Linux Audio

Check our new training course

Loading...
v4.17
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 *  linux/mm/page_io.c
  4 *
  5 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
  6 *
  7 *  Swap reorganised 29.12.95, 
  8 *  Asynchronous swapping added 30.12.95. Stephen Tweedie
  9 *  Removed race in async swapping. 14.4.1996. Bruno Haible
 10 *  Add swap of shared pages through the page cache. 20.2.1998. Stephen Tweedie
 11 *  Always use brw_page, life becomes simpler. 12 May 1998 Eric Biederman
 12 */
 13
 14#include <linux/mm.h>
 15#include <linux/kernel_stat.h>
 16#include <linux/gfp.h>
 17#include <linux/pagemap.h>
 18#include <linux/swap.h>
 19#include <linux/bio.h>
 20#include <linux/swapops.h>
 21#include <linux/buffer_head.h>
 22#include <linux/writeback.h>
 23#include <linux/frontswap.h>
 24#include <linux/blkdev.h>
 
 25#include <linux/uio.h>
 26#include <linux/sched/task.h>
 27#include <asm/pgtable.h>
 
 
 28
 29static struct bio *get_swap_bio(gfp_t gfp_flags,
 30				struct page *page, bio_end_io_t end_io)
 31{
 32	int i, nr = hpage_nr_pages(page);
 33	struct bio *bio;
 34
 35	bio = bio_alloc(gfp_flags, nr);
 36	if (bio) {
 37		struct block_device *bdev;
 38
 39		bio->bi_iter.bi_sector = map_swap_page(page, &bdev);
 40		bio_set_dev(bio, bdev);
 41		bio->bi_iter.bi_sector <<= PAGE_SHIFT - 9;
 42		bio->bi_end_io = end_io;
 43
 44		for (i = 0; i < nr; i++)
 45			bio_add_page(bio, page + i, PAGE_SIZE, 0);
 46		VM_BUG_ON(bio->bi_iter.bi_size != PAGE_SIZE * nr);
 47	}
 48	return bio;
 49}
 50
 51void end_swap_bio_write(struct bio *bio)
 52{
 53	struct page *page = bio_first_page_all(bio);
 54
 55	if (bio->bi_status) {
 56		SetPageError(page);
 57		/*
 58		 * We failed to write the page out to swap-space.
 59		 * Re-dirty the page in order to avoid it being reclaimed.
 60		 * Also print a dire warning that things will go BAD (tm)
 61		 * very quickly.
 62		 *
 63		 * Also clear PG_reclaim to avoid rotate_reclaimable_page()
 64		 */
 65		set_page_dirty(page);
 66		pr_alert("Write-error on swap-device (%u:%u:%llu)\n",
 67			 MAJOR(bio_dev(bio)), MINOR(bio_dev(bio)),
 68			 (unsigned long long)bio->bi_iter.bi_sector);
 69		ClearPageReclaim(page);
 70	}
 71	end_page_writeback(page);
 72	bio_put(bio);
 73}
 74
 75static void swap_slot_free_notify(struct page *page)
 76{
 77	struct swap_info_struct *sis;
 78	struct gendisk *disk;
 79
 80	/*
 81	 * There is no guarantee that the page is in swap cache - the software
 82	 * suspend code (at least) uses end_swap_bio_read() against a non-
 83	 * swapcache page.  So we must check PG_swapcache before proceeding with
 84	 * this optimization.
 85	 */
 86	if (unlikely(!PageSwapCache(page)))
 87		return;
 88
 89	sis = page_swap_info(page);
 90	if (!(sis->flags & SWP_BLKDEV))
 91		return;
 92
 93	/*
 94	 * The swap subsystem performs lazy swap slot freeing,
 95	 * expecting that the page will be swapped out again.
 96	 * So we can avoid an unnecessary write if the page
 97	 * isn't redirtied.
 98	 * This is good for real swap storage because we can
 99	 * reduce unnecessary I/O and enhance wear-leveling
100	 * if an SSD is used as the as swap device.
101	 * But if in-memory swap device (eg zram) is used,
102	 * this causes a duplicated copy between uncompressed
103	 * data in VM-owned memory and compressed data in
104	 * zram-owned memory.  So let's free zram-owned memory
105	 * and make the VM-owned decompressed page *dirty*,
106	 * so the page should be swapped out somewhere again if
107	 * we again wish to reclaim it.
108	 */
109	disk = sis->bdev->bd_disk;
110	if (disk->fops->swap_slot_free_notify) {
111		swp_entry_t entry;
112		unsigned long offset;
113
114		entry.val = page_private(page);
115		offset = swp_offset(entry);
116
117		SetPageDirty(page);
118		disk->fops->swap_slot_free_notify(sis->bdev,
119				offset);
120	}
121}
122
123static void end_swap_bio_read(struct bio *bio)
124{
125	struct page *page = bio_first_page_all(bio);
126	struct task_struct *waiter = bio->bi_private;
127
128	if (bio->bi_status) {
129		SetPageError(page);
130		ClearPageUptodate(page);
131		pr_alert("Read-error on swap-device (%u:%u:%llu)\n",
132			 MAJOR(bio_dev(bio)), MINOR(bio_dev(bio)),
133			 (unsigned long long)bio->bi_iter.bi_sector);
134		goto out;
135	}
 
 
136
137	SetPageUptodate(page);
138	swap_slot_free_notify(page);
139out:
140	unlock_page(page);
141	WRITE_ONCE(bio->bi_private, NULL);
142	bio_put(bio);
143	wake_up_process(waiter);
144	put_task_struct(waiter);
145}
146
147int generic_swapfile_activate(struct swap_info_struct *sis,
148				struct file *swap_file,
149				sector_t *span)
150{
151	struct address_space *mapping = swap_file->f_mapping;
152	struct inode *inode = mapping->host;
153	unsigned blocks_per_page;
154	unsigned long page_no;
155	unsigned blkbits;
156	sector_t probe_block;
157	sector_t last_block;
158	sector_t lowest_block = -1;
159	sector_t highest_block = 0;
160	int nr_extents = 0;
161	int ret;
162
163	blkbits = inode->i_blkbits;
164	blocks_per_page = PAGE_SIZE >> blkbits;
165
166	/*
167	 * Map all the blocks into the extent list.  This code doesn't try
168	 * to be very smart.
169	 */
170	probe_block = 0;
171	page_no = 0;
172	last_block = i_size_read(inode) >> blkbits;
173	while ((probe_block + blocks_per_page) <= last_block &&
174			page_no < sis->max) {
175		unsigned block_in_page;
176		sector_t first_block;
177
178		cond_resched();
179
180		first_block = bmap(inode, probe_block);
181		if (first_block == 0)
 
182			goto bad_bmap;
183
184		/*
185		 * It must be PAGE_SIZE aligned on-disk
186		 */
187		if (first_block & (blocks_per_page - 1)) {
188			probe_block++;
189			goto reprobe;
190		}
191
192		for (block_in_page = 1; block_in_page < blocks_per_page;
193					block_in_page++) {
194			sector_t block;
195
196			block = bmap(inode, probe_block + block_in_page);
197			if (block == 0)
 
198				goto bad_bmap;
 
199			if (block != first_block + block_in_page) {
200				/* Discontiguity */
201				probe_block++;
202				goto reprobe;
203			}
204		}
205
206		first_block >>= (PAGE_SHIFT - blkbits);
207		if (page_no) {	/* exclude the header page */
208			if (first_block < lowest_block)
209				lowest_block = first_block;
210			if (first_block > highest_block)
211				highest_block = first_block;
212		}
213
214		/*
215		 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
216		 */
217		ret = add_swap_extent(sis, page_no, 1, first_block);
218		if (ret < 0)
219			goto out;
220		nr_extents += ret;
221		page_no++;
222		probe_block += blocks_per_page;
223reprobe:
224		continue;
225	}
226	ret = nr_extents;
227	*span = 1 + highest_block - lowest_block;
228	if (page_no == 0)
229		page_no = 1;	/* force Empty message */
230	sis->max = page_no;
231	sis->pages = page_no - 1;
232	sis->highest_bit = page_no - 1;
233out:
234	return ret;
235bad_bmap:
236	pr_err("swapon: swapfile has holes\n");
237	ret = -EINVAL;
238	goto out;
239}
240
241/*
242 * We may have stale swap cache pages in memory: notice
243 * them here and get rid of the unnecessary final write.
244 */
245int swap_writepage(struct page *page, struct writeback_control *wbc)
246{
247	int ret = 0;
 
248
249	if (try_to_free_swap(page)) {
250		unlock_page(page);
251		goto out;
252	}
253	if (frontswap_store(page) == 0) {
254		set_page_writeback(page);
255		unlock_page(page);
256		end_page_writeback(page);
257		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
258	}
259	ret = __swap_writepage(page, wbc, end_swap_bio_write);
260out:
261	return ret;
262}
263
264static sector_t swap_page_sector(struct page *page)
265{
266	return (sector_t)__page_file_index(page) << (PAGE_SHIFT - 9);
267}
268
269static inline void count_swpout_vm_event(struct page *page)
270{
271#ifdef CONFIG_TRANSPARENT_HUGEPAGE
272	if (unlikely(PageTransHuge(page)))
 
273		count_vm_event(THP_SWPOUT);
 
274#endif
275	count_vm_events(PSWPOUT, hpage_nr_pages(page));
276}
277
278int __swap_writepage(struct page *page, struct writeback_control *wbc,
279		bio_end_io_t end_write_func)
280{
281	struct bio *bio;
282	int ret;
283	struct swap_info_struct *sis = page_swap_info(page);
 
 
 
284
285	VM_BUG_ON_PAGE(!PageSwapCache(page), page);
286	if (sis->flags & SWP_FILE) {
287		struct kiocb kiocb;
288		struct file *swap_file = sis->swap_file;
289		struct address_space *mapping = swap_file->f_mapping;
290		struct bio_vec bv = {
291			.bv_page = page,
292			.bv_len  = PAGE_SIZE,
293			.bv_offset = 0
294		};
295		struct iov_iter from;
296
297		iov_iter_bvec(&from, ITER_BVEC | WRITE, &bv, 1, PAGE_SIZE);
298		init_sync_kiocb(&kiocb, swap_file);
299		kiocb.ki_pos = page_file_offset(page);
300
301		set_page_writeback(page);
302		unlock_page(page);
303		ret = mapping->a_ops->direct_IO(&kiocb, &from);
304		if (ret == PAGE_SIZE) {
305			count_vm_event(PSWPOUT);
306			ret = 0;
307		} else {
308			/*
309			 * In the case of swap-over-nfs, this can be a
310			 * temporary failure if the system has limited
311			 * memory for allocating transmit buffers.
312			 * Mark the page dirty and avoid
313			 * rotate_reclaimable_page but rate-limit the
314			 * messages but do not flag PageError like
315			 * the normal direct-to-bio case as it could
316			 * be temporary.
317			 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
318			set_page_dirty(page);
319			ClearPageReclaim(page);
320			pr_err_ratelimited("Write error on dio swapfile (%llu)\n",
321					   page_file_offset(page));
322		}
323		end_page_writeback(page);
324		return ret;
325	}
326
327	ret = bdev_write_page(sis->bdev, swap_page_sector(page), page, wbc);
328	if (!ret) {
329		count_swpout_vm_event(page);
330		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
331	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
332
333	ret = 0;
334	bio = get_swap_bio(GFP_NOIO, page, end_write_func);
335	if (bio == NULL) {
336		set_page_dirty(page);
337		unlock_page(page);
338		ret = -ENOMEM;
339		goto out;
340	}
341	bio->bi_opf = REQ_OP_WRITE | wbc_to_write_flags(wbc);
342	count_swpout_vm_event(page);
343	set_page_writeback(page);
344	unlock_page(page);
345	submit_bio(bio);
346out:
347	return ret;
 
 
 
 
348}
349
350int swap_readpage(struct page *page, bool synchronous)
 
351{
352	struct bio *bio;
353	int ret = 0;
354	struct swap_info_struct *sis = page_swap_info(page);
355	blk_qc_t qc;
356	struct gendisk *disk;
357
358	VM_BUG_ON_PAGE(!PageSwapCache(page) && !synchronous, page);
359	VM_BUG_ON_PAGE(!PageLocked(page), page);
360	VM_BUG_ON_PAGE(PageUptodate(page), page);
361	if (frontswap_load(page) == 0) {
362		SetPageUptodate(page);
363		unlock_page(page);
364		goto out;
365	}
366
367	if (sis->flags & SWP_FILE) {
368		struct file *swap_file = sis->swap_file;
369		struct address_space *mapping = swap_file->f_mapping;
370
371		ret = mapping->a_ops->readpage(swap_file, page);
372		if (!ret)
373			count_vm_event(PSWPIN);
374		return ret;
375	}
376
377	ret = bdev_read_page(sis->bdev, swap_page_sector(page), page);
378	if (!ret) {
379		if (trylock_page(page)) {
380			swap_slot_free_notify(page);
381			unlock_page(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
382		}
 
 
 
 
383
384		count_vm_event(PSWPIN);
385		return 0;
 
386	}
 
 
387
388	ret = 0;
389	bio = get_swap_bio(GFP_KERNEL, page, end_swap_bio_read);
390	if (bio == NULL) {
391		unlock_page(page);
392		ret = -ENOMEM;
393		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
394	}
395	disk = bio->bi_disk;
 
 
 
 
 
 
 
 
 
 
 
 
396	/*
397	 * Keep this task valid during swap readpage because the oom killer may
398	 * attempt to access it in the page fault retry time check.
399	 */
400	get_task_struct(current);
401	bio->bi_private = current;
402	bio_set_op_attrs(bio, REQ_OP_READ, 0);
403	count_vm_event(PSWPIN);
404	bio_get(bio);
405	qc = submit_bio(bio);
406	while (synchronous) {
407		set_current_state(TASK_UNINTERRUPTIBLE);
408		if (!READ_ONCE(bio->bi_private))
409			break;
410
411		if (!blk_poll(disk->queue, qc))
412			break;
413	}
414	__set_current_state(TASK_RUNNING);
415	bio_put(bio);
416
417out:
418	return ret;
 
 
 
 
419}
420
421int swap_set_page_dirty(struct page *page)
 
422{
423	struct swap_info_struct *sis = page_swap_info(page);
 
 
 
 
 
 
 
424
425	if (sis->flags & SWP_FILE) {
426		struct address_space *mapping = sis->swap_file->f_mapping;
427
428		VM_BUG_ON_PAGE(!PageSwapCache(page), page);
429		return mapping->a_ops->set_page_dirty(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
430	} else {
431		return __set_page_dirty_no_writeback(page);
432	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
433}
v6.8
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 *  linux/mm/page_io.c
  4 *
  5 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
  6 *
  7 *  Swap reorganised 29.12.95, 
  8 *  Asynchronous swapping added 30.12.95. Stephen Tweedie
  9 *  Removed race in async swapping. 14.4.1996. Bruno Haible
 10 *  Add swap of shared pages through the page cache. 20.2.1998. Stephen Tweedie
 11 *  Always use brw_page, life becomes simpler. 12 May 1998 Eric Biederman
 12 */
 13
 14#include <linux/mm.h>
 15#include <linux/kernel_stat.h>
 16#include <linux/gfp.h>
 17#include <linux/pagemap.h>
 18#include <linux/swap.h>
 19#include <linux/bio.h>
 20#include <linux/swapops.h>
 
 21#include <linux/writeback.h>
 
 22#include <linux/blkdev.h>
 23#include <linux/psi.h>
 24#include <linux/uio.h>
 25#include <linux/sched/task.h>
 26#include <linux/delayacct.h>
 27#include <linux/zswap.h>
 28#include "swap.h"
 29
 30static void __end_swap_bio_write(struct bio *bio)
 
 31{
 32	struct folio *folio = bio_first_folio_all(bio);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 33
 34	if (bio->bi_status) {
 
 35		/*
 36		 * We failed to write the page out to swap-space.
 37		 * Re-dirty the page in order to avoid it being reclaimed.
 38		 * Also print a dire warning that things will go BAD (tm)
 39		 * very quickly.
 40		 *
 41		 * Also clear PG_reclaim to avoid folio_rotate_reclaimable()
 42		 */
 43		folio_mark_dirty(folio);
 44		pr_alert_ratelimited("Write-error on swap-device (%u:%u:%llu)\n",
 45				     MAJOR(bio_dev(bio)), MINOR(bio_dev(bio)),
 46				     (unsigned long long)bio->bi_iter.bi_sector);
 47		folio_clear_reclaim(folio);
 48	}
 49	folio_end_writeback(folio);
 
 50}
 51
 52static void end_swap_bio_write(struct bio *bio)
 53{
 54	__end_swap_bio_write(bio);
 55	bio_put(bio);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 56}
 57
 58static void __end_swap_bio_read(struct bio *bio)
 59{
 60	struct folio *folio = bio_first_folio_all(bio);
 
 61
 62	if (bio->bi_status) {
 63		pr_alert_ratelimited("Read-error on swap-device (%u:%u:%llu)\n",
 64				     MAJOR(bio_dev(bio)), MINOR(bio_dev(bio)),
 65				     (unsigned long long)bio->bi_iter.bi_sector);
 66	} else {
 67		folio_mark_uptodate(folio);
 
 68	}
 69	folio_unlock(folio);
 70}
 71
 72static void end_swap_bio_read(struct bio *bio)
 73{
 74	__end_swap_bio_read(bio);
 
 
 75	bio_put(bio);
 
 
 76}
 77
 78int generic_swapfile_activate(struct swap_info_struct *sis,
 79				struct file *swap_file,
 80				sector_t *span)
 81{
 82	struct address_space *mapping = swap_file->f_mapping;
 83	struct inode *inode = mapping->host;
 84	unsigned blocks_per_page;
 85	unsigned long page_no;
 86	unsigned blkbits;
 87	sector_t probe_block;
 88	sector_t last_block;
 89	sector_t lowest_block = -1;
 90	sector_t highest_block = 0;
 91	int nr_extents = 0;
 92	int ret;
 93
 94	blkbits = inode->i_blkbits;
 95	blocks_per_page = PAGE_SIZE >> blkbits;
 96
 97	/*
 98	 * Map all the blocks into the extent tree.  This code doesn't try
 99	 * to be very smart.
100	 */
101	probe_block = 0;
102	page_no = 0;
103	last_block = i_size_read(inode) >> blkbits;
104	while ((probe_block + blocks_per_page) <= last_block &&
105			page_no < sis->max) {
106		unsigned block_in_page;
107		sector_t first_block;
108
109		cond_resched();
110
111		first_block = probe_block;
112		ret = bmap(inode, &first_block);
113		if (ret || !first_block)
114			goto bad_bmap;
115
116		/*
117		 * It must be PAGE_SIZE aligned on-disk
118		 */
119		if (first_block & (blocks_per_page - 1)) {
120			probe_block++;
121			goto reprobe;
122		}
123
124		for (block_in_page = 1; block_in_page < blocks_per_page;
125					block_in_page++) {
126			sector_t block;
127
128			block = probe_block + block_in_page;
129			ret = bmap(inode, &block);
130			if (ret || !block)
131				goto bad_bmap;
132
133			if (block != first_block + block_in_page) {
134				/* Discontiguity */
135				probe_block++;
136				goto reprobe;
137			}
138		}
139
140		first_block >>= (PAGE_SHIFT - blkbits);
141		if (page_no) {	/* exclude the header page */
142			if (first_block < lowest_block)
143				lowest_block = first_block;
144			if (first_block > highest_block)
145				highest_block = first_block;
146		}
147
148		/*
149		 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
150		 */
151		ret = add_swap_extent(sis, page_no, 1, first_block);
152		if (ret < 0)
153			goto out;
154		nr_extents += ret;
155		page_no++;
156		probe_block += blocks_per_page;
157reprobe:
158		continue;
159	}
160	ret = nr_extents;
161	*span = 1 + highest_block - lowest_block;
162	if (page_no == 0)
163		page_no = 1;	/* force Empty message */
164	sis->max = page_no;
165	sis->pages = page_no - 1;
166	sis->highest_bit = page_no - 1;
167out:
168	return ret;
169bad_bmap:
170	pr_err("swapon: swapfile has holes\n");
171	ret = -EINVAL;
172	goto out;
173}
174
175/*
176 * We may have stale swap cache pages in memory: notice
177 * them here and get rid of the unnecessary final write.
178 */
179int swap_writepage(struct page *page, struct writeback_control *wbc)
180{
181	struct folio *folio = page_folio(page);
182	int ret;
183
184	if (folio_free_swap(folio)) {
185		folio_unlock(folio);
186		return 0;
187	}
188	/*
189	 * Arch code may have to preserve more data than just the page
190	 * contents, e.g. memory tags.
191	 */
192	ret = arch_prepare_to_swap(&folio->page);
193	if (ret) {
194		folio_mark_dirty(folio);
195		folio_unlock(folio);
196		return ret;
197	}
198	if (zswap_store(folio)) {
199		folio_start_writeback(folio);
200		folio_unlock(folio);
201		folio_end_writeback(folio);
202		return 0;
203	}
204	if (!mem_cgroup_zswap_writeback_enabled(folio_memcg(folio))) {
205		folio_mark_dirty(folio);
206		return AOP_WRITEPAGE_ACTIVATE;
207	}
 
 
 
 
208
209	__swap_writepage(folio, wbc);
210	return 0;
 
211}
212
213static inline void count_swpout_vm_event(struct folio *folio)
214{
215#ifdef CONFIG_TRANSPARENT_HUGEPAGE
216	if (unlikely(folio_test_pmd_mappable(folio))) {
217		count_memcg_folio_events(folio, THP_SWPOUT, 1);
218		count_vm_event(THP_SWPOUT);
219	}
220#endif
221	count_vm_events(PSWPOUT, folio_nr_pages(folio));
222}
223
224#if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
225static void bio_associate_blkg_from_page(struct bio *bio, struct folio *folio)
226{
227	struct cgroup_subsys_state *css;
228	struct mem_cgroup *memcg;
229
230	memcg = folio_memcg(folio);
231	if (!memcg)
232		return;
233
234	rcu_read_lock();
235	css = cgroup_e_css(memcg->css.cgroup, &io_cgrp_subsys);
236	bio_associate_blkg_from_css(bio, css);
237	rcu_read_unlock();
238}
239#else
240#define bio_associate_blkg_from_page(bio, folio)		do { } while (0)
241#endif /* CONFIG_MEMCG && CONFIG_BLK_CGROUP */
242
243struct swap_iocb {
244	struct kiocb		iocb;
245	struct bio_vec		bvec[SWAP_CLUSTER_MAX];
246	int			pages;
247	int			len;
248};
249static mempool_t *sio_pool;
250
251int sio_pool_init(void)
252{
253	if (!sio_pool) {
254		mempool_t *pool = mempool_create_kmalloc_pool(
255			SWAP_CLUSTER_MAX, sizeof(struct swap_iocb));
256		if (cmpxchg(&sio_pool, NULL, pool))
257			mempool_destroy(pool);
258	}
259	if (!sio_pool)
260		return -ENOMEM;
261	return 0;
262}
263
264static void sio_write_complete(struct kiocb *iocb, long ret)
265{
266	struct swap_iocb *sio = container_of(iocb, struct swap_iocb, iocb);
267	struct page *page = sio->bvec[0].bv_page;
268	int p;
269
270	if (ret != sio->len) {
271		/*
272		 * In the case of swap-over-nfs, this can be a
273		 * temporary failure if the system has limited
274		 * memory for allocating transmit buffers.
275		 * Mark the page dirty and avoid
276		 * folio_rotate_reclaimable but rate-limit the
277		 * messages but do not flag PageError like
278		 * the normal direct-to-bio case as it could
279		 * be temporary.
280		 */
281		pr_err_ratelimited("Write error %ld on dio swapfile (%llu)\n",
282				   ret, page_file_offset(page));
283		for (p = 0; p < sio->pages; p++) {
284			page = sio->bvec[p].bv_page;
285			set_page_dirty(page);
286			ClearPageReclaim(page);
 
 
287		}
 
 
288	}
289
290	for (p = 0; p < sio->pages; p++)
291		end_page_writeback(sio->bvec[p].bv_page);
292
293	mempool_free(sio, sio_pool);
294}
295
296static void swap_writepage_fs(struct folio *folio, struct writeback_control *wbc)
297{
298	struct swap_iocb *sio = NULL;
299	struct swap_info_struct *sis = swp_swap_info(folio->swap);
300	struct file *swap_file = sis->swap_file;
301	loff_t pos = folio_file_pos(folio);
302
303	count_swpout_vm_event(folio);
304	folio_start_writeback(folio);
305	folio_unlock(folio);
306	if (wbc->swap_plug)
307		sio = *wbc->swap_plug;
308	if (sio) {
309		if (sio->iocb.ki_filp != swap_file ||
310		    sio->iocb.ki_pos + sio->len != pos) {
311			swap_write_unplug(sio);
312			sio = NULL;
313		}
314	}
315	if (!sio) {
316		sio = mempool_alloc(sio_pool, GFP_NOIO);
317		init_sync_kiocb(&sio->iocb, swap_file);
318		sio->iocb.ki_complete = sio_write_complete;
319		sio->iocb.ki_pos = pos;
320		sio->pages = 0;
321		sio->len = 0;
322	}
323	bvec_set_folio(&sio->bvec[sio->pages], folio, folio_size(folio), 0);
324	sio->len += folio_size(folio);
325	sio->pages += 1;
326	if (sio->pages == ARRAY_SIZE(sio->bvec) || !wbc->swap_plug) {
327		swap_write_unplug(sio);
328		sio = NULL;
329	}
330	if (wbc->swap_plug)
331		*wbc->swap_plug = sio;
332}
333
334static void swap_writepage_bdev_sync(struct folio *folio,
335		struct writeback_control *wbc, struct swap_info_struct *sis)
336{
337	struct bio_vec bv;
338	struct bio bio;
339
340	bio_init(&bio, sis->bdev, &bv, 1,
341		 REQ_OP_WRITE | REQ_SWAP | wbc_to_write_flags(wbc));
342	bio.bi_iter.bi_sector = swap_folio_sector(folio);
343	bio_add_folio_nofail(&bio, folio, folio_size(folio), 0);
344
345	bio_associate_blkg_from_page(&bio, folio);
346	count_swpout_vm_event(folio);
347
348	folio_start_writeback(folio);
349	folio_unlock(folio);
350
351	submit_bio_wait(&bio);
352	__end_swap_bio_write(&bio);
353}
354
355static void swap_writepage_bdev_async(struct folio *folio,
356		struct writeback_control *wbc, struct swap_info_struct *sis)
357{
358	struct bio *bio;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
359
360	bio = bio_alloc(sis->bdev, 1,
361			REQ_OP_WRITE | REQ_SWAP | wbc_to_write_flags(wbc),
362			GFP_NOIO);
363	bio->bi_iter.bi_sector = swap_folio_sector(folio);
364	bio->bi_end_io = end_swap_bio_write;
365	bio_add_folio_nofail(bio, folio, folio_size(folio), 0);
366
367	bio_associate_blkg_from_page(bio, folio);
368	count_swpout_vm_event(folio);
369	folio_start_writeback(folio);
370	folio_unlock(folio);
371	submit_bio(bio);
372}
373
374void __swap_writepage(struct folio *folio, struct writeback_control *wbc)
375{
376	struct swap_info_struct *sis = swp_swap_info(folio->swap);
377
378	VM_BUG_ON_FOLIO(!folio_test_swapcache(folio), folio);
379	/*
380	 * ->flags can be updated non-atomicially (scan_swap_map_slots),
381	 * but that will never affect SWP_FS_OPS, so the data_race
382	 * is safe.
383	 */
384	if (data_race(sis->flags & SWP_FS_OPS))
385		swap_writepage_fs(folio, wbc);
386	else if (sis->flags & SWP_SYNCHRONOUS_IO)
387		swap_writepage_bdev_sync(folio, wbc, sis);
388	else
389		swap_writepage_bdev_async(folio, wbc, sis);
390}
391
392void swap_write_unplug(struct swap_iocb *sio)
393{
394	struct iov_iter from;
395	struct address_space *mapping = sio->iocb.ki_filp->f_mapping;
396	int ret;
397
398	iov_iter_bvec(&from, ITER_SOURCE, sio->bvec, sio->pages, sio->len);
399	ret = mapping->a_ops->swap_rw(&sio->iocb, &from);
400	if (ret != -EIOCBQUEUED)
401		sio_write_complete(&sio->iocb, ret);
402}
403
404static void sio_read_complete(struct kiocb *iocb, long ret)
405{
406	struct swap_iocb *sio = container_of(iocb, struct swap_iocb, iocb);
407	int p;
408
409	if (ret == sio->len) {
410		for (p = 0; p < sio->pages; p++) {
411			struct folio *folio = page_folio(sio->bvec[p].bv_page);
412
413			folio_mark_uptodate(folio);
414			folio_unlock(folio);
415		}
416		count_vm_events(PSWPIN, sio->pages);
417	} else {
418		for (p = 0; p < sio->pages; p++) {
419			struct folio *folio = page_folio(sio->bvec[p].bv_page);
420
421			folio_unlock(folio);
422		}
423		pr_alert_ratelimited("Read-error on swap-device\n");
424	}
425	mempool_free(sio, sio_pool);
426}
427
428static void swap_read_folio_fs(struct folio *folio, struct swap_iocb **plug)
429{
430	struct swap_info_struct *sis = swp_swap_info(folio->swap);
431	struct swap_iocb *sio = NULL;
432	loff_t pos = folio_file_pos(folio);
433
434	if (plug)
435		sio = *plug;
436	if (sio) {
437		if (sio->iocb.ki_filp != sis->swap_file ||
438		    sio->iocb.ki_pos + sio->len != pos) {
439			swap_read_unplug(sio);
440			sio = NULL;
441		}
442	}
443	if (!sio) {
444		sio = mempool_alloc(sio_pool, GFP_KERNEL);
445		init_sync_kiocb(&sio->iocb, sis->swap_file);
446		sio->iocb.ki_pos = pos;
447		sio->iocb.ki_complete = sio_read_complete;
448		sio->pages = 0;
449		sio->len = 0;
450	}
451	bvec_set_folio(&sio->bvec[sio->pages], folio, folio_size(folio), 0);
452	sio->len += folio_size(folio);
453	sio->pages += 1;
454	if (sio->pages == ARRAY_SIZE(sio->bvec) || !plug) {
455		swap_read_unplug(sio);
456		sio = NULL;
457	}
458	if (plug)
459		*plug = sio;
460}
461
462static void swap_read_folio_bdev_sync(struct folio *folio,
463		struct swap_info_struct *sis)
464{
465	struct bio_vec bv;
466	struct bio bio;
467
468	bio_init(&bio, sis->bdev, &bv, 1, REQ_OP_READ);
469	bio.bi_iter.bi_sector = swap_folio_sector(folio);
470	bio_add_folio_nofail(&bio, folio, folio_size(folio), 0);
471	/*
472	 * Keep this task valid during swap readpage because the oom killer may
473	 * attempt to access it in the page fault retry time check.
474	 */
475	get_task_struct(current);
 
 
476	count_vm_event(PSWPIN);
477	submit_bio_wait(&bio);
478	__end_swap_bio_read(&bio);
479	put_task_struct(current);
480}
 
 
481
482static void swap_read_folio_bdev_async(struct folio *folio,
483		struct swap_info_struct *sis)
484{
485	struct bio *bio;
 
486
487	bio = bio_alloc(sis->bdev, 1, REQ_OP_READ, GFP_KERNEL);
488	bio->bi_iter.bi_sector = swap_folio_sector(folio);
489	bio->bi_end_io = end_swap_bio_read;
490	bio_add_folio_nofail(bio, folio, folio_size(folio), 0);
491	count_vm_event(PSWPIN);
492	submit_bio(bio);
493}
494
495void swap_read_folio(struct folio *folio, bool synchronous,
496		struct swap_iocb **plug)
497{
498	struct swap_info_struct *sis = swp_swap_info(folio->swap);
499	bool workingset = folio_test_workingset(folio);
500	unsigned long pflags;
501	bool in_thrashing;
502
503	VM_BUG_ON_FOLIO(!folio_test_swapcache(folio) && !synchronous, folio);
504	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
505	VM_BUG_ON_FOLIO(folio_test_uptodate(folio), folio);
506
507	/*
508	 * Count submission time as memory stall and delay. When the device
509	 * is congested, or the submitting cgroup IO-throttled, submission
510	 * can be a significant part of overall IO time.
511	 */
512	if (workingset) {
513		delayacct_thrashing_start(&in_thrashing);
514		psi_memstall_enter(&pflags);
515	}
516	delayacct_swapin_start();
517
518	if (zswap_load(folio)) {
519		folio_mark_uptodate(folio);
520		folio_unlock(folio);
521	} else if (data_race(sis->flags & SWP_FS_OPS)) {
522		swap_read_folio_fs(folio, plug);
523	} else if (synchronous || (sis->flags & SWP_SYNCHRONOUS_IO)) {
524		swap_read_folio_bdev_sync(folio, sis);
525	} else {
526		swap_read_folio_bdev_async(folio, sis);
527	}
528
529	if (workingset) {
530		delayacct_thrashing_end(&in_thrashing);
531		psi_memstall_leave(&pflags);
532	}
533	delayacct_swapin_end();
534}
535
536void __swap_read_unplug(struct swap_iocb *sio)
537{
538	struct iov_iter from;
539	struct address_space *mapping = sio->iocb.ki_filp->f_mapping;
540	int ret;
541
542	iov_iter_bvec(&from, ITER_DEST, sio->bvec, sio->pages, sio->len);
543	ret = mapping->a_ops->swap_rw(&sio->iocb, &from);
544	if (ret != -EIOCBQUEUED)
545		sio_read_complete(&sio->iocb, ret);
546}