Linux Audio

Check our new training course

Linux kernel drivers training

May 6-19, 2025
Register
Loading...
v4.17
 
   1/*
   2 * Simple NUMA memory policy for the Linux kernel.
   3 *
   4 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
   5 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
   6 * Subject to the GNU Public License, version 2.
   7 *
   8 * NUMA policy allows the user to give hints in which node(s) memory should
   9 * be allocated.
  10 *
  11 * Support four policies per VMA and per process:
  12 *
  13 * The VMA policy has priority over the process policy for a page fault.
  14 *
  15 * interleave     Allocate memory interleaved over a set of nodes,
  16 *                with normal fallback if it fails.
  17 *                For VMA based allocations this interleaves based on the
  18 *                offset into the backing object or offset into the mapping
  19 *                for anonymous memory. For process policy an process counter
  20 *                is used.
  21 *
  22 * bind           Only allocate memory on a specific set of nodes,
  23 *                no fallback.
  24 *                FIXME: memory is allocated starting with the first node
  25 *                to the last. It would be better if bind would truly restrict
  26 *                the allocation to memory nodes instead
  27 *
  28 * preferred       Try a specific node first before normal fallback.
  29 *                As a special case NUMA_NO_NODE here means do the allocation
  30 *                on the local CPU. This is normally identical to default,
  31 *                but useful to set in a VMA when you have a non default
  32 *                process policy.
  33 *
 
 
 
  34 * default        Allocate on the local node first, or when on a VMA
  35 *                use the process policy. This is what Linux always did
  36 *		  in a NUMA aware kernel and still does by, ahem, default.
  37 *
  38 * The process policy is applied for most non interrupt memory allocations
  39 * in that process' context. Interrupts ignore the policies and always
  40 * try to allocate on the local CPU. The VMA policy is only applied for memory
  41 * allocations for a VMA in the VM.
  42 *
  43 * Currently there are a few corner cases in swapping where the policy
  44 * is not applied, but the majority should be handled. When process policy
  45 * is used it is not remembered over swap outs/swap ins.
  46 *
  47 * Only the highest zone in the zone hierarchy gets policied. Allocations
  48 * requesting a lower zone just use default policy. This implies that
  49 * on systems with highmem kernel lowmem allocation don't get policied.
  50 * Same with GFP_DMA allocations.
  51 *
  52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
  53 * all users and remembered even when nobody has memory mapped.
  54 */
  55
  56/* Notebook:
  57   fix mmap readahead to honour policy and enable policy for any page cache
  58   object
  59   statistics for bigpages
  60   global policy for page cache? currently it uses process policy. Requires
  61   first item above.
  62   handle mremap for shared memory (currently ignored for the policy)
  63   grows down?
  64   make bind policy root only? It can trigger oom much faster and the
  65   kernel is not always grateful with that.
  66*/
  67
  68#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  69
  70#include <linux/mempolicy.h>
  71#include <linux/mm.h>
  72#include <linux/highmem.h>
  73#include <linux/hugetlb.h>
  74#include <linux/kernel.h>
  75#include <linux/sched.h>
  76#include <linux/sched/mm.h>
  77#include <linux/sched/numa_balancing.h>
  78#include <linux/sched/task.h>
  79#include <linux/nodemask.h>
  80#include <linux/cpuset.h>
  81#include <linux/slab.h>
  82#include <linux/string.h>
  83#include <linux/export.h>
  84#include <linux/nsproxy.h>
  85#include <linux/interrupt.h>
  86#include <linux/init.h>
  87#include <linux/compat.h>
  88#include <linux/ptrace.h>
  89#include <linux/swap.h>
  90#include <linux/seq_file.h>
  91#include <linux/proc_fs.h>
  92#include <linux/migrate.h>
  93#include <linux/ksm.h>
  94#include <linux/rmap.h>
  95#include <linux/security.h>
  96#include <linux/syscalls.h>
  97#include <linux/ctype.h>
  98#include <linux/mm_inline.h>
  99#include <linux/mmu_notifier.h>
 100#include <linux/printk.h>
 101#include <linux/swapops.h>
 102
 103#include <asm/tlbflush.h>
 
 104#include <linux/uaccess.h>
 105
 106#include "internal.h"
 107
 108/* Internal flags */
 109#define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0)	/* Skip checks for continuous vmas */
 110#define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1)		/* Invert check for nodemask */
 
 111
 112static struct kmem_cache *policy_cache;
 113static struct kmem_cache *sn_cache;
 114
 115/* Highest zone. An specific allocation for a zone below that is not
 116   policied. */
 117enum zone_type policy_zone = 0;
 118
 119/*
 120 * run-time system-wide default policy => local allocation
 121 */
 122static struct mempolicy default_policy = {
 123	.refcnt = ATOMIC_INIT(1), /* never free it */
 124	.mode = MPOL_PREFERRED,
 125	.flags = MPOL_F_LOCAL,
 126};
 127
 128static struct mempolicy preferred_node_policy[MAX_NUMNODES];
 129
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 130struct mempolicy *get_task_policy(struct task_struct *p)
 131{
 132	struct mempolicy *pol = p->mempolicy;
 133	int node;
 134
 135	if (pol)
 136		return pol;
 137
 138	node = numa_node_id();
 139	if (node != NUMA_NO_NODE) {
 140		pol = &preferred_node_policy[node];
 141		/* preferred_node_policy is not initialised early in boot */
 142		if (pol->mode)
 143			return pol;
 144	}
 145
 146	return &default_policy;
 147}
 148
 149static const struct mempolicy_operations {
 150	int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
 151	void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes);
 152} mpol_ops[MPOL_MAX];
 153
 154static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
 155{
 156	return pol->flags & MPOL_MODE_FLAGS;
 157}
 158
 159static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
 160				   const nodemask_t *rel)
 161{
 162	nodemask_t tmp;
 163	nodes_fold(tmp, *orig, nodes_weight(*rel));
 164	nodes_onto(*ret, tmp, *rel);
 165}
 166
 167static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
 168{
 169	if (nodes_empty(*nodes))
 170		return -EINVAL;
 171	pol->v.nodes = *nodes;
 172	return 0;
 173}
 174
 175static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
 176{
 177	if (!nodes)
 178		pol->flags |= MPOL_F_LOCAL;	/* local allocation */
 179	else if (nodes_empty(*nodes))
 180		return -EINVAL;			/*  no allowed nodes */
 181	else
 182		pol->v.preferred_node = first_node(*nodes);
 183	return 0;
 184}
 185
 186static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
 187{
 188	if (nodes_empty(*nodes))
 189		return -EINVAL;
 190	pol->v.nodes = *nodes;
 
 
 191	return 0;
 192}
 193
 194/*
 195 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
 196 * any, for the new policy.  mpol_new() has already validated the nodes
 197 * parameter with respect to the policy mode and flags.  But, we need to
 198 * handle an empty nodemask with MPOL_PREFERRED here.
 199 *
 200 * Must be called holding task's alloc_lock to protect task's mems_allowed
 201 * and mempolicy.  May also be called holding the mmap_semaphore for write.
 202 */
 203static int mpol_set_nodemask(struct mempolicy *pol,
 204		     const nodemask_t *nodes, struct nodemask_scratch *nsc)
 205{
 206	int ret;
 207
 208	/* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
 209	if (pol == NULL)
 
 
 
 
 210		return 0;
 
 211	/* Check N_MEMORY */
 212	nodes_and(nsc->mask1,
 213		  cpuset_current_mems_allowed, node_states[N_MEMORY]);
 214
 215	VM_BUG_ON(!nodes);
 216	if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes))
 217		nodes = NULL;	/* explicit local allocation */
 218	else {
 219		if (pol->flags & MPOL_F_RELATIVE_NODES)
 220			mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1);
 221		else
 222			nodes_and(nsc->mask2, *nodes, nsc->mask1);
 223
 224		if (mpol_store_user_nodemask(pol))
 225			pol->w.user_nodemask = *nodes;
 226		else
 227			pol->w.cpuset_mems_allowed =
 228						cpuset_current_mems_allowed;
 229	}
 230
 231	if (nodes)
 232		ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
 233	else
 234		ret = mpol_ops[pol->mode].create(pol, NULL);
 
 
 235	return ret;
 236}
 237
 238/*
 239 * This function just creates a new policy, does some check and simple
 240 * initialization. You must invoke mpol_set_nodemask() to set nodes.
 241 */
 242static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
 243				  nodemask_t *nodes)
 244{
 245	struct mempolicy *policy;
 246
 247	pr_debug("setting mode %d flags %d nodes[0] %lx\n",
 248		 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE);
 249
 250	if (mode == MPOL_DEFAULT) {
 251		if (nodes && !nodes_empty(*nodes))
 252			return ERR_PTR(-EINVAL);
 253		return NULL;
 254	}
 255	VM_BUG_ON(!nodes);
 256
 257	/*
 258	 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
 259	 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
 260	 * All other modes require a valid pointer to a non-empty nodemask.
 261	 */
 262	if (mode == MPOL_PREFERRED) {
 263		if (nodes_empty(*nodes)) {
 264			if (((flags & MPOL_F_STATIC_NODES) ||
 265			     (flags & MPOL_F_RELATIVE_NODES)))
 266				return ERR_PTR(-EINVAL);
 
 
 267		}
 268	} else if (mode == MPOL_LOCAL) {
 269		if (!nodes_empty(*nodes) ||
 270		    (flags & MPOL_F_STATIC_NODES) ||
 271		    (flags & MPOL_F_RELATIVE_NODES))
 272			return ERR_PTR(-EINVAL);
 273		mode = MPOL_PREFERRED;
 274	} else if (nodes_empty(*nodes))
 275		return ERR_PTR(-EINVAL);
 
 276	policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
 277	if (!policy)
 278		return ERR_PTR(-ENOMEM);
 279	atomic_set(&policy->refcnt, 1);
 280	policy->mode = mode;
 281	policy->flags = flags;
 
 282
 283	return policy;
 284}
 285
 286/* Slow path of a mpol destructor. */
 287void __mpol_put(struct mempolicy *p)
 288{
 289	if (!atomic_dec_and_test(&p->refcnt))
 290		return;
 291	kmem_cache_free(policy_cache, p);
 292}
 293
 294static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes)
 295{
 296}
 297
 298static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
 299{
 300	nodemask_t tmp;
 301
 302	if (pol->flags & MPOL_F_STATIC_NODES)
 303		nodes_and(tmp, pol->w.user_nodemask, *nodes);
 304	else if (pol->flags & MPOL_F_RELATIVE_NODES)
 305		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
 306	else {
 307		nodes_remap(tmp, pol->v.nodes,pol->w.cpuset_mems_allowed,
 308								*nodes);
 309		pol->w.cpuset_mems_allowed = tmp;
 310	}
 311
 312	if (nodes_empty(tmp))
 313		tmp = *nodes;
 314
 315	pol->v.nodes = tmp;
 316}
 317
 318static void mpol_rebind_preferred(struct mempolicy *pol,
 319						const nodemask_t *nodes)
 320{
 321	nodemask_t tmp;
 322
 323	if (pol->flags & MPOL_F_STATIC_NODES) {
 324		int node = first_node(pol->w.user_nodemask);
 325
 326		if (node_isset(node, *nodes)) {
 327			pol->v.preferred_node = node;
 328			pol->flags &= ~MPOL_F_LOCAL;
 329		} else
 330			pol->flags |= MPOL_F_LOCAL;
 331	} else if (pol->flags & MPOL_F_RELATIVE_NODES) {
 332		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
 333		pol->v.preferred_node = first_node(tmp);
 334	} else if (!(pol->flags & MPOL_F_LOCAL)) {
 335		pol->v.preferred_node = node_remap(pol->v.preferred_node,
 336						   pol->w.cpuset_mems_allowed,
 337						   *nodes);
 338		pol->w.cpuset_mems_allowed = *nodes;
 339	}
 340}
 341
 342/*
 343 * mpol_rebind_policy - Migrate a policy to a different set of nodes
 344 *
 345 * Per-vma policies are protected by mmap_sem. Allocations using per-task
 346 * policies are protected by task->mems_allowed_seq to prevent a premature
 347 * OOM/allocation failure due to parallel nodemask modification.
 348 */
 349static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask)
 350{
 351	if (!pol)
 352		return;
 353	if (!mpol_store_user_nodemask(pol) &&
 354	    nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
 355		return;
 356
 357	mpol_ops[pol->mode].rebind(pol, newmask);
 358}
 359
 360/*
 361 * Wrapper for mpol_rebind_policy() that just requires task
 362 * pointer, and updates task mempolicy.
 363 *
 364 * Called with task's alloc_lock held.
 365 */
 366
 367void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new)
 368{
 369	mpol_rebind_policy(tsk->mempolicy, new);
 370}
 371
 372/*
 373 * Rebind each vma in mm to new nodemask.
 374 *
 375 * Call holding a reference to mm.  Takes mm->mmap_sem during call.
 376 */
 377
 378void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
 379{
 380	struct vm_area_struct *vma;
 
 381
 382	down_write(&mm->mmap_sem);
 383	for (vma = mm->mmap; vma; vma = vma->vm_next)
 
 384		mpol_rebind_policy(vma->vm_policy, new);
 385	up_write(&mm->mmap_sem);
 
 386}
 387
 388static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
 389	[MPOL_DEFAULT] = {
 390		.rebind = mpol_rebind_default,
 391	},
 392	[MPOL_INTERLEAVE] = {
 393		.create = mpol_new_interleave,
 394		.rebind = mpol_rebind_nodemask,
 395	},
 396	[MPOL_PREFERRED] = {
 397		.create = mpol_new_preferred,
 398		.rebind = mpol_rebind_preferred,
 399	},
 400	[MPOL_BIND] = {
 401		.create = mpol_new_bind,
 402		.rebind = mpol_rebind_nodemask,
 403	},
 
 
 
 
 
 
 
 404};
 405
 406static void migrate_page_add(struct page *page, struct list_head *pagelist,
 407				unsigned long flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 408
 409struct queue_pages {
 410	struct list_head *pagelist;
 411	unsigned long flags;
 412	nodemask_t *nmask;
 413	struct vm_area_struct *prev;
 
 
 
 
 414};
 415
 416/*
 417 * Check if the page's nid is in qp->nmask.
 418 *
 419 * If MPOL_MF_INVERT is set in qp->flags, check if the nid is
 420 * in the invert of qp->nmask.
 421 */
 422static inline bool queue_pages_required(struct page *page,
 423					struct queue_pages *qp)
 424{
 425	int nid = page_to_nid(page);
 426	unsigned long flags = qp->flags;
 427
 428	return node_isset(nid, *qp->nmask) == !(flags & MPOL_MF_INVERT);
 429}
 430
 431static int queue_pages_pmd(pmd_t *pmd, spinlock_t *ptl, unsigned long addr,
 432				unsigned long end, struct mm_walk *walk)
 433{
 434	int ret = 0;
 435	struct page *page;
 436	struct queue_pages *qp = walk->private;
 437	unsigned long flags;
 438
 439	if (unlikely(is_pmd_migration_entry(*pmd))) {
 440		ret = 1;
 441		goto unlock;
 442	}
 443	page = pmd_page(*pmd);
 444	if (is_huge_zero_page(page)) {
 445		spin_unlock(ptl);
 446		__split_huge_pmd(walk->vma, pmd, addr, false, NULL);
 447		goto out;
 448	}
 449	if (!queue_pages_required(page, qp)) {
 450		ret = 1;
 451		goto unlock;
 
 452	}
 453
 454	ret = 1;
 455	flags = qp->flags;
 456	/* go to thp migration */
 457	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
 458		migrate_page_add(page, qp->pagelist, flags);
 459unlock:
 460	spin_unlock(ptl);
 461out:
 462	return ret;
 463}
 464
 465/*
 466 * Scan through pages checking if pages follow certain conditions,
 467 * and move them to the pagelist if they do.
 
 
 
 
 
 
 468 */
 469static int queue_pages_pte_range(pmd_t *pmd, unsigned long addr,
 470			unsigned long end, struct mm_walk *walk)
 471{
 472	struct vm_area_struct *vma = walk->vma;
 473	struct page *page;
 474	struct queue_pages *qp = walk->private;
 475	unsigned long flags = qp->flags;
 476	int ret;
 477	pte_t *pte;
 478	spinlock_t *ptl;
 479
 480	ptl = pmd_trans_huge_lock(pmd, vma);
 481	if (ptl) {
 482		ret = queue_pages_pmd(pmd, ptl, addr, end, walk);
 483		if (ret)
 484			return 0;
 485	}
 486
 487	if (pmd_trans_unstable(pmd))
 
 
 488		return 0;
 489
 490	pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
 491	for (; addr != end; pte++, addr += PAGE_SIZE) {
 492		if (!pte_present(*pte))
 
 
 
 
 
 493			continue;
 494		page = vm_normal_page(vma, addr, *pte);
 495		if (!page)
 
 496			continue;
 497		/*
 498		 * vm_normal_page() filters out zero pages, but there might
 499		 * still be PageReserved pages to skip, perhaps in a VDSO.
 500		 */
 501		if (PageReserved(page))
 502			continue;
 503		if (!queue_pages_required(page, qp))
 504			continue;
 505		migrate_page_add(page, qp->pagelist, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 506	}
 507	pte_unmap_unlock(pte - 1, ptl);
 508	cond_resched();
 
 
 
 509	return 0;
 510}
 511
 512static int queue_pages_hugetlb(pte_t *pte, unsigned long hmask,
 513			       unsigned long addr, unsigned long end,
 514			       struct mm_walk *walk)
 515{
 516#ifdef CONFIG_HUGETLB_PAGE
 517	struct queue_pages *qp = walk->private;
 518	unsigned long flags = qp->flags;
 519	struct page *page;
 520	spinlock_t *ptl;
 521	pte_t entry;
 522
 523	ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte);
 524	entry = huge_ptep_get(pte);
 525	if (!pte_present(entry))
 
 
 
 
 
 
 526		goto unlock;
 527	page = pte_page(entry);
 528	if (!queue_pages_required(page, qp))
 
 529		goto unlock;
 530	/* With MPOL_MF_MOVE, we migrate only unshared hugepage. */
 531	if (flags & (MPOL_MF_MOVE_ALL) ||
 532	    (flags & MPOL_MF_MOVE && page_mapcount(page) == 1))
 533		isolate_huge_page(page, qp->pagelist);
 
 
 
 
 
 
 
 
 
 534unlock:
 535	spin_unlock(ptl);
 536#else
 537	BUG();
 538#endif
 539	return 0;
 540}
 541
 542#ifdef CONFIG_NUMA_BALANCING
 543/*
 544 * This is used to mark a range of virtual addresses to be inaccessible.
 545 * These are later cleared by a NUMA hinting fault. Depending on these
 546 * faults, pages may be migrated for better NUMA placement.
 547 *
 548 * This is assuming that NUMA faults are handled using PROT_NONE. If
 549 * an architecture makes a different choice, it will need further
 550 * changes to the core.
 551 */
 552unsigned long change_prot_numa(struct vm_area_struct *vma,
 553			unsigned long addr, unsigned long end)
 554{
 555	int nr_updated;
 
 
 
 556
 557	nr_updated = change_protection(vma, addr, end, PAGE_NONE, 0, 1);
 558	if (nr_updated)
 559		count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
 560
 
 
 561	return nr_updated;
 562}
 563#else
 564static unsigned long change_prot_numa(struct vm_area_struct *vma,
 565			unsigned long addr, unsigned long end)
 566{
 567	return 0;
 568}
 569#endif /* CONFIG_NUMA_BALANCING */
 570
 571static int queue_pages_test_walk(unsigned long start, unsigned long end,
 572				struct mm_walk *walk)
 573{
 574	struct vm_area_struct *vma = walk->vma;
 575	struct queue_pages *qp = walk->private;
 576	unsigned long endvma = vma->vm_end;
 577	unsigned long flags = qp->flags;
 578
 579	if (!vma_migratable(vma))
 580		return 1;
 581
 582	if (endvma > end)
 583		endvma = end;
 584	if (vma->vm_start > start)
 585		start = vma->vm_start;
 586
 587	if (!(flags & MPOL_MF_DISCONTIG_OK)) {
 588		if (!vma->vm_next && vma->vm_end < end)
 589			return -EFAULT;
 590		if (qp->prev && qp->prev->vm_end < vma->vm_start)
 
 591			return -EFAULT;
 592	}
 
 
 
 
 
 
 593
 594	qp->prev = vma;
 595
 596	if (flags & MPOL_MF_LAZY) {
 597		/* Similar to task_numa_work, skip inaccessible VMAs */
 598		if (!is_vm_hugetlb_page(vma) &&
 599			(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)) &&
 600			!(vma->vm_flags & VM_MIXEDMAP))
 601			change_prot_numa(vma, start, endvma);
 602		return 1;
 603	}
 604
 605	/* queue pages from current vma */
 606	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
 
 
 
 
 
 
 607		return 0;
 608	return 1;
 609}
 610
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 611/*
 612 * Walk through page tables and collect pages to be migrated.
 613 *
 614 * If pages found in a given range are on a set of nodes (determined by
 615 * @nodes and @flags,) it's isolated and queued to the pagelist which is
 616 * passed via @private.)
 
 
 
 
 
 
 
 617 */
 618static int
 619queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
 620		nodemask_t *nodes, unsigned long flags,
 621		struct list_head *pagelist)
 622{
 
 623	struct queue_pages qp = {
 624		.pagelist = pagelist,
 625		.flags = flags,
 626		.nmask = nodes,
 627		.prev = NULL,
 628	};
 629	struct mm_walk queue_pages_walk = {
 630		.hugetlb_entry = queue_pages_hugetlb,
 631		.pmd_entry = queue_pages_pte_range,
 632		.test_walk = queue_pages_test_walk,
 633		.mm = mm,
 634		.private = &qp,
 635	};
 
 
 
 
 
 
 
 
 636
 637	return walk_page_range(start, end, &queue_pages_walk);
 638}
 639
 640/*
 641 * Apply policy to a single VMA
 642 * This must be called with the mmap_sem held for writing.
 643 */
 644static int vma_replace_policy(struct vm_area_struct *vma,
 645						struct mempolicy *pol)
 646{
 647	int err;
 648	struct mempolicy *old;
 649	struct mempolicy *new;
 650
 651	pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
 652		 vma->vm_start, vma->vm_end, vma->vm_pgoff,
 653		 vma->vm_ops, vma->vm_file,
 654		 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
 655
 656	new = mpol_dup(pol);
 657	if (IS_ERR(new))
 658		return PTR_ERR(new);
 659
 660	if (vma->vm_ops && vma->vm_ops->set_policy) {
 661		err = vma->vm_ops->set_policy(vma, new);
 662		if (err)
 663			goto err_out;
 664	}
 665
 666	old = vma->vm_policy;
 667	vma->vm_policy = new; /* protected by mmap_sem */
 668	mpol_put(old);
 669
 670	return 0;
 671 err_out:
 672	mpol_put(new);
 673	return err;
 674}
 675
 676/* Step 2: apply policy to a range and do splits. */
 677static int mbind_range(struct mm_struct *mm, unsigned long start,
 678		       unsigned long end, struct mempolicy *new_pol)
 679{
 680	struct vm_area_struct *next;
 681	struct vm_area_struct *prev;
 682	struct vm_area_struct *vma;
 683	int err = 0;
 684	pgoff_t pgoff;
 685	unsigned long vmstart;
 686	unsigned long vmend;
 687
 688	vma = find_vma(mm, start);
 689	if (!vma || vma->vm_start > start)
 690		return -EFAULT;
 691
 692	prev = vma->vm_prev;
 693	if (start > vma->vm_start)
 694		prev = vma;
 695
 696	for (; vma && vma->vm_start < end; prev = vma, vma = next) {
 697		next = vma->vm_next;
 698		vmstart = max(start, vma->vm_start);
 699		vmend   = min(end, vma->vm_end);
 700
 701		if (mpol_equal(vma_policy(vma), new_pol))
 702			continue;
 703
 704		pgoff = vma->vm_pgoff +
 705			((vmstart - vma->vm_start) >> PAGE_SHIFT);
 706		prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
 707				 vma->anon_vma, vma->vm_file, pgoff,
 708				 new_pol, vma->vm_userfaultfd_ctx);
 709		if (prev) {
 710			vma = prev;
 711			next = vma->vm_next;
 712			if (mpol_equal(vma_policy(vma), new_pol))
 713				continue;
 714			/* vma_merge() joined vma && vma->next, case 8 */
 715			goto replace;
 716		}
 717		if (vma->vm_start != vmstart) {
 718			err = split_vma(vma->vm_mm, vma, vmstart, 1);
 719			if (err)
 720				goto out;
 721		}
 722		if (vma->vm_end != vmend) {
 723			err = split_vma(vma->vm_mm, vma, vmend, 0);
 724			if (err)
 725				goto out;
 726		}
 727 replace:
 728		err = vma_replace_policy(vma, new_pol);
 729		if (err)
 730			goto out;
 731	}
 732
 733 out:
 734	return err;
 
 
 
 
 735}
 736
 737/* Set the process memory policy */
 738static long do_set_mempolicy(unsigned short mode, unsigned short flags,
 739			     nodemask_t *nodes)
 740{
 741	struct mempolicy *new, *old;
 742	NODEMASK_SCRATCH(scratch);
 743	int ret;
 744
 745	if (!scratch)
 746		return -ENOMEM;
 747
 748	new = mpol_new(mode, flags, nodes);
 749	if (IS_ERR(new)) {
 750		ret = PTR_ERR(new);
 751		goto out;
 752	}
 753
 754	task_lock(current);
 755	ret = mpol_set_nodemask(new, nodes, scratch);
 756	if (ret) {
 757		task_unlock(current);
 758		mpol_put(new);
 759		goto out;
 760	}
 
 761	old = current->mempolicy;
 762	current->mempolicy = new;
 763	if (new && new->mode == MPOL_INTERLEAVE)
 764		current->il_prev = MAX_NUMNODES-1;
 765	task_unlock(current);
 766	mpol_put(old);
 767	ret = 0;
 768out:
 769	NODEMASK_SCRATCH_FREE(scratch);
 770	return ret;
 771}
 772
 773/*
 774 * Return nodemask for policy for get_mempolicy() query
 775 *
 776 * Called with task's alloc_lock held
 777 */
 778static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
 779{
 780	nodes_clear(*nodes);
 781	if (p == &default_policy)
 782		return;
 783
 784	switch (p->mode) {
 785	case MPOL_BIND:
 786		/* Fall through */
 787	case MPOL_INTERLEAVE:
 788		*nodes = p->v.nodes;
 789		break;
 790	case MPOL_PREFERRED:
 791		if (!(p->flags & MPOL_F_LOCAL))
 792			node_set(p->v.preferred_node, *nodes);
 793		/* else return empty node mask for local allocation */
 
 
 794		break;
 795	default:
 796		BUG();
 797	}
 798}
 799
 800static int lookup_node(unsigned long addr)
 801{
 802	struct page *p;
 803	int err;
 804
 805	err = get_user_pages(addr & PAGE_MASK, 1, 0, &p, NULL);
 806	if (err >= 0) {
 807		err = page_to_nid(p);
 808		put_page(p);
 809	}
 810	return err;
 811}
 812
 813/* Retrieve NUMA policy */
 814static long do_get_mempolicy(int *policy, nodemask_t *nmask,
 815			     unsigned long addr, unsigned long flags)
 816{
 817	int err;
 818	struct mm_struct *mm = current->mm;
 819	struct vm_area_struct *vma = NULL;
 820	struct mempolicy *pol = current->mempolicy;
 821
 822	if (flags &
 823		~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
 824		return -EINVAL;
 825
 826	if (flags & MPOL_F_MEMS_ALLOWED) {
 827		if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
 828			return -EINVAL;
 829		*policy = 0;	/* just so it's initialized */
 830		task_lock(current);
 831		*nmask  = cpuset_current_mems_allowed;
 832		task_unlock(current);
 833		return 0;
 834	}
 835
 836	if (flags & MPOL_F_ADDR) {
 
 837		/*
 838		 * Do NOT fall back to task policy if the
 839		 * vma/shared policy at addr is NULL.  We
 840		 * want to return MPOL_DEFAULT in this case.
 841		 */
 842		down_read(&mm->mmap_sem);
 843		vma = find_vma_intersection(mm, addr, addr+1);
 844		if (!vma) {
 845			up_read(&mm->mmap_sem);
 846			return -EFAULT;
 847		}
 848		if (vma->vm_ops && vma->vm_ops->get_policy)
 849			pol = vma->vm_ops->get_policy(vma, addr);
 850		else
 851			pol = vma->vm_policy;
 852	} else if (addr)
 853		return -EINVAL;
 854
 855	if (!pol)
 856		pol = &default_policy;	/* indicates default behavior */
 857
 858	if (flags & MPOL_F_NODE) {
 859		if (flags & MPOL_F_ADDR) {
 860			err = lookup_node(addr);
 
 
 
 
 
 
 
 
 
 861			if (err < 0)
 862				goto out;
 863			*policy = err;
 864		} else if (pol == current->mempolicy &&
 865				pol->mode == MPOL_INTERLEAVE) {
 866			*policy = next_node_in(current->il_prev, pol->v.nodes);
 867		} else {
 868			err = -EINVAL;
 869			goto out;
 870		}
 871	} else {
 872		*policy = pol == &default_policy ? MPOL_DEFAULT :
 873						pol->mode;
 874		/*
 875		 * Internal mempolicy flags must be masked off before exposing
 876		 * the policy to userspace.
 877		 */
 878		*policy |= (pol->flags & MPOL_MODE_FLAGS);
 879	}
 880
 881	err = 0;
 882	if (nmask) {
 883		if (mpol_store_user_nodemask(pol)) {
 884			*nmask = pol->w.user_nodemask;
 885		} else {
 886			task_lock(current);
 887			get_policy_nodemask(pol, nmask);
 888			task_unlock(current);
 889		}
 890	}
 891
 892 out:
 893	mpol_cond_put(pol);
 894	if (vma)
 895		up_read(&current->mm->mmap_sem);
 
 
 896	return err;
 897}
 898
 899#ifdef CONFIG_MIGRATION
 900/*
 901 * page migration, thp tail pages can be passed.
 902 */
 903static void migrate_page_add(struct page *page, struct list_head *pagelist,
 904				unsigned long flags)
 905{
 906	struct page *head = compound_head(page);
 907	/*
 908	 * Avoid migrating a page that is shared with others.
 
 
 
 
 
 909	 */
 910	if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(head) == 1) {
 911		if (!isolate_lru_page(head)) {
 912			list_add_tail(&head->lru, pagelist);
 913			mod_node_page_state(page_pgdat(head),
 914				NR_ISOLATED_ANON + page_is_file_cache(head),
 915				hpage_nr_pages(head));
 
 
 
 
 
 
 
 
 916		}
 917	}
 918}
 919
 920/* page allocation callback for NUMA node migration */
 921struct page *alloc_new_node_page(struct page *page, unsigned long node)
 922{
 923	if (PageHuge(page))
 924		return alloc_huge_page_node(page_hstate(compound_head(page)),
 925					node);
 926	else if (PageTransHuge(page)) {
 927		struct page *thp;
 928
 929		thp = alloc_pages_node(node,
 930			(GFP_TRANSHUGE | __GFP_THISNODE),
 931			HPAGE_PMD_ORDER);
 932		if (!thp)
 933			return NULL;
 934		prep_transhuge_page(thp);
 935		return thp;
 936	} else
 937		return __alloc_pages_node(node, GFP_HIGHUSER_MOVABLE |
 938						    __GFP_THISNODE, 0);
 939}
 940
 941/*
 942 * Migrate pages from one node to a target node.
 943 * Returns error or the number of pages not migrated.
 944 */
 945static int migrate_to_node(struct mm_struct *mm, int source, int dest,
 946			   int flags)
 947{
 948	nodemask_t nmask;
 
 949	LIST_HEAD(pagelist);
 950	int err = 0;
 
 
 
 
 
 951
 952	nodes_clear(nmask);
 953	node_set(source, nmask);
 954
 
 
 
 
 
 955	/*
 956	 * This does not "check" the range but isolates all pages that
 957	 * need migration.  Between passing in the full user address
 958	 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
 
 959	 */
 960	VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
 961	queue_pages_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
 962			flags | MPOL_MF_DISCONTIG_OK, &pagelist);
 963
 964	if (!list_empty(&pagelist)) {
 965		err = migrate_pages(&pagelist, alloc_new_node_page, NULL, dest,
 966					MIGRATE_SYNC, MR_SYSCALL);
 967		if (err)
 968			putback_movable_pages(&pagelist);
 969	}
 970
 
 
 971	return err;
 972}
 973
 974/*
 975 * Move pages between the two nodesets so as to preserve the physical
 976 * layout as much as possible.
 977 *
 978 * Returns the number of page that could not be moved.
 979 */
 980int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
 981		     const nodemask_t *to, int flags)
 982{
 983	int busy = 0;
 984	int err;
 985	nodemask_t tmp;
 986
 987	err = migrate_prep();
 988	if (err)
 989		return err;
 990
 991	down_read(&mm->mmap_sem);
 992
 993	/*
 994	 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
 995	 * bit in 'to' is not also set in 'tmp'.  Clear the found 'source'
 996	 * bit in 'tmp', and return that <source, dest> pair for migration.
 997	 * The pair of nodemasks 'to' and 'from' define the map.
 998	 *
 999	 * If no pair of bits is found that way, fallback to picking some
1000	 * pair of 'source' and 'dest' bits that are not the same.  If the
1001	 * 'source' and 'dest' bits are the same, this represents a node
1002	 * that will be migrating to itself, so no pages need move.
1003	 *
1004	 * If no bits are left in 'tmp', or if all remaining bits left
1005	 * in 'tmp' correspond to the same bit in 'to', return false
1006	 * (nothing left to migrate).
1007	 *
1008	 * This lets us pick a pair of nodes to migrate between, such that
1009	 * if possible the dest node is not already occupied by some other
1010	 * source node, minimizing the risk of overloading the memory on a
1011	 * node that would happen if we migrated incoming memory to a node
1012	 * before migrating outgoing memory source that same node.
1013	 *
1014	 * A single scan of tmp is sufficient.  As we go, we remember the
1015	 * most recent <s, d> pair that moved (s != d).  If we find a pair
1016	 * that not only moved, but what's better, moved to an empty slot
1017	 * (d is not set in tmp), then we break out then, with that pair.
1018	 * Otherwise when we finish scanning from_tmp, we at least have the
1019	 * most recent <s, d> pair that moved.  If we get all the way through
1020	 * the scan of tmp without finding any node that moved, much less
1021	 * moved to an empty node, then there is nothing left worth migrating.
1022	 */
1023
1024	tmp = *from;
1025	while (!nodes_empty(tmp)) {
1026		int s,d;
1027		int source = NUMA_NO_NODE;
1028		int dest = 0;
1029
1030		for_each_node_mask(s, tmp) {
1031
1032			/*
1033			 * do_migrate_pages() tries to maintain the relative
1034			 * node relationship of the pages established between
1035			 * threads and memory areas.
1036                         *
1037			 * However if the number of source nodes is not equal to
1038			 * the number of destination nodes we can not preserve
1039			 * this node relative relationship.  In that case, skip
1040			 * copying memory from a node that is in the destination
1041			 * mask.
1042			 *
1043			 * Example: [2,3,4] -> [3,4,5] moves everything.
1044			 *          [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1045			 */
1046
1047			if ((nodes_weight(*from) != nodes_weight(*to)) &&
1048						(node_isset(s, *to)))
1049				continue;
1050
1051			d = node_remap(s, *from, *to);
1052			if (s == d)
1053				continue;
1054
1055			source = s;	/* Node moved. Memorize */
1056			dest = d;
1057
1058			/* dest not in remaining from nodes? */
1059			if (!node_isset(dest, tmp))
1060				break;
1061		}
1062		if (source == NUMA_NO_NODE)
1063			break;
1064
1065		node_clear(source, tmp);
1066		err = migrate_to_node(mm, source, dest, flags);
1067		if (err > 0)
1068			busy += err;
1069		if (err < 0)
1070			break;
1071	}
1072	up_read(&mm->mmap_sem);
 
1073	if (err < 0)
1074		return err;
1075	return busy;
1076
1077}
1078
1079/*
1080 * Allocate a new page for page migration based on vma policy.
1081 * Start by assuming the page is mapped by the same vma as contains @start.
1082 * Search forward from there, if not.  N.B., this assumes that the
1083 * list of pages handed to migrate_pages()--which is how we get here--
1084 * is in virtual address order.
1085 */
1086static struct page *new_page(struct page *page, unsigned long start)
 
1087{
1088	struct vm_area_struct *vma;
1089	unsigned long uninitialized_var(address);
 
 
 
 
 
1090
1091	vma = find_vma(current->mm, start);
1092	while (vma) {
1093		address = page_address_in_vma(page, vma);
1094		if (address != -EFAULT)
1095			break;
1096		vma = vma->vm_next;
1097	}
1098
1099	if (PageHuge(page)) {
1100		return alloc_huge_page_vma(page_hstate(compound_head(page)),
1101				vma, address);
1102	} else if (PageTransHuge(page)) {
1103		struct page *thp;
1104
1105		thp = alloc_hugepage_vma(GFP_TRANSHUGE, vma, address,
1106					 HPAGE_PMD_ORDER);
1107		if (!thp)
1108			return NULL;
1109		prep_transhuge_page(thp);
1110		return thp;
1111	}
1112	/*
1113	 * if !vma, alloc_page_vma() will use task or system default policy
1114	 */
1115	return alloc_page_vma(GFP_HIGHUSER_MOVABLE | __GFP_RETRY_MAYFAIL,
1116			vma, address);
 
 
 
1117}
1118#else
1119
1120static void migrate_page_add(struct page *page, struct list_head *pagelist,
1121				unsigned long flags)
1122{
 
1123}
1124
1125int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1126		     const nodemask_t *to, int flags)
1127{
1128	return -ENOSYS;
1129}
1130
1131static struct page *new_page(struct page *page, unsigned long start)
 
1132{
1133	return NULL;
1134}
1135#endif
1136
1137static long do_mbind(unsigned long start, unsigned long len,
1138		     unsigned short mode, unsigned short mode_flags,
1139		     nodemask_t *nmask, unsigned long flags)
1140{
1141	struct mm_struct *mm = current->mm;
 
 
 
1142	struct mempolicy *new;
1143	unsigned long end;
1144	int err;
 
1145	LIST_HEAD(pagelist);
1146
1147	if (flags & ~(unsigned long)MPOL_MF_VALID)
1148		return -EINVAL;
1149	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1150		return -EPERM;
1151
1152	if (start & ~PAGE_MASK)
1153		return -EINVAL;
1154
1155	if (mode == MPOL_DEFAULT)
1156		flags &= ~MPOL_MF_STRICT;
1157
1158	len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1159	end = start + len;
1160
1161	if (end < start)
1162		return -EINVAL;
1163	if (end == start)
1164		return 0;
1165
1166	new = mpol_new(mode, mode_flags, nmask);
1167	if (IS_ERR(new))
1168		return PTR_ERR(new);
1169
1170	if (flags & MPOL_MF_LAZY)
1171		new->flags |= MPOL_F_MOF;
1172
1173	/*
1174	 * If we are using the default policy then operation
1175	 * on discontinuous address spaces is okay after all
1176	 */
1177	if (!new)
1178		flags |= MPOL_MF_DISCONTIG_OK;
1179
1180	pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1181		 start, start + len, mode, mode_flags,
1182		 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE);
1183
1184	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1185
1186		err = migrate_prep();
1187		if (err)
1188			goto mpol_out;
1189	}
1190	{
1191		NODEMASK_SCRATCH(scratch);
1192		if (scratch) {
1193			down_write(&mm->mmap_sem);
1194			task_lock(current);
1195			err = mpol_set_nodemask(new, nmask, scratch);
1196			task_unlock(current);
1197			if (err)
1198				up_write(&mm->mmap_sem);
1199		} else
1200			err = -ENOMEM;
1201		NODEMASK_SCRATCH_FREE(scratch);
1202	}
1203	if (err)
1204		goto mpol_out;
1205
1206	err = queue_pages_range(mm, start, end, nmask,
1207			  flags | MPOL_MF_INVERT, &pagelist);
1208	if (!err)
1209		err = mbind_range(mm, start, end, new);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1210
1211	if (!err) {
1212		int nr_failed = 0;
 
 
 
 
 
 
1213
1214		if (!list_empty(&pagelist)) {
1215			WARN_ON_ONCE(flags & MPOL_MF_LAZY);
1216			nr_failed = migrate_pages(&pagelist, new_page, NULL,
1217				start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND);
1218			if (nr_failed)
1219				putback_movable_pages(&pagelist);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1220		}
 
1221
1222		if (nr_failed && (flags & MPOL_MF_STRICT))
1223			err = -EIO;
1224	} else
1225		putback_movable_pages(&pagelist);
 
 
 
 
1226
1227	up_write(&mm->mmap_sem);
1228 mpol_out:
 
 
 
1229	mpol_put(new);
 
 
1230	return err;
1231}
1232
1233/*
1234 * User space interface with variable sized bitmaps for nodelists.
1235 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1236
1237/* Copy a node mask from user space. */
1238static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1239		     unsigned long maxnode)
1240{
1241	unsigned long k;
1242	unsigned long t;
1243	unsigned long nlongs;
1244	unsigned long endmask;
1245
1246	--maxnode;
1247	nodes_clear(*nodes);
1248	if (maxnode == 0 || !nmask)
1249		return 0;
1250	if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1251		return -EINVAL;
1252
1253	nlongs = BITS_TO_LONGS(maxnode);
1254	if ((maxnode % BITS_PER_LONG) == 0)
1255		endmask = ~0UL;
1256	else
1257		endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
1258
1259	/*
1260	 * When the user specified more nodes than supported just check
1261	 * if the non supported part is all zero.
1262	 *
1263	 * If maxnode have more longs than MAX_NUMNODES, check
1264	 * the bits in that area first. And then go through to
1265	 * check the rest bits which equal or bigger than MAX_NUMNODES.
1266	 * Otherwise, just check bits [MAX_NUMNODES, maxnode).
1267	 */
1268	if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
1269		for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
1270			if (get_user(t, nmask + k))
1271				return -EFAULT;
1272			if (k == nlongs - 1) {
1273				if (t & endmask)
1274					return -EINVAL;
1275			} else if (t)
1276				return -EINVAL;
1277		}
1278		nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1279		endmask = ~0UL;
1280	}
1281
1282	if (maxnode > MAX_NUMNODES && MAX_NUMNODES % BITS_PER_LONG != 0) {
1283		unsigned long valid_mask = endmask;
1284
1285		valid_mask &= ~((1UL << (MAX_NUMNODES % BITS_PER_LONG)) - 1);
1286		if (get_user(t, nmask + nlongs - 1))
1287			return -EFAULT;
1288		if (t & valid_mask)
 
 
 
 
 
 
 
1289			return -EINVAL;
1290	}
1291
1292	if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1293		return -EFAULT;
1294	nodes_addr(*nodes)[nlongs-1] &= endmask;
1295	return 0;
1296}
1297
1298/* Copy a kernel node mask to user space */
1299static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1300			      nodemask_t *nodes)
1301{
1302	unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1303	const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long);
 
 
 
 
1304
1305	if (copy > nbytes) {
1306		if (copy > PAGE_SIZE)
1307			return -EINVAL;
1308		if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1309			return -EFAULT;
1310		copy = nbytes;
 
1311	}
 
 
 
 
 
1312	return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1313}
1314
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1315static long kernel_mbind(unsigned long start, unsigned long len,
1316			 unsigned long mode, const unsigned long __user *nmask,
1317			 unsigned long maxnode, unsigned int flags)
1318{
 
1319	nodemask_t nodes;
 
1320	int err;
1321	unsigned short mode_flags;
1322
1323	mode_flags = mode & MPOL_MODE_FLAGS;
1324	mode &= ~MPOL_MODE_FLAGS;
1325	if (mode >= MPOL_MAX)
1326		return -EINVAL;
1327	if ((mode_flags & MPOL_F_STATIC_NODES) &&
1328	    (mode_flags & MPOL_F_RELATIVE_NODES))
1329		return -EINVAL;
1330	err = get_nodes(&nodes, nmask, maxnode);
1331	if (err)
1332		return err;
1333	return do_mbind(start, len, mode, mode_flags, &nodes, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1334}
1335
1336SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1337		unsigned long, mode, const unsigned long __user *, nmask,
1338		unsigned long, maxnode, unsigned int, flags)
1339{
1340	return kernel_mbind(start, len, mode, nmask, maxnode, flags);
1341}
1342
1343/* Set the process memory policy */
1344static long kernel_set_mempolicy(int mode, const unsigned long __user *nmask,
1345				 unsigned long maxnode)
1346{
1347	int err;
1348	nodemask_t nodes;
1349	unsigned short flags;
 
 
 
 
 
1350
1351	flags = mode & MPOL_MODE_FLAGS;
1352	mode &= ~MPOL_MODE_FLAGS;
1353	if ((unsigned int)mode >= MPOL_MAX)
1354		return -EINVAL;
1355	if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
1356		return -EINVAL;
1357	err = get_nodes(&nodes, nmask, maxnode);
1358	if (err)
1359		return err;
1360	return do_set_mempolicy(mode, flags, &nodes);
 
1361}
1362
1363SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask,
1364		unsigned long, maxnode)
1365{
1366	return kernel_set_mempolicy(mode, nmask, maxnode);
1367}
1368
1369static int kernel_migrate_pages(pid_t pid, unsigned long maxnode,
1370				const unsigned long __user *old_nodes,
1371				const unsigned long __user *new_nodes)
1372{
1373	struct mm_struct *mm = NULL;
1374	struct task_struct *task;
1375	nodemask_t task_nodes;
1376	int err;
1377	nodemask_t *old;
1378	nodemask_t *new;
1379	NODEMASK_SCRATCH(scratch);
1380
1381	if (!scratch)
1382		return -ENOMEM;
1383
1384	old = &scratch->mask1;
1385	new = &scratch->mask2;
1386
1387	err = get_nodes(old, old_nodes, maxnode);
1388	if (err)
1389		goto out;
1390
1391	err = get_nodes(new, new_nodes, maxnode);
1392	if (err)
1393		goto out;
1394
1395	/* Find the mm_struct */
1396	rcu_read_lock();
1397	task = pid ? find_task_by_vpid(pid) : current;
1398	if (!task) {
1399		rcu_read_unlock();
1400		err = -ESRCH;
1401		goto out;
1402	}
1403	get_task_struct(task);
1404
1405	err = -EINVAL;
1406
1407	/*
1408	 * Check if this process has the right to modify the specified process.
1409	 * Use the regular "ptrace_may_access()" checks.
1410	 */
1411	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1412		rcu_read_unlock();
1413		err = -EPERM;
1414		goto out_put;
1415	}
1416	rcu_read_unlock();
1417
1418	task_nodes = cpuset_mems_allowed(task);
1419	/* Is the user allowed to access the target nodes? */
1420	if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1421		err = -EPERM;
1422		goto out_put;
1423	}
1424
1425	task_nodes = cpuset_mems_allowed(current);
1426	nodes_and(*new, *new, task_nodes);
1427	if (nodes_empty(*new))
1428		goto out_put;
1429
1430	nodes_and(*new, *new, node_states[N_MEMORY]);
1431	if (nodes_empty(*new))
1432		goto out_put;
1433
1434	err = security_task_movememory(task);
1435	if (err)
1436		goto out_put;
1437
1438	mm = get_task_mm(task);
1439	put_task_struct(task);
1440
1441	if (!mm) {
1442		err = -EINVAL;
1443		goto out;
1444	}
1445
1446	err = do_migrate_pages(mm, old, new,
1447		capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1448
1449	mmput(mm);
1450out:
1451	NODEMASK_SCRATCH_FREE(scratch);
1452
1453	return err;
1454
1455out_put:
1456	put_task_struct(task);
1457	goto out;
1458
1459}
1460
1461SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1462		const unsigned long __user *, old_nodes,
1463		const unsigned long __user *, new_nodes)
1464{
1465	return kernel_migrate_pages(pid, maxnode, old_nodes, new_nodes);
1466}
1467
1468
1469/* Retrieve NUMA policy */
1470static int kernel_get_mempolicy(int __user *policy,
1471				unsigned long __user *nmask,
1472				unsigned long maxnode,
1473				unsigned long addr,
1474				unsigned long flags)
1475{
1476	int err;
1477	int uninitialized_var(pval);
1478	nodemask_t nodes;
1479
1480	if (nmask != NULL && maxnode < MAX_NUMNODES)
1481		return -EINVAL;
1482
 
 
1483	err = do_get_mempolicy(&pval, &nodes, addr, flags);
1484
1485	if (err)
1486		return err;
1487
1488	if (policy && put_user(pval, policy))
1489		return -EFAULT;
1490
1491	if (nmask)
1492		err = copy_nodes_to_user(nmask, maxnode, &nodes);
1493
1494	return err;
1495}
1496
1497SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1498		unsigned long __user *, nmask, unsigned long, maxnode,
1499		unsigned long, addr, unsigned long, flags)
1500{
1501	return kernel_get_mempolicy(policy, nmask, maxnode, addr, flags);
1502}
1503
1504#ifdef CONFIG_COMPAT
1505
1506COMPAT_SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1507		       compat_ulong_t __user *, nmask,
1508		       compat_ulong_t, maxnode,
1509		       compat_ulong_t, addr, compat_ulong_t, flags)
1510{
1511	long err;
1512	unsigned long __user *nm = NULL;
1513	unsigned long nr_bits, alloc_size;
1514	DECLARE_BITMAP(bm, MAX_NUMNODES);
1515
1516	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1517	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1518
1519	if (nmask)
1520		nm = compat_alloc_user_space(alloc_size);
1521
1522	err = kernel_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1523
1524	if (!err && nmask) {
1525		unsigned long copy_size;
1526		copy_size = min_t(unsigned long, sizeof(bm), alloc_size);
1527		err = copy_from_user(bm, nm, copy_size);
1528		/* ensure entire bitmap is zeroed */
1529		err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1530		err |= compat_put_bitmap(nmask, bm, nr_bits);
1531	}
1532
1533	return err;
1534}
1535
1536COMPAT_SYSCALL_DEFINE3(set_mempolicy, int, mode, compat_ulong_t __user *, nmask,
1537		       compat_ulong_t, maxnode)
1538{
1539	unsigned long __user *nm = NULL;
1540	unsigned long nr_bits, alloc_size;
1541	DECLARE_BITMAP(bm, MAX_NUMNODES);
1542
1543	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1544	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1545
1546	if (nmask) {
1547		if (compat_get_bitmap(bm, nmask, nr_bits))
1548			return -EFAULT;
1549		nm = compat_alloc_user_space(alloc_size);
1550		if (copy_to_user(nm, bm, alloc_size))
1551			return -EFAULT;
1552	}
1553
1554	return kernel_set_mempolicy(mode, nm, nr_bits+1);
1555}
1556
1557COMPAT_SYSCALL_DEFINE6(mbind, compat_ulong_t, start, compat_ulong_t, len,
1558		       compat_ulong_t, mode, compat_ulong_t __user *, nmask,
1559		       compat_ulong_t, maxnode, compat_ulong_t, flags)
1560{
1561	unsigned long __user *nm = NULL;
1562	unsigned long nr_bits, alloc_size;
1563	nodemask_t bm;
1564
1565	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1566	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1567
1568	if (nmask) {
1569		if (compat_get_bitmap(nodes_addr(bm), nmask, nr_bits))
1570			return -EFAULT;
1571		nm = compat_alloc_user_space(alloc_size);
1572		if (copy_to_user(nm, nodes_addr(bm), alloc_size))
1573			return -EFAULT;
1574	}
1575
1576	return kernel_mbind(start, len, mode, nm, nr_bits+1, flags);
1577}
 
1578
1579COMPAT_SYSCALL_DEFINE4(migrate_pages, compat_pid_t, pid,
1580		       compat_ulong_t, maxnode,
1581		       const compat_ulong_t __user *, old_nodes,
1582		       const compat_ulong_t __user *, new_nodes)
1583{
1584	unsigned long __user *old = NULL;
1585	unsigned long __user *new = NULL;
1586	nodemask_t tmp_mask;
1587	unsigned long nr_bits;
1588	unsigned long size;
1589
1590	nr_bits = min_t(unsigned long, maxnode - 1, MAX_NUMNODES);
1591	size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1592	if (old_nodes) {
1593		if (compat_get_bitmap(nodes_addr(tmp_mask), old_nodes, nr_bits))
1594			return -EFAULT;
1595		old = compat_alloc_user_space(new_nodes ? size * 2 : size);
1596		if (new_nodes)
1597			new = old + size / sizeof(unsigned long);
1598		if (copy_to_user(old, nodes_addr(tmp_mask), size))
1599			return -EFAULT;
1600	}
1601	if (new_nodes) {
1602		if (compat_get_bitmap(nodes_addr(tmp_mask), new_nodes, nr_bits))
1603			return -EFAULT;
1604		if (new == NULL)
1605			new = compat_alloc_user_space(size);
1606		if (copy_to_user(new, nodes_addr(tmp_mask), size))
1607			return -EFAULT;
1608	}
1609	return kernel_migrate_pages(pid, nr_bits + 1, old, new);
1610}
1611
1612#endif /* CONFIG_COMPAT */
1613
1614struct mempolicy *__get_vma_policy(struct vm_area_struct *vma,
1615						unsigned long addr)
1616{
1617	struct mempolicy *pol = NULL;
1618
1619	if (vma) {
1620		if (vma->vm_ops && vma->vm_ops->get_policy) {
1621			pol = vma->vm_ops->get_policy(vma, addr);
1622		} else if (vma->vm_policy) {
1623			pol = vma->vm_policy;
1624
1625			/*
1626			 * shmem_alloc_page() passes MPOL_F_SHARED policy with
1627			 * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1628			 * count on these policies which will be dropped by
1629			 * mpol_cond_put() later
1630			 */
1631			if (mpol_needs_cond_ref(pol))
1632				mpol_get(pol);
1633		}
1634	}
1635
1636	return pol;
1637}
1638
1639/*
1640 * get_vma_policy(@vma, @addr)
1641 * @vma: virtual memory area whose policy is sought
1642 * @addr: address in @vma for shared policy lookup
 
 
1643 *
1644 * Returns effective policy for a VMA at specified address.
1645 * Falls back to current->mempolicy or system default policy, as necessary.
1646 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1647 * count--added by the get_policy() vm_op, as appropriate--to protect against
1648 * freeing by another task.  It is the caller's responsibility to free the
1649 * extra reference for shared policies.
1650 */
1651static struct mempolicy *get_vma_policy(struct vm_area_struct *vma,
1652						unsigned long addr)
1653{
1654	struct mempolicy *pol = __get_vma_policy(vma, addr);
1655
 
1656	if (!pol)
1657		pol = get_task_policy(current);
1658
 
 
 
1659	return pol;
1660}
1661
1662bool vma_policy_mof(struct vm_area_struct *vma)
1663{
1664	struct mempolicy *pol;
1665
1666	if (vma->vm_ops && vma->vm_ops->get_policy) {
1667		bool ret = false;
 
1668
1669		pol = vma->vm_ops->get_policy(vma, vma->vm_start);
1670		if (pol && (pol->flags & MPOL_F_MOF))
1671			ret = true;
1672		mpol_cond_put(pol);
1673
1674		return ret;
1675	}
1676
1677	pol = vma->vm_policy;
1678	if (!pol)
1679		pol = get_task_policy(current);
1680
1681	return pol->flags & MPOL_F_MOF;
1682}
1683
1684static int apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1685{
1686	enum zone_type dynamic_policy_zone = policy_zone;
1687
1688	BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1689
1690	/*
1691	 * if policy->v.nodes has movable memory only,
1692	 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1693	 *
1694	 * policy->v.nodes is intersect with node_states[N_MEMORY].
1695	 * so if the following test faile, it implies
1696	 * policy->v.nodes has movable memory only.
1697	 */
1698	if (!nodes_intersects(policy->v.nodes, node_states[N_HIGH_MEMORY]))
1699		dynamic_policy_zone = ZONE_MOVABLE;
1700
1701	return zone >= dynamic_policy_zone;
1702}
1703
1704/*
1705 * Return a nodemask representing a mempolicy for filtering nodes for
1706 * page allocation
1707 */
1708static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1709{
1710	/* Lower zones don't get a nodemask applied for MPOL_BIND */
1711	if (unlikely(policy->mode == MPOL_BIND) &&
1712			apply_policy_zone(policy, gfp_zone(gfp)) &&
1713			cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1714		return &policy->v.nodes;
1715
1716	return NULL;
1717}
1718
1719/* Return the node id preferred by the given mempolicy, or the given id */
1720static int policy_node(gfp_t gfp, struct mempolicy *policy,
1721								int nd)
1722{
1723	if (policy->mode == MPOL_PREFERRED && !(policy->flags & MPOL_F_LOCAL))
1724		nd = policy->v.preferred_node;
1725	else {
1726		/*
1727		 * __GFP_THISNODE shouldn't even be used with the bind policy
1728		 * because we might easily break the expectation to stay on the
1729		 * requested node and not break the policy.
1730		 */
1731		WARN_ON_ONCE(policy->mode == MPOL_BIND && (gfp & __GFP_THISNODE));
1732	}
1733
1734	return nd;
1735}
1736
1737/* Do dynamic interleaving for a process */
1738static unsigned interleave_nodes(struct mempolicy *policy)
1739{
1740	unsigned next;
1741	struct task_struct *me = current;
1742
1743	next = next_node_in(me->il_prev, policy->v.nodes);
1744	if (next < MAX_NUMNODES)
1745		me->il_prev = next;
1746	return next;
1747}
1748
1749/*
1750 * Depending on the memory policy provide a node from which to allocate the
1751 * next slab entry.
1752 */
1753unsigned int mempolicy_slab_node(void)
1754{
1755	struct mempolicy *policy;
1756	int node = numa_mem_id();
1757
1758	if (in_interrupt())
1759		return node;
1760
1761	policy = current->mempolicy;
1762	if (!policy || policy->flags & MPOL_F_LOCAL)
1763		return node;
1764
1765	switch (policy->mode) {
1766	case MPOL_PREFERRED:
1767		/*
1768		 * handled MPOL_F_LOCAL above
1769		 */
1770		return policy->v.preferred_node;
1771
1772	case MPOL_INTERLEAVE:
1773		return interleave_nodes(policy);
1774
1775	case MPOL_BIND: {
 
 
1776		struct zoneref *z;
1777
1778		/*
1779		 * Follow bind policy behavior and start allocation at the
1780		 * first node.
1781		 */
1782		struct zonelist *zonelist;
1783		enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1784		zonelist = &NODE_DATA(node)->node_zonelists[ZONELIST_FALLBACK];
1785		z = first_zones_zonelist(zonelist, highest_zoneidx,
1786							&policy->v.nodes);
1787		return z->zone ? z->zone->node : node;
1788	}
 
 
1789
1790	default:
1791		BUG();
1792	}
1793}
1794
1795/*
1796 * Do static interleaving for a VMA with known offset @n.  Returns the n'th
1797 * node in pol->v.nodes (starting from n=0), wrapping around if n exceeds the
1798 * number of present nodes.
1799 */
1800static unsigned offset_il_node(struct mempolicy *pol, unsigned long n)
1801{
1802	unsigned nnodes = nodes_weight(pol->v.nodes);
1803	unsigned target;
1804	int i;
1805	int nid;
 
 
 
 
 
 
 
 
1806
 
1807	if (!nnodes)
1808		return numa_node_id();
1809	target = (unsigned int)n % nnodes;
1810	nid = first_node(pol->v.nodes);
1811	for (i = 0; i < target; i++)
1812		nid = next_node(nid, pol->v.nodes);
1813	return nid;
1814}
1815
1816/* Determine a node number for interleave */
1817static inline unsigned interleave_nid(struct mempolicy *pol,
1818		 struct vm_area_struct *vma, unsigned long addr, int shift)
 
 
 
1819{
1820	if (vma) {
1821		unsigned long off;
1822
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1823		/*
1824		 * for small pages, there is no difference between
1825		 * shift and PAGE_SHIFT, so the bit-shift is safe.
1826		 * for huge pages, since vm_pgoff is in units of small
1827		 * pages, we need to shift off the always 0 bits to get
1828		 * a useful offset.
1829		 */
1830		BUG_ON(shift < PAGE_SHIFT);
1831		off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1832		off += (addr - vma->vm_start) >> shift;
1833		return offset_il_node(pol, off);
1834	} else
1835		return interleave_nodes(pol);
 
 
 
 
1836}
1837
1838#ifdef CONFIG_HUGETLBFS
1839/*
1840 * huge_node(@vma, @addr, @gfp_flags, @mpol)
1841 * @vma: virtual memory area whose policy is sought
1842 * @addr: address in @vma for shared policy lookup and interleave policy
1843 * @gfp_flags: for requested zone
1844 * @mpol: pointer to mempolicy pointer for reference counted mempolicy
1845 * @nodemask: pointer to nodemask pointer for MPOL_BIND nodemask
1846 *
1847 * Returns a nid suitable for a huge page allocation and a pointer
1848 * to the struct mempolicy for conditional unref after allocation.
1849 * If the effective policy is 'BIND, returns a pointer to the mempolicy's
1850 * @nodemask for filtering the zonelist.
1851 *
1852 * Must be protected by read_mems_allowed_begin()
1853 */
1854int huge_node(struct vm_area_struct *vma, unsigned long addr, gfp_t gfp_flags,
1855				struct mempolicy **mpol, nodemask_t **nodemask)
1856{
 
1857	int nid;
1858
1859	*mpol = get_vma_policy(vma, addr);
1860	*nodemask = NULL;	/* assume !MPOL_BIND */
1861
1862	if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
1863		nid = interleave_nid(*mpol, vma, addr,
1864					huge_page_shift(hstate_vma(vma)));
1865	} else {
1866		nid = policy_node(gfp_flags, *mpol, numa_node_id());
1867		if ((*mpol)->mode == MPOL_BIND)
1868			*nodemask = &(*mpol)->v.nodes;
1869	}
1870	return nid;
1871}
1872
1873/*
1874 * init_nodemask_of_mempolicy
1875 *
1876 * If the current task's mempolicy is "default" [NULL], return 'false'
1877 * to indicate default policy.  Otherwise, extract the policy nodemask
1878 * for 'bind' or 'interleave' policy into the argument nodemask, or
1879 * initialize the argument nodemask to contain the single node for
1880 * 'preferred' or 'local' policy and return 'true' to indicate presence
1881 * of non-default mempolicy.
1882 *
1883 * We don't bother with reference counting the mempolicy [mpol_get/put]
1884 * because the current task is examining it's own mempolicy and a task's
1885 * mempolicy is only ever changed by the task itself.
1886 *
1887 * N.B., it is the caller's responsibility to free a returned nodemask.
1888 */
1889bool init_nodemask_of_mempolicy(nodemask_t *mask)
1890{
1891	struct mempolicy *mempolicy;
1892	int nid;
1893
1894	if (!(mask && current->mempolicy))
1895		return false;
1896
1897	task_lock(current);
1898	mempolicy = current->mempolicy;
1899	switch (mempolicy->mode) {
1900	case MPOL_PREFERRED:
1901		if (mempolicy->flags & MPOL_F_LOCAL)
1902			nid = numa_node_id();
1903		else
1904			nid = mempolicy->v.preferred_node;
1905		init_nodemask_of_node(mask, nid);
1906		break;
1907
1908	case MPOL_BIND:
1909		/* Fall through */
1910	case MPOL_INTERLEAVE:
1911		*mask =  mempolicy->v.nodes;
 
 
 
 
1912		break;
1913
1914	default:
1915		BUG();
1916	}
1917	task_unlock(current);
1918
1919	return true;
1920}
1921#endif
1922
1923/*
1924 * mempolicy_nodemask_intersects
1925 *
1926 * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default
1927 * policy.  Otherwise, check for intersection between mask and the policy
1928 * nodemask for 'bind' or 'interleave' policy.  For 'perferred' or 'local'
1929 * policy, always return true since it may allocate elsewhere on fallback.
1930 *
1931 * Takes task_lock(tsk) to prevent freeing of its mempolicy.
1932 */
1933bool mempolicy_nodemask_intersects(struct task_struct *tsk,
1934					const nodemask_t *mask)
1935{
1936	struct mempolicy *mempolicy;
1937	bool ret = true;
1938
1939	if (!mask)
1940		return ret;
 
1941	task_lock(tsk);
1942	mempolicy = tsk->mempolicy;
1943	if (!mempolicy)
1944		goto out;
1945
1946	switch (mempolicy->mode) {
1947	case MPOL_PREFERRED:
1948		/*
1949		 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to
1950		 * allocate from, they may fallback to other nodes when oom.
1951		 * Thus, it's possible for tsk to have allocated memory from
1952		 * nodes in mask.
1953		 */
1954		break;
1955	case MPOL_BIND:
1956	case MPOL_INTERLEAVE:
1957		ret = nodes_intersects(mempolicy->v.nodes, *mask);
1958		break;
1959	default:
1960		BUG();
1961	}
1962out:
1963	task_unlock(tsk);
 
1964	return ret;
1965}
1966
1967/* Allocate a page in interleaved policy.
1968   Own path because it needs to do special accounting. */
1969static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
1970					unsigned nid)
1971{
1972	struct page *page;
 
 
 
 
 
 
 
 
 
 
 
 
 
1973
1974	page = __alloc_pages(gfp, order, nid);
1975	/* skip NUMA_INTERLEAVE_HIT counter update if numa stats is disabled */
1976	if (!static_branch_likely(&vm_numa_stat_key))
1977		return page;
1978	if (page && page_to_nid(page) == nid) {
1979		preempt_disable();
1980		__inc_numa_state(page_zone(page), NUMA_INTERLEAVE_HIT);
1981		preempt_enable();
1982	}
1983	return page;
1984}
1985
1986/**
1987 * 	alloc_pages_vma	- Allocate a page for a VMA.
 
 
 
 
 
1988 *
1989 * 	@gfp:
1990 *      %GFP_USER    user allocation.
1991 *      %GFP_KERNEL  kernel allocations,
1992 *      %GFP_HIGHMEM highmem/user allocations,
1993 *      %GFP_FS      allocation should not call back into a file system.
1994 *      %GFP_ATOMIC  don't sleep.
1995 *
1996 *	@order:Order of the GFP allocation.
1997 * 	@vma:  Pointer to VMA or NULL if not available.
1998 *	@addr: Virtual Address of the allocation. Must be inside the VMA.
1999 *	@node: Which node to prefer for allocation (modulo policy).
2000 *	@hugepage: for hugepages try only the preferred node if possible
2001 *
2002 * 	This function allocates a page from the kernel page pool and applies
2003 *	a NUMA policy associated with the VMA or the current process.
2004 *	When VMA is not NULL caller must hold down_read on the mmap_sem of the
2005 *	mm_struct of the VMA to prevent it from going away. Should be used for
2006 *	all allocations for pages that will be mapped into user space. Returns
2007 *	NULL when no page can be allocated.
2008 */
2009struct page *
2010alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma,
2011		unsigned long addr, int node, bool hugepage)
2012{
2013	struct mempolicy *pol;
2014	struct page *page;
2015	int preferred_nid;
2016	nodemask_t *nmask;
2017
2018	pol = get_vma_policy(vma, addr);
2019
2020	if (pol->mode == MPOL_INTERLEAVE) {
2021		unsigned nid;
2022
2023		nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
2024		mpol_cond_put(pol);
2025		page = alloc_page_interleave(gfp, order, nid);
2026		goto out;
2027	}
2028
2029	if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage)) {
2030		int hpage_node = node;
2031
 
 
 
2032		/*
2033		 * For hugepage allocation and non-interleave policy which
2034		 * allows the current node (or other explicitly preferred
2035		 * node) we only try to allocate from the current/preferred
2036		 * node and don't fall back to other nodes, as the cost of
2037		 * remote accesses would likely offset THP benefits.
2038		 *
2039		 * If the policy is interleave, or does not allow the current
2040		 * node in its nodemask, we allocate the standard way.
2041		 */
2042		if (pol->mode == MPOL_PREFERRED &&
2043						!(pol->flags & MPOL_F_LOCAL))
2044			hpage_node = pol->v.preferred_node;
2045
2046		nmask = policy_nodemask(gfp, pol);
2047		if (!nmask || node_isset(hpage_node, *nmask)) {
2048			mpol_cond_put(pol);
2049			page = __alloc_pages_node(hpage_node,
2050						gfp | __GFP_THISNODE, order);
2051			goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2052		}
2053	}
2054
2055	nmask = policy_nodemask(gfp, pol);
2056	preferred_nid = policy_node(gfp, pol, node);
2057	page = __alloc_pages_nodemask(gfp, order, preferred_nid, nmask);
2058	mpol_cond_put(pol);
2059out:
2060	return page;
2061}
2062
2063/**
2064 * 	alloc_pages_current - Allocate pages.
 
 
 
 
 
 
 
 
 
 
 
2065 *
2066 *	@gfp:
2067 *		%GFP_USER   user allocation,
2068 *      	%GFP_KERNEL kernel allocation,
2069 *      	%GFP_HIGHMEM highmem allocation,
2070 *      	%GFP_FS     don't call back into a file system.
2071 *      	%GFP_ATOMIC don't sleep.
2072 *	@order: Power of two of allocation size in pages. 0 is a single page.
2073 *
2074 *	Allocate a page from the kernel page pool.  When not in
2075 *	interrupt context and apply the current process NUMA policy.
2076 *	Returns NULL when no page can be allocated.
2077 */
2078struct page *alloc_pages_current(gfp_t gfp, unsigned order)
 
2079{
2080	struct mempolicy *pol = &default_policy;
 
2081	struct page *page;
2082
2083	if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2084		pol = get_task_policy(current);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2085
2086	/*
2087	 * No reference counting needed for current->mempolicy
2088	 * nor system default_policy
2089	 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2090	if (pol->mode == MPOL_INTERLEAVE)
2091		page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
2092	else
2093		page = __alloc_pages_nodemask(gfp, order,
2094				policy_node(gfp, pol, numa_node_id()),
2095				policy_nodemask(gfp, pol));
2096
2097	return page;
 
 
 
 
 
 
 
2098}
2099EXPORT_SYMBOL(alloc_pages_current);
2100
2101int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
2102{
2103	struct mempolicy *pol = mpol_dup(vma_policy(src));
2104
2105	if (IS_ERR(pol))
2106		return PTR_ERR(pol);
2107	dst->vm_policy = pol;
2108	return 0;
2109}
2110
2111/*
2112 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2113 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2114 * with the mems_allowed returned by cpuset_mems_allowed().  This
2115 * keeps mempolicies cpuset relative after its cpuset moves.  See
2116 * further kernel/cpuset.c update_nodemask().
2117 *
2118 * current's mempolicy may be rebinded by the other task(the task that changes
2119 * cpuset's mems), so we needn't do rebind work for current task.
2120 */
2121
2122/* Slow path of a mempolicy duplicate */
2123struct mempolicy *__mpol_dup(struct mempolicy *old)
2124{
2125	struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2126
2127	if (!new)
2128		return ERR_PTR(-ENOMEM);
2129
2130	/* task's mempolicy is protected by alloc_lock */
2131	if (old == current->mempolicy) {
2132		task_lock(current);
2133		*new = *old;
2134		task_unlock(current);
2135	} else
2136		*new = *old;
2137
2138	if (current_cpuset_is_being_rebound()) {
2139		nodemask_t mems = cpuset_mems_allowed(current);
2140		mpol_rebind_policy(new, &mems);
2141	}
2142	atomic_set(&new->refcnt, 1);
2143	return new;
2144}
2145
2146/* Slow path of a mempolicy comparison */
2147bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2148{
2149	if (!a || !b)
2150		return false;
2151	if (a->mode != b->mode)
2152		return false;
2153	if (a->flags != b->flags)
2154		return false;
 
 
2155	if (mpol_store_user_nodemask(a))
2156		if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2157			return false;
2158
2159	switch (a->mode) {
2160	case MPOL_BIND:
2161		/* Fall through */
2162	case MPOL_INTERLEAVE:
2163		return !!nodes_equal(a->v.nodes, b->v.nodes);
2164	case MPOL_PREFERRED:
2165		/* a's ->flags is the same as b's */
2166		if (a->flags & MPOL_F_LOCAL)
2167			return true;
2168		return a->v.preferred_node == b->v.preferred_node;
2169	default:
2170		BUG();
2171		return false;
2172	}
2173}
2174
2175/*
2176 * Shared memory backing store policy support.
2177 *
2178 * Remember policies even when nobody has shared memory mapped.
2179 * The policies are kept in Red-Black tree linked from the inode.
2180 * They are protected by the sp->lock rwlock, which should be held
2181 * for any accesses to the tree.
2182 */
2183
2184/*
2185 * lookup first element intersecting start-end.  Caller holds sp->lock for
2186 * reading or for writing
2187 */
2188static struct sp_node *
2189sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2190{
2191	struct rb_node *n = sp->root.rb_node;
2192
2193	while (n) {
2194		struct sp_node *p = rb_entry(n, struct sp_node, nd);
2195
2196		if (start >= p->end)
2197			n = n->rb_right;
2198		else if (end <= p->start)
2199			n = n->rb_left;
2200		else
2201			break;
2202	}
2203	if (!n)
2204		return NULL;
2205	for (;;) {
2206		struct sp_node *w = NULL;
2207		struct rb_node *prev = rb_prev(n);
2208		if (!prev)
2209			break;
2210		w = rb_entry(prev, struct sp_node, nd);
2211		if (w->end <= start)
2212			break;
2213		n = prev;
2214	}
2215	return rb_entry(n, struct sp_node, nd);
2216}
2217
2218/*
2219 * Insert a new shared policy into the list.  Caller holds sp->lock for
2220 * writing.
2221 */
2222static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2223{
2224	struct rb_node **p = &sp->root.rb_node;
2225	struct rb_node *parent = NULL;
2226	struct sp_node *nd;
2227
2228	while (*p) {
2229		parent = *p;
2230		nd = rb_entry(parent, struct sp_node, nd);
2231		if (new->start < nd->start)
2232			p = &(*p)->rb_left;
2233		else if (new->end > nd->end)
2234			p = &(*p)->rb_right;
2235		else
2236			BUG();
2237	}
2238	rb_link_node(&new->nd, parent, p);
2239	rb_insert_color(&new->nd, &sp->root);
2240	pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2241		 new->policy ? new->policy->mode : 0);
2242}
2243
2244/* Find shared policy intersecting idx */
2245struct mempolicy *
2246mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2247{
2248	struct mempolicy *pol = NULL;
2249	struct sp_node *sn;
2250
2251	if (!sp->root.rb_node)
2252		return NULL;
2253	read_lock(&sp->lock);
2254	sn = sp_lookup(sp, idx, idx+1);
2255	if (sn) {
2256		mpol_get(sn->policy);
2257		pol = sn->policy;
2258	}
2259	read_unlock(&sp->lock);
2260	return pol;
2261}
2262
2263static void sp_free(struct sp_node *n)
2264{
2265	mpol_put(n->policy);
2266	kmem_cache_free(sn_cache, n);
2267}
2268
2269/**
2270 * mpol_misplaced - check whether current page node is valid in policy
2271 *
2272 * @page: page to be checked
2273 * @vma: vm area where page mapped
2274 * @addr: virtual address where page mapped
2275 *
2276 * Lookup current policy node id for vma,addr and "compare to" page's
2277 * node id.
 
2278 *
2279 * Returns:
2280 *	-1	- not misplaced, page is in the right node
2281 *	node	- node id where the page should be
2282 *
2283 * Policy determination "mimics" alloc_page_vma().
2284 * Called from fault path where we know the vma and faulting address.
 
 
 
2285 */
2286int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr)
 
2287{
2288	struct mempolicy *pol;
 
2289	struct zoneref *z;
2290	int curnid = page_to_nid(page);
2291	unsigned long pgoff;
2292	int thiscpu = raw_smp_processor_id();
2293	int thisnid = cpu_to_node(thiscpu);
2294	int polnid = -1;
2295	int ret = -1;
2296
2297	pol = get_vma_policy(vma, addr);
2298	if (!(pol->flags & MPOL_F_MOF))
2299		goto out;
2300
2301	switch (pol->mode) {
2302	case MPOL_INTERLEAVE:
2303		pgoff = vma->vm_pgoff;
2304		pgoff += (addr - vma->vm_start) >> PAGE_SHIFT;
2305		polnid = offset_il_node(pol, pgoff);
2306		break;
2307
2308	case MPOL_PREFERRED:
2309		if (pol->flags & MPOL_F_LOCAL)
2310			polnid = numa_node_id();
2311		else
2312			polnid = pol->v.preferred_node;
 
 
 
2313		break;
2314
2315	case MPOL_BIND:
 
 
 
 
 
 
 
2316
 
2317		/*
2318		 * allows binding to multiple nodes.
2319		 * use current page if in policy nodemask,
2320		 * else select nearest allowed node, if any.
2321		 * If no allowed nodes, use current [!misplaced].
2322		 */
2323		if (node_isset(curnid, pol->v.nodes))
2324			goto out;
2325		z = first_zones_zonelist(
2326				node_zonelist(numa_node_id(), GFP_HIGHUSER),
2327				gfp_zone(GFP_HIGHUSER),
2328				&pol->v.nodes);
2329		polnid = z->zone->node;
2330		break;
2331
2332	default:
2333		BUG();
2334	}
2335
2336	/* Migrate the page towards the node whose CPU is referencing it */
2337	if (pol->flags & MPOL_F_MORON) {
2338		polnid = thisnid;
2339
2340		if (!should_numa_migrate_memory(current, page, curnid, thiscpu))
 
2341			goto out;
2342	}
2343
2344	if (curnid != polnid)
2345		ret = polnid;
2346out:
2347	mpol_cond_put(pol);
2348
2349	return ret;
2350}
2351
2352/*
2353 * Drop the (possibly final) reference to task->mempolicy.  It needs to be
2354 * dropped after task->mempolicy is set to NULL so that any allocation done as
2355 * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed
2356 * policy.
2357 */
2358void mpol_put_task_policy(struct task_struct *task)
2359{
2360	struct mempolicy *pol;
2361
2362	task_lock(task);
2363	pol = task->mempolicy;
2364	task->mempolicy = NULL;
2365	task_unlock(task);
2366	mpol_put(pol);
2367}
2368
2369static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2370{
2371	pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2372	rb_erase(&n->nd, &sp->root);
2373	sp_free(n);
2374}
2375
2376static void sp_node_init(struct sp_node *node, unsigned long start,
2377			unsigned long end, struct mempolicy *pol)
2378{
2379	node->start = start;
2380	node->end = end;
2381	node->policy = pol;
2382}
2383
2384static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2385				struct mempolicy *pol)
2386{
2387	struct sp_node *n;
2388	struct mempolicy *newpol;
2389
2390	n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2391	if (!n)
2392		return NULL;
2393
2394	newpol = mpol_dup(pol);
2395	if (IS_ERR(newpol)) {
2396		kmem_cache_free(sn_cache, n);
2397		return NULL;
2398	}
2399	newpol->flags |= MPOL_F_SHARED;
2400	sp_node_init(n, start, end, newpol);
2401
2402	return n;
2403}
2404
2405/* Replace a policy range. */
2406static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2407				 unsigned long end, struct sp_node *new)
2408{
2409	struct sp_node *n;
2410	struct sp_node *n_new = NULL;
2411	struct mempolicy *mpol_new = NULL;
2412	int ret = 0;
2413
2414restart:
2415	write_lock(&sp->lock);
2416	n = sp_lookup(sp, start, end);
2417	/* Take care of old policies in the same range. */
2418	while (n && n->start < end) {
2419		struct rb_node *next = rb_next(&n->nd);
2420		if (n->start >= start) {
2421			if (n->end <= end)
2422				sp_delete(sp, n);
2423			else
2424				n->start = end;
2425		} else {
2426			/* Old policy spanning whole new range. */
2427			if (n->end > end) {
2428				if (!n_new)
2429					goto alloc_new;
2430
2431				*mpol_new = *n->policy;
2432				atomic_set(&mpol_new->refcnt, 1);
2433				sp_node_init(n_new, end, n->end, mpol_new);
2434				n->end = start;
2435				sp_insert(sp, n_new);
2436				n_new = NULL;
2437				mpol_new = NULL;
2438				break;
2439			} else
2440				n->end = start;
2441		}
2442		if (!next)
2443			break;
2444		n = rb_entry(next, struct sp_node, nd);
2445	}
2446	if (new)
2447		sp_insert(sp, new);
2448	write_unlock(&sp->lock);
2449	ret = 0;
2450
2451err_out:
2452	if (mpol_new)
2453		mpol_put(mpol_new);
2454	if (n_new)
2455		kmem_cache_free(sn_cache, n_new);
2456
2457	return ret;
2458
2459alloc_new:
2460	write_unlock(&sp->lock);
2461	ret = -ENOMEM;
2462	n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2463	if (!n_new)
2464		goto err_out;
2465	mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2466	if (!mpol_new)
2467		goto err_out;
 
2468	goto restart;
2469}
2470
2471/**
2472 * mpol_shared_policy_init - initialize shared policy for inode
2473 * @sp: pointer to inode shared policy
2474 * @mpol:  struct mempolicy to install
2475 *
2476 * Install non-NULL @mpol in inode's shared policy rb-tree.
2477 * On entry, the current task has a reference on a non-NULL @mpol.
2478 * This must be released on exit.
2479 * This is called at get_inode() calls and we can use GFP_KERNEL.
2480 */
2481void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2482{
2483	int ret;
2484
2485	sp->root = RB_ROOT;		/* empty tree == default mempolicy */
2486	rwlock_init(&sp->lock);
2487
2488	if (mpol) {
2489		struct vm_area_struct pvma;
2490		struct mempolicy *new;
2491		NODEMASK_SCRATCH(scratch);
2492
2493		if (!scratch)
2494			goto put_mpol;
2495		/* contextualize the tmpfs mount point mempolicy */
2496		new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2497		if (IS_ERR(new))
 
2498			goto free_scratch; /* no valid nodemask intersection */
2499
2500		task_lock(current);
2501		ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2502		task_unlock(current);
2503		if (ret)
2504			goto put_new;
2505
2506		/* Create pseudo-vma that contains just the policy */
2507		memset(&pvma, 0, sizeof(struct vm_area_struct));
2508		pvma.vm_end = TASK_SIZE;	/* policy covers entire file */
2509		mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2510
2511put_new:
2512		mpol_put(new);			/* drop initial ref */
2513free_scratch:
2514		NODEMASK_SCRATCH_FREE(scratch);
2515put_mpol:
2516		mpol_put(mpol);	/* drop our incoming ref on sb mpol */
2517	}
2518}
2519
2520int mpol_set_shared_policy(struct shared_policy *info,
2521			struct vm_area_struct *vma, struct mempolicy *npol)
2522{
2523	int err;
2524	struct sp_node *new = NULL;
2525	unsigned long sz = vma_pages(vma);
2526
2527	pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2528		 vma->vm_pgoff,
2529		 sz, npol ? npol->mode : -1,
2530		 npol ? npol->flags : -1,
2531		 npol ? nodes_addr(npol->v.nodes)[0] : NUMA_NO_NODE);
2532
2533	if (npol) {
2534		new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2535		if (!new)
2536			return -ENOMEM;
2537	}
2538	err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2539	if (err && new)
2540		sp_free(new);
2541	return err;
2542}
2543
2544/* Free a backing policy store on inode delete. */
2545void mpol_free_shared_policy(struct shared_policy *p)
2546{
2547	struct sp_node *n;
2548	struct rb_node *next;
2549
2550	if (!p->root.rb_node)
2551		return;
2552	write_lock(&p->lock);
2553	next = rb_first(&p->root);
2554	while (next) {
2555		n = rb_entry(next, struct sp_node, nd);
2556		next = rb_next(&n->nd);
2557		sp_delete(p, n);
2558	}
2559	write_unlock(&p->lock);
2560}
2561
2562#ifdef CONFIG_NUMA_BALANCING
2563static int __initdata numabalancing_override;
2564
2565static void __init check_numabalancing_enable(void)
2566{
2567	bool numabalancing_default = false;
2568
2569	if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
2570		numabalancing_default = true;
2571
2572	/* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
2573	if (numabalancing_override)
2574		set_numabalancing_state(numabalancing_override == 1);
2575
2576	if (num_online_nodes() > 1 && !numabalancing_override) {
2577		pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n",
2578			numabalancing_default ? "Enabling" : "Disabling");
2579		set_numabalancing_state(numabalancing_default);
2580	}
2581}
2582
2583static int __init setup_numabalancing(char *str)
2584{
2585	int ret = 0;
2586	if (!str)
2587		goto out;
2588
2589	if (!strcmp(str, "enable")) {
2590		numabalancing_override = 1;
2591		ret = 1;
2592	} else if (!strcmp(str, "disable")) {
2593		numabalancing_override = -1;
2594		ret = 1;
2595	}
2596out:
2597	if (!ret)
2598		pr_warn("Unable to parse numa_balancing=\n");
2599
2600	return ret;
2601}
2602__setup("numa_balancing=", setup_numabalancing);
2603#else
2604static inline void __init check_numabalancing_enable(void)
2605{
2606}
2607#endif /* CONFIG_NUMA_BALANCING */
2608
2609/* assumes fs == KERNEL_DS */
2610void __init numa_policy_init(void)
2611{
2612	nodemask_t interleave_nodes;
2613	unsigned long largest = 0;
2614	int nid, prefer = 0;
2615
2616	policy_cache = kmem_cache_create("numa_policy",
2617					 sizeof(struct mempolicy),
2618					 0, SLAB_PANIC, NULL);
2619
2620	sn_cache = kmem_cache_create("shared_policy_node",
2621				     sizeof(struct sp_node),
2622				     0, SLAB_PANIC, NULL);
2623
2624	for_each_node(nid) {
2625		preferred_node_policy[nid] = (struct mempolicy) {
2626			.refcnt = ATOMIC_INIT(1),
2627			.mode = MPOL_PREFERRED,
2628			.flags = MPOL_F_MOF | MPOL_F_MORON,
2629			.v = { .preferred_node = nid, },
2630		};
2631	}
2632
2633	/*
2634	 * Set interleaving policy for system init. Interleaving is only
2635	 * enabled across suitably sized nodes (default is >= 16MB), or
2636	 * fall back to the largest node if they're all smaller.
2637	 */
2638	nodes_clear(interleave_nodes);
2639	for_each_node_state(nid, N_MEMORY) {
2640		unsigned long total_pages = node_present_pages(nid);
2641
2642		/* Preserve the largest node */
2643		if (largest < total_pages) {
2644			largest = total_pages;
2645			prefer = nid;
2646		}
2647
2648		/* Interleave this node? */
2649		if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2650			node_set(nid, interleave_nodes);
2651	}
2652
2653	/* All too small, use the largest */
2654	if (unlikely(nodes_empty(interleave_nodes)))
2655		node_set(prefer, interleave_nodes);
2656
2657	if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2658		pr_err("%s: interleaving failed\n", __func__);
2659
2660	check_numabalancing_enable();
2661}
2662
2663/* Reset policy of current process to default */
2664void numa_default_policy(void)
2665{
2666	do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2667}
2668
2669/*
2670 * Parse and format mempolicy from/to strings
2671 */
2672
2673/*
2674 * "local" is implemented internally by MPOL_PREFERRED with MPOL_F_LOCAL flag.
2675 */
2676static const char * const policy_modes[] =
2677{
2678	[MPOL_DEFAULT]    = "default",
2679	[MPOL_PREFERRED]  = "prefer",
2680	[MPOL_BIND]       = "bind",
2681	[MPOL_INTERLEAVE] = "interleave",
2682	[MPOL_LOCAL]      = "local",
 
2683};
2684
2685
2686#ifdef CONFIG_TMPFS
2687/**
2688 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2689 * @str:  string containing mempolicy to parse
2690 * @mpol:  pointer to struct mempolicy pointer, returned on success.
2691 *
2692 * Format of input:
2693 *	<mode>[=<flags>][:<nodelist>]
2694 *
2695 * On success, returns 0, else 1
2696 */
2697int mpol_parse_str(char *str, struct mempolicy **mpol)
2698{
2699	struct mempolicy *new = NULL;
2700	unsigned short mode;
2701	unsigned short mode_flags;
2702	nodemask_t nodes;
2703	char *nodelist = strchr(str, ':');
2704	char *flags = strchr(str, '=');
2705	int err = 1;
 
 
 
2706
2707	if (nodelist) {
2708		/* NUL-terminate mode or flags string */
2709		*nodelist++ = '\0';
2710		if (nodelist_parse(nodelist, nodes))
2711			goto out;
2712		if (!nodes_subset(nodes, node_states[N_MEMORY]))
2713			goto out;
2714	} else
2715		nodes_clear(nodes);
2716
2717	if (flags)
2718		*flags++ = '\0';	/* terminate mode string */
2719
2720	for (mode = 0; mode < MPOL_MAX; mode++) {
2721		if (!strcmp(str, policy_modes[mode])) {
2722			break;
2723		}
2724	}
2725	if (mode >= MPOL_MAX)
2726		goto out;
2727
2728	switch (mode) {
2729	case MPOL_PREFERRED:
2730		/*
2731		 * Insist on a nodelist of one node only
 
 
2732		 */
2733		if (nodelist) {
2734			char *rest = nodelist;
2735			while (isdigit(*rest))
2736				rest++;
2737			if (*rest)
2738				goto out;
 
 
2739		}
2740		break;
2741	case MPOL_INTERLEAVE:
2742		/*
2743		 * Default to online nodes with memory if no nodelist
2744		 */
2745		if (!nodelist)
2746			nodes = node_states[N_MEMORY];
2747		break;
2748	case MPOL_LOCAL:
2749		/*
2750		 * Don't allow a nodelist;  mpol_new() checks flags
2751		 */
2752		if (nodelist)
2753			goto out;
2754		mode = MPOL_PREFERRED;
2755		break;
2756	case MPOL_DEFAULT:
2757		/*
2758		 * Insist on a empty nodelist
2759		 */
2760		if (!nodelist)
2761			err = 0;
2762		goto out;
 
2763	case MPOL_BIND:
2764		/*
2765		 * Insist on a nodelist
2766		 */
2767		if (!nodelist)
2768			goto out;
2769	}
2770
2771	mode_flags = 0;
2772	if (flags) {
2773		/*
2774		 * Currently, we only support two mutually exclusive
2775		 * mode flags.
2776		 */
2777		if (!strcmp(flags, "static"))
2778			mode_flags |= MPOL_F_STATIC_NODES;
2779		else if (!strcmp(flags, "relative"))
2780			mode_flags |= MPOL_F_RELATIVE_NODES;
2781		else
2782			goto out;
2783	}
2784
2785	new = mpol_new(mode, mode_flags, &nodes);
2786	if (IS_ERR(new))
2787		goto out;
2788
2789	/*
2790	 * Save nodes for mpol_to_str() to show the tmpfs mount options
2791	 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
2792	 */
2793	if (mode != MPOL_PREFERRED)
2794		new->v.nodes = nodes;
2795	else if (nodelist)
2796		new->v.preferred_node = first_node(nodes);
2797	else
2798		new->flags |= MPOL_F_LOCAL;
 
 
2799
2800	/*
2801	 * Save nodes for contextualization: this will be used to "clone"
2802	 * the mempolicy in a specific context [cpuset] at a later time.
2803	 */
2804	new->w.user_nodemask = nodes;
2805
2806	err = 0;
2807
2808out:
2809	/* Restore string for error message */
2810	if (nodelist)
2811		*--nodelist = ':';
2812	if (flags)
2813		*--flags = '=';
2814	if (!err)
2815		*mpol = new;
2816	return err;
2817}
2818#endif /* CONFIG_TMPFS */
2819
2820/**
2821 * mpol_to_str - format a mempolicy structure for printing
2822 * @buffer:  to contain formatted mempolicy string
2823 * @maxlen:  length of @buffer
2824 * @pol:  pointer to mempolicy to be formatted
2825 *
2826 * Convert @pol into a string.  If @buffer is too short, truncate the string.
2827 * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the
2828 * longest flag, "relative", and to display at least a few node ids.
2829 */
2830void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
2831{
2832	char *p = buffer;
2833	nodemask_t nodes = NODE_MASK_NONE;
2834	unsigned short mode = MPOL_DEFAULT;
2835	unsigned short flags = 0;
2836
2837	if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) {
2838		mode = pol->mode;
2839		flags = pol->flags;
2840	}
2841
2842	switch (mode) {
2843	case MPOL_DEFAULT:
 
2844		break;
2845	case MPOL_PREFERRED:
2846		if (flags & MPOL_F_LOCAL)
2847			mode = MPOL_LOCAL;
2848		else
2849			node_set(pol->v.preferred_node, nodes);
2850		break;
2851	case MPOL_BIND:
2852	case MPOL_INTERLEAVE:
2853		nodes = pol->v.nodes;
2854		break;
2855	default:
2856		WARN_ON_ONCE(1);
2857		snprintf(p, maxlen, "unknown");
2858		return;
2859	}
2860
2861	p += snprintf(p, maxlen, "%s", policy_modes[mode]);
2862
2863	if (flags & MPOL_MODE_FLAGS) {
2864		p += snprintf(p, buffer + maxlen - p, "=");
2865
2866		/*
2867		 * Currently, the only defined flags are mutually exclusive
2868		 */
2869		if (flags & MPOL_F_STATIC_NODES)
2870			p += snprintf(p, buffer + maxlen - p, "static");
2871		else if (flags & MPOL_F_RELATIVE_NODES)
2872			p += snprintf(p, buffer + maxlen - p, "relative");
2873	}
2874
2875	if (!nodes_empty(nodes))
2876		p += scnprintf(p, buffer + maxlen - p, ":%*pbl",
2877			       nodemask_pr_args(&nodes));
2878}
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Simple NUMA memory policy for the Linux kernel.
   4 *
   5 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
   6 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
 
   7 *
   8 * NUMA policy allows the user to give hints in which node(s) memory should
   9 * be allocated.
  10 *
  11 * Support four policies per VMA and per process:
  12 *
  13 * The VMA policy has priority over the process policy for a page fault.
  14 *
  15 * interleave     Allocate memory interleaved over a set of nodes,
  16 *                with normal fallback if it fails.
  17 *                For VMA based allocations this interleaves based on the
  18 *                offset into the backing object or offset into the mapping
  19 *                for anonymous memory. For process policy an process counter
  20 *                is used.
  21 *
  22 * bind           Only allocate memory on a specific set of nodes,
  23 *                no fallback.
  24 *                FIXME: memory is allocated starting with the first node
  25 *                to the last. It would be better if bind would truly restrict
  26 *                the allocation to memory nodes instead
  27 *
  28 * preferred      Try a specific node first before normal fallback.
  29 *                As a special case NUMA_NO_NODE here means do the allocation
  30 *                on the local CPU. This is normally identical to default,
  31 *                but useful to set in a VMA when you have a non default
  32 *                process policy.
  33 *
  34 * preferred many Try a set of nodes first before normal fallback. This is
  35 *                similar to preferred without the special case.
  36 *
  37 * default        Allocate on the local node first, or when on a VMA
  38 *                use the process policy. This is what Linux always did
  39 *		  in a NUMA aware kernel and still does by, ahem, default.
  40 *
  41 * The process policy is applied for most non interrupt memory allocations
  42 * in that process' context. Interrupts ignore the policies and always
  43 * try to allocate on the local CPU. The VMA policy is only applied for memory
  44 * allocations for a VMA in the VM.
  45 *
  46 * Currently there are a few corner cases in swapping where the policy
  47 * is not applied, but the majority should be handled. When process policy
  48 * is used it is not remembered over swap outs/swap ins.
  49 *
  50 * Only the highest zone in the zone hierarchy gets policied. Allocations
  51 * requesting a lower zone just use default policy. This implies that
  52 * on systems with highmem kernel lowmem allocation don't get policied.
  53 * Same with GFP_DMA allocations.
  54 *
  55 * For shmem/tmpfs shared memory the policy is shared between
  56 * all users and remembered even when nobody has memory mapped.
  57 */
  58
  59/* Notebook:
  60   fix mmap readahead to honour policy and enable policy for any page cache
  61   object
  62   statistics for bigpages
  63   global policy for page cache? currently it uses process policy. Requires
  64   first item above.
  65   handle mremap for shared memory (currently ignored for the policy)
  66   grows down?
  67   make bind policy root only? It can trigger oom much faster and the
  68   kernel is not always grateful with that.
  69*/
  70
  71#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  72
  73#include <linux/mempolicy.h>
  74#include <linux/pagewalk.h>
  75#include <linux/highmem.h>
  76#include <linux/hugetlb.h>
  77#include <linux/kernel.h>
  78#include <linux/sched.h>
  79#include <linux/sched/mm.h>
  80#include <linux/sched/numa_balancing.h>
  81#include <linux/sched/task.h>
  82#include <linux/nodemask.h>
  83#include <linux/cpuset.h>
  84#include <linux/slab.h>
  85#include <linux/string.h>
  86#include <linux/export.h>
  87#include <linux/nsproxy.h>
  88#include <linux/interrupt.h>
  89#include <linux/init.h>
  90#include <linux/compat.h>
  91#include <linux/ptrace.h>
  92#include <linux/swap.h>
  93#include <linux/seq_file.h>
  94#include <linux/proc_fs.h>
  95#include <linux/migrate.h>
  96#include <linux/ksm.h>
  97#include <linux/rmap.h>
  98#include <linux/security.h>
  99#include <linux/syscalls.h>
 100#include <linux/ctype.h>
 101#include <linux/mm_inline.h>
 102#include <linux/mmu_notifier.h>
 103#include <linux/printk.h>
 104#include <linux/swapops.h>
 105
 106#include <asm/tlbflush.h>
 107#include <asm/tlb.h>
 108#include <linux/uaccess.h>
 109
 110#include "internal.h"
 111
 112/* Internal flags */
 113#define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0)	/* Skip checks for continuous vmas */
 114#define MPOL_MF_INVERT       (MPOL_MF_INTERNAL << 1)	/* Invert check for nodemask */
 115#define MPOL_MF_WRLOCK       (MPOL_MF_INTERNAL << 2)	/* Write-lock walked vmas */
 116
 117static struct kmem_cache *policy_cache;
 118static struct kmem_cache *sn_cache;
 119
 120/* Highest zone. An specific allocation for a zone below that is not
 121   policied. */
 122enum zone_type policy_zone = 0;
 123
 124/*
 125 * run-time system-wide default policy => local allocation
 126 */
 127static struct mempolicy default_policy = {
 128	.refcnt = ATOMIC_INIT(1), /* never free it */
 129	.mode = MPOL_LOCAL,
 
 130};
 131
 132static struct mempolicy preferred_node_policy[MAX_NUMNODES];
 133
 134/**
 135 * numa_nearest_node - Find nearest node by state
 136 * @node: Node id to start the search
 137 * @state: State to filter the search
 138 *
 139 * Lookup the closest node by distance if @nid is not in state.
 140 *
 141 * Return: this @node if it is in state, otherwise the closest node by distance
 142 */
 143int numa_nearest_node(int node, unsigned int state)
 144{
 145	int min_dist = INT_MAX, dist, n, min_node;
 146
 147	if (state >= NR_NODE_STATES)
 148		return -EINVAL;
 149
 150	if (node == NUMA_NO_NODE || node_state(node, state))
 151		return node;
 152
 153	min_node = node;
 154	for_each_node_state(n, state) {
 155		dist = node_distance(node, n);
 156		if (dist < min_dist) {
 157			min_dist = dist;
 158			min_node = n;
 159		}
 160	}
 161
 162	return min_node;
 163}
 164EXPORT_SYMBOL_GPL(numa_nearest_node);
 165
 166struct mempolicy *get_task_policy(struct task_struct *p)
 167{
 168	struct mempolicy *pol = p->mempolicy;
 169	int node;
 170
 171	if (pol)
 172		return pol;
 173
 174	node = numa_node_id();
 175	if (node != NUMA_NO_NODE) {
 176		pol = &preferred_node_policy[node];
 177		/* preferred_node_policy is not initialised early in boot */
 178		if (pol->mode)
 179			return pol;
 180	}
 181
 182	return &default_policy;
 183}
 184
 185static const struct mempolicy_operations {
 186	int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
 187	void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes);
 188} mpol_ops[MPOL_MAX];
 189
 190static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
 191{
 192	return pol->flags & MPOL_MODE_FLAGS;
 193}
 194
 195static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
 196				   const nodemask_t *rel)
 197{
 198	nodemask_t tmp;
 199	nodes_fold(tmp, *orig, nodes_weight(*rel));
 200	nodes_onto(*ret, tmp, *rel);
 201}
 202
 203static int mpol_new_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
 204{
 205	if (nodes_empty(*nodes))
 206		return -EINVAL;
 207	pol->nodes = *nodes;
 208	return 0;
 209}
 210
 211static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
 212{
 
 
 
 
 
 
 
 
 
 
 
 213	if (nodes_empty(*nodes))
 214		return -EINVAL;
 215
 216	nodes_clear(pol->nodes);
 217	node_set(first_node(*nodes), pol->nodes);
 218	return 0;
 219}
 220
 221/*
 222 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
 223 * any, for the new policy.  mpol_new() has already validated the nodes
 224 * parameter with respect to the policy mode and flags.
 
 225 *
 226 * Must be called holding task's alloc_lock to protect task's mems_allowed
 227 * and mempolicy.  May also be called holding the mmap_lock for write.
 228 */
 229static int mpol_set_nodemask(struct mempolicy *pol,
 230		     const nodemask_t *nodes, struct nodemask_scratch *nsc)
 231{
 232	int ret;
 233
 234	/*
 235	 * Default (pol==NULL) resp. local memory policies are not a
 236	 * subject of any remapping. They also do not need any special
 237	 * constructor.
 238	 */
 239	if (!pol || pol->mode == MPOL_LOCAL)
 240		return 0;
 241
 242	/* Check N_MEMORY */
 243	nodes_and(nsc->mask1,
 244		  cpuset_current_mems_allowed, node_states[N_MEMORY]);
 245
 246	VM_BUG_ON(!nodes);
 
 
 
 
 
 
 
 247
 248	if (pol->flags & MPOL_F_RELATIVE_NODES)
 249		mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1);
 250	else
 251		nodes_and(nsc->mask2, *nodes, nsc->mask1);
 
 
 252
 253	if (mpol_store_user_nodemask(pol))
 254		pol->w.user_nodemask = *nodes;
 255	else
 256		pol->w.cpuset_mems_allowed = cpuset_current_mems_allowed;
 257
 258	ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
 259	return ret;
 260}
 261
 262/*
 263 * This function just creates a new policy, does some check and simple
 264 * initialization. You must invoke mpol_set_nodemask() to set nodes.
 265 */
 266static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
 267				  nodemask_t *nodes)
 268{
 269	struct mempolicy *policy;
 270
 
 
 
 271	if (mode == MPOL_DEFAULT) {
 272		if (nodes && !nodes_empty(*nodes))
 273			return ERR_PTR(-EINVAL);
 274		return NULL;
 275	}
 276	VM_BUG_ON(!nodes);
 277
 278	/*
 279	 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
 280	 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
 281	 * All other modes require a valid pointer to a non-empty nodemask.
 282	 */
 283	if (mode == MPOL_PREFERRED) {
 284		if (nodes_empty(*nodes)) {
 285			if (((flags & MPOL_F_STATIC_NODES) ||
 286			     (flags & MPOL_F_RELATIVE_NODES)))
 287				return ERR_PTR(-EINVAL);
 288
 289			mode = MPOL_LOCAL;
 290		}
 291	} else if (mode == MPOL_LOCAL) {
 292		if (!nodes_empty(*nodes) ||
 293		    (flags & MPOL_F_STATIC_NODES) ||
 294		    (flags & MPOL_F_RELATIVE_NODES))
 295			return ERR_PTR(-EINVAL);
 
 296	} else if (nodes_empty(*nodes))
 297		return ERR_PTR(-EINVAL);
 298
 299	policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
 300	if (!policy)
 301		return ERR_PTR(-ENOMEM);
 302	atomic_set(&policy->refcnt, 1);
 303	policy->mode = mode;
 304	policy->flags = flags;
 305	policy->home_node = NUMA_NO_NODE;
 306
 307	return policy;
 308}
 309
 310/* Slow path of a mpol destructor. */
 311void __mpol_put(struct mempolicy *pol)
 312{
 313	if (!atomic_dec_and_test(&pol->refcnt))
 314		return;
 315	kmem_cache_free(policy_cache, pol);
 316}
 317
 318static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes)
 319{
 320}
 321
 322static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
 323{
 324	nodemask_t tmp;
 325
 326	if (pol->flags & MPOL_F_STATIC_NODES)
 327		nodes_and(tmp, pol->w.user_nodemask, *nodes);
 328	else if (pol->flags & MPOL_F_RELATIVE_NODES)
 329		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
 330	else {
 331		nodes_remap(tmp, pol->nodes, pol->w.cpuset_mems_allowed,
 332								*nodes);
 333		pol->w.cpuset_mems_allowed = *nodes;
 334	}
 335
 336	if (nodes_empty(tmp))
 337		tmp = *nodes;
 338
 339	pol->nodes = tmp;
 340}
 341
 342static void mpol_rebind_preferred(struct mempolicy *pol,
 343						const nodemask_t *nodes)
 344{
 345	pol->w.cpuset_mems_allowed = *nodes;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 346}
 347
 348/*
 349 * mpol_rebind_policy - Migrate a policy to a different set of nodes
 350 *
 351 * Per-vma policies are protected by mmap_lock. Allocations using per-task
 352 * policies are protected by task->mems_allowed_seq to prevent a premature
 353 * OOM/allocation failure due to parallel nodemask modification.
 354 */
 355static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask)
 356{
 357	if (!pol || pol->mode == MPOL_LOCAL)
 358		return;
 359	if (!mpol_store_user_nodemask(pol) &&
 360	    nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
 361		return;
 362
 363	mpol_ops[pol->mode].rebind(pol, newmask);
 364}
 365
 366/*
 367 * Wrapper for mpol_rebind_policy() that just requires task
 368 * pointer, and updates task mempolicy.
 369 *
 370 * Called with task's alloc_lock held.
 371 */
 
 372void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new)
 373{
 374	mpol_rebind_policy(tsk->mempolicy, new);
 375}
 376
 377/*
 378 * Rebind each vma in mm to new nodemask.
 379 *
 380 * Call holding a reference to mm.  Takes mm->mmap_lock during call.
 381 */
 
 382void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
 383{
 384	struct vm_area_struct *vma;
 385	VMA_ITERATOR(vmi, mm, 0);
 386
 387	mmap_write_lock(mm);
 388	for_each_vma(vmi, vma) {
 389		vma_start_write(vma);
 390		mpol_rebind_policy(vma->vm_policy, new);
 391	}
 392	mmap_write_unlock(mm);
 393}
 394
 395static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
 396	[MPOL_DEFAULT] = {
 397		.rebind = mpol_rebind_default,
 398	},
 399	[MPOL_INTERLEAVE] = {
 400		.create = mpol_new_nodemask,
 401		.rebind = mpol_rebind_nodemask,
 402	},
 403	[MPOL_PREFERRED] = {
 404		.create = mpol_new_preferred,
 405		.rebind = mpol_rebind_preferred,
 406	},
 407	[MPOL_BIND] = {
 408		.create = mpol_new_nodemask,
 409		.rebind = mpol_rebind_nodemask,
 410	},
 411	[MPOL_LOCAL] = {
 412		.rebind = mpol_rebind_default,
 413	},
 414	[MPOL_PREFERRED_MANY] = {
 415		.create = mpol_new_nodemask,
 416		.rebind = mpol_rebind_preferred,
 417	},
 418};
 419
 420static bool migrate_folio_add(struct folio *folio, struct list_head *foliolist,
 421				unsigned long flags);
 422static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *pol,
 423				pgoff_t ilx, int *nid);
 424
 425static bool strictly_unmovable(unsigned long flags)
 426{
 427	/*
 428	 * STRICT without MOVE flags lets do_mbind() fail immediately with -EIO
 429	 * if any misplaced page is found.
 430	 */
 431	return (flags & (MPOL_MF_STRICT | MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) ==
 432			 MPOL_MF_STRICT;
 433}
 434
 435struct migration_mpol {		/* for alloc_migration_target_by_mpol() */
 436	struct mempolicy *pol;
 437	pgoff_t ilx;
 438};
 439
 440struct queue_pages {
 441	struct list_head *pagelist;
 442	unsigned long flags;
 443	nodemask_t *nmask;
 444	unsigned long start;
 445	unsigned long end;
 446	struct vm_area_struct *first;
 447	struct folio *large;		/* note last large folio encountered */
 448	long nr_failed;			/* could not be isolated at this time */
 449};
 450
 451/*
 452 * Check if the folio's nid is in qp->nmask.
 453 *
 454 * If MPOL_MF_INVERT is set in qp->flags, check if the nid is
 455 * in the invert of qp->nmask.
 456 */
 457static inline bool queue_folio_required(struct folio *folio,
 458					struct queue_pages *qp)
 459{
 460	int nid = folio_nid(folio);
 461	unsigned long flags = qp->flags;
 462
 463	return node_isset(nid, *qp->nmask) == !(flags & MPOL_MF_INVERT);
 464}
 465
 466static void queue_folios_pmd(pmd_t *pmd, struct mm_walk *walk)
 
 467{
 468	struct folio *folio;
 
 469	struct queue_pages *qp = walk->private;
 
 470
 471	if (unlikely(is_pmd_migration_entry(*pmd))) {
 472		qp->nr_failed++;
 473		return;
 
 
 
 
 
 
 474	}
 475	folio = pfn_folio(pmd_pfn(*pmd));
 476	if (is_huge_zero_page(&folio->page)) {
 477		walk->action = ACTION_CONTINUE;
 478		return;
 479	}
 480	if (!queue_folio_required(folio, qp))
 481		return;
 482	if (!(qp->flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) ||
 483	    !vma_migratable(walk->vma) ||
 484	    !migrate_folio_add(folio, qp->pagelist, qp->flags))
 485		qp->nr_failed++;
 
 
 
 
 486}
 487
 488/*
 489 * Scan through folios, checking if they satisfy the required conditions,
 490 * moving them from LRU to local pagelist for migration if they do (or not).
 491 *
 492 * queue_folios_pte_range() has two possible return values:
 493 * 0 - continue walking to scan for more, even if an existing folio on the
 494 *     wrong node could not be isolated and queued for migration.
 495 * -EIO - only MPOL_MF_STRICT was specified, without MPOL_MF_MOVE or ..._ALL,
 496 *        and an existing folio was on a node that does not follow the policy.
 497 */
 498static int queue_folios_pte_range(pmd_t *pmd, unsigned long addr,
 499			unsigned long end, struct mm_walk *walk)
 500{
 501	struct vm_area_struct *vma = walk->vma;
 502	struct folio *folio;
 503	struct queue_pages *qp = walk->private;
 504	unsigned long flags = qp->flags;
 505	pte_t *pte, *mapped_pte;
 506	pte_t ptent;
 507	spinlock_t *ptl;
 508
 509	ptl = pmd_trans_huge_lock(pmd, vma);
 510	if (ptl) {
 511		queue_folios_pmd(pmd, walk);
 512		spin_unlock(ptl);
 513		goto out;
 514	}
 515
 516	mapped_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
 517	if (!pte) {
 518		walk->action = ACTION_AGAIN;
 519		return 0;
 520	}
 
 521	for (; addr != end; pte++, addr += PAGE_SIZE) {
 522		ptent = ptep_get(pte);
 523		if (pte_none(ptent))
 524			continue;
 525		if (!pte_present(ptent)) {
 526			if (is_migration_entry(pte_to_swp_entry(ptent)))
 527				qp->nr_failed++;
 528			continue;
 529		}
 530		folio = vm_normal_folio(vma, addr, ptent);
 531		if (!folio || folio_is_zone_device(folio))
 532			continue;
 533		/*
 534		 * vm_normal_folio() filters out zero pages, but there might
 535		 * still be reserved folios to skip, perhaps in a VDSO.
 536		 */
 537		if (folio_test_reserved(folio))
 538			continue;
 539		if (!queue_folio_required(folio, qp))
 540			continue;
 541		if (folio_test_large(folio)) {
 542			/*
 543			 * A large folio can only be isolated from LRU once,
 544			 * but may be mapped by many PTEs (and Copy-On-Write may
 545			 * intersperse PTEs of other, order 0, folios).  This is
 546			 * a common case, so don't mistake it for failure (but
 547			 * there can be other cases of multi-mapped pages which
 548			 * this quick check does not help to filter out - and a
 549			 * search of the pagelist might grow to be prohibitive).
 550			 *
 551			 * migrate_pages(&pagelist) returns nr_failed folios, so
 552			 * check "large" now so that queue_pages_range() returns
 553			 * a comparable nr_failed folios.  This does imply that
 554			 * if folio could not be isolated for some racy reason
 555			 * at its first PTE, later PTEs will not give it another
 556			 * chance of isolation; but keeps the accounting simple.
 557			 */
 558			if (folio == qp->large)
 559				continue;
 560			qp->large = folio;
 561		}
 562		if (!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) ||
 563		    !vma_migratable(vma) ||
 564		    !migrate_folio_add(folio, qp->pagelist, flags)) {
 565			qp->nr_failed++;
 566			if (strictly_unmovable(flags))
 567				break;
 568		}
 569	}
 570	pte_unmap_unlock(mapped_pte, ptl);
 571	cond_resched();
 572out:
 573	if (qp->nr_failed && strictly_unmovable(flags))
 574		return -EIO;
 575	return 0;
 576}
 577
 578static int queue_folios_hugetlb(pte_t *pte, unsigned long hmask,
 579			       unsigned long addr, unsigned long end,
 580			       struct mm_walk *walk)
 581{
 582#ifdef CONFIG_HUGETLB_PAGE
 583	struct queue_pages *qp = walk->private;
 584	unsigned long flags = qp->flags;
 585	struct folio *folio;
 586	spinlock_t *ptl;
 587	pte_t entry;
 588
 589	ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte);
 590	entry = huge_ptep_get(pte);
 591	if (!pte_present(entry)) {
 592		if (unlikely(is_hugetlb_entry_migration(entry)))
 593			qp->nr_failed++;
 594		goto unlock;
 595	}
 596	folio = pfn_folio(pte_pfn(entry));
 597	if (!queue_folio_required(folio, qp))
 598		goto unlock;
 599	if (!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) ||
 600	    !vma_migratable(walk->vma)) {
 601		qp->nr_failed++;
 602		goto unlock;
 603	}
 604	/*
 605	 * Unless MPOL_MF_MOVE_ALL, we try to avoid migrating a shared folio.
 606	 * Choosing not to migrate a shared folio is not counted as a failure.
 607	 *
 608	 * To check if the folio is shared, ideally we want to make sure
 609	 * every page is mapped to the same process. Doing that is very
 610	 * expensive, so check the estimated sharers of the folio instead.
 611	 */
 612	if ((flags & MPOL_MF_MOVE_ALL) ||
 613	    (folio_estimated_sharers(folio) == 1 && !hugetlb_pmd_shared(pte)))
 614		if (!isolate_hugetlb(folio, qp->pagelist))
 615			qp->nr_failed++;
 616unlock:
 617	spin_unlock(ptl);
 618	if (qp->nr_failed && strictly_unmovable(flags))
 619		return -EIO;
 620#endif
 621	return 0;
 622}
 623
 624#ifdef CONFIG_NUMA_BALANCING
 625/*
 626 * This is used to mark a range of virtual addresses to be inaccessible.
 627 * These are later cleared by a NUMA hinting fault. Depending on these
 628 * faults, pages may be migrated for better NUMA placement.
 629 *
 630 * This is assuming that NUMA faults are handled using PROT_NONE. If
 631 * an architecture makes a different choice, it will need further
 632 * changes to the core.
 633 */
 634unsigned long change_prot_numa(struct vm_area_struct *vma,
 635			unsigned long addr, unsigned long end)
 636{
 637	struct mmu_gather tlb;
 638	long nr_updated;
 639
 640	tlb_gather_mmu(&tlb, vma->vm_mm);
 641
 642	nr_updated = change_protection(&tlb, vma, addr, end, MM_CP_PROT_NUMA);
 643	if (nr_updated > 0)
 644		count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
 645
 646	tlb_finish_mmu(&tlb);
 647
 648	return nr_updated;
 649}
 
 
 
 
 
 
 650#endif /* CONFIG_NUMA_BALANCING */
 651
 652static int queue_pages_test_walk(unsigned long start, unsigned long end,
 653				struct mm_walk *walk)
 654{
 655	struct vm_area_struct *next, *vma = walk->vma;
 656	struct queue_pages *qp = walk->private;
 657	unsigned long endvma = vma->vm_end;
 658	unsigned long flags = qp->flags;
 659
 660	/* range check first */
 661	VM_BUG_ON_VMA(!range_in_vma(vma, start, end), vma);
 
 
 
 
 
 662
 663	if (!qp->first) {
 664		qp->first = vma;
 665		if (!(flags & MPOL_MF_DISCONTIG_OK) &&
 666			(qp->start < vma->vm_start))
 667			/* hole at head side of range */
 668			return -EFAULT;
 669	}
 670	next = find_vma(vma->vm_mm, vma->vm_end);
 671	if (!(flags & MPOL_MF_DISCONTIG_OK) &&
 672		((vma->vm_end < qp->end) &&
 673		(!next || vma->vm_end < next->vm_start)))
 674		/* hole at middle or tail of range */
 675		return -EFAULT;
 676
 677	/*
 678	 * Need check MPOL_MF_STRICT to return -EIO if possible
 679	 * regardless of vma_migratable
 680	 */
 681	if (!vma_migratable(vma) &&
 682	    !(flags & MPOL_MF_STRICT))
 
 
 683		return 1;
 
 684
 685	if (endvma > end)
 686		endvma = end;
 687
 688	/*
 689	 * Check page nodes, and queue pages to move, in the current vma.
 690	 * But if no moving, and no strict checking, the scan can be skipped.
 691	 */
 692	if (flags & (MPOL_MF_STRICT | MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
 693		return 0;
 694	return 1;
 695}
 696
 697static const struct mm_walk_ops queue_pages_walk_ops = {
 698	.hugetlb_entry		= queue_folios_hugetlb,
 699	.pmd_entry		= queue_folios_pte_range,
 700	.test_walk		= queue_pages_test_walk,
 701	.walk_lock		= PGWALK_RDLOCK,
 702};
 703
 704static const struct mm_walk_ops queue_pages_lock_vma_walk_ops = {
 705	.hugetlb_entry		= queue_folios_hugetlb,
 706	.pmd_entry		= queue_folios_pte_range,
 707	.test_walk		= queue_pages_test_walk,
 708	.walk_lock		= PGWALK_WRLOCK,
 709};
 710
 711/*
 712 * Walk through page tables and collect pages to be migrated.
 713 *
 714 * If pages found in a given range are not on the required set of @nodes,
 715 * and migration is allowed, they are isolated and queued to @pagelist.
 716 *
 717 * queue_pages_range() may return:
 718 * 0 - all pages already on the right node, or successfully queued for moving
 719 *     (or neither strict checking nor moving requested: only range checking).
 720 * >0 - this number of misplaced folios could not be queued for moving
 721 *      (a hugetlbfs page or a transparent huge page being counted as 1).
 722 * -EIO - a misplaced page found, when MPOL_MF_STRICT specified without MOVEs.
 723 * -EFAULT - a hole in the memory range, when MPOL_MF_DISCONTIG_OK unspecified.
 724 */
 725static long
 726queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
 727		nodemask_t *nodes, unsigned long flags,
 728		struct list_head *pagelist)
 729{
 730	int err;
 731	struct queue_pages qp = {
 732		.pagelist = pagelist,
 733		.flags = flags,
 734		.nmask = nodes,
 735		.start = start,
 736		.end = end,
 737		.first = NULL,
 
 
 
 
 
 738	};
 739	const struct mm_walk_ops *ops = (flags & MPOL_MF_WRLOCK) ?
 740			&queue_pages_lock_vma_walk_ops : &queue_pages_walk_ops;
 741
 742	err = walk_page_range(mm, start, end, ops, &qp);
 743
 744	if (!qp.first)
 745		/* whole range in hole */
 746		err = -EFAULT;
 747
 748	return err ? : qp.nr_failed;
 749}
 750
 751/*
 752 * Apply policy to a single VMA
 753 * This must be called with the mmap_lock held for writing.
 754 */
 755static int vma_replace_policy(struct vm_area_struct *vma,
 756				struct mempolicy *pol)
 757{
 758	int err;
 759	struct mempolicy *old;
 760	struct mempolicy *new;
 761
 762	vma_assert_write_locked(vma);
 
 
 
 763
 764	new = mpol_dup(pol);
 765	if (IS_ERR(new))
 766		return PTR_ERR(new);
 767
 768	if (vma->vm_ops && vma->vm_ops->set_policy) {
 769		err = vma->vm_ops->set_policy(vma, new);
 770		if (err)
 771			goto err_out;
 772	}
 773
 774	old = vma->vm_policy;
 775	vma->vm_policy = new; /* protected by mmap_lock */
 776	mpol_put(old);
 777
 778	return 0;
 779 err_out:
 780	mpol_put(new);
 781	return err;
 782}
 783
 784/* Split or merge the VMA (if required) and apply the new policy */
 785static int mbind_range(struct vma_iterator *vmi, struct vm_area_struct *vma,
 786		struct vm_area_struct **prev, unsigned long start,
 787		unsigned long end, struct mempolicy *new_pol)
 788{
 789	unsigned long vmstart, vmend;
 790
 791	vmend = min(end, vma->vm_end);
 792	if (start > vma->vm_start) {
 793		*prev = vma;
 794		vmstart = start;
 795	} else {
 796		vmstart = vma->vm_start;
 797	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 798
 799	if (mpol_equal(vma->vm_policy, new_pol)) {
 800		*prev = vma;
 801		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 802	}
 803
 804	vma =  vma_modify_policy(vmi, *prev, vma, vmstart, vmend, new_pol);
 805	if (IS_ERR(vma))
 806		return PTR_ERR(vma);
 807
 808	*prev = vma;
 809	return vma_replace_policy(vma, new_pol);
 810}
 811
 812/* Set the process memory policy */
 813static long do_set_mempolicy(unsigned short mode, unsigned short flags,
 814			     nodemask_t *nodes)
 815{
 816	struct mempolicy *new, *old;
 817	NODEMASK_SCRATCH(scratch);
 818	int ret;
 819
 820	if (!scratch)
 821		return -ENOMEM;
 822
 823	new = mpol_new(mode, flags, nodes);
 824	if (IS_ERR(new)) {
 825		ret = PTR_ERR(new);
 826		goto out;
 827	}
 828
 829	task_lock(current);
 830	ret = mpol_set_nodemask(new, nodes, scratch);
 831	if (ret) {
 832		task_unlock(current);
 833		mpol_put(new);
 834		goto out;
 835	}
 836
 837	old = current->mempolicy;
 838	current->mempolicy = new;
 839	if (new && new->mode == MPOL_INTERLEAVE)
 840		current->il_prev = MAX_NUMNODES-1;
 841	task_unlock(current);
 842	mpol_put(old);
 843	ret = 0;
 844out:
 845	NODEMASK_SCRATCH_FREE(scratch);
 846	return ret;
 847}
 848
 849/*
 850 * Return nodemask for policy for get_mempolicy() query
 851 *
 852 * Called with task's alloc_lock held
 853 */
 854static void get_policy_nodemask(struct mempolicy *pol, nodemask_t *nodes)
 855{
 856	nodes_clear(*nodes);
 857	if (pol == &default_policy)
 858		return;
 859
 860	switch (pol->mode) {
 861	case MPOL_BIND:
 
 862	case MPOL_INTERLEAVE:
 
 
 863	case MPOL_PREFERRED:
 864	case MPOL_PREFERRED_MANY:
 865		*nodes = pol->nodes;
 866		break;
 867	case MPOL_LOCAL:
 868		/* return empty node mask for local allocation */
 869		break;
 870	default:
 871		BUG();
 872	}
 873}
 874
 875static int lookup_node(struct mm_struct *mm, unsigned long addr)
 876{
 877	struct page *p = NULL;
 878	int ret;
 879
 880	ret = get_user_pages_fast(addr & PAGE_MASK, 1, 0, &p);
 881	if (ret > 0) {
 882		ret = page_to_nid(p);
 883		put_page(p);
 884	}
 885	return ret;
 886}
 887
 888/* Retrieve NUMA policy */
 889static long do_get_mempolicy(int *policy, nodemask_t *nmask,
 890			     unsigned long addr, unsigned long flags)
 891{
 892	int err;
 893	struct mm_struct *mm = current->mm;
 894	struct vm_area_struct *vma = NULL;
 895	struct mempolicy *pol = current->mempolicy, *pol_refcount = NULL;
 896
 897	if (flags &
 898		~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
 899		return -EINVAL;
 900
 901	if (flags & MPOL_F_MEMS_ALLOWED) {
 902		if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
 903			return -EINVAL;
 904		*policy = 0;	/* just so it's initialized */
 905		task_lock(current);
 906		*nmask  = cpuset_current_mems_allowed;
 907		task_unlock(current);
 908		return 0;
 909	}
 910
 911	if (flags & MPOL_F_ADDR) {
 912		pgoff_t ilx;		/* ignored here */
 913		/*
 914		 * Do NOT fall back to task policy if the
 915		 * vma/shared policy at addr is NULL.  We
 916		 * want to return MPOL_DEFAULT in this case.
 917		 */
 918		mmap_read_lock(mm);
 919		vma = vma_lookup(mm, addr);
 920		if (!vma) {
 921			mmap_read_unlock(mm);
 922			return -EFAULT;
 923		}
 924		pol = __get_vma_policy(vma, addr, &ilx);
 
 
 
 925	} else if (addr)
 926		return -EINVAL;
 927
 928	if (!pol)
 929		pol = &default_policy;	/* indicates default behavior */
 930
 931	if (flags & MPOL_F_NODE) {
 932		if (flags & MPOL_F_ADDR) {
 933			/*
 934			 * Take a refcount on the mpol, because we are about to
 935			 * drop the mmap_lock, after which only "pol" remains
 936			 * valid, "vma" is stale.
 937			 */
 938			pol_refcount = pol;
 939			vma = NULL;
 940			mpol_get(pol);
 941			mmap_read_unlock(mm);
 942			err = lookup_node(mm, addr);
 943			if (err < 0)
 944				goto out;
 945			*policy = err;
 946		} else if (pol == current->mempolicy &&
 947				pol->mode == MPOL_INTERLEAVE) {
 948			*policy = next_node_in(current->il_prev, pol->nodes);
 949		} else {
 950			err = -EINVAL;
 951			goto out;
 952		}
 953	} else {
 954		*policy = pol == &default_policy ? MPOL_DEFAULT :
 955						pol->mode;
 956		/*
 957		 * Internal mempolicy flags must be masked off before exposing
 958		 * the policy to userspace.
 959		 */
 960		*policy |= (pol->flags & MPOL_MODE_FLAGS);
 961	}
 962
 963	err = 0;
 964	if (nmask) {
 965		if (mpol_store_user_nodemask(pol)) {
 966			*nmask = pol->w.user_nodemask;
 967		} else {
 968			task_lock(current);
 969			get_policy_nodemask(pol, nmask);
 970			task_unlock(current);
 971		}
 972	}
 973
 974 out:
 975	mpol_cond_put(pol);
 976	if (vma)
 977		mmap_read_unlock(mm);
 978	if (pol_refcount)
 979		mpol_put(pol_refcount);
 980	return err;
 981}
 982
 983#ifdef CONFIG_MIGRATION
 984static bool migrate_folio_add(struct folio *folio, struct list_head *foliolist,
 
 
 
 985				unsigned long flags)
 986{
 
 987	/*
 988	 * Unless MPOL_MF_MOVE_ALL, we try to avoid migrating a shared folio.
 989	 * Choosing not to migrate a shared folio is not counted as a failure.
 990	 *
 991	 * To check if the folio is shared, ideally we want to make sure
 992	 * every page is mapped to the same process. Doing that is very
 993	 * expensive, so check the estimated sharers of the folio instead.
 994	 */
 995	if ((flags & MPOL_MF_MOVE_ALL) || folio_estimated_sharers(folio) == 1) {
 996		if (folio_isolate_lru(folio)) {
 997			list_add_tail(&folio->lru, foliolist);
 998			node_stat_mod_folio(folio,
 999				NR_ISOLATED_ANON + folio_is_file_lru(folio),
1000				folio_nr_pages(folio));
1001		} else {
1002			/*
1003			 * Non-movable folio may reach here.  And, there may be
1004			 * temporary off LRU folios or non-LRU movable folios.
1005			 * Treat them as unmovable folios since they can't be
1006			 * isolated, so they can't be moved at the moment.
1007			 */
1008			return false;
1009		}
1010	}
1011	return true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1012}
1013
1014/*
1015 * Migrate pages from one node to a target node.
1016 * Returns error or the number of pages not migrated.
1017 */
1018static long migrate_to_node(struct mm_struct *mm, int source, int dest,
1019			    int flags)
1020{
1021	nodemask_t nmask;
1022	struct vm_area_struct *vma;
1023	LIST_HEAD(pagelist);
1024	long nr_failed;
1025	long err = 0;
1026	struct migration_target_control mtc = {
1027		.nid = dest,
1028		.gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
1029	};
1030
1031	nodes_clear(nmask);
1032	node_set(source, nmask);
1033
1034	VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
1035
1036	mmap_read_lock(mm);
1037	vma = find_vma(mm, 0);
1038
1039	/*
1040	 * This does not migrate the range, but isolates all pages that
1041	 * need migration.  Between passing in the full user address
1042	 * space range and MPOL_MF_DISCONTIG_OK, this call cannot fail,
1043	 * but passes back the count of pages which could not be isolated.
1044	 */
1045	nr_failed = queue_pages_range(mm, vma->vm_start, mm->task_size, &nmask,
1046				      flags | MPOL_MF_DISCONTIG_OK, &pagelist);
1047	mmap_read_unlock(mm);
1048
1049	if (!list_empty(&pagelist)) {
1050		err = migrate_pages(&pagelist, alloc_migration_target, NULL,
1051			(unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL, NULL);
1052		if (err)
1053			putback_movable_pages(&pagelist);
1054	}
1055
1056	if (err >= 0)
1057		err += nr_failed;
1058	return err;
1059}
1060
1061/*
1062 * Move pages between the two nodesets so as to preserve the physical
1063 * layout as much as possible.
1064 *
1065 * Returns the number of page that could not be moved.
1066 */
1067int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1068		     const nodemask_t *to, int flags)
1069{
1070	long nr_failed = 0;
1071	long err = 0;
1072	nodemask_t tmp;
1073
1074	lru_cache_disable();
 
 
 
 
1075
1076	/*
1077	 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1078	 * bit in 'to' is not also set in 'tmp'.  Clear the found 'source'
1079	 * bit in 'tmp', and return that <source, dest> pair for migration.
1080	 * The pair of nodemasks 'to' and 'from' define the map.
1081	 *
1082	 * If no pair of bits is found that way, fallback to picking some
1083	 * pair of 'source' and 'dest' bits that are not the same.  If the
1084	 * 'source' and 'dest' bits are the same, this represents a node
1085	 * that will be migrating to itself, so no pages need move.
1086	 *
1087	 * If no bits are left in 'tmp', or if all remaining bits left
1088	 * in 'tmp' correspond to the same bit in 'to', return false
1089	 * (nothing left to migrate).
1090	 *
1091	 * This lets us pick a pair of nodes to migrate between, such that
1092	 * if possible the dest node is not already occupied by some other
1093	 * source node, minimizing the risk of overloading the memory on a
1094	 * node that would happen if we migrated incoming memory to a node
1095	 * before migrating outgoing memory source that same node.
1096	 *
1097	 * A single scan of tmp is sufficient.  As we go, we remember the
1098	 * most recent <s, d> pair that moved (s != d).  If we find a pair
1099	 * that not only moved, but what's better, moved to an empty slot
1100	 * (d is not set in tmp), then we break out then, with that pair.
1101	 * Otherwise when we finish scanning from_tmp, we at least have the
1102	 * most recent <s, d> pair that moved.  If we get all the way through
1103	 * the scan of tmp without finding any node that moved, much less
1104	 * moved to an empty node, then there is nothing left worth migrating.
1105	 */
1106
1107	tmp = *from;
1108	while (!nodes_empty(tmp)) {
1109		int s, d;
1110		int source = NUMA_NO_NODE;
1111		int dest = 0;
1112
1113		for_each_node_mask(s, tmp) {
1114
1115			/*
1116			 * do_migrate_pages() tries to maintain the relative
1117			 * node relationship of the pages established between
1118			 * threads and memory areas.
1119                         *
1120			 * However if the number of source nodes is not equal to
1121			 * the number of destination nodes we can not preserve
1122			 * this node relative relationship.  In that case, skip
1123			 * copying memory from a node that is in the destination
1124			 * mask.
1125			 *
1126			 * Example: [2,3,4] -> [3,4,5] moves everything.
1127			 *          [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1128			 */
1129
1130			if ((nodes_weight(*from) != nodes_weight(*to)) &&
1131						(node_isset(s, *to)))
1132				continue;
1133
1134			d = node_remap(s, *from, *to);
1135			if (s == d)
1136				continue;
1137
1138			source = s;	/* Node moved. Memorize */
1139			dest = d;
1140
1141			/* dest not in remaining from nodes? */
1142			if (!node_isset(dest, tmp))
1143				break;
1144		}
1145		if (source == NUMA_NO_NODE)
1146			break;
1147
1148		node_clear(source, tmp);
1149		err = migrate_to_node(mm, source, dest, flags);
1150		if (err > 0)
1151			nr_failed += err;
1152		if (err < 0)
1153			break;
1154	}
1155
1156	lru_cache_enable();
1157	if (err < 0)
1158		return err;
1159	return (nr_failed < INT_MAX) ? nr_failed : INT_MAX;
 
1160}
1161
1162/*
1163 * Allocate a new folio for page migration, according to NUMA mempolicy.
 
 
 
 
1164 */
1165static struct folio *alloc_migration_target_by_mpol(struct folio *src,
1166						    unsigned long private)
1167{
1168	struct migration_mpol *mmpol = (struct migration_mpol *)private;
1169	struct mempolicy *pol = mmpol->pol;
1170	pgoff_t ilx = mmpol->ilx;
1171	struct page *page;
1172	unsigned int order;
1173	int nid = numa_node_id();
1174	gfp_t gfp;
1175
1176	order = folio_order(src);
1177	ilx += src->index >> order;
 
 
 
 
 
1178
1179	if (folio_test_hugetlb(src)) {
1180		nodemask_t *nodemask;
1181		struct hstate *h;
 
 
1182
1183		h = folio_hstate(src);
1184		gfp = htlb_alloc_mask(h);
1185		nodemask = policy_nodemask(gfp, pol, ilx, &nid);
1186		return alloc_hugetlb_folio_nodemask(h, nid, nodemask, gfp);
 
 
1187	}
1188
1189	if (folio_test_large(src))
1190		gfp = GFP_TRANSHUGE;
1191	else
1192		gfp = GFP_HIGHUSER_MOVABLE | __GFP_RETRY_MAYFAIL | __GFP_COMP;
1193
1194	page = alloc_pages_mpol(gfp, order, pol, ilx, nid);
1195	return page_rmappable_folio(page);
1196}
1197#else
1198
1199static bool migrate_folio_add(struct folio *folio, struct list_head *foliolist,
1200				unsigned long flags)
1201{
1202	return false;
1203}
1204
1205int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1206		     const nodemask_t *to, int flags)
1207{
1208	return -ENOSYS;
1209}
1210
1211static struct folio *alloc_migration_target_by_mpol(struct folio *src,
1212						    unsigned long private)
1213{
1214	return NULL;
1215}
1216#endif
1217
1218static long do_mbind(unsigned long start, unsigned long len,
1219		     unsigned short mode, unsigned short mode_flags,
1220		     nodemask_t *nmask, unsigned long flags)
1221{
1222	struct mm_struct *mm = current->mm;
1223	struct vm_area_struct *vma, *prev;
1224	struct vma_iterator vmi;
1225	struct migration_mpol mmpol;
1226	struct mempolicy *new;
1227	unsigned long end;
1228	long err;
1229	long nr_failed;
1230	LIST_HEAD(pagelist);
1231
1232	if (flags & ~(unsigned long)MPOL_MF_VALID)
1233		return -EINVAL;
1234	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1235		return -EPERM;
1236
1237	if (start & ~PAGE_MASK)
1238		return -EINVAL;
1239
1240	if (mode == MPOL_DEFAULT)
1241		flags &= ~MPOL_MF_STRICT;
1242
1243	len = PAGE_ALIGN(len);
1244	end = start + len;
1245
1246	if (end < start)
1247		return -EINVAL;
1248	if (end == start)
1249		return 0;
1250
1251	new = mpol_new(mode, mode_flags, nmask);
1252	if (IS_ERR(new))
1253		return PTR_ERR(new);
1254
 
 
 
1255	/*
1256	 * If we are using the default policy then operation
1257	 * on discontinuous address spaces is okay after all
1258	 */
1259	if (!new)
1260		flags |= MPOL_MF_DISCONTIG_OK;
1261
1262	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
1263		lru_cache_disable();
 
 
 
 
 
 
 
 
1264	{
1265		NODEMASK_SCRATCH(scratch);
1266		if (scratch) {
1267			mmap_write_lock(mm);
 
1268			err = mpol_set_nodemask(new, nmask, scratch);
 
1269			if (err)
1270				mmap_write_unlock(mm);
1271		} else
1272			err = -ENOMEM;
1273		NODEMASK_SCRATCH_FREE(scratch);
1274	}
1275	if (err)
1276		goto mpol_out;
1277
1278	/*
1279	 * Lock the VMAs before scanning for pages to migrate,
1280	 * to ensure we don't miss a concurrently inserted page.
1281	 */
1282	nr_failed = queue_pages_range(mm, start, end, nmask,
1283			flags | MPOL_MF_INVERT | MPOL_MF_WRLOCK, &pagelist);
1284
1285	if (nr_failed < 0) {
1286		err = nr_failed;
1287		nr_failed = 0;
1288	} else {
1289		vma_iter_init(&vmi, mm, start);
1290		prev = vma_prev(&vmi);
1291		for_each_vma_range(vmi, vma, end) {
1292			err = mbind_range(&vmi, vma, &prev, start, end, new);
1293			if (err)
1294				break;
1295		}
1296	}
1297
1298	if (!err && !list_empty(&pagelist)) {
1299		/* Convert MPOL_DEFAULT's NULL to task or default policy */
1300		if (!new) {
1301			new = get_task_policy(current);
1302			mpol_get(new);
1303		}
1304		mmpol.pol = new;
1305		mmpol.ilx = 0;
1306
1307		/*
1308		 * In the interleaved case, attempt to allocate on exactly the
1309		 * targeted nodes, for the first VMA to be migrated; for later
1310		 * VMAs, the nodes will still be interleaved from the targeted
1311		 * nodemask, but one by one may be selected differently.
1312		 */
1313		if (new->mode == MPOL_INTERLEAVE) {
1314			struct page *page;
1315			unsigned int order;
1316			unsigned long addr = -EFAULT;
1317
1318			list_for_each_entry(page, &pagelist, lru) {
1319				if (!PageKsm(page))
1320					break;
1321			}
1322			if (!list_entry_is_head(page, &pagelist, lru)) {
1323				vma_iter_init(&vmi, mm, start);
1324				for_each_vma_range(vmi, vma, end) {
1325					addr = page_address_in_vma(page, vma);
1326					if (addr != -EFAULT)
1327						break;
1328				}
1329			}
1330			if (addr != -EFAULT) {
1331				order = compound_order(page);
1332				/* We already know the pol, but not the ilx */
1333				mpol_cond_put(get_vma_policy(vma, addr, order,
1334							     &mmpol.ilx));
1335				/* Set base from which to increment by index */
1336				mmpol.ilx -= page->index >> order;
1337			}
1338		}
1339	}
1340
1341	mmap_write_unlock(mm);
1342
1343	if (!err && !list_empty(&pagelist)) {
1344		nr_failed |= migrate_pages(&pagelist,
1345				alloc_migration_target_by_mpol, NULL,
1346				(unsigned long)&mmpol, MIGRATE_SYNC,
1347				MR_MEMPOLICY_MBIND, NULL);
1348	}
1349
1350	if (nr_failed && (flags & MPOL_MF_STRICT))
1351		err = -EIO;
1352	if (!list_empty(&pagelist))
1353		putback_movable_pages(&pagelist);
1354mpol_out:
1355	mpol_put(new);
1356	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
1357		lru_cache_enable();
1358	return err;
1359}
1360
1361/*
1362 * User space interface with variable sized bitmaps for nodelists.
1363 */
1364static int get_bitmap(unsigned long *mask, const unsigned long __user *nmask,
1365		      unsigned long maxnode)
1366{
1367	unsigned long nlongs = BITS_TO_LONGS(maxnode);
1368	int ret;
1369
1370	if (in_compat_syscall())
1371		ret = compat_get_bitmap(mask,
1372					(const compat_ulong_t __user *)nmask,
1373					maxnode);
1374	else
1375		ret = copy_from_user(mask, nmask,
1376				     nlongs * sizeof(unsigned long));
1377
1378	if (ret)
1379		return -EFAULT;
1380
1381	if (maxnode % BITS_PER_LONG)
1382		mask[nlongs - 1] &= (1UL << (maxnode % BITS_PER_LONG)) - 1;
1383
1384	return 0;
1385}
1386
1387/* Copy a node mask from user space. */
1388static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1389		     unsigned long maxnode)
1390{
 
 
 
 
 
1391	--maxnode;
1392	nodes_clear(*nodes);
1393	if (maxnode == 0 || !nmask)
1394		return 0;
1395	if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1396		return -EINVAL;
1397
 
 
 
 
 
 
1398	/*
1399	 * When the user specified more nodes than supported just check
1400	 * if the non supported part is all zero, one word at a time,
1401	 * starting at the end.
1402	 */
1403	while (maxnode > MAX_NUMNODES) {
1404		unsigned long bits = min_t(unsigned long, maxnode, BITS_PER_LONG);
1405		unsigned long t;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1406
1407		if (get_bitmap(&t, &nmask[(maxnode - 1) / BITS_PER_LONG], bits))
 
1408			return -EFAULT;
1409
1410		if (maxnode - bits >= MAX_NUMNODES) {
1411			maxnode -= bits;
1412		} else {
1413			maxnode = MAX_NUMNODES;
1414			t &= ~((1UL << (MAX_NUMNODES % BITS_PER_LONG)) - 1);
1415		}
1416		if (t)
1417			return -EINVAL;
1418	}
1419
1420	return get_bitmap(nodes_addr(*nodes), nmask, maxnode);
 
 
 
1421}
1422
1423/* Copy a kernel node mask to user space */
1424static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1425			      nodemask_t *nodes)
1426{
1427	unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1428	unsigned int nbytes = BITS_TO_LONGS(nr_node_ids) * sizeof(long);
1429	bool compat = in_compat_syscall();
1430
1431	if (compat)
1432		nbytes = BITS_TO_COMPAT_LONGS(nr_node_ids) * sizeof(compat_long_t);
1433
1434	if (copy > nbytes) {
1435		if (copy > PAGE_SIZE)
1436			return -EINVAL;
1437		if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1438			return -EFAULT;
1439		copy = nbytes;
1440		maxnode = nr_node_ids;
1441	}
1442
1443	if (compat)
1444		return compat_put_bitmap((compat_ulong_t __user *)mask,
1445					 nodes_addr(*nodes), maxnode);
1446
1447	return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1448}
1449
1450/* Basic parameter sanity check used by both mbind() and set_mempolicy() */
1451static inline int sanitize_mpol_flags(int *mode, unsigned short *flags)
1452{
1453	*flags = *mode & MPOL_MODE_FLAGS;
1454	*mode &= ~MPOL_MODE_FLAGS;
1455
1456	if ((unsigned int)(*mode) >=  MPOL_MAX)
1457		return -EINVAL;
1458	if ((*flags & MPOL_F_STATIC_NODES) && (*flags & MPOL_F_RELATIVE_NODES))
1459		return -EINVAL;
1460	if (*flags & MPOL_F_NUMA_BALANCING) {
1461		if (*mode != MPOL_BIND)
1462			return -EINVAL;
1463		*flags |= (MPOL_F_MOF | MPOL_F_MORON);
1464	}
1465	return 0;
1466}
1467
1468static long kernel_mbind(unsigned long start, unsigned long len,
1469			 unsigned long mode, const unsigned long __user *nmask,
1470			 unsigned long maxnode, unsigned int flags)
1471{
1472	unsigned short mode_flags;
1473	nodemask_t nodes;
1474	int lmode = mode;
1475	int err;
 
1476
1477	start = untagged_addr(start);
1478	err = sanitize_mpol_flags(&lmode, &mode_flags);
1479	if (err)
1480		return err;
1481
 
 
1482	err = get_nodes(&nodes, nmask, maxnode);
1483	if (err)
1484		return err;
1485
1486	return do_mbind(start, len, lmode, mode_flags, &nodes, flags);
1487}
1488
1489SYSCALL_DEFINE4(set_mempolicy_home_node, unsigned long, start, unsigned long, len,
1490		unsigned long, home_node, unsigned long, flags)
1491{
1492	struct mm_struct *mm = current->mm;
1493	struct vm_area_struct *vma, *prev;
1494	struct mempolicy *new, *old;
1495	unsigned long end;
1496	int err = -ENOENT;
1497	VMA_ITERATOR(vmi, mm, start);
1498
1499	start = untagged_addr(start);
1500	if (start & ~PAGE_MASK)
1501		return -EINVAL;
1502	/*
1503	 * flags is used for future extension if any.
1504	 */
1505	if (flags != 0)
1506		return -EINVAL;
1507
1508	/*
1509	 * Check home_node is online to avoid accessing uninitialized
1510	 * NODE_DATA.
1511	 */
1512	if (home_node >= MAX_NUMNODES || !node_online(home_node))
1513		return -EINVAL;
1514
1515	len = PAGE_ALIGN(len);
1516	end = start + len;
1517
1518	if (end < start)
1519		return -EINVAL;
1520	if (end == start)
1521		return 0;
1522	mmap_write_lock(mm);
1523	prev = vma_prev(&vmi);
1524	for_each_vma_range(vmi, vma, end) {
1525		/*
1526		 * If any vma in the range got policy other than MPOL_BIND
1527		 * or MPOL_PREFERRED_MANY we return error. We don't reset
1528		 * the home node for vmas we already updated before.
1529		 */
1530		old = vma_policy(vma);
1531		if (!old) {
1532			prev = vma;
1533			continue;
1534		}
1535		if (old->mode != MPOL_BIND && old->mode != MPOL_PREFERRED_MANY) {
1536			err = -EOPNOTSUPP;
1537			break;
1538		}
1539		new = mpol_dup(old);
1540		if (IS_ERR(new)) {
1541			err = PTR_ERR(new);
1542			break;
1543		}
1544
1545		vma_start_write(vma);
1546		new->home_node = home_node;
1547		err = mbind_range(&vmi, vma, &prev, start, end, new);
1548		mpol_put(new);
1549		if (err)
1550			break;
1551	}
1552	mmap_write_unlock(mm);
1553	return err;
1554}
1555
1556SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1557		unsigned long, mode, const unsigned long __user *, nmask,
1558		unsigned long, maxnode, unsigned int, flags)
1559{
1560	return kernel_mbind(start, len, mode, nmask, maxnode, flags);
1561}
1562
1563/* Set the process memory policy */
1564static long kernel_set_mempolicy(int mode, const unsigned long __user *nmask,
1565				 unsigned long maxnode)
1566{
1567	unsigned short mode_flags;
1568	nodemask_t nodes;
1569	int lmode = mode;
1570	int err;
1571
1572	err = sanitize_mpol_flags(&lmode, &mode_flags);
1573	if (err)
1574		return err;
1575
 
 
 
 
 
 
1576	err = get_nodes(&nodes, nmask, maxnode);
1577	if (err)
1578		return err;
1579
1580	return do_set_mempolicy(lmode, mode_flags, &nodes);
1581}
1582
1583SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask,
1584		unsigned long, maxnode)
1585{
1586	return kernel_set_mempolicy(mode, nmask, maxnode);
1587}
1588
1589static int kernel_migrate_pages(pid_t pid, unsigned long maxnode,
1590				const unsigned long __user *old_nodes,
1591				const unsigned long __user *new_nodes)
1592{
1593	struct mm_struct *mm = NULL;
1594	struct task_struct *task;
1595	nodemask_t task_nodes;
1596	int err;
1597	nodemask_t *old;
1598	nodemask_t *new;
1599	NODEMASK_SCRATCH(scratch);
1600
1601	if (!scratch)
1602		return -ENOMEM;
1603
1604	old = &scratch->mask1;
1605	new = &scratch->mask2;
1606
1607	err = get_nodes(old, old_nodes, maxnode);
1608	if (err)
1609		goto out;
1610
1611	err = get_nodes(new, new_nodes, maxnode);
1612	if (err)
1613		goto out;
1614
1615	/* Find the mm_struct */
1616	rcu_read_lock();
1617	task = pid ? find_task_by_vpid(pid) : current;
1618	if (!task) {
1619		rcu_read_unlock();
1620		err = -ESRCH;
1621		goto out;
1622	}
1623	get_task_struct(task);
1624
1625	err = -EINVAL;
1626
1627	/*
1628	 * Check if this process has the right to modify the specified process.
1629	 * Use the regular "ptrace_may_access()" checks.
1630	 */
1631	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1632		rcu_read_unlock();
1633		err = -EPERM;
1634		goto out_put;
1635	}
1636	rcu_read_unlock();
1637
1638	task_nodes = cpuset_mems_allowed(task);
1639	/* Is the user allowed to access the target nodes? */
1640	if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1641		err = -EPERM;
1642		goto out_put;
1643	}
1644
1645	task_nodes = cpuset_mems_allowed(current);
1646	nodes_and(*new, *new, task_nodes);
1647	if (nodes_empty(*new))
1648		goto out_put;
1649
 
 
 
 
1650	err = security_task_movememory(task);
1651	if (err)
1652		goto out_put;
1653
1654	mm = get_task_mm(task);
1655	put_task_struct(task);
1656
1657	if (!mm) {
1658		err = -EINVAL;
1659		goto out;
1660	}
1661
1662	err = do_migrate_pages(mm, old, new,
1663		capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1664
1665	mmput(mm);
1666out:
1667	NODEMASK_SCRATCH_FREE(scratch);
1668
1669	return err;
1670
1671out_put:
1672	put_task_struct(task);
1673	goto out;
 
1674}
1675
1676SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1677		const unsigned long __user *, old_nodes,
1678		const unsigned long __user *, new_nodes)
1679{
1680	return kernel_migrate_pages(pid, maxnode, old_nodes, new_nodes);
1681}
1682
 
1683/* Retrieve NUMA policy */
1684static int kernel_get_mempolicy(int __user *policy,
1685				unsigned long __user *nmask,
1686				unsigned long maxnode,
1687				unsigned long addr,
1688				unsigned long flags)
1689{
1690	int err;
1691	int pval;
1692	nodemask_t nodes;
1693
1694	if (nmask != NULL && maxnode < nr_node_ids)
1695		return -EINVAL;
1696
1697	addr = untagged_addr(addr);
1698
1699	err = do_get_mempolicy(&pval, &nodes, addr, flags);
1700
1701	if (err)
1702		return err;
1703
1704	if (policy && put_user(pval, policy))
1705		return -EFAULT;
1706
1707	if (nmask)
1708		err = copy_nodes_to_user(nmask, maxnode, &nodes);
1709
1710	return err;
1711}
1712
1713SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1714		unsigned long __user *, nmask, unsigned long, maxnode,
1715		unsigned long, addr, unsigned long, flags)
1716{
1717	return kernel_get_mempolicy(policy, nmask, maxnode, addr, flags);
1718}
1719
1720bool vma_migratable(struct vm_area_struct *vma)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1721{
1722	if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1723		return false;
 
 
 
 
1724
1725	/*
1726	 * DAX device mappings require predictable access latency, so avoid
1727	 * incurring periodic faults.
1728	 */
1729	if (vma_is_dax(vma))
1730		return false;
 
1731
1732	if (is_vm_hugetlb_page(vma) &&
1733		!hugepage_migration_supported(hstate_vma(vma)))
1734		return false;
1735
1736	/*
1737	 * Migration allocates pages in the highest zone. If we cannot
1738	 * do so then migration (at least from node to node) is not
1739	 * possible.
1740	 */
1741	if (vma->vm_file &&
1742		gfp_zone(mapping_gfp_mask(vma->vm_file->f_mapping))
1743			< policy_zone)
1744		return false;
1745	return true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1746}
1747
 
 
1748struct mempolicy *__get_vma_policy(struct vm_area_struct *vma,
1749				   unsigned long addr, pgoff_t *ilx)
1750{
1751	*ilx = 0;
1752	return (vma->vm_ops && vma->vm_ops->get_policy) ?
1753		vma->vm_ops->get_policy(vma, addr, ilx) : vma->vm_policy;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1754}
1755
1756/*
1757 * get_vma_policy(@vma, @addr, @order, @ilx)
1758 * @vma: virtual memory area whose policy is sought
1759 * @addr: address in @vma for shared policy lookup
1760 * @order: 0, or appropriate huge_page_order for interleaving
1761 * @ilx: interleave index (output), for use only when MPOL_INTERLEAVE
1762 *
1763 * Returns effective policy for a VMA at specified address.
1764 * Falls back to current->mempolicy or system default policy, as necessary.
1765 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1766 * count--added by the get_policy() vm_op, as appropriate--to protect against
1767 * freeing by another task.  It is the caller's responsibility to free the
1768 * extra reference for shared policies.
1769 */
1770struct mempolicy *get_vma_policy(struct vm_area_struct *vma,
1771				 unsigned long addr, int order, pgoff_t *ilx)
1772{
1773	struct mempolicy *pol;
1774
1775	pol = __get_vma_policy(vma, addr, ilx);
1776	if (!pol)
1777		pol = get_task_policy(current);
1778	if (pol->mode == MPOL_INTERLEAVE) {
1779		*ilx += vma->vm_pgoff >> order;
1780		*ilx += (addr - vma->vm_start) >> (PAGE_SHIFT + order);
1781	}
1782	return pol;
1783}
1784
1785bool vma_policy_mof(struct vm_area_struct *vma)
1786{
1787	struct mempolicy *pol;
1788
1789	if (vma->vm_ops && vma->vm_ops->get_policy) {
1790		bool ret = false;
1791		pgoff_t ilx;		/* ignored here */
1792
1793		pol = vma->vm_ops->get_policy(vma, vma->vm_start, &ilx);
1794		if (pol && (pol->flags & MPOL_F_MOF))
1795			ret = true;
1796		mpol_cond_put(pol);
1797
1798		return ret;
1799	}
1800
1801	pol = vma->vm_policy;
1802	if (!pol)
1803		pol = get_task_policy(current);
1804
1805	return pol->flags & MPOL_F_MOF;
1806}
1807
1808bool apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1809{
1810	enum zone_type dynamic_policy_zone = policy_zone;
1811
1812	BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1813
1814	/*
1815	 * if policy->nodes has movable memory only,
1816	 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1817	 *
1818	 * policy->nodes is intersect with node_states[N_MEMORY].
1819	 * so if the following test fails, it implies
1820	 * policy->nodes has movable memory only.
1821	 */
1822	if (!nodes_intersects(policy->nodes, node_states[N_HIGH_MEMORY]))
1823		dynamic_policy_zone = ZONE_MOVABLE;
1824
1825	return zone >= dynamic_policy_zone;
1826}
1827
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1828/* Do dynamic interleaving for a process */
1829static unsigned int interleave_nodes(struct mempolicy *policy)
1830{
1831	unsigned int nid;
 
1832
1833	nid = next_node_in(current->il_prev, policy->nodes);
1834	if (nid < MAX_NUMNODES)
1835		current->il_prev = nid;
1836	return nid;
1837}
1838
1839/*
1840 * Depending on the memory policy provide a node from which to allocate the
1841 * next slab entry.
1842 */
1843unsigned int mempolicy_slab_node(void)
1844{
1845	struct mempolicy *policy;
1846	int node = numa_mem_id();
1847
1848	if (!in_task())
1849		return node;
1850
1851	policy = current->mempolicy;
1852	if (!policy)
1853		return node;
1854
1855	switch (policy->mode) {
1856	case MPOL_PREFERRED:
1857		return first_node(policy->nodes);
 
 
 
1858
1859	case MPOL_INTERLEAVE:
1860		return interleave_nodes(policy);
1861
1862	case MPOL_BIND:
1863	case MPOL_PREFERRED_MANY:
1864	{
1865		struct zoneref *z;
1866
1867		/*
1868		 * Follow bind policy behavior and start allocation at the
1869		 * first node.
1870		 */
1871		struct zonelist *zonelist;
1872		enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1873		zonelist = &NODE_DATA(node)->node_zonelists[ZONELIST_FALLBACK];
1874		z = first_zones_zonelist(zonelist, highest_zoneidx,
1875							&policy->nodes);
1876		return z->zone ? zone_to_nid(z->zone) : node;
1877	}
1878	case MPOL_LOCAL:
1879		return node;
1880
1881	default:
1882		BUG();
1883	}
1884}
1885
1886/*
1887 * Do static interleaving for interleave index @ilx.  Returns the ilx'th
1888 * node in pol->nodes (starting from ilx=0), wrapping around if ilx
1889 * exceeds the number of present nodes.
1890 */
1891static unsigned int interleave_nid(struct mempolicy *pol, pgoff_t ilx)
1892{
1893	nodemask_t nodemask = pol->nodes;
1894	unsigned int target, nnodes;
1895	int i;
1896	int nid;
1897	/*
1898	 * The barrier will stabilize the nodemask in a register or on
1899	 * the stack so that it will stop changing under the code.
1900	 *
1901	 * Between first_node() and next_node(), pol->nodes could be changed
1902	 * by other threads. So we put pol->nodes in a local stack.
1903	 */
1904	barrier();
1905
1906	nnodes = nodes_weight(nodemask);
1907	if (!nnodes)
1908		return numa_node_id();
1909	target = ilx % nnodes;
1910	nid = first_node(nodemask);
1911	for (i = 0; i < target; i++)
1912		nid = next_node(nid, nodemask);
1913	return nid;
1914}
1915
1916/*
1917 * Return a nodemask representing a mempolicy for filtering nodes for
1918 * page allocation, together with preferred node id (or the input node id).
1919 */
1920static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *pol,
1921				   pgoff_t ilx, int *nid)
1922{
1923	nodemask_t *nodemask = NULL;
 
1924
1925	switch (pol->mode) {
1926	case MPOL_PREFERRED:
1927		/* Override input node id */
1928		*nid = first_node(pol->nodes);
1929		break;
1930	case MPOL_PREFERRED_MANY:
1931		nodemask = &pol->nodes;
1932		if (pol->home_node != NUMA_NO_NODE)
1933			*nid = pol->home_node;
1934		break;
1935	case MPOL_BIND:
1936		/* Restrict to nodemask (but not on lower zones) */
1937		if (apply_policy_zone(pol, gfp_zone(gfp)) &&
1938		    cpuset_nodemask_valid_mems_allowed(&pol->nodes))
1939			nodemask = &pol->nodes;
1940		if (pol->home_node != NUMA_NO_NODE)
1941			*nid = pol->home_node;
1942		/*
1943		 * __GFP_THISNODE shouldn't even be used with the bind policy
1944		 * because we might easily break the expectation to stay on the
1945		 * requested node and not break the policy.
 
 
1946		 */
1947		WARN_ON_ONCE(gfp & __GFP_THISNODE);
1948		break;
1949	case MPOL_INTERLEAVE:
1950		/* Override input node id */
1951		*nid = (ilx == NO_INTERLEAVE_INDEX) ?
1952			interleave_nodes(pol) : interleave_nid(pol, ilx);
1953		break;
1954	}
1955
1956	return nodemask;
1957}
1958
1959#ifdef CONFIG_HUGETLBFS
1960/*
1961 * huge_node(@vma, @addr, @gfp_flags, @mpol)
1962 * @vma: virtual memory area whose policy is sought
1963 * @addr: address in @vma for shared policy lookup and interleave policy
1964 * @gfp_flags: for requested zone
1965 * @mpol: pointer to mempolicy pointer for reference counted mempolicy
1966 * @nodemask: pointer to nodemask pointer for 'bind' and 'prefer-many' policy
1967 *
1968 * Returns a nid suitable for a huge page allocation and a pointer
1969 * to the struct mempolicy for conditional unref after allocation.
1970 * If the effective policy is 'bind' or 'prefer-many', returns a pointer
1971 * to the mempolicy's @nodemask for filtering the zonelist.
 
 
1972 */
1973int huge_node(struct vm_area_struct *vma, unsigned long addr, gfp_t gfp_flags,
1974		struct mempolicy **mpol, nodemask_t **nodemask)
1975{
1976	pgoff_t ilx;
1977	int nid;
1978
1979	nid = numa_node_id();
1980	*mpol = get_vma_policy(vma, addr, hstate_vma(vma)->order, &ilx);
1981	*nodemask = policy_nodemask(gfp_flags, *mpol, ilx, &nid);
 
 
 
 
 
 
 
 
1982	return nid;
1983}
1984
1985/*
1986 * init_nodemask_of_mempolicy
1987 *
1988 * If the current task's mempolicy is "default" [NULL], return 'false'
1989 * to indicate default policy.  Otherwise, extract the policy nodemask
1990 * for 'bind' or 'interleave' policy into the argument nodemask, or
1991 * initialize the argument nodemask to contain the single node for
1992 * 'preferred' or 'local' policy and return 'true' to indicate presence
1993 * of non-default mempolicy.
1994 *
1995 * We don't bother with reference counting the mempolicy [mpol_get/put]
1996 * because the current task is examining it's own mempolicy and a task's
1997 * mempolicy is only ever changed by the task itself.
1998 *
1999 * N.B., it is the caller's responsibility to free a returned nodemask.
2000 */
2001bool init_nodemask_of_mempolicy(nodemask_t *mask)
2002{
2003	struct mempolicy *mempolicy;
 
2004
2005	if (!(mask && current->mempolicy))
2006		return false;
2007
2008	task_lock(current);
2009	mempolicy = current->mempolicy;
2010	switch (mempolicy->mode) {
2011	case MPOL_PREFERRED:
2012	case MPOL_PREFERRED_MANY:
 
 
 
 
 
 
2013	case MPOL_BIND:
 
2014	case MPOL_INTERLEAVE:
2015		*mask = mempolicy->nodes;
2016		break;
2017
2018	case MPOL_LOCAL:
2019		init_nodemask_of_node(mask, numa_node_id());
2020		break;
2021
2022	default:
2023		BUG();
2024	}
2025	task_unlock(current);
2026
2027	return true;
2028}
2029#endif
2030
2031/*
2032 * mempolicy_in_oom_domain
2033 *
2034 * If tsk's mempolicy is "bind", check for intersection between mask and
2035 * the policy nodemask. Otherwise, return true for all other policies
2036 * including "interleave", as a tsk with "interleave" policy may have
2037 * memory allocated from all nodes in system.
2038 *
2039 * Takes task_lock(tsk) to prevent freeing of its mempolicy.
2040 */
2041bool mempolicy_in_oom_domain(struct task_struct *tsk,
2042					const nodemask_t *mask)
2043{
2044	struct mempolicy *mempolicy;
2045	bool ret = true;
2046
2047	if (!mask)
2048		return ret;
2049
2050	task_lock(tsk);
2051	mempolicy = tsk->mempolicy;
2052	if (mempolicy && mempolicy->mode == MPOL_BIND)
2053		ret = nodes_intersects(mempolicy->nodes, *mask);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2054	task_unlock(tsk);
2055
2056	return ret;
2057}
2058
2059static struct page *alloc_pages_preferred_many(gfp_t gfp, unsigned int order,
2060						int nid, nodemask_t *nodemask)
 
 
2061{
2062	struct page *page;
2063	gfp_t preferred_gfp;
2064
2065	/*
2066	 * This is a two pass approach. The first pass will only try the
2067	 * preferred nodes but skip the direct reclaim and allow the
2068	 * allocation to fail, while the second pass will try all the
2069	 * nodes in system.
2070	 */
2071	preferred_gfp = gfp | __GFP_NOWARN;
2072	preferred_gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2073	page = __alloc_pages(preferred_gfp, order, nid, nodemask);
2074	if (!page)
2075		page = __alloc_pages(gfp, order, nid, NULL);
2076
 
 
 
 
 
 
 
 
 
2077	return page;
2078}
2079
2080/**
2081 * alloc_pages_mpol - Allocate pages according to NUMA mempolicy.
2082 * @gfp: GFP flags.
2083 * @order: Order of the page allocation.
2084 * @pol: Pointer to the NUMA mempolicy.
2085 * @ilx: Index for interleave mempolicy (also distinguishes alloc_pages()).
2086 * @nid: Preferred node (usually numa_node_id() but @mpol may override it).
2087 *
2088 * Return: The page on success or NULL if allocation fails.
2089 */
2090struct page *alloc_pages_mpol(gfp_t gfp, unsigned int order,
2091		struct mempolicy *pol, pgoff_t ilx, int nid)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2092{
2093	nodemask_t *nodemask;
2094	struct page *page;
 
 
 
 
2095
2096	nodemask = policy_nodemask(gfp, pol, ilx, &nid);
 
 
 
 
 
 
 
2097
2098	if (pol->mode == MPOL_PREFERRED_MANY)
2099		return alloc_pages_preferred_many(gfp, order, nid, nodemask);
2100
2101	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
2102	    /* filter "hugepage" allocation, unless from alloc_pages() */
2103	    order == HPAGE_PMD_ORDER && ilx != NO_INTERLEAVE_INDEX) {
2104		/*
2105		 * For hugepage allocation and non-interleave policy which
2106		 * allows the current node (or other explicitly preferred
2107		 * node) we only try to allocate from the current/preferred
2108		 * node and don't fall back to other nodes, as the cost of
2109		 * remote accesses would likely offset THP benefits.
2110		 *
2111		 * If the policy is interleave or does not allow the current
2112		 * node in its nodemask, we allocate the standard way.
2113		 */
2114		if (pol->mode != MPOL_INTERLEAVE &&
2115		    (!nodemask || node_isset(nid, *nodemask))) {
2116			/*
2117			 * First, try to allocate THP only on local node, but
2118			 * don't reclaim unnecessarily, just compact.
2119			 */
2120			page = __alloc_pages_node(nid,
2121				gfp | __GFP_THISNODE | __GFP_NORETRY, order);
2122			if (page || !(gfp & __GFP_DIRECT_RECLAIM))
2123				return page;
2124			/*
2125			 * If hugepage allocations are configured to always
2126			 * synchronous compact or the vma has been madvised
2127			 * to prefer hugepage backing, retry allowing remote
2128			 * memory with both reclaim and compact as well.
2129			 */
2130		}
2131	}
2132
2133	page = __alloc_pages(gfp, order, nid, nodemask);
2134
2135	if (unlikely(pol->mode == MPOL_INTERLEAVE) && page) {
2136		/* skip NUMA_INTERLEAVE_HIT update if numa stats is disabled */
2137		if (static_branch_likely(&vm_numa_stat_key) &&
2138		    page_to_nid(page) == nid) {
2139			preempt_disable();
2140			__count_numa_event(page_zone(page), NUMA_INTERLEAVE_HIT);
2141			preempt_enable();
2142		}
2143	}
2144
 
 
 
 
 
2145	return page;
2146}
2147
2148/**
2149 * vma_alloc_folio - Allocate a folio for a VMA.
2150 * @gfp: GFP flags.
2151 * @order: Order of the folio.
2152 * @vma: Pointer to VMA.
2153 * @addr: Virtual address of the allocation.  Must be inside @vma.
2154 * @hugepage: Unused (was: For hugepages try only preferred node if possible).
2155 *
2156 * Allocate a folio for a specific address in @vma, using the appropriate
2157 * NUMA policy.  The caller must hold the mmap_lock of the mm_struct of the
2158 * VMA to prevent it from going away.  Should be used for all allocations
2159 * for folios that will be mapped into user space, excepting hugetlbfs, and
2160 * excepting where direct use of alloc_pages_mpol() is more appropriate.
2161 *
2162 * Return: The folio on success or NULL if allocation fails.
 
 
 
 
 
 
 
 
 
 
2163 */
2164struct folio *vma_alloc_folio(gfp_t gfp, int order, struct vm_area_struct *vma,
2165		unsigned long addr, bool hugepage)
2166{
2167	struct mempolicy *pol;
2168	pgoff_t ilx;
2169	struct page *page;
2170
2171	pol = get_vma_policy(vma, addr, order, &ilx);
2172	page = alloc_pages_mpol(gfp | __GFP_COMP, order,
2173				pol, ilx, numa_node_id());
2174	mpol_cond_put(pol);
2175	return page_rmappable_folio(page);
2176}
2177EXPORT_SYMBOL(vma_alloc_folio);
2178
2179/**
2180 * alloc_pages - Allocate pages.
2181 * @gfp: GFP flags.
2182 * @order: Power of two of number of pages to allocate.
2183 *
2184 * Allocate 1 << @order contiguous pages.  The physical address of the
2185 * first page is naturally aligned (eg an order-3 allocation will be aligned
2186 * to a multiple of 8 * PAGE_SIZE bytes).  The NUMA policy of the current
2187 * process is honoured when in process context.
2188 *
2189 * Context: Can be called from any context, providing the appropriate GFP
2190 * flags are used.
2191 * Return: The page on success or NULL if allocation fails.
2192 */
2193struct page *alloc_pages(gfp_t gfp, unsigned int order)
2194{
2195	struct mempolicy *pol = &default_policy;
2196
2197	/*
2198	 * No reference counting needed for current->mempolicy
2199	 * nor system default_policy
2200	 */
2201	if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2202		pol = get_task_policy(current);
2203
2204	return alloc_pages_mpol(gfp, order,
2205				pol, NO_INTERLEAVE_INDEX, numa_node_id());
2206}
2207EXPORT_SYMBOL(alloc_pages);
2208
2209struct folio *folio_alloc(gfp_t gfp, unsigned int order)
2210{
2211	return page_rmappable_folio(alloc_pages(gfp | __GFP_COMP, order));
2212}
2213EXPORT_SYMBOL(folio_alloc);
2214
2215static unsigned long alloc_pages_bulk_array_interleave(gfp_t gfp,
2216		struct mempolicy *pol, unsigned long nr_pages,
2217		struct page **page_array)
2218{
2219	int nodes;
2220	unsigned long nr_pages_per_node;
2221	int delta;
2222	int i;
2223	unsigned long nr_allocated;
2224	unsigned long total_allocated = 0;
2225
2226	nodes = nodes_weight(pol->nodes);
2227	nr_pages_per_node = nr_pages / nodes;
2228	delta = nr_pages - nodes * nr_pages_per_node;
2229
2230	for (i = 0; i < nodes; i++) {
2231		if (delta) {
2232			nr_allocated = __alloc_pages_bulk(gfp,
2233					interleave_nodes(pol), NULL,
2234					nr_pages_per_node + 1, NULL,
2235					page_array);
2236			delta--;
2237		} else {
2238			nr_allocated = __alloc_pages_bulk(gfp,
2239					interleave_nodes(pol), NULL,
2240					nr_pages_per_node, NULL, page_array);
2241		}
2242
2243		page_array += nr_allocated;
2244		total_allocated += nr_allocated;
2245	}
2246
2247	return total_allocated;
2248}
2249
2250static unsigned long alloc_pages_bulk_array_preferred_many(gfp_t gfp, int nid,
2251		struct mempolicy *pol, unsigned long nr_pages,
2252		struct page **page_array)
2253{
2254	gfp_t preferred_gfp;
2255	unsigned long nr_allocated = 0;
2256
2257	preferred_gfp = gfp | __GFP_NOWARN;
2258	preferred_gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2259
2260	nr_allocated  = __alloc_pages_bulk(preferred_gfp, nid, &pol->nodes,
2261					   nr_pages, NULL, page_array);
2262
2263	if (nr_allocated < nr_pages)
2264		nr_allocated += __alloc_pages_bulk(gfp, numa_node_id(), NULL,
2265				nr_pages - nr_allocated, NULL,
2266				page_array + nr_allocated);
2267	return nr_allocated;
2268}
2269
2270/* alloc pages bulk and mempolicy should be considered at the
2271 * same time in some situation such as vmalloc.
2272 *
2273 * It can accelerate memory allocation especially interleaving
2274 * allocate memory.
2275 */
2276unsigned long alloc_pages_bulk_array_mempolicy(gfp_t gfp,
2277		unsigned long nr_pages, struct page **page_array)
2278{
2279	struct mempolicy *pol = &default_policy;
2280	nodemask_t *nodemask;
2281	int nid;
2282
2283	if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2284		pol = get_task_policy(current);
2285
2286	if (pol->mode == MPOL_INTERLEAVE)
2287		return alloc_pages_bulk_array_interleave(gfp, pol,
2288							 nr_pages, page_array);
 
 
 
2289
2290	if (pol->mode == MPOL_PREFERRED_MANY)
2291		return alloc_pages_bulk_array_preferred_many(gfp,
2292				numa_node_id(), pol, nr_pages, page_array);
2293
2294	nid = numa_node_id();
2295	nodemask = policy_nodemask(gfp, pol, NO_INTERLEAVE_INDEX, &nid);
2296	return __alloc_pages_bulk(gfp, nid, nodemask,
2297				  nr_pages, NULL, page_array);
2298}
 
2299
2300int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
2301{
2302	struct mempolicy *pol = mpol_dup(src->vm_policy);
2303
2304	if (IS_ERR(pol))
2305		return PTR_ERR(pol);
2306	dst->vm_policy = pol;
2307	return 0;
2308}
2309
2310/*
2311 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2312 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2313 * with the mems_allowed returned by cpuset_mems_allowed().  This
2314 * keeps mempolicies cpuset relative after its cpuset moves.  See
2315 * further kernel/cpuset.c update_nodemask().
2316 *
2317 * current's mempolicy may be rebinded by the other task(the task that changes
2318 * cpuset's mems), so we needn't do rebind work for current task.
2319 */
2320
2321/* Slow path of a mempolicy duplicate */
2322struct mempolicy *__mpol_dup(struct mempolicy *old)
2323{
2324	struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2325
2326	if (!new)
2327		return ERR_PTR(-ENOMEM);
2328
2329	/* task's mempolicy is protected by alloc_lock */
2330	if (old == current->mempolicy) {
2331		task_lock(current);
2332		*new = *old;
2333		task_unlock(current);
2334	} else
2335		*new = *old;
2336
2337	if (current_cpuset_is_being_rebound()) {
2338		nodemask_t mems = cpuset_mems_allowed(current);
2339		mpol_rebind_policy(new, &mems);
2340	}
2341	atomic_set(&new->refcnt, 1);
2342	return new;
2343}
2344
2345/* Slow path of a mempolicy comparison */
2346bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2347{
2348	if (!a || !b)
2349		return false;
2350	if (a->mode != b->mode)
2351		return false;
2352	if (a->flags != b->flags)
2353		return false;
2354	if (a->home_node != b->home_node)
2355		return false;
2356	if (mpol_store_user_nodemask(a))
2357		if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2358			return false;
2359
2360	switch (a->mode) {
2361	case MPOL_BIND:
 
2362	case MPOL_INTERLEAVE:
 
2363	case MPOL_PREFERRED:
2364	case MPOL_PREFERRED_MANY:
2365		return !!nodes_equal(a->nodes, b->nodes);
2366	case MPOL_LOCAL:
2367		return true;
2368	default:
2369		BUG();
2370		return false;
2371	}
2372}
2373
2374/*
2375 * Shared memory backing store policy support.
2376 *
2377 * Remember policies even when nobody has shared memory mapped.
2378 * The policies are kept in Red-Black tree linked from the inode.
2379 * They are protected by the sp->lock rwlock, which should be held
2380 * for any accesses to the tree.
2381 */
2382
2383/*
2384 * lookup first element intersecting start-end.  Caller holds sp->lock for
2385 * reading or for writing
2386 */
2387static struct sp_node *sp_lookup(struct shared_policy *sp,
2388					pgoff_t start, pgoff_t end)
2389{
2390	struct rb_node *n = sp->root.rb_node;
2391
2392	while (n) {
2393		struct sp_node *p = rb_entry(n, struct sp_node, nd);
2394
2395		if (start >= p->end)
2396			n = n->rb_right;
2397		else if (end <= p->start)
2398			n = n->rb_left;
2399		else
2400			break;
2401	}
2402	if (!n)
2403		return NULL;
2404	for (;;) {
2405		struct sp_node *w = NULL;
2406		struct rb_node *prev = rb_prev(n);
2407		if (!prev)
2408			break;
2409		w = rb_entry(prev, struct sp_node, nd);
2410		if (w->end <= start)
2411			break;
2412		n = prev;
2413	}
2414	return rb_entry(n, struct sp_node, nd);
2415}
2416
2417/*
2418 * Insert a new shared policy into the list.  Caller holds sp->lock for
2419 * writing.
2420 */
2421static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2422{
2423	struct rb_node **p = &sp->root.rb_node;
2424	struct rb_node *parent = NULL;
2425	struct sp_node *nd;
2426
2427	while (*p) {
2428		parent = *p;
2429		nd = rb_entry(parent, struct sp_node, nd);
2430		if (new->start < nd->start)
2431			p = &(*p)->rb_left;
2432		else if (new->end > nd->end)
2433			p = &(*p)->rb_right;
2434		else
2435			BUG();
2436	}
2437	rb_link_node(&new->nd, parent, p);
2438	rb_insert_color(&new->nd, &sp->root);
 
 
2439}
2440
2441/* Find shared policy intersecting idx */
2442struct mempolicy *mpol_shared_policy_lookup(struct shared_policy *sp,
2443						pgoff_t idx)
2444{
2445	struct mempolicy *pol = NULL;
2446	struct sp_node *sn;
2447
2448	if (!sp->root.rb_node)
2449		return NULL;
2450	read_lock(&sp->lock);
2451	sn = sp_lookup(sp, idx, idx+1);
2452	if (sn) {
2453		mpol_get(sn->policy);
2454		pol = sn->policy;
2455	}
2456	read_unlock(&sp->lock);
2457	return pol;
2458}
2459
2460static void sp_free(struct sp_node *n)
2461{
2462	mpol_put(n->policy);
2463	kmem_cache_free(sn_cache, n);
2464}
2465
2466/**
2467 * mpol_misplaced - check whether current folio node is valid in policy
 
 
 
 
2468 *
2469 * @folio: folio to be checked
2470 * @vma: vm area where folio mapped
2471 * @addr: virtual address in @vma for shared policy lookup and interleave policy
2472 *
2473 * Lookup current policy node id for vma,addr and "compare to" folio's
2474 * node id.  Policy determination "mimics" alloc_page_vma().
 
 
 
2475 * Called from fault path where we know the vma and faulting address.
2476 *
2477 * Return: NUMA_NO_NODE if the page is in a node that is valid for this
2478 * policy, or a suitable node ID to allocate a replacement folio from.
2479 */
2480int mpol_misplaced(struct folio *folio, struct vm_area_struct *vma,
2481		   unsigned long addr)
2482{
2483	struct mempolicy *pol;
2484	pgoff_t ilx;
2485	struct zoneref *z;
2486	int curnid = folio_nid(folio);
 
2487	int thiscpu = raw_smp_processor_id();
2488	int thisnid = cpu_to_node(thiscpu);
2489	int polnid = NUMA_NO_NODE;
2490	int ret = NUMA_NO_NODE;
2491
2492	pol = get_vma_policy(vma, addr, folio_order(folio), &ilx);
2493	if (!(pol->flags & MPOL_F_MOF))
2494		goto out;
2495
2496	switch (pol->mode) {
2497	case MPOL_INTERLEAVE:
2498		polnid = interleave_nid(pol, ilx);
 
 
2499		break;
2500
2501	case MPOL_PREFERRED:
2502		if (node_isset(curnid, pol->nodes))
2503			goto out;
2504		polnid = first_node(pol->nodes);
2505		break;
2506
2507	case MPOL_LOCAL:
2508		polnid = numa_node_id();
2509		break;
2510
2511	case MPOL_BIND:
2512		/* Optimize placement among multiple nodes via NUMA balancing */
2513		if (pol->flags & MPOL_F_MORON) {
2514			if (node_isset(thisnid, pol->nodes))
2515				break;
2516			goto out;
2517		}
2518		fallthrough;
2519
2520	case MPOL_PREFERRED_MANY:
2521		/*
 
2522		 * use current page if in policy nodemask,
2523		 * else select nearest allowed node, if any.
2524		 * If no allowed nodes, use current [!misplaced].
2525		 */
2526		if (node_isset(curnid, pol->nodes))
2527			goto out;
2528		z = first_zones_zonelist(
2529				node_zonelist(numa_node_id(), GFP_HIGHUSER),
2530				gfp_zone(GFP_HIGHUSER),
2531				&pol->nodes);
2532		polnid = zone_to_nid(z->zone);
2533		break;
2534
2535	default:
2536		BUG();
2537	}
2538
2539	/* Migrate the folio towards the node whose CPU is referencing it */
2540	if (pol->flags & MPOL_F_MORON) {
2541		polnid = thisnid;
2542
2543		if (!should_numa_migrate_memory(current, folio, curnid,
2544						thiscpu))
2545			goto out;
2546	}
2547
2548	if (curnid != polnid)
2549		ret = polnid;
2550out:
2551	mpol_cond_put(pol);
2552
2553	return ret;
2554}
2555
2556/*
2557 * Drop the (possibly final) reference to task->mempolicy.  It needs to be
2558 * dropped after task->mempolicy is set to NULL so that any allocation done as
2559 * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed
2560 * policy.
2561 */
2562void mpol_put_task_policy(struct task_struct *task)
2563{
2564	struct mempolicy *pol;
2565
2566	task_lock(task);
2567	pol = task->mempolicy;
2568	task->mempolicy = NULL;
2569	task_unlock(task);
2570	mpol_put(pol);
2571}
2572
2573static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2574{
 
2575	rb_erase(&n->nd, &sp->root);
2576	sp_free(n);
2577}
2578
2579static void sp_node_init(struct sp_node *node, unsigned long start,
2580			unsigned long end, struct mempolicy *pol)
2581{
2582	node->start = start;
2583	node->end = end;
2584	node->policy = pol;
2585}
2586
2587static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2588				struct mempolicy *pol)
2589{
2590	struct sp_node *n;
2591	struct mempolicy *newpol;
2592
2593	n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2594	if (!n)
2595		return NULL;
2596
2597	newpol = mpol_dup(pol);
2598	if (IS_ERR(newpol)) {
2599		kmem_cache_free(sn_cache, n);
2600		return NULL;
2601	}
2602	newpol->flags |= MPOL_F_SHARED;
2603	sp_node_init(n, start, end, newpol);
2604
2605	return n;
2606}
2607
2608/* Replace a policy range. */
2609static int shared_policy_replace(struct shared_policy *sp, pgoff_t start,
2610				 pgoff_t end, struct sp_node *new)
2611{
2612	struct sp_node *n;
2613	struct sp_node *n_new = NULL;
2614	struct mempolicy *mpol_new = NULL;
2615	int ret = 0;
2616
2617restart:
2618	write_lock(&sp->lock);
2619	n = sp_lookup(sp, start, end);
2620	/* Take care of old policies in the same range. */
2621	while (n && n->start < end) {
2622		struct rb_node *next = rb_next(&n->nd);
2623		if (n->start >= start) {
2624			if (n->end <= end)
2625				sp_delete(sp, n);
2626			else
2627				n->start = end;
2628		} else {
2629			/* Old policy spanning whole new range. */
2630			if (n->end > end) {
2631				if (!n_new)
2632					goto alloc_new;
2633
2634				*mpol_new = *n->policy;
2635				atomic_set(&mpol_new->refcnt, 1);
2636				sp_node_init(n_new, end, n->end, mpol_new);
2637				n->end = start;
2638				sp_insert(sp, n_new);
2639				n_new = NULL;
2640				mpol_new = NULL;
2641				break;
2642			} else
2643				n->end = start;
2644		}
2645		if (!next)
2646			break;
2647		n = rb_entry(next, struct sp_node, nd);
2648	}
2649	if (new)
2650		sp_insert(sp, new);
2651	write_unlock(&sp->lock);
2652	ret = 0;
2653
2654err_out:
2655	if (mpol_new)
2656		mpol_put(mpol_new);
2657	if (n_new)
2658		kmem_cache_free(sn_cache, n_new);
2659
2660	return ret;
2661
2662alloc_new:
2663	write_unlock(&sp->lock);
2664	ret = -ENOMEM;
2665	n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2666	if (!n_new)
2667		goto err_out;
2668	mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2669	if (!mpol_new)
2670		goto err_out;
2671	atomic_set(&mpol_new->refcnt, 1);
2672	goto restart;
2673}
2674
2675/**
2676 * mpol_shared_policy_init - initialize shared policy for inode
2677 * @sp: pointer to inode shared policy
2678 * @mpol:  struct mempolicy to install
2679 *
2680 * Install non-NULL @mpol in inode's shared policy rb-tree.
2681 * On entry, the current task has a reference on a non-NULL @mpol.
2682 * This must be released on exit.
2683 * This is called at get_inode() calls and we can use GFP_KERNEL.
2684 */
2685void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2686{
2687	int ret;
2688
2689	sp->root = RB_ROOT;		/* empty tree == default mempolicy */
2690	rwlock_init(&sp->lock);
2691
2692	if (mpol) {
2693		struct sp_node *sn;
2694		struct mempolicy *npol;
2695		NODEMASK_SCRATCH(scratch);
2696
2697		if (!scratch)
2698			goto put_mpol;
2699
2700		/* contextualize the tmpfs mount point mempolicy to this file */
2701		npol = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2702		if (IS_ERR(npol))
2703			goto free_scratch; /* no valid nodemask intersection */
2704
2705		task_lock(current);
2706		ret = mpol_set_nodemask(npol, &mpol->w.user_nodemask, scratch);
2707		task_unlock(current);
2708		if (ret)
2709			goto put_npol;
2710
2711		/* alloc node covering entire file; adds ref to file's npol */
2712		sn = sp_alloc(0, MAX_LFS_FILESIZE >> PAGE_SHIFT, npol);
2713		if (sn)
2714			sp_insert(sp, sn);
2715put_npol:
2716		mpol_put(npol);	/* drop initial ref on file's npol */
 
2717free_scratch:
2718		NODEMASK_SCRATCH_FREE(scratch);
2719put_mpol:
2720		mpol_put(mpol);	/* drop our incoming ref on sb mpol */
2721	}
2722}
2723
2724int mpol_set_shared_policy(struct shared_policy *sp,
2725			struct vm_area_struct *vma, struct mempolicy *pol)
2726{
2727	int err;
2728	struct sp_node *new = NULL;
2729	unsigned long sz = vma_pages(vma);
2730
2731	if (pol) {
2732		new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, pol);
 
 
 
 
 
 
2733		if (!new)
2734			return -ENOMEM;
2735	}
2736	err = shared_policy_replace(sp, vma->vm_pgoff, vma->vm_pgoff + sz, new);
2737	if (err && new)
2738		sp_free(new);
2739	return err;
2740}
2741
2742/* Free a backing policy store on inode delete. */
2743void mpol_free_shared_policy(struct shared_policy *sp)
2744{
2745	struct sp_node *n;
2746	struct rb_node *next;
2747
2748	if (!sp->root.rb_node)
2749		return;
2750	write_lock(&sp->lock);
2751	next = rb_first(&sp->root);
2752	while (next) {
2753		n = rb_entry(next, struct sp_node, nd);
2754		next = rb_next(&n->nd);
2755		sp_delete(sp, n);
2756	}
2757	write_unlock(&sp->lock);
2758}
2759
2760#ifdef CONFIG_NUMA_BALANCING
2761static int __initdata numabalancing_override;
2762
2763static void __init check_numabalancing_enable(void)
2764{
2765	bool numabalancing_default = false;
2766
2767	if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
2768		numabalancing_default = true;
2769
2770	/* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
2771	if (numabalancing_override)
2772		set_numabalancing_state(numabalancing_override == 1);
2773
2774	if (num_online_nodes() > 1 && !numabalancing_override) {
2775		pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n",
2776			numabalancing_default ? "Enabling" : "Disabling");
2777		set_numabalancing_state(numabalancing_default);
2778	}
2779}
2780
2781static int __init setup_numabalancing(char *str)
2782{
2783	int ret = 0;
2784	if (!str)
2785		goto out;
2786
2787	if (!strcmp(str, "enable")) {
2788		numabalancing_override = 1;
2789		ret = 1;
2790	} else if (!strcmp(str, "disable")) {
2791		numabalancing_override = -1;
2792		ret = 1;
2793	}
2794out:
2795	if (!ret)
2796		pr_warn("Unable to parse numa_balancing=\n");
2797
2798	return ret;
2799}
2800__setup("numa_balancing=", setup_numabalancing);
2801#else
2802static inline void __init check_numabalancing_enable(void)
2803{
2804}
2805#endif /* CONFIG_NUMA_BALANCING */
2806
 
2807void __init numa_policy_init(void)
2808{
2809	nodemask_t interleave_nodes;
2810	unsigned long largest = 0;
2811	int nid, prefer = 0;
2812
2813	policy_cache = kmem_cache_create("numa_policy",
2814					 sizeof(struct mempolicy),
2815					 0, SLAB_PANIC, NULL);
2816
2817	sn_cache = kmem_cache_create("shared_policy_node",
2818				     sizeof(struct sp_node),
2819				     0, SLAB_PANIC, NULL);
2820
2821	for_each_node(nid) {
2822		preferred_node_policy[nid] = (struct mempolicy) {
2823			.refcnt = ATOMIC_INIT(1),
2824			.mode = MPOL_PREFERRED,
2825			.flags = MPOL_F_MOF | MPOL_F_MORON,
2826			.nodes = nodemask_of_node(nid),
2827		};
2828	}
2829
2830	/*
2831	 * Set interleaving policy for system init. Interleaving is only
2832	 * enabled across suitably sized nodes (default is >= 16MB), or
2833	 * fall back to the largest node if they're all smaller.
2834	 */
2835	nodes_clear(interleave_nodes);
2836	for_each_node_state(nid, N_MEMORY) {
2837		unsigned long total_pages = node_present_pages(nid);
2838
2839		/* Preserve the largest node */
2840		if (largest < total_pages) {
2841			largest = total_pages;
2842			prefer = nid;
2843		}
2844
2845		/* Interleave this node? */
2846		if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2847			node_set(nid, interleave_nodes);
2848	}
2849
2850	/* All too small, use the largest */
2851	if (unlikely(nodes_empty(interleave_nodes)))
2852		node_set(prefer, interleave_nodes);
2853
2854	if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2855		pr_err("%s: interleaving failed\n", __func__);
2856
2857	check_numabalancing_enable();
2858}
2859
2860/* Reset policy of current process to default */
2861void numa_default_policy(void)
2862{
2863	do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2864}
2865
2866/*
2867 * Parse and format mempolicy from/to strings
2868 */
 
 
 
 
2869static const char * const policy_modes[] =
2870{
2871	[MPOL_DEFAULT]    = "default",
2872	[MPOL_PREFERRED]  = "prefer",
2873	[MPOL_BIND]       = "bind",
2874	[MPOL_INTERLEAVE] = "interleave",
2875	[MPOL_LOCAL]      = "local",
2876	[MPOL_PREFERRED_MANY]  = "prefer (many)",
2877};
2878
 
2879#ifdef CONFIG_TMPFS
2880/**
2881 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2882 * @str:  string containing mempolicy to parse
2883 * @mpol:  pointer to struct mempolicy pointer, returned on success.
2884 *
2885 * Format of input:
2886 *	<mode>[=<flags>][:<nodelist>]
2887 *
2888 * Return: %0 on success, else %1
2889 */
2890int mpol_parse_str(char *str, struct mempolicy **mpol)
2891{
2892	struct mempolicy *new = NULL;
 
2893	unsigned short mode_flags;
2894	nodemask_t nodes;
2895	char *nodelist = strchr(str, ':');
2896	char *flags = strchr(str, '=');
2897	int err = 1, mode;
2898
2899	if (flags)
2900		*flags++ = '\0';	/* terminate mode string */
2901
2902	if (nodelist) {
2903		/* NUL-terminate mode or flags string */
2904		*nodelist++ = '\0';
2905		if (nodelist_parse(nodelist, nodes))
2906			goto out;
2907		if (!nodes_subset(nodes, node_states[N_MEMORY]))
2908			goto out;
2909	} else
2910		nodes_clear(nodes);
2911
2912	mode = match_string(policy_modes, MPOL_MAX, str);
2913	if (mode < 0)
 
 
 
 
 
 
 
2914		goto out;
2915
2916	switch (mode) {
2917	case MPOL_PREFERRED:
2918		/*
2919		 * Insist on a nodelist of one node only, although later
2920		 * we use first_node(nodes) to grab a single node, so here
2921		 * nodelist (or nodes) cannot be empty.
2922		 */
2923		if (nodelist) {
2924			char *rest = nodelist;
2925			while (isdigit(*rest))
2926				rest++;
2927			if (*rest)
2928				goto out;
2929			if (nodes_empty(nodes))
2930				goto out;
2931		}
2932		break;
2933	case MPOL_INTERLEAVE:
2934		/*
2935		 * Default to online nodes with memory if no nodelist
2936		 */
2937		if (!nodelist)
2938			nodes = node_states[N_MEMORY];
2939		break;
2940	case MPOL_LOCAL:
2941		/*
2942		 * Don't allow a nodelist;  mpol_new() checks flags
2943		 */
2944		if (nodelist)
2945			goto out;
 
2946		break;
2947	case MPOL_DEFAULT:
2948		/*
2949		 * Insist on a empty nodelist
2950		 */
2951		if (!nodelist)
2952			err = 0;
2953		goto out;
2954	case MPOL_PREFERRED_MANY:
2955	case MPOL_BIND:
2956		/*
2957		 * Insist on a nodelist
2958		 */
2959		if (!nodelist)
2960			goto out;
2961	}
2962
2963	mode_flags = 0;
2964	if (flags) {
2965		/*
2966		 * Currently, we only support two mutually exclusive
2967		 * mode flags.
2968		 */
2969		if (!strcmp(flags, "static"))
2970			mode_flags |= MPOL_F_STATIC_NODES;
2971		else if (!strcmp(flags, "relative"))
2972			mode_flags |= MPOL_F_RELATIVE_NODES;
2973		else
2974			goto out;
2975	}
2976
2977	new = mpol_new(mode, mode_flags, &nodes);
2978	if (IS_ERR(new))
2979		goto out;
2980
2981	/*
2982	 * Save nodes for mpol_to_str() to show the tmpfs mount options
2983	 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
2984	 */
2985	if (mode != MPOL_PREFERRED) {
2986		new->nodes = nodes;
2987	} else if (nodelist) {
2988		nodes_clear(new->nodes);
2989		node_set(first_node(nodes), new->nodes);
2990	} else {
2991		new->mode = MPOL_LOCAL;
2992	}
2993
2994	/*
2995	 * Save nodes for contextualization: this will be used to "clone"
2996	 * the mempolicy in a specific context [cpuset] at a later time.
2997	 */
2998	new->w.user_nodemask = nodes;
2999
3000	err = 0;
3001
3002out:
3003	/* Restore string for error message */
3004	if (nodelist)
3005		*--nodelist = ':';
3006	if (flags)
3007		*--flags = '=';
3008	if (!err)
3009		*mpol = new;
3010	return err;
3011}
3012#endif /* CONFIG_TMPFS */
3013
3014/**
3015 * mpol_to_str - format a mempolicy structure for printing
3016 * @buffer:  to contain formatted mempolicy string
3017 * @maxlen:  length of @buffer
3018 * @pol:  pointer to mempolicy to be formatted
3019 *
3020 * Convert @pol into a string.  If @buffer is too short, truncate the string.
3021 * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the
3022 * longest flag, "relative", and to display at least a few node ids.
3023 */
3024void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
3025{
3026	char *p = buffer;
3027	nodemask_t nodes = NODE_MASK_NONE;
3028	unsigned short mode = MPOL_DEFAULT;
3029	unsigned short flags = 0;
3030
3031	if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) {
3032		mode = pol->mode;
3033		flags = pol->flags;
3034	}
3035
3036	switch (mode) {
3037	case MPOL_DEFAULT:
3038	case MPOL_LOCAL:
3039		break;
3040	case MPOL_PREFERRED:
3041	case MPOL_PREFERRED_MANY:
 
 
 
 
3042	case MPOL_BIND:
3043	case MPOL_INTERLEAVE:
3044		nodes = pol->nodes;
3045		break;
3046	default:
3047		WARN_ON_ONCE(1);
3048		snprintf(p, maxlen, "unknown");
3049		return;
3050	}
3051
3052	p += snprintf(p, maxlen, "%s", policy_modes[mode]);
3053
3054	if (flags & MPOL_MODE_FLAGS) {
3055		p += snprintf(p, buffer + maxlen - p, "=");
3056
3057		/*
3058		 * Currently, the only defined flags are mutually exclusive
3059		 */
3060		if (flags & MPOL_F_STATIC_NODES)
3061			p += snprintf(p, buffer + maxlen - p, "static");
3062		else if (flags & MPOL_F_RELATIVE_NODES)
3063			p += snprintf(p, buffer + maxlen - p, "relative");
3064	}
3065
3066	if (!nodes_empty(nodes))
3067		p += scnprintf(p, buffer + maxlen - p, ":%*pbl",
3068			       nodemask_pr_args(&nodes));
3069}