel *evsel)
2359{
2360	struct thread *thread;
2361
2362	if (is_idle_sample(sample, evsel)) {
2363		thread = get_idle_thread(sample->cpu);
2364		if (thread == NULL)
2365			pr_err("Failed to get idle thread for cpu %d.\n", sample->cpu);
2366
2367	} else {
2368		/* there were samples with tid 0 but non-zero pid */
2369		thread = machine__findnew_thread(machine, sample->pid,
2370						 sample->tid ?: sample->pid);
2371		if (thread == NULL) {
2372			pr_debug("Failed to get thread for tid %d. skipping sample.\n",
2373				 sample->tid);
2374		}
2375
2376		save_task_callchain(sched, sample, evsel, machine);
2377		if (sched->idle_hist) {
2378			struct thread *idle;
2379			struct idle_thread_runtime *itr;
2380
2381			idle = get_idle_thread(sample->cpu);
2382			if (idle == NULL) {
2383				pr_err("Failed to get idle thread for cpu %d.\n", sample->cpu);
2384				return NULL;
2385			}
2386
2387			itr = thread__priv(idle);
2388			if (itr == NULL)
2389				return NULL;
2390
2391			itr->last_thread = thread;
2392
2393			/* copy task callchain when entering to idle */
2394			if (evsel__intval(evsel, sample, "next_pid") == 0)
2395				save_idle_callchain(sched, itr, sample);
2396		}
2397	}
2398
2399	return thread;
2400}
2401
2402static bool timehist_skip_sample(struct perf_sched *sched,
2403				 struct thread *thread,
2404				 struct evsel *evsel,
2405				 struct perf_sample *sample)
2406{
2407	bool rc = false;
2408
2409	if (thread__is_filtered(thread)) {
2410		rc = true;
2411		sched->skipped_samples++;
2412	}
2413
2414	if (sched->idle_hist) {
2415		if (strcmp(evsel__name(evsel), "sched:sched_switch"))
2416			rc = true;
2417		else if (evsel__intval(evsel, sample, "prev_pid") != 0 &&
2418			 evsel__intval(evsel, sample, "next_pid") != 0)
2419			rc = true;
2420	}
2421
2422	return rc;
2423}
2424
2425static void timehist_print_wakeup_event(struct perf_sched *sched,
2426					struct evsel *evsel,
2427					struct perf_sample *sample,
2428					struct machine *machine,
2429					struct thread *awakened)
2430{
2431	struct thread *thread;
2432	char tstr[64];
2433
2434	thread = machine__findnew_thread(machine, sample->pid, sample->tid);
2435	if (thread == NULL)
2436		return;
2437
2438	/* show wakeup unless both awakee and awaker are filtered */
2439	if (timehist_skip_sample(sched, thread, evsel, sample) &&
2440	    timehist_skip_sample(sched, awakened, evsel, sample)) {
2441		return;
2442	}
2443
2444	timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2445	printf("%15s [%04d] ", tstr, sample->cpu);
2446	if (sched->show_cpu_visual)
2447		printf(" %*s ", sched->max_cpu.cpu + 1, "");
2448
2449	printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2450
2451	/* dt spacer */
2452	printf("  %9s  %9s  %9s ", "", "", "");
2453
2454	printf("awakened: %s", timehist_get_commstr(awakened));
2455
2456	printf("\n");
2457}
2458
2459static int timehist_sched_wakeup_ignore(struct perf_tool *tool __maybe_unused,
2460					union perf_event *event __maybe_unused,
2461					struct evsel *evsel __maybe_unused,
2462					struct perf_sample *sample __maybe_unused,
2463					struct machine *machine __maybe_unused)
2464{
2465	return 0;
2466}
2467
2468static int timehist_sched_wakeup_event(struct perf_tool *tool,
2469				       union perf_event *event __maybe_unused,
2470				       struct evsel *evsel,
2471				       struct perf_sample *sample,
2472				       struct machine *machine)
2473{
2474	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2475	struct thread *thread;
2476	struct thread_runtime *tr = NULL;
2477	/* want pid of awakened task not pid in sample */
2478	const u32 pid = evsel__intval(evsel, sample, "pid");
2479
2480	thread = machine__findnew_thread(machine, 0, pid);
2481	if (thread == NULL)
2482		return -1;
2483
2484	tr = thread__get_runtime(thread);
2485	if (tr == NULL)
2486		return -1;
2487
2488	if (tr->ready_to_run == 0)
2489		tr->ready_to_run = sample->time;
2490
2491	/* show wakeups if requested */
2492	if (sched->show_wakeups &&
2493	    !perf_time__skip_sample(&sched->ptime, sample->time))
2494		timehist_print_wakeup_event(sched, evsel, sample, machine, thread);
2495
2496	return 0;
2497}
2498
2499static void timehist_print_migration_event(struct perf_sched *sched,
2500					struct evsel *evsel,
2501					struct perf_sample *sample,
2502					struct machine *machine,
2503					struct thread *migrated)
2504{
2505	struct thread *thread;
2506	char tstr[64];
2507	u32 max_cpus;
2508	u32 ocpu, dcpu;
2509
2510	if (sched->summary_only)
2511		return;
2512
2513	max_cpus = sched->max_cpu.cpu + 1;
2514	ocpu = evsel__intval(evsel, sample, "orig_cpu");
2515	dcpu = evsel__intval(evsel, sample, "dest_cpu");
2516
2517	thread = machine__findnew_thread(machine, sample->pid, sample->tid);
2518	if (thread == NULL)
2519		return;
2520
2521	if (timehist_skip_sample(sched, thread, evsel, sample) &&
2522	    timehist_skip_sample(sched, migrated, evsel, sample)) {
2523		return;
2524	}
2525
2526	timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2527	printf("%15s [%04d] ", tstr, sample->cpu);
2528
2529	if (sched->show_cpu_visual) {
2530		u32 i;
2531		char c;
2532
2533		printf("  ");
2534		for (i = 0; i < max_cpus; ++i) {
2535			c = (i == sample->cpu) ? 'm' : ' ';
2536			printf("%c", c);
2537		}
2538		printf("  ");
2539	}
2540
2541	printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2542
2543	/* dt spacer */
2544	printf("  %9s  %9s  %9s ", "", "", "");
2545
2546	printf("migrated: %s", timehist_get_commstr(migrated));
2547	printf(" cpu %d => %d", ocpu, dcpu);
2548
2549	printf("\n");
2550}
2551
2552static int timehist_migrate_task_event(struct perf_tool *tool,
2553				       union perf_event *event __maybe_unused,
2554				       struct evsel *evsel,
2555				       struct perf_sample *sample,
2556				       struct machine *machine)
2557{
2558	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2559	struct thread *thread;
2560	struct thread_runtime *tr = NULL;
2561	/* want pid of migrated task not pid in sample */
2562	const u32 pid = evsel__intval(evsel, sample, "pid");
2563
2564	thread = machine__findnew_thread(machine, 0, pid);
2565	if (thread == NULL)
2566		return -1;
2567
2568	tr = thread__get_runtime(thread);
2569	if (tr == NULL)
2570		return -1;
2571
2572	tr->migrations++;
2573
2574	/* show migrations if requested */
2575	timehist_print_migration_event(sched, evsel, sample, machine, thread);
2576
2577	return 0;
2578}
2579
2580static int timehist_sched_change_event(struct perf_tool *tool,
2581				       union perf_event *event,
2582				       struct evsel *evsel,
2583				       struct perf_sample *sample,
2584				       struct machine *machine)
2585{
2586	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2587	struct perf_time_interval *ptime = &sched->ptime;
2588	struct addr_location al;
2589	struct thread *thread;
2590	struct thread_runtime *tr = NULL;
2591	u64 tprev, t = sample->time;
2592	int rc = 0;
2593	int state = evsel__intval(evsel, sample, "prev_state");
 
2594
2595	addr_location__init(&al);
2596	if (machine__resolve(machine, &al, sample) < 0) {
2597		pr_err("problem processing %d event. skipping it\n",
2598		       event->header.type);
2599		rc = -1;
2600		goto out;
2601	}
2602
2603	thread = timehist_get_thread(sched, sample, machine, evsel);
2604	if (thread == NULL) {
2605		rc = -1;
2606		goto out;
2607	}
2608
2609	if (timehist_skip_sample(sched, thread, evsel, sample))
2610		goto out;
2611
2612	tr = thread__get_runtime(thread);
2613	if (tr == NULL) {
2614		rc = -1;
2615		goto out;
2616	}
2617
2618	tprev = evsel__get_time(evsel, sample->cpu);
2619
2620	/*
2621	 * If start time given:
2622	 * - sample time is under window user cares about - skip sample
2623	 * - tprev is under window user cares about  - reset to start of window
2624	 */
2625	if (ptime->start && ptime->start > t)
2626		goto out;
2627
2628	if (tprev && ptime->start > tprev)
2629		tprev = ptime->start;
2630
2631	/*
2632	 * If end time given:
2633	 * - previous sched event is out of window - we are done
2634	 * - sample time is beyond window user cares about - reset it
2635	 *   to close out stats for time window interest
2636	 */
2637	if (ptime->end) {
2638		if (tprev > ptime->end)
2639			goto out;
2640
2641		if (t > ptime->end)
2642			t = ptime->end;
2643	}
2644
2645	if (!sched->idle_hist || thread__tid(thread) == 0) {
2646		if (!cpu_list || test_bit(sample->cpu, cpu_bitmap))
2647			timehist_update_runtime_stats(tr, t, tprev);
2648
2649		if (sched->idle_hist) {
2650			struct idle_thread_runtime *itr = (void *)tr;
2651			struct thread_runtime *last_tr;
2652
2653			BUG_ON(thread__tid(thread) != 0);
2654
2655			if (itr->last_thread == NULL)
2656				goto out;
2657
2658			/* add current idle time as last thread's runtime */
2659			last_tr = thread__get_runtime(itr->last_thread);
2660			if (last_tr == NULL)
2661				goto out;
2662
2663			timehist_update_runtime_stats(last_tr, t, tprev);
2664			/*
2665			 * remove delta time of last thread as it's not updated
2666			 * and otherwise it will show an invalid value next
2667			 * time.  we only care total run time and run stat.
2668			 */
2669			last_tr->dt_run = 0;
2670			last_tr->dt_delay = 0;
2671			last_tr->dt_sleep = 0;
2672			last_tr->dt_iowait = 0;
2673			last_tr->dt_preempt = 0;
2674
2675			if (itr->cursor.nr)
2676				callchain_append(&itr->callchain, &itr->cursor, t - tprev);
2677
2678			itr->last_thread = NULL;
2679		}
2680	}
2681
2682	if (!sched->summary_only)
2683		timehist_print_sample(sched, evsel, sample, &al, thread, t, state);
2684
2685out:
2686	if (sched->hist_time.start == 0 && t >= ptime->start)
2687		sched->hist_time.start = t;
2688	if (ptime->end == 0 || t <= ptime->end)
2689		sched->hist_time.end = t;
2690
2691	if (tr) {
2692		/* time of this sched_switch event becomes last time task seen */
2693		tr->last_time = sample->time;
2694
2695		/* last state is used to determine where to account wait time */
2696		tr->last_state = state;
2697
2698		/* sched out event for task so reset ready to run time */
2699		tr->ready_to_run = 0;
2700	}
2701
2702	evsel__save_time(evsel, sample->time, sample->cpu);
2703
2704	addr_location__exit(&al);
2705	return rc;
2706}
2707
2708static int timehist_sched_switch_event(struct perf_tool *tool,
2709			     union perf_event *event,
2710			     struct evsel *evsel,
2711			     struct perf_sample *sample,
2712			     struct machine *machine __maybe_unused)
2713{
2714	return timehist_sched_change_event(tool, event, evsel, sample, machine);
2715}
2716
2717static int process_lost(struct perf_tool *tool __maybe_unused,
2718			union perf_event *event,
2719			struct perf_sample *sample,
2720			struct machine *machine __maybe_unused)
2721{
2722	char tstr[64];
2723
2724	timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2725	printf("%15s ", tstr);
2726	printf("lost %" PRI_lu64 " events on cpu %d\n", event->lost.lost, sample->cpu);
2727
2728	return 0;
2729}
2730
2731
2732static void print_thread_runtime(struct thread *t,
2733				 struct thread_runtime *r)
2734{
2735	double mean = avg_stats(&r->run_stats);
2736	float stddev;
2737
2738	printf("%*s   %5d  %9" PRIu64 " ",
2739	       comm_width, timehist_get_commstr(t), thread__ppid(t),
2740	       (u64) r->run_stats.n);
2741
2742	print_sched_time(r->total_run_time, 8);
2743	stddev = rel_stddev_stats(stddev_stats(&r->run_stats), mean);
2744	print_sched_time(r->run_stats.min, 6);
2745	printf(" ");
2746	print_sched_time((u64) mean, 6);
2747	printf(" ");
2748	print_sched_time(r->run_stats.max, 6);
2749	printf("  ");
2750	printf("%5.2f", stddev);
2751	printf("   %5" PRIu64, r->migrations);
2752	printf("\n");
2753}
2754
2755static void print_thread_waittime(struct thread *t,
2756				  struct thread_runtime *r)
2757{
2758	printf("%*s   %5d  %9" PRIu64 " ",
2759	       comm_width, timehist_get_commstr(t), thread__ppid(t),
2760	       (u64) r->run_stats.n);
2761
2762	print_sched_time(r->total_run_time, 8);
2763	print_sched_time(r->total_sleep_time, 6);
2764	printf(" ");
2765	print_sched_time(r->total_iowait_time, 6);
2766	printf(" ");
2767	print_sched_time(r->total_preempt_time, 6);
2768	printf(" ");
2769	print_sched_time(r->total_delay_time, 6);
2770	printf("\n");
2771}
2772
2773struct total_run_stats {
2774	struct perf_sched *sched;
2775	u64  sched_count;
2776	u64  task_count;
2777	u64  total_run_time;
2778};
2779
2780static int show_thread_runtime(struct thread *t, void *priv)
2781{
2782	struct total_run_stats *stats = priv;
2783	struct thread_runtime *r;
2784
2785	if (thread__is_filtered(t))
2786		return 0;
2787
2788	r = thread__priv(t);
2789	if (r && r->run_stats.n) {
2790		stats->task_count++;
2791		stats->sched_count += r->run_stats.n;
2792		stats->total_run_time += r->total_run_time;
2793
2794		if (stats->sched->show_state)
2795			print_thread_waittime(t, r);
2796		else
2797			print_thread_runtime(t, r);
2798	}
2799
2800	return 0;
2801}
2802
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2803static size_t callchain__fprintf_folded(FILE *fp, struct callchain_node *node)
2804{
2805	const char *sep = " <- ";
2806	struct callchain_list *chain;
2807	size_t ret = 0;
2808	char bf[1024];
2809	bool first;
2810
2811	if (node == NULL)
2812		return 0;
2813
2814	ret = callchain__fprintf_folded(fp, node->parent);
2815	first = (ret == 0);
2816
2817	list_for_each_entry(chain, &node->val, list) {
2818		if (chain->ip >= PERF_CONTEXT_MAX)
2819			continue;
2820		if (chain->ms.sym && chain->ms.sym->ignore)
2821			continue;
2822		ret += fprintf(fp, "%s%s", first ? "" : sep,
2823			       callchain_list__sym_name(chain, bf, sizeof(bf),
2824							false));
2825		first = false;
2826	}
2827
2828	return ret;
2829}
2830
2831static size_t timehist_print_idlehist_callchain(struct rb_root_cached *root)
2832{
2833	size_t ret = 0;
2834	FILE *fp = stdout;
2835	struct callchain_node *chain;
2836	struct rb_node *rb_node = rb_first_cached(root);
2837
2838	printf("  %16s  %8s  %s\n", "Idle time (msec)", "Count", "Callchains");
2839	printf("  %.16s  %.8s  %.50s\n", graph_dotted_line, graph_dotted_line,
2840	       graph_dotted_line);
2841
2842	while (rb_node) {
2843		chain = rb_entry(rb_node, struct callchain_node, rb_node);
2844		rb_node = rb_next(rb_node);
2845
2846		ret += fprintf(fp, "  ");
2847		print_sched_time(chain->hit, 12);
2848		ret += 16;  /* print_sched_time returns 2nd arg + 4 */
2849		ret += fprintf(fp, " %8d  ", chain->count);
2850		ret += callchain__fprintf_folded(fp, chain);
2851		ret += fprintf(fp, "\n");
2852	}
2853
2854	return ret;
2855}
2856
2857static void timehist_print_summary(struct perf_sched *sched,
2858				   struct perf_session *session)
2859{
2860	struct machine *m = &session->machines.host;
2861	struct total_run_stats totals;
2862	u64 task_count;
2863	struct thread *t;
2864	struct thread_runtime *r;
2865	int i;
2866	u64 hist_time = sched->hist_time.end - sched->hist_time.start;
2867
2868	memset(&totals, 0, sizeof(totals));
2869	totals.sched = sched;
2870
2871	if (sched->idle_hist) {
2872		printf("\nIdle-time summary\n");
2873		printf("%*s  parent  sched-out  ", comm_width, "comm");
2874		printf("  idle-time   min-idle    avg-idle    max-idle  stddev  migrations\n");
2875	} else if (sched->show_state) {
2876		printf("\nWait-time summary\n");
2877		printf("%*s  parent   sched-in  ", comm_width, "comm");
2878		printf("   run-time      sleep      iowait     preempt       delay\n");
2879	} else {
2880		printf("\nRuntime summary\n");
2881		printf("%*s  parent   sched-in  ", comm_width, "comm");
2882		printf("   run-time    min-run     avg-run     max-run  stddev  migrations\n");
2883	}
2884	printf("%*s            (count)  ", comm_width, "");
2885	printf("     (msec)     (msec)      (msec)      (msec)       %s\n",
2886	       sched->show_state ? "(msec)" : "%");
2887	printf("%.117s\n", graph_dotted_line);
2888
2889	machine__for_each_thread(m, show_thread_runtime, &totals);
2890	task_count = totals.task_count;
2891	if (!task_count)
2892		printf("<no still running tasks>\n");
2893
 
 
 
 
 
2894	/* CPU idle stats not tracked when samples were skipped */
2895	if (sched->skipped_samples && !sched->idle_hist)
2896		return;
2897
2898	printf("\nIdle stats:\n");
2899	for (i = 0; i < idle_max_cpu; ++i) {
2900		if (cpu_list && !test_bit(i, cpu_bitmap))
2901			continue;
2902
2903		t = idle_threads[i];
2904		if (!t)
2905			continue;
2906
2907		r = thread__priv(t);
2908		if (r && r->run_stats.n) {
2909			totals.sched_count += r->run_stats.n;
2910			printf("    CPU %2d idle for ", i);
2911			print_sched_time(r->total_run_time, 6);
2912			printf(" msec  (%6.2f%%)\n", 100.0 * r->total_run_time / hist_time);
2913		} else
2914			printf("    CPU %2d idle entire time window\n", i);
2915	}
2916
2917	if (sched->idle_hist && sched->show_callchain) {
2918		callchain_param.mode  = CHAIN_FOLDED;
2919		callchain_param.value = CCVAL_PERIOD;
2920
2921		callchain_register_param(&callchain_param);
2922
2923		printf("\nIdle stats by callchain:\n");
2924		for (i = 0; i < idle_max_cpu; ++i) {
2925			struct idle_thread_runtime *itr;
2926
2927			t = idle_threads[i];
2928			if (!t)
2929				continue;
2930
2931			itr = thread__priv(t);
2932			if (itr == NULL)
2933				continue;
2934
2935			callchain_param.sort(&itr->sorted_root.rb_root, &itr->callchain,
2936					     0, &callchain_param);
2937
2938			printf("  CPU %2d:", i);
2939			print_sched_time(itr->tr.total_run_time, 6);
2940			printf(" msec\n");
2941			timehist_print_idlehist_callchain(&itr->sorted_root);
2942			printf("\n");
2943		}
2944	}
2945
2946	printf("\n"
2947	       "    Total number of unique tasks: %" PRIu64 "\n"
2948	       "Total number of context switches: %" PRIu64 "\n",
2949	       totals.task_count, totals.sched_count);
2950
2951	printf("           Total run time (msec): ");
2952	print_sched_time(totals.total_run_time, 2);
2953	printf("\n");
2954
2955	printf("    Total scheduling time (msec): ");
2956	print_sched_time(hist_time, 2);
2957	printf(" (x %d)\n", sched->max_cpu.cpu);
2958}
2959
2960typedef int (*sched_handler)(struct perf_tool *tool,
2961			  union perf_event *event,
2962			  struct evsel *evsel,
2963			  struct perf_sample *sample,
2964			  struct machine *machine);
2965
2966static int perf_timehist__process_sample(struct perf_tool *tool,
2967					 union perf_event *event,
2968					 struct perf_sample *sample,
2969					 struct evsel *evsel,
2970					 struct machine *machine)
2971{
2972	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2973	int err = 0;
2974	struct perf_cpu this_cpu = {
2975		.cpu = sample->cpu,
2976	};
2977
2978	if (this_cpu.cpu > sched->max_cpu.cpu)
2979		sched->max_cpu = this_cpu;
2980
2981	if (evsel->handler != NULL) {
2982		sched_handler f = evsel->handler;
2983
2984		err = f(tool, event, evsel, sample, machine);
2985	}
2986
2987	return err;
2988}
2989
2990static int timehist_check_attr(struct perf_sched *sched,
2991			       struct evlist *evlist)
2992{
2993	struct evsel *evsel;
2994	struct evsel_runtime *er;
2995
2996	list_for_each_entry(evsel, &evlist->core.entries, core.node) {
2997		er = evsel__get_runtime(evsel);
2998		if (er == NULL) {
2999			pr_err("Failed to allocate memory for evsel runtime data\n");
3000			return -1;
3001		}
3002
3003		if (sched->show_callchain && !evsel__has_callchain(evsel)) {
 
3004			pr_info("Samples do not have callchains.\n");
3005			sched->show_callchain = 0;
3006			symbol_conf.use_callchain = 0;
3007		}
3008	}
3009
3010	return 0;
3011}
3012
3013static int perf_sched__timehist(struct perf_sched *sched)
3014{
3015	struct evsel_str_handler handlers[] = {
3016		{ "sched:sched_switch",       timehist_sched_switch_event, },
3017		{ "sched:sched_wakeup",	      timehist_sched_wakeup_event, },
3018		{ "sched:sched_waking",       timehist_sched_wakeup_event, },
3019		{ "sched:sched_wakeup_new",   timehist_sched_wakeup_event, },
3020	};
3021	const struct evsel_str_handler migrate_handlers[] = {
3022		{ "sched:sched_migrate_task", timehist_migrate_task_event, },
3023	};
3024	struct perf_data data = {
3025		.path  = input_name,
3026		.mode  = PERF_DATA_MODE_READ,
3027		.force = sched->force,
 
 
3028	};
3029
3030	struct perf_session *session;
3031	struct evlist *evlist;
3032	int err = -1;
3033
3034	/*
3035	 * event handlers for timehist option
3036	 */
3037	sched->tool.sample	 = perf_timehist__process_sample;
3038	sched->tool.mmap	 = perf_event__process_mmap;
3039	sched->tool.comm	 = perf_event__process_comm;
3040	sched->tool.exit	 = perf_event__process_exit;
3041	sched->tool.fork	 = perf_event__process_fork;
3042	sched->tool.lost	 = process_lost;
3043	sched->tool.attr	 = perf_event__process_attr;
3044	sched->tool.tracing_data = perf_event__process_tracing_data;
3045	sched->tool.build_id	 = perf_event__process_build_id;
3046
3047	sched->tool.ordered_events = true;
3048	sched->tool.ordering_requires_timestamps = true;
3049
3050	symbol_conf.use_callchain = sched->show_callchain;
3051
3052	session = perf_session__new(&data, &sched->tool);
3053	if (IS_ERR(session))
3054		return PTR_ERR(session);
3055
3056	if (cpu_list) {
3057		err = perf_session__cpu_bitmap(session, cpu_list, cpu_bitmap);
3058		if (err < 0)
3059			goto out;
3060	}
3061
3062	evlist = session->evlist;
3063
3064	symbol__init(&session->header.env);
3065
3066	if (perf_time__parse_str(&sched->ptime, sched->time_str) != 0) {
3067		pr_err("Invalid time string\n");
3068		return -EINVAL;
3069	}
3070
3071	if (timehist_check_attr(sched, evlist) != 0)
3072		goto out;
3073
3074	setup_pager();
3075
3076	/* prefer sched_waking if it is captured */
3077	if (evlist__find_tracepoint_by_name(session->evlist, "sched:sched_waking"))
3078		handlers[1].handler = timehist_sched_wakeup_ignore;
3079
3080	/* setup per-evsel handlers */
3081	if (perf_session__set_tracepoints_handlers(session, handlers))
3082		goto out;
3083
3084	/* sched_switch event at a minimum needs to exist */
3085	if (!evlist__find_tracepoint_by_name(session->evlist, "sched:sched_switch")) {
 
3086		pr_err("No sched_switch events found. Have you run 'perf sched record'?\n");
3087		goto out;
3088	}
3089
3090	if (sched->show_migrations &&
3091	    perf_session__set_tracepoints_handlers(session, migrate_handlers))
3092		goto out;
3093
3094	/* pre-allocate struct for per-CPU idle stats */
3095	sched->max_cpu.cpu = session->header.env.nr_cpus_online;
3096	if (sched->max_cpu.cpu == 0)
3097		sched->max_cpu.cpu = 4;
3098	if (init_idle_threads(sched->max_cpu.cpu))
3099		goto out;
3100
3101	/* summary_only implies summary option, but don't overwrite summary if set */
3102	if (sched->summary_only)
3103		sched->summary = sched->summary_only;
3104
3105	if (!sched->summary_only)
3106		timehist_header(sched);
3107
3108	err = perf_session__process_events(session);
3109	if (err) {
3110		pr_err("Failed to process events, error %d", err);
3111		goto out;
3112	}
3113
3114	sched->nr_events      = evlist->stats.nr_events[0];
3115	sched->nr_lost_events = evlist->stats.total_lost;
3116	sched->nr_lost_chunks = evlist->stats.nr_events[PERF_RECORD_LOST];
3117
3118	if (sched->summary)
3119		timehist_print_summary(sched, session);
3120
3121out:
3122	free_idle_threads();
3123	perf_session__delete(session);
3124
3125	return err;
3126}
3127
3128
3129static void print_bad_events(struct perf_sched *sched)
3130{
3131	if (sched->nr_unordered_timestamps && sched->nr_timestamps) {
3132		printf("  INFO: %.3f%% unordered timestamps (%ld out of %ld)\n",
3133			(double)sched->nr_unordered_timestamps/(double)sched->nr_timestamps*100.0,
3134			sched->nr_unordered_timestamps, sched->nr_timestamps);
3135	}
3136	if (sched->nr_lost_events && sched->nr_events) {
3137		printf("  INFO: %.3f%% lost events (%ld out of %ld, in %ld chunks)\n",
3138			(double)sched->nr_lost_events/(double)sched->nr_events * 100.0,
3139			sched->nr_lost_events, sched->nr_events, sched->nr_lost_chunks);
3140	}
3141	if (sched->nr_context_switch_bugs && sched->nr_timestamps) {
3142		printf("  INFO: %.3f%% context switch bugs (%ld out of %ld)",
3143			(double)sched->nr_context_switch_bugs/(double)sched->nr_timestamps*100.0,
3144			sched->nr_context_switch_bugs, sched->nr_timestamps);
3145		if (sched->nr_lost_events)
3146			printf(" (due to lost events?)");
3147		printf("\n");
3148	}
3149}
3150
3151static void __merge_work_atoms(struct rb_root_cached *root, struct work_atoms *data)
3152{
3153	struct rb_node **new = &(root->rb_root.rb_node), *parent = NULL;
3154	struct work_atoms *this;
3155	const char *comm = thread__comm_str(data->thread), *this_comm;
3156	bool leftmost = true;
3157
3158	while (*new) {
3159		int cmp;
3160
3161		this = container_of(*new, struct work_atoms, node);
3162		parent = *new;
3163
3164		this_comm = thread__comm_str(this->thread);
3165		cmp = strcmp(comm, this_comm);
3166		if (cmp > 0) {
3167			new = &((*new)->rb_left);
3168		} else if (cmp < 0) {
3169			new = &((*new)->rb_right);
3170			leftmost = false;
3171		} else {
3172			this->num_merged++;
3173			this->total_runtime += data->total_runtime;
3174			this->nb_atoms += data->nb_atoms;
3175			this->total_lat += data->total_lat;
3176			list_splice(&data->work_list, &this->work_list);
3177			if (this->max_lat < data->max_lat) {
3178				this->max_lat = data->max_lat;
3179				this->max_lat_start = data->max_lat_start;
3180				this->max_lat_end = data->max_lat_end;
3181			}
3182			zfree(&data);
3183			return;
3184		}
3185	}
3186
3187	data->num_merged++;
3188	rb_link_node(&data->node, parent, new);
3189	rb_insert_color_cached(&data->node, root, leftmost);
3190}
3191
3192static void perf_sched__merge_lat(struct perf_sched *sched)
3193{
3194	struct work_atoms *data;
3195	struct rb_node *node;
3196
3197	if (sched->skip_merge)
3198		return;
3199
3200	while ((node = rb_first_cached(&sched->atom_root))) {
3201		rb_erase_cached(node, &sched->atom_root);
3202		data = rb_entry(node, struct work_atoms, node);
3203		__merge_work_atoms(&sched->merged_atom_root, data);
3204	}
3205}
3206
3207static int perf_sched__lat(struct perf_sched *sched)
3208{
3209	struct rb_node *next;
3210
3211	setup_pager();
3212
3213	if (perf_sched__read_events(sched))
3214		return -1;
3215
3216	perf_sched__merge_lat(sched);
3217	perf_sched__sort_lat(sched);
3218
3219	printf("\n -------------------------------------------------------------------------------------------------------------------------------------------\n");
3220	printf("  Task                  |   Runtime ms  | Switches | Avg delay ms    | Max delay ms    | Max delay start           | Max delay end          |\n");
3221	printf(" -------------------------------------------------------------------------------------------------------------------------------------------\n");
3222
3223	next = rb_first_cached(&sched->sorted_atom_root);
3224
3225	while (next) {
3226		struct work_atoms *work_list;
3227
3228		work_list = rb_entry(next, struct work_atoms, node);
3229		output_lat_thread(sched, work_list);
3230		next = rb_next(next);
3231		thread__zput(work_list->thread);
3232	}
3233
3234	printf(" -----------------------------------------------------------------------------------------------------------------\n");
3235	printf("  TOTAL:                |%11.3f ms |%9" PRIu64 " |\n",
3236		(double)sched->all_runtime / NSEC_PER_MSEC, sched->all_count);
3237
3238	printf(" ---------------------------------------------------\n");
3239
3240	print_bad_events(sched);
3241	printf("\n");
3242
3243	return 0;
3244}
3245
3246static int setup_map_cpus(struct perf_sched *sched)
3247{
3248	struct perf_cpu_map *map;
3249
3250	sched->max_cpu.cpu  = sysconf(_SC_NPROCESSORS_CONF);
3251
3252	if (sched->map.comp) {
3253		sched->map.comp_cpus = zalloc(sched->max_cpu.cpu * sizeof(int));
3254		if (!sched->map.comp_cpus)
3255			return -1;
3256	}
3257
3258	if (!sched->map.cpus_str)
3259		return 0;
3260
3261	map = perf_cpu_map__new(sched->map.cpus_str);
3262	if (!map) {
3263		pr_err("failed to get cpus map from %s\n", sched->map.cpus_str);
3264		return -1;
3265	}
3266
3267	sched->map.cpus = map;
3268	return 0;
3269}
3270
3271static int setup_color_pids(struct perf_sched *sched)
3272{
3273	struct perf_thread_map *map;
3274
3275	if (!sched->map.color_pids_str)
3276		return 0;
3277
3278	map = thread_map__new_by_tid_str(sched->map.color_pids_str);
3279	if (!map) {
3280		pr_err("failed to get thread map from %s\n", sched->map.color_pids_str);
3281		return -1;
3282	}
3283
3284	sched->map.color_pids = map;
3285	return 0;
3286}
3287
3288static int setup_color_cpus(struct perf_sched *sched)
3289{
3290	struct perf_cpu_map *map;
3291
3292	if (!sched->map.color_cpus_str)
3293		return 0;
3294
3295	map = perf_cpu_map__new(sched->map.color_cpus_str);
3296	if (!map) {
3297		pr_err("failed to get thread map from %s\n", sched->map.color_cpus_str);
3298		return -1;
3299	}
3300
3301	sched->map.color_cpus = map;
3302	return 0;
3303}
3304
3305static int perf_sched__map(struct perf_sched *sched)
3306{
3307	if (setup_map_cpus(sched))
3308		return -1;
3309
3310	if (setup_color_pids(sched))
3311		return -1;
3312
3313	if (setup_color_cpus(sched))
3314		return -1;
3315
3316	setup_pager();
3317	if (perf_sched__read_events(sched))
3318		return -1;
3319	print_bad_events(sched);
3320	return 0;
3321}
3322
3323static int perf_sched__replay(struct perf_sched *sched)
3324{
3325	unsigned long i;
3326
3327	calibrate_run_measurement_overhead(sched);
3328	calibrate_sleep_measurement_overhead(sched);
3329
3330	test_calibrations(sched);
3331
3332	if (perf_sched__read_events(sched))
3333		return -1;
3334
3335	printf("nr_run_events:        %ld\n", sched->nr_run_events);
3336	printf("nr_sleep_events:      %ld\n", sched->nr_sleep_events);
3337	printf("nr_wakeup_events:     %ld\n", sched->nr_wakeup_events);
3338
3339	if (sched->targetless_wakeups)
3340		printf("target-less wakeups:  %ld\n", sched->targetless_wakeups);
3341	if (sched->multitarget_wakeups)
3342		printf("multi-target wakeups: %ld\n", sched->multitarget_wakeups);
3343	if (sched->nr_run_events_optimized)
3344		printf("run atoms optimized: %ld\n",
3345			sched->nr_run_events_optimized);
3346
3347	print_task_traces(sched);
3348	add_cross_task_wakeups(sched);
3349
3350	sched->thread_funcs_exit = false;
3351	create_tasks(sched);
3352	printf("------------------------------------------------------------\n");
3353	for (i = 0; i < sched->replay_repeat; i++)
3354		run_one_test(sched);
3355
3356	sched->thread_funcs_exit = true;
3357	destroy_tasks(sched);
3358	return 0;
3359}
3360
3361static void setup_sorting(struct perf_sched *sched, const struct option *options,
3362			  const char * const usage_msg[])
3363{
3364	char *tmp, *tok, *str = strdup(sched->sort_order);
3365
3366	for (tok = strtok_r(str, ", ", &tmp);
3367			tok; tok = strtok_r(NULL, ", ", &tmp)) {
3368		if (sort_dimension__add(tok, &sched->sort_list) < 0) {
3369			usage_with_options_msg(usage_msg, options,
3370					"Unknown --sort key: `%s'", tok);
3371		}
3372	}
3373
3374	free(str);
3375
3376	sort_dimension__add("pid", &sched->cmp_pid);
3377}
3378
3379static bool schedstat_events_exposed(void)
3380{
3381	/*
3382	 * Select "sched:sched_stat_wait" event to check
3383	 * whether schedstat tracepoints are exposed.
3384	 */
3385	return IS_ERR(trace_event__tp_format("sched", "sched_stat_wait")) ?
3386		false : true;
3387}
3388
3389static int __cmd_record(int argc, const char **argv)
3390{
3391	unsigned int rec_argc, i, j;
3392	char **rec_argv;
3393	const char **rec_argv_copy;
3394	const char * const record_args[] = {
3395		"record",
3396		"-a",
3397		"-R",
3398		"-m", "1024",
3399		"-c", "1",
3400		"-e", "sched:sched_switch",
 
 
 
3401		"-e", "sched:sched_stat_runtime",
3402		"-e", "sched:sched_process_fork",
 
3403		"-e", "sched:sched_wakeup_new",
3404		"-e", "sched:sched_migrate_task",
3405	};
3406
3407	/*
3408	 * The tracepoints trace_sched_stat_{wait, sleep, iowait}
3409	 * are not exposed to user if CONFIG_SCHEDSTATS is not set,
3410	 * to prevent "perf sched record" execution failure, determine
3411	 * whether to record schedstat events according to actual situation.
3412	 */
3413	const char * const schedstat_args[] = {
3414		"-e", "sched:sched_stat_wait",
3415		"-e", "sched:sched_stat_sleep",
3416		"-e", "sched:sched_stat_iowait",
3417	};
3418	unsigned int schedstat_argc = schedstat_events_exposed() ?
3419		ARRAY_SIZE(schedstat_args) : 0;
3420
3421	struct tep_event *waking_event;
3422	int ret;
3423
3424	/*
3425	 * +2 for either "-e", "sched:sched_wakeup" or
3426	 * "-e", "sched:sched_waking"
3427	 */
3428	rec_argc = ARRAY_SIZE(record_args) + 2 + schedstat_argc + argc - 1;
3429	rec_argv = calloc(rec_argc + 1, sizeof(char *));
3430	if (rec_argv == NULL)
3431		return -ENOMEM;
3432	rec_argv_copy = calloc(rec_argc + 1, sizeof(char *));
3433	if (rec_argv_copy == NULL) {
3434		free(rec_argv);
3435		return -ENOMEM;
3436	}
3437
3438	for (i = 0; i < ARRAY_SIZE(record_args); i++)
3439		rec_argv[i] = strdup(record_args[i]);
3440
3441	rec_argv[i++] = strdup("-e");
3442	waking_event = trace_event__tp_format("sched", "sched_waking");
3443	if (!IS_ERR(waking_event))
3444		rec_argv[i++] = strdup("sched:sched_waking");
3445	else
3446		rec_argv[i++] = strdup("sched:sched_wakeup");
3447
3448	for (j = 0; j < schedstat_argc; j++)
3449		rec_argv[i++] = strdup(schedstat_args[j]);
3450
3451	for (j = 1; j < (unsigned int)argc; j++, i++)
3452		rec_argv[i] = strdup(argv[j]);
3453
3454	BUG_ON(i != rec_argc);
3455
3456	memcpy(rec_argv_copy, rec_argv, sizeof(char *) * rec_argc);
3457	ret = cmd_record(rec_argc, rec_argv_copy);
3458
3459	for (i = 0; i < rec_argc; i++)
3460		free(rec_argv[i]);
3461	free(rec_argv);
3462	free(rec_argv_copy);
3463
3464	return ret;
3465}
3466
3467int cmd_sched(int argc, const char **argv)
3468{
3469	static const char default_sort_order[] = "avg, max, switch, runtime";
3470	struct perf_sched sched = {
3471		.tool = {
3472			.sample		 = perf_sched__process_tracepoint_sample,
3473			.comm		 = perf_sched__process_comm,
3474			.namespaces	 = perf_event__process_namespaces,
3475			.lost		 = perf_event__process_lost,
3476			.fork		 = perf_sched__process_fork_event,
3477			.ordered_events = true,
3478		},
3479		.cmp_pid	      = LIST_HEAD_INIT(sched.cmp_pid),
3480		.sort_list	      = LIST_HEAD_INIT(sched.sort_list),
 
 
3481		.sort_order	      = default_sort_order,
3482		.replay_repeat	      = 10,
3483		.profile_cpu	      = -1,
3484		.next_shortname1      = 'A',
3485		.next_shortname2      = '0',
3486		.skip_merge           = 0,
3487		.show_callchain	      = 1,
3488		.max_stack            = 5,
3489	};
3490	const struct option sched_options[] = {
3491	OPT_STRING('i', "input", &input_name, "file",
3492		    "input file name"),
3493	OPT_INCR('v', "verbose", &verbose,
3494		    "be more verbose (show symbol address, etc)"),
3495	OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
3496		    "dump raw trace in ASCII"),
3497	OPT_BOOLEAN('f', "force", &sched.force, "don't complain, do it"),
3498	OPT_END()
3499	};
3500	const struct option latency_options[] = {
3501	OPT_STRING('s', "sort", &sched.sort_order, "key[,key2...]",
3502		   "sort by key(s): runtime, switch, avg, max"),
3503	OPT_INTEGER('C', "CPU", &sched.profile_cpu,
3504		    "CPU to profile on"),
3505	OPT_BOOLEAN('p', "pids", &sched.skip_merge,
3506		    "latency stats per pid instead of per comm"),
3507	OPT_PARENT(sched_options)
3508	};
3509	const struct option replay_options[] = {
3510	OPT_UINTEGER('r', "repeat", &sched.replay_repeat,
3511		     "repeat the workload replay N times (-1: infinite)"),
3512	OPT_PARENT(sched_options)
3513	};
3514	const struct option map_options[] = {
3515	OPT_BOOLEAN(0, "compact", &sched.map.comp,
3516		    "map output in compact mode"),
3517	OPT_STRING(0, "color-pids", &sched.map.color_pids_str, "pids",
3518		   "highlight given pids in map"),
3519	OPT_STRING(0, "color-cpus", &sched.map.color_cpus_str, "cpus",
3520                    "highlight given CPUs in map"),
3521	OPT_STRING(0, "cpus", &sched.map.cpus_str, "cpus",
3522                    "display given CPUs in map"),
3523	OPT_PARENT(sched_options)
3524	};
3525	const struct option timehist_options[] = {
3526	OPT_STRING('k', "vmlinux", &symbol_conf.vmlinux_name,
3527		   "file", "vmlinux pathname"),
3528	OPT_STRING(0, "kallsyms", &symbol_conf.kallsyms_name,
3529		   "file", "kallsyms pathname"),
3530	OPT_BOOLEAN('g', "call-graph", &sched.show_callchain,
3531		    "Display call chains if present (default on)"),
3532	OPT_UINTEGER(0, "max-stack", &sched.max_stack,
3533		   "Maximum number of functions to display backtrace."),
3534	OPT_STRING(0, "symfs", &symbol_conf.symfs, "directory",
3535		    "Look for files with symbols relative to this directory"),
3536	OPT_BOOLEAN('s', "summary", &sched.summary_only,
3537		    "Show only syscall summary with statistics"),
3538	OPT_BOOLEAN('S', "with-summary", &sched.summary,
3539		    "Show all syscalls and summary with statistics"),
3540	OPT_BOOLEAN('w', "wakeups", &sched.show_wakeups, "Show wakeup events"),
3541	OPT_BOOLEAN('n', "next", &sched.show_next, "Show next task"),
3542	OPT_BOOLEAN('M', "migrations", &sched.show_migrations, "Show migration events"),
3543	OPT_BOOLEAN('V', "cpu-visual", &sched.show_cpu_visual, "Add CPU visual"),
3544	OPT_BOOLEAN('I', "idle-hist", &sched.idle_hist, "Show idle events only"),
3545	OPT_STRING(0, "time", &sched.time_str, "str",
3546		   "Time span for analysis (start,stop)"),
3547	OPT_BOOLEAN(0, "state", &sched.show_state, "Show task state when sched-out"),
3548	OPT_STRING('p', "pid", &symbol_conf.pid_list_str, "pid[,pid...]",
3549		   "analyze events only for given process id(s)"),
3550	OPT_STRING('t', "tid", &symbol_conf.tid_list_str, "tid[,tid...]",
3551		   "analyze events only for given thread id(s)"),
3552	OPT_STRING('C', "cpu", &cpu_list, "cpu", "list of cpus to profile"),
3553	OPT_PARENT(sched_options)
3554	};
3555
3556	const char * const latency_usage[] = {
3557		"perf sched latency [<options>]",
3558		NULL
3559	};
3560	const char * const replay_usage[] = {
3561		"perf sched replay [<options>]",
3562		NULL
3563	};
3564	const char * const map_usage[] = {
3565		"perf sched map [<options>]",
3566		NULL
3567	};
3568	const char * const timehist_usage[] = {
3569		"perf sched timehist [<options>]",
3570		NULL
3571	};
3572	const char *const sched_subcommands[] = { "record", "latency", "map",
3573						  "replay", "script",
3574						  "timehist", NULL };
3575	const char *sched_usage[] = {
3576		NULL,
3577		NULL
3578	};
3579	struct trace_sched_handler lat_ops  = {
3580		.wakeup_event	    = latency_wakeup_event,
3581		.switch_event	    = latency_switch_event,
3582		.runtime_event	    = latency_runtime_event,
3583		.migrate_task_event = latency_migrate_task_event,
3584	};
3585	struct trace_sched_handler map_ops  = {
3586		.switch_event	    = map_switch_event,
3587	};
3588	struct trace_sched_handler replay_ops  = {
3589		.wakeup_event	    = replay_wakeup_event,
3590		.switch_event	    = replay_switch_event,
3591		.fork_event	    = replay_fork_event,
3592	};
3593	unsigned int i;
3594	int ret = 0;
3595
3596	mutex_init(&sched.start_work_mutex);
3597	mutex_init(&sched.work_done_wait_mutex);
3598	sched.curr_thread = calloc(MAX_CPUS, sizeof(*sched.curr_thread));
3599	if (!sched.curr_thread) {
3600		ret = -ENOMEM;
3601		goto out;
3602	}
3603	sched.cpu_last_switched = calloc(MAX_CPUS, sizeof(*sched.cpu_last_switched));
3604	if (!sched.cpu_last_switched) {
3605		ret = -ENOMEM;
3606		goto out;
3607	}
3608	sched.curr_pid = malloc(MAX_CPUS * sizeof(*sched.curr_pid));
3609	if (!sched.curr_pid) {
3610		ret = -ENOMEM;
3611		goto out;
3612	}
3613	for (i = 0; i < MAX_CPUS; i++)
3614		sched.curr_pid[i] = -1;
3615
3616	argc = parse_options_subcommand(argc, argv, sched_options, sched_subcommands,
3617					sched_usage, PARSE_OPT_STOP_AT_NON_OPTION);
3618	if (!argc)
3619		usage_with_options(sched_usage, sched_options);
3620
3621	/*
3622	 * Aliased to 'perf script' for now:
3623	 */
3624	if (!strcmp(argv[0], "script")) {
3625		ret = cmd_script(argc, argv);
3626	} else if (strlen(argv[0]) > 2 && strstarts("record", argv[0])) {
3627		ret = __cmd_record(argc, argv);
3628	} else if (strlen(argv[0]) > 2 && strstarts("latency", argv[0])) {
 
3629		sched.tp_handler = &lat_ops;
3630		if (argc > 1) {
3631			argc = parse_options(argc, argv, latency_options, latency_usage, 0);
3632			if (argc)
3633				usage_with_options(latency_usage, latency_options);
3634		}
3635		setup_sorting(&sched, latency_options, latency_usage);
3636		ret = perf_sched__lat(&sched);
3637	} else if (!strcmp(argv[0], "map")) {
3638		if (argc) {
3639			argc = parse_options(argc, argv, map_options, map_usage, 0);
3640			if (argc)
3641				usage_with_options(map_usage, map_options);
3642		}
3643		sched.tp_handler = &map_ops;
3644		setup_sorting(&sched, latency_options, latency_usage);
3645		ret = perf_sched__map(&sched);
3646	} else if (strlen(argv[0]) > 2 && strstarts("replay", argv[0])) {
3647		sched.tp_handler = &replay_ops;
3648		if (argc) {
3649			argc = parse_options(argc, argv, replay_options, replay_usage, 0);
3650			if (argc)
3651				usage_with_options(replay_usage, replay_options);
3652		}
3653		ret = perf_sched__replay(&sched);
3654	} else if (!strcmp(argv[0], "timehist")) {
3655		if (argc) {
3656			argc = parse_options(argc, argv, timehist_options,
3657					     timehist_usage, 0);
3658			if (argc)
3659				usage_with_options(timehist_usage, timehist_options);
3660		}
3661		if ((sched.show_wakeups || sched.show_next) &&
3662		    sched.summary_only) {
3663			pr_err(" Error: -s and -[n|w] are mutually exclusive.\n");
3664			parse_options_usage(timehist_usage, timehist_options, "s", true);
3665			if (sched.show_wakeups)
3666				parse_options_usage(NULL, timehist_options, "w", true);
3667			if (sched.show_next)
3668				parse_options_usage(NULL, timehist_options, "n", true);
3669			ret = -EINVAL;
3670			goto out;
3671		}
3672		ret = symbol__validate_sym_arguments();
3673		if (ret)
3674			goto out;
3675
3676		ret = perf_sched__timehist(&sched);
3677	} else {
3678		usage_with_options(sched_usage, sched_options);
3679	}
3680
3681out:
3682	free(sched.curr_pid);
3683	free(sched.cpu_last_switched);
3684	free(sched.curr_thread);
3685	mutex_destroy(&sched.start_work_mutex);
3686	mutex_destroy(&sched.work_done_wait_mutex);
3687
3688	return ret;
3689}