Linux Audio

Check our new training course

Loading...
v4.17
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * SLUB: A slab allocator that limits cache line use instead of queuing
   4 * objects in per cpu and per node lists.
   5 *
   6 * The allocator synchronizes using per slab locks or atomic operatios
   7 * and only uses a centralized lock to manage a pool of partial slabs.
   8 *
   9 * (C) 2007 SGI, Christoph Lameter
  10 * (C) 2011 Linux Foundation, Christoph Lameter
  11 */
  12
  13#include <linux/mm.h>
  14#include <linux/swap.h> /* struct reclaim_state */
  15#include <linux/module.h>
  16#include <linux/bit_spinlock.h>
  17#include <linux/interrupt.h>
 
  18#include <linux/bitops.h>
  19#include <linux/slab.h>
  20#include "slab.h"
  21#include <linux/proc_fs.h>
  22#include <linux/notifier.h>
  23#include <linux/seq_file.h>
  24#include <linux/kasan.h>
 
  25#include <linux/cpu.h>
  26#include <linux/cpuset.h>
  27#include <linux/mempolicy.h>
  28#include <linux/ctype.h>
 
  29#include <linux/debugobjects.h>
  30#include <linux/kallsyms.h>
 
  31#include <linux/memory.h>
  32#include <linux/math64.h>
  33#include <linux/fault-inject.h>
 
  34#include <linux/stacktrace.h>
  35#include <linux/prefetch.h>
  36#include <linux/memcontrol.h>
  37#include <linux/random.h>
 
 
 
  38
 
  39#include <trace/events/kmem.h>
  40
  41#include "internal.h"
  42
  43/*
  44 * Lock order:
  45 *   1. slab_mutex (Global Mutex)
  46 *   2. node->list_lock
  47 *   3. slab_lock(page) (Only on some arches and for debugging)
 
 
  48 *
  49 *   slab_mutex
  50 *
  51 *   The role of the slab_mutex is to protect the list of all the slabs
  52 *   and to synchronize major metadata changes to slab cache structures.
 
  53 *
  54 *   The slab_lock is only used for debugging and on arches that do not
  55 *   have the ability to do a cmpxchg_double. It only protects the second
  56 *   double word in the page struct. Meaning
  57 *	A. page->freelist	-> List of object free in a page
  58 *	B. page->counters	-> Counters of objects
  59 *	C. page->frozen		-> frozen state
  60 *
  61 *   If a slab is frozen then it is exempt from list management. It is not
  62 *   on any list. The processor that froze the slab is the one who can
  63 *   perform list operations on the page. Other processors may put objects
  64 *   onto the freelist but the processor that froze the slab is the only
  65 *   one that can retrieve the objects from the page's freelist.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  66 *
  67 *   The list_lock protects the partial and full list on each node and
  68 *   the partial slab counter. If taken then no new slabs may be added or
  69 *   removed from the lists nor make the number of partial slabs be modified.
  70 *   (Note that the total number of slabs is an atomic value that may be
  71 *   modified without taking the list lock).
  72 *
  73 *   The list_lock is a centralized lock and thus we avoid taking it as
  74 *   much as possible. As long as SLUB does not have to handle partial
  75 *   slabs, operations can continue without any centralized lock. F.e.
  76 *   allocating a long series of objects that fill up slabs does not require
  77 *   the list lock.
  78 *   Interrupts are disabled during allocation and deallocation in order to
  79 *   make the slab allocator safe to use in the context of an irq. In addition
  80 *   interrupts are disabled to ensure that the processor does not change
  81 *   while handling per_cpu slabs, due to kernel preemption.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  82 *
  83 * SLUB assigns one slab for allocation to each processor.
  84 * Allocations only occur from these slabs called cpu slabs.
  85 *
  86 * Slabs with free elements are kept on a partial list and during regular
  87 * operations no list for full slabs is used. If an object in a full slab is
  88 * freed then the slab will show up again on the partial lists.
  89 * We track full slabs for debugging purposes though because otherwise we
  90 * cannot scan all objects.
  91 *
  92 * Slabs are freed when they become empty. Teardown and setup is
  93 * minimal so we rely on the page allocators per cpu caches for
  94 * fast frees and allocs.
  95 *
  96 * Overloading of page flags that are otherwise used for LRU management.
  97 *
  98 * PageActive 		The slab is frozen and exempt from list processing.
  99 * 			This means that the slab is dedicated to a purpose
 100 * 			such as satisfying allocations for a specific
 101 * 			processor. Objects may be freed in the slab while
 102 * 			it is frozen but slab_free will then skip the usual
 103 * 			list operations. It is up to the processor holding
 104 * 			the slab to integrate the slab into the slab lists
 105 * 			when the slab is no longer needed.
 106 *
 107 * 			One use of this flag is to mark slabs that are
 108 * 			used for allocations. Then such a slab becomes a cpu
 109 * 			slab. The cpu slab may be equipped with an additional
 110 * 			freelist that allows lockless access to
 111 * 			free objects in addition to the regular freelist
 112 * 			that requires the slab lock.
 113 *
 114 * PageError		Slab requires special handling due to debug
 115 * 			options set. This moves	slab handling out of
 116 * 			the fast path and disables lockless freelists.
 117 */
 118
 119static inline int kmem_cache_debug(struct kmem_cache *s)
 120{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 121#ifdef CONFIG_SLUB_DEBUG
 122	return unlikely(s->flags & SLAB_DEBUG_FLAGS);
 
 123#else
 124	return 0;
 125#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 126}
 127
 128void *fixup_red_left(struct kmem_cache *s, void *p)
 129{
 130	if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE)
 131		p += s->red_left_pad;
 132
 133	return p;
 134}
 135
 136static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
 137{
 138#ifdef CONFIG_SLUB_CPU_PARTIAL
 139	return !kmem_cache_debug(s);
 140#else
 141	return false;
 142#endif
 143}
 144
 145/*
 146 * Issues still to be resolved:
 147 *
 148 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
 149 *
 150 * - Variable sizing of the per node arrays
 151 */
 152
 153/* Enable to test recovery from slab corruption on boot */
 154#undef SLUB_RESILIENCY_TEST
 155
 156/* Enable to log cmpxchg failures */
 157#undef SLUB_DEBUG_CMPXCHG
 158
 
 159/*
 160 * Mininum number of partial slabs. These will be left on the partial
 161 * lists even if they are empty. kmem_cache_shrink may reclaim them.
 162 */
 163#define MIN_PARTIAL 5
 164
 165/*
 166 * Maximum number of desirable partial slabs.
 167 * The existence of more partial slabs makes kmem_cache_shrink
 168 * sort the partial list by the number of objects in use.
 169 */
 170#define MAX_PARTIAL 10
 
 
 
 
 171
 172#define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
 173				SLAB_POISON | SLAB_STORE_USER)
 174
 175/*
 176 * These debug flags cannot use CMPXCHG because there might be consistency
 177 * issues when checking or reading debug information
 178 */
 179#define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
 180				SLAB_TRACE)
 181
 182
 183/*
 184 * Debugging flags that require metadata to be stored in the slab.  These get
 185 * disabled when slub_debug=O is used and a cache's min order increases with
 186 * metadata.
 187 */
 188#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
 189
 190#define OO_SHIFT	16
 191#define OO_MASK		((1 << OO_SHIFT) - 1)
 192#define MAX_OBJS_PER_PAGE	32767 /* since page.objects is u15 */
 193
 194/* Internal SLUB flags */
 195/* Poison object */
 196#define __OBJECT_POISON		((slab_flags_t __force)0x80000000U)
 197/* Use cmpxchg_double */
 
 
 198#define __CMPXCHG_DOUBLE	((slab_flags_t __force)0x40000000U)
 
 
 
 199
 200/*
 201 * Tracking user of a slab.
 202 */
 203#define TRACK_ADDRS_COUNT 16
 204struct track {
 205	unsigned long addr;	/* Called from address */
 206#ifdef CONFIG_STACKTRACE
 207	unsigned long addrs[TRACK_ADDRS_COUNT];	/* Called from address */
 208#endif
 209	int cpu;		/* Was running on cpu */
 210	int pid;		/* Pid context */
 211	unsigned long when;	/* When did the operation occur */
 212};
 213
 214enum track_item { TRACK_ALLOC, TRACK_FREE };
 215
 216#ifdef CONFIG_SYSFS
 217static int sysfs_slab_add(struct kmem_cache *);
 218static int sysfs_slab_alias(struct kmem_cache *, const char *);
 219static void memcg_propagate_slab_attrs(struct kmem_cache *s);
 220static void sysfs_slab_remove(struct kmem_cache *s);
 221#else
 222static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
 223static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
 224							{ return 0; }
 225static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
 226static inline void sysfs_slab_remove(struct kmem_cache *s) { }
 227#endif
 228
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 229static inline void stat(const struct kmem_cache *s, enum stat_item si)
 230{
 231#ifdef CONFIG_SLUB_STATS
 232	/*
 233	 * The rmw is racy on a preemptible kernel but this is acceptable, so
 234	 * avoid this_cpu_add()'s irq-disable overhead.
 235	 */
 236	raw_cpu_inc(s->cpu_slab->stat[si]);
 237#endif
 238}
 239
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 240/********************************************************************
 241 * 			Core slab cache functions
 242 *******************************************************************/
 243
 244/*
 
 
 
 
 
 
 245 * Returns freelist pointer (ptr). With hardening, this is obfuscated
 246 * with an XOR of the address where the pointer is held and a per-cache
 247 * random number.
 248 */
 249static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr,
 250				 unsigned long ptr_addr)
 251{
 
 
 252#ifdef CONFIG_SLAB_FREELIST_HARDENED
 253	return (void *)((unsigned long)ptr ^ s->random ^ ptr_addr);
 254#else
 255	return ptr;
 256#endif
 
 257}
 258
 259/* Returns the freelist pointer recorded at location ptr_addr. */
 260static inline void *freelist_dereference(const struct kmem_cache *s,
 261					 void *ptr_addr)
 262{
 263	return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr),
 264			    (unsigned long)ptr_addr);
 
 
 
 
 
 
 265}
 266
 267static inline void *get_freepointer(struct kmem_cache *s, void *object)
 268{
 269	return freelist_dereference(s, object + s->offset);
 
 
 
 
 
 
 270}
 271
 
 272static void prefetch_freepointer(const struct kmem_cache *s, void *object)
 273{
 274	if (object)
 275		prefetch(freelist_dereference(s, object + s->offset));
 276}
 
 277
 
 
 
 
 
 
 
 
 
 
 
 278static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
 279{
 280	unsigned long freepointer_addr;
 281	void *p;
 282
 283	if (!debug_pagealloc_enabled())
 284		return get_freepointer(s, object);
 285
 
 286	freepointer_addr = (unsigned long)object + s->offset;
 287	probe_kernel_read(&p, (void **)freepointer_addr, sizeof(p));
 288	return freelist_ptr(s, p, freepointer_addr);
 289}
 290
 291static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
 292{
 293	unsigned long freeptr_addr = (unsigned long)object + s->offset;
 294
 295#ifdef CONFIG_SLAB_FREELIST_HARDENED
 296	BUG_ON(object == fp); /* naive detection of double free or corruption */
 297#endif
 298
 299	*(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr);
 
 300}
 301
 302/* Loop over all objects in a slab */
 303#define for_each_object(__p, __s, __addr, __objects) \
 304	for (__p = fixup_red_left(__s, __addr); \
 305		__p < (__addr) + (__objects) * (__s)->size; \
 306		__p += (__s)->size)
 307
 308#define for_each_object_idx(__p, __idx, __s, __addr, __objects) \
 309	for (__p = fixup_red_left(__s, __addr), __idx = 1; \
 310		__idx <= __objects; \
 311		__p += (__s)->size, __idx++)
 312
 313/* Determine object index from a given position */
 314static inline unsigned int slab_index(void *p, struct kmem_cache *s, void *addr)
 315{
 316	return (p - addr) / s->size;
 317}
 318
 319static inline unsigned int order_objects(unsigned int order, unsigned int size, unsigned int reserved)
 320{
 321	return (((unsigned int)PAGE_SIZE << order) - reserved) / size;
 322}
 323
 324static inline struct kmem_cache_order_objects oo_make(unsigned int order,
 325		unsigned int size, unsigned int reserved)
 326{
 327	struct kmem_cache_order_objects x = {
 328		(order << OO_SHIFT) + order_objects(order, size, reserved)
 329	};
 330
 331	return x;
 332}
 333
 334static inline unsigned int oo_order(struct kmem_cache_order_objects x)
 335{
 336	return x.x >> OO_SHIFT;
 337}
 338
 339static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
 340{
 341	return x.x & OO_MASK;
 342}
 343
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 344/*
 345 * Per slab locking using the pagelock
 346 */
 347static __always_inline void slab_lock(struct page *page)
 348{
 
 
 349	VM_BUG_ON_PAGE(PageTail(page), page);
 350	bit_spin_lock(PG_locked, &page->flags);
 351}
 352
 353static __always_inline void slab_unlock(struct page *page)
 354{
 
 
 355	VM_BUG_ON_PAGE(PageTail(page), page);
 356	__bit_spin_unlock(PG_locked, &page->flags);
 357}
 358
 359static inline void set_page_slub_counters(struct page *page, unsigned long counters_new)
 
 
 
 360{
 361	struct page tmp;
 362	tmp.counters = counters_new;
 363	/*
 364	 * page->counters can cover frozen/inuse/objects as well
 365	 * as page->_refcount.  If we assign to ->counters directly
 366	 * we run the risk of losing updates to page->_refcount, so
 367	 * be careful and only assign to the fields we need.
 368	 */
 369	page->frozen  = tmp.frozen;
 370	page->inuse   = tmp.inuse;
 371	page->objects = tmp.objects;
 372}
 373
 374/* Interrupts must be disabled (for the fallback code to work right) */
 375static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 376		void *freelist_old, unsigned long counters_old,
 377		void *freelist_new, unsigned long counters_new,
 378		const char *n)
 379{
 380	VM_BUG_ON(!irqs_disabled());
 381#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
 382    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
 
 
 383	if (s->flags & __CMPXCHG_DOUBLE) {
 384		if (cmpxchg_double(&page->freelist, &page->counters,
 385				   freelist_old, counters_old,
 386				   freelist_new, counters_new))
 387			return true;
 388	} else
 389#endif
 390	{
 391		slab_lock(page);
 392		if (page->freelist == freelist_old &&
 393					page->counters == counters_old) {
 394			page->freelist = freelist_new;
 395			set_page_slub_counters(page, counters_new);
 396			slab_unlock(page);
 397			return true;
 398		}
 399		slab_unlock(page);
 400	}
 
 
 401
 402	cpu_relax();
 403	stat(s, CMPXCHG_DOUBLE_FAIL);
 404
 405#ifdef SLUB_DEBUG_CMPXCHG
 406	pr_info("%s %s: cmpxchg double redo ", n, s->name);
 407#endif
 408
 409	return false;
 410}
 411
 412static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
 413		void *freelist_old, unsigned long counters_old,
 414		void *freelist_new, unsigned long counters_new,
 415		const char *n)
 416{
 417#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
 418    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
 419	if (s->flags & __CMPXCHG_DOUBLE) {
 420		if (cmpxchg_double(&page->freelist, &page->counters,
 421				   freelist_old, counters_old,
 422				   freelist_new, counters_new))
 423			return true;
 424	} else
 425#endif
 426	{
 427		unsigned long flags;
 428
 429		local_irq_save(flags);
 430		slab_lock(page);
 431		if (page->freelist == freelist_old &&
 432					page->counters == counters_old) {
 433			page->freelist = freelist_new;
 434			set_page_slub_counters(page, counters_new);
 435			slab_unlock(page);
 436			local_irq_restore(flags);
 437			return true;
 438		}
 439		slab_unlock(page);
 440		local_irq_restore(flags);
 441	}
 
 
 442
 443	cpu_relax();
 444	stat(s, CMPXCHG_DOUBLE_FAIL);
 445
 446#ifdef SLUB_DEBUG_CMPXCHG
 447	pr_info("%s %s: cmpxchg double redo ", n, s->name);
 448#endif
 449
 450	return false;
 451}
 452
 453#ifdef CONFIG_SLUB_DEBUG
 454/*
 455 * Determine a map of object in use on a page.
 456 *
 457 * Node listlock must be held to guarantee that the page does
 458 * not vanish from under us.
 459 */
 460static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
 461{
 
 462	void *p;
 463	void *addr = page_address(page);
 464
 465	for (p = page->freelist; p; p = get_freepointer(s, p))
 466		set_bit(slab_index(p, s, addr), map);
 
 
 467}
 468
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 469static inline unsigned int size_from_object(struct kmem_cache *s)
 470{
 471	if (s->flags & SLAB_RED_ZONE)
 472		return s->size - s->red_left_pad;
 473
 474	return s->size;
 475}
 476
 477static inline void *restore_red_left(struct kmem_cache *s, void *p)
 478{
 479	if (s->flags & SLAB_RED_ZONE)
 480		p -= s->red_left_pad;
 481
 482	return p;
 483}
 484
 485/*
 486 * Debug settings:
 487 */
 488#if defined(CONFIG_SLUB_DEBUG_ON)
 489static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
 490#else
 491static slab_flags_t slub_debug;
 492#endif
 493
 494static char *slub_debug_slabs;
 495static int disable_higher_order_debug;
 496
 497/*
 498 * slub is about to manipulate internal object metadata.  This memory lies
 499 * outside the range of the allocated object, so accessing it would normally
 500 * be reported by kasan as a bounds error.  metadata_access_enable() is used
 501 * to tell kasan that these accesses are OK.
 502 */
 503static inline void metadata_access_enable(void)
 504{
 505	kasan_disable_current();
 506}
 507
 508static inline void metadata_access_disable(void)
 509{
 510	kasan_enable_current();
 511}
 512
 513/*
 514 * Object debugging
 515 */
 516
 517/* Verify that a pointer has an address that is valid within a slab page */
 518static inline int check_valid_pointer(struct kmem_cache *s,
 519				struct page *page, void *object)
 520{
 521	void *base;
 522
 523	if (!object)
 524		return 1;
 525
 526	base = page_address(page);
 
 527	object = restore_red_left(s, object);
 528	if (object < base || object >= base + page->objects * s->size ||
 529		(object - base) % s->size) {
 530		return 0;
 531	}
 532
 533	return 1;
 534}
 535
 536static void print_section(char *level, char *text, u8 *addr,
 537			  unsigned int length)
 538{
 539	metadata_access_enable();
 540	print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
 541			length, 1);
 542	metadata_access_disable();
 543}
 544
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 545static struct track *get_track(struct kmem_cache *s, void *object,
 546	enum track_item alloc)
 547{
 548	struct track *p;
 549
 550	if (s->offset)
 551		p = object + s->offset + sizeof(void *);
 552	else
 553		p = object + s->inuse;
 
 
 
 
 
 
 
 
 
 
 554
 555	return p + alloc;
 
 
 
 
 
 556}
 
 557
 558static void set_track(struct kmem_cache *s, void *object,
 559			enum track_item alloc, unsigned long addr)
 
 560{
 561	struct track *p = get_track(s, object, alloc);
 562
 563	if (addr) {
 564#ifdef CONFIG_STACKTRACE
 565		struct stack_trace trace;
 566		int i;
 567
 568		trace.nr_entries = 0;
 569		trace.max_entries = TRACK_ADDRS_COUNT;
 570		trace.entries = p->addrs;
 571		trace.skip = 3;
 572		metadata_access_enable();
 573		save_stack_trace(&trace);
 574		metadata_access_disable();
 575
 576		/* See rant in lockdep.c */
 577		if (trace.nr_entries != 0 &&
 578		    trace.entries[trace.nr_entries - 1] == ULONG_MAX)
 579			trace.nr_entries--;
 580
 581		for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
 582			p->addrs[i] = 0;
 583#endif
 584		p->addr = addr;
 585		p->cpu = smp_processor_id();
 586		p->pid = current->pid;
 587		p->when = jiffies;
 588	} else
 589		memset(p, 0, sizeof(struct track));
 590}
 591
 592static void init_tracking(struct kmem_cache *s, void *object)
 593{
 
 
 594	if (!(s->flags & SLAB_STORE_USER))
 595		return;
 596
 597	set_track(s, object, TRACK_FREE, 0UL);
 598	set_track(s, object, TRACK_ALLOC, 0UL);
 599}
 600
 601static void print_track(const char *s, struct track *t, unsigned long pr_time)
 602{
 
 
 603	if (!t->addr)
 604		return;
 605
 606	pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
 607	       s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
 608#ifdef CONFIG_STACKTRACE
 609	{
 610		int i;
 611		for (i = 0; i < TRACK_ADDRS_COUNT; i++)
 612			if (t->addrs[i])
 613				pr_err("\t%pS\n", (void *)t->addrs[i]);
 614			else
 615				break;
 616	}
 617#endif
 618}
 619
 620static void print_tracking(struct kmem_cache *s, void *object)
 621{
 622	unsigned long pr_time = jiffies;
 623	if (!(s->flags & SLAB_STORE_USER))
 624		return;
 625
 626	print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
 627	print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
 628}
 629
 630static void print_page_info(struct page *page)
 631{
 632	pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
 633	       page, page->objects, page->inuse, page->freelist, page->flags);
 634
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 635}
 636
 637static void slab_bug(struct kmem_cache *s, char *fmt, ...)
 638{
 639	struct va_format vaf;
 640	va_list args;
 641
 642	va_start(args, fmt);
 643	vaf.fmt = fmt;
 644	vaf.va = &args;
 645	pr_err("=============================================================================\n");
 646	pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
 647	pr_err("-----------------------------------------------------------------------------\n\n");
 648
 649	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
 650	va_end(args);
 651}
 652
 
 653static void slab_fix(struct kmem_cache *s, char *fmt, ...)
 654{
 655	struct va_format vaf;
 656	va_list args;
 657
 
 
 
 658	va_start(args, fmt);
 659	vaf.fmt = fmt;
 660	vaf.va = &args;
 661	pr_err("FIX %s: %pV\n", s->name, &vaf);
 662	va_end(args);
 663}
 664
 665static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
 666{
 667	unsigned int off;	/* Offset of last byte */
 668	u8 *addr = page_address(page);
 669
 670	print_tracking(s, p);
 671
 672	print_page_info(page);
 673
 674	pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
 675	       p, p - addr, get_freepointer(s, p));
 676
 677	if (s->flags & SLAB_RED_ZONE)
 678		print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
 679			      s->red_left_pad);
 680	else if (p > addr + 16)
 681		print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
 682
 683	print_section(KERN_ERR, "Object ", p,
 684		      min_t(unsigned int, s->object_size, PAGE_SIZE));
 685	if (s->flags & SLAB_RED_ZONE)
 686		print_section(KERN_ERR, "Redzone ", p + s->object_size,
 687			s->inuse - s->object_size);
 688
 689	if (s->offset)
 690		off = s->offset + sizeof(void *);
 691	else
 692		off = s->inuse;
 693
 694	if (s->flags & SLAB_STORE_USER)
 695		off += 2 * sizeof(struct track);
 696
 697	off += kasan_metadata_size(s);
 
 
 
 698
 699	if (off != size_from_object(s))
 700		/* Beginning of the filler is the free pointer */
 701		print_section(KERN_ERR, "Padding ", p + off,
 702			      size_from_object(s) - off);
 703
 704	dump_stack();
 705}
 706
 707void object_err(struct kmem_cache *s, struct page *page,
 708			u8 *object, char *reason)
 709{
 
 
 
 710	slab_bug(s, "%s", reason);
 711	print_trailer(s, page, object);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 712}
 713
 714static void slab_err(struct kmem_cache *s, struct page *page,
 715			const char *fmt, ...)
 716{
 717	va_list args;
 718	char buf[100];
 719
 
 
 
 720	va_start(args, fmt);
 721	vsnprintf(buf, sizeof(buf), fmt, args);
 722	va_end(args);
 723	slab_bug(s, "%s", buf);
 724	print_page_info(page);
 725	dump_stack();
 
 726}
 727
 728static void init_object(struct kmem_cache *s, void *object, u8 val)
 729{
 730	u8 *p = object;
 
 731
 732	if (s->flags & SLAB_RED_ZONE)
 733		memset(p - s->red_left_pad, val, s->red_left_pad);
 734
 
 
 
 
 
 
 
 
 
 
 735	if (s->flags & __OBJECT_POISON) {
 736		memset(p, POISON_FREE, s->object_size - 1);
 737		p[s->object_size - 1] = POISON_END;
 738	}
 739
 740	if (s->flags & SLAB_RED_ZONE)
 741		memset(p + s->object_size, val, s->inuse - s->object_size);
 742}
 743
 744static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
 745						void *from, void *to)
 746{
 747	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
 748	memset(from, data, to - from);
 749}
 750
 751static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
 752			u8 *object, char *what,
 753			u8 *start, unsigned int value, unsigned int bytes)
 754{
 755	u8 *fault;
 756	u8 *end;
 
 757
 758	metadata_access_enable();
 759	fault = memchr_inv(start, value, bytes);
 760	metadata_access_disable();
 761	if (!fault)
 762		return 1;
 763
 764	end = start + bytes;
 765	while (end > fault && end[-1] == value)
 766		end--;
 767
 
 
 
 768	slab_bug(s, "%s overwritten", what);
 769	pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
 770					fault, end - 1, fault[0], value);
 771	print_trailer(s, page, object);
 
 
 772
 
 773	restore_bytes(s, what, value, fault, end);
 774	return 0;
 775}
 776
 777/*
 778 * Object layout:
 779 *
 780 * object address
 781 * 	Bytes of the object to be managed.
 782 * 	If the freepointer may overlay the object then the free
 783 * 	pointer is the first word of the object.
 784 *
 785 * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
 786 * 	0xa5 (POISON_END)
 787 *
 788 * object + s->object_size
 789 * 	Padding to reach word boundary. This is also used for Redzoning.
 790 * 	Padding is extended by another word if Redzoning is enabled and
 791 * 	object_size == inuse.
 792 *
 793 * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
 794 * 	0xcc (RED_ACTIVE) for objects in use.
 795 *
 796 * object + s->inuse
 797 * 	Meta data starts here.
 798 *
 799 * 	A. Free pointer (if we cannot overwrite object on free)
 800 * 	B. Tracking data for SLAB_STORE_USER
 801 * 	C. Padding to reach required alignment boundary or at mininum
 
 802 * 		one word if debugging is on to be able to detect writes
 803 * 		before the word boundary.
 804 *
 805 *	Padding is done using 0x5a (POISON_INUSE)
 806 *
 807 * object + s->size
 808 * 	Nothing is used beyond s->size.
 809 *
 810 * If slabcaches are merged then the object_size and inuse boundaries are mostly
 811 * ignored. And therefore no slab options that rely on these boundaries
 812 * may be used with merged slabcaches.
 813 */
 814
 815static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
 816{
 817	unsigned long off = s->inuse;	/* The end of info */
 818
 819	if (s->offset)
 820		/* Freepointer is placed after the object. */
 821		off += sizeof(void *);
 822
 823	if (s->flags & SLAB_STORE_USER)
 824		/* We also have user information there */
 825		off += 2 * sizeof(struct track);
 826
 827	off += kasan_metadata_size(s);
 
 
 
 
 828
 829	if (size_from_object(s) == off)
 830		return 1;
 831
 832	return check_bytes_and_report(s, page, p, "Object padding",
 833			p + off, POISON_INUSE, size_from_object(s) - off);
 834}
 835
 836/* Check the pad bytes at the end of a slab page */
 837static int slab_pad_check(struct kmem_cache *s, struct page *page)
 838{
 839	u8 *start;
 840	u8 *fault;
 841	u8 *end;
 842	u8 *pad;
 843	int length;
 844	int remainder;
 845
 846	if (!(s->flags & SLAB_POISON))
 847		return 1;
 848
 849	start = page_address(page);
 850	length = (PAGE_SIZE << compound_order(page)) - s->reserved;
 851	end = start + length;
 852	remainder = length % s->size;
 853	if (!remainder)
 854		return 1;
 855
 856	pad = end - remainder;
 857	metadata_access_enable();
 858	fault = memchr_inv(pad, POISON_INUSE, remainder);
 859	metadata_access_disable();
 860	if (!fault)
 861		return 1;
 862	while (end > fault && end[-1] == POISON_INUSE)
 863		end--;
 864
 865	slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
 
 866	print_section(KERN_ERR, "Padding ", pad, remainder);
 867
 868	restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
 869	return 0;
 870}
 871
 872static int check_object(struct kmem_cache *s, struct page *page,
 873					void *object, u8 val)
 874{
 875	u8 *p = object;
 876	u8 *endobject = object + s->object_size;
 
 877
 878	if (s->flags & SLAB_RED_ZONE) {
 879		if (!check_bytes_and_report(s, page, object, "Redzone",
 880			object - s->red_left_pad, val, s->red_left_pad))
 881			return 0;
 882
 883		if (!check_bytes_and_report(s, page, object, "Redzone",
 884			endobject, val, s->inuse - s->object_size))
 885			return 0;
 
 
 
 
 
 
 
 
 
 
 
 886	} else {
 887		if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
 888			check_bytes_and_report(s, page, p, "Alignment padding",
 889				endobject, POISON_INUSE,
 890				s->inuse - s->object_size);
 891		}
 892	}
 893
 894	if (s->flags & SLAB_POISON) {
 895		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
 896			(!check_bytes_and_report(s, page, p, "Poison", p,
 897					POISON_FREE, s->object_size - 1) ||
 898			 !check_bytes_and_report(s, page, p, "Poison",
 899				p + s->object_size - 1, POISON_END, 1)))
 900			return 0;
 
 
 
 
 
 
 
 
 
 
 
 901		/*
 902		 * check_pad_bytes cleans up on its own.
 903		 */
 904		check_pad_bytes(s, page, p);
 905	}
 906
 907	if (!s->offset && val == SLUB_RED_ACTIVE)
 908		/*
 909		 * Object and freepointer overlap. Cannot check
 910		 * freepointer while object is allocated.
 911		 */
 912		return 1;
 913
 914	/* Check free pointer validity */
 915	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
 916		object_err(s, page, p, "Freepointer corrupt");
 917		/*
 918		 * No choice but to zap it and thus lose the remainder
 919		 * of the free objects in this slab. May cause
 920		 * another error because the object count is now wrong.
 921		 */
 922		set_freepointer(s, p, NULL);
 923		return 0;
 924	}
 925	return 1;
 926}
 927
 928static int check_slab(struct kmem_cache *s, struct page *page)
 929{
 930	int maxobj;
 931
 932	VM_BUG_ON(!irqs_disabled());
 933
 934	if (!PageSlab(page)) {
 935		slab_err(s, page, "Not a valid slab page");
 936		return 0;
 937	}
 938
 939	maxobj = order_objects(compound_order(page), s->size, s->reserved);
 940	if (page->objects > maxobj) {
 941		slab_err(s, page, "objects %u > max %u",
 942			page->objects, maxobj);
 943		return 0;
 944	}
 945	if (page->inuse > page->objects) {
 946		slab_err(s, page, "inuse %u > max %u",
 947			page->inuse, page->objects);
 948		return 0;
 949	}
 950	/* Slab_pad_check fixes things up after itself */
 951	slab_pad_check(s, page);
 952	return 1;
 953}
 954
 955/*
 956 * Determine if a certain object on a page is on the freelist. Must hold the
 957 * slab lock to guarantee that the chains are in a consistent state.
 958 */
 959static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
 960{
 961	int nr = 0;
 962	void *fp;
 963	void *object = NULL;
 964	int max_objects;
 965
 966	fp = page->freelist;
 967	while (fp && nr <= page->objects) {
 968		if (fp == search)
 969			return 1;
 970		if (!check_valid_pointer(s, page, fp)) {
 971			if (object) {
 972				object_err(s, page, object,
 973					"Freechain corrupt");
 974				set_freepointer(s, object, NULL);
 975			} else {
 976				slab_err(s, page, "Freepointer corrupt");
 977				page->freelist = NULL;
 978				page->inuse = page->objects;
 979				slab_fix(s, "Freelist cleared");
 980				return 0;
 981			}
 982			break;
 983		}
 984		object = fp;
 985		fp = get_freepointer(s, object);
 986		nr++;
 987	}
 988
 989	max_objects = order_objects(compound_order(page), s->size, s->reserved);
 990	if (max_objects > MAX_OBJS_PER_PAGE)
 991		max_objects = MAX_OBJS_PER_PAGE;
 992
 993	if (page->objects != max_objects) {
 994		slab_err(s, page, "Wrong number of objects. Found %d but should be %d",
 995			 page->objects, max_objects);
 996		page->objects = max_objects;
 997		slab_fix(s, "Number of objects adjusted.");
 998	}
 999	if (page->inuse != page->objects - nr) {
1000		slab_err(s, page, "Wrong object count. Counter is %d but counted were %d",
1001			 page->inuse, page->objects - nr);
1002		page->inuse = page->objects - nr;
1003		slab_fix(s, "Object count adjusted.");
1004	}
1005	return search == NULL;
1006}
1007
1008static void trace(struct kmem_cache *s, struct page *page, void *object,
1009								int alloc)
1010{
1011	if (s->flags & SLAB_TRACE) {
1012		pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
1013			s->name,
1014			alloc ? "alloc" : "free",
1015			object, page->inuse,
1016			page->freelist);
1017
1018		if (!alloc)
1019			print_section(KERN_INFO, "Object ", (void *)object,
1020					s->object_size);
1021
1022		dump_stack();
1023	}
1024}
1025
1026/*
1027 * Tracking of fully allocated slabs for debugging purposes.
1028 */
1029static void add_full(struct kmem_cache *s,
1030	struct kmem_cache_node *n, struct page *page)
1031{
1032	if (!(s->flags & SLAB_STORE_USER))
1033		return;
1034
1035	lockdep_assert_held(&n->list_lock);
1036	list_add(&page->lru, &n->full);
1037}
1038
1039static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
1040{
1041	if (!(s->flags & SLAB_STORE_USER))
1042		return;
1043
1044	lockdep_assert_held(&n->list_lock);
1045	list_del(&page->lru);
1046}
1047
1048/* Tracking of the number of slabs for debugging purposes */
1049static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1050{
1051	struct kmem_cache_node *n = get_node(s, node);
1052
1053	return atomic_long_read(&n->nr_slabs);
1054}
1055
1056static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1057{
1058	return atomic_long_read(&n->nr_slabs);
1059}
1060
1061static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1062{
1063	struct kmem_cache_node *n = get_node(s, node);
1064
1065	/*
1066	 * May be called early in order to allocate a slab for the
1067	 * kmem_cache_node structure. Solve the chicken-egg
1068	 * dilemma by deferring the increment of the count during
1069	 * bootstrap (see early_kmem_cache_node_alloc).
1070	 */
1071	if (likely(n)) {
1072		atomic_long_inc(&n->nr_slabs);
1073		atomic_long_add(objects, &n->total_objects);
1074	}
1075}
1076static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1077{
1078	struct kmem_cache_node *n = get_node(s, node);
1079
1080	atomic_long_dec(&n->nr_slabs);
1081	atomic_long_sub(objects, &n->total_objects);
1082}
1083
1084/* Object debug checks for alloc/free paths */
1085static void setup_object_debug(struct kmem_cache *s, struct page *page,
1086								void *object)
1087{
1088	if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1089		return;
1090
1091	init_object(s, object, SLUB_RED_INACTIVE);
1092	init_tracking(s, object);
1093}
1094
 
 
 
 
 
 
 
 
 
 
 
1095static inline int alloc_consistency_checks(struct kmem_cache *s,
1096					struct page *page,
1097					void *object, unsigned long addr)
1098{
1099	if (!check_slab(s, page))
1100		return 0;
1101
1102	if (!check_valid_pointer(s, page, object)) {
1103		object_err(s, page, object, "Freelist Pointer check fails");
1104		return 0;
1105	}
1106
1107	if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1108		return 0;
1109
1110	return 1;
1111}
1112
1113static noinline int alloc_debug_processing(struct kmem_cache *s,
1114					struct page *page,
1115					void *object, unsigned long addr)
1116{
1117	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1118		if (!alloc_consistency_checks(s, page, object, addr))
1119			goto bad;
1120	}
1121
1122	/* Success perform special debug activities for allocs */
1123	if (s->flags & SLAB_STORE_USER)
1124		set_track(s, object, TRACK_ALLOC, addr);
1125	trace(s, page, object, 1);
1126	init_object(s, object, SLUB_RED_ACTIVE);
1127	return 1;
1128
1129bad:
1130	if (PageSlab(page)) {
1131		/*
1132		 * If this is a slab page then lets do the best we can
1133		 * to avoid issues in the future. Marking all objects
1134		 * as used avoids touching the remaining objects.
1135		 */
1136		slab_fix(s, "Marking all objects used");
1137		page->inuse = page->objects;
1138		page->freelist = NULL;
1139	}
1140	return 0;
1141}
1142
1143static inline int free_consistency_checks(struct kmem_cache *s,
1144		struct page *page, void *object, unsigned long addr)
1145{
1146	if (!check_valid_pointer(s, page, object)) {
1147		slab_err(s, page, "Invalid object pointer 0x%p", object);
1148		return 0;
1149	}
1150
1151	if (on_freelist(s, page, object)) {
1152		object_err(s, page, object, "Object already free");
1153		return 0;
1154	}
1155
1156	if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1157		return 0;
1158
1159	if (unlikely(s != page->slab_cache)) {
1160		if (!PageSlab(page)) {
1161			slab_err(s, page, "Attempt to free object(0x%p) outside of slab",
1162				 object);
1163		} else if (!page->slab_cache) {
1164			pr_err("SLUB <none>: no slab for object 0x%p.\n",
1165			       object);
1166			dump_stack();
1167		} else
1168			object_err(s, page, object,
1169					"page slab pointer corrupt.");
1170		return 0;
1171	}
1172	return 1;
1173}
1174
1175/* Supports checking bulk free of a constructed freelist */
1176static noinline int free_debug_processing(
1177	struct kmem_cache *s, struct page *page,
1178	void *head, void *tail, int bulk_cnt,
1179	unsigned long addr)
 
 
 
 
 
 
 
1180{
1181	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1182	void *object = head;
1183	int cnt = 0;
1184	unsigned long uninitialized_var(flags);
1185	int ret = 0;
1186
1187	spin_lock_irqsave(&n->list_lock, flags);
1188	slab_lock(page);
1189
1190	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1191		if (!check_slab(s, page))
1192			goto out;
1193	}
1194
1195next_object:
1196	cnt++;
1197
1198	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1199		if (!free_consistency_checks(s, page, object, addr))
1200			goto out;
1201	}
1202
1203	if (s->flags & SLAB_STORE_USER)
1204		set_track(s, object, TRACK_FREE, addr);
1205	trace(s, page, object, 0);
1206	/* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
1207	init_object(s, object, SLUB_RED_INACTIVE);
1208
1209	/* Reached end of constructed freelist yet? */
1210	if (object != tail) {
1211		object = get_freepointer(s, object);
1212		goto next_object;
1213	}
1214	ret = 1;
1215
1216out:
1217	if (cnt != bulk_cnt)
1218		slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
1219			 bulk_cnt, cnt);
1220
1221	slab_unlock(page);
1222	spin_unlock_irqrestore(&n->list_lock, flags);
1223	if (!ret)
1224		slab_fix(s, "Object at 0x%p not freed", object);
1225	return ret;
1226}
1227
1228static int __init setup_slub_debug(char *str)
1229{
1230	slub_debug = DEBUG_DEFAULT_FLAGS;
1231	if (*str++ != '=' || !*str)
1232		/*
1233		 * No options specified. Switch on full debugging.
1234		 */
1235		goto out;
1236
1237	if (*str == ',')
1238		/*
1239		 * No options but restriction on slabs. This means full
1240		 * debugging for slabs matching a pattern.
1241		 */
 
1242		goto check_slabs;
 
 
1243
1244	slub_debug = 0;
1245	if (*str == '-')
1246		/*
1247		 * Switch off all debugging measures.
1248		 */
1249		goto out;
1250
1251	/*
1252	 * Determine which debug features should be switched on
1253	 */
1254	for (; *str && *str != ','; str++) {
1255		switch (tolower(*str)) {
 
 
 
1256		case 'f':
1257			slub_debug |= SLAB_CONSISTENCY_CHECKS;
1258			break;
1259		case 'z':
1260			slub_debug |= SLAB_RED_ZONE;
1261			break;
1262		case 'p':
1263			slub_debug |= SLAB_POISON;
1264			break;
1265		case 'u':
1266			slub_debug |= SLAB_STORE_USER;
1267			break;
1268		case 't':
1269			slub_debug |= SLAB_TRACE;
1270			break;
1271		case 'a':
1272			slub_debug |= SLAB_FAILSLAB;
1273			break;
1274		case 'o':
1275			/*
1276			 * Avoid enabling debugging on caches if its minimum
1277			 * order would increase as a result.
1278			 */
1279			disable_higher_order_debug = 1;
1280			break;
1281		default:
1282			pr_err("slub_debug option '%c' unknown. skipped\n",
1283			       *str);
1284		}
1285	}
1286
1287check_slabs:
1288	if (*str == ',')
1289		slub_debug_slabs = str + 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1290out:
 
 
 
 
 
 
 
 
 
 
 
1291	return 1;
1292}
1293
1294__setup("slub_debug", setup_slub_debug);
1295
 
 
 
 
 
 
 
 
 
 
 
1296slab_flags_t kmem_cache_flags(unsigned int object_size,
1297	slab_flags_t flags, const char *name,
1298	void (*ctor)(void *))
1299{
1300	/*
1301	 * Enable debugging if selected on the kernel commandline.
1302	 */
1303	if (slub_debug && (!slub_debug_slabs || (name &&
1304		!strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
1305		flags |= slub_debug;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1306
1307	return flags;
 
 
 
 
 
 
 
 
 
 
 
1308}
1309#else /* !CONFIG_SLUB_DEBUG */
1310static inline void setup_object_debug(struct kmem_cache *s,
1311			struct page *page, void *object) {}
 
1312
1313static inline int alloc_debug_processing(struct kmem_cache *s,
1314	struct page *page, void *object, unsigned long addr) { return 0; }
1315
1316static inline int free_debug_processing(
1317	struct kmem_cache *s, struct page *page,
1318	void *head, void *tail, int bulk_cnt,
1319	unsigned long addr) { return 0; }
1320
1321static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1322			{ return 1; }
1323static inline int check_object(struct kmem_cache *s, struct page *page,
1324			void *object, u8 val) { return 1; }
 
 
 
1325static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1326					struct page *page) {}
1327static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1328					struct page *page) {}
1329slab_flags_t kmem_cache_flags(unsigned int object_size,
1330	slab_flags_t flags, const char *name,
1331	void (*ctor)(void *))
1332{
1333	return flags;
1334}
1335#define slub_debug 0
1336
1337#define disable_higher_order_debug 0
1338
1339static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1340							{ return 0; }
1341static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1342							{ return 0; }
1343static inline void inc_slabs_node(struct kmem_cache *s, int node,
1344							int objects) {}
1345static inline void dec_slabs_node(struct kmem_cache *s, int node,
1346							int objects) {}
1347
 
 
 
 
 
 
 
1348#endif /* CONFIG_SLUB_DEBUG */
1349
1350/*
1351 * Hooks for other subsystems that check memory allocations. In a typical
1352 * production configuration these hooks all should produce no code at all.
1353 */
1354static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1355{
1356	kmemleak_alloc(ptr, size, 1, flags);
1357	kasan_kmalloc_large(ptr, size, flags);
1358}
1359
1360static __always_inline void kfree_hook(void *x)
 
1361{
1362	kmemleak_free(x);
1363	kasan_kfree_large(x, _RET_IP_);
1364}
1365
1366static __always_inline bool slab_free_hook(struct kmem_cache *s, void *x)
1367{
1368	kmemleak_free_recursive(x, s->flags);
 
 
 
 
 
1369
 
 
 
 
 
 
 
 
1370	/*
1371	 * Trouble is that we may no longer disable interrupts in the fast path
1372	 * So in order to make the debug calls that expect irqs to be
1373	 * disabled we need to disable interrupts temporarily.
1374	 */
1375#ifdef CONFIG_LOCKDEP
1376	{
1377		unsigned long flags;
1378
1379		local_irq_save(flags);
1380		debug_check_no_locks_freed(x, s->object_size);
1381		local_irq_restore(flags);
 
 
 
 
 
 
 
1382	}
1383#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1384	if (!(s->flags & SLAB_DEBUG_OBJECTS))
1385		debug_check_no_obj_freed(x, s->object_size);
1386
1387	/* KASAN might put x into memory quarantine, delaying its reuse */
1388	return kasan_slab_free(s, x, _RET_IP_);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1389}
1390
1391static inline bool slab_free_freelist_hook(struct kmem_cache *s,
1392					   void **head, void **tail)
 
1393{
1394/*
1395 * Compiler cannot detect this function can be removed if slab_free_hook()
1396 * evaluates to nothing.  Thus, catch all relevant config debug options here.
1397 */
1398#if defined(CONFIG_LOCKDEP)	||		\
1399	defined(CONFIG_DEBUG_KMEMLEAK) ||	\
1400	defined(CONFIG_DEBUG_OBJECTS_FREE) ||	\
1401	defined(CONFIG_KASAN)
1402
1403	void *object;
1404	void *next = *head;
1405	void *old_tail = *tail ? *tail : *head;
 
 
 
 
 
 
1406
1407	/* Head and tail of the reconstructed freelist */
1408	*head = NULL;
1409	*tail = NULL;
1410
 
 
1411	do {
1412		object = next;
1413		next = get_freepointer(s, object);
 
1414		/* If object's reuse doesn't have to be delayed */
1415		if (!slab_free_hook(s, object)) {
1416			/* Move object to the new freelist */
1417			set_freepointer(s, object, *head);
1418			*head = object;
1419			if (!*tail)
1420				*tail = object;
 
 
 
 
 
 
1421		}
1422	} while (object != old_tail);
1423
1424	if (*head == *tail)
1425		*tail = NULL;
1426
1427	return *head != NULL;
1428#else
1429	return true;
1430#endif
1431}
1432
1433static void setup_object(struct kmem_cache *s, struct page *page,
1434				void *object)
1435{
1436	setup_object_debug(s, page, object);
1437	kasan_init_slab_obj(s, object);
1438	if (unlikely(s->ctor)) {
1439		kasan_unpoison_object_data(s, object);
1440		s->ctor(object);
1441		kasan_poison_object_data(s, object);
1442	}
 
1443}
1444
1445/*
1446 * Slab allocation and freeing
1447 */
1448static inline struct page *alloc_slab_page(struct kmem_cache *s,
1449		gfp_t flags, int node, struct kmem_cache_order_objects oo)
1450{
1451	struct page *page;
 
1452	unsigned int order = oo_order(oo);
1453
1454	if (node == NUMA_NO_NODE)
1455		page = alloc_pages(flags, order);
1456	else
1457		page = __alloc_pages_node(node, flags, order);
1458
1459	if (page && memcg_charge_slab(page, flags, order, s)) {
1460		__free_pages(page, order);
1461		page = NULL;
1462	}
 
 
1463
1464	return page;
1465}
1466
1467#ifdef CONFIG_SLAB_FREELIST_RANDOM
1468/* Pre-initialize the random sequence cache */
1469static int init_cache_random_seq(struct kmem_cache *s)
1470{
1471	unsigned int count = oo_objects(s->oo);
1472	int err;
1473
1474	/* Bailout if already initialised */
1475	if (s->random_seq)
1476		return 0;
1477
1478	err = cache_random_seq_create(s, count, GFP_KERNEL);
1479	if (err) {
1480		pr_err("SLUB: Unable to initialize free list for %s\n",
1481			s->name);
1482		return err;
1483	}
1484
1485	/* Transform to an offset on the set of pages */
1486	if (s->random_seq) {
1487		unsigned int i;
1488
1489		for (i = 0; i < count; i++)
1490			s->random_seq[i] *= s->size;
1491	}
1492	return 0;
1493}
1494
1495/* Initialize each random sequence freelist per cache */
1496static void __init init_freelist_randomization(void)
1497{
1498	struct kmem_cache *s;
1499
1500	mutex_lock(&slab_mutex);
1501
1502	list_for_each_entry(s, &slab_caches, list)
1503		init_cache_random_seq(s);
1504
1505	mutex_unlock(&slab_mutex);
1506}
1507
1508/* Get the next entry on the pre-computed freelist randomized */
1509static void *next_freelist_entry(struct kmem_cache *s, struct page *page,
1510				unsigned long *pos, void *start,
1511				unsigned long page_limit,
1512				unsigned long freelist_count)
1513{
1514	unsigned int idx;
1515
1516	/*
1517	 * If the target page allocation failed, the number of objects on the
1518	 * page might be smaller than the usual size defined by the cache.
1519	 */
1520	do {
1521		idx = s->random_seq[*pos];
1522		*pos += 1;
1523		if (*pos >= freelist_count)
1524			*pos = 0;
1525	} while (unlikely(idx >= page_limit));
1526
1527	return (char *)start + idx;
1528}
1529
1530/* Shuffle the single linked freelist based on a random pre-computed sequence */
1531static bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1532{
1533	void *start;
1534	void *cur;
1535	void *next;
1536	unsigned long idx, pos, page_limit, freelist_count;
1537
1538	if (page->objects < 2 || !s->random_seq)
1539		return false;
1540
1541	freelist_count = oo_objects(s->oo);
1542	pos = get_random_int() % freelist_count;
1543
1544	page_limit = page->objects * s->size;
1545	start = fixup_red_left(s, page_address(page));
1546
1547	/* First entry is used as the base of the freelist */
1548	cur = next_freelist_entry(s, page, &pos, start, page_limit,
1549				freelist_count);
1550	page->freelist = cur;
 
1551
1552	for (idx = 1; idx < page->objects; idx++) {
1553		setup_object(s, page, cur);
1554		next = next_freelist_entry(s, page, &pos, start, page_limit,
1555			freelist_count);
 
1556		set_freepointer(s, cur, next);
1557		cur = next;
1558	}
1559	setup_object(s, page, cur);
1560	set_freepointer(s, cur, NULL);
1561
1562	return true;
1563}
1564#else
1565static inline int init_cache_random_seq(struct kmem_cache *s)
1566{
1567	return 0;
1568}
1569static inline void init_freelist_randomization(void) { }
1570static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1571{
1572	return false;
1573}
1574#endif /* CONFIG_SLAB_FREELIST_RANDOM */
1575
1576static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1577{
1578	struct page *page;
1579	struct kmem_cache_order_objects oo = s->oo;
1580	gfp_t alloc_gfp;
1581	void *start, *p;
1582	int idx, order;
1583	bool shuffle;
1584
1585	flags &= gfp_allowed_mask;
1586
1587	if (gfpflags_allow_blocking(flags))
1588		local_irq_enable();
1589
1590	flags |= s->allocflags;
1591
1592	/*
1593	 * Let the initial higher-order allocation fail under memory pressure
1594	 * so we fall-back to the minimum order allocation.
1595	 */
1596	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1597	if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
1598		alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
1599
1600	page = alloc_slab_page(s, alloc_gfp, node, oo);
1601	if (unlikely(!page)) {
1602		oo = s->min;
1603		alloc_gfp = flags;
1604		/*
1605		 * Allocation may have failed due to fragmentation.
1606		 * Try a lower order alloc if possible
1607		 */
1608		page = alloc_slab_page(s, alloc_gfp, node, oo);
1609		if (unlikely(!page))
1610			goto out;
1611		stat(s, ORDER_FALLBACK);
1612	}
1613
1614	page->objects = oo_objects(oo);
 
 
1615
1616	order = compound_order(page);
1617	page->slab_cache = s;
1618	__SetPageSlab(page);
1619	if (page_is_pfmemalloc(page))
1620		SetPageSlabPfmemalloc(page);
1621
1622	start = page_address(page);
1623
1624	if (unlikely(s->flags & SLAB_POISON))
1625		memset(start, POISON_INUSE, PAGE_SIZE << order);
1626
1627	kasan_poison_slab(page);
1628
1629	shuffle = shuffle_freelist(s, page);
 
 
1630
1631	if (!shuffle) {
1632		for_each_object_idx(p, idx, s, start, page->objects) {
1633			setup_object(s, page, p);
1634			if (likely(idx < page->objects))
1635				set_freepointer(s, p, p + s->size);
1636			else
1637				set_freepointer(s, p, NULL);
 
 
1638		}
1639		page->freelist = fixup_red_left(s, start);
1640	}
1641
1642	page->inuse = page->objects;
1643	page->frozen = 1;
1644
1645out:
1646	if (gfpflags_allow_blocking(flags))
1647		local_irq_disable();
1648	if (!page)
1649		return NULL;
1650
1651	mod_lruvec_page_state(page,
1652		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1653		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1654		1 << oo_order(oo));
1655
1656	inc_slabs_node(s, page_to_nid(page), page->objects);
1657
1658	return page;
1659}
1660
1661static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1662{
1663	if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
1664		gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
1665		flags &= ~GFP_SLAB_BUG_MASK;
1666		pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
1667				invalid_mask, &invalid_mask, flags, &flags);
1668		dump_stack();
1669	}
1670
1671	return allocate_slab(s,
1672		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1673}
1674
1675static void __free_slab(struct kmem_cache *s, struct page *page)
1676{
1677	int order = compound_order(page);
 
1678	int pages = 1 << order;
1679
1680	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1681		void *p;
1682
1683		slab_pad_check(s, page);
1684		for_each_object(p, s, page_address(page),
1685						page->objects)
1686			check_object(s, page, p, SLUB_RED_INACTIVE);
1687	}
1688
1689	mod_lruvec_page_state(page,
1690		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1691		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1692		-pages);
1693
1694	__ClearPageSlabPfmemalloc(page);
1695	__ClearPageSlab(page);
 
1696
1697	page_mapcount_reset(page);
1698	if (current->reclaim_state)
1699		current->reclaim_state->reclaimed_slab += pages;
1700	memcg_uncharge_slab(page, order, s);
1701	__free_pages(page, order);
1702}
1703
1704#define need_reserve_slab_rcu						\
1705	(sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1706
1707static void rcu_free_slab(struct rcu_head *h)
1708{
1709	struct page *page;
 
1710
1711	if (need_reserve_slab_rcu)
1712		page = virt_to_head_page(h);
1713	else
1714		page = container_of((struct list_head *)h, struct page, lru);
1715
1716	__free_slab(page->slab_cache, page);
 
 
 
1717}
1718
1719static void free_slab(struct kmem_cache *s, struct page *page)
1720{
1721	if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) {
1722		struct rcu_head *head;
1723
1724		if (need_reserve_slab_rcu) {
1725			int order = compound_order(page);
1726			int offset = (PAGE_SIZE << order) - s->reserved;
1727
1728			VM_BUG_ON(s->reserved != sizeof(*head));
1729			head = page_address(page) + offset;
1730		} else {
1731			head = &page->rcu_head;
1732		}
 
 
 
1733
1734		call_rcu(head, rcu_free_slab);
1735	} else
1736		__free_slab(s, page);
1737}
1738
1739static void discard_slab(struct kmem_cache *s, struct page *page)
1740{
1741	dec_slabs_node(s, page_to_nid(page), page->objects);
1742	free_slab(s, page);
1743}
1744
1745/*
1746 * Management of partially allocated slabs.
1747 */
1748static inline void
1749__add_partial(struct kmem_cache_node *n, struct page *page, int tail)
1750{
1751	n->nr_partial++;
1752	if (tail == DEACTIVATE_TO_TAIL)
1753		list_add_tail(&page->lru, &n->partial);
1754	else
1755		list_add(&page->lru, &n->partial);
 
1756}
1757
1758static inline void add_partial(struct kmem_cache_node *n,
1759				struct page *page, int tail)
1760{
1761	lockdep_assert_held(&n->list_lock);
1762	__add_partial(n, page, tail);
1763}
1764
1765static inline void remove_partial(struct kmem_cache_node *n,
1766					struct page *page)
1767{
1768	lockdep_assert_held(&n->list_lock);
1769	list_del(&page->lru);
 
1770	n->nr_partial--;
1771}
1772
1773/*
1774 * Remove slab from the partial list, freeze it and
1775 * return the pointer to the freelist.
1776 *
1777 * Returns a list of objects or NULL if it fails.
1778 */
1779static inline void *acquire_slab(struct kmem_cache *s,
1780		struct kmem_cache_node *n, struct page *page,
1781		int mode, int *objects)
1782{
1783	void *freelist;
1784	unsigned long counters;
1785	struct page new;
1786
1787	lockdep_assert_held(&n->list_lock);
1788
1789	/*
1790	 * Zap the freelist and set the frozen bit.
1791	 * The old freelist is the list of objects for the
1792	 * per cpu allocation list.
1793	 */
1794	freelist = page->freelist;
1795	counters = page->counters;
1796	new.counters = counters;
1797	*objects = new.objects - new.inuse;
1798	if (mode) {
1799		new.inuse = page->objects;
1800		new.freelist = NULL;
1801	} else {
1802		new.freelist = freelist;
1803	}
1804
1805	VM_BUG_ON(new.frozen);
1806	new.frozen = 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1807
1808	if (!__cmpxchg_double_slab(s, page,
1809			freelist, counters,
1810			new.freelist, new.counters,
1811			"acquire_slab"))
 
 
 
 
 
 
1812		return NULL;
1813
1814	remove_partial(n, page);
1815	WARN_ON(!freelist);
1816	return freelist;
 
 
 
 
 
 
 
 
1817}
1818
1819static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1820static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
 
 
 
 
 
1821
1822/*
1823 * Try to allocate a partial slab from a specific node.
1824 */
1825static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1826				struct kmem_cache_cpu *c, gfp_t flags)
 
1827{
1828	struct page *page, *page2;
1829	void *object = NULL;
1830	unsigned int available = 0;
1831	int objects;
1832
1833	/*
1834	 * Racy check. If we mistakenly see no partial slabs then we
1835	 * just allocate an empty slab. If we mistakenly try to get a
1836	 * partial slab and there is none available then get_partials()
1837	 * will return NULL.
1838	 */
1839	if (!n || !n->nr_partial)
1840		return NULL;
1841
1842	spin_lock(&n->list_lock);
1843	list_for_each_entry_safe(page, page2, &n->partial, lru) {
1844		void *t;
 
1845
1846		if (!pfmemalloc_match(page, flags))
 
 
 
 
 
 
 
1847			continue;
 
1848
1849		t = acquire_slab(s, n, page, object == NULL, &objects);
1850		if (!t)
1851			break;
1852
1853		available += objects;
1854		if (!object) {
1855			c->page = page;
1856			stat(s, ALLOC_FROM_PARTIAL);
1857			object = t;
1858		} else {
1859			put_cpu_partial(s, page, 0);
1860			stat(s, CPU_PARTIAL_NODE);
 
1861		}
 
1862		if (!kmem_cache_has_cpu_partial(s)
1863			|| available > slub_cpu_partial(s) / 2)
1864			break;
 
 
 
1865
1866	}
1867	spin_unlock(&n->list_lock);
1868	return object;
1869}
1870
1871/*
1872 * Get a page from somewhere. Search in increasing NUMA distances.
1873 */
1874static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1875		struct kmem_cache_cpu *c)
1876{
1877#ifdef CONFIG_NUMA
1878	struct zonelist *zonelist;
1879	struct zoneref *z;
1880	struct zone *zone;
1881	enum zone_type high_zoneidx = gfp_zone(flags);
1882	void *object;
1883	unsigned int cpuset_mems_cookie;
1884
1885	/*
1886	 * The defrag ratio allows a configuration of the tradeoffs between
1887	 * inter node defragmentation and node local allocations. A lower
1888	 * defrag_ratio increases the tendency to do local allocations
1889	 * instead of attempting to obtain partial slabs from other nodes.
1890	 *
1891	 * If the defrag_ratio is set to 0 then kmalloc() always
1892	 * returns node local objects. If the ratio is higher then kmalloc()
1893	 * may return off node objects because partial slabs are obtained
1894	 * from other nodes and filled up.
1895	 *
1896	 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
1897	 * (which makes defrag_ratio = 1000) then every (well almost)
1898	 * allocation will first attempt to defrag slab caches on other nodes.
1899	 * This means scanning over all nodes to look for partial slabs which
1900	 * may be expensive if we do it every time we are trying to find a slab
1901	 * with available objects.
1902	 */
1903	if (!s->remote_node_defrag_ratio ||
1904			get_cycles() % 1024 > s->remote_node_defrag_ratio)
1905		return NULL;
1906
1907	do {
1908		cpuset_mems_cookie = read_mems_allowed_begin();
1909		zonelist = node_zonelist(mempolicy_slab_node(), flags);
1910		for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1911			struct kmem_cache_node *n;
1912
1913			n = get_node(s, zone_to_nid(zone));
1914
1915			if (n && cpuset_zone_allowed(zone, flags) &&
1916					n->nr_partial > s->min_partial) {
1917				object = get_partial_node(s, n, c, flags);
1918				if (object) {
1919					/*
1920					 * Don't check read_mems_allowed_retry()
1921					 * here - if mems_allowed was updated in
1922					 * parallel, that was a harmless race
1923					 * between allocation and the cpuset
1924					 * update
1925					 */
1926					return object;
1927				}
1928			}
1929		}
1930	} while (read_mems_allowed_retry(cpuset_mems_cookie));
1931#endif
1932	return NULL;
1933}
1934
1935/*
1936 * Get a partial page, lock it and return it.
1937 */
1938static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1939		struct kmem_cache_cpu *c)
1940{
1941	void *object;
1942	int searchnode = node;
1943
1944	if (node == NUMA_NO_NODE)
1945		searchnode = numa_mem_id();
1946	else if (!node_present_pages(node))
1947		searchnode = node_to_mem_node(node);
1948
1949	object = get_partial_node(s, get_node(s, searchnode), c, flags);
1950	if (object || node != NUMA_NO_NODE)
1951		return object;
1952
1953	return get_any_partial(s, flags, c);
1954}
1955
1956#ifdef CONFIG_PREEMPT
 
 
1957/*
1958 * Calculate the next globally unique transaction for disambiguiation
1959 * during cmpxchg. The transactions start with the cpu number and are then
1960 * incremented by CONFIG_NR_CPUS.
1961 */
1962#define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
1963#else
1964/*
1965 * No preemption supported therefore also no need to check for
1966 * different cpus.
1967 */
1968#define TID_STEP 1
1969#endif
1970
1971static inline unsigned long next_tid(unsigned long tid)
1972{
1973	return tid + TID_STEP;
1974}
1975
 
1976static inline unsigned int tid_to_cpu(unsigned long tid)
1977{
1978	return tid % TID_STEP;
1979}
1980
1981static inline unsigned long tid_to_event(unsigned long tid)
1982{
1983	return tid / TID_STEP;
1984}
 
1985
1986static inline unsigned int init_tid(int cpu)
1987{
1988	return cpu;
1989}
1990
1991static inline void note_cmpxchg_failure(const char *n,
1992		const struct kmem_cache *s, unsigned long tid)
1993{
1994#ifdef SLUB_DEBUG_CMPXCHG
1995	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1996
1997	pr_info("%s %s: cmpxchg redo ", n, s->name);
1998
1999#ifdef CONFIG_PREEMPT
2000	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
2001		pr_warn("due to cpu change %d -> %d\n",
2002			tid_to_cpu(tid), tid_to_cpu(actual_tid));
2003	else
2004#endif
2005	if (tid_to_event(tid) != tid_to_event(actual_tid))
2006		pr_warn("due to cpu running other code. Event %ld->%ld\n",
2007			tid_to_event(tid), tid_to_event(actual_tid));
2008	else
2009		pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
2010			actual_tid, tid, next_tid(tid));
2011#endif
2012	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
2013}
2014
2015static void init_kmem_cache_cpus(struct kmem_cache *s)
2016{
2017	int cpu;
 
2018
2019	for_each_possible_cpu(cpu)
2020		per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
 
 
 
2021}
2022
2023/*
2024 * Remove the cpu slab
 
 
 
2025 */
2026static void deactivate_slab(struct kmem_cache *s, struct page *page,
2027				void *freelist, struct kmem_cache_cpu *c)
2028{
2029	enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2030	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
2031	int lock = 0;
2032	enum slab_modes l = M_NONE, m = M_NONE;
2033	void *nextfree;
2034	int tail = DEACTIVATE_TO_HEAD;
2035	struct page new;
2036	struct page old;
 
2037
2038	if (page->freelist) {
2039		stat(s, DEACTIVATE_REMOTE_FREES);
2040		tail = DEACTIVATE_TO_TAIL;
2041	}
2042
2043	/*
2044	 * Stage one: Free all available per cpu objects back
2045	 * to the page freelist while it is still frozen. Leave the
2046	 * last one.
2047	 *
2048	 * There is no need to take the list->lock because the page
2049	 * is still frozen.
2050	 */
2051	while (freelist && (nextfree = get_freepointer(s, freelist))) {
2052		void *prior;
2053		unsigned long counters;
 
2054
2055		do {
2056			prior = page->freelist;
2057			counters = page->counters;
2058			set_freepointer(s, freelist, prior);
2059			new.counters = counters;
2060			new.inuse--;
2061			VM_BUG_ON(!new.frozen);
2062
2063		} while (!__cmpxchg_double_slab(s, page,
2064			prior, counters,
2065			freelist, new.counters,
2066			"drain percpu freelist"));
2067
2068		freelist = nextfree;
2069	}
2070
2071	/*
2072	 * Stage two: Ensure that the page is unfrozen while the
2073	 * list presence reflects the actual number of objects
2074	 * during unfreeze.
2075	 *
2076	 * We setup the list membership and then perform a cmpxchg
2077	 * with the count. If there is a mismatch then the page
2078	 * is not unfrozen but the page is on the wrong list.
2079	 *
2080	 * Then we restart the process which may have to remove
2081	 * the page from the list that we just put it on again
2082	 * because the number of objects in the slab may have
2083	 * changed.
2084	 */
2085redo:
2086
2087	old.freelist = page->freelist;
2088	old.counters = page->counters;
2089	VM_BUG_ON(!old.frozen);
2090
2091	/* Determine target state of the slab */
2092	new.counters = old.counters;
2093	if (freelist) {
2094		new.inuse--;
2095		set_freepointer(s, freelist, old.freelist);
2096		new.freelist = freelist;
2097	} else
2098		new.freelist = old.freelist;
2099
2100	new.frozen = 0;
2101
2102	if (!new.inuse && n->nr_partial >= s->min_partial)
2103		m = M_FREE;
2104	else if (new.freelist) {
2105		m = M_PARTIAL;
2106		if (!lock) {
2107			lock = 1;
2108			/*
2109			 * Taking the spinlock removes the possiblity
2110			 * that acquire_slab() will see a slab page that
2111			 * is frozen
2112			 */
2113			spin_lock(&n->list_lock);
2114		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2115	} else {
2116		m = M_FULL;
2117		if (kmem_cache_debug(s) && !lock) {
2118			lock = 1;
2119			/*
2120			 * This also ensures that the scanning of full
2121			 * slabs from diagnostic functions will not see
2122			 * any frozen slabs.
2123			 */
2124			spin_lock(&n->list_lock);
2125		}
2126	}
 
2127
2128	if (l != m) {
2129
2130		if (l == M_PARTIAL)
2131
2132			remove_partial(n, page);
2133
2134		else if (l == M_FULL)
2135
2136			remove_full(s, n, page);
2137
2138		if (m == M_PARTIAL) {
2139
2140			add_partial(n, page, tail);
2141			stat(s, tail);
 
2142
2143		} else if (m == M_FULL) {
 
 
 
2144
2145			stat(s, DEACTIVATE_FULL);
2146			add_full(s, n, page);
 
2147
 
 
 
 
 
 
2148		}
2149	}
2150
2151	l = m;
2152	if (!__cmpxchg_double_slab(s, page,
2153				old.freelist, old.counters,
2154				new.freelist, new.counters,
2155				"unfreezing slab"))
2156		goto redo;
2157
2158	if (lock)
2159		spin_unlock(&n->list_lock);
 
2160
2161	if (m == M_FREE) {
2162		stat(s, DEACTIVATE_EMPTY);
2163		discard_slab(s, page);
2164		stat(s, FREE_SLAB);
2165	}
2166
2167	c->page = NULL;
2168	c->freelist = NULL;
2169}
2170
2171/*
2172 * Unfreeze all the cpu partial slabs.
2173 *
2174 * This function must be called with interrupts disabled
2175 * for the cpu using c (or some other guarantee must be there
2176 * to guarantee no concurrent accesses).
2177 */
2178static void unfreeze_partials(struct kmem_cache *s,
2179		struct kmem_cache_cpu *c)
2180{
2181#ifdef CONFIG_SLUB_CPU_PARTIAL
2182	struct kmem_cache_node *n = NULL, *n2 = NULL;
2183	struct page *page, *discard_page = NULL;
2184
2185	while ((page = c->partial)) {
2186		struct page new;
2187		struct page old;
 
2188
2189		c->partial = page->next;
 
 
2190
2191		n2 = get_node(s, page_to_nid(page));
2192		if (n != n2) {
2193			if (n)
2194				spin_unlock(&n->list_lock);
2195
2196			n = n2;
2197			spin_lock(&n->list_lock);
2198		}
2199
2200		do {
 
 
2201
2202			old.freelist = page->freelist;
2203			old.counters = page->counters;
2204			VM_BUG_ON(!old.frozen);
 
 
 
 
 
 
 
 
 
2205
2206			new.counters = old.counters;
2207			new.freelist = old.freelist;
2208
2209			new.frozen = 0;
2210
2211		} while (!__cmpxchg_double_slab(s, page,
2212				old.freelist, old.counters,
2213				new.freelist, new.counters,
2214				"unfreezing slab"));
2215
2216		if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
2217			page->next = discard_page;
2218			discard_page = page;
 
2219		} else {
2220			add_partial(n, page, DEACTIVATE_TO_TAIL);
2221			stat(s, FREE_ADD_PARTIAL);
2222		}
2223	}
2224
2225	if (n)
2226		spin_unlock(&n->list_lock);
2227
2228	while (discard_page) {
2229		page = discard_page;
2230		discard_page = discard_page->next;
2231
2232		stat(s, DEACTIVATE_EMPTY);
2233		discard_slab(s, page);
2234		stat(s, FREE_SLAB);
 
 
 
 
2235	}
2236#endif
2237}
2238
2239/*
2240 * Put a page that was just frozen (in __slab_free) into a partial page
2241 * slot if available.
2242 *
2243 * If we did not find a slot then simply move all the partials to the
2244 * per node partial list.
2245 */
2246static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
 
2247{
2248#ifdef CONFIG_SLUB_CPU_PARTIAL
2249	struct page *oldpage;
2250	int pages;
2251	int pobjects;
2252
2253	preempt_disable();
2254	do {
2255		pages = 0;
2256		pobjects = 0;
2257		oldpage = this_cpu_read(s->cpu_slab->partial);
2258
2259		if (oldpage) {
2260			pobjects = oldpage->pobjects;
2261			pages = oldpage->pages;
2262			if (drain && pobjects > s->cpu_partial) {
2263				unsigned long flags;
2264				/*
2265				 * partial array is full. Move the existing
2266				 * set to the per node partial list.
2267				 */
2268				local_irq_save(flags);
2269				unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2270				local_irq_restore(flags);
2271				oldpage = NULL;
2272				pobjects = 0;
2273				pages = 0;
2274				stat(s, CPU_PARTIAL_DRAIN);
2275			}
2276		}
2277
2278		pages++;
2279		pobjects += page->objects - page->inuse;
2280
2281		page->pages = pages;
2282		page->pobjects = pobjects;
2283		page->next = oldpage;
2284
2285	} while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2286								!= oldpage);
2287	if (unlikely(!s->cpu_partial)) {
2288		unsigned long flags;
2289
2290		local_irq_save(flags);
2291		unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2292		local_irq_restore(flags);
 
 
2293	}
2294	preempt_enable();
2295#endif
2296}
2297
2298static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2299{
2300	stat(s, CPUSLAB_FLUSH);
2301	deactivate_slab(s, c->page, c->freelist, c);
 
2302
 
 
2303	c->tid = next_tid(c->tid);
 
 
 
 
 
 
 
2304}
2305
 
 
 
 
 
 
2306/*
2307 * Flush cpu slab.
2308 *
2309 * Called from IPI handler with interrupts disabled.
2310 */
2311static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2312{
2313	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
 
 
2314
2315	if (likely(c)) {
2316		if (c->page)
2317			flush_slab(s, c);
2318
2319		unfreeze_partials(s, c);
2320	}
 
 
 
 
 
2321}
2322
2323static void flush_cpu_slab(void *d)
2324{
2325	struct kmem_cache *s = d;
2326
2327	__flush_cpu_slab(s, smp_processor_id());
2328}
2329
2330static bool has_cpu_slab(int cpu, void *info)
 
 
 
2331{
2332	struct kmem_cache *s = info;
2333	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2334
2335	return c->page || slub_percpu_partial(c);
 
 
 
 
 
 
 
2336}
2337
2338static void flush_all(struct kmem_cache *s)
2339{
2340	on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
 
 
2341}
2342
2343/*
2344 * Use the cpu notifier to insure that the cpu slabs are flushed when
2345 * necessary.
2346 */
2347static int slub_cpu_dead(unsigned int cpu)
2348{
2349	struct kmem_cache *s;
2350	unsigned long flags;
2351
2352	mutex_lock(&slab_mutex);
2353	list_for_each_entry(s, &slab_caches, list) {
2354		local_irq_save(flags);
2355		__flush_cpu_slab(s, cpu);
2356		local_irq_restore(flags);
2357	}
2358	mutex_unlock(&slab_mutex);
2359	return 0;
2360}
2361
 
 
 
 
 
 
 
2362/*
2363 * Check if the objects in a per cpu structure fit numa
2364 * locality expectations.
2365 */
2366static inline int node_match(struct page *page, int node)
2367{
2368#ifdef CONFIG_NUMA
2369	if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
2370		return 0;
2371#endif
2372	return 1;
2373}
2374
2375#ifdef CONFIG_SLUB_DEBUG
2376static int count_free(struct page *page)
2377{
2378	return page->objects - page->inuse;
2379}
2380
2381static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2382{
2383	return atomic_long_read(&n->total_objects);
2384}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2385#endif /* CONFIG_SLUB_DEBUG */
2386
2387#if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
2388static unsigned long count_partial(struct kmem_cache_node *n,
2389					int (*get_count)(struct page *))
2390{
2391	unsigned long flags;
2392	unsigned long x = 0;
2393	struct page *page;
2394
2395	spin_lock_irqsave(&n->list_lock, flags);
2396	list_for_each_entry(page, &n->partial, lru)
2397		x += get_count(page);
2398	spin_unlock_irqrestore(&n->list_lock, flags);
2399	return x;
2400}
2401#endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2402
 
2403static noinline void
2404slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2405{
2406#ifdef CONFIG_SLUB_DEBUG
2407	static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2408				      DEFAULT_RATELIMIT_BURST);
2409	int node;
2410	struct kmem_cache_node *n;
2411
2412	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2413		return;
2414
2415	pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2416		nid, gfpflags, &gfpflags);
2417	pr_warn("  cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
2418		s->name, s->object_size, s->size, oo_order(s->oo),
2419		oo_order(s->min));
2420
2421	if (oo_order(s->min) > get_order(s->object_size))
2422		pr_warn("  %s debugging increased min order, use slub_debug=O to disable.\n",
2423			s->name);
2424
2425	for_each_kmem_cache_node(s, node, n) {
2426		unsigned long nr_slabs;
2427		unsigned long nr_objs;
2428		unsigned long nr_free;
2429
2430		nr_free  = count_partial(n, count_free);
2431		nr_slabs = node_nr_slabs(n);
2432		nr_objs  = node_nr_objs(n);
2433
2434		pr_warn("  node %d: slabs: %ld, objs: %ld, free: %ld\n",
2435			node, nr_slabs, nr_objs, nr_free);
2436	}
2437#endif
2438}
 
 
 
 
2439
2440static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2441			int node, struct kmem_cache_cpu **pc)
2442{
2443	void *freelist;
2444	struct kmem_cache_cpu *c = *pc;
2445	struct page *page;
2446
2447	freelist = get_partial(s, flags, node, c);
2448
2449	if (freelist)
2450		return freelist;
2451
2452	page = new_slab(s, flags, node);
2453	if (page) {
2454		c = raw_cpu_ptr(s->cpu_slab);
2455		if (c->page)
2456			flush_slab(s, c);
2457
2458		/*
2459		 * No other reference to the page yet so we can
2460		 * muck around with it freely without cmpxchg
2461		 */
2462		freelist = page->freelist;
2463		page->freelist = NULL;
2464
2465		stat(s, ALLOC_SLAB);
2466		c->page = page;
2467		*pc = c;
2468	} else
2469		freelist = NULL;
2470
2471	return freelist;
2472}
2473
2474static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
 
 
 
 
2475{
2476	if (unlikely(PageSlabPfmemalloc(page)))
2477		return gfp_pfmemalloc_allowed(gfpflags);
2478
2479	return true;
 
2480}
2481
2482/*
2483 * Check the page->freelist of a page and either transfer the freelist to the
2484 * per cpu freelist or deactivate the page.
2485 *
2486 * The page is still frozen if the return value is not NULL.
2487 *
2488 * If this function returns NULL then the page has been unfrozen.
2489 *
2490 * This function must be called with interrupt disabled.
2491 */
2492static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2493{
2494	struct page new;
2495	unsigned long counters;
2496	void *freelist;
2497
 
 
2498	do {
2499		freelist = page->freelist;
2500		counters = page->counters;
2501
2502		new.counters = counters;
2503		VM_BUG_ON(!new.frozen);
2504
2505		new.inuse = page->objects;
2506		new.frozen = freelist != NULL;
2507
2508	} while (!__cmpxchg_double_slab(s, page,
2509		freelist, counters,
2510		NULL, new.counters,
2511		"get_freelist"));
2512
2513	return freelist;
2514}
2515
2516/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2517 * Slow path. The lockless freelist is empty or we need to perform
2518 * debugging duties.
2519 *
2520 * Processing is still very fast if new objects have been freed to the
2521 * regular freelist. In that case we simply take over the regular freelist
2522 * as the lockless freelist and zap the regular freelist.
2523 *
2524 * If that is not working then we fall back to the partial lists. We take the
2525 * first element of the freelist as the object to allocate now and move the
2526 * rest of the freelist to the lockless freelist.
2527 *
2528 * And if we were unable to get a new slab from the partial slab lists then
2529 * we need to allocate a new slab. This is the slowest path since it involves
2530 * a call to the page allocator and the setup of a new slab.
2531 *
2532 * Version of __slab_alloc to use when we know that interrupts are
2533 * already disabled (which is the case for bulk allocation).
2534 */
2535static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2536			  unsigned long addr, struct kmem_cache_cpu *c)
2537{
2538	void *freelist;
2539	struct page *page;
 
 
2540
2541	page = c->page;
2542	if (!page)
2543		goto new_slab;
2544redo:
2545
2546	if (unlikely(!node_match(page, node))) {
2547		int searchnode = node;
2548
2549		if (node != NUMA_NO_NODE && !node_present_pages(node))
2550			searchnode = node_to_mem_node(node);
 
 
 
 
 
 
 
 
 
2551
2552		if (unlikely(!node_match(page, searchnode))) {
 
 
 
 
 
 
 
2553			stat(s, ALLOC_NODE_MISMATCH);
2554			deactivate_slab(s, page, c->freelist, c);
2555			goto new_slab;
2556		}
2557	}
2558
2559	/*
2560	 * By rights, we should be searching for a slab page that was
2561	 * PFMEMALLOC but right now, we are losing the pfmemalloc
2562	 * information when the page leaves the per-cpu allocator
2563	 */
2564	if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2565		deactivate_slab(s, page, c->freelist, c);
2566		goto new_slab;
2567	}
2568
2569	/* must check again c->freelist in case of cpu migration or IRQ */
 
 
 
 
 
2570	freelist = c->freelist;
2571	if (freelist)
2572		goto load_freelist;
2573
2574	freelist = get_freelist(s, page);
2575
2576	if (!freelist) {
2577		c->page = NULL;
 
 
2578		stat(s, DEACTIVATE_BYPASS);
2579		goto new_slab;
2580	}
2581
2582	stat(s, ALLOC_REFILL);
2583
2584load_freelist:
 
 
 
2585	/*
2586	 * freelist is pointing to the list of objects to be used.
2587	 * page is pointing to the page from which the objects are obtained.
2588	 * That page must be frozen for per cpu allocations to work.
2589	 */
2590	VM_BUG_ON(!c->page->frozen);
2591	c->freelist = get_freepointer(s, freelist);
2592	c->tid = next_tid(c->tid);
 
2593	return freelist;
2594
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2595new_slab:
2596
2597	if (slub_percpu_partial(c)) {
2598		page = c->page = slub_percpu_partial(c);
2599		slub_set_percpu_partial(c, page);
 
 
 
 
 
 
 
 
 
 
 
 
 
2600		stat(s, CPU_PARTIAL_ALLOC);
2601		goto redo;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2602	}
2603
2604	freelist = new_slab_objects(s, gfpflags, node, &c);
 
 
2605
2606	if (unlikely(!freelist)) {
2607		slab_out_of_memory(s, gfpflags, node);
2608		return NULL;
2609	}
2610
2611	page = c->page;
2612	if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2613		goto load_freelist;
2614
2615	/* Only entered in the debug case */
2616	if (kmem_cache_debug(s) &&
2617			!alloc_debug_processing(s, page, freelist, addr))
2618		goto new_slab;	/* Slab failed checks. Next slab needed */
2619
2620	deactivate_slab(s, page, get_freepointer(s, freelist), c);
2621	return freelist;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2622}
2623
2624/*
2625 * Another one that disabled interrupt and compensates for possible
2626 * cpu changes by refetching the per cpu area pointer.
 
2627 */
2628static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2629			  unsigned long addr, struct kmem_cache_cpu *c)
2630{
2631	void *p;
2632	unsigned long flags;
2633
2634	local_irq_save(flags);
2635#ifdef CONFIG_PREEMPT
2636	/*
2637	 * We may have been preempted and rescheduled on a different
2638	 * cpu before disabling interrupts. Need to reload cpu area
2639	 * pointer.
2640	 */
2641	c = this_cpu_ptr(s->cpu_slab);
2642#endif
2643
2644	p = ___slab_alloc(s, gfpflags, node, addr, c);
2645	local_irq_restore(flags);
 
 
2646	return p;
2647}
2648
2649/*
2650 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2651 * have the fastpath folded into their functions. So no function call
2652 * overhead for requests that can be satisfied on the fastpath.
2653 *
2654 * The fastpath works by first checking if the lockless freelist can be used.
2655 * If not then __slab_alloc is called for slow processing.
2656 *
2657 * Otherwise we can simply pick the next object from the lockless free list.
2658 */
2659static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2660		gfp_t gfpflags, int node, unsigned long addr)
2661{
2662	void *object;
2663	struct kmem_cache_cpu *c;
2664	struct page *page;
2665	unsigned long tid;
 
2666
2667	s = slab_pre_alloc_hook(s, gfpflags);
2668	if (!s)
2669		return NULL;
2670redo:
2671	/*
2672	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2673	 * enabled. We may switch back and forth between cpus while
2674	 * reading from one cpu area. That does not matter as long
2675	 * as we end up on the original cpu again when doing the cmpxchg.
2676	 *
2677	 * We should guarantee that tid and kmem_cache are retrieved on
2678	 * the same cpu. It could be different if CONFIG_PREEMPT so we need
2679	 * to check if it is matched or not.
 
 
2680	 */
2681	do {
2682		tid = this_cpu_read(s->cpu_slab->tid);
2683		c = raw_cpu_ptr(s->cpu_slab);
2684	} while (IS_ENABLED(CONFIG_PREEMPT) &&
2685		 unlikely(tid != READ_ONCE(c->tid)));
2686
2687	/*
2688	 * Irqless object alloc/free algorithm used here depends on sequence
2689	 * of fetching cpu_slab's data. tid should be fetched before anything
2690	 * on c to guarantee that object and page associated with previous tid
2691	 * won't be used with current tid. If we fetch tid first, object and
2692	 * page could be one associated with next tid and our alloc/free
2693	 * request will be failed. In this case, we will retry. So, no problem.
2694	 */
2695	barrier();
2696
2697	/*
2698	 * The transaction ids are globally unique per cpu and per operation on
2699	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2700	 * occurs on the right processor and that there was no operation on the
2701	 * linked list in between.
2702	 */
2703
2704	object = c->freelist;
2705	page = c->page;
2706	if (unlikely(!object || !node_match(page, node))) {
2707		object = __slab_alloc(s, gfpflags, node, addr, c);
2708		stat(s, ALLOC_SLOWPATH);
 
2709	} else {
2710		void *next_object = get_freepointer_safe(s, object);
2711
2712		/*
2713		 * The cmpxchg will only match if there was no additional
2714		 * operation and if we are on the right processor.
2715		 *
2716		 * The cmpxchg does the following atomically (without lock
2717		 * semantics!)
2718		 * 1. Relocate first pointer to the current per cpu area.
2719		 * 2. Verify that tid and freelist have not been changed
2720		 * 3. If they were not changed replace tid and freelist
2721		 *
2722		 * Since this is without lock semantics the protection is only
2723		 * against code executing on this cpu *not* from access by
2724		 * other cpus.
2725		 */
2726		if (unlikely(!this_cpu_cmpxchg_double(
2727				s->cpu_slab->freelist, s->cpu_slab->tid,
2728				object, tid,
2729				next_object, next_tid(tid)))) {
2730
2731			note_cmpxchg_failure("slab_alloc", s, tid);
2732			goto redo;
2733		}
2734		prefetch_freepointer(s, next_object);
2735		stat(s, ALLOC_FASTPATH);
2736	}
2737
2738	if (unlikely(gfpflags & __GFP_ZERO) && object)
2739		memset(object, 0, s->object_size);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2740
2741	slab_post_alloc_hook(s, gfpflags, 1, &object);
 
 
 
 
 
 
2742
2743	return object;
2744}
 
2745
2746static __always_inline void *slab_alloc(struct kmem_cache *s,
2747		gfp_t gfpflags, unsigned long addr)
 
 
 
 
2748{
2749	return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2750}
2751
2752void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2753{
2754	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
 
2755
2756	trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2757				s->size, gfpflags);
2758
2759	return ret;
2760}
2761EXPORT_SYMBOL(kmem_cache_alloc);
2762
2763#ifdef CONFIG_TRACING
2764void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2765{
2766	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2767	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2768	kasan_kmalloc(s, ret, size, gfpflags);
 
 
2769	return ret;
2770}
2771EXPORT_SYMBOL(kmem_cache_alloc_trace);
2772#endif
2773
2774#ifdef CONFIG_NUMA
 
 
 
 
 
 
 
 
 
 
 
 
2775void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2776{
2777	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2778
2779	trace_kmem_cache_alloc_node(_RET_IP_, ret,
2780				    s->object_size, s->size, gfpflags, node);
2781
2782	return ret;
2783}
2784EXPORT_SYMBOL(kmem_cache_alloc_node);
2785
2786#ifdef CONFIG_TRACING
2787void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2788				    gfp_t gfpflags,
2789				    int node, size_t size)
 
 
2790{
2791	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
 
 
 
 
 
2792
2793	trace_kmalloc_node(_RET_IP_, ret,
2794			   size, s->size, gfpflags, node);
 
 
 
 
 
 
 
 
 
 
2795
2796	kasan_kmalloc(s, ret, size, gfpflags);
 
 
 
 
 
 
 
 
2797	return ret;
2798}
2799EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2800#endif
2801#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2802
2803/*
2804 * Slow path handling. This may still be called frequently since objects
2805 * have a longer lifetime than the cpu slabs in most processing loads.
2806 *
2807 * So we still attempt to reduce cache line usage. Just take the slab
2808 * lock and free the item. If there is no additional partial page
2809 * handling required then we can return immediately.
2810 */
2811static void __slab_free(struct kmem_cache *s, struct page *page,
2812			void *head, void *tail, int cnt,
2813			unsigned long addr)
2814
2815{
2816	void *prior;
2817	int was_frozen;
2818	struct page new;
2819	unsigned long counters;
2820	struct kmem_cache_node *n = NULL;
2821	unsigned long uninitialized_var(flags);
 
2822
2823	stat(s, FREE_SLOWPATH);
2824
2825	if (kmem_cache_debug(s) &&
2826	    !free_debug_processing(s, page, head, tail, cnt, addr))
2827		return;
 
2828
2829	do {
2830		if (unlikely(n)) {
2831			spin_unlock_irqrestore(&n->list_lock, flags);
2832			n = NULL;
2833		}
2834		prior = page->freelist;
2835		counters = page->counters;
2836		set_freepointer(s, tail, prior);
2837		new.counters = counters;
2838		was_frozen = new.frozen;
2839		new.inuse -= cnt;
2840		if ((!new.inuse || !prior) && !was_frozen) {
 
 
2841
2842			if (kmem_cache_has_cpu_partial(s) && !prior) {
2843
2844				/*
2845				 * Slab was on no list before and will be
2846				 * partially empty
2847				 * We can defer the list move and instead
2848				 * freeze it.
2849				 */
2850				new.frozen = 1;
2851
2852			} else { /* Needs to be taken off a list */
2853
2854				n = get_node(s, page_to_nid(page));
2855				/*
2856				 * Speculatively acquire the list_lock.
2857				 * If the cmpxchg does not succeed then we may
2858				 * drop the list_lock without any processing.
2859				 *
2860				 * Otherwise the list_lock will synchronize with
2861				 * other processors updating the list of slabs.
2862				 */
2863				spin_lock_irqsave(&n->list_lock, flags);
2864
 
2865			}
2866		}
2867
2868	} while (!cmpxchg_double_slab(s, page,
2869		prior, counters,
2870		head, new.counters,
2871		"__slab_free"));
2872
2873	if (likely(!n)) {
2874
2875		/*
2876		 * If we just froze the page then put it onto the
2877		 * per cpu partial list.
2878		 */
2879		if (new.frozen && !was_frozen) {
2880			put_cpu_partial(s, page, 1);
 
 
 
 
 
 
2881			stat(s, CPU_PARTIAL_FREE);
2882		}
2883		/*
2884		 * The list lock was not taken therefore no list
2885		 * activity can be necessary.
2886		 */
2887		if (was_frozen)
2888			stat(s, FREE_FROZEN);
 
 
 
 
2889		return;
2890	}
2891
2892	if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
2893		goto slab_empty;
2894
2895	/*
2896	 * Objects left in the slab. If it was not on the partial list before
2897	 * then add it.
2898	 */
2899	if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
2900		if (kmem_cache_debug(s))
2901			remove_full(s, n, page);
2902		add_partial(n, page, DEACTIVATE_TO_TAIL);
2903		stat(s, FREE_ADD_PARTIAL);
2904	}
2905	spin_unlock_irqrestore(&n->list_lock, flags);
2906	return;
2907
2908slab_empty:
2909	if (prior) {
2910		/*
2911		 * Slab on the partial list.
2912		 */
2913		remove_partial(n, page);
2914		stat(s, FREE_REMOVE_PARTIAL);
2915	} else {
2916		/* Slab must be on the full list */
2917		remove_full(s, n, page);
2918	}
2919
2920	spin_unlock_irqrestore(&n->list_lock, flags);
2921	stat(s, FREE_SLAB);
2922	discard_slab(s, page);
2923}
2924
 
2925/*
2926 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2927 * can perform fastpath freeing without additional function calls.
2928 *
2929 * The fastpath is only possible if we are freeing to the current cpu slab
2930 * of this processor. This typically the case if we have just allocated
2931 * the item before.
2932 *
2933 * If fastpath is not possible then fall back to __slab_free where we deal
2934 * with all sorts of special processing.
2935 *
2936 * Bulk free of a freelist with several objects (all pointing to the
2937 * same page) possible by specifying head and tail ptr, plus objects
2938 * count (cnt). Bulk free indicated by tail pointer being set.
2939 */
2940static __always_inline void do_slab_free(struct kmem_cache *s,
2941				struct page *page, void *head, void *tail,
2942				int cnt, unsigned long addr)
2943{
2944	void *tail_obj = tail ? : head;
2945	struct kmem_cache_cpu *c;
2946	unsigned long tid;
 
 
2947redo:
2948	/*
2949	 * Determine the currently cpus per cpu slab.
2950	 * The cpu may change afterward. However that does not matter since
2951	 * data is retrieved via this pointer. If we are on the same cpu
2952	 * during the cmpxchg then the free will succeed.
2953	 */
2954	do {
2955		tid = this_cpu_read(s->cpu_slab->tid);
2956		c = raw_cpu_ptr(s->cpu_slab);
2957	} while (IS_ENABLED(CONFIG_PREEMPT) &&
2958		 unlikely(tid != READ_ONCE(c->tid)));
2959
2960	/* Same with comment on barrier() in slab_alloc_node() */
2961	barrier();
2962
2963	if (likely(page == c->page)) {
2964		set_freepointer(s, tail_obj, c->freelist);
 
 
2965
2966		if (unlikely(!this_cpu_cmpxchg_double(
2967				s->cpu_slab->freelist, s->cpu_slab->tid,
2968				c->freelist, tid,
2969				head, next_tid(tid)))) {
2970
 
 
 
2971			note_cmpxchg_failure("slab_free", s, tid);
2972			goto redo;
2973		}
2974		stat(s, FREE_FASTPATH);
2975	} else
2976		__slab_free(s, page, head, tail_obj, cnt, addr);
 
 
 
 
 
 
 
 
 
 
 
2977
 
 
 
 
 
 
 
 
 
 
2978}
 
2979
2980static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
2981				      void *head, void *tail, int cnt,
2982				      unsigned long addr)
2983{
 
 
 
 
 
 
 
 
 
 
 
2984	/*
2985	 * With KASAN enabled slab_free_freelist_hook modifies the freelist
2986	 * to remove objects, whose reuse must be delayed.
2987	 */
2988	if (slab_free_freelist_hook(s, &head, &tail))
2989		do_slab_free(s, page, head, tail, cnt, addr);
2990}
2991
2992#ifdef CONFIG_KASAN
2993void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
2994{
2995	do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr);
2996}
2997#endif
2998
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2999void kmem_cache_free(struct kmem_cache *s, void *x)
3000{
3001	s = cache_from_obj(s, x);
3002	if (!s)
3003		return;
3004	slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
3005	trace_kmem_cache_free(_RET_IP_, x);
3006}
3007EXPORT_SYMBOL(kmem_cache_free);
3008
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3009struct detached_freelist {
3010	struct page *page;
3011	void *tail;
3012	void *freelist;
3013	int cnt;
3014	struct kmem_cache *s;
3015};
3016
3017/*
3018 * This function progressively scans the array with free objects (with
3019 * a limited look ahead) and extract objects belonging to the same
3020 * page.  It builds a detached freelist directly within the given
3021 * page/objects.  This can happen without any need for
3022 * synchronization, because the objects are owned by running process.
3023 * The freelist is build up as a single linked list in the objects.
3024 * The idea is, that this detached freelist can then be bulk
3025 * transferred to the real freelist(s), but only requiring a single
3026 * synchronization primitive.  Look ahead in the array is limited due
3027 * to performance reasons.
3028 */
3029static inline
3030int build_detached_freelist(struct kmem_cache *s, size_t size,
3031			    void **p, struct detached_freelist *df)
3032{
3033	size_t first_skipped_index = 0;
3034	int lookahead = 3;
3035	void *object;
3036	struct page *page;
3037
3038	/* Always re-init detached_freelist */
3039	df->page = NULL;
3040
3041	do {
3042		object = p[--size];
3043		/* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
3044	} while (!object && size);
3045
3046	if (!object)
3047		return 0;
3048
3049	page = virt_to_head_page(object);
3050	if (!s) {
3051		/* Handle kalloc'ed objects */
3052		if (unlikely(!PageSlab(page))) {
3053			BUG_ON(!PageCompound(page));
3054			kfree_hook(object);
3055			__free_pages(page, compound_order(page));
3056			p[size] = NULL; /* mark object processed */
3057			return size;
3058		}
3059		/* Derive kmem_cache from object */
3060		df->s = page->slab_cache;
 
3061	} else {
 
3062		df->s = cache_from_obj(s, object); /* Support for memcg */
3063	}
3064
3065	/* Start new detached freelist */
3066	df->page = page;
3067	set_freepointer(df->s, object, NULL);
3068	df->tail = object;
3069	df->freelist = object;
3070	p[size] = NULL; /* mark object processed */
3071	df->cnt = 1;
3072
 
 
 
 
 
 
3073	while (size) {
3074		object = p[--size];
3075		if (!object)
3076			continue; /* Skip processed objects */
3077
3078		/* df->page is always set at this point */
3079		if (df->page == virt_to_head_page(object)) {
3080			/* Opportunity build freelist */
3081			set_freepointer(df->s, object, df->freelist);
3082			df->freelist = object;
3083			df->cnt++;
3084			p[size] = NULL; /* mark object processed */
3085
 
3086			continue;
3087		}
3088
3089		/* Limit look ahead search */
3090		if (!--lookahead)
3091			break;
3092
3093		if (!first_skipped_index)
3094			first_skipped_index = size + 1;
3095	}
3096
3097	return first_skipped_index;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3098}
3099
3100/* Note that interrupts must be enabled when calling this function. */
3101void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
3102{
3103	if (WARN_ON(!size))
3104		return;
3105
3106	do {
3107		struct detached_freelist df;
3108
3109		size = build_detached_freelist(s, size, p, &df);
3110		if (!df.page)
3111			continue;
3112
3113		slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_);
 
3114	} while (likely(size));
3115}
3116EXPORT_SYMBOL(kmem_cache_free_bulk);
3117
3118/* Note that interrupts must be enabled when calling this function. */
3119int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3120			  void **p)
 
3121{
3122	struct kmem_cache_cpu *c;
 
3123	int i;
3124
3125	/* memcg and kmem_cache debug support */
3126	s = slab_pre_alloc_hook(s, flags);
3127	if (unlikely(!s))
3128		return false;
3129	/*
3130	 * Drain objects in the per cpu slab, while disabling local
3131	 * IRQs, which protects against PREEMPT and interrupts
3132	 * handlers invoking normal fastpath.
3133	 */
3134	local_irq_disable();
3135	c = this_cpu_ptr(s->cpu_slab);
3136
3137	for (i = 0; i < size; i++) {
3138		void *object = c->freelist;
3139
 
 
 
 
 
 
3140		if (unlikely(!object)) {
3141			/*
 
 
 
 
 
 
 
 
 
 
 
3142			 * Invoking slow path likely have side-effect
3143			 * of re-populating per CPU c->freelist
3144			 */
3145			p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
3146					    _RET_IP_, c);
3147			if (unlikely(!p[i]))
3148				goto error;
3149
3150			c = this_cpu_ptr(s->cpu_slab);
 
 
 
 
3151			continue; /* goto for-loop */
3152		}
3153		c->freelist = get_freepointer(s, object);
3154		p[i] = object;
 
 
3155	}
3156	c->tid = next_tid(c->tid);
3157	local_irq_enable();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3158
3159	/* Clear memory outside IRQ disabled fastpath loop */
3160	if (unlikely(flags & __GFP_ZERO)) {
3161		int j;
 
 
 
 
 
 
3162
3163		for (j = 0; j < i; j++)
3164			memset(p[j], 0, s->object_size);
3165	}
3166
3167	/* memcg and kmem_cache debug support */
3168	slab_post_alloc_hook(s, flags, size, p);
3169	return i;
 
3170error:
3171	local_irq_enable();
3172	slab_post_alloc_hook(s, flags, i, p);
3173	__kmem_cache_free_bulk(s, i, p);
3174	return 0;
3175}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3176EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3177
3178
3179/*
3180 * Object placement in a slab is made very easy because we always start at
3181 * offset 0. If we tune the size of the object to the alignment then we can
3182 * get the required alignment by putting one properly sized object after
3183 * another.
3184 *
3185 * Notice that the allocation order determines the sizes of the per cpu
3186 * caches. Each processor has always one slab available for allocations.
3187 * Increasing the allocation order reduces the number of times that slabs
3188 * must be moved on and off the partial lists and is therefore a factor in
3189 * locking overhead.
3190 */
3191
3192/*
3193 * Mininum / Maximum order of slab pages. This influences locking overhead
3194 * and slab fragmentation. A higher order reduces the number of partial slabs
3195 * and increases the number of allocations possible without having to
3196 * take the list_lock.
3197 */
3198static unsigned int slub_min_order;
3199static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
 
3200static unsigned int slub_min_objects;
3201
3202/*
3203 * Calculate the order of allocation given an slab object size.
3204 *
3205 * The order of allocation has significant impact on performance and other
3206 * system components. Generally order 0 allocations should be preferred since
3207 * order 0 does not cause fragmentation in the page allocator. Larger objects
3208 * be problematic to put into order 0 slabs because there may be too much
3209 * unused space left. We go to a higher order if more than 1/16th of the slab
3210 * would be wasted.
3211 *
3212 * In order to reach satisfactory performance we must ensure that a minimum
3213 * number of objects is in one slab. Otherwise we may generate too much
3214 * activity on the partial lists which requires taking the list_lock. This is
3215 * less a concern for large slabs though which are rarely used.
3216 *
3217 * slub_max_order specifies the order where we begin to stop considering the
3218 * number of objects in a slab as critical. If we reach slub_max_order then
3219 * we try to keep the page order as low as possible. So we accept more waste
3220 * of space in favor of a small page order.
3221 *
3222 * Higher order allocations also allow the placement of more objects in a
3223 * slab and thereby reduce object handling overhead. If the user has
3224 * requested a higher mininum order then we start with that one instead of
3225 * the smallest order which will fit the object.
3226 */
3227static inline unsigned int slab_order(unsigned int size,
3228		unsigned int min_objects, unsigned int max_order,
3229		unsigned int fract_leftover, unsigned int reserved)
3230{
3231	unsigned int min_order = slub_min_order;
3232	unsigned int order;
3233
3234	if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
3235		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
3236
3237	for (order = max(min_order, (unsigned int)get_order(min_objects * size + reserved));
3238			order <= max_order; order++) {
3239
3240		unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
3241		unsigned int rem;
3242
3243		rem = (slab_size - reserved) % size;
3244
3245		if (rem <= slab_size / fract_leftover)
3246			break;
3247	}
3248
3249	return order;
3250}
3251
3252static inline int calculate_order(unsigned int size, unsigned int reserved)
3253{
3254	unsigned int order;
3255	unsigned int min_objects;
3256	unsigned int max_objects;
 
3257
3258	/*
3259	 * Attempt to find best configuration for a slab. This
3260	 * works by first attempting to generate a layout with
3261	 * the best configuration and backing off gradually.
3262	 *
3263	 * First we increase the acceptable waste in a slab. Then
3264	 * we reduce the minimum objects required in a slab.
3265	 */
3266	min_objects = slub_min_objects;
3267	if (!min_objects)
3268		min_objects = 4 * (fls(nr_cpu_ids) + 1);
3269	max_objects = order_objects(slub_max_order, size, reserved);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3270	min_objects = min(min_objects, max_objects);
3271
3272	while (min_objects > 1) {
3273		unsigned int fraction;
3274
3275		fraction = 16;
3276		while (fraction >= 4) {
3277			order = slab_order(size, min_objects,
3278					slub_max_order, fraction, reserved);
3279			if (order <= slub_max_order)
3280				return order;
3281			fraction /= 2;
3282		}
3283		min_objects--;
3284	}
3285
3286	/*
3287	 * We were unable to place multiple objects in a slab. Now
3288	 * lets see if we can place a single object there.
3289	 */
3290	order = slab_order(size, 1, slub_max_order, 1, reserved);
3291	if (order <= slub_max_order)
3292		return order;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3293
3294	/*
3295	 * Doh this slab cannot be placed using slub_max_order.
3296	 */
3297	order = slab_order(size, 1, MAX_ORDER, 1, reserved);
3298	if (order < MAX_ORDER)
3299		return order;
3300	return -ENOSYS;
3301}
3302
3303static void
3304init_kmem_cache_node(struct kmem_cache_node *n)
3305{
3306	n->nr_partial = 0;
3307	spin_lock_init(&n->list_lock);
3308	INIT_LIST_HEAD(&n->partial);
3309#ifdef CONFIG_SLUB_DEBUG
3310	atomic_long_set(&n->nr_slabs, 0);
3311	atomic_long_set(&n->total_objects, 0);
3312	INIT_LIST_HEAD(&n->full);
3313#endif
3314}
3315
 
3316static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
3317{
3318	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
3319			KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
 
3320
3321	/*
3322	 * Must align to double word boundary for the double cmpxchg
3323	 * instructions to work; see __pcpu_double_call_return_bool().
3324	 */
3325	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3326				     2 * sizeof(void *));
3327
3328	if (!s->cpu_slab)
3329		return 0;
3330
3331	init_kmem_cache_cpus(s);
3332
3333	return 1;
3334}
 
 
 
 
 
 
3335
3336static struct kmem_cache *kmem_cache_node;
3337
3338/*
3339 * No kmalloc_node yet so do it by hand. We know that this is the first
3340 * slab on the node for this slabcache. There are no concurrent accesses
3341 * possible.
3342 *
3343 * Note that this function only works on the kmem_cache_node
3344 * when allocating for the kmem_cache_node. This is used for bootstrapping
3345 * memory on a fresh node that has no slab structures yet.
3346 */
3347static void early_kmem_cache_node_alloc(int node)
3348{
3349	struct page *page;
3350	struct kmem_cache_node *n;
3351
3352	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
3353
3354	page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
3355
3356	BUG_ON(!page);
3357	if (page_to_nid(page) != node) {
 
3358		pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3359		pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
3360	}
3361
3362	n = page->freelist;
3363	BUG_ON(!n);
3364	page->freelist = get_freepointer(kmem_cache_node, n);
3365	page->inuse = 1;
3366	page->frozen = 0;
3367	kmem_cache_node->node[node] = n;
3368#ifdef CONFIG_SLUB_DEBUG
3369	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
3370	init_tracking(kmem_cache_node, n);
3371#endif
3372	kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node),
3373		      GFP_KERNEL);
 
 
3374	init_kmem_cache_node(n);
3375	inc_slabs_node(kmem_cache_node, node, page->objects);
3376
3377	/*
3378	 * No locks need to be taken here as it has just been
3379	 * initialized and there is no concurrent access.
3380	 */
3381	__add_partial(n, page, DEACTIVATE_TO_HEAD);
3382}
3383
3384static void free_kmem_cache_nodes(struct kmem_cache *s)
3385{
3386	int node;
3387	struct kmem_cache_node *n;
3388
3389	for_each_kmem_cache_node(s, node, n) {
3390		s->node[node] = NULL;
3391		kmem_cache_free(kmem_cache_node, n);
3392	}
3393}
3394
3395void __kmem_cache_release(struct kmem_cache *s)
3396{
3397	cache_random_seq_destroy(s);
 
3398	free_percpu(s->cpu_slab);
 
3399	free_kmem_cache_nodes(s);
3400}
3401
3402static int init_kmem_cache_nodes(struct kmem_cache *s)
3403{
3404	int node;
3405
3406	for_each_node_state(node, N_NORMAL_MEMORY) {
3407		struct kmem_cache_node *n;
3408
3409		if (slab_state == DOWN) {
3410			early_kmem_cache_node_alloc(node);
3411			continue;
3412		}
3413		n = kmem_cache_alloc_node(kmem_cache_node,
3414						GFP_KERNEL, node);
3415
3416		if (!n) {
3417			free_kmem_cache_nodes(s);
3418			return 0;
3419		}
3420
3421		init_kmem_cache_node(n);
3422		s->node[node] = n;
3423	}
3424	return 1;
3425}
3426
3427static void set_min_partial(struct kmem_cache *s, unsigned long min)
3428{
3429	if (min < MIN_PARTIAL)
3430		min = MIN_PARTIAL;
3431	else if (min > MAX_PARTIAL)
3432		min = MAX_PARTIAL;
3433	s->min_partial = min;
3434}
3435
3436static void set_cpu_partial(struct kmem_cache *s)
3437{
3438#ifdef CONFIG_SLUB_CPU_PARTIAL
 
 
3439	/*
3440	 * cpu_partial determined the maximum number of objects kept in the
3441	 * per cpu partial lists of a processor.
3442	 *
3443	 * Per cpu partial lists mainly contain slabs that just have one
3444	 * object freed. If they are used for allocation then they can be
3445	 * filled up again with minimal effort. The slab will never hit the
3446	 * per node partial lists and therefore no locking will be required.
3447	 *
3448	 * This setting also determines
3449	 *
3450	 * A) The number of objects from per cpu partial slabs dumped to the
3451	 *    per node list when we reach the limit.
3452	 * B) The number of objects in cpu partial slabs to extract from the
3453	 *    per node list when we run out of per cpu objects. We only fetch
3454	 *    50% to keep some capacity around for frees.
3455	 */
3456	if (!kmem_cache_has_cpu_partial(s))
3457		s->cpu_partial = 0;
3458	else if (s->size >= PAGE_SIZE)
3459		s->cpu_partial = 2;
3460	else if (s->size >= 1024)
3461		s->cpu_partial = 6;
3462	else if (s->size >= 256)
3463		s->cpu_partial = 13;
3464	else
3465		s->cpu_partial = 30;
 
 
3466#endif
3467}
3468
3469/*
3470 * calculate_sizes() determines the order and the distribution of data within
3471 * a slab object.
3472 */
3473static int calculate_sizes(struct kmem_cache *s, int forced_order)
3474{
3475	slab_flags_t flags = s->flags;
3476	unsigned int size = s->object_size;
3477	unsigned int order;
3478
3479	/*
3480	 * Round up object size to the next word boundary. We can only
3481	 * place the free pointer at word boundaries and this determines
3482	 * the possible location of the free pointer.
3483	 */
3484	size = ALIGN(size, sizeof(void *));
3485
3486#ifdef CONFIG_SLUB_DEBUG
3487	/*
3488	 * Determine if we can poison the object itself. If the user of
3489	 * the slab may touch the object after free or before allocation
3490	 * then we should never poison the object itself.
3491	 */
3492	if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
3493			!s->ctor)
3494		s->flags |= __OBJECT_POISON;
3495	else
3496		s->flags &= ~__OBJECT_POISON;
3497
3498
3499	/*
3500	 * If we are Redzoning then check if there is some space between the
3501	 * end of the object and the free pointer. If not then add an
3502	 * additional word to have some bytes to store Redzone information.
3503	 */
3504	if ((flags & SLAB_RED_ZONE) && size == s->object_size)
3505		size += sizeof(void *);
3506#endif
3507
3508	/*
3509	 * With that we have determined the number of bytes in actual use
3510	 * by the object. This is the potential offset to the free pointer.
3511	 */
3512	s->inuse = size;
3513
3514	if (((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
3515		s->ctor)) {
 
 
3516		/*
3517		 * Relocate free pointer after the object if it is not
3518		 * permitted to overwrite the first word of the object on
3519		 * kmem_cache_free.
3520		 *
3521		 * This is the case if we do RCU, have a constructor or
3522		 * destructor or are poisoning the objects.
 
 
 
 
 
 
3523		 */
3524		s->offset = size;
3525		size += sizeof(void *);
 
 
 
 
 
 
 
3526	}
3527
3528#ifdef CONFIG_SLUB_DEBUG
3529	if (flags & SLAB_STORE_USER)
3530		/*
3531		 * Need to store information about allocs and frees after
3532		 * the object.
3533		 */
3534		size += 2 * sizeof(struct track);
 
 
 
 
 
3535#endif
3536
3537	kasan_cache_create(s, &size, &s->flags);
3538#ifdef CONFIG_SLUB_DEBUG
3539	if (flags & SLAB_RED_ZONE) {
3540		/*
3541		 * Add some empty padding so that we can catch
3542		 * overwrites from earlier objects rather than let
3543		 * tracking information or the free pointer be
3544		 * corrupted if a user writes before the start
3545		 * of the object.
3546		 */
3547		size += sizeof(void *);
3548
3549		s->red_left_pad = sizeof(void *);
3550		s->red_left_pad = ALIGN(s->red_left_pad, s->align);
3551		size += s->red_left_pad;
3552	}
3553#endif
3554
3555	/*
3556	 * SLUB stores one object immediately after another beginning from
3557	 * offset 0. In order to align the objects we have to simply size
3558	 * each object to conform to the alignment.
3559	 */
3560	size = ALIGN(size, s->align);
3561	s->size = size;
3562	if (forced_order >= 0)
3563		order = forced_order;
3564	else
3565		order = calculate_order(size, s->reserved);
3566
3567	if ((int)order < 0)
3568		return 0;
3569
3570	s->allocflags = 0;
3571	if (order)
3572		s->allocflags |= __GFP_COMP;
3573
3574	if (s->flags & SLAB_CACHE_DMA)
3575		s->allocflags |= GFP_DMA;
3576
 
 
 
3577	if (s->flags & SLAB_RECLAIM_ACCOUNT)
3578		s->allocflags |= __GFP_RECLAIMABLE;
3579
3580	/*
3581	 * Determine the number of objects per slab
3582	 */
3583	s->oo = oo_make(order, size, s->reserved);
3584	s->min = oo_make(get_order(size), size, s->reserved);
3585	if (oo_objects(s->oo) > oo_objects(s->max))
3586		s->max = s->oo;
3587
3588	return !!oo_objects(s->oo);
3589}
3590
3591static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
3592{
3593	s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
3594	s->reserved = 0;
3595#ifdef CONFIG_SLAB_FREELIST_HARDENED
3596	s->random = get_random_long();
3597#endif
3598
3599	if (need_reserve_slab_rcu && (s->flags & SLAB_TYPESAFE_BY_RCU))
3600		s->reserved = sizeof(struct rcu_head);
3601
3602	if (!calculate_sizes(s, -1))
3603		goto error;
3604	if (disable_higher_order_debug) {
3605		/*
3606		 * Disable debugging flags that store metadata if the min slab
3607		 * order increased.
3608		 */
3609		if (get_order(s->size) > get_order(s->object_size)) {
3610			s->flags &= ~DEBUG_METADATA_FLAGS;
3611			s->offset = 0;
3612			if (!calculate_sizes(s, -1))
3613				goto error;
3614		}
3615	}
3616
3617#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3618    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3619	if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
3620		/* Enable fast mode */
3621		s->flags |= __CMPXCHG_DOUBLE;
 
3622#endif
3623
3624	/*
3625	 * The larger the object size is, the more pages we want on the partial
3626	 * list to avoid pounding the page allocator excessively.
3627	 */
3628	set_min_partial(s, ilog2(s->size) / 2);
 
3629
3630	set_cpu_partial(s);
3631
3632#ifdef CONFIG_NUMA
3633	s->remote_node_defrag_ratio = 1000;
3634#endif
3635
3636	/* Initialize the pre-computed randomized freelist if slab is up */
3637	if (slab_state >= UP) {
3638		if (init_cache_random_seq(s))
3639			goto error;
3640	}
3641
3642	if (!init_kmem_cache_nodes(s))
3643		goto error;
3644
3645	if (alloc_kmem_cache_cpus(s))
3646		return 0;
3647
3648	free_kmem_cache_nodes(s);
3649error:
3650	if (flags & SLAB_PANIC)
3651		panic("Cannot create slab %s size=%u realsize=%u order=%u offset=%u flags=%lx\n",
3652		      s->name, s->size, s->size,
3653		      oo_order(s->oo), s->offset, (unsigned long)flags);
3654	return -EINVAL;
3655}
3656
3657static void list_slab_objects(struct kmem_cache *s, struct page *page,
3658							const char *text)
3659{
3660#ifdef CONFIG_SLUB_DEBUG
3661	void *addr = page_address(page);
3662	void *p;
3663	unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3664				     sizeof(long), GFP_ATOMIC);
3665	if (!map)
3666		return;
3667	slab_err(s, page, text, s->name);
3668	slab_lock(page);
3669
3670	get_map(s, page, map);
3671	for_each_object(p, s, addr, page->objects) {
 
 
3672
3673		if (!test_bit(slab_index(p, s, addr), map)) {
3674			pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
 
 
3675			print_tracking(s, p);
3676		}
3677	}
3678	slab_unlock(page);
3679	kfree(map);
3680#endif
3681}
3682
3683/*
3684 * Attempt to free all partial slabs on a node.
3685 * This is called from __kmem_cache_shutdown(). We must take list_lock
3686 * because sysfs file might still access partial list after the shutdowning.
3687 */
3688static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3689{
3690	LIST_HEAD(discard);
3691	struct page *page, *h;
3692
3693	BUG_ON(irqs_disabled());
3694	spin_lock_irq(&n->list_lock);
3695	list_for_each_entry_safe(page, h, &n->partial, lru) {
3696		if (!page->inuse) {
3697			remove_partial(n, page);
3698			list_add(&page->lru, &discard);
3699		} else {
3700			list_slab_objects(s, page,
3701			"Objects remaining in %s on __kmem_cache_shutdown()");
3702		}
3703	}
3704	spin_unlock_irq(&n->list_lock);
3705
3706	list_for_each_entry_safe(page, h, &discard, lru)
3707		discard_slab(s, page);
3708}
3709
3710bool __kmem_cache_empty(struct kmem_cache *s)
3711{
3712	int node;
3713	struct kmem_cache_node *n;
3714
3715	for_each_kmem_cache_node(s, node, n)
3716		if (n->nr_partial || slabs_node(s, node))
3717			return false;
3718	return true;
3719}
3720
3721/*
3722 * Release all resources used by a slab cache.
3723 */
3724int __kmem_cache_shutdown(struct kmem_cache *s)
3725{
3726	int node;
3727	struct kmem_cache_node *n;
3728
3729	flush_all(s);
3730	/* Attempt to free all objects */
3731	for_each_kmem_cache_node(s, node, n) {
3732		free_partial(s, n);
3733		if (n->nr_partial || slabs_node(s, node))
3734			return 1;
3735	}
3736	sysfs_slab_remove(s);
3737	return 0;
3738}
3739
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3740/********************************************************************
3741 *		Kmalloc subsystem
3742 *******************************************************************/
3743
3744static int __init setup_slub_min_order(char *str)
3745{
3746	get_option(&str, (int *)&slub_min_order);
3747
 
 
 
3748	return 1;
3749}
3750
3751__setup("slub_min_order=", setup_slub_min_order);
3752
3753static int __init setup_slub_max_order(char *str)
3754{
3755	get_option(&str, (int *)&slub_max_order);
3756	slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1);
 
 
 
3757
3758	return 1;
3759}
3760
3761__setup("slub_max_order=", setup_slub_max_order);
3762
3763static int __init setup_slub_min_objects(char *str)
3764{
3765	get_option(&str, (int *)&slub_min_objects);
3766
3767	return 1;
3768}
3769
3770__setup("slub_min_objects=", setup_slub_min_objects);
3771
3772void *__kmalloc(size_t size, gfp_t flags)
3773{
3774	struct kmem_cache *s;
3775	void *ret;
3776
3777	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3778		return kmalloc_large(size, flags);
3779
3780	s = kmalloc_slab(size, flags);
3781
3782	if (unlikely(ZERO_OR_NULL_PTR(s)))
3783		return s;
3784
3785	ret = slab_alloc(s, flags, _RET_IP_);
3786
3787	trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3788
3789	kasan_kmalloc(s, ret, size, flags);
3790
3791	return ret;
3792}
3793EXPORT_SYMBOL(__kmalloc);
3794
3795#ifdef CONFIG_NUMA
3796static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3797{
3798	struct page *page;
3799	void *ptr = NULL;
3800
3801	flags |= __GFP_COMP;
3802	page = alloc_pages_node(node, flags, get_order(size));
3803	if (page)
3804		ptr = page_address(page);
3805
3806	kmalloc_large_node_hook(ptr, size, flags);
3807	return ptr;
3808}
3809
3810void *__kmalloc_node(size_t size, gfp_t flags, int node)
3811{
3812	struct kmem_cache *s;
3813	void *ret;
3814
3815	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3816		ret = kmalloc_large_node(size, flags, node);
3817
3818		trace_kmalloc_node(_RET_IP_, ret,
3819				   size, PAGE_SIZE << get_order(size),
3820				   flags, node);
3821
3822		return ret;
3823	}
3824
3825	s = kmalloc_slab(size, flags);
3826
3827	if (unlikely(ZERO_OR_NULL_PTR(s)))
3828		return s;
3829
3830	ret = slab_alloc_node(s, flags, node, _RET_IP_);
3831
3832	trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
3833
3834	kasan_kmalloc(s, ret, size, flags);
3835
3836	return ret;
3837}
3838EXPORT_SYMBOL(__kmalloc_node);
3839#endif
3840
3841#ifdef CONFIG_HARDENED_USERCOPY
3842/*
3843 * Rejects incorrectly sized objects and objects that are to be copied
3844 * to/from userspace but do not fall entirely within the containing slab
3845 * cache's usercopy region.
3846 *
3847 * Returns NULL if check passes, otherwise const char * to name of cache
3848 * to indicate an error.
3849 */
3850void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
3851			 bool to_user)
3852{
3853	struct kmem_cache *s;
3854	unsigned int offset;
3855	size_t object_size;
 
 
3856
3857	/* Find object and usable object size. */
3858	s = page->slab_cache;
3859
3860	/* Reject impossible pointers. */
3861	if (ptr < page_address(page))
3862		usercopy_abort("SLUB object not in SLUB page?!", NULL,
3863			       to_user, 0, n);
3864
3865	/* Find offset within object. */
3866	offset = (ptr - page_address(page)) % s->size;
 
 
 
3867
3868	/* Adjust for redzone and reject if within the redzone. */
3869	if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) {
3870		if (offset < s->red_left_pad)
3871			usercopy_abort("SLUB object in left red zone",
3872				       s->name, to_user, offset, n);
3873		offset -= s->red_left_pad;
3874	}
3875
3876	/* Allow address range falling entirely within usercopy region. */
3877	if (offset >= s->useroffset &&
3878	    offset - s->useroffset <= s->usersize &&
3879	    n <= s->useroffset - offset + s->usersize)
3880		return;
3881
3882	/*
3883	 * If the copy is still within the allocated object, produce
3884	 * a warning instead of rejecting the copy. This is intended
3885	 * to be a temporary method to find any missing usercopy
3886	 * whitelists.
3887	 */
3888	object_size = slab_ksize(s);
3889	if (usercopy_fallback &&
3890	    offset <= object_size && n <= object_size - offset) {
3891		usercopy_warn("SLUB object", s->name, to_user, offset, n);
3892		return;
3893	}
3894
3895	usercopy_abort("SLUB object", s->name, to_user, offset, n);
3896}
3897#endif /* CONFIG_HARDENED_USERCOPY */
3898
3899static size_t __ksize(const void *object)
3900{
3901	struct page *page;
3902
3903	if (unlikely(object == ZERO_SIZE_PTR))
3904		return 0;
3905
3906	page = virt_to_head_page(object);
3907
3908	if (unlikely(!PageSlab(page))) {
3909		WARN_ON(!PageCompound(page));
3910		return PAGE_SIZE << compound_order(page);
3911	}
3912
3913	return slab_ksize(page->slab_cache);
3914}
3915
3916size_t ksize(const void *object)
3917{
3918	size_t size = __ksize(object);
3919	/* We assume that ksize callers could use whole allocated area,
3920	 * so we need to unpoison this area.
3921	 */
3922	kasan_unpoison_shadow(object, size);
3923	return size;
3924}
3925EXPORT_SYMBOL(ksize);
3926
3927void kfree(const void *x)
3928{
3929	struct page *page;
3930	void *object = (void *)x;
3931
3932	trace_kfree(_RET_IP_, x);
3933
3934	if (unlikely(ZERO_OR_NULL_PTR(x)))
3935		return;
3936
3937	page = virt_to_head_page(x);
3938	if (unlikely(!PageSlab(page))) {
3939		BUG_ON(!PageCompound(page));
3940		kfree_hook(object);
3941		__free_pages(page, compound_order(page));
3942		return;
3943	}
3944	slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
3945}
3946EXPORT_SYMBOL(kfree);
3947
3948#define SHRINK_PROMOTE_MAX 32
3949
3950/*
3951 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
3952 * up most to the head of the partial lists. New allocations will then
3953 * fill those up and thus they can be removed from the partial lists.
3954 *
3955 * The slabs with the least items are placed last. This results in them
3956 * being allocated from last increasing the chance that the last objects
3957 * are freed in them.
3958 */
3959int __kmem_cache_shrink(struct kmem_cache *s)
3960{
3961	int node;
3962	int i;
3963	struct kmem_cache_node *n;
3964	struct page *page;
3965	struct page *t;
3966	struct list_head discard;
3967	struct list_head promote[SHRINK_PROMOTE_MAX];
3968	unsigned long flags;
3969	int ret = 0;
3970
3971	flush_all(s);
3972	for_each_kmem_cache_node(s, node, n) {
3973		INIT_LIST_HEAD(&discard);
3974		for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
3975			INIT_LIST_HEAD(promote + i);
3976
3977		spin_lock_irqsave(&n->list_lock, flags);
3978
3979		/*
3980		 * Build lists of slabs to discard or promote.
3981		 *
3982		 * Note that concurrent frees may occur while we hold the
3983		 * list_lock. page->inuse here is the upper limit.
3984		 */
3985		list_for_each_entry_safe(page, t, &n->partial, lru) {
3986			int free = page->objects - page->inuse;
3987
3988			/* Do not reread page->inuse */
3989			barrier();
3990
3991			/* We do not keep full slabs on the list */
3992			BUG_ON(free <= 0);
3993
3994			if (free == page->objects) {
3995				list_move(&page->lru, &discard);
 
3996				n->nr_partial--;
 
3997			} else if (free <= SHRINK_PROMOTE_MAX)
3998				list_move(&page->lru, promote + free - 1);
3999		}
4000
4001		/*
4002		 * Promote the slabs filled up most to the head of the
4003		 * partial list.
4004		 */
4005		for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
4006			list_splice(promote + i, &n->partial);
4007
4008		spin_unlock_irqrestore(&n->list_lock, flags);
4009
4010		/* Release empty slabs */
4011		list_for_each_entry_safe(page, t, &discard, lru)
4012			discard_slab(s, page);
4013
4014		if (slabs_node(s, node))
4015			ret = 1;
4016	}
4017
4018	return ret;
4019}
4020
4021#ifdef CONFIG_MEMCG
4022static void kmemcg_cache_deact_after_rcu(struct kmem_cache *s)
4023{
4024	/*
4025	 * Called with all the locks held after a sched RCU grace period.
4026	 * Even if @s becomes empty after shrinking, we can't know that @s
4027	 * doesn't have allocations already in-flight and thus can't
4028	 * destroy @s until the associated memcg is released.
4029	 *
4030	 * However, let's remove the sysfs files for empty caches here.
4031	 * Each cache has a lot of interface files which aren't
4032	 * particularly useful for empty draining caches; otherwise, we can
4033	 * easily end up with millions of unnecessary sysfs files on
4034	 * systems which have a lot of memory and transient cgroups.
4035	 */
4036	if (!__kmem_cache_shrink(s))
4037		sysfs_slab_remove(s);
4038}
4039
4040void __kmemcg_cache_deactivate(struct kmem_cache *s)
4041{
4042	/*
4043	 * Disable empty slabs caching. Used to avoid pinning offline
4044	 * memory cgroups by kmem pages that can be freed.
4045	 */
4046	slub_set_cpu_partial(s, 0);
4047	s->min_partial = 0;
4048
4049	/*
4050	 * s->cpu_partial is checked locklessly (see put_cpu_partial), so
4051	 * we have to make sure the change is visible before shrinking.
4052	 */
4053	slab_deactivate_memcg_cache_rcu_sched(s, kmemcg_cache_deact_after_rcu);
4054}
4055#endif
4056
4057static int slab_mem_going_offline_callback(void *arg)
4058{
4059	struct kmem_cache *s;
4060
4061	mutex_lock(&slab_mutex);
4062	list_for_each_entry(s, &slab_caches, list)
4063		__kmem_cache_shrink(s);
 
 
4064	mutex_unlock(&slab_mutex);
4065
4066	return 0;
4067}
4068
4069static void slab_mem_offline_callback(void *arg)
4070{
4071	struct kmem_cache_node *n;
4072	struct kmem_cache *s;
4073	struct memory_notify *marg = arg;
4074	int offline_node;
4075
4076	offline_node = marg->status_change_nid_normal;
4077
4078	/*
4079	 * If the node still has available memory. we need kmem_cache_node
4080	 * for it yet.
4081	 */
4082	if (offline_node < 0)
4083		return;
4084
4085	mutex_lock(&slab_mutex);
4086	list_for_each_entry(s, &slab_caches, list) {
4087		n = get_node(s, offline_node);
4088		if (n) {
4089			/*
4090			 * if n->nr_slabs > 0, slabs still exist on the node
4091			 * that is going down. We were unable to free them,
4092			 * and offline_pages() function shouldn't call this
4093			 * callback. So, we must fail.
4094			 */
4095			BUG_ON(slabs_node(s, offline_node));
4096
4097			s->node[offline_node] = NULL;
4098			kmem_cache_free(kmem_cache_node, n);
4099		}
4100	}
4101	mutex_unlock(&slab_mutex);
4102}
4103
4104static int slab_mem_going_online_callback(void *arg)
4105{
4106	struct kmem_cache_node *n;
4107	struct kmem_cache *s;
4108	struct memory_notify *marg = arg;
4109	int nid = marg->status_change_nid_normal;
4110	int ret = 0;
4111
4112	/*
4113	 * If the node's memory is already available, then kmem_cache_node is
4114	 * already created. Nothing to do.
4115	 */
4116	if (nid < 0)
4117		return 0;
4118
4119	/*
4120	 * We are bringing a node online. No memory is available yet. We must
4121	 * allocate a kmem_cache_node structure in order to bring the node
4122	 * online.
4123	 */
4124	mutex_lock(&slab_mutex);
4125	list_for_each_entry(s, &slab_caches, list) {
4126		/*
 
 
 
 
 
 
4127		 * XXX: kmem_cache_alloc_node will fallback to other nodes
4128		 *      since memory is not yet available from the node that
4129		 *      is brought up.
4130		 */
4131		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
4132		if (!n) {
4133			ret = -ENOMEM;
4134			goto out;
4135		}
4136		init_kmem_cache_node(n);
4137		s->node[nid] = n;
4138	}
 
 
 
 
 
4139out:
4140	mutex_unlock(&slab_mutex);
4141	return ret;
4142}
4143
4144static int slab_memory_callback(struct notifier_block *self,
4145				unsigned long action, void *arg)
4146{
4147	int ret = 0;
4148
4149	switch (action) {
4150	case MEM_GOING_ONLINE:
4151		ret = slab_mem_going_online_callback(arg);
4152		break;
4153	case MEM_GOING_OFFLINE:
4154		ret = slab_mem_going_offline_callback(arg);
4155		break;
4156	case MEM_OFFLINE:
4157	case MEM_CANCEL_ONLINE:
4158		slab_mem_offline_callback(arg);
4159		break;
4160	case MEM_ONLINE:
4161	case MEM_CANCEL_OFFLINE:
4162		break;
4163	}
4164	if (ret)
4165		ret = notifier_from_errno(ret);
4166	else
4167		ret = NOTIFY_OK;
4168	return ret;
4169}
4170
4171static struct notifier_block slab_memory_callback_nb = {
4172	.notifier_call = slab_memory_callback,
4173	.priority = SLAB_CALLBACK_PRI,
4174};
4175
4176/********************************************************************
4177 *			Basic setup of slabs
4178 *******************************************************************/
4179
4180/*
4181 * Used for early kmem_cache structures that were allocated using
4182 * the page allocator. Allocate them properly then fix up the pointers
4183 * that may be pointing to the wrong kmem_cache structure.
4184 */
4185
4186static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
4187{
4188	int node;
4189	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
4190	struct kmem_cache_node *n;
4191
4192	memcpy(s, static_cache, kmem_cache->object_size);
4193
4194	/*
4195	 * This runs very early, and only the boot processor is supposed to be
4196	 * up.  Even if it weren't true, IRQs are not up so we couldn't fire
4197	 * IPIs around.
4198	 */
4199	__flush_cpu_slab(s, smp_processor_id());
4200	for_each_kmem_cache_node(s, node, n) {
4201		struct page *p;
4202
4203		list_for_each_entry(p, &n->partial, lru)
4204			p->slab_cache = s;
4205
4206#ifdef CONFIG_SLUB_DEBUG
4207		list_for_each_entry(p, &n->full, lru)
4208			p->slab_cache = s;
4209#endif
4210	}
4211	slab_init_memcg_params(s);
4212	list_add(&s->list, &slab_caches);
4213	memcg_link_cache(s);
4214	return s;
4215}
4216
4217void __init kmem_cache_init(void)
4218{
4219	static __initdata struct kmem_cache boot_kmem_cache,
4220		boot_kmem_cache_node;
 
4221
4222	if (debug_guardpage_minorder())
4223		slub_max_order = 0;
4224
 
 
 
 
4225	kmem_cache_node = &boot_kmem_cache_node;
4226	kmem_cache = &boot_kmem_cache;
4227
 
 
 
 
 
 
 
4228	create_boot_cache(kmem_cache_node, "kmem_cache_node",
4229		sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
4230
4231	register_hotmemory_notifier(&slab_memory_callback_nb);
4232
4233	/* Able to allocate the per node structures */
4234	slab_state = PARTIAL;
4235
4236	create_boot_cache(kmem_cache, "kmem_cache",
4237			offsetof(struct kmem_cache, node) +
4238				nr_node_ids * sizeof(struct kmem_cache_node *),
4239		       SLAB_HWCACHE_ALIGN, 0, 0);
4240
4241	kmem_cache = bootstrap(&boot_kmem_cache);
4242
4243	/*
4244	 * Allocate kmem_cache_node properly from the kmem_cache slab.
4245	 * kmem_cache_node is separately allocated so no need to
4246	 * update any list pointers.
4247	 */
4248	kmem_cache_node = bootstrap(&boot_kmem_cache_node);
4249
4250	/* Now we can use the kmem_cache to allocate kmalloc slabs */
4251	setup_kmalloc_cache_index_table();
4252	create_kmalloc_caches(0);
4253
4254	/* Setup random freelists for each cache */
4255	init_freelist_randomization();
4256
4257	cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
4258				  slub_cpu_dead);
4259
4260	pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%d\n",
4261		cache_line_size(),
4262		slub_min_order, slub_max_order, slub_min_objects,
4263		nr_cpu_ids, nr_node_ids);
4264}
4265
4266void __init kmem_cache_init_late(void)
4267{
 
 
 
 
4268}
4269
4270struct kmem_cache *
4271__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
4272		   slab_flags_t flags, void (*ctor)(void *))
4273{
4274	struct kmem_cache *s, *c;
4275
4276	s = find_mergeable(size, align, flags, name, ctor);
4277	if (s) {
 
 
 
4278		s->refcount++;
4279
4280		/*
4281		 * Adjust the object sizes so that we clear
4282		 * the complete object on kzalloc.
4283		 */
4284		s->object_size = max(s->object_size, size);
4285		s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
4286
4287		for_each_memcg_cache(c, s) {
4288			c->object_size = s->object_size;
4289			c->inuse = max(c->inuse, ALIGN(size, sizeof(void *)));
4290		}
4291
4292		if (sysfs_slab_alias(s, name)) {
4293			s->refcount--;
4294			s = NULL;
4295		}
4296	}
4297
4298	return s;
4299}
4300
4301int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
4302{
4303	int err;
4304
4305	err = kmem_cache_open(s, flags);
4306	if (err)
4307		return err;
4308
4309	/* Mutex is not taken during early boot */
4310	if (slab_state <= UP)
4311		return 0;
4312
4313	memcg_propagate_slab_attrs(s);
4314	err = sysfs_slab_add(s);
4315	if (err)
4316		__kmem_cache_release(s);
4317
4318	return err;
4319}
4320
4321void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
4322{
4323	struct kmem_cache *s;
4324	void *ret;
4325
4326	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
4327		return kmalloc_large(size, gfpflags);
4328
4329	s = kmalloc_slab(size, gfpflags);
4330
4331	if (unlikely(ZERO_OR_NULL_PTR(s)))
4332		return s;
4333
4334	ret = slab_alloc(s, gfpflags, caller);
4335
4336	/* Honor the call site pointer we received. */
4337	trace_kmalloc(caller, ret, size, s->size, gfpflags);
4338
4339	return ret;
4340}
4341
4342#ifdef CONFIG_NUMA
4343void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
4344					int node, unsigned long caller)
4345{
4346	struct kmem_cache *s;
4347	void *ret;
4348
4349	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4350		ret = kmalloc_large_node(size, gfpflags, node);
4351
4352		trace_kmalloc_node(caller, ret,
4353				   size, PAGE_SIZE << get_order(size),
4354				   gfpflags, node);
4355
4356		return ret;
4357	}
4358
4359	s = kmalloc_slab(size, gfpflags);
4360
4361	if (unlikely(ZERO_OR_NULL_PTR(s)))
4362		return s;
4363
4364	ret = slab_alloc_node(s, gfpflags, node, caller);
4365
4366	/* Honor the call site pointer we received. */
4367	trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
4368
4369	return ret;
4370}
4371#endif
4372
4373#ifdef CONFIG_SYSFS
4374static int count_inuse(struct page *page)
4375{
4376	return page->inuse;
4377}
4378
4379static int count_total(struct page *page)
4380{
4381	return page->objects;
4382}
4383#endif
4384
4385#ifdef CONFIG_SLUB_DEBUG
4386static int validate_slab(struct kmem_cache *s, struct page *page,
4387						unsigned long *map)
4388{
4389	void *p;
4390	void *addr = page_address(page);
4391
4392	if (!check_slab(s, page) ||
4393			!on_freelist(s, page, NULL))
4394		return 0;
4395
4396	/* Now we know that a valid freelist exists */
4397	bitmap_zero(map, page->objects);
 
 
 
4398
4399	get_map(s, page, map);
4400	for_each_object(p, s, addr, page->objects) {
4401		if (test_bit(slab_index(p, s, addr), map))
4402			if (!check_object(s, page, p, SLUB_RED_INACTIVE))
4403				return 0;
4404	}
4405
4406	for_each_object(p, s, addr, page->objects)
4407		if (!test_bit(slab_index(p, s, addr), map))
4408			if (!check_object(s, page, p, SLUB_RED_ACTIVE))
4409				return 0;
4410	return 1;
4411}
4412
4413static void validate_slab_slab(struct kmem_cache *s, struct page *page,
4414						unsigned long *map)
4415{
4416	slab_lock(page);
4417	validate_slab(s, page, map);
4418	slab_unlock(page);
4419}
4420
4421static int validate_slab_node(struct kmem_cache *s,
4422		struct kmem_cache_node *n, unsigned long *map)
4423{
4424	unsigned long count = 0;
4425	struct page *page;
4426	unsigned long flags;
4427
4428	spin_lock_irqsave(&n->list_lock, flags);
4429
4430	list_for_each_entry(page, &n->partial, lru) {
4431		validate_slab_slab(s, page, map);
4432		count++;
4433	}
4434	if (count != n->nr_partial)
4435		pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4436		       s->name, count, n->nr_partial);
 
 
4437
4438	if (!(s->flags & SLAB_STORE_USER))
4439		goto out;
4440
4441	list_for_each_entry(page, &n->full, lru) {
4442		validate_slab_slab(s, page, map);
4443		count++;
4444	}
4445	if (count != atomic_long_read(&n->nr_slabs))
4446		pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4447		       s->name, count, atomic_long_read(&n->nr_slabs));
 
 
4448
4449out:
4450	spin_unlock_irqrestore(&n->list_lock, flags);
4451	return count;
4452}
4453
4454static long validate_slab_cache(struct kmem_cache *s)
4455{
4456	int node;
4457	unsigned long count = 0;
4458	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4459				sizeof(unsigned long), GFP_KERNEL);
4460	struct kmem_cache_node *n;
 
4461
4462	if (!map)
 
4463		return -ENOMEM;
4464
4465	flush_all(s);
4466	for_each_kmem_cache_node(s, node, n)
4467		count += validate_slab_node(s, n, map);
4468	kfree(map);
 
 
4469	return count;
4470}
 
 
 
4471/*
4472 * Generate lists of code addresses where slabcache objects are allocated
4473 * and freed.
4474 */
4475
4476struct location {
 
4477	unsigned long count;
4478	unsigned long addr;
 
4479	long long sum_time;
4480	long min_time;
4481	long max_time;
4482	long min_pid;
4483	long max_pid;
4484	DECLARE_BITMAP(cpus, NR_CPUS);
4485	nodemask_t nodes;
4486};
4487
4488struct loc_track {
4489	unsigned long max;
4490	unsigned long count;
4491	struct location *loc;
 
4492};
4493
 
 
4494static void free_loc_track(struct loc_track *t)
4495{
4496	if (t->max)
4497		free_pages((unsigned long)t->loc,
4498			get_order(sizeof(struct location) * t->max));
4499}
4500
4501static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4502{
4503	struct location *l;
4504	int order;
4505
4506	order = get_order(sizeof(struct location) * max);
4507
4508	l = (void *)__get_free_pages(flags, order);
4509	if (!l)
4510		return 0;
4511
4512	if (t->count) {
4513		memcpy(l, t->loc, sizeof(struct location) * t->count);
4514		free_loc_track(t);
4515	}
4516	t->max = max;
4517	t->loc = l;
4518	return 1;
4519}
4520
4521static int add_location(struct loc_track *t, struct kmem_cache *s,
4522				const struct track *track)
 
4523{
4524	long start, end, pos;
4525	struct location *l;
4526	unsigned long caddr;
4527	unsigned long age = jiffies - track->when;
 
 
4528
 
 
 
4529	start = -1;
4530	end = t->count;
4531
4532	for ( ; ; ) {
4533		pos = start + (end - start + 1) / 2;
4534
4535		/*
4536		 * There is nothing at "end". If we end up there
4537		 * we need to add something to before end.
4538		 */
4539		if (pos == end)
4540			break;
4541
4542		caddr = t->loc[pos].addr;
4543		if (track->addr == caddr) {
 
 
 
 
4544
4545			l = &t->loc[pos];
4546			l->count++;
4547			if (track->when) {
4548				l->sum_time += age;
4549				if (age < l->min_time)
4550					l->min_time = age;
4551				if (age > l->max_time)
4552					l->max_time = age;
4553
4554				if (track->pid < l->min_pid)
4555					l->min_pid = track->pid;
4556				if (track->pid > l->max_pid)
4557					l->max_pid = track->pid;
4558
4559				cpumask_set_cpu(track->cpu,
4560						to_cpumask(l->cpus));
4561			}
4562			node_set(page_to_nid(virt_to_page(track)), l->nodes);
4563			return 1;
4564		}
4565
4566		if (track->addr < caddr)
4567			end = pos;
 
 
 
 
 
4568		else
4569			start = pos;
4570	}
4571
4572	/*
4573	 * Not found. Insert new tracking element.
4574	 */
4575	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4576		return 0;
4577
4578	l = t->loc + pos;
4579	if (pos < t->count)
4580		memmove(l + 1, l,
4581			(t->count - pos) * sizeof(struct location));
4582	t->count++;
4583	l->count = 1;
4584	l->addr = track->addr;
4585	l->sum_time = age;
4586	l->min_time = age;
4587	l->max_time = age;
4588	l->min_pid = track->pid;
4589	l->max_pid = track->pid;
 
 
4590	cpumask_clear(to_cpumask(l->cpus));
4591	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4592	nodes_clear(l->nodes);
4593	node_set(page_to_nid(virt_to_page(track)), l->nodes);
4594	return 1;
4595}
4596
4597static void process_slab(struct loc_track *t, struct kmem_cache *s,
4598		struct page *page, enum track_item alloc,
4599		unsigned long *map)
4600{
4601	void *addr = page_address(page);
 
4602	void *p;
4603
4604	bitmap_zero(map, page->objects);
4605	get_map(s, page, map);
4606
4607	for_each_object(p, s, addr, page->objects)
4608		if (!test_bit(slab_index(p, s, addr), map))
4609			add_location(t, s, get_track(s, p, alloc));
 
 
4610}
 
 
4611
4612static int list_locations(struct kmem_cache *s, char *buf,
4613					enum track_item alloc)
4614{
4615	int len = 0;
4616	unsigned long i;
4617	struct loc_track t = { 0, 0, NULL };
4618	int node;
4619	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4620				     sizeof(unsigned long), GFP_KERNEL);
4621	struct kmem_cache_node *n;
4622
4623	if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4624				     GFP_KERNEL)) {
4625		kfree(map);
4626		return sprintf(buf, "Out of memory\n");
4627	}
4628	/* Push back cpu slabs */
4629	flush_all(s);
4630
4631	for_each_kmem_cache_node(s, node, n) {
4632		unsigned long flags;
4633		struct page *page;
4634
4635		if (!atomic_long_read(&n->nr_slabs))
4636			continue;
4637
4638		spin_lock_irqsave(&n->list_lock, flags);
4639		list_for_each_entry(page, &n->partial, lru)
4640			process_slab(&t, s, page, alloc, map);
4641		list_for_each_entry(page, &n->full, lru)
4642			process_slab(&t, s, page, alloc, map);
4643		spin_unlock_irqrestore(&n->list_lock, flags);
4644	}
4645
4646	for (i = 0; i < t.count; i++) {
4647		struct location *l = &t.loc[i];
4648
4649		if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4650			break;
4651		len += sprintf(buf + len, "%7ld ", l->count);
4652
4653		if (l->addr)
4654			len += sprintf(buf + len, "%pS", (void *)l->addr);
4655		else
4656			len += sprintf(buf + len, "<not-available>");
4657
4658		if (l->sum_time != l->min_time) {
4659			len += sprintf(buf + len, " age=%ld/%ld/%ld",
4660				l->min_time,
4661				(long)div_u64(l->sum_time, l->count),
4662				l->max_time);
4663		} else
4664			len += sprintf(buf + len, " age=%ld",
4665				l->min_time);
4666
4667		if (l->min_pid != l->max_pid)
4668			len += sprintf(buf + len, " pid=%ld-%ld",
4669				l->min_pid, l->max_pid);
4670		else
4671			len += sprintf(buf + len, " pid=%ld",
4672				l->min_pid);
4673
4674		if (num_online_cpus() > 1 &&
4675				!cpumask_empty(to_cpumask(l->cpus)) &&
4676				len < PAGE_SIZE - 60)
4677			len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4678					 " cpus=%*pbl",
4679					 cpumask_pr_args(to_cpumask(l->cpus)));
4680
4681		if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4682				len < PAGE_SIZE - 60)
4683			len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4684					 " nodes=%*pbl",
4685					 nodemask_pr_args(&l->nodes));
4686
4687		len += sprintf(buf + len, "\n");
4688	}
4689
4690	free_loc_track(&t);
4691	kfree(map);
4692	if (!t.count)
4693		len += sprintf(buf, "No data\n");
4694	return len;
4695}
4696#endif
4697
4698#ifdef SLUB_RESILIENCY_TEST
4699static void __init resiliency_test(void)
4700{
4701	u8 *p;
4702
4703	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4704
4705	pr_err("SLUB resiliency testing\n");
4706	pr_err("-----------------------\n");
4707	pr_err("A. Corruption after allocation\n");
4708
4709	p = kzalloc(16, GFP_KERNEL);
4710	p[16] = 0x12;
4711	pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4712	       p + 16);
4713
4714	validate_slab_cache(kmalloc_caches[4]);
4715
4716	/* Hmmm... The next two are dangerous */
4717	p = kzalloc(32, GFP_KERNEL);
4718	p[32 + sizeof(void *)] = 0x34;
4719	pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4720	       p);
4721	pr_err("If allocated object is overwritten then not detectable\n\n");
4722
4723	validate_slab_cache(kmalloc_caches[5]);
4724	p = kzalloc(64, GFP_KERNEL);
4725	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4726	*p = 0x56;
4727	pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4728	       p);
4729	pr_err("If allocated object is overwritten then not detectable\n\n");
4730	validate_slab_cache(kmalloc_caches[6]);
4731
4732	pr_err("\nB. Corruption after free\n");
4733	p = kzalloc(128, GFP_KERNEL);
4734	kfree(p);
4735	*p = 0x78;
4736	pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4737	validate_slab_cache(kmalloc_caches[7]);
4738
4739	p = kzalloc(256, GFP_KERNEL);
4740	kfree(p);
4741	p[50] = 0x9a;
4742	pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
4743	validate_slab_cache(kmalloc_caches[8]);
4744
4745	p = kzalloc(512, GFP_KERNEL);
4746	kfree(p);
4747	p[512] = 0xab;
4748	pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4749	validate_slab_cache(kmalloc_caches[9]);
4750}
4751#else
4752#ifdef CONFIG_SYSFS
4753static void resiliency_test(void) {};
4754#endif
4755#endif
4756
4757#ifdef CONFIG_SYSFS
4758enum slab_stat_type {
4759	SL_ALL,			/* All slabs */
4760	SL_PARTIAL,		/* Only partially allocated slabs */
4761	SL_CPU,			/* Only slabs used for cpu caches */
4762	SL_OBJECTS,		/* Determine allocated objects not slabs */
4763	SL_TOTAL		/* Determine object capacity not slabs */
4764};
4765
4766#define SO_ALL		(1 << SL_ALL)
4767#define SO_PARTIAL	(1 << SL_PARTIAL)
4768#define SO_CPU		(1 << SL_CPU)
4769#define SO_OBJECTS	(1 << SL_OBJECTS)
4770#define SO_TOTAL	(1 << SL_TOTAL)
4771
4772#ifdef CONFIG_MEMCG
4773static bool memcg_sysfs_enabled = IS_ENABLED(CONFIG_SLUB_MEMCG_SYSFS_ON);
4774
4775static int __init setup_slub_memcg_sysfs(char *str)
4776{
4777	int v;
4778
4779	if (get_option(&str, &v) > 0)
4780		memcg_sysfs_enabled = v;
4781
4782	return 1;
4783}
4784
4785__setup("slub_memcg_sysfs=", setup_slub_memcg_sysfs);
4786#endif
4787
4788static ssize_t show_slab_objects(struct kmem_cache *s,
4789			    char *buf, unsigned long flags)
4790{
4791	unsigned long total = 0;
4792	int node;
4793	int x;
4794	unsigned long *nodes;
 
4795
4796	nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
4797	if (!nodes)
4798		return -ENOMEM;
4799
4800	if (flags & SO_CPU) {
4801		int cpu;
4802
4803		for_each_possible_cpu(cpu) {
4804			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4805							       cpu);
4806			int node;
4807			struct page *page;
4808
4809			page = READ_ONCE(c->page);
4810			if (!page)
4811				continue;
4812
4813			node = page_to_nid(page);
4814			if (flags & SO_TOTAL)
4815				x = page->objects;
4816			else if (flags & SO_OBJECTS)
4817				x = page->inuse;
4818			else
4819				x = 1;
4820
4821			total += x;
4822			nodes[node] += x;
4823
4824			page = slub_percpu_partial_read_once(c);
4825			if (page) {
4826				node = page_to_nid(page);
 
4827				if (flags & SO_TOTAL)
4828					WARN_ON_ONCE(1);
4829				else if (flags & SO_OBJECTS)
4830					WARN_ON_ONCE(1);
4831				else
4832					x = page->pages;
4833				total += x;
4834				nodes[node] += x;
4835			}
 
4836		}
4837	}
4838
4839	get_online_mems();
 
 
 
 
 
 
 
 
 
 
4840#ifdef CONFIG_SLUB_DEBUG
4841	if (flags & SO_ALL) {
4842		struct kmem_cache_node *n;
4843
4844		for_each_kmem_cache_node(s, node, n) {
4845
4846			if (flags & SO_TOTAL)
4847				x = atomic_long_read(&n->total_objects);
4848			else if (flags & SO_OBJECTS)
4849				x = atomic_long_read(&n->total_objects) -
4850					count_partial(n, count_free);
4851			else
4852				x = atomic_long_read(&n->nr_slabs);
4853			total += x;
4854			nodes[node] += x;
4855		}
4856
4857	} else
4858#endif
4859	if (flags & SO_PARTIAL) {
4860		struct kmem_cache_node *n;
4861
4862		for_each_kmem_cache_node(s, node, n) {
4863			if (flags & SO_TOTAL)
4864				x = count_partial(n, count_total);
4865			else if (flags & SO_OBJECTS)
4866				x = count_partial(n, count_inuse);
4867			else
4868				x = n->nr_partial;
4869			total += x;
4870			nodes[node] += x;
4871		}
4872	}
4873	x = sprintf(buf, "%lu", total);
 
4874#ifdef CONFIG_NUMA
4875	for (node = 0; node < nr_node_ids; node++)
4876		if (nodes[node])
4877			x += sprintf(buf + x, " N%d=%lu",
4878					node, nodes[node]);
 
4879#endif
4880	put_online_mems();
4881	kfree(nodes);
4882	return x + sprintf(buf + x, "\n");
4883}
4884
4885#ifdef CONFIG_SLUB_DEBUG
4886static int any_slab_objects(struct kmem_cache *s)
4887{
4888	int node;
4889	struct kmem_cache_node *n;
4890
4891	for_each_kmem_cache_node(s, node, n)
4892		if (atomic_long_read(&n->total_objects))
4893			return 1;
4894
4895	return 0;
4896}
4897#endif
4898
4899#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4900#define to_slab(n) container_of(n, struct kmem_cache, kobj)
4901
4902struct slab_attribute {
4903	struct attribute attr;
4904	ssize_t (*show)(struct kmem_cache *s, char *buf);
4905	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4906};
4907
4908#define SLAB_ATTR_RO(_name) \
4909	static struct slab_attribute _name##_attr = \
4910	__ATTR(_name, 0400, _name##_show, NULL)
4911
4912#define SLAB_ATTR(_name) \
4913	static struct slab_attribute _name##_attr =  \
4914	__ATTR(_name, 0600, _name##_show, _name##_store)
4915
4916static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4917{
4918	return sprintf(buf, "%u\n", s->size);
4919}
4920SLAB_ATTR_RO(slab_size);
4921
4922static ssize_t align_show(struct kmem_cache *s, char *buf)
4923{
4924	return sprintf(buf, "%u\n", s->align);
4925}
4926SLAB_ATTR_RO(align);
4927
4928static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4929{
4930	return sprintf(buf, "%u\n", s->object_size);
4931}
4932SLAB_ATTR_RO(object_size);
4933
4934static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4935{
4936	return sprintf(buf, "%u\n", oo_objects(s->oo));
4937}
4938SLAB_ATTR_RO(objs_per_slab);
4939
4940static ssize_t order_store(struct kmem_cache *s,
4941				const char *buf, size_t length)
4942{
4943	unsigned int order;
4944	int err;
4945
4946	err = kstrtouint(buf, 10, &order);
4947	if (err)
4948		return err;
4949
4950	if (order > slub_max_order || order < slub_min_order)
4951		return -EINVAL;
4952
4953	calculate_sizes(s, order);
4954	return length;
4955}
4956
4957static ssize_t order_show(struct kmem_cache *s, char *buf)
4958{
4959	return sprintf(buf, "%u\n", oo_order(s->oo));
4960}
4961SLAB_ATTR(order);
4962
4963static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4964{
4965	return sprintf(buf, "%lu\n", s->min_partial);
4966}
4967
4968static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4969				 size_t length)
4970{
4971	unsigned long min;
4972	int err;
4973
4974	err = kstrtoul(buf, 10, &min);
4975	if (err)
4976		return err;
4977
4978	set_min_partial(s, min);
4979	return length;
4980}
4981SLAB_ATTR(min_partial);
4982
4983static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4984{
4985	return sprintf(buf, "%u\n", slub_cpu_partial(s));
 
 
 
 
 
4986}
4987
4988static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4989				 size_t length)
4990{
4991	unsigned int objects;
4992	int err;
4993
4994	err = kstrtouint(buf, 10, &objects);
4995	if (err)
4996		return err;
4997	if (objects && !kmem_cache_has_cpu_partial(s))
4998		return -EINVAL;
4999
5000	slub_set_cpu_partial(s, objects);
5001	flush_all(s);
5002	return length;
5003}
5004SLAB_ATTR(cpu_partial);
5005
5006static ssize_t ctor_show(struct kmem_cache *s, char *buf)
5007{
5008	if (!s->ctor)
5009		return 0;
5010	return sprintf(buf, "%pS\n", s->ctor);
5011}
5012SLAB_ATTR_RO(ctor);
5013
5014static ssize_t aliases_show(struct kmem_cache *s, char *buf)
5015{
5016	return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
5017}
5018SLAB_ATTR_RO(aliases);
5019
5020static ssize_t partial_show(struct kmem_cache *s, char *buf)
5021{
5022	return show_slab_objects(s, buf, SO_PARTIAL);
5023}
5024SLAB_ATTR_RO(partial);
5025
5026static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
5027{
5028	return show_slab_objects(s, buf, SO_CPU);
5029}
5030SLAB_ATTR_RO(cpu_slabs);
5031
5032static ssize_t objects_show(struct kmem_cache *s, char *buf)
5033{
5034	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
5035}
5036SLAB_ATTR_RO(objects);
5037
5038static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
5039{
5040	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
5041}
5042SLAB_ATTR_RO(objects_partial);
5043
5044static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
5045{
5046	int objects = 0;
5047	int pages = 0;
5048	int cpu;
5049	int len;
5050
 
5051	for_each_online_cpu(cpu) {
5052		struct page *page;
5053
5054		page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5055
5056		if (page) {
5057			pages += page->pages;
5058			objects += page->pobjects;
5059		}
5060	}
 
5061
5062	len = sprintf(buf, "%d(%d)", objects, pages);
 
 
5063
5064#ifdef CONFIG_SMP
5065	for_each_online_cpu(cpu) {
5066		struct page *page;
5067
5068		page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5069
5070		if (page && len < PAGE_SIZE - 20)
5071			len += sprintf(buf + len, " C%d=%d(%d)", cpu,
5072				page->pobjects, page->pages);
 
 
5073	}
5074#endif
5075	return len + sprintf(buf + len, "\n");
 
 
5076}
5077SLAB_ATTR_RO(slabs_cpu_partial);
5078
5079static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
5080{
5081	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
5082}
5083
5084static ssize_t reclaim_account_store(struct kmem_cache *s,
5085				const char *buf, size_t length)
5086{
5087	s->flags &= ~SLAB_RECLAIM_ACCOUNT;
5088	if (buf[0] == '1')
5089		s->flags |= SLAB_RECLAIM_ACCOUNT;
5090	return length;
5091}
5092SLAB_ATTR(reclaim_account);
5093
5094static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5095{
5096	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
5097}
5098SLAB_ATTR_RO(hwcache_align);
5099
5100#ifdef CONFIG_ZONE_DMA
5101static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5102{
5103	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
5104}
5105SLAB_ATTR_RO(cache_dma);
5106#endif
5107
 
5108static ssize_t usersize_show(struct kmem_cache *s, char *buf)
5109{
5110	return sprintf(buf, "%u\n", s->usersize);
5111}
5112SLAB_ATTR_RO(usersize);
 
5113
5114static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5115{
5116	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
5117}
5118SLAB_ATTR_RO(destroy_by_rcu);
5119
5120static ssize_t reserved_show(struct kmem_cache *s, char *buf)
5121{
5122	return sprintf(buf, "%u\n", s->reserved);
5123}
5124SLAB_ATTR_RO(reserved);
5125
5126#ifdef CONFIG_SLUB_DEBUG
5127static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5128{
5129	return show_slab_objects(s, buf, SO_ALL);
5130}
5131SLAB_ATTR_RO(slabs);
5132
5133static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5134{
5135	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5136}
5137SLAB_ATTR_RO(total_objects);
5138
5139static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5140{
5141	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
5142}
 
5143
5144static ssize_t sanity_checks_store(struct kmem_cache *s,
5145				const char *buf, size_t length)
5146{
5147	s->flags &= ~SLAB_CONSISTENCY_CHECKS;
5148	if (buf[0] == '1') {
5149		s->flags &= ~__CMPXCHG_DOUBLE;
5150		s->flags |= SLAB_CONSISTENCY_CHECKS;
5151	}
5152	return length;
5153}
5154SLAB_ATTR(sanity_checks);
5155
5156static ssize_t trace_show(struct kmem_cache *s, char *buf)
5157{
5158	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
5159}
5160
5161static ssize_t trace_store(struct kmem_cache *s, const char *buf,
5162							size_t length)
5163{
5164	/*
5165	 * Tracing a merged cache is going to give confusing results
5166	 * as well as cause other issues like converting a mergeable
5167	 * cache into an umergeable one.
5168	 */
5169	if (s->refcount > 1)
5170		return -EINVAL;
5171
5172	s->flags &= ~SLAB_TRACE;
5173	if (buf[0] == '1') {
5174		s->flags &= ~__CMPXCHG_DOUBLE;
5175		s->flags |= SLAB_TRACE;
5176	}
5177	return length;
5178}
5179SLAB_ATTR(trace);
5180
5181static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5182{
5183	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
5184}
5185
5186static ssize_t red_zone_store(struct kmem_cache *s,
5187				const char *buf, size_t length)
5188{
5189	if (any_slab_objects(s))
5190		return -EBUSY;
5191
5192	s->flags &= ~SLAB_RED_ZONE;
5193	if (buf[0] == '1') {
5194		s->flags |= SLAB_RED_ZONE;
5195	}
5196	calculate_sizes(s, -1);
5197	return length;
5198}
5199SLAB_ATTR(red_zone);
5200
5201static ssize_t poison_show(struct kmem_cache *s, char *buf)
5202{
5203	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
5204}
5205
5206static ssize_t poison_store(struct kmem_cache *s,
5207				const char *buf, size_t length)
5208{
5209	if (any_slab_objects(s))
5210		return -EBUSY;
5211
5212	s->flags &= ~SLAB_POISON;
5213	if (buf[0] == '1') {
5214		s->flags |= SLAB_POISON;
5215	}
5216	calculate_sizes(s, -1);
5217	return length;
5218}
5219SLAB_ATTR(poison);
5220
5221static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5222{
5223	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
5224}
5225
5226static ssize_t store_user_store(struct kmem_cache *s,
5227				const char *buf, size_t length)
5228{
5229	if (any_slab_objects(s))
5230		return -EBUSY;
5231
5232	s->flags &= ~SLAB_STORE_USER;
5233	if (buf[0] == '1') {
5234		s->flags &= ~__CMPXCHG_DOUBLE;
5235		s->flags |= SLAB_STORE_USER;
5236	}
5237	calculate_sizes(s, -1);
5238	return length;
5239}
5240SLAB_ATTR(store_user);
5241
5242static ssize_t validate_show(struct kmem_cache *s, char *buf)
5243{
5244	return 0;
5245}
5246
5247static ssize_t validate_store(struct kmem_cache *s,
5248			const char *buf, size_t length)
5249{
5250	int ret = -EINVAL;
5251
5252	if (buf[0] == '1') {
5253		ret = validate_slab_cache(s);
5254		if (ret >= 0)
5255			ret = length;
5256	}
5257	return ret;
5258}
5259SLAB_ATTR(validate);
5260
5261static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
5262{
5263	if (!(s->flags & SLAB_STORE_USER))
5264		return -ENOSYS;
5265	return list_locations(s, buf, TRACK_ALLOC);
5266}
5267SLAB_ATTR_RO(alloc_calls);
5268
5269static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
5270{
5271	if (!(s->flags & SLAB_STORE_USER))
5272		return -ENOSYS;
5273	return list_locations(s, buf, TRACK_FREE);
5274}
5275SLAB_ATTR_RO(free_calls);
5276#endif /* CONFIG_SLUB_DEBUG */
5277
5278#ifdef CONFIG_FAILSLAB
5279static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5280{
5281	return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
5282}
5283
5284static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
5285							size_t length)
5286{
5287	if (s->refcount > 1)
5288		return -EINVAL;
5289
5290	s->flags &= ~SLAB_FAILSLAB;
5291	if (buf[0] == '1')
5292		s->flags |= SLAB_FAILSLAB;
 
 
 
5293	return length;
5294}
5295SLAB_ATTR(failslab);
5296#endif
5297
5298static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5299{
5300	return 0;
5301}
5302
5303static ssize_t shrink_store(struct kmem_cache *s,
5304			const char *buf, size_t length)
5305{
5306	if (buf[0] == '1')
5307		kmem_cache_shrink(s);
5308	else
5309		return -EINVAL;
5310	return length;
5311}
5312SLAB_ATTR(shrink);
5313
5314#ifdef CONFIG_NUMA
5315static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
5316{
5317	return sprintf(buf, "%u\n", s->remote_node_defrag_ratio / 10);
5318}
5319
5320static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
5321				const char *buf, size_t length)
5322{
5323	unsigned int ratio;
5324	int err;
5325
5326	err = kstrtouint(buf, 10, &ratio);
5327	if (err)
5328		return err;
5329	if (ratio > 100)
5330		return -ERANGE;
5331
5332	s->remote_node_defrag_ratio = ratio * 10;
5333
5334	return length;
5335}
5336SLAB_ATTR(remote_node_defrag_ratio);
5337#endif
5338
5339#ifdef CONFIG_SLUB_STATS
5340static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5341{
5342	unsigned long sum  = 0;
5343	int cpu;
5344	int len;
5345	int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
5346
5347	if (!data)
5348		return -ENOMEM;
5349
5350	for_each_online_cpu(cpu) {
5351		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5352
5353		data[cpu] = x;
5354		sum += x;
5355	}
5356
5357	len = sprintf(buf, "%lu", sum);
5358
5359#ifdef CONFIG_SMP
5360	for_each_online_cpu(cpu) {
5361		if (data[cpu] && len < PAGE_SIZE - 20)
5362			len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
 
5363	}
5364#endif
5365	kfree(data);
5366	return len + sprintf(buf + len, "\n");
 
 
5367}
5368
5369static void clear_stat(struct kmem_cache *s, enum stat_item si)
5370{
5371	int cpu;
5372
5373	for_each_online_cpu(cpu)
5374		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
5375}
5376
5377#define STAT_ATTR(si, text) 					\
5378static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
5379{								\
5380	return show_stat(s, buf, si);				\
5381}								\
5382static ssize_t text##_store(struct kmem_cache *s,		\
5383				const char *buf, size_t length)	\
5384{								\
5385	if (buf[0] != '0')					\
5386		return -EINVAL;					\
5387	clear_stat(s, si);					\
5388	return length;						\
5389}								\
5390SLAB_ATTR(text);						\
5391
5392STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5393STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5394STAT_ATTR(FREE_FASTPATH, free_fastpath);
5395STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5396STAT_ATTR(FREE_FROZEN, free_frozen);
5397STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5398STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5399STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5400STAT_ATTR(ALLOC_SLAB, alloc_slab);
5401STAT_ATTR(ALLOC_REFILL, alloc_refill);
5402STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5403STAT_ATTR(FREE_SLAB, free_slab);
5404STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5405STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5406STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5407STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5408STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5409STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5410STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5411STAT_ATTR(ORDER_FALLBACK, order_fallback);
5412STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5413STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5414STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5415STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5416STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5417STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5418#endif
5419
5420static struct attribute *slab_attrs[] = {
5421	&slab_size_attr.attr,
5422	&object_size_attr.attr,
5423	&objs_per_slab_attr.attr,
5424	&order_attr.attr,
5425	&min_partial_attr.attr,
5426	&cpu_partial_attr.attr,
5427	&objects_attr.attr,
5428	&objects_partial_attr.attr,
5429	&partial_attr.attr,
5430	&cpu_slabs_attr.attr,
5431	&ctor_attr.attr,
5432	&aliases_attr.attr,
5433	&align_attr.attr,
5434	&hwcache_align_attr.attr,
5435	&reclaim_account_attr.attr,
5436	&destroy_by_rcu_attr.attr,
5437	&shrink_attr.attr,
5438	&reserved_attr.attr,
5439	&slabs_cpu_partial_attr.attr,
5440#ifdef CONFIG_SLUB_DEBUG
5441	&total_objects_attr.attr,
 
5442	&slabs_attr.attr,
5443	&sanity_checks_attr.attr,
5444	&trace_attr.attr,
5445	&red_zone_attr.attr,
5446	&poison_attr.attr,
5447	&store_user_attr.attr,
5448	&validate_attr.attr,
5449	&alloc_calls_attr.attr,
5450	&free_calls_attr.attr,
5451#endif
5452#ifdef CONFIG_ZONE_DMA
5453	&cache_dma_attr.attr,
5454#endif
5455#ifdef CONFIG_NUMA
5456	&remote_node_defrag_ratio_attr.attr,
5457#endif
5458#ifdef CONFIG_SLUB_STATS
5459	&alloc_fastpath_attr.attr,
5460	&alloc_slowpath_attr.attr,
5461	&free_fastpath_attr.attr,
5462	&free_slowpath_attr.attr,
5463	&free_frozen_attr.attr,
5464	&free_add_partial_attr.attr,
5465	&free_remove_partial_attr.attr,
5466	&alloc_from_partial_attr.attr,
5467	&alloc_slab_attr.attr,
5468	&alloc_refill_attr.attr,
5469	&alloc_node_mismatch_attr.attr,
5470	&free_slab_attr.attr,
5471	&cpuslab_flush_attr.attr,
5472	&deactivate_full_attr.attr,
5473	&deactivate_empty_attr.attr,
5474	&deactivate_to_head_attr.attr,
5475	&deactivate_to_tail_attr.attr,
5476	&deactivate_remote_frees_attr.attr,
5477	&deactivate_bypass_attr.attr,
5478	&order_fallback_attr.attr,
5479	&cmpxchg_double_fail_attr.attr,
5480	&cmpxchg_double_cpu_fail_attr.attr,
5481	&cpu_partial_alloc_attr.attr,
5482	&cpu_partial_free_attr.attr,
5483	&cpu_partial_node_attr.attr,
5484	&cpu_partial_drain_attr.attr,
5485#endif
5486#ifdef CONFIG_FAILSLAB
5487	&failslab_attr.attr,
5488#endif
 
5489	&usersize_attr.attr,
 
 
 
 
5490
5491	NULL
5492};
5493
5494static const struct attribute_group slab_attr_group = {
5495	.attrs = slab_attrs,
5496};
5497
5498static ssize_t slab_attr_show(struct kobject *kobj,
5499				struct attribute *attr,
5500				char *buf)
5501{
5502	struct slab_attribute *attribute;
5503	struct kmem_cache *s;
5504	int err;
5505
5506	attribute = to_slab_attr(attr);
5507	s = to_slab(kobj);
5508
5509	if (!attribute->show)
5510		return -EIO;
5511
5512	err = attribute->show(s, buf);
5513
5514	return err;
5515}
5516
5517static ssize_t slab_attr_store(struct kobject *kobj,
5518				struct attribute *attr,
5519				const char *buf, size_t len)
5520{
5521	struct slab_attribute *attribute;
5522	struct kmem_cache *s;
5523	int err;
5524
5525	attribute = to_slab_attr(attr);
5526	s = to_slab(kobj);
5527
5528	if (!attribute->store)
5529		return -EIO;
5530
5531	err = attribute->store(s, buf, len);
5532#ifdef CONFIG_MEMCG
5533	if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
5534		struct kmem_cache *c;
5535
5536		mutex_lock(&slab_mutex);
5537		if (s->max_attr_size < len)
5538			s->max_attr_size = len;
5539
5540		/*
5541		 * This is a best effort propagation, so this function's return
5542		 * value will be determined by the parent cache only. This is
5543		 * basically because not all attributes will have a well
5544		 * defined semantics for rollbacks - most of the actions will
5545		 * have permanent effects.
5546		 *
5547		 * Returning the error value of any of the children that fail
5548		 * is not 100 % defined, in the sense that users seeing the
5549		 * error code won't be able to know anything about the state of
5550		 * the cache.
5551		 *
5552		 * Only returning the error code for the parent cache at least
5553		 * has well defined semantics. The cache being written to
5554		 * directly either failed or succeeded, in which case we loop
5555		 * through the descendants with best-effort propagation.
5556		 */
5557		for_each_memcg_cache(c, s)
5558			attribute->store(c, buf, len);
5559		mutex_unlock(&slab_mutex);
5560	}
5561#endif
5562	return err;
5563}
5564
5565static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5566{
5567#ifdef CONFIG_MEMCG
5568	int i;
5569	char *buffer = NULL;
5570	struct kmem_cache *root_cache;
5571
5572	if (is_root_cache(s))
5573		return;
5574
5575	root_cache = s->memcg_params.root_cache;
5576
5577	/*
5578	 * This mean this cache had no attribute written. Therefore, no point
5579	 * in copying default values around
5580	 */
5581	if (!root_cache->max_attr_size)
5582		return;
5583
5584	for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5585		char mbuf[64];
5586		char *buf;
5587		struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
5588		ssize_t len;
5589
5590		if (!attr || !attr->store || !attr->show)
5591			continue;
5592
5593		/*
5594		 * It is really bad that we have to allocate here, so we will
5595		 * do it only as a fallback. If we actually allocate, though,
5596		 * we can just use the allocated buffer until the end.
5597		 *
5598		 * Most of the slub attributes will tend to be very small in
5599		 * size, but sysfs allows buffers up to a page, so they can
5600		 * theoretically happen.
5601		 */
5602		if (buffer)
5603			buf = buffer;
5604		else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
5605			buf = mbuf;
5606		else {
5607			buffer = (char *) get_zeroed_page(GFP_KERNEL);
5608			if (WARN_ON(!buffer))
5609				continue;
5610			buf = buffer;
5611		}
5612
5613		len = attr->show(root_cache, buf);
5614		if (len > 0)
5615			attr->store(s, buf, len);
5616	}
5617
5618	if (buffer)
5619		free_page((unsigned long)buffer);
5620#endif
5621}
5622
5623static void kmem_cache_release(struct kobject *k)
5624{
5625	slab_kmem_cache_release(to_slab(k));
5626}
5627
5628static const struct sysfs_ops slab_sysfs_ops = {
5629	.show = slab_attr_show,
5630	.store = slab_attr_store,
5631};
5632
5633static struct kobj_type slab_ktype = {
5634	.sysfs_ops = &slab_sysfs_ops,
5635	.release = kmem_cache_release,
5636};
5637
5638static int uevent_filter(struct kset *kset, struct kobject *kobj)
5639{
5640	struct kobj_type *ktype = get_ktype(kobj);
5641
5642	if (ktype == &slab_ktype)
5643		return 1;
5644	return 0;
5645}
5646
5647static const struct kset_uevent_ops slab_uevent_ops = {
5648	.filter = uevent_filter,
5649};
5650
5651static struct kset *slab_kset;
5652
5653static inline struct kset *cache_kset(struct kmem_cache *s)
5654{
5655#ifdef CONFIG_MEMCG
5656	if (!is_root_cache(s))
5657		return s->memcg_params.root_cache->memcg_kset;
5658#endif
5659	return slab_kset;
5660}
5661
5662#define ID_STR_LENGTH 64
5663
5664/* Create a unique string id for a slab cache:
5665 *
5666 * Format	:[flags-]size
5667 */
5668static char *create_unique_id(struct kmem_cache *s)
5669{
5670	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5671	char *p = name;
5672
5673	BUG_ON(!name);
 
5674
5675	*p++ = ':';
5676	/*
5677	 * First flags affecting slabcache operations. We will only
5678	 * get here for aliasable slabs so we do not need to support
5679	 * too many flags. The flags here must cover all flags that
5680	 * are matched during merging to guarantee that the id is
5681	 * unique.
5682	 */
5683	if (s->flags & SLAB_CACHE_DMA)
5684		*p++ = 'd';
 
 
5685	if (s->flags & SLAB_RECLAIM_ACCOUNT)
5686		*p++ = 'a';
5687	if (s->flags & SLAB_CONSISTENCY_CHECKS)
5688		*p++ = 'F';
5689	if (s->flags & SLAB_ACCOUNT)
5690		*p++ = 'A';
5691	if (p != name + 1)
5692		*p++ = '-';
5693	p += sprintf(p, "%07u", s->size);
5694
5695	BUG_ON(p > name + ID_STR_LENGTH - 1);
 
 
 
 
5696	return name;
5697}
5698
5699static void sysfs_slab_remove_workfn(struct work_struct *work)
5700{
5701	struct kmem_cache *s =
5702		container_of(work, struct kmem_cache, kobj_remove_work);
5703
5704	if (!s->kobj.state_in_sysfs)
5705		/*
5706		 * For a memcg cache, this may be called during
5707		 * deactivation and again on shutdown.  Remove only once.
5708		 * A cache is never shut down before deactivation is
5709		 * complete, so no need to worry about synchronization.
5710		 */
5711		goto out;
5712
5713#ifdef CONFIG_MEMCG
5714	kset_unregister(s->memcg_kset);
5715#endif
5716	kobject_uevent(&s->kobj, KOBJ_REMOVE);
5717	kobject_del(&s->kobj);
5718out:
5719	kobject_put(&s->kobj);
5720}
5721
5722static int sysfs_slab_add(struct kmem_cache *s)
5723{
5724	int err;
5725	const char *name;
5726	struct kset *kset = cache_kset(s);
5727	int unmergeable = slab_unmergeable(s);
5728
5729	INIT_WORK(&s->kobj_remove_work, sysfs_slab_remove_workfn);
5730
5731	if (!kset) {
5732		kobject_init(&s->kobj, &slab_ktype);
5733		return 0;
5734	}
5735
5736	if (!unmergeable && disable_higher_order_debug &&
5737			(slub_debug & DEBUG_METADATA_FLAGS))
5738		unmergeable = 1;
5739
5740	if (unmergeable) {
5741		/*
5742		 * Slabcache can never be merged so we can use the name proper.
5743		 * This is typically the case for debug situations. In that
5744		 * case we can catch duplicate names easily.
5745		 */
5746		sysfs_remove_link(&slab_kset->kobj, s->name);
5747		name = s->name;
5748	} else {
5749		/*
5750		 * Create a unique name for the slab as a target
5751		 * for the symlinks.
5752		 */
5753		name = create_unique_id(s);
 
 
5754	}
5755
5756	s->kobj.kset = kset;
5757	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5758	if (err)
5759		goto out;
5760
5761	err = sysfs_create_group(&s->kobj, &slab_attr_group);
5762	if (err)
5763		goto out_del_kobj;
5764
5765#ifdef CONFIG_MEMCG
5766	if (is_root_cache(s) && memcg_sysfs_enabled) {
5767		s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
5768		if (!s->memcg_kset) {
5769			err = -ENOMEM;
5770			goto out_del_kobj;
5771		}
5772	}
5773#endif
5774
5775	kobject_uevent(&s->kobj, KOBJ_ADD);
5776	if (!unmergeable) {
5777		/* Setup first alias */
5778		sysfs_slab_alias(s, s->name);
5779	}
5780out:
5781	if (!unmergeable)
5782		kfree(name);
5783	return err;
5784out_del_kobj:
5785	kobject_del(&s->kobj);
5786	goto out;
5787}
5788
5789static void sysfs_slab_remove(struct kmem_cache *s)
5790{
5791	if (slab_state < FULL)
5792		/*
5793		 * Sysfs has not been setup yet so no need to remove the
5794		 * cache from sysfs.
5795		 */
5796		return;
5797
5798	kobject_get(&s->kobj);
5799	schedule_work(&s->kobj_remove_work);
5800}
5801
5802void sysfs_slab_release(struct kmem_cache *s)
5803{
5804	if (slab_state >= FULL)
5805		kobject_put(&s->kobj);
5806}
5807
5808/*
5809 * Need to buffer aliases during bootup until sysfs becomes
5810 * available lest we lose that information.
5811 */
5812struct saved_alias {
5813	struct kmem_cache *s;
5814	const char *name;
5815	struct saved_alias *next;
5816};
5817
5818static struct saved_alias *alias_list;
5819
5820static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5821{
5822	struct saved_alias *al;
5823
5824	if (slab_state == FULL) {
5825		/*
5826		 * If we have a leftover link then remove it.
5827		 */
5828		sysfs_remove_link(&slab_kset->kobj, name);
5829		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5830	}
5831
5832	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5833	if (!al)
5834		return -ENOMEM;
5835
5836	al->s = s;
5837	al->name = name;
5838	al->next = alias_list;
5839	alias_list = al;
 
5840	return 0;
5841}
5842
5843static int __init slab_sysfs_init(void)
5844{
5845	struct kmem_cache *s;
5846	int err;
5847
5848	mutex_lock(&slab_mutex);
5849
5850	slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5851	if (!slab_kset) {
5852		mutex_unlock(&slab_mutex);
5853		pr_err("Cannot register slab subsystem.\n");
5854		return -ENOSYS;
5855	}
5856
5857	slab_state = FULL;
5858
5859	list_for_each_entry(s, &slab_caches, list) {
5860		err = sysfs_slab_add(s);
5861		if (err)
5862			pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5863			       s->name);
5864	}
5865
5866	while (alias_list) {
5867		struct saved_alias *al = alias_list;
5868
5869		alias_list = alias_list->next;
5870		err = sysfs_slab_alias(al->s, al->name);
5871		if (err)
5872			pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5873			       al->name);
5874		kfree(al);
5875	}
5876
5877	mutex_unlock(&slab_mutex);
5878	resiliency_test();
5879	return 0;
5880}
 
 
 
 
 
 
 
 
 
5881
5882__initcall(slab_sysfs_init);
5883#endif /* CONFIG_SYSFS */
 
5884
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5885/*
5886 * The /proc/slabinfo ABI
5887 */
5888#ifdef CONFIG_SLUB_DEBUG
5889void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
5890{
5891	unsigned long nr_slabs = 0;
5892	unsigned long nr_objs = 0;
5893	unsigned long nr_free = 0;
5894	int node;
5895	struct kmem_cache_node *n;
5896
5897	for_each_kmem_cache_node(s, node, n) {
5898		nr_slabs += node_nr_slabs(n);
5899		nr_objs += node_nr_objs(n);
5900		nr_free += count_partial(n, count_free);
5901	}
5902
5903	sinfo->active_objs = nr_objs - nr_free;
5904	sinfo->num_objs = nr_objs;
5905	sinfo->active_slabs = nr_slabs;
5906	sinfo->num_slabs = nr_slabs;
5907	sinfo->objects_per_slab = oo_objects(s->oo);
5908	sinfo->cache_order = oo_order(s->oo);
5909}
5910
5911void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5912{
5913}
5914
5915ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5916		       size_t count, loff_t *ppos)
5917{
5918	return -EIO;
5919}
5920#endif /* CONFIG_SLUB_DEBUG */
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * SLUB: A slab allocator that limits cache line use instead of queuing
   4 * objects in per cpu and per node lists.
   5 *
   6 * The allocator synchronizes using per slab locks or atomic operations
   7 * and only uses a centralized lock to manage a pool of partial slabs.
   8 *
   9 * (C) 2007 SGI, Christoph Lameter
  10 * (C) 2011 Linux Foundation, Christoph Lameter
  11 */
  12
  13#include <linux/mm.h>
  14#include <linux/swap.h> /* mm_account_reclaimed_pages() */
  15#include <linux/module.h>
  16#include <linux/bit_spinlock.h>
  17#include <linux/interrupt.h>
  18#include <linux/swab.h>
  19#include <linux/bitops.h>
  20#include <linux/slab.h>
  21#include "slab.h"
  22#include <linux/proc_fs.h>
 
  23#include <linux/seq_file.h>
  24#include <linux/kasan.h>
  25#include <linux/kmsan.h>
  26#include <linux/cpu.h>
  27#include <linux/cpuset.h>
  28#include <linux/mempolicy.h>
  29#include <linux/ctype.h>
  30#include <linux/stackdepot.h>
  31#include <linux/debugobjects.h>
  32#include <linux/kallsyms.h>
  33#include <linux/kfence.h>
  34#include <linux/memory.h>
  35#include <linux/math64.h>
  36#include <linux/fault-inject.h>
  37#include <linux/kmemleak.h>
  38#include <linux/stacktrace.h>
  39#include <linux/prefetch.h>
  40#include <linux/memcontrol.h>
  41#include <linux/random.h>
  42#include <kunit/test.h>
  43#include <kunit/test-bug.h>
  44#include <linux/sort.h>
  45
  46#include <linux/debugfs.h>
  47#include <trace/events/kmem.h>
  48
  49#include "internal.h"
  50
  51/*
  52 * Lock order:
  53 *   1. slab_mutex (Global Mutex)
  54 *   2. node->list_lock (Spinlock)
  55 *   3. kmem_cache->cpu_slab->lock (Local lock)
  56 *   4. slab_lock(slab) (Only on some arches)
  57 *   5. object_map_lock (Only for debugging)
  58 *
  59 *   slab_mutex
  60 *
  61 *   The role of the slab_mutex is to protect the list of all the slabs
  62 *   and to synchronize major metadata changes to slab cache structures.
  63 *   Also synchronizes memory hotplug callbacks.
  64 *
  65 *   slab_lock
  66 *
  67 *   The slab_lock is a wrapper around the page lock, thus it is a bit
  68 *   spinlock.
  69 *
  70 *   The slab_lock is only used on arches that do not have the ability
  71 *   to do a cmpxchg_double. It only protects:
  72 *
  73 *	A. slab->freelist	-> List of free objects in a slab
  74 *	B. slab->inuse		-> Number of objects in use
  75 *	C. slab->objects	-> Number of objects in slab
  76 *	D. slab->frozen		-> frozen state
  77 *
  78 *   Frozen slabs
  79 *
  80 *   If a slab is frozen then it is exempt from list management. It is
  81 *   the cpu slab which is actively allocated from by the processor that
  82 *   froze it and it is not on any list. The processor that froze the
  83 *   slab is the one who can perform list operations on the slab. Other
  84 *   processors may put objects onto the freelist but the processor that
  85 *   froze the slab is the only one that can retrieve the objects from the
  86 *   slab's freelist.
  87 *
  88 *   CPU partial slabs
  89 *
  90 *   The partially empty slabs cached on the CPU partial list are used
  91 *   for performance reasons, which speeds up the allocation process.
  92 *   These slabs are not frozen, but are also exempt from list management,
  93 *   by clearing the PG_workingset flag when moving out of the node
  94 *   partial list. Please see __slab_free() for more details.
  95 *
  96 *   To sum up, the current scheme is:
  97 *   - node partial slab: PG_Workingset && !frozen
  98 *   - cpu partial slab: !PG_Workingset && !frozen
  99 *   - cpu slab: !PG_Workingset && frozen
 100 *   - full slab: !PG_Workingset && !frozen
 101 *
 102 *   list_lock
 103 *
 104 *   The list_lock protects the partial and full list on each node and
 105 *   the partial slab counter. If taken then no new slabs may be added or
 106 *   removed from the lists nor make the number of partial slabs be modified.
 107 *   (Note that the total number of slabs is an atomic value that may be
 108 *   modified without taking the list lock).
 109 *
 110 *   The list_lock is a centralized lock and thus we avoid taking it as
 111 *   much as possible. As long as SLUB does not have to handle partial
 112 *   slabs, operations can continue without any centralized lock. F.e.
 113 *   allocating a long series of objects that fill up slabs does not require
 114 *   the list lock.
 115 *
 116 *   For debug caches, all allocations are forced to go through a list_lock
 117 *   protected region to serialize against concurrent validation.
 118 *
 119 *   cpu_slab->lock local lock
 120 *
 121 *   This locks protect slowpath manipulation of all kmem_cache_cpu fields
 122 *   except the stat counters. This is a percpu structure manipulated only by
 123 *   the local cpu, so the lock protects against being preempted or interrupted
 124 *   by an irq. Fast path operations rely on lockless operations instead.
 125 *
 126 *   On PREEMPT_RT, the local lock neither disables interrupts nor preemption
 127 *   which means the lockless fastpath cannot be used as it might interfere with
 128 *   an in-progress slow path operations. In this case the local lock is always
 129 *   taken but it still utilizes the freelist for the common operations.
 130 *
 131 *   lockless fastpaths
 132 *
 133 *   The fast path allocation (slab_alloc_node()) and freeing (do_slab_free())
 134 *   are fully lockless when satisfied from the percpu slab (and when
 135 *   cmpxchg_double is possible to use, otherwise slab_lock is taken).
 136 *   They also don't disable preemption or migration or irqs. They rely on
 137 *   the transaction id (tid) field to detect being preempted or moved to
 138 *   another cpu.
 139 *
 140 *   irq, preemption, migration considerations
 141 *
 142 *   Interrupts are disabled as part of list_lock or local_lock operations, or
 143 *   around the slab_lock operation, in order to make the slab allocator safe
 144 *   to use in the context of an irq.
 145 *
 146 *   In addition, preemption (or migration on PREEMPT_RT) is disabled in the
 147 *   allocation slowpath, bulk allocation, and put_cpu_partial(), so that the
 148 *   local cpu doesn't change in the process and e.g. the kmem_cache_cpu pointer
 149 *   doesn't have to be revalidated in each section protected by the local lock.
 150 *
 151 * SLUB assigns one slab for allocation to each processor.
 152 * Allocations only occur from these slabs called cpu slabs.
 153 *
 154 * Slabs with free elements are kept on a partial list and during regular
 155 * operations no list for full slabs is used. If an object in a full slab is
 156 * freed then the slab will show up again on the partial lists.
 157 * We track full slabs for debugging purposes though because otherwise we
 158 * cannot scan all objects.
 159 *
 160 * Slabs are freed when they become empty. Teardown and setup is
 161 * minimal so we rely on the page allocators per cpu caches for
 162 * fast frees and allocs.
 163 *
 164 * slab->frozen		The slab is frozen and exempt from list processing.
 
 
 165 * 			This means that the slab is dedicated to a purpose
 166 * 			such as satisfying allocations for a specific
 167 * 			processor. Objects may be freed in the slab while
 168 * 			it is frozen but slab_free will then skip the usual
 169 * 			list operations. It is up to the processor holding
 170 * 			the slab to integrate the slab into the slab lists
 171 * 			when the slab is no longer needed.
 172 *
 173 * 			One use of this flag is to mark slabs that are
 174 * 			used for allocations. Then such a slab becomes a cpu
 175 * 			slab. The cpu slab may be equipped with an additional
 176 * 			freelist that allows lockless access to
 177 * 			free objects in addition to the regular freelist
 178 * 			that requires the slab lock.
 179 *
 180 * SLAB_DEBUG_FLAGS	Slab requires special handling due to debug
 181 * 			options set. This moves	slab handling out of
 182 * 			the fast path and disables lockless freelists.
 183 */
 184
 185/*
 186 * We could simply use migrate_disable()/enable() but as long as it's a
 187 * function call even on !PREEMPT_RT, use inline preempt_disable() there.
 188 */
 189#ifndef CONFIG_PREEMPT_RT
 190#define slub_get_cpu_ptr(var)		get_cpu_ptr(var)
 191#define slub_put_cpu_ptr(var)		put_cpu_ptr(var)
 192#define USE_LOCKLESS_FAST_PATH()	(true)
 193#else
 194#define slub_get_cpu_ptr(var)		\
 195({					\
 196	migrate_disable();		\
 197	this_cpu_ptr(var);		\
 198})
 199#define slub_put_cpu_ptr(var)		\
 200do {					\
 201	(void)(var);			\
 202	migrate_enable();		\
 203} while (0)
 204#define USE_LOCKLESS_FAST_PATH()	(false)
 205#endif
 206
 207#ifndef CONFIG_SLUB_TINY
 208#define __fastpath_inline __always_inline
 209#else
 210#define __fastpath_inline
 211#endif
 212
 213#ifdef CONFIG_SLUB_DEBUG
 214#ifdef CONFIG_SLUB_DEBUG_ON
 215DEFINE_STATIC_KEY_TRUE(slub_debug_enabled);
 216#else
 217DEFINE_STATIC_KEY_FALSE(slub_debug_enabled);
 218#endif
 219#endif		/* CONFIG_SLUB_DEBUG */
 220
 221/* Structure holding parameters for get_partial() call chain */
 222struct partial_context {
 223	gfp_t flags;
 224	unsigned int orig_size;
 225	void *object;
 226};
 227
 228static inline bool kmem_cache_debug(struct kmem_cache *s)
 229{
 230	return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS);
 231}
 232
 233static inline bool slub_debug_orig_size(struct kmem_cache *s)
 234{
 235	return (kmem_cache_debug_flags(s, SLAB_STORE_USER) &&
 236			(s->flags & SLAB_KMALLOC));
 237}
 238
 239void *fixup_red_left(struct kmem_cache *s, void *p)
 240{
 241	if (kmem_cache_debug_flags(s, SLAB_RED_ZONE))
 242		p += s->red_left_pad;
 243
 244	return p;
 245}
 246
 247static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
 248{
 249#ifdef CONFIG_SLUB_CPU_PARTIAL
 250	return !kmem_cache_debug(s);
 251#else
 252	return false;
 253#endif
 254}
 255
 256/*
 257 * Issues still to be resolved:
 258 *
 259 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
 260 *
 261 * - Variable sizing of the per node arrays
 262 */
 263
 
 
 
 264/* Enable to log cmpxchg failures */
 265#undef SLUB_DEBUG_CMPXCHG
 266
 267#ifndef CONFIG_SLUB_TINY
 268/*
 269 * Minimum number of partial slabs. These will be left on the partial
 270 * lists even if they are empty. kmem_cache_shrink may reclaim them.
 271 */
 272#define MIN_PARTIAL 5
 273
 274/*
 275 * Maximum number of desirable partial slabs.
 276 * The existence of more partial slabs makes kmem_cache_shrink
 277 * sort the partial list by the number of objects in use.
 278 */
 279#define MAX_PARTIAL 10
 280#else
 281#define MIN_PARTIAL 0
 282#define MAX_PARTIAL 0
 283#endif
 284
 285#define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
 286				SLAB_POISON | SLAB_STORE_USER)
 287
 288/*
 289 * These debug flags cannot use CMPXCHG because there might be consistency
 290 * issues when checking or reading debug information
 291 */
 292#define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
 293				SLAB_TRACE)
 294
 295
 296/*
 297 * Debugging flags that require metadata to be stored in the slab.  These get
 298 * disabled when slub_debug=O is used and a cache's min order increases with
 299 * metadata.
 300 */
 301#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
 302
 303#define OO_SHIFT	16
 304#define OO_MASK		((1 << OO_SHIFT) - 1)
 305#define MAX_OBJS_PER_PAGE	32767 /* since slab.objects is u15 */
 306
 307/* Internal SLUB flags */
 308/* Poison object */
 309#define __OBJECT_POISON		((slab_flags_t __force)0x80000000U)
 310/* Use cmpxchg_double */
 311
 312#ifdef system_has_freelist_aba
 313#define __CMPXCHG_DOUBLE	((slab_flags_t __force)0x40000000U)
 314#else
 315#define __CMPXCHG_DOUBLE	((slab_flags_t __force)0U)
 316#endif
 317
 318/*
 319 * Tracking user of a slab.
 320 */
 321#define TRACK_ADDRS_COUNT 16
 322struct track {
 323	unsigned long addr;	/* Called from address */
 324#ifdef CONFIG_STACKDEPOT
 325	depot_stack_handle_t handle;
 326#endif
 327	int cpu;		/* Was running on cpu */
 328	int pid;		/* Pid context */
 329	unsigned long when;	/* When did the operation occur */
 330};
 331
 332enum track_item { TRACK_ALLOC, TRACK_FREE };
 333
 334#ifdef SLAB_SUPPORTS_SYSFS
 335static int sysfs_slab_add(struct kmem_cache *);
 336static int sysfs_slab_alias(struct kmem_cache *, const char *);
 
 
 337#else
 338static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
 339static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
 340							{ return 0; }
 
 
 341#endif
 342
 343#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG)
 344static void debugfs_slab_add(struct kmem_cache *);
 345#else
 346static inline void debugfs_slab_add(struct kmem_cache *s) { }
 347#endif
 348
 349enum stat_item {
 350	ALLOC_FASTPATH,		/* Allocation from cpu slab */
 351	ALLOC_SLOWPATH,		/* Allocation by getting a new cpu slab */
 352	FREE_FASTPATH,		/* Free to cpu slab */
 353	FREE_SLOWPATH,		/* Freeing not to cpu slab */
 354	FREE_FROZEN,		/* Freeing to frozen slab */
 355	FREE_ADD_PARTIAL,	/* Freeing moves slab to partial list */
 356	FREE_REMOVE_PARTIAL,	/* Freeing removes last object */
 357	ALLOC_FROM_PARTIAL,	/* Cpu slab acquired from node partial list */
 358	ALLOC_SLAB,		/* Cpu slab acquired from page allocator */
 359	ALLOC_REFILL,		/* Refill cpu slab from slab freelist */
 360	ALLOC_NODE_MISMATCH,	/* Switching cpu slab */
 361	FREE_SLAB,		/* Slab freed to the page allocator */
 362	CPUSLAB_FLUSH,		/* Abandoning of the cpu slab */
 363	DEACTIVATE_FULL,	/* Cpu slab was full when deactivated */
 364	DEACTIVATE_EMPTY,	/* Cpu slab was empty when deactivated */
 365	DEACTIVATE_TO_HEAD,	/* Cpu slab was moved to the head of partials */
 366	DEACTIVATE_TO_TAIL,	/* Cpu slab was moved to the tail of partials */
 367	DEACTIVATE_REMOTE_FREES,/* Slab contained remotely freed objects */
 368	DEACTIVATE_BYPASS,	/* Implicit deactivation */
 369	ORDER_FALLBACK,		/* Number of times fallback was necessary */
 370	CMPXCHG_DOUBLE_CPU_FAIL,/* Failures of this_cpu_cmpxchg_double */
 371	CMPXCHG_DOUBLE_FAIL,	/* Failures of slab freelist update */
 372	CPU_PARTIAL_ALLOC,	/* Used cpu partial on alloc */
 373	CPU_PARTIAL_FREE,	/* Refill cpu partial on free */
 374	CPU_PARTIAL_NODE,	/* Refill cpu partial from node partial */
 375	CPU_PARTIAL_DRAIN,	/* Drain cpu partial to node partial */
 376	NR_SLUB_STAT_ITEMS
 377};
 378
 379#ifndef CONFIG_SLUB_TINY
 380/*
 381 * When changing the layout, make sure freelist and tid are still compatible
 382 * with this_cpu_cmpxchg_double() alignment requirements.
 383 */
 384struct kmem_cache_cpu {
 385	union {
 386		struct {
 387			void **freelist;	/* Pointer to next available object */
 388			unsigned long tid;	/* Globally unique transaction id */
 389		};
 390		freelist_aba_t freelist_tid;
 391	};
 392	struct slab *slab;	/* The slab from which we are allocating */
 393#ifdef CONFIG_SLUB_CPU_PARTIAL
 394	struct slab *partial;	/* Partially allocated frozen slabs */
 395#endif
 396	local_lock_t lock;	/* Protects the fields above */
 397#ifdef CONFIG_SLUB_STATS
 398	unsigned int stat[NR_SLUB_STAT_ITEMS];
 399#endif
 400};
 401#endif /* CONFIG_SLUB_TINY */
 402
 403static inline void stat(const struct kmem_cache *s, enum stat_item si)
 404{
 405#ifdef CONFIG_SLUB_STATS
 406	/*
 407	 * The rmw is racy on a preemptible kernel but this is acceptable, so
 408	 * avoid this_cpu_add()'s irq-disable overhead.
 409	 */
 410	raw_cpu_inc(s->cpu_slab->stat[si]);
 411#endif
 412}
 413
 414static inline
 415void stat_add(const struct kmem_cache *s, enum stat_item si, int v)
 416{
 417#ifdef CONFIG_SLUB_STATS
 418	raw_cpu_add(s->cpu_slab->stat[si], v);
 419#endif
 420}
 421
 422/*
 423 * The slab lists for all objects.
 424 */
 425struct kmem_cache_node {
 426	spinlock_t list_lock;
 427	unsigned long nr_partial;
 428	struct list_head partial;
 429#ifdef CONFIG_SLUB_DEBUG
 430	atomic_long_t nr_slabs;
 431	atomic_long_t total_objects;
 432	struct list_head full;
 433#endif
 434};
 435
 436static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
 437{
 438	return s->node[node];
 439}
 440
 441/*
 442 * Iterator over all nodes. The body will be executed for each node that has
 443 * a kmem_cache_node structure allocated (which is true for all online nodes)
 444 */
 445#define for_each_kmem_cache_node(__s, __node, __n) \
 446	for (__node = 0; __node < nr_node_ids; __node++) \
 447		 if ((__n = get_node(__s, __node)))
 448
 449/*
 450 * Tracks for which NUMA nodes we have kmem_cache_nodes allocated.
 451 * Corresponds to node_state[N_NORMAL_MEMORY], but can temporarily
 452 * differ during memory hotplug/hotremove operations.
 453 * Protected by slab_mutex.
 454 */
 455static nodemask_t slab_nodes;
 456
 457#ifndef CONFIG_SLUB_TINY
 458/*
 459 * Workqueue used for flush_cpu_slab().
 460 */
 461static struct workqueue_struct *flushwq;
 462#endif
 463
 464/********************************************************************
 465 * 			Core slab cache functions
 466 *******************************************************************/
 467
 468/*
 469 * freeptr_t represents a SLUB freelist pointer, which might be encoded
 470 * and not dereferenceable if CONFIG_SLAB_FREELIST_HARDENED is enabled.
 471 */
 472typedef struct { unsigned long v; } freeptr_t;
 473
 474/*
 475 * Returns freelist pointer (ptr). With hardening, this is obfuscated
 476 * with an XOR of the address where the pointer is held and a per-cache
 477 * random number.
 478 */
 479static inline freeptr_t freelist_ptr_encode(const struct kmem_cache *s,
 480					    void *ptr, unsigned long ptr_addr)
 481{
 482	unsigned long encoded;
 483
 484#ifdef CONFIG_SLAB_FREELIST_HARDENED
 485	encoded = (unsigned long)ptr ^ s->random ^ swab(ptr_addr);
 486#else
 487	encoded = (unsigned long)ptr;
 488#endif
 489	return (freeptr_t){.v = encoded};
 490}
 491
 492static inline void *freelist_ptr_decode(const struct kmem_cache *s,
 493					freeptr_t ptr, unsigned long ptr_addr)
 
 494{
 495	void *decoded;
 496
 497#ifdef CONFIG_SLAB_FREELIST_HARDENED
 498	decoded = (void *)(ptr.v ^ s->random ^ swab(ptr_addr));
 499#else
 500	decoded = (void *)ptr.v;
 501#endif
 502	return decoded;
 503}
 504
 505static inline void *get_freepointer(struct kmem_cache *s, void *object)
 506{
 507	unsigned long ptr_addr;
 508	freeptr_t p;
 509
 510	object = kasan_reset_tag(object);
 511	ptr_addr = (unsigned long)object + s->offset;
 512	p = *(freeptr_t *)(ptr_addr);
 513	return freelist_ptr_decode(s, p, ptr_addr);
 514}
 515
 516#ifndef CONFIG_SLUB_TINY
 517static void prefetch_freepointer(const struct kmem_cache *s, void *object)
 518{
 519	prefetchw(object + s->offset);
 
 520}
 521#endif
 522
 523/*
 524 * When running under KMSAN, get_freepointer_safe() may return an uninitialized
 525 * pointer value in the case the current thread loses the race for the next
 526 * memory chunk in the freelist. In that case this_cpu_cmpxchg_double() in
 527 * slab_alloc_node() will fail, so the uninitialized value won't be used, but
 528 * KMSAN will still check all arguments of cmpxchg because of imperfect
 529 * handling of inline assembly.
 530 * To work around this problem, we apply __no_kmsan_checks to ensure that
 531 * get_freepointer_safe() returns initialized memory.
 532 */
 533__no_kmsan_checks
 534static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
 535{
 536	unsigned long freepointer_addr;
 537	freeptr_t p;
 538
 539	if (!debug_pagealloc_enabled_static())
 540		return get_freepointer(s, object);
 541
 542	object = kasan_reset_tag(object);
 543	freepointer_addr = (unsigned long)object + s->offset;
 544	copy_from_kernel_nofault(&p, (freeptr_t *)freepointer_addr, sizeof(p));
 545	return freelist_ptr_decode(s, p, freepointer_addr);
 546}
 547
 548static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
 549{
 550	unsigned long freeptr_addr = (unsigned long)object + s->offset;
 551
 552#ifdef CONFIG_SLAB_FREELIST_HARDENED
 553	BUG_ON(object == fp); /* naive detection of double free or corruption */
 554#endif
 555
 556	freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr);
 557	*(freeptr_t *)freeptr_addr = freelist_ptr_encode(s, fp, freeptr_addr);
 558}
 559
 560/* Loop over all objects in a slab */
 561#define for_each_object(__p, __s, __addr, __objects) \
 562	for (__p = fixup_red_left(__s, __addr); \
 563		__p < (__addr) + (__objects) * (__s)->size; \
 564		__p += (__s)->size)
 565
 566static inline unsigned int order_objects(unsigned int order, unsigned int size)
 
 
 
 
 
 
 567{
 568	return ((unsigned int)PAGE_SIZE << order) / size;
 
 
 
 
 
 569}
 570
 571static inline struct kmem_cache_order_objects oo_make(unsigned int order,
 572		unsigned int size)
 573{
 574	struct kmem_cache_order_objects x = {
 575		(order << OO_SHIFT) + order_objects(order, size)
 576	};
 577
 578	return x;
 579}
 580
 581static inline unsigned int oo_order(struct kmem_cache_order_objects x)
 582{
 583	return x.x >> OO_SHIFT;
 584}
 585
 586static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
 587{
 588	return x.x & OO_MASK;
 589}
 590
 591#ifdef CONFIG_SLUB_CPU_PARTIAL
 592static void slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
 593{
 594	unsigned int nr_slabs;
 595
 596	s->cpu_partial = nr_objects;
 597
 598	/*
 599	 * We take the number of objects but actually limit the number of
 600	 * slabs on the per cpu partial list, in order to limit excessive
 601	 * growth of the list. For simplicity we assume that the slabs will
 602	 * be half-full.
 603	 */
 604	nr_slabs = DIV_ROUND_UP(nr_objects * 2, oo_objects(s->oo));
 605	s->cpu_partial_slabs = nr_slabs;
 606}
 607#else
 608static inline void
 609slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
 610{
 611}
 612#endif /* CONFIG_SLUB_CPU_PARTIAL */
 613
 614/*
 615 * Per slab locking using the pagelock
 616 */
 617static __always_inline void slab_lock(struct slab *slab)
 618{
 619	struct page *page = slab_page(slab);
 620
 621	VM_BUG_ON_PAGE(PageTail(page), page);
 622	bit_spin_lock(PG_locked, &page->flags);
 623}
 624
 625static __always_inline void slab_unlock(struct slab *slab)
 626{
 627	struct page *page = slab_page(slab);
 628
 629	VM_BUG_ON_PAGE(PageTail(page), page);
 630	bit_spin_unlock(PG_locked, &page->flags);
 631}
 632
 633static inline bool
 634__update_freelist_fast(struct slab *slab,
 635		      void *freelist_old, unsigned long counters_old,
 636		      void *freelist_new, unsigned long counters_new)
 637{
 638#ifdef system_has_freelist_aba
 639	freelist_aba_t old = { .freelist = freelist_old, .counter = counters_old };
 640	freelist_aba_t new = { .freelist = freelist_new, .counter = counters_new };
 641
 642	return try_cmpxchg_freelist(&slab->freelist_counter.full, &old.full, new.full);
 643#else
 644	return false;
 645#endif
 
 
 
 646}
 647
 648static inline bool
 649__update_freelist_slow(struct slab *slab,
 650		      void *freelist_old, unsigned long counters_old,
 651		      void *freelist_new, unsigned long counters_new)
 652{
 653	bool ret = false;
 654
 655	slab_lock(slab);
 656	if (slab->freelist == freelist_old &&
 657	    slab->counters == counters_old) {
 658		slab->freelist = freelist_new;
 659		slab->counters = counters_new;
 660		ret = true;
 661	}
 662	slab_unlock(slab);
 663
 664	return ret;
 665}
 666
 667/*
 668 * Interrupts must be disabled (for the fallback code to work right), typically
 669 * by an _irqsave() lock variant. On PREEMPT_RT the preempt_disable(), which is
 670 * part of bit_spin_lock(), is sufficient because the policy is not to allow any
 671 * allocation/ free operation in hardirq context. Therefore nothing can
 672 * interrupt the operation.
 673 */
 674static inline bool __slab_update_freelist(struct kmem_cache *s, struct slab *slab,
 675		void *freelist_old, unsigned long counters_old,
 676		void *freelist_new, unsigned long counters_new,
 677		const char *n)
 678{
 679	bool ret;
 680
 681	if (USE_LOCKLESS_FAST_PATH())
 682		lockdep_assert_irqs_disabled();
 683
 684	if (s->flags & __CMPXCHG_DOUBLE) {
 685		ret = __update_freelist_fast(slab, freelist_old, counters_old,
 686				            freelist_new, counters_new);
 687	} else {
 688		ret = __update_freelist_slow(slab, freelist_old, counters_old,
 689				            freelist_new, counters_new);
 
 
 
 
 
 
 
 
 
 
 
 690	}
 691	if (likely(ret))
 692		return true;
 693
 694	cpu_relax();
 695	stat(s, CMPXCHG_DOUBLE_FAIL);
 696
 697#ifdef SLUB_DEBUG_CMPXCHG
 698	pr_info("%s %s: cmpxchg double redo ", n, s->name);
 699#endif
 700
 701	return false;
 702}
 703
 704static inline bool slab_update_freelist(struct kmem_cache *s, struct slab *slab,
 705		void *freelist_old, unsigned long counters_old,
 706		void *freelist_new, unsigned long counters_new,
 707		const char *n)
 708{
 709	bool ret;
 710
 711	if (s->flags & __CMPXCHG_DOUBLE) {
 712		ret = __update_freelist_fast(slab, freelist_old, counters_old,
 713				            freelist_new, counters_new);
 714	} else {
 
 
 
 
 715		unsigned long flags;
 716
 717		local_irq_save(flags);
 718		ret = __update_freelist_slow(slab, freelist_old, counters_old,
 719				            freelist_new, counters_new);
 
 
 
 
 
 
 
 
 720		local_irq_restore(flags);
 721	}
 722	if (likely(ret))
 723		return true;
 724
 725	cpu_relax();
 726	stat(s, CMPXCHG_DOUBLE_FAIL);
 727
 728#ifdef SLUB_DEBUG_CMPXCHG
 729	pr_info("%s %s: cmpxchg double redo ", n, s->name);
 730#endif
 731
 732	return false;
 733}
 734
 735#ifdef CONFIG_SLUB_DEBUG
 736static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)];
 737static DEFINE_SPINLOCK(object_map_lock);
 738
 739static void __fill_map(unsigned long *obj_map, struct kmem_cache *s,
 740		       struct slab *slab)
 
 
 741{
 742	void *addr = slab_address(slab);
 743	void *p;
 
 744
 745	bitmap_zero(obj_map, slab->objects);
 746
 747	for (p = slab->freelist; p; p = get_freepointer(s, p))
 748		set_bit(__obj_to_index(s, addr, p), obj_map);
 749}
 750
 751#if IS_ENABLED(CONFIG_KUNIT)
 752static bool slab_add_kunit_errors(void)
 753{
 754	struct kunit_resource *resource;
 755
 756	if (!kunit_get_current_test())
 757		return false;
 758
 759	resource = kunit_find_named_resource(current->kunit_test, "slab_errors");
 760	if (!resource)
 761		return false;
 762
 763	(*(int *)resource->data)++;
 764	kunit_put_resource(resource);
 765	return true;
 766}
 767#else
 768static inline bool slab_add_kunit_errors(void) { return false; }
 769#endif
 770
 771static inline unsigned int size_from_object(struct kmem_cache *s)
 772{
 773	if (s->flags & SLAB_RED_ZONE)
 774		return s->size - s->red_left_pad;
 775
 776	return s->size;
 777}
 778
 779static inline void *restore_red_left(struct kmem_cache *s, void *p)
 780{
 781	if (s->flags & SLAB_RED_ZONE)
 782		p -= s->red_left_pad;
 783
 784	return p;
 785}
 786
 787/*
 788 * Debug settings:
 789 */
 790#if defined(CONFIG_SLUB_DEBUG_ON)
 791static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
 792#else
 793static slab_flags_t slub_debug;
 794#endif
 795
 796static char *slub_debug_string;
 797static int disable_higher_order_debug;
 798
 799/*
 800 * slub is about to manipulate internal object metadata.  This memory lies
 801 * outside the range of the allocated object, so accessing it would normally
 802 * be reported by kasan as a bounds error.  metadata_access_enable() is used
 803 * to tell kasan that these accesses are OK.
 804 */
 805static inline void metadata_access_enable(void)
 806{
 807	kasan_disable_current();
 808}
 809
 810static inline void metadata_access_disable(void)
 811{
 812	kasan_enable_current();
 813}
 814
 815/*
 816 * Object debugging
 817 */
 818
 819/* Verify that a pointer has an address that is valid within a slab page */
 820static inline int check_valid_pointer(struct kmem_cache *s,
 821				struct slab *slab, void *object)
 822{
 823	void *base;
 824
 825	if (!object)
 826		return 1;
 827
 828	base = slab_address(slab);
 829	object = kasan_reset_tag(object);
 830	object = restore_red_left(s, object);
 831	if (object < base || object >= base + slab->objects * s->size ||
 832		(object - base) % s->size) {
 833		return 0;
 834	}
 835
 836	return 1;
 837}
 838
 839static void print_section(char *level, char *text, u8 *addr,
 840			  unsigned int length)
 841{
 842	metadata_access_enable();
 843	print_hex_dump(level, text, DUMP_PREFIX_ADDRESS,
 844			16, 1, kasan_reset_tag((void *)addr), length, 1);
 845	metadata_access_disable();
 846}
 847
 848/*
 849 * See comment in calculate_sizes().
 850 */
 851static inline bool freeptr_outside_object(struct kmem_cache *s)
 852{
 853	return s->offset >= s->inuse;
 854}
 855
 856/*
 857 * Return offset of the end of info block which is inuse + free pointer if
 858 * not overlapping with object.
 859 */
 860static inline unsigned int get_info_end(struct kmem_cache *s)
 861{
 862	if (freeptr_outside_object(s))
 863		return s->inuse + sizeof(void *);
 864	else
 865		return s->inuse;
 866}
 867
 868static struct track *get_track(struct kmem_cache *s, void *object,
 869	enum track_item alloc)
 870{
 871	struct track *p;
 872
 873	p = object + get_info_end(s);
 874
 875	return kasan_reset_tag(p + alloc);
 876}
 877
 878#ifdef CONFIG_STACKDEPOT
 879static noinline depot_stack_handle_t set_track_prepare(void)
 880{
 881	depot_stack_handle_t handle;
 882	unsigned long entries[TRACK_ADDRS_COUNT];
 883	unsigned int nr_entries;
 884
 885	nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3);
 886	handle = stack_depot_save(entries, nr_entries, GFP_NOWAIT);
 887
 888	return handle;
 889}
 890#else
 891static inline depot_stack_handle_t set_track_prepare(void)
 892{
 893	return 0;
 894}
 895#endif
 896
 897static void set_track_update(struct kmem_cache *s, void *object,
 898			     enum track_item alloc, unsigned long addr,
 899			     depot_stack_handle_t handle)
 900{
 901	struct track *p = get_track(s, object, alloc);
 902
 903#ifdef CONFIG_STACKDEPOT
 904	p->handle = handle;
 905#endif
 906	p->addr = addr;
 907	p->cpu = smp_processor_id();
 908	p->pid = current->pid;
 909	p->when = jiffies;
 910}
 911
 912static __always_inline void set_track(struct kmem_cache *s, void *object,
 913				      enum track_item alloc, unsigned long addr)
 914{
 915	depot_stack_handle_t handle = set_track_prepare();
 916
 917	set_track_update(s, object, alloc, addr, handle);
 
 
 
 
 
 
 
 
 
 
 
 
 918}
 919
 920static void init_tracking(struct kmem_cache *s, void *object)
 921{
 922	struct track *p;
 923
 924	if (!(s->flags & SLAB_STORE_USER))
 925		return;
 926
 927	p = get_track(s, object, TRACK_ALLOC);
 928	memset(p, 0, 2*sizeof(struct track));
 929}
 930
 931static void print_track(const char *s, struct track *t, unsigned long pr_time)
 932{
 933	depot_stack_handle_t handle __maybe_unused;
 934
 935	if (!t->addr)
 936		return;
 937
 938	pr_err("%s in %pS age=%lu cpu=%u pid=%d\n",
 939	       s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
 940#ifdef CONFIG_STACKDEPOT
 941	handle = READ_ONCE(t->handle);
 942	if (handle)
 943		stack_depot_print(handle);
 944	else
 945		pr_err("object allocation/free stack trace missing\n");
 
 
 
 946#endif
 947}
 948
 949void print_tracking(struct kmem_cache *s, void *object)
 950{
 951	unsigned long pr_time = jiffies;
 952	if (!(s->flags & SLAB_STORE_USER))
 953		return;
 954
 955	print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
 956	print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
 957}
 958
 959static void print_slab_info(const struct slab *slab)
 960{
 961	struct folio *folio = (struct folio *)slab_folio(slab);
 
 962
 963	pr_err("Slab 0x%p objects=%u used=%u fp=0x%p flags=%pGp\n",
 964	       slab, slab->objects, slab->inuse, slab->freelist,
 965	       folio_flags(folio, 0));
 966}
 967
 968/*
 969 * kmalloc caches has fixed sizes (mostly power of 2), and kmalloc() API
 970 * family will round up the real request size to these fixed ones, so
 971 * there could be an extra area than what is requested. Save the original
 972 * request size in the meta data area, for better debug and sanity check.
 973 */
 974static inline void set_orig_size(struct kmem_cache *s,
 975				void *object, unsigned int orig_size)
 976{
 977	void *p = kasan_reset_tag(object);
 978	unsigned int kasan_meta_size;
 979
 980	if (!slub_debug_orig_size(s))
 981		return;
 982
 983	/*
 984	 * KASAN can save its free meta data inside of the object at offset 0.
 985	 * If this meta data size is larger than 'orig_size', it will overlap
 986	 * the data redzone in [orig_size+1, object_size]. Thus, we adjust
 987	 * 'orig_size' to be as at least as big as KASAN's meta data.
 988	 */
 989	kasan_meta_size = kasan_metadata_size(s, true);
 990	if (kasan_meta_size > orig_size)
 991		orig_size = kasan_meta_size;
 992
 993	p += get_info_end(s);
 994	p += sizeof(struct track) * 2;
 995
 996	*(unsigned int *)p = orig_size;
 997}
 998
 999static inline unsigned int get_orig_size(struct kmem_cache *s, void *object)
1000{
1001	void *p = kasan_reset_tag(object);
1002
1003	if (!slub_debug_orig_size(s))
1004		return s->object_size;
1005
1006	p += get_info_end(s);
1007	p += sizeof(struct track) * 2;
1008
1009	return *(unsigned int *)p;
1010}
1011
1012void skip_orig_size_check(struct kmem_cache *s, const void *object)
1013{
1014	set_orig_size(s, (void *)object, s->object_size);
1015}
1016
1017static void slab_bug(struct kmem_cache *s, char *fmt, ...)
1018{
1019	struct va_format vaf;
1020	va_list args;
1021
1022	va_start(args, fmt);
1023	vaf.fmt = fmt;
1024	vaf.va = &args;
1025	pr_err("=============================================================================\n");
1026	pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
1027	pr_err("-----------------------------------------------------------------------------\n\n");
 
 
1028	va_end(args);
1029}
1030
1031__printf(2, 3)
1032static void slab_fix(struct kmem_cache *s, char *fmt, ...)
1033{
1034	struct va_format vaf;
1035	va_list args;
1036
1037	if (slab_add_kunit_errors())
1038		return;
1039
1040	va_start(args, fmt);
1041	vaf.fmt = fmt;
1042	vaf.va = &args;
1043	pr_err("FIX %s: %pV\n", s->name, &vaf);
1044	va_end(args);
1045}
1046
1047static void print_trailer(struct kmem_cache *s, struct slab *slab, u8 *p)
1048{
1049	unsigned int off;	/* Offset of last byte */
1050	u8 *addr = slab_address(slab);
1051
1052	print_tracking(s, p);
1053
1054	print_slab_info(slab);
1055
1056	pr_err("Object 0x%p @offset=%tu fp=0x%p\n\n",
1057	       p, p - addr, get_freepointer(s, p));
1058
1059	if (s->flags & SLAB_RED_ZONE)
1060		print_section(KERN_ERR, "Redzone  ", p - s->red_left_pad,
1061			      s->red_left_pad);
1062	else if (p > addr + 16)
1063		print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
1064
1065	print_section(KERN_ERR,         "Object   ", p,
1066		      min_t(unsigned int, s->object_size, PAGE_SIZE));
1067	if (s->flags & SLAB_RED_ZONE)
1068		print_section(KERN_ERR, "Redzone  ", p + s->object_size,
1069			s->inuse - s->object_size);
1070
1071	off = get_info_end(s);
 
 
 
1072
1073	if (s->flags & SLAB_STORE_USER)
1074		off += 2 * sizeof(struct track);
1075
1076	if (slub_debug_orig_size(s))
1077		off += sizeof(unsigned int);
1078
1079	off += kasan_metadata_size(s, false);
1080
1081	if (off != size_from_object(s))
1082		/* Beginning of the filler is the free pointer */
1083		print_section(KERN_ERR, "Padding  ", p + off,
1084			      size_from_object(s) - off);
1085
1086	dump_stack();
1087}
1088
1089static void object_err(struct kmem_cache *s, struct slab *slab,
1090			u8 *object, char *reason)
1091{
1092	if (slab_add_kunit_errors())
1093		return;
1094
1095	slab_bug(s, "%s", reason);
1096	print_trailer(s, slab, object);
1097	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1098}
1099
1100static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
1101			       void **freelist, void *nextfree)
1102{
1103	if ((s->flags & SLAB_CONSISTENCY_CHECKS) &&
1104	    !check_valid_pointer(s, slab, nextfree) && freelist) {
1105		object_err(s, slab, *freelist, "Freechain corrupt");
1106		*freelist = NULL;
1107		slab_fix(s, "Isolate corrupted freechain");
1108		return true;
1109	}
1110
1111	return false;
1112}
1113
1114static __printf(3, 4) void slab_err(struct kmem_cache *s, struct slab *slab,
1115			const char *fmt, ...)
1116{
1117	va_list args;
1118	char buf[100];
1119
1120	if (slab_add_kunit_errors())
1121		return;
1122
1123	va_start(args, fmt);
1124	vsnprintf(buf, sizeof(buf), fmt, args);
1125	va_end(args);
1126	slab_bug(s, "%s", buf);
1127	print_slab_info(slab);
1128	dump_stack();
1129	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1130}
1131
1132static void init_object(struct kmem_cache *s, void *object, u8 val)
1133{
1134	u8 *p = kasan_reset_tag(object);
1135	unsigned int poison_size = s->object_size;
1136
1137	if (s->flags & SLAB_RED_ZONE) {
1138		memset(p - s->red_left_pad, val, s->red_left_pad);
1139
1140		if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) {
1141			/*
1142			 * Redzone the extra allocated space by kmalloc than
1143			 * requested, and the poison size will be limited to
1144			 * the original request size accordingly.
1145			 */
1146			poison_size = get_orig_size(s, object);
1147		}
1148	}
1149
1150	if (s->flags & __OBJECT_POISON) {
1151		memset(p, POISON_FREE, poison_size - 1);
1152		p[poison_size - 1] = POISON_END;
1153	}
1154
1155	if (s->flags & SLAB_RED_ZONE)
1156		memset(p + poison_size, val, s->inuse - poison_size);
1157}
1158
1159static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
1160						void *from, void *to)
1161{
1162	slab_fix(s, "Restoring %s 0x%p-0x%p=0x%x", message, from, to - 1, data);
1163	memset(from, data, to - from);
1164}
1165
1166static int check_bytes_and_report(struct kmem_cache *s, struct slab *slab,
1167			u8 *object, char *what,
1168			u8 *start, unsigned int value, unsigned int bytes)
1169{
1170	u8 *fault;
1171	u8 *end;
1172	u8 *addr = slab_address(slab);
1173
1174	metadata_access_enable();
1175	fault = memchr_inv(kasan_reset_tag(start), value, bytes);
1176	metadata_access_disable();
1177	if (!fault)
1178		return 1;
1179
1180	end = start + bytes;
1181	while (end > fault && end[-1] == value)
1182		end--;
1183
1184	if (slab_add_kunit_errors())
1185		goto skip_bug_print;
1186
1187	slab_bug(s, "%s overwritten", what);
1188	pr_err("0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
1189					fault, end - 1, fault - addr,
1190					fault[0], value);
1191	print_trailer(s, slab, object);
1192	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1193
1194skip_bug_print:
1195	restore_bytes(s, what, value, fault, end);
1196	return 0;
1197}
1198
1199/*
1200 * Object layout:
1201 *
1202 * object address
1203 * 	Bytes of the object to be managed.
1204 * 	If the freepointer may overlay the object then the free
1205 *	pointer is at the middle of the object.
1206 *
1207 * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
1208 * 	0xa5 (POISON_END)
1209 *
1210 * object + s->object_size
1211 * 	Padding to reach word boundary. This is also used for Redzoning.
1212 * 	Padding is extended by another word if Redzoning is enabled and
1213 * 	object_size == inuse.
1214 *
1215 * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
1216 * 	0xcc (RED_ACTIVE) for objects in use.
1217 *
1218 * object + s->inuse
1219 * 	Meta data starts here.
1220 *
1221 * 	A. Free pointer (if we cannot overwrite object on free)
1222 * 	B. Tracking data for SLAB_STORE_USER
1223 *	C. Original request size for kmalloc object (SLAB_STORE_USER enabled)
1224 *	D. Padding to reach required alignment boundary or at minimum
1225 * 		one word if debugging is on to be able to detect writes
1226 * 		before the word boundary.
1227 *
1228 *	Padding is done using 0x5a (POISON_INUSE)
1229 *
1230 * object + s->size
1231 * 	Nothing is used beyond s->size.
1232 *
1233 * If slabcaches are merged then the object_size and inuse boundaries are mostly
1234 * ignored. And therefore no slab options that rely on these boundaries
1235 * may be used with merged slabcaches.
1236 */
1237
1238static int check_pad_bytes(struct kmem_cache *s, struct slab *slab, u8 *p)
1239{
1240	unsigned long off = get_info_end(s);	/* The end of info */
 
 
 
 
1241
1242	if (s->flags & SLAB_STORE_USER) {
1243		/* We also have user information there */
1244		off += 2 * sizeof(struct track);
1245
1246		if (s->flags & SLAB_KMALLOC)
1247			off += sizeof(unsigned int);
1248	}
1249
1250	off += kasan_metadata_size(s, false);
1251
1252	if (size_from_object(s) == off)
1253		return 1;
1254
1255	return check_bytes_and_report(s, slab, p, "Object padding",
1256			p + off, POISON_INUSE, size_from_object(s) - off);
1257}
1258
1259/* Check the pad bytes at the end of a slab page */
1260static void slab_pad_check(struct kmem_cache *s, struct slab *slab)
1261{
1262	u8 *start;
1263	u8 *fault;
1264	u8 *end;
1265	u8 *pad;
1266	int length;
1267	int remainder;
1268
1269	if (!(s->flags & SLAB_POISON))
1270		return;
1271
1272	start = slab_address(slab);
1273	length = slab_size(slab);
1274	end = start + length;
1275	remainder = length % s->size;
1276	if (!remainder)
1277		return;
1278
1279	pad = end - remainder;
1280	metadata_access_enable();
1281	fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder);
1282	metadata_access_disable();
1283	if (!fault)
1284		return;
1285	while (end > fault && end[-1] == POISON_INUSE)
1286		end--;
1287
1288	slab_err(s, slab, "Padding overwritten. 0x%p-0x%p @offset=%tu",
1289			fault, end - 1, fault - start);
1290	print_section(KERN_ERR, "Padding ", pad, remainder);
1291
1292	restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
 
1293}
1294
1295static int check_object(struct kmem_cache *s, struct slab *slab,
1296					void *object, u8 val)
1297{
1298	u8 *p = object;
1299	u8 *endobject = object + s->object_size;
1300	unsigned int orig_size, kasan_meta_size;
1301
1302	if (s->flags & SLAB_RED_ZONE) {
1303		if (!check_bytes_and_report(s, slab, object, "Left Redzone",
1304			object - s->red_left_pad, val, s->red_left_pad))
1305			return 0;
1306
1307		if (!check_bytes_and_report(s, slab, object, "Right Redzone",
1308			endobject, val, s->inuse - s->object_size))
1309			return 0;
1310
1311		if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) {
1312			orig_size = get_orig_size(s, object);
1313
1314			if (s->object_size > orig_size  &&
1315				!check_bytes_and_report(s, slab, object,
1316					"kmalloc Redzone", p + orig_size,
1317					val, s->object_size - orig_size)) {
1318				return 0;
1319			}
1320		}
1321	} else {
1322		if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
1323			check_bytes_and_report(s, slab, p, "Alignment padding",
1324				endobject, POISON_INUSE,
1325				s->inuse - s->object_size);
1326		}
1327	}
1328
1329	if (s->flags & SLAB_POISON) {
1330		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON)) {
1331			/*
1332			 * KASAN can save its free meta data inside of the
1333			 * object at offset 0. Thus, skip checking the part of
1334			 * the redzone that overlaps with the meta data.
1335			 */
1336			kasan_meta_size = kasan_metadata_size(s, true);
1337			if (kasan_meta_size < s->object_size - 1 &&
1338			    !check_bytes_and_report(s, slab, p, "Poison",
1339					p + kasan_meta_size, POISON_FREE,
1340					s->object_size - kasan_meta_size - 1))
1341				return 0;
1342			if (kasan_meta_size < s->object_size &&
1343			    !check_bytes_and_report(s, slab, p, "End Poison",
1344					p + s->object_size - 1, POISON_END, 1))
1345				return 0;
1346		}
1347		/*
1348		 * check_pad_bytes cleans up on its own.
1349		 */
1350		check_pad_bytes(s, slab, p);
1351	}
1352
1353	if (!freeptr_outside_object(s) && val == SLUB_RED_ACTIVE)
1354		/*
1355		 * Object and freepointer overlap. Cannot check
1356		 * freepointer while object is allocated.
1357		 */
1358		return 1;
1359
1360	/* Check free pointer validity */
1361	if (!check_valid_pointer(s, slab, get_freepointer(s, p))) {
1362		object_err(s, slab, p, "Freepointer corrupt");
1363		/*
1364		 * No choice but to zap it and thus lose the remainder
1365		 * of the free objects in this slab. May cause
1366		 * another error because the object count is now wrong.
1367		 */
1368		set_freepointer(s, p, NULL);
1369		return 0;
1370	}
1371	return 1;
1372}
1373
1374static int check_slab(struct kmem_cache *s, struct slab *slab)
1375{
1376	int maxobj;
1377
1378	if (!folio_test_slab(slab_folio(slab))) {
1379		slab_err(s, slab, "Not a valid slab page");
 
 
1380		return 0;
1381	}
1382
1383	maxobj = order_objects(slab_order(slab), s->size);
1384	if (slab->objects > maxobj) {
1385		slab_err(s, slab, "objects %u > max %u",
1386			slab->objects, maxobj);
1387		return 0;
1388	}
1389	if (slab->inuse > slab->objects) {
1390		slab_err(s, slab, "inuse %u > max %u",
1391			slab->inuse, slab->objects);
1392		return 0;
1393	}
1394	/* Slab_pad_check fixes things up after itself */
1395	slab_pad_check(s, slab);
1396	return 1;
1397}
1398
1399/*
1400 * Determine if a certain object in a slab is on the freelist. Must hold the
1401 * slab lock to guarantee that the chains are in a consistent state.
1402 */
1403static int on_freelist(struct kmem_cache *s, struct slab *slab, void *search)
1404{
1405	int nr = 0;
1406	void *fp;
1407	void *object = NULL;
1408	int max_objects;
1409
1410	fp = slab->freelist;
1411	while (fp && nr <= slab->objects) {
1412		if (fp == search)
1413			return 1;
1414		if (!check_valid_pointer(s, slab, fp)) {
1415			if (object) {
1416				object_err(s, slab, object,
1417					"Freechain corrupt");
1418				set_freepointer(s, object, NULL);
1419			} else {
1420				slab_err(s, slab, "Freepointer corrupt");
1421				slab->freelist = NULL;
1422				slab->inuse = slab->objects;
1423				slab_fix(s, "Freelist cleared");
1424				return 0;
1425			}
1426			break;
1427		}
1428		object = fp;
1429		fp = get_freepointer(s, object);
1430		nr++;
1431	}
1432
1433	max_objects = order_objects(slab_order(slab), s->size);
1434	if (max_objects > MAX_OBJS_PER_PAGE)
1435		max_objects = MAX_OBJS_PER_PAGE;
1436
1437	if (slab->objects != max_objects) {
1438		slab_err(s, slab, "Wrong number of objects. Found %d but should be %d",
1439			 slab->objects, max_objects);
1440		slab->objects = max_objects;
1441		slab_fix(s, "Number of objects adjusted");
1442	}
1443	if (slab->inuse != slab->objects - nr) {
1444		slab_err(s, slab, "Wrong object count. Counter is %d but counted were %d",
1445			 slab->inuse, slab->objects - nr);
1446		slab->inuse = slab->objects - nr;
1447		slab_fix(s, "Object count adjusted");
1448	}
1449	return search == NULL;
1450}
1451
1452static void trace(struct kmem_cache *s, struct slab *slab, void *object,
1453								int alloc)
1454{
1455	if (s->flags & SLAB_TRACE) {
1456		pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
1457			s->name,
1458			alloc ? "alloc" : "free",
1459			object, slab->inuse,
1460			slab->freelist);
1461
1462		if (!alloc)
1463			print_section(KERN_INFO, "Object ", (void *)object,
1464					s->object_size);
1465
1466		dump_stack();
1467	}
1468}
1469
1470/*
1471 * Tracking of fully allocated slabs for debugging purposes.
1472 */
1473static void add_full(struct kmem_cache *s,
1474	struct kmem_cache_node *n, struct slab *slab)
1475{
1476	if (!(s->flags & SLAB_STORE_USER))
1477		return;
1478
1479	lockdep_assert_held(&n->list_lock);
1480	list_add(&slab->slab_list, &n->full);
1481}
1482
1483static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct slab *slab)
1484{
1485	if (!(s->flags & SLAB_STORE_USER))
1486		return;
1487
1488	lockdep_assert_held(&n->list_lock);
1489	list_del(&slab->slab_list);
 
 
 
 
 
 
 
 
1490}
1491
1492static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1493{
1494	return atomic_long_read(&n->nr_slabs);
1495}
1496
1497static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1498{
1499	struct kmem_cache_node *n = get_node(s, node);
1500
1501	/*
1502	 * May be called early in order to allocate a slab for the
1503	 * kmem_cache_node structure. Solve the chicken-egg
1504	 * dilemma by deferring the increment of the count during
1505	 * bootstrap (see early_kmem_cache_node_alloc).
1506	 */
1507	if (likely(n)) {
1508		atomic_long_inc(&n->nr_slabs);
1509		atomic_long_add(objects, &n->total_objects);
1510	}
1511}
1512static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1513{
1514	struct kmem_cache_node *n = get_node(s, node);
1515
1516	atomic_long_dec(&n->nr_slabs);
1517	atomic_long_sub(objects, &n->total_objects);
1518}
1519
1520/* Object debug checks for alloc/free paths */
1521static void setup_object_debug(struct kmem_cache *s, void *object)
 
1522{
1523	if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))
1524		return;
1525
1526	init_object(s, object, SLUB_RED_INACTIVE);
1527	init_tracking(s, object);
1528}
1529
1530static
1531void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr)
1532{
1533	if (!kmem_cache_debug_flags(s, SLAB_POISON))
1534		return;
1535
1536	metadata_access_enable();
1537	memset(kasan_reset_tag(addr), POISON_INUSE, slab_size(slab));
1538	metadata_access_disable();
1539}
1540
1541static inline int alloc_consistency_checks(struct kmem_cache *s,
1542					struct slab *slab, void *object)
 
1543{
1544	if (!check_slab(s, slab))
1545		return 0;
1546
1547	if (!check_valid_pointer(s, slab, object)) {
1548		object_err(s, slab, object, "Freelist Pointer check fails");
1549		return 0;
1550	}
1551
1552	if (!check_object(s, slab, object, SLUB_RED_INACTIVE))
1553		return 0;
1554
1555	return 1;
1556}
1557
1558static noinline bool alloc_debug_processing(struct kmem_cache *s,
1559			struct slab *slab, void *object, int orig_size)
 
1560{
1561	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1562		if (!alloc_consistency_checks(s, slab, object))
1563			goto bad;
1564	}
1565
1566	/* Success. Perform special debug activities for allocs */
1567	trace(s, slab, object, 1);
1568	set_orig_size(s, object, orig_size);
 
1569	init_object(s, object, SLUB_RED_ACTIVE);
1570	return true;
1571
1572bad:
1573	if (folio_test_slab(slab_folio(slab))) {
1574		/*
1575		 * If this is a slab page then lets do the best we can
1576		 * to avoid issues in the future. Marking all objects
1577		 * as used avoids touching the remaining objects.
1578		 */
1579		slab_fix(s, "Marking all objects used");
1580		slab->inuse = slab->objects;
1581		slab->freelist = NULL;
1582	}
1583	return false;
1584}
1585
1586static inline int free_consistency_checks(struct kmem_cache *s,
1587		struct slab *slab, void *object, unsigned long addr)
1588{
1589	if (!check_valid_pointer(s, slab, object)) {
1590		slab_err(s, slab, "Invalid object pointer 0x%p", object);
1591		return 0;
1592	}
1593
1594	if (on_freelist(s, slab, object)) {
1595		object_err(s, slab, object, "Object already free");
1596		return 0;
1597	}
1598
1599	if (!check_object(s, slab, object, SLUB_RED_ACTIVE))
1600		return 0;
1601
1602	if (unlikely(s != slab->slab_cache)) {
1603		if (!folio_test_slab(slab_folio(slab))) {
1604			slab_err(s, slab, "Attempt to free object(0x%p) outside of slab",
1605				 object);
1606		} else if (!slab->slab_cache) {
1607			pr_err("SLUB <none>: no slab for object 0x%p.\n",
1608			       object);
1609			dump_stack();
1610		} else
1611			object_err(s, slab, object,
1612					"page slab pointer corrupt.");
1613		return 0;
1614	}
1615	return 1;
1616}
1617
1618/*
1619 * Parse a block of slub_debug options. Blocks are delimited by ';'
1620 *
1621 * @str:    start of block
1622 * @flags:  returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified
1623 * @slabs:  return start of list of slabs, or NULL when there's no list
1624 * @init:   assume this is initial parsing and not per-kmem-create parsing
1625 *
1626 * returns the start of next block if there's any, or NULL
1627 */
1628static char *
1629parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init)
1630{
1631	bool higher_order_disable = false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1632
1633	/* Skip any completely empty blocks */
1634	while (*str && *str == ';')
1635		str++;
 
1636
1637	if (*str == ',') {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1638		/*
1639		 * No options but restriction on slabs. This means full
1640		 * debugging for slabs matching a pattern.
1641		 */
1642		*flags = DEBUG_DEFAULT_FLAGS;
1643		goto check_slabs;
1644	}
1645	*flags = 0;
1646
1647	/* Determine which debug features should be switched on */
1648	for (; *str && *str != ',' && *str != ';'; str++) {
 
 
 
 
 
 
 
 
 
1649		switch (tolower(*str)) {
1650		case '-':
1651			*flags = 0;
1652			break;
1653		case 'f':
1654			*flags |= SLAB_CONSISTENCY_CHECKS;
1655			break;
1656		case 'z':
1657			*flags |= SLAB_RED_ZONE;
1658			break;
1659		case 'p':
1660			*flags |= SLAB_POISON;
1661			break;
1662		case 'u':
1663			*flags |= SLAB_STORE_USER;
1664			break;
1665		case 't':
1666			*flags |= SLAB_TRACE;
1667			break;
1668		case 'a':
1669			*flags |= SLAB_FAILSLAB;
1670			break;
1671		case 'o':
1672			/*
1673			 * Avoid enabling debugging on caches if its minimum
1674			 * order would increase as a result.
1675			 */
1676			higher_order_disable = true;
1677			break;
1678		default:
1679			if (init)
1680				pr_err("slub_debug option '%c' unknown. skipped\n", *str);
1681		}
1682	}
 
1683check_slabs:
1684	if (*str == ',')
1685		*slabs = ++str;
1686	else
1687		*slabs = NULL;
1688
1689	/* Skip over the slab list */
1690	while (*str && *str != ';')
1691		str++;
1692
1693	/* Skip any completely empty blocks */
1694	while (*str && *str == ';')
1695		str++;
1696
1697	if (init && higher_order_disable)
1698		disable_higher_order_debug = 1;
1699
1700	if (*str)
1701		return str;
1702	else
1703		return NULL;
1704}
1705
1706static int __init setup_slub_debug(char *str)
1707{
1708	slab_flags_t flags;
1709	slab_flags_t global_flags;
1710	char *saved_str;
1711	char *slab_list;
1712	bool global_slub_debug_changed = false;
1713	bool slab_list_specified = false;
1714
1715	global_flags = DEBUG_DEFAULT_FLAGS;
1716	if (*str++ != '=' || !*str)
1717		/*
1718		 * No options specified. Switch on full debugging.
1719		 */
1720		goto out;
1721
1722	saved_str = str;
1723	while (str) {
1724		str = parse_slub_debug_flags(str, &flags, &slab_list, true);
1725
1726		if (!slab_list) {
1727			global_flags = flags;
1728			global_slub_debug_changed = true;
1729		} else {
1730			slab_list_specified = true;
1731			if (flags & SLAB_STORE_USER)
1732				stack_depot_request_early_init();
1733		}
1734	}
1735
1736	/*
1737	 * For backwards compatibility, a single list of flags with list of
1738	 * slabs means debugging is only changed for those slabs, so the global
1739	 * slub_debug should be unchanged (0 or DEBUG_DEFAULT_FLAGS, depending
1740	 * on CONFIG_SLUB_DEBUG_ON). We can extended that to multiple lists as
1741	 * long as there is no option specifying flags without a slab list.
1742	 */
1743	if (slab_list_specified) {
1744		if (!global_slub_debug_changed)
1745			global_flags = slub_debug;
1746		slub_debug_string = saved_str;
1747	}
1748out:
1749	slub_debug = global_flags;
1750	if (slub_debug & SLAB_STORE_USER)
1751		stack_depot_request_early_init();
1752	if (slub_debug != 0 || slub_debug_string)
1753		static_branch_enable(&slub_debug_enabled);
1754	else
1755		static_branch_disable(&slub_debug_enabled);
1756	if ((static_branch_unlikely(&init_on_alloc) ||
1757	     static_branch_unlikely(&init_on_free)) &&
1758	    (slub_debug & SLAB_POISON))
1759		pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
1760	return 1;
1761}
1762
1763__setup("slub_debug", setup_slub_debug);
1764
1765/*
1766 * kmem_cache_flags - apply debugging options to the cache
1767 * @object_size:	the size of an object without meta data
1768 * @flags:		flags to set
1769 * @name:		name of the cache
1770 *
1771 * Debug option(s) are applied to @flags. In addition to the debug
1772 * option(s), if a slab name (or multiple) is specified i.e.
1773 * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1774 * then only the select slabs will receive the debug option(s).
1775 */
1776slab_flags_t kmem_cache_flags(unsigned int object_size,
1777	slab_flags_t flags, const char *name)
 
1778{
1779	char *iter;
1780	size_t len;
1781	char *next_block;
1782	slab_flags_t block_flags;
1783	slab_flags_t slub_debug_local = slub_debug;
1784
1785	if (flags & SLAB_NO_USER_FLAGS)
1786		return flags;
1787
1788	/*
1789	 * If the slab cache is for debugging (e.g. kmemleak) then
1790	 * don't store user (stack trace) information by default,
1791	 * but let the user enable it via the command line below.
1792	 */
1793	if (flags & SLAB_NOLEAKTRACE)
1794		slub_debug_local &= ~SLAB_STORE_USER;
1795
1796	len = strlen(name);
1797	next_block = slub_debug_string;
1798	/* Go through all blocks of debug options, see if any matches our slab's name */
1799	while (next_block) {
1800		next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false);
1801		if (!iter)
1802			continue;
1803		/* Found a block that has a slab list, search it */
1804		while (*iter) {
1805			char *end, *glob;
1806			size_t cmplen;
1807
1808			end = strchrnul(iter, ',');
1809			if (next_block && next_block < end)
1810				end = next_block - 1;
1811
1812			glob = strnchr(iter, end - iter, '*');
1813			if (glob)
1814				cmplen = glob - iter;
1815			else
1816				cmplen = max_t(size_t, len, (end - iter));
1817
1818			if (!strncmp(name, iter, cmplen)) {
1819				flags |= block_flags;
1820				return flags;
1821			}
1822
1823			if (!*end || *end == ';')
1824				break;
1825			iter = end + 1;
1826		}
1827	}
1828
1829	return flags | slub_debug_local;
1830}
1831#else /* !CONFIG_SLUB_DEBUG */
1832static inline void setup_object_debug(struct kmem_cache *s, void *object) {}
1833static inline
1834void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr) {}
1835
1836static inline bool alloc_debug_processing(struct kmem_cache *s,
1837	struct slab *slab, void *object, int orig_size) { return true; }
1838
1839static inline bool free_debug_processing(struct kmem_cache *s,
1840	struct slab *slab, void *head, void *tail, int *bulk_cnt,
1841	unsigned long addr, depot_stack_handle_t handle) { return true; }
 
1842
1843static inline void slab_pad_check(struct kmem_cache *s, struct slab *slab) {}
1844static inline int check_object(struct kmem_cache *s, struct slab *slab,
 
1845			void *object, u8 val) { return 1; }
1846static inline depot_stack_handle_t set_track_prepare(void) { return 0; }
1847static inline void set_track(struct kmem_cache *s, void *object,
1848			     enum track_item alloc, unsigned long addr) {}
1849static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1850					struct slab *slab) {}
1851static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1852					struct slab *slab) {}
1853slab_flags_t kmem_cache_flags(unsigned int object_size,
1854	slab_flags_t flags, const char *name)
 
1855{
1856	return flags;
1857}
1858#define slub_debug 0
1859
1860#define disable_higher_order_debug 0
1861
 
 
1862static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1863							{ return 0; }
1864static inline void inc_slabs_node(struct kmem_cache *s, int node,
1865							int objects) {}
1866static inline void dec_slabs_node(struct kmem_cache *s, int node,
1867							int objects) {}
1868
1869#ifndef CONFIG_SLUB_TINY
1870static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
1871			       void **freelist, void *nextfree)
1872{
1873	return false;
1874}
1875#endif
1876#endif /* CONFIG_SLUB_DEBUG */
1877
1878static inline enum node_stat_item cache_vmstat_idx(struct kmem_cache *s)
 
 
 
 
1879{
1880	return (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1881		NR_SLAB_RECLAIMABLE_B : NR_SLAB_UNRECLAIMABLE_B;
1882}
1883
1884#ifdef CONFIG_MEMCG_KMEM
1885static inline void memcg_free_slab_cgroups(struct slab *slab)
1886{
1887	kfree(slab_objcgs(slab));
1888	slab->memcg_data = 0;
1889}
1890
1891static inline size_t obj_full_size(struct kmem_cache *s)
1892{
1893	/*
1894	 * For each accounted object there is an extra space which is used
1895	 * to store obj_cgroup membership. Charge it too.
1896	 */
1897	return s->size + sizeof(struct obj_cgroup *);
1898}
1899
1900/*
1901 * Returns false if the allocation should fail.
1902 */
1903static bool __memcg_slab_pre_alloc_hook(struct kmem_cache *s,
1904					struct list_lru *lru,
1905					struct obj_cgroup **objcgp,
1906					size_t objects, gfp_t flags)
1907{
1908	/*
1909	 * The obtained objcg pointer is safe to use within the current scope,
1910	 * defined by current task or set_active_memcg() pair.
1911	 * obj_cgroup_get() is used to get a permanent reference.
1912	 */
1913	struct obj_cgroup *objcg = current_obj_cgroup();
1914	if (!objcg)
1915		return true;
1916
1917	if (lru) {
1918		int ret;
1919		struct mem_cgroup *memcg;
1920
1921		memcg = get_mem_cgroup_from_objcg(objcg);
1922		ret = memcg_list_lru_alloc(memcg, lru, flags);
1923		css_put(&memcg->css);
1924
1925		if (ret)
1926			return false;
1927	}
1928
1929	if (obj_cgroup_charge(objcg, flags, objects * obj_full_size(s)))
1930		return false;
1931
1932	*objcgp = objcg;
1933	return true;
1934}
1935
1936/*
1937 * Returns false if the allocation should fail.
1938 */
1939static __fastpath_inline
1940bool memcg_slab_pre_alloc_hook(struct kmem_cache *s, struct list_lru *lru,
1941			       struct obj_cgroup **objcgp, size_t objects,
1942			       gfp_t flags)
1943{
1944	if (!memcg_kmem_online())
1945		return true;
1946
1947	if (likely(!(flags & __GFP_ACCOUNT) && !(s->flags & SLAB_ACCOUNT)))
1948		return true;
1949
1950	return likely(__memcg_slab_pre_alloc_hook(s, lru, objcgp, objects,
1951						  flags));
1952}
1953
1954static void __memcg_slab_post_alloc_hook(struct kmem_cache *s,
1955					 struct obj_cgroup *objcg,
1956					 gfp_t flags, size_t size,
1957					 void **p)
1958{
1959	struct slab *slab;
1960	unsigned long off;
1961	size_t i;
1962
1963	flags &= gfp_allowed_mask;
1964
1965	for (i = 0; i < size; i++) {
1966		if (likely(p[i])) {
1967			slab = virt_to_slab(p[i]);
1968
1969			if (!slab_objcgs(slab) &&
1970			    memcg_alloc_slab_cgroups(slab, s, flags, false)) {
1971				obj_cgroup_uncharge(objcg, obj_full_size(s));
1972				continue;
1973			}
1974
1975			off = obj_to_index(s, slab, p[i]);
1976			obj_cgroup_get(objcg);
1977			slab_objcgs(slab)[off] = objcg;
1978			mod_objcg_state(objcg, slab_pgdat(slab),
1979					cache_vmstat_idx(s), obj_full_size(s));
1980		} else {
1981			obj_cgroup_uncharge(objcg, obj_full_size(s));
1982		}
1983	}
1984}
1985
1986static __fastpath_inline
1987void memcg_slab_post_alloc_hook(struct kmem_cache *s, struct obj_cgroup *objcg,
1988				gfp_t flags, size_t size, void **p)
1989{
1990	if (likely(!memcg_kmem_online() || !objcg))
1991		return;
1992
1993	return __memcg_slab_post_alloc_hook(s, objcg, flags, size, p);
1994}
1995
1996static void __memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab,
1997				   void **p, int objects,
1998				   struct obj_cgroup **objcgs)
1999{
2000	for (int i = 0; i < objects; i++) {
2001		struct obj_cgroup *objcg;
2002		unsigned int off;
2003
2004		off = obj_to_index(s, slab, p[i]);
2005		objcg = objcgs[off];
2006		if (!objcg)
2007			continue;
2008
2009		objcgs[off] = NULL;
2010		obj_cgroup_uncharge(objcg, obj_full_size(s));
2011		mod_objcg_state(objcg, slab_pgdat(slab), cache_vmstat_idx(s),
2012				-obj_full_size(s));
2013		obj_cgroup_put(objcg);
2014	}
2015}
2016
2017static __fastpath_inline
2018void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p,
2019			  int objects)
2020{
2021	struct obj_cgroup **objcgs;
2022
2023	if (!memcg_kmem_online())
2024		return;
2025
2026	objcgs = slab_objcgs(slab);
2027	if (likely(!objcgs))
2028		return;
2029
2030	__memcg_slab_free_hook(s, slab, p, objects, objcgs);
2031}
2032
2033static inline
2034void memcg_slab_alloc_error_hook(struct kmem_cache *s, int objects,
2035			   struct obj_cgroup *objcg)
2036{
2037	if (objcg)
2038		obj_cgroup_uncharge(objcg, objects * obj_full_size(s));
2039}
2040#else /* CONFIG_MEMCG_KMEM */
2041static inline struct mem_cgroup *memcg_from_slab_obj(void *ptr)
2042{
2043	return NULL;
2044}
2045
2046static inline void memcg_free_slab_cgroups(struct slab *slab)
2047{
2048}
2049
2050static inline bool memcg_slab_pre_alloc_hook(struct kmem_cache *s,
2051					     struct list_lru *lru,
2052					     struct obj_cgroup **objcgp,
2053					     size_t objects, gfp_t flags)
2054{
2055	return true;
2056}
2057
2058static inline void memcg_slab_post_alloc_hook(struct kmem_cache *s,
2059					      struct obj_cgroup *objcg,
2060					      gfp_t flags, size_t size,
2061					      void **p)
2062{
2063}
2064
2065static inline void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab,
2066					void **p, int objects)
2067{
2068}
2069
2070static inline
2071void memcg_slab_alloc_error_hook(struct kmem_cache *s, int objects,
2072				 struct obj_cgroup *objcg)
2073{
2074}
2075#endif /* CONFIG_MEMCG_KMEM */
2076
2077/*
2078 * Hooks for other subsystems that check memory allocations. In a typical
2079 * production configuration these hooks all should produce no code at all.
2080 *
2081 * Returns true if freeing of the object can proceed, false if its reuse
2082 * was delayed by KASAN quarantine, or it was returned to KFENCE.
2083 */
2084static __always_inline
2085bool slab_free_hook(struct kmem_cache *s, void *x, bool init)
2086{
2087	kmemleak_free_recursive(x, s->flags);
2088	kmsan_slab_free(s, x);
2089
2090	debug_check_no_locks_freed(x, s->object_size);
2091
2092	if (!(s->flags & SLAB_DEBUG_OBJECTS))
2093		debug_check_no_obj_freed(x, s->object_size);
2094
2095	/* Use KCSAN to help debug racy use-after-free. */
2096	if (!(s->flags & SLAB_TYPESAFE_BY_RCU))
2097		__kcsan_check_access(x, s->object_size,
2098				     KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);
2099
2100	if (kfence_free(x))
2101		return false;
2102
2103	/*
2104	 * As memory initialization might be integrated into KASAN,
2105	 * kasan_slab_free and initialization memset's must be
2106	 * kept together to avoid discrepancies in behavior.
2107	 *
2108	 * The initialization memset's clear the object and the metadata,
2109	 * but don't touch the SLAB redzone.
2110	 */
2111	if (unlikely(init)) {
2112		int rsize;
2113
2114		if (!kasan_has_integrated_init())
2115			memset(kasan_reset_tag(x), 0, s->object_size);
2116		rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad : 0;
2117		memset((char *)kasan_reset_tag(x) + s->inuse, 0,
2118		       s->size - s->inuse - rsize);
2119	}
2120	/* KASAN might put x into memory quarantine, delaying its reuse. */
2121	return !kasan_slab_free(s, x, init);
2122}
2123
2124static inline bool slab_free_freelist_hook(struct kmem_cache *s,
2125					   void **head, void **tail,
2126					   int *cnt)
2127{
 
 
 
 
 
 
 
 
2128
2129	void *object;
2130	void *next = *head;
2131	void *old_tail = *tail;
2132	bool init;
2133
2134	if (is_kfence_address(next)) {
2135		slab_free_hook(s, next, false);
2136		return false;
2137	}
2138
2139	/* Head and tail of the reconstructed freelist */
2140	*head = NULL;
2141	*tail = NULL;
2142
2143	init = slab_want_init_on_free(s);
2144
2145	do {
2146		object = next;
2147		next = get_freepointer(s, object);
2148
2149		/* If object's reuse doesn't have to be delayed */
2150		if (likely(slab_free_hook(s, object, init))) {
2151			/* Move object to the new freelist */
2152			set_freepointer(s, object, *head);
2153			*head = object;
2154			if (!*tail)
2155				*tail = object;
2156		} else {
2157			/*
2158			 * Adjust the reconstructed freelist depth
2159			 * accordingly if object's reuse is delayed.
2160			 */
2161			--(*cnt);
2162		}
2163	} while (object != old_tail);
2164
 
 
 
2165	return *head != NULL;
 
 
 
2166}
2167
2168static void *setup_object(struct kmem_cache *s, void *object)
 
2169{
2170	setup_object_debug(s, object);
2171	object = kasan_init_slab_obj(s, object);
2172	if (unlikely(s->ctor)) {
2173		kasan_unpoison_new_object(s, object);
2174		s->ctor(object);
2175		kasan_poison_new_object(s, object);
2176	}
2177	return object;
2178}
2179
2180/*
2181 * Slab allocation and freeing
2182 */
2183static inline struct slab *alloc_slab_page(gfp_t flags, int node,
2184		struct kmem_cache_order_objects oo)
2185{
2186	struct folio *folio;
2187	struct slab *slab;
2188	unsigned int order = oo_order(oo);
2189
2190	folio = (struct folio *)alloc_pages_node(node, flags, order);
2191	if (!folio)
2192		return NULL;
 
2193
2194	slab = folio_slab(folio);
2195	__folio_set_slab(folio);
2196	/* Make the flag visible before any changes to folio->mapping */
2197	smp_wmb();
2198	if (folio_is_pfmemalloc(folio))
2199		slab_set_pfmemalloc(slab);
2200
2201	return slab;
2202}
2203
2204#ifdef CONFIG_SLAB_FREELIST_RANDOM
2205/* Pre-initialize the random sequence cache */
2206static int init_cache_random_seq(struct kmem_cache *s)
2207{
2208	unsigned int count = oo_objects(s->oo);
2209	int err;
2210
2211	/* Bailout if already initialised */
2212	if (s->random_seq)
2213		return 0;
2214
2215	err = cache_random_seq_create(s, count, GFP_KERNEL);
2216	if (err) {
2217		pr_err("SLUB: Unable to initialize free list for %s\n",
2218			s->name);
2219		return err;
2220	}
2221
2222	/* Transform to an offset on the set of pages */
2223	if (s->random_seq) {
2224		unsigned int i;
2225
2226		for (i = 0; i < count; i++)
2227			s->random_seq[i] *= s->size;
2228	}
2229	return 0;
2230}
2231
2232/* Initialize each random sequence freelist per cache */
2233static void __init init_freelist_randomization(void)
2234{
2235	struct kmem_cache *s;
2236
2237	mutex_lock(&slab_mutex);
2238
2239	list_for_each_entry(s, &slab_caches, list)
2240		init_cache_random_seq(s);
2241
2242	mutex_unlock(&slab_mutex);
2243}
2244
2245/* Get the next entry on the pre-computed freelist randomized */
2246static void *next_freelist_entry(struct kmem_cache *s, struct slab *slab,
2247				unsigned long *pos, void *start,
2248				unsigned long page_limit,
2249				unsigned long freelist_count)
2250{
2251	unsigned int idx;
2252
2253	/*
2254	 * If the target page allocation failed, the number of objects on the
2255	 * page might be smaller than the usual size defined by the cache.
2256	 */
2257	do {
2258		idx = s->random_seq[*pos];
2259		*pos += 1;
2260		if (*pos >= freelist_count)
2261			*pos = 0;
2262	} while (unlikely(idx >= page_limit));
2263
2264	return (char *)start + idx;
2265}
2266
2267/* Shuffle the single linked freelist based on a random pre-computed sequence */
2268static bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
2269{
2270	void *start;
2271	void *cur;
2272	void *next;
2273	unsigned long idx, pos, page_limit, freelist_count;
2274
2275	if (slab->objects < 2 || !s->random_seq)
2276		return false;
2277
2278	freelist_count = oo_objects(s->oo);
2279	pos = get_random_u32_below(freelist_count);
2280
2281	page_limit = slab->objects * s->size;
2282	start = fixup_red_left(s, slab_address(slab));
2283
2284	/* First entry is used as the base of the freelist */
2285	cur = next_freelist_entry(s, slab, &pos, start, page_limit,
2286				freelist_count);
2287	cur = setup_object(s, cur);
2288	slab->freelist = cur;
2289
2290	for (idx = 1; idx < slab->objects; idx++) {
2291		next = next_freelist_entry(s, slab, &pos, start, page_limit,
 
2292			freelist_count);
2293		next = setup_object(s, next);
2294		set_freepointer(s, cur, next);
2295		cur = next;
2296	}
 
2297	set_freepointer(s, cur, NULL);
2298
2299	return true;
2300}
2301#else
2302static inline int init_cache_random_seq(struct kmem_cache *s)
2303{
2304	return 0;
2305}
2306static inline void init_freelist_randomization(void) { }
2307static inline bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
2308{
2309	return false;
2310}
2311#endif /* CONFIG_SLAB_FREELIST_RANDOM */
2312
2313static __always_inline void account_slab(struct slab *slab, int order,
2314					 struct kmem_cache *s, gfp_t gfp)
2315{
2316	if (memcg_kmem_online() && (s->flags & SLAB_ACCOUNT))
2317		memcg_alloc_slab_cgroups(slab, s, gfp, true);
2318
2319	mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s),
2320			    PAGE_SIZE << order);
2321}
2322
2323static __always_inline void unaccount_slab(struct slab *slab, int order,
2324					   struct kmem_cache *s)
2325{
2326	if (memcg_kmem_online())
2327		memcg_free_slab_cgroups(slab);
2328
2329	mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s),
2330			    -(PAGE_SIZE << order));
2331}
2332
2333static struct slab *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
2334{
2335	struct slab *slab;
2336	struct kmem_cache_order_objects oo = s->oo;
2337	gfp_t alloc_gfp;
2338	void *start, *p, *next;
2339	int idx;
2340	bool shuffle;
2341
2342	flags &= gfp_allowed_mask;
2343
 
 
 
2344	flags |= s->allocflags;
2345
2346	/*
2347	 * Let the initial higher-order allocation fail under memory pressure
2348	 * so we fall-back to the minimum order allocation.
2349	 */
2350	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
2351	if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
2352		alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~__GFP_RECLAIM;
2353
2354	slab = alloc_slab_page(alloc_gfp, node, oo);
2355	if (unlikely(!slab)) {
2356		oo = s->min;
2357		alloc_gfp = flags;
2358		/*
2359		 * Allocation may have failed due to fragmentation.
2360		 * Try a lower order alloc if possible
2361		 */
2362		slab = alloc_slab_page(alloc_gfp, node, oo);
2363		if (unlikely(!slab))
2364			return NULL;
2365		stat(s, ORDER_FALLBACK);
2366	}
2367
2368	slab->objects = oo_objects(oo);
2369	slab->inuse = 0;
2370	slab->frozen = 0;
2371
2372	account_slab(slab, oo_order(oo), s, flags);
 
 
 
 
2373
2374	slab->slab_cache = s;
2375
2376	kasan_poison_slab(slab);
 
2377
2378	start = slab_address(slab);
2379
2380	setup_slab_debug(s, slab, start);
2381
2382	shuffle = shuffle_freelist(s, slab);
2383
2384	if (!shuffle) {
2385		start = fixup_red_left(s, start);
2386		start = setup_object(s, start);
2387		slab->freelist = start;
2388		for (idx = 0, p = start; idx < slab->objects - 1; idx++) {
2389			next = p + s->size;
2390			next = setup_object(s, next);
2391			set_freepointer(s, p, next);
2392			p = next;
2393		}
2394		set_freepointer(s, p, NULL);
2395	}
2396
2397	return slab;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2398}
2399
2400static struct slab *new_slab(struct kmem_cache *s, gfp_t flags, int node)
2401{
2402	if (unlikely(flags & GFP_SLAB_BUG_MASK))
2403		flags = kmalloc_fix_flags(flags);
2404
2405	WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
 
 
 
2406
2407	return allocate_slab(s,
2408		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
2409}
2410
2411static void __free_slab(struct kmem_cache *s, struct slab *slab)
2412{
2413	struct folio *folio = slab_folio(slab);
2414	int order = folio_order(folio);
2415	int pages = 1 << order;
2416
2417	__slab_clear_pfmemalloc(slab);
2418	folio->mapping = NULL;
2419	/* Make the mapping reset visible before clearing the flag */
2420	smp_wmb();
2421	__folio_clear_slab(folio);
2422	mm_account_reclaimed_pages(pages);
2423	unaccount_slab(slab, order, s);
2424	__free_pages(&folio->page, order);
2425}
 
 
 
 
2426
2427static void rcu_free_slab(struct rcu_head *h)
2428{
2429	struct slab *slab = container_of(h, struct slab, rcu_head);
2430
2431	__free_slab(slab->slab_cache, slab);
 
 
 
 
2432}
2433
2434static void free_slab(struct kmem_cache *s, struct slab *slab)
 
 
 
2435{
2436	if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) {
2437		void *p;
2438
2439		slab_pad_check(s, slab);
2440		for_each_object(p, s, slab_address(slab), slab->objects)
2441			check_object(s, slab, p, SLUB_RED_INACTIVE);
2442	}
2443
2444	if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU))
2445		call_rcu(&slab->rcu_head, rcu_free_slab);
2446	else
2447		__free_slab(s, slab);
2448}
2449
2450static void discard_slab(struct kmem_cache *s, struct slab *slab)
2451{
2452	dec_slabs_node(s, slab_nid(slab), slab->objects);
2453	free_slab(s, slab);
2454}
 
 
 
2455
2456/*
2457 * SLUB reuses PG_workingset bit to keep track of whether it's on
2458 * the per-node partial list.
2459 */
2460static inline bool slab_test_node_partial(const struct slab *slab)
2461{
2462	return folio_test_workingset((struct folio *)slab_folio(slab));
2463}
2464
2465static inline void slab_set_node_partial(struct slab *slab)
2466{
2467	set_bit(PG_workingset, folio_flags(slab_folio(slab), 0));
2468}
2469
2470static inline void slab_clear_node_partial(struct slab *slab)
2471{
2472	clear_bit(PG_workingset, folio_flags(slab_folio(slab), 0));
 
2473}
2474
2475/*
2476 * Management of partially allocated slabs.
2477 */
2478static inline void
2479__add_partial(struct kmem_cache_node *n, struct slab *slab, int tail)
2480{
2481	n->nr_partial++;
2482	if (tail == DEACTIVATE_TO_TAIL)
2483		list_add_tail(&slab->slab_list, &n->partial);
2484	else
2485		list_add(&slab->slab_list, &n->partial);
2486	slab_set_node_partial(slab);
2487}
2488
2489static inline void add_partial(struct kmem_cache_node *n,
2490				struct slab *slab, int tail)
2491{
2492	lockdep_assert_held(&n->list_lock);
2493	__add_partial(n, slab, tail);
2494}
2495
2496static inline void remove_partial(struct kmem_cache_node *n,
2497					struct slab *slab)
2498{
2499	lockdep_assert_held(&n->list_lock);
2500	list_del(&slab->slab_list);
2501	slab_clear_node_partial(slab);
2502	n->nr_partial--;
2503}
2504
2505/*
2506 * Called only for kmem_cache_debug() caches instead of remove_partial(), with a
2507 * slab from the n->partial list. Remove only a single object from the slab, do
2508 * the alloc_debug_processing() checks and leave the slab on the list, or move
2509 * it to full list if it was the last free object.
2510 */
2511static void *alloc_single_from_partial(struct kmem_cache *s,
2512		struct kmem_cache_node *n, struct slab *slab, int orig_size)
 
2513{
2514	void *object;
 
 
2515
2516	lockdep_assert_held(&n->list_lock);
2517
2518	object = slab->freelist;
2519	slab->freelist = get_freepointer(s, object);
2520	slab->inuse++;
2521
2522	if (!alloc_debug_processing(s, slab, object, orig_size)) {
2523		remove_partial(n, slab);
2524		return NULL;
2525	}
2526
2527	if (slab->inuse == slab->objects) {
2528		remove_partial(n, slab);
2529		add_full(s, n, slab);
 
 
2530	}
2531
2532	return object;
2533}
2534
2535/*
2536 * Called only for kmem_cache_debug() caches to allocate from a freshly
2537 * allocated slab. Allocate a single object instead of whole freelist
2538 * and put the slab to the partial (or full) list.
2539 */
2540static void *alloc_single_from_new_slab(struct kmem_cache *s,
2541					struct slab *slab, int orig_size)
2542{
2543	int nid = slab_nid(slab);
2544	struct kmem_cache_node *n = get_node(s, nid);
2545	unsigned long flags;
2546	void *object;
2547
2548
2549	object = slab->freelist;
2550	slab->freelist = get_freepointer(s, object);
2551	slab->inuse = 1;
2552
2553	if (!alloc_debug_processing(s, slab, object, orig_size))
2554		/*
2555		 * It's not really expected that this would fail on a
2556		 * freshly allocated slab, but a concurrent memory
2557		 * corruption in theory could cause that.
2558		 */
2559		return NULL;
2560
2561	spin_lock_irqsave(&n->list_lock, flags);
2562
2563	if (slab->inuse == slab->objects)
2564		add_full(s, n, slab);
2565	else
2566		add_partial(n, slab, DEACTIVATE_TO_HEAD);
2567
2568	inc_slabs_node(s, nid, slab->objects);
2569	spin_unlock_irqrestore(&n->list_lock, flags);
2570
2571	return object;
2572}
2573
2574#ifdef CONFIG_SLUB_CPU_PARTIAL
2575static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain);
2576#else
2577static inline void put_cpu_partial(struct kmem_cache *s, struct slab *slab,
2578				   int drain) { }
2579#endif
2580static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags);
2581
2582/*
2583 * Try to allocate a partial slab from a specific node.
2584 */
2585static struct slab *get_partial_node(struct kmem_cache *s,
2586				     struct kmem_cache_node *n,
2587				     struct partial_context *pc)
2588{
2589	struct slab *slab, *slab2, *partial = NULL;
2590	unsigned long flags;
2591	unsigned int partial_slabs = 0;
 
2592
2593	/*
2594	 * Racy check. If we mistakenly see no partial slabs then we
2595	 * just allocate an empty slab. If we mistakenly try to get a
2596	 * partial slab and there is none available then get_partial()
2597	 * will return NULL.
2598	 */
2599	if (!n || !n->nr_partial)
2600		return NULL;
2601
2602	spin_lock_irqsave(&n->list_lock, flags);
2603	list_for_each_entry_safe(slab, slab2, &n->partial, slab_list) {
2604		if (!pfmemalloc_match(slab, pc->flags))
2605			continue;
2606
2607		if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) {
2608			void *object = alloc_single_from_partial(s, n, slab,
2609							pc->orig_size);
2610			if (object) {
2611				partial = slab;
2612				pc->object = object;
2613				break;
2614			}
2615			continue;
2616		}
2617
2618		remove_partial(n, slab);
 
 
2619
2620		if (!partial) {
2621			partial = slab;
 
2622			stat(s, ALLOC_FROM_PARTIAL);
 
2623		} else {
2624			put_cpu_partial(s, slab, 0);
2625			stat(s, CPU_PARTIAL_NODE);
2626			partial_slabs++;
2627		}
2628#ifdef CONFIG_SLUB_CPU_PARTIAL
2629		if (!kmem_cache_has_cpu_partial(s)
2630			|| partial_slabs > s->cpu_partial_slabs / 2)
2631			break;
2632#else
2633		break;
2634#endif
2635
2636	}
2637	spin_unlock_irqrestore(&n->list_lock, flags);
2638	return partial;
2639}
2640
2641/*
2642 * Get a slab from somewhere. Search in increasing NUMA distances.
2643 */
2644static struct slab *get_any_partial(struct kmem_cache *s,
2645				    struct partial_context *pc)
2646{
2647#ifdef CONFIG_NUMA
2648	struct zonelist *zonelist;
2649	struct zoneref *z;
2650	struct zone *zone;
2651	enum zone_type highest_zoneidx = gfp_zone(pc->flags);
2652	struct slab *slab;
2653	unsigned int cpuset_mems_cookie;
2654
2655	/*
2656	 * The defrag ratio allows a configuration of the tradeoffs between
2657	 * inter node defragmentation and node local allocations. A lower
2658	 * defrag_ratio increases the tendency to do local allocations
2659	 * instead of attempting to obtain partial slabs from other nodes.
2660	 *
2661	 * If the defrag_ratio is set to 0 then kmalloc() always
2662	 * returns node local objects. If the ratio is higher then kmalloc()
2663	 * may return off node objects because partial slabs are obtained
2664	 * from other nodes and filled up.
2665	 *
2666	 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
2667	 * (which makes defrag_ratio = 1000) then every (well almost)
2668	 * allocation will first attempt to defrag slab caches on other nodes.
2669	 * This means scanning over all nodes to look for partial slabs which
2670	 * may be expensive if we do it every time we are trying to find a slab
2671	 * with available objects.
2672	 */
2673	if (!s->remote_node_defrag_ratio ||
2674			get_cycles() % 1024 > s->remote_node_defrag_ratio)
2675		return NULL;
2676
2677	do {
2678		cpuset_mems_cookie = read_mems_allowed_begin();
2679		zonelist = node_zonelist(mempolicy_slab_node(), pc->flags);
2680		for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
2681			struct kmem_cache_node *n;
2682
2683			n = get_node(s, zone_to_nid(zone));
2684
2685			if (n && cpuset_zone_allowed(zone, pc->flags) &&
2686					n->nr_partial > s->min_partial) {
2687				slab = get_partial_node(s, n, pc);
2688				if (slab) {
2689					/*
2690					 * Don't check read_mems_allowed_retry()
2691					 * here - if mems_allowed was updated in
2692					 * parallel, that was a harmless race
2693					 * between allocation and the cpuset
2694					 * update
2695					 */
2696					return slab;
2697				}
2698			}
2699		}
2700	} while (read_mems_allowed_retry(cpuset_mems_cookie));
2701#endif	/* CONFIG_NUMA */
2702	return NULL;
2703}
2704
2705/*
2706 * Get a partial slab, lock it and return it.
2707 */
2708static struct slab *get_partial(struct kmem_cache *s, int node,
2709				struct partial_context *pc)
2710{
2711	struct slab *slab;
2712	int searchnode = node;
2713
2714	if (node == NUMA_NO_NODE)
2715		searchnode = numa_mem_id();
 
 
2716
2717	slab = get_partial_node(s, get_node(s, searchnode), pc);
2718	if (slab || node != NUMA_NO_NODE)
2719		return slab;
2720
2721	return get_any_partial(s, pc);
2722}
2723
2724#ifndef CONFIG_SLUB_TINY
2725
2726#ifdef CONFIG_PREEMPTION
2727/*
2728 * Calculate the next globally unique transaction for disambiguation
2729 * during cmpxchg. The transactions start with the cpu number and are then
2730 * incremented by CONFIG_NR_CPUS.
2731 */
2732#define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
2733#else
2734/*
2735 * No preemption supported therefore also no need to check for
2736 * different cpus.
2737 */
2738#define TID_STEP 1
2739#endif /* CONFIG_PREEMPTION */
2740
2741static inline unsigned long next_tid(unsigned long tid)
2742{
2743	return tid + TID_STEP;
2744}
2745
2746#ifdef SLUB_DEBUG_CMPXCHG
2747static inline unsigned int tid_to_cpu(unsigned long tid)
2748{
2749	return tid % TID_STEP;
2750}
2751
2752static inline unsigned long tid_to_event(unsigned long tid)
2753{
2754	return tid / TID_STEP;
2755}
2756#endif
2757
2758static inline unsigned int init_tid(int cpu)
2759{
2760	return cpu;
2761}
2762
2763static inline void note_cmpxchg_failure(const char *n,
2764		const struct kmem_cache *s, unsigned long tid)
2765{
2766#ifdef SLUB_DEBUG_CMPXCHG
2767	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
2768
2769	pr_info("%s %s: cmpxchg redo ", n, s->name);
2770
2771#ifdef CONFIG_PREEMPTION
2772	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
2773		pr_warn("due to cpu change %d -> %d\n",
2774			tid_to_cpu(tid), tid_to_cpu(actual_tid));
2775	else
2776#endif
2777	if (tid_to_event(tid) != tid_to_event(actual_tid))
2778		pr_warn("due to cpu running other code. Event %ld->%ld\n",
2779			tid_to_event(tid), tid_to_event(actual_tid));
2780	else
2781		pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
2782			actual_tid, tid, next_tid(tid));
2783#endif
2784	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
2785}
2786
2787static void init_kmem_cache_cpus(struct kmem_cache *s)
2788{
2789	int cpu;
2790	struct kmem_cache_cpu *c;
2791
2792	for_each_possible_cpu(cpu) {
2793		c = per_cpu_ptr(s->cpu_slab, cpu);
2794		local_lock_init(&c->lock);
2795		c->tid = init_tid(cpu);
2796	}
2797}
2798
2799/*
2800 * Finishes removing the cpu slab. Merges cpu's freelist with slab's freelist,
2801 * unfreezes the slabs and puts it on the proper list.
2802 * Assumes the slab has been already safely taken away from kmem_cache_cpu
2803 * by the caller.
2804 */
2805static void deactivate_slab(struct kmem_cache *s, struct slab *slab,
2806			    void *freelist)
2807{
2808	struct kmem_cache_node *n = get_node(s, slab_nid(slab));
2809	int free_delta = 0;
2810	void *nextfree, *freelist_iter, *freelist_tail;
 
 
2811	int tail = DEACTIVATE_TO_HEAD;
2812	unsigned long flags = 0;
2813	struct slab new;
2814	struct slab old;
2815
2816	if (slab->freelist) {
2817		stat(s, DEACTIVATE_REMOTE_FREES);
2818		tail = DEACTIVATE_TO_TAIL;
2819	}
2820
2821	/*
2822	 * Stage one: Count the objects on cpu's freelist as free_delta and
2823	 * remember the last object in freelist_tail for later splicing.
 
 
 
 
2824	 */
2825	freelist_tail = NULL;
2826	freelist_iter = freelist;
2827	while (freelist_iter) {
2828		nextfree = get_freepointer(s, freelist_iter);
2829
2830		/*
2831		 * If 'nextfree' is invalid, it is possible that the object at
2832		 * 'freelist_iter' is already corrupted.  So isolate all objects
2833		 * starting at 'freelist_iter' by skipping them.
2834		 */
2835		if (freelist_corrupted(s, slab, &freelist_iter, nextfree))
2836			break;
2837
2838		freelist_tail = freelist_iter;
2839		free_delta++;
 
 
2840
2841		freelist_iter = nextfree;
2842	}
2843
2844	/*
2845	 * Stage two: Unfreeze the slab while splicing the per-cpu
2846	 * freelist to the head of slab's freelist.
 
 
 
 
 
 
 
 
 
 
2847	 */
2848	do {
2849		old.freelist = READ_ONCE(slab->freelist);
2850		old.counters = READ_ONCE(slab->counters);
2851		VM_BUG_ON(!old.frozen);
2852
2853		/* Determine target state of the slab */
2854		new.counters = old.counters;
2855		new.frozen = 0;
2856		if (freelist_tail) {
2857			new.inuse -= free_delta;
2858			set_freepointer(s, freelist_tail, old.freelist);
2859			new.freelist = freelist;
2860		} else {
2861			new.freelist = old.freelist;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2862		}
2863	} while (!slab_update_freelist(s, slab,
2864		old.freelist, old.counters,
2865		new.freelist, new.counters,
2866		"unfreezing slab"));
2867
2868	/*
2869	 * Stage three: Manipulate the slab list based on the updated state.
2870	 */
2871	if (!new.inuse && n->nr_partial >= s->min_partial) {
2872		stat(s, DEACTIVATE_EMPTY);
2873		discard_slab(s, slab);
2874		stat(s, FREE_SLAB);
2875	} else if (new.freelist) {
2876		spin_lock_irqsave(&n->list_lock, flags);
2877		add_partial(n, slab, tail);
2878		spin_unlock_irqrestore(&n->list_lock, flags);
2879		stat(s, tail);
2880	} else {
2881		stat(s, DEACTIVATE_FULL);
 
 
 
 
 
 
 
 
 
2882	}
2883}
2884
2885#ifdef CONFIG_SLUB_CPU_PARTIAL
2886static void __put_partials(struct kmem_cache *s, struct slab *partial_slab)
2887{
2888	struct kmem_cache_node *n = NULL, *n2 = NULL;
2889	struct slab *slab, *slab_to_discard = NULL;
2890	unsigned long flags = 0;
 
 
 
 
 
2891
2892	while (partial_slab) {
2893		slab = partial_slab;
2894		partial_slab = slab->next;
2895
2896		n2 = get_node(s, slab_nid(slab));
2897		if (n != n2) {
2898			if (n)
2899				spin_unlock_irqrestore(&n->list_lock, flags);
2900
2901			n = n2;
2902			spin_lock_irqsave(&n->list_lock, flags);
2903		}
2904
2905		if (unlikely(!slab->inuse && n->nr_partial >= s->min_partial)) {
2906			slab->next = slab_to_discard;
2907			slab_to_discard = slab;
2908		} else {
2909			add_partial(n, slab, DEACTIVATE_TO_TAIL);
2910			stat(s, FREE_ADD_PARTIAL);
2911		}
2912	}
2913
2914	if (n)
2915		spin_unlock_irqrestore(&n->list_lock, flags);
 
 
 
 
2916
2917	while (slab_to_discard) {
2918		slab = slab_to_discard;
2919		slab_to_discard = slab_to_discard->next;
2920
 
2921		stat(s, DEACTIVATE_EMPTY);
2922		discard_slab(s, slab);
2923		stat(s, FREE_SLAB);
2924	}
 
 
 
2925}
2926
2927/*
2928 * Put all the cpu partial slabs to the node partial list.
 
 
 
 
2929 */
2930static void put_partials(struct kmem_cache *s)
 
2931{
2932	struct slab *partial_slab;
2933	unsigned long flags;
 
2934
2935	local_lock_irqsave(&s->cpu_slab->lock, flags);
2936	partial_slab = this_cpu_read(s->cpu_slab->partial);
2937	this_cpu_write(s->cpu_slab->partial, NULL);
2938	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2939
2940	if (partial_slab)
2941		__put_partials(s, partial_slab);
2942}
2943
2944static void put_partials_cpu(struct kmem_cache *s,
2945			     struct kmem_cache_cpu *c)
2946{
2947	struct slab *partial_slab;
2948
2949	partial_slab = slub_percpu_partial(c);
2950	c->partial = NULL;
 
2951
2952	if (partial_slab)
2953		__put_partials(s, partial_slab);
2954}
2955
2956/*
2957 * Put a slab into a partial slab slot if available.
2958 *
2959 * If we did not find a slot then simply move all the partials to the
2960 * per node partial list.
2961 */
2962static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain)
2963{
2964	struct slab *oldslab;
2965	struct slab *slab_to_put = NULL;
2966	unsigned long flags;
2967	int slabs = 0;
2968
2969	local_lock_irqsave(&s->cpu_slab->lock, flags);
 
2970
2971	oldslab = this_cpu_read(s->cpu_slab->partial);
2972
2973	if (oldslab) {
2974		if (drain && oldslab->slabs >= s->cpu_partial_slabs) {
2975			/*
2976			 * Partial array is full. Move the existing set to the
2977			 * per node partial list. Postpone the actual unfreezing
2978			 * outside of the critical section.
2979			 */
2980			slab_to_put = oldslab;
2981			oldslab = NULL;
2982		} else {
2983			slabs = oldslab->slabs;
 
2984		}
2985	}
2986
2987	slabs++;
 
2988
2989	slab->slabs = slabs;
2990	slab->next = oldslab;
 
2991
2992	this_cpu_write(s->cpu_slab->partial, slab);
2993
2994	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2995
2996	if (slab_to_put) {
2997		__put_partials(s, slab_to_put);
2998		stat(s, CPU_PARTIAL_DRAIN);
2999	}
 
3000}
3001
3002#else	/* CONFIG_SLUB_CPU_PARTIAL */
3003
3004static inline void put_partials(struct kmem_cache *s) { }
3005static inline void put_partials_cpu(struct kmem_cache *s,
3006				    struct kmem_cache_cpu *c) { }
3007
3008#endif	/* CONFIG_SLUB_CPU_PARTIAL */
3009
3010static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
3011{
3012	unsigned long flags;
3013	struct slab *slab;
3014	void *freelist;
 
3015
3016	local_lock_irqsave(&s->cpu_slab->lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3017
3018	slab = c->slab;
3019	freelist = c->freelist;
3020
3021	c->slab = NULL;
3022	c->freelist = NULL;
3023	c->tid = next_tid(c->tid);
 
 
 
 
 
3024
3025	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3026
3027	if (slab) {
3028		deactivate_slab(s, slab, freelist);
3029		stat(s, CPUSLAB_FLUSH);
3030	}
 
 
3031}
3032
3033static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
3034{
3035	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
3036	void *freelist = c->freelist;
3037	struct slab *slab = c->slab;
3038
3039	c->slab = NULL;
3040	c->freelist = NULL;
3041	c->tid = next_tid(c->tid);
3042
3043	if (slab) {
3044		deactivate_slab(s, slab, freelist);
3045		stat(s, CPUSLAB_FLUSH);
3046	}
3047
3048	put_partials_cpu(s, c);
3049}
3050
3051struct slub_flush_work {
3052	struct work_struct work;
3053	struct kmem_cache *s;
3054	bool skip;
3055};
3056
3057/*
3058 * Flush cpu slab.
3059 *
3060 * Called from CPU work handler with migration disabled.
3061 */
3062static void flush_cpu_slab(struct work_struct *w)
3063{
3064	struct kmem_cache *s;
3065	struct kmem_cache_cpu *c;
3066	struct slub_flush_work *sfw;
3067
3068	sfw = container_of(w, struct slub_flush_work, work);
 
 
3069
3070	s = sfw->s;
3071	c = this_cpu_ptr(s->cpu_slab);
3072
3073	if (c->slab)
3074		flush_slab(s, c);
3075
3076	put_partials(s);
3077}
3078
3079static bool has_cpu_slab(int cpu, struct kmem_cache *s)
3080{
3081	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
3082
3083	return c->slab || slub_percpu_partial(c);
3084}
3085
3086static DEFINE_MUTEX(flush_lock);
3087static DEFINE_PER_CPU(struct slub_flush_work, slub_flush);
3088
3089static void flush_all_cpus_locked(struct kmem_cache *s)
3090{
3091	struct slub_flush_work *sfw;
3092	unsigned int cpu;
3093
3094	lockdep_assert_cpus_held();
3095	mutex_lock(&flush_lock);
3096
3097	for_each_online_cpu(cpu) {
3098		sfw = &per_cpu(slub_flush, cpu);
3099		if (!has_cpu_slab(cpu, s)) {
3100			sfw->skip = true;
3101			continue;
3102		}
3103		INIT_WORK(&sfw->work, flush_cpu_slab);
3104		sfw->skip = false;
3105		sfw->s = s;
3106		queue_work_on(cpu, flushwq, &sfw->work);
3107	}
3108
3109	for_each_online_cpu(cpu) {
3110		sfw = &per_cpu(slub_flush, cpu);
3111		if (sfw->skip)
3112			continue;
3113		flush_work(&sfw->work);
3114	}
3115
3116	mutex_unlock(&flush_lock);
3117}
3118
3119static void flush_all(struct kmem_cache *s)
3120{
3121	cpus_read_lock();
3122	flush_all_cpus_locked(s);
3123	cpus_read_unlock();
3124}
3125
3126/*
3127 * Use the cpu notifier to insure that the cpu slabs are flushed when
3128 * necessary.
3129 */
3130static int slub_cpu_dead(unsigned int cpu)
3131{
3132	struct kmem_cache *s;
 
3133
3134	mutex_lock(&slab_mutex);
3135	list_for_each_entry(s, &slab_caches, list)
 
3136		__flush_cpu_slab(s, cpu);
 
 
3137	mutex_unlock(&slab_mutex);
3138	return 0;
3139}
3140
3141#else /* CONFIG_SLUB_TINY */
3142static inline void flush_all_cpus_locked(struct kmem_cache *s) { }
3143static inline void flush_all(struct kmem_cache *s) { }
3144static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) { }
3145static inline int slub_cpu_dead(unsigned int cpu) { return 0; }
3146#endif /* CONFIG_SLUB_TINY */
3147
3148/*
3149 * Check if the objects in a per cpu structure fit numa
3150 * locality expectations.
3151 */
3152static inline int node_match(struct slab *slab, int node)
3153{
3154#ifdef CONFIG_NUMA
3155	if (node != NUMA_NO_NODE && slab_nid(slab) != node)
3156		return 0;
3157#endif
3158	return 1;
3159}
3160
3161#ifdef CONFIG_SLUB_DEBUG
3162static int count_free(struct slab *slab)
3163{
3164	return slab->objects - slab->inuse;
3165}
3166
3167static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
3168{
3169	return atomic_long_read(&n->total_objects);
3170}
3171
3172/* Supports checking bulk free of a constructed freelist */
3173static inline bool free_debug_processing(struct kmem_cache *s,
3174	struct slab *slab, void *head, void *tail, int *bulk_cnt,
3175	unsigned long addr, depot_stack_handle_t handle)
3176{
3177	bool checks_ok = false;
3178	void *object = head;
3179	int cnt = 0;
3180
3181	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
3182		if (!check_slab(s, slab))
3183			goto out;
3184	}
3185
3186	if (slab->inuse < *bulk_cnt) {
3187		slab_err(s, slab, "Slab has %d allocated objects but %d are to be freed\n",
3188			 slab->inuse, *bulk_cnt);
3189		goto out;
3190	}
3191
3192next_object:
3193
3194	if (++cnt > *bulk_cnt)
3195		goto out_cnt;
3196
3197	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
3198		if (!free_consistency_checks(s, slab, object, addr))
3199			goto out;
3200	}
3201
3202	if (s->flags & SLAB_STORE_USER)
3203		set_track_update(s, object, TRACK_FREE, addr, handle);
3204	trace(s, slab, object, 0);
3205	/* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
3206	init_object(s, object, SLUB_RED_INACTIVE);
3207
3208	/* Reached end of constructed freelist yet? */
3209	if (object != tail) {
3210		object = get_freepointer(s, object);
3211		goto next_object;
3212	}
3213	checks_ok = true;
3214
3215out_cnt:
3216	if (cnt != *bulk_cnt) {
3217		slab_err(s, slab, "Bulk free expected %d objects but found %d\n",
3218			 *bulk_cnt, cnt);
3219		*bulk_cnt = cnt;
3220	}
3221
3222out:
3223
3224	if (!checks_ok)
3225		slab_fix(s, "Object at 0x%p not freed", object);
3226
3227	return checks_ok;
3228}
3229#endif /* CONFIG_SLUB_DEBUG */
3230
3231#if defined(CONFIG_SLUB_DEBUG) || defined(SLAB_SUPPORTS_SYSFS)
3232static unsigned long count_partial(struct kmem_cache_node *n,
3233					int (*get_count)(struct slab *))
3234{
3235	unsigned long flags;
3236	unsigned long x = 0;
3237	struct slab *slab;
3238
3239	spin_lock_irqsave(&n->list_lock, flags);
3240	list_for_each_entry(slab, &n->partial, slab_list)
3241		x += get_count(slab);
3242	spin_unlock_irqrestore(&n->list_lock, flags);
3243	return x;
3244}
3245#endif /* CONFIG_SLUB_DEBUG || SLAB_SUPPORTS_SYSFS */
3246
3247#ifdef CONFIG_SLUB_DEBUG
3248static noinline void
3249slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
3250{
 
3251	static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
3252				      DEFAULT_RATELIMIT_BURST);
3253	int node;
3254	struct kmem_cache_node *n;
3255
3256	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
3257		return;
3258
3259	pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
3260		nid, gfpflags, &gfpflags);
3261	pr_warn("  cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
3262		s->name, s->object_size, s->size, oo_order(s->oo),
3263		oo_order(s->min));
3264
3265	if (oo_order(s->min) > get_order(s->object_size))
3266		pr_warn("  %s debugging increased min order, use slub_debug=O to disable.\n",
3267			s->name);
3268
3269	for_each_kmem_cache_node(s, node, n) {
3270		unsigned long nr_slabs;
3271		unsigned long nr_objs;
3272		unsigned long nr_free;
3273
3274		nr_free  = count_partial(n, count_free);
3275		nr_slabs = node_nr_slabs(n);
3276		nr_objs  = node_nr_objs(n);
3277
3278		pr_warn("  node %d: slabs: %ld, objs: %ld, free: %ld\n",
3279			node, nr_slabs, nr_objs, nr_free);
3280	}
 
3281}
3282#else /* CONFIG_SLUB_DEBUG */
3283static inline void
3284slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) { }
3285#endif
3286
3287static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags)
 
3288{
3289	if (unlikely(slab_test_pfmemalloc(slab)))
3290		return gfp_pfmemalloc_allowed(gfpflags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3291
3292	return true;
3293}
3294
3295#ifndef CONFIG_SLUB_TINY
3296static inline bool
3297__update_cpu_freelist_fast(struct kmem_cache *s,
3298			   void *freelist_old, void *freelist_new,
3299			   unsigned long tid)
3300{
3301	freelist_aba_t old = { .freelist = freelist_old, .counter = tid };
3302	freelist_aba_t new = { .freelist = freelist_new, .counter = next_tid(tid) };
3303
3304	return this_cpu_try_cmpxchg_freelist(s->cpu_slab->freelist_tid.full,
3305					     &old.full, new.full);
3306}
3307
3308/*
3309 * Check the slab->freelist and either transfer the freelist to the
3310 * per cpu freelist or deactivate the slab.
3311 *
3312 * The slab is still frozen if the return value is not NULL.
3313 *
3314 * If this function returns NULL then the slab has been unfrozen.
 
 
3315 */
3316static inline void *get_freelist(struct kmem_cache *s, struct slab *slab)
3317{
3318	struct slab new;
3319	unsigned long counters;
3320	void *freelist;
3321
3322	lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
3323
3324	do {
3325		freelist = slab->freelist;
3326		counters = slab->counters;
3327
3328		new.counters = counters;
3329		VM_BUG_ON(!new.frozen);
3330
3331		new.inuse = slab->objects;
3332		new.frozen = freelist != NULL;
3333
3334	} while (!__slab_update_freelist(s, slab,
3335		freelist, counters,
3336		NULL, new.counters,
3337		"get_freelist"));
3338
3339	return freelist;
3340}
3341
3342/*
3343 * Freeze the partial slab and return the pointer to the freelist.
3344 */
3345static inline void *freeze_slab(struct kmem_cache *s, struct slab *slab)
3346{
3347	struct slab new;
3348	unsigned long counters;
3349	void *freelist;
3350
3351	do {
3352		freelist = slab->freelist;
3353		counters = slab->counters;
3354
3355		new.counters = counters;
3356		VM_BUG_ON(new.frozen);
3357
3358		new.inuse = slab->objects;
3359		new.frozen = 1;
3360
3361	} while (!slab_update_freelist(s, slab,
3362		freelist, counters,
3363		NULL, new.counters,
3364		"freeze_slab"));
3365
3366	return freelist;
3367}
3368
3369/*
3370 * Slow path. The lockless freelist is empty or we need to perform
3371 * debugging duties.
3372 *
3373 * Processing is still very fast if new objects have been freed to the
3374 * regular freelist. In that case we simply take over the regular freelist
3375 * as the lockless freelist and zap the regular freelist.
3376 *
3377 * If that is not working then we fall back to the partial lists. We take the
3378 * first element of the freelist as the object to allocate now and move the
3379 * rest of the freelist to the lockless freelist.
3380 *
3381 * And if we were unable to get a new slab from the partial slab lists then
3382 * we need to allocate a new slab. This is the slowest path since it involves
3383 * a call to the page allocator and the setup of a new slab.
3384 *
3385 * Version of __slab_alloc to use when we know that preemption is
3386 * already disabled (which is the case for bulk allocation).
3387 */
3388static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
3389			  unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size)
3390{
3391	void *freelist;
3392	struct slab *slab;
3393	unsigned long flags;
3394	struct partial_context pc;
3395
3396	stat(s, ALLOC_SLOWPATH);
 
 
 
3397
3398reread_slab:
 
3399
3400	slab = READ_ONCE(c->slab);
3401	if (!slab) {
3402		/*
3403		 * if the node is not online or has no normal memory, just
3404		 * ignore the node constraint
3405		 */
3406		if (unlikely(node != NUMA_NO_NODE &&
3407			     !node_isset(node, slab_nodes)))
3408			node = NUMA_NO_NODE;
3409		goto new_slab;
3410	}
3411
3412	if (unlikely(!node_match(slab, node))) {
3413		/*
3414		 * same as above but node_match() being false already
3415		 * implies node != NUMA_NO_NODE
3416		 */
3417		if (!node_isset(node, slab_nodes)) {
3418			node = NUMA_NO_NODE;
3419		} else {
3420			stat(s, ALLOC_NODE_MISMATCH);
3421			goto deactivate_slab;
 
3422		}
3423	}
3424
3425	/*
3426	 * By rights, we should be searching for a slab page that was
3427	 * PFMEMALLOC but right now, we are losing the pfmemalloc
3428	 * information when the page leaves the per-cpu allocator
3429	 */
3430	if (unlikely(!pfmemalloc_match(slab, gfpflags)))
3431		goto deactivate_slab;
 
 
3432
3433	/* must check again c->slab in case we got preempted and it changed */
3434	local_lock_irqsave(&s->cpu_slab->lock, flags);
3435	if (unlikely(slab != c->slab)) {
3436		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3437		goto reread_slab;
3438	}
3439	freelist = c->freelist;
3440	if (freelist)
3441		goto load_freelist;
3442
3443	freelist = get_freelist(s, slab);
3444
3445	if (!freelist) {
3446		c->slab = NULL;
3447		c->tid = next_tid(c->tid);
3448		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3449		stat(s, DEACTIVATE_BYPASS);
3450		goto new_slab;
3451	}
3452
3453	stat(s, ALLOC_REFILL);
3454
3455load_freelist:
3456
3457	lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
3458
3459	/*
3460	 * freelist is pointing to the list of objects to be used.
3461	 * slab is pointing to the slab from which the objects are obtained.
3462	 * That slab must be frozen for per cpu allocations to work.
3463	 */
3464	VM_BUG_ON(!c->slab->frozen);
3465	c->freelist = get_freepointer(s, freelist);
3466	c->tid = next_tid(c->tid);
3467	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3468	return freelist;
3469
3470deactivate_slab:
3471
3472	local_lock_irqsave(&s->cpu_slab->lock, flags);
3473	if (slab != c->slab) {
3474		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3475		goto reread_slab;
3476	}
3477	freelist = c->freelist;
3478	c->slab = NULL;
3479	c->freelist = NULL;
3480	c->tid = next_tid(c->tid);
3481	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3482	deactivate_slab(s, slab, freelist);
3483
3484new_slab:
3485
3486#ifdef CONFIG_SLUB_CPU_PARTIAL
3487	while (slub_percpu_partial(c)) {
3488		local_lock_irqsave(&s->cpu_slab->lock, flags);
3489		if (unlikely(c->slab)) {
3490			local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3491			goto reread_slab;
3492		}
3493		if (unlikely(!slub_percpu_partial(c))) {
3494			local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3495			/* we were preempted and partial list got empty */
3496			goto new_objects;
3497		}
3498
3499		slab = slub_percpu_partial(c);
3500		slub_set_percpu_partial(c, slab);
3501		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3502		stat(s, CPU_PARTIAL_ALLOC);
3503
3504		if (unlikely(!node_match(slab, node) ||
3505			     !pfmemalloc_match(slab, gfpflags))) {
3506			slab->next = NULL;
3507			__put_partials(s, slab);
3508			continue;
3509		}
3510
3511		freelist = freeze_slab(s, slab);
3512		goto retry_load_slab;
3513	}
3514#endif
3515
3516new_objects:
3517
3518	pc.flags = gfpflags;
3519	pc.orig_size = orig_size;
3520	slab = get_partial(s, node, &pc);
3521	if (slab) {
3522		if (kmem_cache_debug(s)) {
3523			freelist = pc.object;
3524			/*
3525			 * For debug caches here we had to go through
3526			 * alloc_single_from_partial() so just store the
3527			 * tracking info and return the object.
3528			 */
3529			if (s->flags & SLAB_STORE_USER)
3530				set_track(s, freelist, TRACK_ALLOC, addr);
3531
3532			return freelist;
3533		}
3534
3535		freelist = freeze_slab(s, slab);
3536		goto retry_load_slab;
3537	}
3538
3539	slub_put_cpu_ptr(s->cpu_slab);
3540	slab = new_slab(s, gfpflags, node);
3541	c = slub_get_cpu_ptr(s->cpu_slab);
3542
3543	if (unlikely(!slab)) {
3544		slab_out_of_memory(s, gfpflags, node);
3545		return NULL;
3546	}
3547
3548	stat(s, ALLOC_SLAB);
 
 
3549
3550	if (kmem_cache_debug(s)) {
3551		freelist = alloc_single_from_new_slab(s, slab, orig_size);
 
 
3552
3553		if (unlikely(!freelist))
3554			goto new_objects;
3555
3556		if (s->flags & SLAB_STORE_USER)
3557			set_track(s, freelist, TRACK_ALLOC, addr);
3558
3559		return freelist;
3560	}
3561
3562	/*
3563	 * No other reference to the slab yet so we can
3564	 * muck around with it freely without cmpxchg
3565	 */
3566	freelist = slab->freelist;
3567	slab->freelist = NULL;
3568	slab->inuse = slab->objects;
3569	slab->frozen = 1;
3570
3571	inc_slabs_node(s, slab_nid(slab), slab->objects);
3572
3573	if (unlikely(!pfmemalloc_match(slab, gfpflags))) {
3574		/*
3575		 * For !pfmemalloc_match() case we don't load freelist so that
3576		 * we don't make further mismatched allocations easier.
3577		 */
3578		deactivate_slab(s, slab, get_freepointer(s, freelist));
3579		return freelist;
3580	}
3581
3582retry_load_slab:
3583
3584	local_lock_irqsave(&s->cpu_slab->lock, flags);
3585	if (unlikely(c->slab)) {
3586		void *flush_freelist = c->freelist;
3587		struct slab *flush_slab = c->slab;
3588
3589		c->slab = NULL;
3590		c->freelist = NULL;
3591		c->tid = next_tid(c->tid);
3592
3593		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3594
3595		deactivate_slab(s, flush_slab, flush_freelist);
3596
3597		stat(s, CPUSLAB_FLUSH);
3598
3599		goto retry_load_slab;
3600	}
3601	c->slab = slab;
3602
3603	goto load_freelist;
3604}
3605
3606/*
3607 * A wrapper for ___slab_alloc() for contexts where preemption is not yet
3608 * disabled. Compensates for possible cpu changes by refetching the per cpu area
3609 * pointer.
3610 */
3611static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
3612			  unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size)
3613{
3614	void *p;
 
3615
3616#ifdef CONFIG_PREEMPT_COUNT
 
3617	/*
3618	 * We may have been preempted and rescheduled on a different
3619	 * cpu before disabling preemption. Need to reload cpu area
3620	 * pointer.
3621	 */
3622	c = slub_get_cpu_ptr(s->cpu_slab);
3623#endif
3624
3625	p = ___slab_alloc(s, gfpflags, node, addr, c, orig_size);
3626#ifdef CONFIG_PREEMPT_COUNT
3627	slub_put_cpu_ptr(s->cpu_slab);
3628#endif
3629	return p;
3630}
3631
3632static __always_inline void *__slab_alloc_node(struct kmem_cache *s,
3633		gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
 
 
 
 
 
 
 
 
 
 
3634{
 
3635	struct kmem_cache_cpu *c;
3636	struct slab *slab;
3637	unsigned long tid;
3638	void *object;
3639
 
 
 
3640redo:
3641	/*
3642	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
3643	 * enabled. We may switch back and forth between cpus while
3644	 * reading from one cpu area. That does not matter as long
3645	 * as we end up on the original cpu again when doing the cmpxchg.
3646	 *
3647	 * We must guarantee that tid and kmem_cache_cpu are retrieved on the
3648	 * same cpu. We read first the kmem_cache_cpu pointer and use it to read
3649	 * the tid. If we are preempted and switched to another cpu between the
3650	 * two reads, it's OK as the two are still associated with the same cpu
3651	 * and cmpxchg later will validate the cpu.
3652	 */
3653	c = raw_cpu_ptr(s->cpu_slab);
3654	tid = READ_ONCE(c->tid);
 
 
 
3655
3656	/*
3657	 * Irqless object alloc/free algorithm used here depends on sequence
3658	 * of fetching cpu_slab's data. tid should be fetched before anything
3659	 * on c to guarantee that object and slab associated with previous tid
3660	 * won't be used with current tid. If we fetch tid first, object and
3661	 * slab could be one associated with next tid and our alloc/free
3662	 * request will be failed. In this case, we will retry. So, no problem.
3663	 */
3664	barrier();
3665
3666	/*
3667	 * The transaction ids are globally unique per cpu and per operation on
3668	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
3669	 * occurs on the right processor and that there was no operation on the
3670	 * linked list in between.
3671	 */
3672
3673	object = c->freelist;
3674	slab = c->slab;
3675
3676	if (!USE_LOCKLESS_FAST_PATH() ||
3677	    unlikely(!object || !slab || !node_match(slab, node))) {
3678		object = __slab_alloc(s, gfpflags, node, addr, c, orig_size);
3679	} else {
3680		void *next_object = get_freepointer_safe(s, object);
3681
3682		/*
3683		 * The cmpxchg will only match if there was no additional
3684		 * operation and if we are on the right processor.
3685		 *
3686		 * The cmpxchg does the following atomically (without lock
3687		 * semantics!)
3688		 * 1. Relocate first pointer to the current per cpu area.
3689		 * 2. Verify that tid and freelist have not been changed
3690		 * 3. If they were not changed replace tid and freelist
3691		 *
3692		 * Since this is without lock semantics the protection is only
3693		 * against code executing on this cpu *not* from access by
3694		 * other cpus.
3695		 */
3696		if (unlikely(!__update_cpu_freelist_fast(s, object, next_object, tid))) {
 
 
 
 
3697			note_cmpxchg_failure("slab_alloc", s, tid);
3698			goto redo;
3699		}
3700		prefetch_freepointer(s, next_object);
3701		stat(s, ALLOC_FASTPATH);
3702	}
3703
3704	return object;
3705}
3706#else /* CONFIG_SLUB_TINY */
3707static void *__slab_alloc_node(struct kmem_cache *s,
3708		gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
3709{
3710	struct partial_context pc;
3711	struct slab *slab;
3712	void *object;
3713
3714	pc.flags = gfpflags;
3715	pc.orig_size = orig_size;
3716	slab = get_partial(s, node, &pc);
3717
3718	if (slab)
3719		return pc.object;
3720
3721	slab = new_slab(s, gfpflags, node);
3722	if (unlikely(!slab)) {
3723		slab_out_of_memory(s, gfpflags, node);
3724		return NULL;
3725	}
3726
3727	object = alloc_single_from_new_slab(s, slab, orig_size);
3728
3729	return object;
3730}
3731#endif /* CONFIG_SLUB_TINY */
3732
3733/*
3734 * If the object has been wiped upon free, make sure it's fully initialized by
3735 * zeroing out freelist pointer.
3736 */
3737static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
3738						   void *obj)
3739{
3740	if (unlikely(slab_want_init_on_free(s)) && obj)
3741		memset((void *)((char *)kasan_reset_tag(obj) + s->offset),
3742			0, sizeof(void *));
3743}
3744
3745noinline int should_failslab(struct kmem_cache *s, gfp_t gfpflags)
3746{
3747	if (__should_failslab(s, gfpflags))
3748		return -ENOMEM;
3749	return 0;
3750}
3751ALLOW_ERROR_INJECTION(should_failslab, ERRNO);
3752
3753static __fastpath_inline
3754struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s,
3755				       struct list_lru *lru,
3756				       struct obj_cgroup **objcgp,
3757				       size_t size, gfp_t flags)
3758{
3759	flags &= gfp_allowed_mask;
3760
3761	might_alloc(flags);
3762
3763	if (unlikely(should_failslab(s, flags)))
3764		return NULL;
3765
3766	if (unlikely(!memcg_slab_pre_alloc_hook(s, lru, objcgp, size, flags)))
3767		return NULL;
3768
3769	return s;
3770}
3771
3772static __fastpath_inline
3773void slab_post_alloc_hook(struct kmem_cache *s,	struct obj_cgroup *objcg,
3774			  gfp_t flags, size_t size, void **p, bool init,
3775			  unsigned int orig_size)
3776{
3777	unsigned int zero_size = s->object_size;
3778	bool kasan_init = init;
3779	size_t i;
3780	gfp_t init_flags = flags & gfp_allowed_mask;
3781
3782	/*
3783	 * For kmalloc object, the allocated memory size(object_size) is likely
3784	 * larger than the requested size(orig_size). If redzone check is
3785	 * enabled for the extra space, don't zero it, as it will be redzoned
3786	 * soon. The redzone operation for this extra space could be seen as a
3787	 * replacement of current poisoning under certain debug option, and
3788	 * won't break other sanity checks.
3789	 */
3790	if (kmem_cache_debug_flags(s, SLAB_STORE_USER | SLAB_RED_ZONE) &&
3791	    (s->flags & SLAB_KMALLOC))
3792		zero_size = orig_size;
3793
3794	/*
3795	 * When slub_debug is enabled, avoid memory initialization integrated
3796	 * into KASAN and instead zero out the memory via the memset below with
3797	 * the proper size. Otherwise, KASAN might overwrite SLUB redzones and
3798	 * cause false-positive reports. This does not lead to a performance
3799	 * penalty on production builds, as slub_debug is not intended to be
3800	 * enabled there.
3801	 */
3802	if (__slub_debug_enabled())
3803		kasan_init = false;
3804
3805	/*
3806	 * As memory initialization might be integrated into KASAN,
3807	 * kasan_slab_alloc and initialization memset must be
3808	 * kept together to avoid discrepancies in behavior.
3809	 *
3810	 * As p[i] might get tagged, memset and kmemleak hook come after KASAN.
3811	 */
3812	for (i = 0; i < size; i++) {
3813		p[i] = kasan_slab_alloc(s, p[i], init_flags, kasan_init);
3814		if (p[i] && init && (!kasan_init ||
3815				     !kasan_has_integrated_init()))
3816			memset(p[i], 0, zero_size);
3817		kmemleak_alloc_recursive(p[i], s->object_size, 1,
3818					 s->flags, init_flags);
3819		kmsan_slab_alloc(s, p[i], init_flags);
3820	}
3821
3822	memcg_slab_post_alloc_hook(s, objcg, flags, size, p);
3823}
3824
3825/*
3826 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
3827 * have the fastpath folded into their functions. So no function call
3828 * overhead for requests that can be satisfied on the fastpath.
3829 *
3830 * The fastpath works by first checking if the lockless freelist can be used.
3831 * If not then __slab_alloc is called for slow processing.
3832 *
3833 * Otherwise we can simply pick the next object from the lockless free list.
3834 */
3835static __fastpath_inline void *slab_alloc_node(struct kmem_cache *s, struct list_lru *lru,
3836		gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
3837{
3838	void *object;
3839	struct obj_cgroup *objcg = NULL;
3840	bool init = false;
3841
3842	s = slab_pre_alloc_hook(s, lru, &objcg, 1, gfpflags);
3843	if (unlikely(!s))
3844		return NULL;
3845
3846	object = kfence_alloc(s, orig_size, gfpflags);
3847	if (unlikely(object))
3848		goto out;
3849
3850	object = __slab_alloc_node(s, gfpflags, node, addr, orig_size);
3851
3852	maybe_wipe_obj_freeptr(s, object);
3853	init = slab_want_init_on_alloc(gfpflags, s);
3854
3855out:
3856	/*
3857	 * When init equals 'true', like for kzalloc() family, only
3858	 * @orig_size bytes might be zeroed instead of s->object_size
3859	 */
3860	slab_post_alloc_hook(s, objcg, gfpflags, 1, &object, init, orig_size);
3861
3862	return object;
3863}
3864
3865void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
3866{
3867	void *ret = slab_alloc_node(s, NULL, gfpflags, NUMA_NO_NODE, _RET_IP_,
3868				    s->object_size);
3869
3870	trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE);
 
3871
3872	return ret;
3873}
3874EXPORT_SYMBOL(kmem_cache_alloc);
3875
3876void *kmem_cache_alloc_lru(struct kmem_cache *s, struct list_lru *lru,
3877			   gfp_t gfpflags)
3878{
3879	void *ret = slab_alloc_node(s, lru, gfpflags, NUMA_NO_NODE, _RET_IP_,
3880				    s->object_size);
3881
3882	trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE);
3883
3884	return ret;
3885}
3886EXPORT_SYMBOL(kmem_cache_alloc_lru);
 
3887
3888/**
3889 * kmem_cache_alloc_node - Allocate an object on the specified node
3890 * @s: The cache to allocate from.
3891 * @gfpflags: See kmalloc().
3892 * @node: node number of the target node.
3893 *
3894 * Identical to kmem_cache_alloc but it will allocate memory on the given
3895 * node, which can improve the performance for cpu bound structures.
3896 *
3897 * Fallback to other node is possible if __GFP_THISNODE is not set.
3898 *
3899 * Return: pointer to the new object or %NULL in case of error
3900 */
3901void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
3902{
3903	void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, s->object_size);
3904
3905	trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, node);
 
3906
3907	return ret;
3908}
3909EXPORT_SYMBOL(kmem_cache_alloc_node);
3910
3911/*
3912 * To avoid unnecessary overhead, we pass through large allocation requests
3913 * directly to the page allocator. We use __GFP_COMP, because we will need to
3914 * know the allocation order to free the pages properly in kfree.
3915 */
3916static void *__kmalloc_large_node(size_t size, gfp_t flags, int node)
3917{
3918	struct folio *folio;
3919	void *ptr = NULL;
3920	unsigned int order = get_order(size);
3921
3922	if (unlikely(flags & GFP_SLAB_BUG_MASK))
3923		flags = kmalloc_fix_flags(flags);
3924
3925	flags |= __GFP_COMP;
3926	folio = (struct folio *)alloc_pages_node(node, flags, order);
3927	if (folio) {
3928		ptr = folio_address(folio);
3929		lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B,
3930				      PAGE_SIZE << order);
3931	}
3932
3933	ptr = kasan_kmalloc_large(ptr, size, flags);
3934	/* As ptr might get tagged, call kmemleak hook after KASAN. */
3935	kmemleak_alloc(ptr, size, 1, flags);
3936	kmsan_kmalloc_large(ptr, size, flags);
3937
3938	return ptr;
3939}
3940
3941void *kmalloc_large(size_t size, gfp_t flags)
3942{
3943	void *ret = __kmalloc_large_node(size, flags, NUMA_NO_NODE);
3944
3945	trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size),
3946		      flags, NUMA_NO_NODE);
3947	return ret;
3948}
3949EXPORT_SYMBOL(kmalloc_large);
3950
3951void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3952{
3953	void *ret = __kmalloc_large_node(size, flags, node);
3954
3955	trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size),
3956		      flags, node);
3957	return ret;
3958}
3959EXPORT_SYMBOL(kmalloc_large_node);
3960
3961static __always_inline
3962void *__do_kmalloc_node(size_t size, gfp_t flags, int node,
3963			unsigned long caller)
3964{
3965	struct kmem_cache *s;
3966	void *ret;
3967
3968	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3969		ret = __kmalloc_large_node(size, flags, node);
3970		trace_kmalloc(caller, ret, size,
3971			      PAGE_SIZE << get_order(size), flags, node);
3972		return ret;
3973	}
3974
3975	if (unlikely(!size))
3976		return ZERO_SIZE_PTR;
3977
3978	s = kmalloc_slab(size, flags, caller);
3979
3980	ret = slab_alloc_node(s, NULL, flags, node, caller, size);
3981	ret = kasan_kmalloc(s, ret, size, flags);
3982	trace_kmalloc(caller, ret, size, s->size, flags, node);
3983	return ret;
3984}
3985
3986void *__kmalloc_node(size_t size, gfp_t flags, int node)
3987{
3988	return __do_kmalloc_node(size, flags, node, _RET_IP_);
3989}
3990EXPORT_SYMBOL(__kmalloc_node);
3991
3992void *__kmalloc(size_t size, gfp_t flags)
3993{
3994	return __do_kmalloc_node(size, flags, NUMA_NO_NODE, _RET_IP_);
3995}
3996EXPORT_SYMBOL(__kmalloc);
3997
3998void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3999				  int node, unsigned long caller)
4000{
4001	return __do_kmalloc_node(size, flags, node, caller);
4002}
4003EXPORT_SYMBOL(__kmalloc_node_track_caller);
4004
4005void *kmalloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
4006{
4007	void *ret = slab_alloc_node(s, NULL, gfpflags, NUMA_NO_NODE,
4008					    _RET_IP_, size);
4009
4010	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, NUMA_NO_NODE);
4011
4012	ret = kasan_kmalloc(s, ret, size, gfpflags);
4013	return ret;
4014}
4015EXPORT_SYMBOL(kmalloc_trace);
4016
4017void *kmalloc_node_trace(struct kmem_cache *s, gfp_t gfpflags,
4018			 int node, size_t size)
4019{
4020	void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, size);
4021
4022	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, node);
4023
4024	ret = kasan_kmalloc(s, ret, size, gfpflags);
4025	return ret;
4026}
4027EXPORT_SYMBOL(kmalloc_node_trace);
4028
4029static noinline void free_to_partial_list(
4030	struct kmem_cache *s, struct slab *slab,
4031	void *head, void *tail, int bulk_cnt,
4032	unsigned long addr)
4033{
4034	struct kmem_cache_node *n = get_node(s, slab_nid(slab));
4035	struct slab *slab_free = NULL;
4036	int cnt = bulk_cnt;
4037	unsigned long flags;
4038	depot_stack_handle_t handle = 0;
4039
4040	if (s->flags & SLAB_STORE_USER)
4041		handle = set_track_prepare();
4042
4043	spin_lock_irqsave(&n->list_lock, flags);
4044
4045	if (free_debug_processing(s, slab, head, tail, &cnt, addr, handle)) {
4046		void *prior = slab->freelist;
4047
4048		/* Perform the actual freeing while we still hold the locks */
4049		slab->inuse -= cnt;
4050		set_freepointer(s, tail, prior);
4051		slab->freelist = head;
4052
4053		/*
4054		 * If the slab is empty, and node's partial list is full,
4055		 * it should be discarded anyway no matter it's on full or
4056		 * partial list.
4057		 */
4058		if (slab->inuse == 0 && n->nr_partial >= s->min_partial)
4059			slab_free = slab;
4060
4061		if (!prior) {
4062			/* was on full list */
4063			remove_full(s, n, slab);
4064			if (!slab_free) {
4065				add_partial(n, slab, DEACTIVATE_TO_TAIL);
4066				stat(s, FREE_ADD_PARTIAL);
4067			}
4068		} else if (slab_free) {
4069			remove_partial(n, slab);
4070			stat(s, FREE_REMOVE_PARTIAL);
4071		}
4072	}
4073
4074	if (slab_free) {
4075		/*
4076		 * Update the counters while still holding n->list_lock to
4077		 * prevent spurious validation warnings
4078		 */
4079		dec_slabs_node(s, slab_nid(slab_free), slab_free->objects);
4080	}
4081
4082	spin_unlock_irqrestore(&n->list_lock, flags);
4083
4084	if (slab_free) {
4085		stat(s, FREE_SLAB);
4086		free_slab(s, slab_free);
4087	}
4088}
4089
4090/*
4091 * Slow path handling. This may still be called frequently since objects
4092 * have a longer lifetime than the cpu slabs in most processing loads.
4093 *
4094 * So we still attempt to reduce cache line usage. Just take the slab
4095 * lock and free the item. If there is no additional partial slab
4096 * handling required then we can return immediately.
4097 */
4098static void __slab_free(struct kmem_cache *s, struct slab *slab,
4099			void *head, void *tail, int cnt,
4100			unsigned long addr)
4101
4102{
4103	void *prior;
4104	int was_frozen;
4105	struct slab new;
4106	unsigned long counters;
4107	struct kmem_cache_node *n = NULL;
4108	unsigned long flags;
4109	bool on_node_partial;
4110
4111	stat(s, FREE_SLOWPATH);
4112
4113	if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) {
4114		free_to_partial_list(s, slab, head, tail, cnt, addr);
4115		return;
4116	}
4117
4118	do {
4119		if (unlikely(n)) {
4120			spin_unlock_irqrestore(&n->list_lock, flags);
4121			n = NULL;
4122		}
4123		prior = slab->freelist;
4124		counters = slab->counters;
4125		set_freepointer(s, tail, prior);
4126		new.counters = counters;
4127		was_frozen = new.frozen;
4128		new.inuse -= cnt;
4129		if ((!new.inuse || !prior) && !was_frozen) {
4130			/* Needs to be taken off a list */
4131			if (!kmem_cache_has_cpu_partial(s) || prior) {
4132
4133				n = get_node(s, slab_nid(slab));
 
 
 
 
 
 
 
 
 
 
 
 
4134				/*
4135				 * Speculatively acquire the list_lock.
4136				 * If the cmpxchg does not succeed then we may
4137				 * drop the list_lock without any processing.
4138				 *
4139				 * Otherwise the list_lock will synchronize with
4140				 * other processors updating the list of slabs.
4141				 */
4142				spin_lock_irqsave(&n->list_lock, flags);
4143
4144				on_node_partial = slab_test_node_partial(slab);
4145			}
4146		}
4147
4148	} while (!slab_update_freelist(s, slab,
4149		prior, counters,
4150		head, new.counters,
4151		"__slab_free"));
4152
4153	if (likely(!n)) {
4154
4155		if (likely(was_frozen)) {
4156			/*
4157			 * The list lock was not taken therefore no list
4158			 * activity can be necessary.
4159			 */
4160			stat(s, FREE_FROZEN);
4161		} else if (kmem_cache_has_cpu_partial(s) && !prior) {
4162			/*
4163			 * If we started with a full slab then put it onto the
4164			 * per cpu partial list.
4165			 */
4166			put_cpu_partial(s, slab, 1);
4167			stat(s, CPU_PARTIAL_FREE);
4168		}
4169
4170		return;
4171	}
4172
4173	/*
4174	 * This slab was partially empty but not on the per-node partial list,
4175	 * in which case we shouldn't manipulate its list, just return.
4176	 */
4177	if (prior && !on_node_partial) {
4178		spin_unlock_irqrestore(&n->list_lock, flags);
4179		return;
4180	}
4181
4182	if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
4183		goto slab_empty;
4184
4185	/*
4186	 * Objects left in the slab. If it was not on the partial list before
4187	 * then add it.
4188	 */
4189	if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
4190		remove_full(s, n, slab);
4191		add_partial(n, slab, DEACTIVATE_TO_TAIL);
 
4192		stat(s, FREE_ADD_PARTIAL);
4193	}
4194	spin_unlock_irqrestore(&n->list_lock, flags);
4195	return;
4196
4197slab_empty:
4198	if (prior) {
4199		/*
4200		 * Slab on the partial list.
4201		 */
4202		remove_partial(n, slab);
4203		stat(s, FREE_REMOVE_PARTIAL);
4204	} else {
4205		/* Slab must be on the full list */
4206		remove_full(s, n, slab);
4207	}
4208
4209	spin_unlock_irqrestore(&n->list_lock, flags);
4210	stat(s, FREE_SLAB);
4211	discard_slab(s, slab);
4212}
4213
4214#ifndef CONFIG_SLUB_TINY
4215/*
4216 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
4217 * can perform fastpath freeing without additional function calls.
4218 *
4219 * The fastpath is only possible if we are freeing to the current cpu slab
4220 * of this processor. This typically the case if we have just allocated
4221 * the item before.
4222 *
4223 * If fastpath is not possible then fall back to __slab_free where we deal
4224 * with all sorts of special processing.
4225 *
4226 * Bulk free of a freelist with several objects (all pointing to the
4227 * same slab) possible by specifying head and tail ptr, plus objects
4228 * count (cnt). Bulk free indicated by tail pointer being set.
4229 */
4230static __always_inline void do_slab_free(struct kmem_cache *s,
4231				struct slab *slab, void *head, void *tail,
4232				int cnt, unsigned long addr)
4233{
 
4234	struct kmem_cache_cpu *c;
4235	unsigned long tid;
4236	void **freelist;
4237
4238redo:
4239	/*
4240	 * Determine the currently cpus per cpu slab.
4241	 * The cpu may change afterward. However that does not matter since
4242	 * data is retrieved via this pointer. If we are on the same cpu
4243	 * during the cmpxchg then the free will succeed.
4244	 */
4245	c = raw_cpu_ptr(s->cpu_slab);
4246	tid = READ_ONCE(c->tid);
 
 
 
4247
4248	/* Same with comment on barrier() in slab_alloc_node() */
4249	barrier();
4250
4251	if (unlikely(slab != c->slab)) {
4252		__slab_free(s, slab, head, tail, cnt, addr);
4253		return;
4254	}
4255
4256	if (USE_LOCKLESS_FAST_PATH()) {
4257		freelist = READ_ONCE(c->freelist);
 
 
4258
4259		set_freepointer(s, tail, freelist);
4260
4261		if (unlikely(!__update_cpu_freelist_fast(s, freelist, head, tid))) {
4262			note_cmpxchg_failure("slab_free", s, tid);
4263			goto redo;
4264		}
4265	} else {
4266		/* Update the free list under the local lock */
4267		local_lock(&s->cpu_slab->lock);
4268		c = this_cpu_ptr(s->cpu_slab);
4269		if (unlikely(slab != c->slab)) {
4270			local_unlock(&s->cpu_slab->lock);
4271			goto redo;
4272		}
4273		tid = c->tid;
4274		freelist = c->freelist;
4275
4276		set_freepointer(s, tail, freelist);
4277		c->freelist = head;
4278		c->tid = next_tid(tid);
4279
4280		local_unlock(&s->cpu_slab->lock);
4281	}
4282	stat_add(s, FREE_FASTPATH, cnt);
4283}
4284#else /* CONFIG_SLUB_TINY */
4285static void do_slab_free(struct kmem_cache *s,
4286				struct slab *slab, void *head, void *tail,
4287				int cnt, unsigned long addr)
4288{
4289	__slab_free(s, slab, head, tail, cnt, addr);
4290}
4291#endif /* CONFIG_SLUB_TINY */
4292
4293static __fastpath_inline
4294void slab_free(struct kmem_cache *s, struct slab *slab, void *object,
4295	       unsigned long addr)
4296{
4297	memcg_slab_free_hook(s, slab, &object, 1);
4298
4299	if (likely(slab_free_hook(s, object, slab_want_init_on_free(s))))
4300		do_slab_free(s, slab, object, object, 1, addr);
4301}
4302
4303static __fastpath_inline
4304void slab_free_bulk(struct kmem_cache *s, struct slab *slab, void *head,
4305		    void *tail, void **p, int cnt, unsigned long addr)
4306{
4307	memcg_slab_free_hook(s, slab, p, cnt);
4308	/*
4309	 * With KASAN enabled slab_free_freelist_hook modifies the freelist
4310	 * to remove objects, whose reuse must be delayed.
4311	 */
4312	if (likely(slab_free_freelist_hook(s, &head, &tail, &cnt)))
4313		do_slab_free(s, slab, head, tail, cnt, addr);
4314}
4315
4316#ifdef CONFIG_KASAN_GENERIC
4317void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
4318{
4319	do_slab_free(cache, virt_to_slab(x), x, x, 1, addr);
4320}
4321#endif
4322
4323static inline struct kmem_cache *virt_to_cache(const void *obj)
4324{
4325	struct slab *slab;
4326
4327	slab = virt_to_slab(obj);
4328	if (WARN_ONCE(!slab, "%s: Object is not a Slab page!\n", __func__))
4329		return NULL;
4330	return slab->slab_cache;
4331}
4332
4333static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x)
4334{
4335	struct kmem_cache *cachep;
4336
4337	if (!IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) &&
4338	    !kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS))
4339		return s;
4340
4341	cachep = virt_to_cache(x);
4342	if (WARN(cachep && cachep != s,
4343		 "%s: Wrong slab cache. %s but object is from %s\n",
4344		 __func__, s->name, cachep->name))
4345		print_tracking(cachep, x);
4346	return cachep;
4347}
4348
4349/**
4350 * kmem_cache_free - Deallocate an object
4351 * @s: The cache the allocation was from.
4352 * @x: The previously allocated object.
4353 *
4354 * Free an object which was previously allocated from this
4355 * cache.
4356 */
4357void kmem_cache_free(struct kmem_cache *s, void *x)
4358{
4359	s = cache_from_obj(s, x);
4360	if (!s)
4361		return;
4362	trace_kmem_cache_free(_RET_IP_, x, s);
4363	slab_free(s, virt_to_slab(x), x, _RET_IP_);
4364}
4365EXPORT_SYMBOL(kmem_cache_free);
4366
4367static void free_large_kmalloc(struct folio *folio, void *object)
4368{
4369	unsigned int order = folio_order(folio);
4370
4371	if (WARN_ON_ONCE(order == 0))
4372		pr_warn_once("object pointer: 0x%p\n", object);
4373
4374	kmemleak_free(object);
4375	kasan_kfree_large(object);
4376	kmsan_kfree_large(object);
4377
4378	lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B,
4379			      -(PAGE_SIZE << order));
4380	folio_put(folio);
4381}
4382
4383/**
4384 * kfree - free previously allocated memory
4385 * @object: pointer returned by kmalloc() or kmem_cache_alloc()
4386 *
4387 * If @object is NULL, no operation is performed.
4388 */
4389void kfree(const void *object)
4390{
4391	struct folio *folio;
4392	struct slab *slab;
4393	struct kmem_cache *s;
4394	void *x = (void *)object;
4395
4396	trace_kfree(_RET_IP_, object);
4397
4398	if (unlikely(ZERO_OR_NULL_PTR(object)))
4399		return;
4400
4401	folio = virt_to_folio(object);
4402	if (unlikely(!folio_test_slab(folio))) {
4403		free_large_kmalloc(folio, (void *)object);
4404		return;
4405	}
4406
4407	slab = folio_slab(folio);
4408	s = slab->slab_cache;
4409	slab_free(s, slab, x, _RET_IP_);
4410}
4411EXPORT_SYMBOL(kfree);
4412
4413struct detached_freelist {
4414	struct slab *slab;
4415	void *tail;
4416	void *freelist;
4417	int cnt;
4418	struct kmem_cache *s;
4419};
4420
4421/*
4422 * This function progressively scans the array with free objects (with
4423 * a limited look ahead) and extract objects belonging to the same
4424 * slab.  It builds a detached freelist directly within the given
4425 * slab/objects.  This can happen without any need for
4426 * synchronization, because the objects are owned by running process.
4427 * The freelist is build up as a single linked list in the objects.
4428 * The idea is, that this detached freelist can then be bulk
4429 * transferred to the real freelist(s), but only requiring a single
4430 * synchronization primitive.  Look ahead in the array is limited due
4431 * to performance reasons.
4432 */
4433static inline
4434int build_detached_freelist(struct kmem_cache *s, size_t size,
4435			    void **p, struct detached_freelist *df)
4436{
 
4437	int lookahead = 3;
4438	void *object;
4439	struct folio *folio;
4440	size_t same;
 
 
4441
4442	object = p[--size];
4443	folio = virt_to_folio(object);
 
 
 
 
 
 
 
4444	if (!s) {
4445		/* Handle kalloc'ed objects */
4446		if (unlikely(!folio_test_slab(folio))) {
4447			free_large_kmalloc(folio, object);
4448			df->slab = NULL;
 
 
4449			return size;
4450		}
4451		/* Derive kmem_cache from object */
4452		df->slab = folio_slab(folio);
4453		df->s = df->slab->slab_cache;
4454	} else {
4455		df->slab = folio_slab(folio);
4456		df->s = cache_from_obj(s, object); /* Support for memcg */
4457	}
4458
4459	/* Start new detached freelist */
 
 
4460	df->tail = object;
4461	df->freelist = object;
 
4462	df->cnt = 1;
4463
4464	if (is_kfence_address(object))
4465		return size;
4466
4467	set_freepointer(df->s, object, NULL);
4468
4469	same = size;
4470	while (size) {
4471		object = p[--size];
4472		/* df->slab is always set at this point */
4473		if (df->slab == virt_to_slab(object)) {
 
 
 
4474			/* Opportunity build freelist */
4475			set_freepointer(df->s, object, df->freelist);
4476			df->freelist = object;
4477			df->cnt++;
4478			same--;
4479			if (size != same)
4480				swap(p[size], p[same]);
4481			continue;
4482		}
4483
4484		/* Limit look ahead search */
4485		if (!--lookahead)
4486			break;
 
 
 
4487	}
4488
4489	return same;
4490}
4491
4492/*
4493 * Internal bulk free of objects that were not initialised by the post alloc
4494 * hooks and thus should not be processed by the free hooks
4495 */
4496static void __kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
4497{
4498	if (!size)
4499		return;
4500
4501	do {
4502		struct detached_freelist df;
4503
4504		size = build_detached_freelist(s, size, p, &df);
4505		if (!df.slab)
4506			continue;
4507
4508		do_slab_free(df.s, df.slab, df.freelist, df.tail, df.cnt,
4509			     _RET_IP_);
4510	} while (likely(size));
4511}
4512
4513/* Note that interrupts must be enabled when calling this function. */
4514void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
4515{
4516	if (!size)
4517		return;
4518
4519	do {
4520		struct detached_freelist df;
4521
4522		size = build_detached_freelist(s, size, p, &df);
4523		if (!df.slab)
4524			continue;
4525
4526		slab_free_bulk(df.s, df.slab, df.freelist, df.tail, &p[size],
4527			       df.cnt, _RET_IP_);
4528	} while (likely(size));
4529}
4530EXPORT_SYMBOL(kmem_cache_free_bulk);
4531
4532#ifndef CONFIG_SLUB_TINY
4533static inline
4534int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
4535			    void **p)
4536{
4537	struct kmem_cache_cpu *c;
4538	unsigned long irqflags;
4539	int i;
4540
 
 
 
 
4541	/*
4542	 * Drain objects in the per cpu slab, while disabling local
4543	 * IRQs, which protects against PREEMPT and interrupts
4544	 * handlers invoking normal fastpath.
4545	 */
4546	c = slub_get_cpu_ptr(s->cpu_slab);
4547	local_lock_irqsave(&s->cpu_slab->lock, irqflags);
4548
4549	for (i = 0; i < size; i++) {
4550		void *object = kfence_alloc(s, s->object_size, flags);
4551
4552		if (unlikely(object)) {
4553			p[i] = object;
4554			continue;
4555		}
4556
4557		object = c->freelist;
4558		if (unlikely(!object)) {
4559			/*
4560			 * We may have removed an object from c->freelist using
4561			 * the fastpath in the previous iteration; in that case,
4562			 * c->tid has not been bumped yet.
4563			 * Since ___slab_alloc() may reenable interrupts while
4564			 * allocating memory, we should bump c->tid now.
4565			 */
4566			c->tid = next_tid(c->tid);
4567
4568			local_unlock_irqrestore(&s->cpu_slab->lock, irqflags);
4569
4570			/*
4571			 * Invoking slow path likely have side-effect
4572			 * of re-populating per CPU c->freelist
4573			 */
4574			p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
4575					    _RET_IP_, c, s->object_size);
4576			if (unlikely(!p[i]))
4577				goto error;
4578
4579			c = this_cpu_ptr(s->cpu_slab);
4580			maybe_wipe_obj_freeptr(s, p[i]);
4581
4582			local_lock_irqsave(&s->cpu_slab->lock, irqflags);
4583
4584			continue; /* goto for-loop */
4585		}
4586		c->freelist = get_freepointer(s, object);
4587		p[i] = object;
4588		maybe_wipe_obj_freeptr(s, p[i]);
4589		stat(s, ALLOC_FASTPATH);
4590	}
4591	c->tid = next_tid(c->tid);
4592	local_unlock_irqrestore(&s->cpu_slab->lock, irqflags);
4593	slub_put_cpu_ptr(s->cpu_slab);
4594
4595	return i;
4596
4597error:
4598	slub_put_cpu_ptr(s->cpu_slab);
4599	__kmem_cache_free_bulk(s, i, p);
4600	return 0;
4601
4602}
4603#else /* CONFIG_SLUB_TINY */
4604static int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags,
4605				   size_t size, void **p)
4606{
4607	int i;
4608
4609	for (i = 0; i < size; i++) {
4610		void *object = kfence_alloc(s, s->object_size, flags);
4611
4612		if (unlikely(object)) {
4613			p[i] = object;
4614			continue;
4615		}
4616
4617		p[i] = __slab_alloc_node(s, flags, NUMA_NO_NODE,
4618					 _RET_IP_, s->object_size);
4619		if (unlikely(!p[i]))
4620			goto error;
4621
4622		maybe_wipe_obj_freeptr(s, p[i]);
 
4623	}
4624
 
 
4625	return i;
4626
4627error:
 
 
4628	__kmem_cache_free_bulk(s, i, p);
4629	return 0;
4630}
4631#endif /* CONFIG_SLUB_TINY */
4632
4633/* Note that interrupts must be enabled when calling this function. */
4634int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
4635			  void **p)
4636{
4637	int i;
4638	struct obj_cgroup *objcg = NULL;
4639
4640	if (!size)
4641		return 0;
4642
4643	/* memcg and kmem_cache debug support */
4644	s = slab_pre_alloc_hook(s, NULL, &objcg, size, flags);
4645	if (unlikely(!s))
4646		return 0;
4647
4648	i = __kmem_cache_alloc_bulk(s, flags, size, p);
4649
4650	/*
4651	 * memcg and kmem_cache debug support and memory initialization.
4652	 * Done outside of the IRQ disabled fastpath loop.
4653	 */
4654	if (likely(i != 0)) {
4655		slab_post_alloc_hook(s, objcg, flags, size, p,
4656			slab_want_init_on_alloc(flags, s), s->object_size);
4657	} else {
4658		memcg_slab_alloc_error_hook(s, size, objcg);
4659	}
4660
4661	return i;
4662}
4663EXPORT_SYMBOL(kmem_cache_alloc_bulk);
4664
4665
4666/*
4667 * Object placement in a slab is made very easy because we always start at
4668 * offset 0. If we tune the size of the object to the alignment then we can
4669 * get the required alignment by putting one properly sized object after
4670 * another.
4671 *
4672 * Notice that the allocation order determines the sizes of the per cpu
4673 * caches. Each processor has always one slab available for allocations.
4674 * Increasing the allocation order reduces the number of times that slabs
4675 * must be moved on and off the partial lists and is therefore a factor in
4676 * locking overhead.
4677 */
4678
4679/*
4680 * Minimum / Maximum order of slab pages. This influences locking overhead
4681 * and slab fragmentation. A higher order reduces the number of partial slabs
4682 * and increases the number of allocations possible without having to
4683 * take the list_lock.
4684 */
4685static unsigned int slub_min_order;
4686static unsigned int slub_max_order =
4687	IS_ENABLED(CONFIG_SLUB_TINY) ? 1 : PAGE_ALLOC_COSTLY_ORDER;
4688static unsigned int slub_min_objects;
4689
4690/*
4691 * Calculate the order of allocation given an slab object size.
4692 *
4693 * The order of allocation has significant impact on performance and other
4694 * system components. Generally order 0 allocations should be preferred since
4695 * order 0 does not cause fragmentation in the page allocator. Larger objects
4696 * be problematic to put into order 0 slabs because there may be too much
4697 * unused space left. We go to a higher order if more than 1/16th of the slab
4698 * would be wasted.
4699 *
4700 * In order to reach satisfactory performance we must ensure that a minimum
4701 * number of objects is in one slab. Otherwise we may generate too much
4702 * activity on the partial lists which requires taking the list_lock. This is
4703 * less a concern for large slabs though which are rarely used.
4704 *
4705 * slub_max_order specifies the order where we begin to stop considering the
4706 * number of objects in a slab as critical. If we reach slub_max_order then
4707 * we try to keep the page order as low as possible. So we accept more waste
4708 * of space in favor of a small page order.
4709 *
4710 * Higher order allocations also allow the placement of more objects in a
4711 * slab and thereby reduce object handling overhead. If the user has
4712 * requested a higher minimum order then we start with that one instead of
4713 * the smallest order which will fit the object.
4714 */
4715static inline unsigned int calc_slab_order(unsigned int size,
4716		unsigned int min_order, unsigned int max_order,
4717		unsigned int fract_leftover)
4718{
 
4719	unsigned int order;
4720
4721	for (order = min_order; order <= max_order; order++) {
 
 
 
 
4722
4723		unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
4724		unsigned int rem;
4725
4726		rem = slab_size % size;
4727
4728		if (rem <= slab_size / fract_leftover)
4729			break;
4730	}
4731
4732	return order;
4733}
4734
4735static inline int calculate_order(unsigned int size)
4736{
4737	unsigned int order;
4738	unsigned int min_objects;
4739	unsigned int max_objects;
4740	unsigned int min_order;
4741
 
 
 
 
 
 
 
 
4742	min_objects = slub_min_objects;
4743	if (!min_objects) {
4744		/*
4745		 * Some architectures will only update present cpus when
4746		 * onlining them, so don't trust the number if it's just 1. But
4747		 * we also don't want to use nr_cpu_ids always, as on some other
4748		 * architectures, there can be many possible cpus, but never
4749		 * onlined. Here we compromise between trying to avoid too high
4750		 * order on systems that appear larger than they are, and too
4751		 * low order on systems that appear smaller than they are.
4752		 */
4753		unsigned int nr_cpus = num_present_cpus();
4754		if (nr_cpus <= 1)
4755			nr_cpus = nr_cpu_ids;
4756		min_objects = 4 * (fls(nr_cpus) + 1);
4757	}
4758	/* min_objects can't be 0 because get_order(0) is undefined */
4759	max_objects = max(order_objects(slub_max_order, size), 1U);
4760	min_objects = min(min_objects, max_objects);
4761
4762	min_order = max_t(unsigned int, slub_min_order,
4763			  get_order(min_objects * size));
4764	if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
4765		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
 
 
 
 
 
 
 
 
 
4766
4767	/*
4768	 * Attempt to find best configuration for a slab. This works by first
4769	 * attempting to generate a layout with the best possible configuration
4770	 * and backing off gradually.
4771	 *
4772	 * We start with accepting at most 1/16 waste and try to find the
4773	 * smallest order from min_objects-derived/slub_min_order up to
4774	 * slub_max_order that will satisfy the constraint. Note that increasing
4775	 * the order can only result in same or less fractional waste, not more.
4776	 *
4777	 * If that fails, we increase the acceptable fraction of waste and try
4778	 * again. The last iteration with fraction of 1/2 would effectively
4779	 * accept any waste and give us the order determined by min_objects, as
4780	 * long as at least single object fits within slub_max_order.
4781	 */
4782	for (unsigned int fraction = 16; fraction > 1; fraction /= 2) {
4783		order = calc_slab_order(size, min_order, slub_max_order,
4784					fraction);
4785		if (order <= slub_max_order)
4786			return order;
4787	}
4788
4789	/*
4790	 * Doh this slab cannot be placed using slub_max_order.
4791	 */
4792	order = get_order(size);
4793	if (order <= MAX_PAGE_ORDER)
4794		return order;
4795	return -ENOSYS;
4796}
4797
4798static void
4799init_kmem_cache_node(struct kmem_cache_node *n)
4800{
4801	n->nr_partial = 0;
4802	spin_lock_init(&n->list_lock);
4803	INIT_LIST_HEAD(&n->partial);
4804#ifdef CONFIG_SLUB_DEBUG
4805	atomic_long_set(&n->nr_slabs, 0);
4806	atomic_long_set(&n->total_objects, 0);
4807	INIT_LIST_HEAD(&n->full);
4808#endif
4809}
4810
4811#ifndef CONFIG_SLUB_TINY
4812static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4813{
4814	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
4815			NR_KMALLOC_TYPES * KMALLOC_SHIFT_HIGH *
4816			sizeof(struct kmem_cache_cpu));
4817
4818	/*
4819	 * Must align to double word boundary for the double cmpxchg
4820	 * instructions to work; see __pcpu_double_call_return_bool().
4821	 */
4822	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
4823				     2 * sizeof(void *));
4824
4825	if (!s->cpu_slab)
4826		return 0;
4827
4828	init_kmem_cache_cpus(s);
4829
4830	return 1;
4831}
4832#else
4833static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4834{
4835	return 1;
4836}
4837#endif /* CONFIG_SLUB_TINY */
4838
4839static struct kmem_cache *kmem_cache_node;
4840
4841/*
4842 * No kmalloc_node yet so do it by hand. We know that this is the first
4843 * slab on the node for this slabcache. There are no concurrent accesses
4844 * possible.
4845 *
4846 * Note that this function only works on the kmem_cache_node
4847 * when allocating for the kmem_cache_node. This is used for bootstrapping
4848 * memory on a fresh node that has no slab structures yet.
4849 */
4850static void early_kmem_cache_node_alloc(int node)
4851{
4852	struct slab *slab;
4853	struct kmem_cache_node *n;
4854
4855	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
4856
4857	slab = new_slab(kmem_cache_node, GFP_NOWAIT, node);
4858
4859	BUG_ON(!slab);
4860	inc_slabs_node(kmem_cache_node, slab_nid(slab), slab->objects);
4861	if (slab_nid(slab) != node) {
4862		pr_err("SLUB: Unable to allocate memory from node %d\n", node);
4863		pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
4864	}
4865
4866	n = slab->freelist;
4867	BUG_ON(!n);
 
 
 
 
4868#ifdef CONFIG_SLUB_DEBUG
4869	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
4870	init_tracking(kmem_cache_node, n);
4871#endif
4872	n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL, false);
4873	slab->freelist = get_freepointer(kmem_cache_node, n);
4874	slab->inuse = 1;
4875	kmem_cache_node->node[node] = n;
4876	init_kmem_cache_node(n);
4877	inc_slabs_node(kmem_cache_node, node, slab->objects);
4878
4879	/*
4880	 * No locks need to be taken here as it has just been
4881	 * initialized and there is no concurrent access.
4882	 */
4883	__add_partial(n, slab, DEACTIVATE_TO_HEAD);
4884}
4885
4886static void free_kmem_cache_nodes(struct kmem_cache *s)
4887{
4888	int node;
4889	struct kmem_cache_node *n;
4890
4891	for_each_kmem_cache_node(s, node, n) {
4892		s->node[node] = NULL;
4893		kmem_cache_free(kmem_cache_node, n);
4894	}
4895}
4896
4897void __kmem_cache_release(struct kmem_cache *s)
4898{
4899	cache_random_seq_destroy(s);
4900#ifndef CONFIG_SLUB_TINY
4901	free_percpu(s->cpu_slab);
4902#endif
4903	free_kmem_cache_nodes(s);
4904}
4905
4906static int init_kmem_cache_nodes(struct kmem_cache *s)
4907{
4908	int node;
4909
4910	for_each_node_mask(node, slab_nodes) {
4911		struct kmem_cache_node *n;
4912
4913		if (slab_state == DOWN) {
4914			early_kmem_cache_node_alloc(node);
4915			continue;
4916		}
4917		n = kmem_cache_alloc_node(kmem_cache_node,
4918						GFP_KERNEL, node);
4919
4920		if (!n) {
4921			free_kmem_cache_nodes(s);
4922			return 0;
4923		}
4924
4925		init_kmem_cache_node(n);
4926		s->node[node] = n;
4927	}
4928	return 1;
4929}
4930
 
 
 
 
 
 
 
 
 
4931static void set_cpu_partial(struct kmem_cache *s)
4932{
4933#ifdef CONFIG_SLUB_CPU_PARTIAL
4934	unsigned int nr_objects;
4935
4936	/*
4937	 * cpu_partial determined the maximum number of objects kept in the
4938	 * per cpu partial lists of a processor.
4939	 *
4940	 * Per cpu partial lists mainly contain slabs that just have one
4941	 * object freed. If they are used for allocation then they can be
4942	 * filled up again with minimal effort. The slab will never hit the
4943	 * per node partial lists and therefore no locking will be required.
4944	 *
4945	 * For backwards compatibility reasons, this is determined as number
4946	 * of objects, even though we now limit maximum number of pages, see
4947	 * slub_set_cpu_partial()
 
 
 
 
4948	 */
4949	if (!kmem_cache_has_cpu_partial(s))
4950		nr_objects = 0;
4951	else if (s->size >= PAGE_SIZE)
4952		nr_objects = 6;
4953	else if (s->size >= 1024)
4954		nr_objects = 24;
4955	else if (s->size >= 256)
4956		nr_objects = 52;
4957	else
4958		nr_objects = 120;
4959
4960	slub_set_cpu_partial(s, nr_objects);
4961#endif
4962}
4963
4964/*
4965 * calculate_sizes() determines the order and the distribution of data within
4966 * a slab object.
4967 */
4968static int calculate_sizes(struct kmem_cache *s)
4969{
4970	slab_flags_t flags = s->flags;
4971	unsigned int size = s->object_size;
4972	unsigned int order;
4973
4974	/*
4975	 * Round up object size to the next word boundary. We can only
4976	 * place the free pointer at word boundaries and this determines
4977	 * the possible location of the free pointer.
4978	 */
4979	size = ALIGN(size, sizeof(void *));
4980
4981#ifdef CONFIG_SLUB_DEBUG
4982	/*
4983	 * Determine if we can poison the object itself. If the user of
4984	 * the slab may touch the object after free or before allocation
4985	 * then we should never poison the object itself.
4986	 */
4987	if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
4988			!s->ctor)
4989		s->flags |= __OBJECT_POISON;
4990	else
4991		s->flags &= ~__OBJECT_POISON;
4992
4993
4994	/*
4995	 * If we are Redzoning then check if there is some space between the
4996	 * end of the object and the free pointer. If not then add an
4997	 * additional word to have some bytes to store Redzone information.
4998	 */
4999	if ((flags & SLAB_RED_ZONE) && size == s->object_size)
5000		size += sizeof(void *);
5001#endif
5002
5003	/*
5004	 * With that we have determined the number of bytes in actual use
5005	 * by the object and redzoning.
5006	 */
5007	s->inuse = size;
5008
5009	if (slub_debug_orig_size(s) ||
5010	    (flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
5011	    ((flags & SLAB_RED_ZONE) && s->object_size < sizeof(void *)) ||
5012	    s->ctor) {
5013		/*
5014		 * Relocate free pointer after the object if it is not
5015		 * permitted to overwrite the first word of the object on
5016		 * kmem_cache_free.
5017		 *
5018		 * This is the case if we do RCU, have a constructor or
5019		 * destructor, are poisoning the objects, or are
5020		 * redzoning an object smaller than sizeof(void *).
5021		 *
5022		 * The assumption that s->offset >= s->inuse means free
5023		 * pointer is outside of the object is used in the
5024		 * freeptr_outside_object() function. If that is no
5025		 * longer true, the function needs to be modified.
5026		 */
5027		s->offset = size;
5028		size += sizeof(void *);
5029	} else {
5030		/*
5031		 * Store freelist pointer near middle of object to keep
5032		 * it away from the edges of the object to avoid small
5033		 * sized over/underflows from neighboring allocations.
5034		 */
5035		s->offset = ALIGN_DOWN(s->object_size / 2, sizeof(void *));
5036	}
5037
5038#ifdef CONFIG_SLUB_DEBUG
5039	if (flags & SLAB_STORE_USER) {
5040		/*
5041		 * Need to store information about allocs and frees after
5042		 * the object.
5043		 */
5044		size += 2 * sizeof(struct track);
5045
5046		/* Save the original kmalloc request size */
5047		if (flags & SLAB_KMALLOC)
5048			size += sizeof(unsigned int);
5049	}
5050#endif
5051
5052	kasan_cache_create(s, &size, &s->flags);
5053#ifdef CONFIG_SLUB_DEBUG
5054	if (flags & SLAB_RED_ZONE) {
5055		/*
5056		 * Add some empty padding so that we can catch
5057		 * overwrites from earlier objects rather than let
5058		 * tracking information or the free pointer be
5059		 * corrupted if a user writes before the start
5060		 * of the object.
5061		 */
5062		size += sizeof(void *);
5063
5064		s->red_left_pad = sizeof(void *);
5065		s->red_left_pad = ALIGN(s->red_left_pad, s->align);
5066		size += s->red_left_pad;
5067	}
5068#endif
5069
5070	/*
5071	 * SLUB stores one object immediately after another beginning from
5072	 * offset 0. In order to align the objects we have to simply size
5073	 * each object to conform to the alignment.
5074	 */
5075	size = ALIGN(size, s->align);
5076	s->size = size;
5077	s->reciprocal_size = reciprocal_value(size);
5078	order = calculate_order(size);
 
 
5079
5080	if ((int)order < 0)
5081		return 0;
5082
5083	s->allocflags = 0;
5084	if (order)
5085		s->allocflags |= __GFP_COMP;
5086
5087	if (s->flags & SLAB_CACHE_DMA)
5088		s->allocflags |= GFP_DMA;
5089
5090	if (s->flags & SLAB_CACHE_DMA32)
5091		s->allocflags |= GFP_DMA32;
5092
5093	if (s->flags & SLAB_RECLAIM_ACCOUNT)
5094		s->allocflags |= __GFP_RECLAIMABLE;
5095
5096	/*
5097	 * Determine the number of objects per slab
5098	 */
5099	s->oo = oo_make(order, size);
5100	s->min = oo_make(get_order(size), size);
 
 
5101
5102	return !!oo_objects(s->oo);
5103}
5104
5105static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
5106{
5107	s->flags = kmem_cache_flags(s->size, flags, s->name);
 
5108#ifdef CONFIG_SLAB_FREELIST_HARDENED
5109	s->random = get_random_long();
5110#endif
5111
5112	if (!calculate_sizes(s))
 
 
 
5113		goto error;
5114	if (disable_higher_order_debug) {
5115		/*
5116		 * Disable debugging flags that store metadata if the min slab
5117		 * order increased.
5118		 */
5119		if (get_order(s->size) > get_order(s->object_size)) {
5120			s->flags &= ~DEBUG_METADATA_FLAGS;
5121			s->offset = 0;
5122			if (!calculate_sizes(s))
5123				goto error;
5124		}
5125	}
5126
5127#ifdef system_has_freelist_aba
5128	if (system_has_freelist_aba() && !(s->flags & SLAB_NO_CMPXCHG)) {
 
5129		/* Enable fast mode */
5130		s->flags |= __CMPXCHG_DOUBLE;
5131	}
5132#endif
5133
5134	/*
5135	 * The larger the object size is, the more slabs we want on the partial
5136	 * list to avoid pounding the page allocator excessively.
5137	 */
5138	s->min_partial = min_t(unsigned long, MAX_PARTIAL, ilog2(s->size) / 2);
5139	s->min_partial = max_t(unsigned long, MIN_PARTIAL, s->min_partial);
5140
5141	set_cpu_partial(s);
5142
5143#ifdef CONFIG_NUMA
5144	s->remote_node_defrag_ratio = 1000;
5145#endif
5146
5147	/* Initialize the pre-computed randomized freelist if slab is up */
5148	if (slab_state >= UP) {
5149		if (init_cache_random_seq(s))
5150			goto error;
5151	}
5152
5153	if (!init_kmem_cache_nodes(s))
5154		goto error;
5155
5156	if (alloc_kmem_cache_cpus(s))
5157		return 0;
5158
 
5159error:
5160	__kmem_cache_release(s);
 
 
 
5161	return -EINVAL;
5162}
5163
5164static void list_slab_objects(struct kmem_cache *s, struct slab *slab,
5165			      const char *text)
5166{
5167#ifdef CONFIG_SLUB_DEBUG
5168	void *addr = slab_address(slab);
5169	void *p;
 
 
 
 
 
 
5170
5171	slab_err(s, slab, text, s->name);
5172
5173	spin_lock(&object_map_lock);
5174	__fill_map(object_map, s, slab);
5175
5176	for_each_object(p, s, addr, slab->objects) {
5177
5178		if (!test_bit(__obj_to_index(s, addr, p), object_map)) {
5179			pr_err("Object 0x%p @offset=%tu\n", p, p - addr);
5180			print_tracking(s, p);
5181		}
5182	}
5183	spin_unlock(&object_map_lock);
 
5184#endif
5185}
5186
5187/*
5188 * Attempt to free all partial slabs on a node.
5189 * This is called from __kmem_cache_shutdown(). We must take list_lock
5190 * because sysfs file might still access partial list after the shutdowning.
5191 */
5192static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
5193{
5194	LIST_HEAD(discard);
5195	struct slab *slab, *h;
5196
5197	BUG_ON(irqs_disabled());
5198	spin_lock_irq(&n->list_lock);
5199	list_for_each_entry_safe(slab, h, &n->partial, slab_list) {
5200		if (!slab->inuse) {
5201			remove_partial(n, slab);
5202			list_add(&slab->slab_list, &discard);
5203		} else {
5204			list_slab_objects(s, slab,
5205			  "Objects remaining in %s on __kmem_cache_shutdown()");
5206		}
5207	}
5208	spin_unlock_irq(&n->list_lock);
5209
5210	list_for_each_entry_safe(slab, h, &discard, slab_list)
5211		discard_slab(s, slab);
5212}
5213
5214bool __kmem_cache_empty(struct kmem_cache *s)
5215{
5216	int node;
5217	struct kmem_cache_node *n;
5218
5219	for_each_kmem_cache_node(s, node, n)
5220		if (n->nr_partial || node_nr_slabs(n))
5221			return false;
5222	return true;
5223}
5224
5225/*
5226 * Release all resources used by a slab cache.
5227 */
5228int __kmem_cache_shutdown(struct kmem_cache *s)
5229{
5230	int node;
5231	struct kmem_cache_node *n;
5232
5233	flush_all_cpus_locked(s);
5234	/* Attempt to free all objects */
5235	for_each_kmem_cache_node(s, node, n) {
5236		free_partial(s, n);
5237		if (n->nr_partial || node_nr_slabs(n))
5238			return 1;
5239	}
 
5240	return 0;
5241}
5242
5243#ifdef CONFIG_PRINTK
5244void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab)
5245{
5246	void *base;
5247	int __maybe_unused i;
5248	unsigned int objnr;
5249	void *objp;
5250	void *objp0;
5251	struct kmem_cache *s = slab->slab_cache;
5252	struct track __maybe_unused *trackp;
5253
5254	kpp->kp_ptr = object;
5255	kpp->kp_slab = slab;
5256	kpp->kp_slab_cache = s;
5257	base = slab_address(slab);
5258	objp0 = kasan_reset_tag(object);
5259#ifdef CONFIG_SLUB_DEBUG
5260	objp = restore_red_left(s, objp0);
5261#else
5262	objp = objp0;
5263#endif
5264	objnr = obj_to_index(s, slab, objp);
5265	kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp);
5266	objp = base + s->size * objnr;
5267	kpp->kp_objp = objp;
5268	if (WARN_ON_ONCE(objp < base || objp >= base + slab->objects * s->size
5269			 || (objp - base) % s->size) ||
5270	    !(s->flags & SLAB_STORE_USER))
5271		return;
5272#ifdef CONFIG_SLUB_DEBUG
5273	objp = fixup_red_left(s, objp);
5274	trackp = get_track(s, objp, TRACK_ALLOC);
5275	kpp->kp_ret = (void *)trackp->addr;
5276#ifdef CONFIG_STACKDEPOT
5277	{
5278		depot_stack_handle_t handle;
5279		unsigned long *entries;
5280		unsigned int nr_entries;
5281
5282		handle = READ_ONCE(trackp->handle);
5283		if (handle) {
5284			nr_entries = stack_depot_fetch(handle, &entries);
5285			for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
5286				kpp->kp_stack[i] = (void *)entries[i];
5287		}
5288
5289		trackp = get_track(s, objp, TRACK_FREE);
5290		handle = READ_ONCE(trackp->handle);
5291		if (handle) {
5292			nr_entries = stack_depot_fetch(handle, &entries);
5293			for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
5294				kpp->kp_free_stack[i] = (void *)entries[i];
5295		}
5296	}
5297#endif
5298#endif
5299}
5300#endif
5301
5302/********************************************************************
5303 *		Kmalloc subsystem
5304 *******************************************************************/
5305
5306static int __init setup_slub_min_order(char *str)
5307{
5308	get_option(&str, (int *)&slub_min_order);
5309
5310	if (slub_min_order > slub_max_order)
5311		slub_max_order = slub_min_order;
5312
5313	return 1;
5314}
5315
5316__setup("slub_min_order=", setup_slub_min_order);
5317
5318static int __init setup_slub_max_order(char *str)
5319{
5320	get_option(&str, (int *)&slub_max_order);
5321	slub_max_order = min_t(unsigned int, slub_max_order, MAX_PAGE_ORDER);
5322
5323	if (slub_min_order > slub_max_order)
5324		slub_min_order = slub_max_order;
5325
5326	return 1;
5327}
5328
5329__setup("slub_max_order=", setup_slub_max_order);
5330
5331static int __init setup_slub_min_objects(char *str)
5332{
5333	get_option(&str, (int *)&slub_min_objects);
5334
5335	return 1;
5336}
5337
5338__setup("slub_min_objects=", setup_slub_min_objects);
5339
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5340#ifdef CONFIG_HARDENED_USERCOPY
5341/*
5342 * Rejects incorrectly sized objects and objects that are to be copied
5343 * to/from userspace but do not fall entirely within the containing slab
5344 * cache's usercopy region.
5345 *
5346 * Returns NULL if check passes, otherwise const char * to name of cache
5347 * to indicate an error.
5348 */
5349void __check_heap_object(const void *ptr, unsigned long n,
5350			 const struct slab *slab, bool to_user)
5351{
5352	struct kmem_cache *s;
5353	unsigned int offset;
5354	bool is_kfence = is_kfence_address(ptr);
5355
5356	ptr = kasan_reset_tag(ptr);
5357
5358	/* Find object and usable object size. */
5359	s = slab->slab_cache;
5360
5361	/* Reject impossible pointers. */
5362	if (ptr < slab_address(slab))
5363		usercopy_abort("SLUB object not in SLUB page?!", NULL,
5364			       to_user, 0, n);
5365
5366	/* Find offset within object. */
5367	if (is_kfence)
5368		offset = ptr - kfence_object_start(ptr);
5369	else
5370		offset = (ptr - slab_address(slab)) % s->size;
5371
5372	/* Adjust for redzone and reject if within the redzone. */
5373	if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) {
5374		if (offset < s->red_left_pad)
5375			usercopy_abort("SLUB object in left red zone",
5376				       s->name, to_user, offset, n);
5377		offset -= s->red_left_pad;
5378	}
5379
5380	/* Allow address range falling entirely within usercopy region. */
5381	if (offset >= s->useroffset &&
5382	    offset - s->useroffset <= s->usersize &&
5383	    n <= s->useroffset - offset + s->usersize)
5384		return;
5385
 
 
 
 
 
 
 
 
 
 
 
 
 
5386	usercopy_abort("SLUB object", s->name, to_user, offset, n);
5387}
5388#endif /* CONFIG_HARDENED_USERCOPY */
5389
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5390#define SHRINK_PROMOTE_MAX 32
5391
5392/*
5393 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
5394 * up most to the head of the partial lists. New allocations will then
5395 * fill those up and thus they can be removed from the partial lists.
5396 *
5397 * The slabs with the least items are placed last. This results in them
5398 * being allocated from last increasing the chance that the last objects
5399 * are freed in them.
5400 */
5401static int __kmem_cache_do_shrink(struct kmem_cache *s)
5402{
5403	int node;
5404	int i;
5405	struct kmem_cache_node *n;
5406	struct slab *slab;
5407	struct slab *t;
5408	struct list_head discard;
5409	struct list_head promote[SHRINK_PROMOTE_MAX];
5410	unsigned long flags;
5411	int ret = 0;
5412
 
5413	for_each_kmem_cache_node(s, node, n) {
5414		INIT_LIST_HEAD(&discard);
5415		for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
5416			INIT_LIST_HEAD(promote + i);
5417
5418		spin_lock_irqsave(&n->list_lock, flags);
5419
5420		/*
5421		 * Build lists of slabs to discard or promote.
5422		 *
5423		 * Note that concurrent frees may occur while we hold the
5424		 * list_lock. slab->inuse here is the upper limit.
5425		 */
5426		list_for_each_entry_safe(slab, t, &n->partial, slab_list) {
5427			int free = slab->objects - slab->inuse;
5428
5429			/* Do not reread slab->inuse */
5430			barrier();
5431
5432			/* We do not keep full slabs on the list */
5433			BUG_ON(free <= 0);
5434
5435			if (free == slab->objects) {
5436				list_move(&slab->slab_list, &discard);
5437				slab_clear_node_partial(slab);
5438				n->nr_partial--;
5439				dec_slabs_node(s, node, slab->objects);
5440			} else if (free <= SHRINK_PROMOTE_MAX)
5441				list_move(&slab->slab_list, promote + free - 1);
5442		}
5443
5444		/*
5445		 * Promote the slabs filled up most to the head of the
5446		 * partial list.
5447		 */
5448		for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
5449			list_splice(promote + i, &n->partial);
5450
5451		spin_unlock_irqrestore(&n->list_lock, flags);
5452
5453		/* Release empty slabs */
5454		list_for_each_entry_safe(slab, t, &discard, slab_list)
5455			free_slab(s, slab);
5456
5457		if (node_nr_slabs(n))
5458			ret = 1;
5459	}
5460
5461	return ret;
5462}
5463
5464int __kmem_cache_shrink(struct kmem_cache *s)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5465{
5466	flush_all(s);
5467	return __kmem_cache_do_shrink(s);
 
 
 
 
 
 
 
 
 
 
5468}
 
5469
5470static int slab_mem_going_offline_callback(void *arg)
5471{
5472	struct kmem_cache *s;
5473
5474	mutex_lock(&slab_mutex);
5475	list_for_each_entry(s, &slab_caches, list) {
5476		flush_all_cpus_locked(s);
5477		__kmem_cache_do_shrink(s);
5478	}
5479	mutex_unlock(&slab_mutex);
5480
5481	return 0;
5482}
5483
5484static void slab_mem_offline_callback(void *arg)
5485{
 
 
5486	struct memory_notify *marg = arg;
5487	int offline_node;
5488
5489	offline_node = marg->status_change_nid_normal;
5490
5491	/*
5492	 * If the node still has available memory. we need kmem_cache_node
5493	 * for it yet.
5494	 */
5495	if (offline_node < 0)
5496		return;
5497
5498	mutex_lock(&slab_mutex);
5499	node_clear(offline_node, slab_nodes);
5500	/*
5501	 * We no longer free kmem_cache_node structures here, as it would be
5502	 * racy with all get_node() users, and infeasible to protect them with
5503	 * slab_mutex.
5504	 */
 
 
 
 
 
 
 
 
 
5505	mutex_unlock(&slab_mutex);
5506}
5507
5508static int slab_mem_going_online_callback(void *arg)
5509{
5510	struct kmem_cache_node *n;
5511	struct kmem_cache *s;
5512	struct memory_notify *marg = arg;
5513	int nid = marg->status_change_nid_normal;
5514	int ret = 0;
5515
5516	/*
5517	 * If the node's memory is already available, then kmem_cache_node is
5518	 * already created. Nothing to do.
5519	 */
5520	if (nid < 0)
5521		return 0;
5522
5523	/*
5524	 * We are bringing a node online. No memory is available yet. We must
5525	 * allocate a kmem_cache_node structure in order to bring the node
5526	 * online.
5527	 */
5528	mutex_lock(&slab_mutex);
5529	list_for_each_entry(s, &slab_caches, list) {
5530		/*
5531		 * The structure may already exist if the node was previously
5532		 * onlined and offlined.
5533		 */
5534		if (get_node(s, nid))
5535			continue;
5536		/*
5537		 * XXX: kmem_cache_alloc_node will fallback to other nodes
5538		 *      since memory is not yet available from the node that
5539		 *      is brought up.
5540		 */
5541		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
5542		if (!n) {
5543			ret = -ENOMEM;
5544			goto out;
5545		}
5546		init_kmem_cache_node(n);
5547		s->node[nid] = n;
5548	}
5549	/*
5550	 * Any cache created after this point will also have kmem_cache_node
5551	 * initialized for the new node.
5552	 */
5553	node_set(nid, slab_nodes);
5554out:
5555	mutex_unlock(&slab_mutex);
5556	return ret;
5557}
5558
5559static int slab_memory_callback(struct notifier_block *self,
5560				unsigned long action, void *arg)
5561{
5562	int ret = 0;
5563
5564	switch (action) {
5565	case MEM_GOING_ONLINE:
5566		ret = slab_mem_going_online_callback(arg);
5567		break;
5568	case MEM_GOING_OFFLINE:
5569		ret = slab_mem_going_offline_callback(arg);
5570		break;
5571	case MEM_OFFLINE:
5572	case MEM_CANCEL_ONLINE:
5573		slab_mem_offline_callback(arg);
5574		break;
5575	case MEM_ONLINE:
5576	case MEM_CANCEL_OFFLINE:
5577		break;
5578	}
5579	if (ret)
5580		ret = notifier_from_errno(ret);
5581	else
5582		ret = NOTIFY_OK;
5583	return ret;
5584}
5585
 
 
 
 
 
5586/********************************************************************
5587 *			Basic setup of slabs
5588 *******************************************************************/
5589
5590/*
5591 * Used for early kmem_cache structures that were allocated using
5592 * the page allocator. Allocate them properly then fix up the pointers
5593 * that may be pointing to the wrong kmem_cache structure.
5594 */
5595
5596static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
5597{
5598	int node;
5599	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
5600	struct kmem_cache_node *n;
5601
5602	memcpy(s, static_cache, kmem_cache->object_size);
5603
5604	/*
5605	 * This runs very early, and only the boot processor is supposed to be
5606	 * up.  Even if it weren't true, IRQs are not up so we couldn't fire
5607	 * IPIs around.
5608	 */
5609	__flush_cpu_slab(s, smp_processor_id());
5610	for_each_kmem_cache_node(s, node, n) {
5611		struct slab *p;
5612
5613		list_for_each_entry(p, &n->partial, slab_list)
5614			p->slab_cache = s;
5615
5616#ifdef CONFIG_SLUB_DEBUG
5617		list_for_each_entry(p, &n->full, slab_list)
5618			p->slab_cache = s;
5619#endif
5620	}
 
5621	list_add(&s->list, &slab_caches);
 
5622	return s;
5623}
5624
5625void __init kmem_cache_init(void)
5626{
5627	static __initdata struct kmem_cache boot_kmem_cache,
5628		boot_kmem_cache_node;
5629	int node;
5630
5631	if (debug_guardpage_minorder())
5632		slub_max_order = 0;
5633
5634	/* Print slub debugging pointers without hashing */
5635	if (__slub_debug_enabled())
5636		no_hash_pointers_enable(NULL);
5637
5638	kmem_cache_node = &boot_kmem_cache_node;
5639	kmem_cache = &boot_kmem_cache;
5640
5641	/*
5642	 * Initialize the nodemask for which we will allocate per node
5643	 * structures. Here we don't need taking slab_mutex yet.
5644	 */
5645	for_each_node_state(node, N_NORMAL_MEMORY)
5646		node_set(node, slab_nodes);
5647
5648	create_boot_cache(kmem_cache_node, "kmem_cache_node",
5649		sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
5650
5651	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
5652
5653	/* Able to allocate the per node structures */
5654	slab_state = PARTIAL;
5655
5656	create_boot_cache(kmem_cache, "kmem_cache",
5657			offsetof(struct kmem_cache, node) +
5658				nr_node_ids * sizeof(struct kmem_cache_node *),
5659		       SLAB_HWCACHE_ALIGN, 0, 0);
5660
5661	kmem_cache = bootstrap(&boot_kmem_cache);
 
 
 
 
 
 
5662	kmem_cache_node = bootstrap(&boot_kmem_cache_node);
5663
5664	/* Now we can use the kmem_cache to allocate kmalloc slabs */
5665	setup_kmalloc_cache_index_table();
5666	create_kmalloc_caches(0);
5667
5668	/* Setup random freelists for each cache */
5669	init_freelist_randomization();
5670
5671	cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
5672				  slub_cpu_dead);
5673
5674	pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
5675		cache_line_size(),
5676		slub_min_order, slub_max_order, slub_min_objects,
5677		nr_cpu_ids, nr_node_ids);
5678}
5679
5680void __init kmem_cache_init_late(void)
5681{
5682#ifndef CONFIG_SLUB_TINY
5683	flushwq = alloc_workqueue("slub_flushwq", WQ_MEM_RECLAIM, 0);
5684	WARN_ON(!flushwq);
5685#endif
5686}
5687
5688struct kmem_cache *
5689__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
5690		   slab_flags_t flags, void (*ctor)(void *))
5691{
5692	struct kmem_cache *s;
5693
5694	s = find_mergeable(size, align, flags, name, ctor);
5695	if (s) {
5696		if (sysfs_slab_alias(s, name))
5697			return NULL;
5698
5699		s->refcount++;
5700
5701		/*
5702		 * Adjust the object sizes so that we clear
5703		 * the complete object on kzalloc.
5704		 */
5705		s->object_size = max(s->object_size, size);
5706		s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
 
 
 
 
 
 
 
 
 
 
5707	}
5708
5709	return s;
5710}
5711
5712int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
5713{
5714	int err;
5715
5716	err = kmem_cache_open(s, flags);
5717	if (err)
5718		return err;
5719
5720	/* Mutex is not taken during early boot */
5721	if (slab_state <= UP)
5722		return 0;
5723
 
5724	err = sysfs_slab_add(s);
5725	if (err) {
5726		__kmem_cache_release(s);
5727		return err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5728	}
5729
5730	if (s->flags & SLAB_STORE_USER)
5731		debugfs_slab_add(s);
 
 
 
 
 
 
 
5732
5733	return 0;
5734}
 
5735
5736#ifdef SLAB_SUPPORTS_SYSFS
5737static int count_inuse(struct slab *slab)
5738{
5739	return slab->inuse;
5740}
5741
5742static int count_total(struct slab *slab)
5743{
5744	return slab->objects;
5745}
5746#endif
5747
5748#ifdef CONFIG_SLUB_DEBUG
5749static void validate_slab(struct kmem_cache *s, struct slab *slab,
5750			  unsigned long *obj_map)
5751{
5752	void *p;
5753	void *addr = slab_address(slab);
5754
5755	if (!check_slab(s, slab) || !on_freelist(s, slab, NULL))
5756		return;
 
5757
5758	/* Now we know that a valid freelist exists */
5759	__fill_map(obj_map, s, slab);
5760	for_each_object(p, s, addr, slab->objects) {
5761		u8 val = test_bit(__obj_to_index(s, addr, p), obj_map) ?
5762			 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE;
5763
5764		if (!check_object(s, slab, p, val))
5765			break;
 
 
 
5766	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5767}
5768
5769static int validate_slab_node(struct kmem_cache *s,
5770		struct kmem_cache_node *n, unsigned long *obj_map)
5771{
5772	unsigned long count = 0;
5773	struct slab *slab;
5774	unsigned long flags;
5775
5776	spin_lock_irqsave(&n->list_lock, flags);
5777
5778	list_for_each_entry(slab, &n->partial, slab_list) {
5779		validate_slab(s, slab, obj_map);
5780		count++;
5781	}
5782	if (count != n->nr_partial) {
5783		pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
5784		       s->name, count, n->nr_partial);
5785		slab_add_kunit_errors();
5786	}
5787
5788	if (!(s->flags & SLAB_STORE_USER))
5789		goto out;
5790
5791	list_for_each_entry(slab, &n->full, slab_list) {
5792		validate_slab(s, slab, obj_map);
5793		count++;
5794	}
5795	if (count != node_nr_slabs(n)) {
5796		pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
5797		       s->name, count, node_nr_slabs(n));
5798		slab_add_kunit_errors();
5799	}
5800
5801out:
5802	spin_unlock_irqrestore(&n->list_lock, flags);
5803	return count;
5804}
5805
5806long validate_slab_cache(struct kmem_cache *s)
5807{
5808	int node;
5809	unsigned long count = 0;
 
 
5810	struct kmem_cache_node *n;
5811	unsigned long *obj_map;
5812
5813	obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
5814	if (!obj_map)
5815		return -ENOMEM;
5816
5817	flush_all(s);
5818	for_each_kmem_cache_node(s, node, n)
5819		count += validate_slab_node(s, n, obj_map);
5820
5821	bitmap_free(obj_map);
5822
5823	return count;
5824}
5825EXPORT_SYMBOL(validate_slab_cache);
5826
5827#ifdef CONFIG_DEBUG_FS
5828/*
5829 * Generate lists of code addresses where slabcache objects are allocated
5830 * and freed.
5831 */
5832
5833struct location {
5834	depot_stack_handle_t handle;
5835	unsigned long count;
5836	unsigned long addr;
5837	unsigned long waste;
5838	long long sum_time;
5839	long min_time;
5840	long max_time;
5841	long min_pid;
5842	long max_pid;
5843	DECLARE_BITMAP(cpus, NR_CPUS);
5844	nodemask_t nodes;
5845};
5846
5847struct loc_track {
5848	unsigned long max;
5849	unsigned long count;
5850	struct location *loc;
5851	loff_t idx;
5852};
5853
5854static struct dentry *slab_debugfs_root;
5855
5856static void free_loc_track(struct loc_track *t)
5857{
5858	if (t->max)
5859		free_pages((unsigned long)t->loc,
5860			get_order(sizeof(struct location) * t->max));
5861}
5862
5863static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
5864{
5865	struct location *l;
5866	int order;
5867
5868	order = get_order(sizeof(struct location) * max);
5869
5870	l = (void *)__get_free_pages(flags, order);
5871	if (!l)
5872		return 0;
5873
5874	if (t->count) {
5875		memcpy(l, t->loc, sizeof(struct location) * t->count);
5876		free_loc_track(t);
5877	}
5878	t->max = max;
5879	t->loc = l;
5880	return 1;
5881}
5882
5883static int add_location(struct loc_track *t, struct kmem_cache *s,
5884				const struct track *track,
5885				unsigned int orig_size)
5886{
5887	long start, end, pos;
5888	struct location *l;
5889	unsigned long caddr, chandle, cwaste;
5890	unsigned long age = jiffies - track->when;
5891	depot_stack_handle_t handle = 0;
5892	unsigned int waste = s->object_size - orig_size;
5893
5894#ifdef CONFIG_STACKDEPOT
5895	handle = READ_ONCE(track->handle);
5896#endif
5897	start = -1;
5898	end = t->count;
5899
5900	for ( ; ; ) {
5901		pos = start + (end - start + 1) / 2;
5902
5903		/*
5904		 * There is nothing at "end". If we end up there
5905		 * we need to add something to before end.
5906		 */
5907		if (pos == end)
5908			break;
5909
5910		l = &t->loc[pos];
5911		caddr = l->addr;
5912		chandle = l->handle;
5913		cwaste = l->waste;
5914		if ((track->addr == caddr) && (handle == chandle) &&
5915			(waste == cwaste)) {
5916
 
5917			l->count++;
5918			if (track->when) {
5919				l->sum_time += age;
5920				if (age < l->min_time)
5921					l->min_time = age;
5922				if (age > l->max_time)
5923					l->max_time = age;
5924
5925				if (track->pid < l->min_pid)
5926					l->min_pid = track->pid;
5927				if (track->pid > l->max_pid)
5928					l->max_pid = track->pid;
5929
5930				cpumask_set_cpu(track->cpu,
5931						to_cpumask(l->cpus));
5932			}
5933			node_set(page_to_nid(virt_to_page(track)), l->nodes);
5934			return 1;
5935		}
5936
5937		if (track->addr < caddr)
5938			end = pos;
5939		else if (track->addr == caddr && handle < chandle)
5940			end = pos;
5941		else if (track->addr == caddr && handle == chandle &&
5942				waste < cwaste)
5943			end = pos;
5944		else
5945			start = pos;
5946	}
5947
5948	/*
5949	 * Not found. Insert new tracking element.
5950	 */
5951	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
5952		return 0;
5953
5954	l = t->loc + pos;
5955	if (pos < t->count)
5956		memmove(l + 1, l,
5957			(t->count - pos) * sizeof(struct location));
5958	t->count++;
5959	l->count = 1;
5960	l->addr = track->addr;
5961	l->sum_time = age;
5962	l->min_time = age;
5963	l->max_time = age;
5964	l->min_pid = track->pid;
5965	l->max_pid = track->pid;
5966	l->handle = handle;
5967	l->waste = waste;
5968	cpumask_clear(to_cpumask(l->cpus));
5969	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
5970	nodes_clear(l->nodes);
5971	node_set(page_to_nid(virt_to_page(track)), l->nodes);
5972	return 1;
5973}
5974
5975static void process_slab(struct loc_track *t, struct kmem_cache *s,
5976		struct slab *slab, enum track_item alloc,
5977		unsigned long *obj_map)
5978{
5979	void *addr = slab_address(slab);
5980	bool is_alloc = (alloc == TRACK_ALLOC);
5981	void *p;
5982
5983	__fill_map(obj_map, s, slab);
 
5984
5985	for_each_object(p, s, addr, slab->objects)
5986		if (!test_bit(__obj_to_index(s, addr, p), obj_map))
5987			add_location(t, s, get_track(s, p, alloc),
5988				     is_alloc ? get_orig_size(s, p) :
5989						s->object_size);
5990}
5991#endif  /* CONFIG_DEBUG_FS   */
5992#endif	/* CONFIG_SLUB_DEBUG */
5993
5994#ifdef SLAB_SUPPORTS_SYSFS
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5995enum slab_stat_type {
5996	SL_ALL,			/* All slabs */
5997	SL_PARTIAL,		/* Only partially allocated slabs */
5998	SL_CPU,			/* Only slabs used for cpu caches */
5999	SL_OBJECTS,		/* Determine allocated objects not slabs */
6000	SL_TOTAL		/* Determine object capacity not slabs */
6001};
6002
6003#define SO_ALL		(1 << SL_ALL)
6004#define SO_PARTIAL	(1 << SL_PARTIAL)
6005#define SO_CPU		(1 << SL_CPU)
6006#define SO_OBJECTS	(1 << SL_OBJECTS)
6007#define SO_TOTAL	(1 << SL_TOTAL)
6008
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6009static ssize_t show_slab_objects(struct kmem_cache *s,
6010				 char *buf, unsigned long flags)
6011{
6012	unsigned long total = 0;
6013	int node;
6014	int x;
6015	unsigned long *nodes;
6016	int len = 0;
6017
6018	nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
6019	if (!nodes)
6020		return -ENOMEM;
6021
6022	if (flags & SO_CPU) {
6023		int cpu;
6024
6025		for_each_possible_cpu(cpu) {
6026			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
6027							       cpu);
6028			int node;
6029			struct slab *slab;
6030
6031			slab = READ_ONCE(c->slab);
6032			if (!slab)
6033				continue;
6034
6035			node = slab_nid(slab);
6036			if (flags & SO_TOTAL)
6037				x = slab->objects;
6038			else if (flags & SO_OBJECTS)
6039				x = slab->inuse;
6040			else
6041				x = 1;
6042
6043			total += x;
6044			nodes[node] += x;
6045
6046#ifdef CONFIG_SLUB_CPU_PARTIAL
6047			slab = slub_percpu_partial_read_once(c);
6048			if (slab) {
6049				node = slab_nid(slab);
6050				if (flags & SO_TOTAL)
6051					WARN_ON_ONCE(1);
6052				else if (flags & SO_OBJECTS)
6053					WARN_ON_ONCE(1);
6054				else
6055					x = slab->slabs;
6056				total += x;
6057				nodes[node] += x;
6058			}
6059#endif
6060		}
6061	}
6062
6063	/*
6064	 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
6065	 * already held which will conflict with an existing lock order:
6066	 *
6067	 * mem_hotplug_lock->slab_mutex->kernfs_mutex
6068	 *
6069	 * We don't really need mem_hotplug_lock (to hold off
6070	 * slab_mem_going_offline_callback) here because slab's memory hot
6071	 * unplug code doesn't destroy the kmem_cache->node[] data.
6072	 */
6073
6074#ifdef CONFIG_SLUB_DEBUG
6075	if (flags & SO_ALL) {
6076		struct kmem_cache_node *n;
6077
6078		for_each_kmem_cache_node(s, node, n) {
6079
6080			if (flags & SO_TOTAL)
6081				x = node_nr_objs(n);
6082			else if (flags & SO_OBJECTS)
6083				x = node_nr_objs(n) - count_partial(n, count_free);
 
6084			else
6085				x = node_nr_slabs(n);
6086			total += x;
6087			nodes[node] += x;
6088		}
6089
6090	} else
6091#endif
6092	if (flags & SO_PARTIAL) {
6093		struct kmem_cache_node *n;
6094
6095		for_each_kmem_cache_node(s, node, n) {
6096			if (flags & SO_TOTAL)
6097				x = count_partial(n, count_total);
6098			else if (flags & SO_OBJECTS)
6099				x = count_partial(n, count_inuse);
6100			else
6101				x = n->nr_partial;
6102			total += x;
6103			nodes[node] += x;
6104		}
6105	}
6106
6107	len += sysfs_emit_at(buf, len, "%lu", total);
6108#ifdef CONFIG_NUMA
6109	for (node = 0; node < nr_node_ids; node++) {
6110		if (nodes[node])
6111			len += sysfs_emit_at(buf, len, " N%d=%lu",
6112					     node, nodes[node]);
6113	}
6114#endif
6115	len += sysfs_emit_at(buf, len, "\n");
6116	kfree(nodes);
 
 
 
 
 
 
 
 
 
 
 
 
6117
6118	return len;
6119}
 
6120
6121#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
6122#define to_slab(n) container_of(n, struct kmem_cache, kobj)
6123
6124struct slab_attribute {
6125	struct attribute attr;
6126	ssize_t (*show)(struct kmem_cache *s, char *buf);
6127	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
6128};
6129
6130#define SLAB_ATTR_RO(_name) \
6131	static struct slab_attribute _name##_attr = __ATTR_RO_MODE(_name, 0400)
 
6132
6133#define SLAB_ATTR(_name) \
6134	static struct slab_attribute _name##_attr = __ATTR_RW_MODE(_name, 0600)
 
6135
6136static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
6137{
6138	return sysfs_emit(buf, "%u\n", s->size);
6139}
6140SLAB_ATTR_RO(slab_size);
6141
6142static ssize_t align_show(struct kmem_cache *s, char *buf)
6143{
6144	return sysfs_emit(buf, "%u\n", s->align);
6145}
6146SLAB_ATTR_RO(align);
6147
6148static ssize_t object_size_show(struct kmem_cache *s, char *buf)
6149{
6150	return sysfs_emit(buf, "%u\n", s->object_size);
6151}
6152SLAB_ATTR_RO(object_size);
6153
6154static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
6155{
6156	return sysfs_emit(buf, "%u\n", oo_objects(s->oo));
6157}
6158SLAB_ATTR_RO(objs_per_slab);
6159
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6160static ssize_t order_show(struct kmem_cache *s, char *buf)
6161{
6162	return sysfs_emit(buf, "%u\n", oo_order(s->oo));
6163}
6164SLAB_ATTR_RO(order);
6165
6166static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
6167{
6168	return sysfs_emit(buf, "%lu\n", s->min_partial);
6169}
6170
6171static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
6172				 size_t length)
6173{
6174	unsigned long min;
6175	int err;
6176
6177	err = kstrtoul(buf, 10, &min);
6178	if (err)
6179		return err;
6180
6181	s->min_partial = min;
6182	return length;
6183}
6184SLAB_ATTR(min_partial);
6185
6186static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
6187{
6188	unsigned int nr_partial = 0;
6189#ifdef CONFIG_SLUB_CPU_PARTIAL
6190	nr_partial = s->cpu_partial;
6191#endif
6192
6193	return sysfs_emit(buf, "%u\n", nr_partial);
6194}
6195
6196static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
6197				 size_t length)
6198{
6199	unsigned int objects;
6200	int err;
6201
6202	err = kstrtouint(buf, 10, &objects);
6203	if (err)
6204		return err;
6205	if (objects && !kmem_cache_has_cpu_partial(s))
6206		return -EINVAL;
6207
6208	slub_set_cpu_partial(s, objects);
6209	flush_all(s);
6210	return length;
6211}
6212SLAB_ATTR(cpu_partial);
6213
6214static ssize_t ctor_show(struct kmem_cache *s, char *buf)
6215{
6216	if (!s->ctor)
6217		return 0;
6218	return sysfs_emit(buf, "%pS\n", s->ctor);
6219}
6220SLAB_ATTR_RO(ctor);
6221
6222static ssize_t aliases_show(struct kmem_cache *s, char *buf)
6223{
6224	return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
6225}
6226SLAB_ATTR_RO(aliases);
6227
6228static ssize_t partial_show(struct kmem_cache *s, char *buf)
6229{
6230	return show_slab_objects(s, buf, SO_PARTIAL);
6231}
6232SLAB_ATTR_RO(partial);
6233
6234static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
6235{
6236	return show_slab_objects(s, buf, SO_CPU);
6237}
6238SLAB_ATTR_RO(cpu_slabs);
6239
 
 
 
 
 
 
6240static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
6241{
6242	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
6243}
6244SLAB_ATTR_RO(objects_partial);
6245
6246static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
6247{
6248	int objects = 0;
6249	int slabs = 0;
6250	int cpu __maybe_unused;
6251	int len = 0;
6252
6253#ifdef CONFIG_SLUB_CPU_PARTIAL
6254	for_each_online_cpu(cpu) {
6255		struct slab *slab;
6256
6257		slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
6258
6259		if (slab)
6260			slabs += slab->slabs;
 
 
6261	}
6262#endif
6263
6264	/* Approximate half-full slabs, see slub_set_cpu_partial() */
6265	objects = (slabs * oo_objects(s->oo)) / 2;
6266	len += sysfs_emit_at(buf, len, "%d(%d)", objects, slabs);
6267
6268#ifdef CONFIG_SLUB_CPU_PARTIAL
6269	for_each_online_cpu(cpu) {
6270		struct slab *slab;
6271
6272		slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
6273		if (slab) {
6274			slabs = READ_ONCE(slab->slabs);
6275			objects = (slabs * oo_objects(s->oo)) / 2;
6276			len += sysfs_emit_at(buf, len, " C%d=%d(%d)",
6277					     cpu, objects, slabs);
6278		}
6279	}
6280#endif
6281	len += sysfs_emit_at(buf, len, "\n");
6282
6283	return len;
6284}
6285SLAB_ATTR_RO(slabs_cpu_partial);
6286
6287static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
6288{
6289	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
 
 
 
 
 
 
 
 
 
6290}
6291SLAB_ATTR_RO(reclaim_account);
6292
6293static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
6294{
6295	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
6296}
6297SLAB_ATTR_RO(hwcache_align);
6298
6299#ifdef CONFIG_ZONE_DMA
6300static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
6301{
6302	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
6303}
6304SLAB_ATTR_RO(cache_dma);
6305#endif
6306
6307#ifdef CONFIG_HARDENED_USERCOPY
6308static ssize_t usersize_show(struct kmem_cache *s, char *buf)
6309{
6310	return sysfs_emit(buf, "%u\n", s->usersize);
6311}
6312SLAB_ATTR_RO(usersize);
6313#endif
6314
6315static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
6316{
6317	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
6318}
6319SLAB_ATTR_RO(destroy_by_rcu);
6320
 
 
 
 
 
 
6321#ifdef CONFIG_SLUB_DEBUG
6322static ssize_t slabs_show(struct kmem_cache *s, char *buf)
6323{
6324	return show_slab_objects(s, buf, SO_ALL);
6325}
6326SLAB_ATTR_RO(slabs);
6327
6328static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
6329{
6330	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
6331}
6332SLAB_ATTR_RO(total_objects);
6333
6334static ssize_t objects_show(struct kmem_cache *s, char *buf)
6335{
6336	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
6337}
6338SLAB_ATTR_RO(objects);
6339
6340static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
 
6341{
6342	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
 
 
 
 
 
6343}
6344SLAB_ATTR_RO(sanity_checks);
6345
6346static ssize_t trace_show(struct kmem_cache *s, char *buf)
6347{
6348	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6349}
6350SLAB_ATTR_RO(trace);
6351
6352static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
6353{
6354	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
6355}
6356
6357SLAB_ATTR_RO(red_zone);
 
 
 
 
 
 
 
 
 
 
 
 
 
6358
6359static ssize_t poison_show(struct kmem_cache *s, char *buf)
6360{
6361	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON));
6362}
6363
6364SLAB_ATTR_RO(poison);
 
 
 
 
 
 
 
 
 
 
 
 
 
6365
6366static ssize_t store_user_show(struct kmem_cache *s, char *buf)
6367{
6368	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
6369}
6370
6371SLAB_ATTR_RO(store_user);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6372
6373static ssize_t validate_show(struct kmem_cache *s, char *buf)
6374{
6375	return 0;
6376}
6377
6378static ssize_t validate_store(struct kmem_cache *s,
6379			const char *buf, size_t length)
6380{
6381	int ret = -EINVAL;
6382
6383	if (buf[0] == '1' && kmem_cache_debug(s)) {
6384		ret = validate_slab_cache(s);
6385		if (ret >= 0)
6386			ret = length;
6387	}
6388	return ret;
6389}
6390SLAB_ATTR(validate);
6391
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6392#endif /* CONFIG_SLUB_DEBUG */
6393
6394#ifdef CONFIG_FAILSLAB
6395static ssize_t failslab_show(struct kmem_cache *s, char *buf)
6396{
6397	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
6398}
6399
6400static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
6401				size_t length)
6402{
6403	if (s->refcount > 1)
6404		return -EINVAL;
6405
 
6406	if (buf[0] == '1')
6407		WRITE_ONCE(s->flags, s->flags | SLAB_FAILSLAB);
6408	else
6409		WRITE_ONCE(s->flags, s->flags & ~SLAB_FAILSLAB);
6410
6411	return length;
6412}
6413SLAB_ATTR(failslab);
6414#endif
6415
6416static ssize_t shrink_show(struct kmem_cache *s, char *buf)
6417{
6418	return 0;
6419}
6420
6421static ssize_t shrink_store(struct kmem_cache *s,
6422			const char *buf, size_t length)
6423{
6424	if (buf[0] == '1')
6425		kmem_cache_shrink(s);
6426	else
6427		return -EINVAL;
6428	return length;
6429}
6430SLAB_ATTR(shrink);
6431
6432#ifdef CONFIG_NUMA
6433static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
6434{
6435	return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10);
6436}
6437
6438static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
6439				const char *buf, size_t length)
6440{
6441	unsigned int ratio;
6442	int err;
6443
6444	err = kstrtouint(buf, 10, &ratio);
6445	if (err)
6446		return err;
6447	if (ratio > 100)
6448		return -ERANGE;
6449
6450	s->remote_node_defrag_ratio = ratio * 10;
6451
6452	return length;
6453}
6454SLAB_ATTR(remote_node_defrag_ratio);
6455#endif
6456
6457#ifdef CONFIG_SLUB_STATS
6458static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
6459{
6460	unsigned long sum  = 0;
6461	int cpu;
6462	int len = 0;
6463	int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
6464
6465	if (!data)
6466		return -ENOMEM;
6467
6468	for_each_online_cpu(cpu) {
6469		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
6470
6471		data[cpu] = x;
6472		sum += x;
6473	}
6474
6475	len += sysfs_emit_at(buf, len, "%lu", sum);
6476
6477#ifdef CONFIG_SMP
6478	for_each_online_cpu(cpu) {
6479		if (data[cpu])
6480			len += sysfs_emit_at(buf, len, " C%d=%u",
6481					     cpu, data[cpu]);
6482	}
6483#endif
6484	kfree(data);
6485	len += sysfs_emit_at(buf, len, "\n");
6486
6487	return len;
6488}
6489
6490static void clear_stat(struct kmem_cache *s, enum stat_item si)
6491{
6492	int cpu;
6493
6494	for_each_online_cpu(cpu)
6495		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
6496}
6497
6498#define STAT_ATTR(si, text) 					\
6499static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
6500{								\
6501	return show_stat(s, buf, si);				\
6502}								\
6503static ssize_t text##_store(struct kmem_cache *s,		\
6504				const char *buf, size_t length)	\
6505{								\
6506	if (buf[0] != '0')					\
6507		return -EINVAL;					\
6508	clear_stat(s, si);					\
6509	return length;						\
6510}								\
6511SLAB_ATTR(text);						\
6512
6513STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
6514STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
6515STAT_ATTR(FREE_FASTPATH, free_fastpath);
6516STAT_ATTR(FREE_SLOWPATH, free_slowpath);
6517STAT_ATTR(FREE_FROZEN, free_frozen);
6518STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
6519STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
6520STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
6521STAT_ATTR(ALLOC_SLAB, alloc_slab);
6522STAT_ATTR(ALLOC_REFILL, alloc_refill);
6523STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
6524STAT_ATTR(FREE_SLAB, free_slab);
6525STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
6526STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
6527STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
6528STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
6529STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
6530STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
6531STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
6532STAT_ATTR(ORDER_FALLBACK, order_fallback);
6533STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
6534STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
6535STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
6536STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
6537STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
6538STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
6539#endif	/* CONFIG_SLUB_STATS */
6540
6541#ifdef CONFIG_KFENCE
6542static ssize_t skip_kfence_show(struct kmem_cache *s, char *buf)
6543{
6544	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_SKIP_KFENCE));
6545}
6546
6547static ssize_t skip_kfence_store(struct kmem_cache *s,
6548			const char *buf, size_t length)
6549{
6550	int ret = length;
6551
6552	if (buf[0] == '0')
6553		s->flags &= ~SLAB_SKIP_KFENCE;
6554	else if (buf[0] == '1')
6555		s->flags |= SLAB_SKIP_KFENCE;
6556	else
6557		ret = -EINVAL;
6558
6559	return ret;
6560}
6561SLAB_ATTR(skip_kfence);
6562#endif
6563
6564static struct attribute *slab_attrs[] = {
6565	&slab_size_attr.attr,
6566	&object_size_attr.attr,
6567	&objs_per_slab_attr.attr,
6568	&order_attr.attr,
6569	&min_partial_attr.attr,
6570	&cpu_partial_attr.attr,
 
6571	&objects_partial_attr.attr,
6572	&partial_attr.attr,
6573	&cpu_slabs_attr.attr,
6574	&ctor_attr.attr,
6575	&aliases_attr.attr,
6576	&align_attr.attr,
6577	&hwcache_align_attr.attr,
6578	&reclaim_account_attr.attr,
6579	&destroy_by_rcu_attr.attr,
6580	&shrink_attr.attr,
 
6581	&slabs_cpu_partial_attr.attr,
6582#ifdef CONFIG_SLUB_DEBUG
6583	&total_objects_attr.attr,
6584	&objects_attr.attr,
6585	&slabs_attr.attr,
6586	&sanity_checks_attr.attr,
6587	&trace_attr.attr,
6588	&red_zone_attr.attr,
6589	&poison_attr.attr,
6590	&store_user_attr.attr,
6591	&validate_attr.attr,
 
 
6592#endif
6593#ifdef CONFIG_ZONE_DMA
6594	&cache_dma_attr.attr,
6595#endif
6596#ifdef CONFIG_NUMA
6597	&remote_node_defrag_ratio_attr.attr,
6598#endif
6599#ifdef CONFIG_SLUB_STATS
6600	&alloc_fastpath_attr.attr,
6601	&alloc_slowpath_attr.attr,
6602	&free_fastpath_attr.attr,
6603	&free_slowpath_attr.attr,
6604	&free_frozen_attr.attr,
6605	&free_add_partial_attr.attr,
6606	&free_remove_partial_attr.attr,
6607	&alloc_from_partial_attr.attr,
6608	&alloc_slab_attr.attr,
6609	&alloc_refill_attr.attr,
6610	&alloc_node_mismatch_attr.attr,
6611	&free_slab_attr.attr,
6612	&cpuslab_flush_attr.attr,
6613	&deactivate_full_attr.attr,
6614	&deactivate_empty_attr.attr,
6615	&deactivate_to_head_attr.attr,
6616	&deactivate_to_tail_attr.attr,
6617	&deactivate_remote_frees_attr.attr,
6618	&deactivate_bypass_attr.attr,
6619	&order_fallback_attr.attr,
6620	&cmpxchg_double_fail_attr.attr,
6621	&cmpxchg_double_cpu_fail_attr.attr,
6622	&cpu_partial_alloc_attr.attr,
6623	&cpu_partial_free_attr.attr,
6624	&cpu_partial_node_attr.attr,
6625	&cpu_partial_drain_attr.attr,
6626#endif
6627#ifdef CONFIG_FAILSLAB
6628	&failslab_attr.attr,
6629#endif
6630#ifdef CONFIG_HARDENED_USERCOPY
6631	&usersize_attr.attr,
6632#endif
6633#ifdef CONFIG_KFENCE
6634	&skip_kfence_attr.attr,
6635#endif
6636
6637	NULL
6638};
6639
6640static const struct attribute_group slab_attr_group = {
6641	.attrs = slab_attrs,
6642};
6643
6644static ssize_t slab_attr_show(struct kobject *kobj,
6645				struct attribute *attr,
6646				char *buf)
6647{
6648	struct slab_attribute *attribute;
6649	struct kmem_cache *s;
 
6650
6651	attribute = to_slab_attr(attr);
6652	s = to_slab(kobj);
6653
6654	if (!attribute->show)
6655		return -EIO;
6656
6657	return attribute->show(s, buf);
 
 
6658}
6659
6660static ssize_t slab_attr_store(struct kobject *kobj,
6661				struct attribute *attr,
6662				const char *buf, size_t len)
6663{
6664	struct slab_attribute *attribute;
6665	struct kmem_cache *s;
 
6666
6667	attribute = to_slab_attr(attr);
6668	s = to_slab(kobj);
6669
6670	if (!attribute->store)
6671		return -EIO;
6672
6673	return attribute->store(s, buf, len);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6674}
6675
6676static void kmem_cache_release(struct kobject *k)
6677{
6678	slab_kmem_cache_release(to_slab(k));
6679}
6680
6681static const struct sysfs_ops slab_sysfs_ops = {
6682	.show = slab_attr_show,
6683	.store = slab_attr_store,
6684};
6685
6686static const struct kobj_type slab_ktype = {
6687	.sysfs_ops = &slab_sysfs_ops,
6688	.release = kmem_cache_release,
6689};
6690
 
 
 
 
 
 
 
 
 
 
 
 
 
6691static struct kset *slab_kset;
6692
6693static inline struct kset *cache_kset(struct kmem_cache *s)
6694{
 
 
 
 
6695	return slab_kset;
6696}
6697
6698#define ID_STR_LENGTH 32
6699
6700/* Create a unique string id for a slab cache:
6701 *
6702 * Format	:[flags-]size
6703 */
6704static char *create_unique_id(struct kmem_cache *s)
6705{
6706	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
6707	char *p = name;
6708
6709	if (!name)
6710		return ERR_PTR(-ENOMEM);
6711
6712	*p++ = ':';
6713	/*
6714	 * First flags affecting slabcache operations. We will only
6715	 * get here for aliasable slabs so we do not need to support
6716	 * too many flags. The flags here must cover all flags that
6717	 * are matched during merging to guarantee that the id is
6718	 * unique.
6719	 */
6720	if (s->flags & SLAB_CACHE_DMA)
6721		*p++ = 'd';
6722	if (s->flags & SLAB_CACHE_DMA32)
6723		*p++ = 'D';
6724	if (s->flags & SLAB_RECLAIM_ACCOUNT)
6725		*p++ = 'a';
6726	if (s->flags & SLAB_CONSISTENCY_CHECKS)
6727		*p++ = 'F';
6728	if (s->flags & SLAB_ACCOUNT)
6729		*p++ = 'A';
6730	if (p != name + 1)
6731		*p++ = '-';
6732	p += snprintf(p, ID_STR_LENGTH - (p - name), "%07u", s->size);
6733
6734	if (WARN_ON(p > name + ID_STR_LENGTH - 1)) {
6735		kfree(name);
6736		return ERR_PTR(-EINVAL);
6737	}
6738	kmsan_unpoison_memory(name, p - name);
6739	return name;
6740}
6741
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6742static int sysfs_slab_add(struct kmem_cache *s)
6743{
6744	int err;
6745	const char *name;
6746	struct kset *kset = cache_kset(s);
6747	int unmergeable = slab_unmergeable(s);
6748
 
 
 
 
 
 
 
6749	if (!unmergeable && disable_higher_order_debug &&
6750			(slub_debug & DEBUG_METADATA_FLAGS))
6751		unmergeable = 1;
6752
6753	if (unmergeable) {
6754		/*
6755		 * Slabcache can never be merged so we can use the name proper.
6756		 * This is typically the case for debug situations. In that
6757		 * case we can catch duplicate names easily.
6758		 */
6759		sysfs_remove_link(&slab_kset->kobj, s->name);
6760		name = s->name;
6761	} else {
6762		/*
6763		 * Create a unique name for the slab as a target
6764		 * for the symlinks.
6765		 */
6766		name = create_unique_id(s);
6767		if (IS_ERR(name))
6768			return PTR_ERR(name);
6769	}
6770
6771	s->kobj.kset = kset;
6772	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
6773	if (err)
6774		goto out;
6775
6776	err = sysfs_create_group(&s->kobj, &slab_attr_group);
6777	if (err)
6778		goto out_del_kobj;
6779
 
 
 
 
 
 
 
 
 
 
 
6780	if (!unmergeable) {
6781		/* Setup first alias */
6782		sysfs_slab_alias(s, s->name);
6783	}
6784out:
6785	if (!unmergeable)
6786		kfree(name);
6787	return err;
6788out_del_kobj:
6789	kobject_del(&s->kobj);
6790	goto out;
6791}
6792
6793void sysfs_slab_unlink(struct kmem_cache *s)
6794{
6795	if (slab_state >= FULL)
6796		kobject_del(&s->kobj);
 
 
 
 
 
 
 
6797}
6798
6799void sysfs_slab_release(struct kmem_cache *s)
6800{
6801	if (slab_state >= FULL)
6802		kobject_put(&s->kobj);
6803}
6804
6805/*
6806 * Need to buffer aliases during bootup until sysfs becomes
6807 * available lest we lose that information.
6808 */
6809struct saved_alias {
6810	struct kmem_cache *s;
6811	const char *name;
6812	struct saved_alias *next;
6813};
6814
6815static struct saved_alias *alias_list;
6816
6817static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
6818{
6819	struct saved_alias *al;
6820
6821	if (slab_state == FULL) {
6822		/*
6823		 * If we have a leftover link then remove it.
6824		 */
6825		sysfs_remove_link(&slab_kset->kobj, name);
6826		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
6827	}
6828
6829	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
6830	if (!al)
6831		return -ENOMEM;
6832
6833	al->s = s;
6834	al->name = name;
6835	al->next = alias_list;
6836	alias_list = al;
6837	kmsan_unpoison_memory(al, sizeof(*al));
6838	return 0;
6839}
6840
6841static int __init slab_sysfs_init(void)
6842{
6843	struct kmem_cache *s;
6844	int err;
6845
6846	mutex_lock(&slab_mutex);
6847
6848	slab_kset = kset_create_and_add("slab", NULL, kernel_kobj);
6849	if (!slab_kset) {
6850		mutex_unlock(&slab_mutex);
6851		pr_err("Cannot register slab subsystem.\n");
6852		return -ENOMEM;
6853	}
6854
6855	slab_state = FULL;
6856
6857	list_for_each_entry(s, &slab_caches, list) {
6858		err = sysfs_slab_add(s);
6859		if (err)
6860			pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
6861			       s->name);
6862	}
6863
6864	while (alias_list) {
6865		struct saved_alias *al = alias_list;
6866
6867		alias_list = alias_list->next;
6868		err = sysfs_slab_alias(al->s, al->name);
6869		if (err)
6870			pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
6871			       al->name);
6872		kfree(al);
6873	}
6874
6875	mutex_unlock(&slab_mutex);
 
6876	return 0;
6877}
6878late_initcall(slab_sysfs_init);
6879#endif /* SLAB_SUPPORTS_SYSFS */
6880
6881#if defined(CONFIG_SLUB_DEBUG) && defined(CONFIG_DEBUG_FS)
6882static int slab_debugfs_show(struct seq_file *seq, void *v)
6883{
6884	struct loc_track *t = seq->private;
6885	struct location *l;
6886	unsigned long idx;
6887
6888	idx = (unsigned long) t->idx;
6889	if (idx < t->count) {
6890		l = &t->loc[idx];
6891
6892		seq_printf(seq, "%7ld ", l->count);
6893
6894		if (l->addr)
6895			seq_printf(seq, "%pS", (void *)l->addr);
6896		else
6897			seq_puts(seq, "<not-available>");
6898
6899		if (l->waste)
6900			seq_printf(seq, " waste=%lu/%lu",
6901				l->count * l->waste, l->waste);
6902
6903		if (l->sum_time != l->min_time) {
6904			seq_printf(seq, " age=%ld/%llu/%ld",
6905				l->min_time, div_u64(l->sum_time, l->count),
6906				l->max_time);
6907		} else
6908			seq_printf(seq, " age=%ld", l->min_time);
6909
6910		if (l->min_pid != l->max_pid)
6911			seq_printf(seq, " pid=%ld-%ld", l->min_pid, l->max_pid);
6912		else
6913			seq_printf(seq, " pid=%ld",
6914				l->min_pid);
6915
6916		if (num_online_cpus() > 1 && !cpumask_empty(to_cpumask(l->cpus)))
6917			seq_printf(seq, " cpus=%*pbl",
6918				 cpumask_pr_args(to_cpumask(l->cpus)));
6919
6920		if (nr_online_nodes > 1 && !nodes_empty(l->nodes))
6921			seq_printf(seq, " nodes=%*pbl",
6922				 nodemask_pr_args(&l->nodes));
6923
6924#ifdef CONFIG_STACKDEPOT
6925		{
6926			depot_stack_handle_t handle;
6927			unsigned long *entries;
6928			unsigned int nr_entries, j;
6929
6930			handle = READ_ONCE(l->handle);
6931			if (handle) {
6932				nr_entries = stack_depot_fetch(handle, &entries);
6933				seq_puts(seq, "\n");
6934				for (j = 0; j < nr_entries; j++)
6935					seq_printf(seq, "        %pS\n", (void *)entries[j]);
6936			}
6937		}
6938#endif
6939		seq_puts(seq, "\n");
6940	}
6941
6942	if (!idx && !t->count)
6943		seq_puts(seq, "No data\n");
6944
6945	return 0;
6946}
6947
6948static void slab_debugfs_stop(struct seq_file *seq, void *v)
6949{
6950}
6951
6952static void *slab_debugfs_next(struct seq_file *seq, void *v, loff_t *ppos)
6953{
6954	struct loc_track *t = seq->private;
6955
6956	t->idx = ++(*ppos);
6957	if (*ppos <= t->count)
6958		return ppos;
6959
6960	return NULL;
6961}
6962
6963static int cmp_loc_by_count(const void *a, const void *b, const void *data)
6964{
6965	struct location *loc1 = (struct location *)a;
6966	struct location *loc2 = (struct location *)b;
6967
6968	if (loc1->count > loc2->count)
6969		return -1;
6970	else
6971		return 1;
6972}
6973
6974static void *slab_debugfs_start(struct seq_file *seq, loff_t *ppos)
6975{
6976	struct loc_track *t = seq->private;
6977
6978	t->idx = *ppos;
6979	return ppos;
6980}
6981
6982static const struct seq_operations slab_debugfs_sops = {
6983	.start  = slab_debugfs_start,
6984	.next   = slab_debugfs_next,
6985	.stop   = slab_debugfs_stop,
6986	.show   = slab_debugfs_show,
6987};
6988
6989static int slab_debug_trace_open(struct inode *inode, struct file *filep)
6990{
6991
6992	struct kmem_cache_node *n;
6993	enum track_item alloc;
6994	int node;
6995	struct loc_track *t = __seq_open_private(filep, &slab_debugfs_sops,
6996						sizeof(struct loc_track));
6997	struct kmem_cache *s = file_inode(filep)->i_private;
6998	unsigned long *obj_map;
6999
7000	if (!t)
7001		return -ENOMEM;
7002
7003	obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
7004	if (!obj_map) {
7005		seq_release_private(inode, filep);
7006		return -ENOMEM;
7007	}
7008
7009	if (strcmp(filep->f_path.dentry->d_name.name, "alloc_traces") == 0)
7010		alloc = TRACK_ALLOC;
7011	else
7012		alloc = TRACK_FREE;
7013
7014	if (!alloc_loc_track(t, PAGE_SIZE / sizeof(struct location), GFP_KERNEL)) {
7015		bitmap_free(obj_map);
7016		seq_release_private(inode, filep);
7017		return -ENOMEM;
7018	}
7019
7020	for_each_kmem_cache_node(s, node, n) {
7021		unsigned long flags;
7022		struct slab *slab;
7023
7024		if (!node_nr_slabs(n))
7025			continue;
7026
7027		spin_lock_irqsave(&n->list_lock, flags);
7028		list_for_each_entry(slab, &n->partial, slab_list)
7029			process_slab(t, s, slab, alloc, obj_map);
7030		list_for_each_entry(slab, &n->full, slab_list)
7031			process_slab(t, s, slab, alloc, obj_map);
7032		spin_unlock_irqrestore(&n->list_lock, flags);
7033	}
7034
7035	/* Sort locations by count */
7036	sort_r(t->loc, t->count, sizeof(struct location),
7037		cmp_loc_by_count, NULL, NULL);
7038
7039	bitmap_free(obj_map);
7040	return 0;
7041}
7042
7043static int slab_debug_trace_release(struct inode *inode, struct file *file)
7044{
7045	struct seq_file *seq = file->private_data;
7046	struct loc_track *t = seq->private;
7047
7048	free_loc_track(t);
7049	return seq_release_private(inode, file);
7050}
7051
7052static const struct file_operations slab_debugfs_fops = {
7053	.open    = slab_debug_trace_open,
7054	.read    = seq_read,
7055	.llseek  = seq_lseek,
7056	.release = slab_debug_trace_release,
7057};
7058
7059static void debugfs_slab_add(struct kmem_cache *s)
7060{
7061	struct dentry *slab_cache_dir;
7062
7063	if (unlikely(!slab_debugfs_root))
7064		return;
7065
7066	slab_cache_dir = debugfs_create_dir(s->name, slab_debugfs_root);
7067
7068	debugfs_create_file("alloc_traces", 0400,
7069		slab_cache_dir, s, &slab_debugfs_fops);
7070
7071	debugfs_create_file("free_traces", 0400,
7072		slab_cache_dir, s, &slab_debugfs_fops);
7073}
7074
7075void debugfs_slab_release(struct kmem_cache *s)
7076{
7077	debugfs_lookup_and_remove(s->name, slab_debugfs_root);
7078}
7079
7080static int __init slab_debugfs_init(void)
7081{
7082	struct kmem_cache *s;
7083
7084	slab_debugfs_root = debugfs_create_dir("slab", NULL);
7085
7086	list_for_each_entry(s, &slab_caches, list)
7087		if (s->flags & SLAB_STORE_USER)
7088			debugfs_slab_add(s);
7089
7090	return 0;
7091
7092}
7093__initcall(slab_debugfs_init);
7094#endif
7095/*
7096 * The /proc/slabinfo ABI
7097 */
7098#ifdef CONFIG_SLUB_DEBUG
7099void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
7100{
7101	unsigned long nr_slabs = 0;
7102	unsigned long nr_objs = 0;
7103	unsigned long nr_free = 0;
7104	int node;
7105	struct kmem_cache_node *n;
7106
7107	for_each_kmem_cache_node(s, node, n) {
7108		nr_slabs += node_nr_slabs(n);
7109		nr_objs += node_nr_objs(n);
7110		nr_free += count_partial(n, count_free);
7111	}
7112
7113	sinfo->active_objs = nr_objs - nr_free;
7114	sinfo->num_objs = nr_objs;
7115	sinfo->active_slabs = nr_slabs;
7116	sinfo->num_slabs = nr_slabs;
7117	sinfo->objects_per_slab = oo_objects(s->oo);
7118	sinfo->cache_order = oo_order(s->oo);
7119}
7120
7121void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
7122{
7123}
7124
7125ssize_t slabinfo_write(struct file *file, const char __user *buffer,
7126		       size_t count, loff_t *ppos)
7127{
7128	return -EIO;
7129}
7130#endif /* CONFIG_SLUB_DEBUG */