Loading...
1/*
2 * linux/kernel/hrtimer.c
3 *
4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
7 *
8 * High-resolution kernel timers
9 *
10 * In contrast to the low-resolution timeout API implemented in
11 * kernel/timer.c, hrtimers provide finer resolution and accuracy
12 * depending on system configuration and capabilities.
13 *
14 * These timers are currently used for:
15 * - itimers
16 * - POSIX timers
17 * - nanosleep
18 * - precise in-kernel timing
19 *
20 * Started by: Thomas Gleixner and Ingo Molnar
21 *
22 * Credits:
23 * based on kernel/timer.c
24 *
25 * Help, testing, suggestions, bugfixes, improvements were
26 * provided by:
27 *
28 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
29 * et. al.
30 *
31 * For licencing details see kernel-base/COPYING
32 */
33
34#include <linux/cpu.h>
35#include <linux/export.h>
36#include <linux/percpu.h>
37#include <linux/hrtimer.h>
38#include <linux/notifier.h>
39#include <linux/syscalls.h>
40#include <linux/interrupt.h>
41#include <linux/tick.h>
42#include <linux/seq_file.h>
43#include <linux/err.h>
44#include <linux/debugobjects.h>
45#include <linux/sched/signal.h>
46#include <linux/sched/sysctl.h>
47#include <linux/sched/rt.h>
48#include <linux/sched/deadline.h>
49#include <linux/sched/nohz.h>
50#include <linux/sched/debug.h>
51#include <linux/timer.h>
52#include <linux/freezer.h>
53#include <linux/compat.h>
54
55#include <linux/uaccess.h>
56
57#include <trace/events/timer.h>
58
59#include "tick-internal.h"
60
61/*
62 * Masks for selecting the soft and hard context timers from
63 * cpu_base->active
64 */
65#define MASK_SHIFT (HRTIMER_BASE_MONOTONIC_SOFT)
66#define HRTIMER_ACTIVE_HARD ((1U << MASK_SHIFT) - 1)
67#define HRTIMER_ACTIVE_SOFT (HRTIMER_ACTIVE_HARD << MASK_SHIFT)
68#define HRTIMER_ACTIVE_ALL (HRTIMER_ACTIVE_SOFT | HRTIMER_ACTIVE_HARD)
69
70/*
71 * The timer bases:
72 *
73 * There are more clockids than hrtimer bases. Thus, we index
74 * into the timer bases by the hrtimer_base_type enum. When trying
75 * to reach a base using a clockid, hrtimer_clockid_to_base()
76 * is used to convert from clockid to the proper hrtimer_base_type.
77 */
78DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
79{
80 .lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
81 .clock_base =
82 {
83 {
84 .index = HRTIMER_BASE_MONOTONIC,
85 .clockid = CLOCK_MONOTONIC,
86 .get_time = &ktime_get,
87 },
88 {
89 .index = HRTIMER_BASE_REALTIME,
90 .clockid = CLOCK_REALTIME,
91 .get_time = &ktime_get_real,
92 },
93 {
94 .index = HRTIMER_BASE_BOOTTIME,
95 .clockid = CLOCK_BOOTTIME,
96 .get_time = &ktime_get_boottime,
97 },
98 {
99 .index = HRTIMER_BASE_TAI,
100 .clockid = CLOCK_TAI,
101 .get_time = &ktime_get_clocktai,
102 },
103 {
104 .index = HRTIMER_BASE_MONOTONIC_SOFT,
105 .clockid = CLOCK_MONOTONIC,
106 .get_time = &ktime_get,
107 },
108 {
109 .index = HRTIMER_BASE_REALTIME_SOFT,
110 .clockid = CLOCK_REALTIME,
111 .get_time = &ktime_get_real,
112 },
113 {
114 .index = HRTIMER_BASE_BOOTTIME_SOFT,
115 .clockid = CLOCK_BOOTTIME,
116 .get_time = &ktime_get_boottime,
117 },
118 {
119 .index = HRTIMER_BASE_TAI_SOFT,
120 .clockid = CLOCK_TAI,
121 .get_time = &ktime_get_clocktai,
122 },
123 }
124};
125
126static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
127 /* Make sure we catch unsupported clockids */
128 [0 ... MAX_CLOCKS - 1] = HRTIMER_MAX_CLOCK_BASES,
129
130 [CLOCK_REALTIME] = HRTIMER_BASE_REALTIME,
131 [CLOCK_MONOTONIC] = HRTIMER_BASE_MONOTONIC,
132 [CLOCK_BOOTTIME] = HRTIMER_BASE_BOOTTIME,
133 [CLOCK_TAI] = HRTIMER_BASE_TAI,
134};
135
136/*
137 * Functions and macros which are different for UP/SMP systems are kept in a
138 * single place
139 */
140#ifdef CONFIG_SMP
141
142/*
143 * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base()
144 * such that hrtimer_callback_running() can unconditionally dereference
145 * timer->base->cpu_base
146 */
147static struct hrtimer_cpu_base migration_cpu_base = {
148 .clock_base = { { .cpu_base = &migration_cpu_base, }, },
149};
150
151#define migration_base migration_cpu_base.clock_base[0]
152
153/*
154 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
155 * means that all timers which are tied to this base via timer->base are
156 * locked, and the base itself is locked too.
157 *
158 * So __run_timers/migrate_timers can safely modify all timers which could
159 * be found on the lists/queues.
160 *
161 * When the timer's base is locked, and the timer removed from list, it is
162 * possible to set timer->base = &migration_base and drop the lock: the timer
163 * remains locked.
164 */
165static
166struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
167 unsigned long *flags)
168{
169 struct hrtimer_clock_base *base;
170
171 for (;;) {
172 base = timer->base;
173 if (likely(base != &migration_base)) {
174 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
175 if (likely(base == timer->base))
176 return base;
177 /* The timer has migrated to another CPU: */
178 raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
179 }
180 cpu_relax();
181 }
182}
183
184/*
185 * We do not migrate the timer when it is expiring before the next
186 * event on the target cpu. When high resolution is enabled, we cannot
187 * reprogram the target cpu hardware and we would cause it to fire
188 * late. To keep it simple, we handle the high resolution enabled and
189 * disabled case similar.
190 *
191 * Called with cpu_base->lock of target cpu held.
192 */
193static int
194hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
195{
196 ktime_t expires;
197
198 expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
199 return expires < new_base->cpu_base->expires_next;
200}
201
202static inline
203struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base,
204 int pinned)
205{
206#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
207 if (static_branch_likely(&timers_migration_enabled) && !pinned)
208 return &per_cpu(hrtimer_bases, get_nohz_timer_target());
209#endif
210 return base;
211}
212
213/*
214 * We switch the timer base to a power-optimized selected CPU target,
215 * if:
216 * - NO_HZ_COMMON is enabled
217 * - timer migration is enabled
218 * - the timer callback is not running
219 * - the timer is not the first expiring timer on the new target
220 *
221 * If one of the above requirements is not fulfilled we move the timer
222 * to the current CPU or leave it on the previously assigned CPU if
223 * the timer callback is currently running.
224 */
225static inline struct hrtimer_clock_base *
226switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
227 int pinned)
228{
229 struct hrtimer_cpu_base *new_cpu_base, *this_cpu_base;
230 struct hrtimer_clock_base *new_base;
231 int basenum = base->index;
232
233 this_cpu_base = this_cpu_ptr(&hrtimer_bases);
234 new_cpu_base = get_target_base(this_cpu_base, pinned);
235again:
236 new_base = &new_cpu_base->clock_base[basenum];
237
238 if (base != new_base) {
239 /*
240 * We are trying to move timer to new_base.
241 * However we can't change timer's base while it is running,
242 * so we keep it on the same CPU. No hassle vs. reprogramming
243 * the event source in the high resolution case. The softirq
244 * code will take care of this when the timer function has
245 * completed. There is no conflict as we hold the lock until
246 * the timer is enqueued.
247 */
248 if (unlikely(hrtimer_callback_running(timer)))
249 return base;
250
251 /* See the comment in lock_hrtimer_base() */
252 timer->base = &migration_base;
253 raw_spin_unlock(&base->cpu_base->lock);
254 raw_spin_lock(&new_base->cpu_base->lock);
255
256 if (new_cpu_base != this_cpu_base &&
257 hrtimer_check_target(timer, new_base)) {
258 raw_spin_unlock(&new_base->cpu_base->lock);
259 raw_spin_lock(&base->cpu_base->lock);
260 new_cpu_base = this_cpu_base;
261 timer->base = base;
262 goto again;
263 }
264 timer->base = new_base;
265 } else {
266 if (new_cpu_base != this_cpu_base &&
267 hrtimer_check_target(timer, new_base)) {
268 new_cpu_base = this_cpu_base;
269 goto again;
270 }
271 }
272 return new_base;
273}
274
275#else /* CONFIG_SMP */
276
277static inline struct hrtimer_clock_base *
278lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
279{
280 struct hrtimer_clock_base *base = timer->base;
281
282 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
283
284 return base;
285}
286
287# define switch_hrtimer_base(t, b, p) (b)
288
289#endif /* !CONFIG_SMP */
290
291/*
292 * Functions for the union type storage format of ktime_t which are
293 * too large for inlining:
294 */
295#if BITS_PER_LONG < 64
296/*
297 * Divide a ktime value by a nanosecond value
298 */
299s64 __ktime_divns(const ktime_t kt, s64 div)
300{
301 int sft = 0;
302 s64 dclc;
303 u64 tmp;
304
305 dclc = ktime_to_ns(kt);
306 tmp = dclc < 0 ? -dclc : dclc;
307
308 /* Make sure the divisor is less than 2^32: */
309 while (div >> 32) {
310 sft++;
311 div >>= 1;
312 }
313 tmp >>= sft;
314 do_div(tmp, (unsigned long) div);
315 return dclc < 0 ? -tmp : tmp;
316}
317EXPORT_SYMBOL_GPL(__ktime_divns);
318#endif /* BITS_PER_LONG >= 64 */
319
320/*
321 * Add two ktime values and do a safety check for overflow:
322 */
323ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
324{
325 ktime_t res = ktime_add_unsafe(lhs, rhs);
326
327 /*
328 * We use KTIME_SEC_MAX here, the maximum timeout which we can
329 * return to user space in a timespec:
330 */
331 if (res < 0 || res < lhs || res < rhs)
332 res = ktime_set(KTIME_SEC_MAX, 0);
333
334 return res;
335}
336
337EXPORT_SYMBOL_GPL(ktime_add_safe);
338
339#ifdef CONFIG_DEBUG_OBJECTS_TIMERS
340
341static struct debug_obj_descr hrtimer_debug_descr;
342
343static void *hrtimer_debug_hint(void *addr)
344{
345 return ((struct hrtimer *) addr)->function;
346}
347
348/*
349 * fixup_init is called when:
350 * - an active object is initialized
351 */
352static bool hrtimer_fixup_init(void *addr, enum debug_obj_state state)
353{
354 struct hrtimer *timer = addr;
355
356 switch (state) {
357 case ODEBUG_STATE_ACTIVE:
358 hrtimer_cancel(timer);
359 debug_object_init(timer, &hrtimer_debug_descr);
360 return true;
361 default:
362 return false;
363 }
364}
365
366/*
367 * fixup_activate is called when:
368 * - an active object is activated
369 * - an unknown non-static object is activated
370 */
371static bool hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
372{
373 switch (state) {
374 case ODEBUG_STATE_ACTIVE:
375 WARN_ON(1);
376
377 default:
378 return false;
379 }
380}
381
382/*
383 * fixup_free is called when:
384 * - an active object is freed
385 */
386static bool hrtimer_fixup_free(void *addr, enum debug_obj_state state)
387{
388 struct hrtimer *timer = addr;
389
390 switch (state) {
391 case ODEBUG_STATE_ACTIVE:
392 hrtimer_cancel(timer);
393 debug_object_free(timer, &hrtimer_debug_descr);
394 return true;
395 default:
396 return false;
397 }
398}
399
400static struct debug_obj_descr hrtimer_debug_descr = {
401 .name = "hrtimer",
402 .debug_hint = hrtimer_debug_hint,
403 .fixup_init = hrtimer_fixup_init,
404 .fixup_activate = hrtimer_fixup_activate,
405 .fixup_free = hrtimer_fixup_free,
406};
407
408static inline void debug_hrtimer_init(struct hrtimer *timer)
409{
410 debug_object_init(timer, &hrtimer_debug_descr);
411}
412
413static inline void debug_hrtimer_activate(struct hrtimer *timer,
414 enum hrtimer_mode mode)
415{
416 debug_object_activate(timer, &hrtimer_debug_descr);
417}
418
419static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
420{
421 debug_object_deactivate(timer, &hrtimer_debug_descr);
422}
423
424static inline void debug_hrtimer_free(struct hrtimer *timer)
425{
426 debug_object_free(timer, &hrtimer_debug_descr);
427}
428
429static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
430 enum hrtimer_mode mode);
431
432void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
433 enum hrtimer_mode mode)
434{
435 debug_object_init_on_stack(timer, &hrtimer_debug_descr);
436 __hrtimer_init(timer, clock_id, mode);
437}
438EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
439
440void destroy_hrtimer_on_stack(struct hrtimer *timer)
441{
442 debug_object_free(timer, &hrtimer_debug_descr);
443}
444EXPORT_SYMBOL_GPL(destroy_hrtimer_on_stack);
445
446#else
447
448static inline void debug_hrtimer_init(struct hrtimer *timer) { }
449static inline void debug_hrtimer_activate(struct hrtimer *timer,
450 enum hrtimer_mode mode) { }
451static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
452#endif
453
454static inline void
455debug_init(struct hrtimer *timer, clockid_t clockid,
456 enum hrtimer_mode mode)
457{
458 debug_hrtimer_init(timer);
459 trace_hrtimer_init(timer, clockid, mode);
460}
461
462static inline void debug_activate(struct hrtimer *timer,
463 enum hrtimer_mode mode)
464{
465 debug_hrtimer_activate(timer, mode);
466 trace_hrtimer_start(timer, mode);
467}
468
469static inline void debug_deactivate(struct hrtimer *timer)
470{
471 debug_hrtimer_deactivate(timer);
472 trace_hrtimer_cancel(timer);
473}
474
475static struct hrtimer_clock_base *
476__next_base(struct hrtimer_cpu_base *cpu_base, unsigned int *active)
477{
478 unsigned int idx;
479
480 if (!*active)
481 return NULL;
482
483 idx = __ffs(*active);
484 *active &= ~(1U << idx);
485
486 return &cpu_base->clock_base[idx];
487}
488
489#define for_each_active_base(base, cpu_base, active) \
490 while ((base = __next_base((cpu_base), &(active))))
491
492static ktime_t __hrtimer_next_event_base(struct hrtimer_cpu_base *cpu_base,
493 const struct hrtimer *exclude,
494 unsigned int active,
495 ktime_t expires_next)
496{
497 struct hrtimer_clock_base *base;
498 ktime_t expires;
499
500 for_each_active_base(base, cpu_base, active) {
501 struct timerqueue_node *next;
502 struct hrtimer *timer;
503
504 next = timerqueue_getnext(&base->active);
505 timer = container_of(next, struct hrtimer, node);
506 if (timer == exclude) {
507 /* Get to the next timer in the queue. */
508 next = timerqueue_iterate_next(next);
509 if (!next)
510 continue;
511
512 timer = container_of(next, struct hrtimer, node);
513 }
514 expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
515 if (expires < expires_next) {
516 expires_next = expires;
517
518 /* Skip cpu_base update if a timer is being excluded. */
519 if (exclude)
520 continue;
521
522 if (timer->is_soft)
523 cpu_base->softirq_next_timer = timer;
524 else
525 cpu_base->next_timer = timer;
526 }
527 }
528 /*
529 * clock_was_set() might have changed base->offset of any of
530 * the clock bases so the result might be negative. Fix it up
531 * to prevent a false positive in clockevents_program_event().
532 */
533 if (expires_next < 0)
534 expires_next = 0;
535 return expires_next;
536}
537
538/*
539 * Recomputes cpu_base::*next_timer and returns the earliest expires_next but
540 * does not set cpu_base::*expires_next, that is done by hrtimer_reprogram.
541 *
542 * When a softirq is pending, we can ignore the HRTIMER_ACTIVE_SOFT bases,
543 * those timers will get run whenever the softirq gets handled, at the end of
544 * hrtimer_run_softirq(), hrtimer_update_softirq_timer() will re-add these bases.
545 *
546 * Therefore softirq values are those from the HRTIMER_ACTIVE_SOFT clock bases.
547 * The !softirq values are the minima across HRTIMER_ACTIVE_ALL, unless an actual
548 * softirq is pending, in which case they're the minima of HRTIMER_ACTIVE_HARD.
549 *
550 * @active_mask must be one of:
551 * - HRTIMER_ACTIVE_ALL,
552 * - HRTIMER_ACTIVE_SOFT, or
553 * - HRTIMER_ACTIVE_HARD.
554 */
555static ktime_t
556__hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base, unsigned int active_mask)
557{
558 unsigned int active;
559 struct hrtimer *next_timer = NULL;
560 ktime_t expires_next = KTIME_MAX;
561
562 if (!cpu_base->softirq_activated && (active_mask & HRTIMER_ACTIVE_SOFT)) {
563 active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT;
564 cpu_base->softirq_next_timer = NULL;
565 expires_next = __hrtimer_next_event_base(cpu_base, NULL,
566 active, KTIME_MAX);
567
568 next_timer = cpu_base->softirq_next_timer;
569 }
570
571 if (active_mask & HRTIMER_ACTIVE_HARD) {
572 active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD;
573 cpu_base->next_timer = next_timer;
574 expires_next = __hrtimer_next_event_base(cpu_base, NULL, active,
575 expires_next);
576 }
577
578 return expires_next;
579}
580
581static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
582{
583 ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
584 ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
585 ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;
586
587 ktime_t now = ktime_get_update_offsets_now(&base->clock_was_set_seq,
588 offs_real, offs_boot, offs_tai);
589
590 base->clock_base[HRTIMER_BASE_REALTIME_SOFT].offset = *offs_real;
591 base->clock_base[HRTIMER_BASE_BOOTTIME_SOFT].offset = *offs_boot;
592 base->clock_base[HRTIMER_BASE_TAI_SOFT].offset = *offs_tai;
593
594 return now;
595}
596
597/*
598 * Is the high resolution mode active ?
599 */
600static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base)
601{
602 return IS_ENABLED(CONFIG_HIGH_RES_TIMERS) ?
603 cpu_base->hres_active : 0;
604}
605
606static inline int hrtimer_hres_active(void)
607{
608 return __hrtimer_hres_active(this_cpu_ptr(&hrtimer_bases));
609}
610
611/*
612 * Reprogram the event source with checking both queues for the
613 * next event
614 * Called with interrupts disabled and base->lock held
615 */
616static void
617hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
618{
619 ktime_t expires_next;
620
621 /*
622 * Find the current next expiration time.
623 */
624 expires_next = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL);
625
626 if (cpu_base->next_timer && cpu_base->next_timer->is_soft) {
627 /*
628 * When the softirq is activated, hrtimer has to be
629 * programmed with the first hard hrtimer because soft
630 * timer interrupt could occur too late.
631 */
632 if (cpu_base->softirq_activated)
633 expires_next = __hrtimer_get_next_event(cpu_base,
634 HRTIMER_ACTIVE_HARD);
635 else
636 cpu_base->softirq_expires_next = expires_next;
637 }
638
639 if (skip_equal && expires_next == cpu_base->expires_next)
640 return;
641
642 cpu_base->expires_next = expires_next;
643
644 /*
645 * If hres is not active, hardware does not have to be
646 * reprogrammed yet.
647 *
648 * If a hang was detected in the last timer interrupt then we
649 * leave the hang delay active in the hardware. We want the
650 * system to make progress. That also prevents the following
651 * scenario:
652 * T1 expires 50ms from now
653 * T2 expires 5s from now
654 *
655 * T1 is removed, so this code is called and would reprogram
656 * the hardware to 5s from now. Any hrtimer_start after that
657 * will not reprogram the hardware due to hang_detected being
658 * set. So we'd effectivly block all timers until the T2 event
659 * fires.
660 */
661 if (!__hrtimer_hres_active(cpu_base) || cpu_base->hang_detected)
662 return;
663
664 tick_program_event(cpu_base->expires_next, 1);
665}
666
667/* High resolution timer related functions */
668#ifdef CONFIG_HIGH_RES_TIMERS
669
670/*
671 * High resolution timer enabled ?
672 */
673static bool hrtimer_hres_enabled __read_mostly = true;
674unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC;
675EXPORT_SYMBOL_GPL(hrtimer_resolution);
676
677/*
678 * Enable / Disable high resolution mode
679 */
680static int __init setup_hrtimer_hres(char *str)
681{
682 return (kstrtobool(str, &hrtimer_hres_enabled) == 0);
683}
684
685__setup("highres=", setup_hrtimer_hres);
686
687/*
688 * hrtimer_high_res_enabled - query, if the highres mode is enabled
689 */
690static inline int hrtimer_is_hres_enabled(void)
691{
692 return hrtimer_hres_enabled;
693}
694
695/*
696 * Retrigger next event is called after clock was set
697 *
698 * Called with interrupts disabled via on_each_cpu()
699 */
700static void retrigger_next_event(void *arg)
701{
702 struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
703
704 if (!__hrtimer_hres_active(base))
705 return;
706
707 raw_spin_lock(&base->lock);
708 hrtimer_update_base(base);
709 hrtimer_force_reprogram(base, 0);
710 raw_spin_unlock(&base->lock);
711}
712
713/*
714 * Switch to high resolution mode
715 */
716static void hrtimer_switch_to_hres(void)
717{
718 struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
719
720 if (tick_init_highres()) {
721 printk(KERN_WARNING "Could not switch to high resolution "
722 "mode on CPU %d\n", base->cpu);
723 return;
724 }
725 base->hres_active = 1;
726 hrtimer_resolution = HIGH_RES_NSEC;
727
728 tick_setup_sched_timer();
729 /* "Retrigger" the interrupt to get things going */
730 retrigger_next_event(NULL);
731}
732
733static void clock_was_set_work(struct work_struct *work)
734{
735 clock_was_set();
736}
737
738static DECLARE_WORK(hrtimer_work, clock_was_set_work);
739
740/*
741 * Called from timekeeping and resume code to reprogram the hrtimer
742 * interrupt device on all cpus.
743 */
744void clock_was_set_delayed(void)
745{
746 schedule_work(&hrtimer_work);
747}
748
749#else
750
751static inline int hrtimer_is_hres_enabled(void) { return 0; }
752static inline void hrtimer_switch_to_hres(void) { }
753static inline void retrigger_next_event(void *arg) { }
754
755#endif /* CONFIG_HIGH_RES_TIMERS */
756
757/*
758 * When a timer is enqueued and expires earlier than the already enqueued
759 * timers, we have to check, whether it expires earlier than the timer for
760 * which the clock event device was armed.
761 *
762 * Called with interrupts disabled and base->cpu_base.lock held
763 */
764static void hrtimer_reprogram(struct hrtimer *timer, bool reprogram)
765{
766 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
767 struct hrtimer_clock_base *base = timer->base;
768 ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
769
770 WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
771
772 /*
773 * CLOCK_REALTIME timer might be requested with an absolute
774 * expiry time which is less than base->offset. Set it to 0.
775 */
776 if (expires < 0)
777 expires = 0;
778
779 if (timer->is_soft) {
780 /*
781 * soft hrtimer could be started on a remote CPU. In this
782 * case softirq_expires_next needs to be updated on the
783 * remote CPU. The soft hrtimer will not expire before the
784 * first hard hrtimer on the remote CPU -
785 * hrtimer_check_target() prevents this case.
786 */
787 struct hrtimer_cpu_base *timer_cpu_base = base->cpu_base;
788
789 if (timer_cpu_base->softirq_activated)
790 return;
791
792 if (!ktime_before(expires, timer_cpu_base->softirq_expires_next))
793 return;
794
795 timer_cpu_base->softirq_next_timer = timer;
796 timer_cpu_base->softirq_expires_next = expires;
797
798 if (!ktime_before(expires, timer_cpu_base->expires_next) ||
799 !reprogram)
800 return;
801 }
802
803 /*
804 * If the timer is not on the current cpu, we cannot reprogram
805 * the other cpus clock event device.
806 */
807 if (base->cpu_base != cpu_base)
808 return;
809
810 /*
811 * If the hrtimer interrupt is running, then it will
812 * reevaluate the clock bases and reprogram the clock event
813 * device. The callbacks are always executed in hard interrupt
814 * context so we don't need an extra check for a running
815 * callback.
816 */
817 if (cpu_base->in_hrtirq)
818 return;
819
820 if (expires >= cpu_base->expires_next)
821 return;
822
823 /* Update the pointer to the next expiring timer */
824 cpu_base->next_timer = timer;
825 cpu_base->expires_next = expires;
826
827 /*
828 * If hres is not active, hardware does not have to be
829 * programmed yet.
830 *
831 * If a hang was detected in the last timer interrupt then we
832 * do not schedule a timer which is earlier than the expiry
833 * which we enforced in the hang detection. We want the system
834 * to make progress.
835 */
836 if (!__hrtimer_hres_active(cpu_base) || cpu_base->hang_detected)
837 return;
838
839 /*
840 * Program the timer hardware. We enforce the expiry for
841 * events which are already in the past.
842 */
843 tick_program_event(expires, 1);
844}
845
846/*
847 * Clock realtime was set
848 *
849 * Change the offset of the realtime clock vs. the monotonic
850 * clock.
851 *
852 * We might have to reprogram the high resolution timer interrupt. On
853 * SMP we call the architecture specific code to retrigger _all_ high
854 * resolution timer interrupts. On UP we just disable interrupts and
855 * call the high resolution interrupt code.
856 */
857void clock_was_set(void)
858{
859#ifdef CONFIG_HIGH_RES_TIMERS
860 /* Retrigger the CPU local events everywhere */
861 on_each_cpu(retrigger_next_event, NULL, 1);
862#endif
863 timerfd_clock_was_set();
864}
865
866/*
867 * During resume we might have to reprogram the high resolution timer
868 * interrupt on all online CPUs. However, all other CPUs will be
869 * stopped with IRQs interrupts disabled so the clock_was_set() call
870 * must be deferred.
871 */
872void hrtimers_resume(void)
873{
874 lockdep_assert_irqs_disabled();
875 /* Retrigger on the local CPU */
876 retrigger_next_event(NULL);
877 /* And schedule a retrigger for all others */
878 clock_was_set_delayed();
879}
880
881/*
882 * Counterpart to lock_hrtimer_base above:
883 */
884static inline
885void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
886{
887 raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
888}
889
890/**
891 * hrtimer_forward - forward the timer expiry
892 * @timer: hrtimer to forward
893 * @now: forward past this time
894 * @interval: the interval to forward
895 *
896 * Forward the timer expiry so it will expire in the future.
897 * Returns the number of overruns.
898 *
899 * Can be safely called from the callback function of @timer. If
900 * called from other contexts @timer must neither be enqueued nor
901 * running the callback and the caller needs to take care of
902 * serialization.
903 *
904 * Note: This only updates the timer expiry value and does not requeue
905 * the timer.
906 */
907u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
908{
909 u64 orun = 1;
910 ktime_t delta;
911
912 delta = ktime_sub(now, hrtimer_get_expires(timer));
913
914 if (delta < 0)
915 return 0;
916
917 if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED))
918 return 0;
919
920 if (interval < hrtimer_resolution)
921 interval = hrtimer_resolution;
922
923 if (unlikely(delta >= interval)) {
924 s64 incr = ktime_to_ns(interval);
925
926 orun = ktime_divns(delta, incr);
927 hrtimer_add_expires_ns(timer, incr * orun);
928 if (hrtimer_get_expires_tv64(timer) > now)
929 return orun;
930 /*
931 * This (and the ktime_add() below) is the
932 * correction for exact:
933 */
934 orun++;
935 }
936 hrtimer_add_expires(timer, interval);
937
938 return orun;
939}
940EXPORT_SYMBOL_GPL(hrtimer_forward);
941
942/*
943 * enqueue_hrtimer - internal function to (re)start a timer
944 *
945 * The timer is inserted in expiry order. Insertion into the
946 * red black tree is O(log(n)). Must hold the base lock.
947 *
948 * Returns 1 when the new timer is the leftmost timer in the tree.
949 */
950static int enqueue_hrtimer(struct hrtimer *timer,
951 struct hrtimer_clock_base *base,
952 enum hrtimer_mode mode)
953{
954 debug_activate(timer, mode);
955
956 base->cpu_base->active_bases |= 1 << base->index;
957
958 timer->state = HRTIMER_STATE_ENQUEUED;
959
960 return timerqueue_add(&base->active, &timer->node);
961}
962
963/*
964 * __remove_hrtimer - internal function to remove a timer
965 *
966 * Caller must hold the base lock.
967 *
968 * High resolution timer mode reprograms the clock event device when the
969 * timer is the one which expires next. The caller can disable this by setting
970 * reprogram to zero. This is useful, when the context does a reprogramming
971 * anyway (e.g. timer interrupt)
972 */
973static void __remove_hrtimer(struct hrtimer *timer,
974 struct hrtimer_clock_base *base,
975 u8 newstate, int reprogram)
976{
977 struct hrtimer_cpu_base *cpu_base = base->cpu_base;
978 u8 state = timer->state;
979
980 timer->state = newstate;
981 if (!(state & HRTIMER_STATE_ENQUEUED))
982 return;
983
984 if (!timerqueue_del(&base->active, &timer->node))
985 cpu_base->active_bases &= ~(1 << base->index);
986
987 /*
988 * Note: If reprogram is false we do not update
989 * cpu_base->next_timer. This happens when we remove the first
990 * timer on a remote cpu. No harm as we never dereference
991 * cpu_base->next_timer. So the worst thing what can happen is
992 * an superflous call to hrtimer_force_reprogram() on the
993 * remote cpu later on if the same timer gets enqueued again.
994 */
995 if (reprogram && timer == cpu_base->next_timer)
996 hrtimer_force_reprogram(cpu_base, 1);
997}
998
999/*
1000 * remove hrtimer, called with base lock held
1001 */
1002static inline int
1003remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base, bool restart)
1004{
1005 if (hrtimer_is_queued(timer)) {
1006 u8 state = timer->state;
1007 int reprogram;
1008
1009 /*
1010 * Remove the timer and force reprogramming when high
1011 * resolution mode is active and the timer is on the current
1012 * CPU. If we remove a timer on another CPU, reprogramming is
1013 * skipped. The interrupt event on this CPU is fired and
1014 * reprogramming happens in the interrupt handler. This is a
1015 * rare case and less expensive than a smp call.
1016 */
1017 debug_deactivate(timer);
1018 reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
1019
1020 if (!restart)
1021 state = HRTIMER_STATE_INACTIVE;
1022
1023 __remove_hrtimer(timer, base, state, reprogram);
1024 return 1;
1025 }
1026 return 0;
1027}
1028
1029static inline ktime_t hrtimer_update_lowres(struct hrtimer *timer, ktime_t tim,
1030 const enum hrtimer_mode mode)
1031{
1032#ifdef CONFIG_TIME_LOW_RES
1033 /*
1034 * CONFIG_TIME_LOW_RES indicates that the system has no way to return
1035 * granular time values. For relative timers we add hrtimer_resolution
1036 * (i.e. one jiffie) to prevent short timeouts.
1037 */
1038 timer->is_rel = mode & HRTIMER_MODE_REL;
1039 if (timer->is_rel)
1040 tim = ktime_add_safe(tim, hrtimer_resolution);
1041#endif
1042 return tim;
1043}
1044
1045static void
1046hrtimer_update_softirq_timer(struct hrtimer_cpu_base *cpu_base, bool reprogram)
1047{
1048 ktime_t expires;
1049
1050 /*
1051 * Find the next SOFT expiration.
1052 */
1053 expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_SOFT);
1054
1055 /*
1056 * reprogramming needs to be triggered, even if the next soft
1057 * hrtimer expires at the same time than the next hard
1058 * hrtimer. cpu_base->softirq_expires_next needs to be updated!
1059 */
1060 if (expires == KTIME_MAX)
1061 return;
1062
1063 /*
1064 * cpu_base->*next_timer is recomputed by __hrtimer_get_next_event()
1065 * cpu_base->*expires_next is only set by hrtimer_reprogram()
1066 */
1067 hrtimer_reprogram(cpu_base->softirq_next_timer, reprogram);
1068}
1069
1070static int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1071 u64 delta_ns, const enum hrtimer_mode mode,
1072 struct hrtimer_clock_base *base)
1073{
1074 struct hrtimer_clock_base *new_base;
1075
1076 /* Remove an active timer from the queue: */
1077 remove_hrtimer(timer, base, true);
1078
1079 if (mode & HRTIMER_MODE_REL)
1080 tim = ktime_add_safe(tim, base->get_time());
1081
1082 tim = hrtimer_update_lowres(timer, tim, mode);
1083
1084 hrtimer_set_expires_range_ns(timer, tim, delta_ns);
1085
1086 /* Switch the timer base, if necessary: */
1087 new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
1088
1089 return enqueue_hrtimer(timer, new_base, mode);
1090}
1091
1092/**
1093 * hrtimer_start_range_ns - (re)start an hrtimer
1094 * @timer: the timer to be added
1095 * @tim: expiry time
1096 * @delta_ns: "slack" range for the timer
1097 * @mode: timer mode: absolute (HRTIMER_MODE_ABS) or
1098 * relative (HRTIMER_MODE_REL), and pinned (HRTIMER_MODE_PINNED);
1099 * softirq based mode is considered for debug purpose only!
1100 */
1101void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1102 u64 delta_ns, const enum hrtimer_mode mode)
1103{
1104 struct hrtimer_clock_base *base;
1105 unsigned long flags;
1106
1107 /*
1108 * Check whether the HRTIMER_MODE_SOFT bit and hrtimer.is_soft
1109 * match.
1110 */
1111 WARN_ON_ONCE(!(mode & HRTIMER_MODE_SOFT) ^ !timer->is_soft);
1112
1113 base = lock_hrtimer_base(timer, &flags);
1114
1115 if (__hrtimer_start_range_ns(timer, tim, delta_ns, mode, base))
1116 hrtimer_reprogram(timer, true);
1117
1118 unlock_hrtimer_base(timer, &flags);
1119}
1120EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
1121
1122/**
1123 * hrtimer_try_to_cancel - try to deactivate a timer
1124 * @timer: hrtimer to stop
1125 *
1126 * Returns:
1127 * 0 when the timer was not active
1128 * 1 when the timer was active
1129 * -1 when the timer is currently executing the callback function and
1130 * cannot be stopped
1131 */
1132int hrtimer_try_to_cancel(struct hrtimer *timer)
1133{
1134 struct hrtimer_clock_base *base;
1135 unsigned long flags;
1136 int ret = -1;
1137
1138 /*
1139 * Check lockless first. If the timer is not active (neither
1140 * enqueued nor running the callback, nothing to do here. The
1141 * base lock does not serialize against a concurrent enqueue,
1142 * so we can avoid taking it.
1143 */
1144 if (!hrtimer_active(timer))
1145 return 0;
1146
1147 base = lock_hrtimer_base(timer, &flags);
1148
1149 if (!hrtimer_callback_running(timer))
1150 ret = remove_hrtimer(timer, base, false);
1151
1152 unlock_hrtimer_base(timer, &flags);
1153
1154 return ret;
1155
1156}
1157EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1158
1159/**
1160 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
1161 * @timer: the timer to be cancelled
1162 *
1163 * Returns:
1164 * 0 when the timer was not active
1165 * 1 when the timer was active
1166 */
1167int hrtimer_cancel(struct hrtimer *timer)
1168{
1169 for (;;) {
1170 int ret = hrtimer_try_to_cancel(timer);
1171
1172 if (ret >= 0)
1173 return ret;
1174 cpu_relax();
1175 }
1176}
1177EXPORT_SYMBOL_GPL(hrtimer_cancel);
1178
1179/**
1180 * hrtimer_get_remaining - get remaining time for the timer
1181 * @timer: the timer to read
1182 * @adjust: adjust relative timers when CONFIG_TIME_LOW_RES=y
1183 */
1184ktime_t __hrtimer_get_remaining(const struct hrtimer *timer, bool adjust)
1185{
1186 unsigned long flags;
1187 ktime_t rem;
1188
1189 lock_hrtimer_base(timer, &flags);
1190 if (IS_ENABLED(CONFIG_TIME_LOW_RES) && adjust)
1191 rem = hrtimer_expires_remaining_adjusted(timer);
1192 else
1193 rem = hrtimer_expires_remaining(timer);
1194 unlock_hrtimer_base(timer, &flags);
1195
1196 return rem;
1197}
1198EXPORT_SYMBOL_GPL(__hrtimer_get_remaining);
1199
1200#ifdef CONFIG_NO_HZ_COMMON
1201/**
1202 * hrtimer_get_next_event - get the time until next expiry event
1203 *
1204 * Returns the next expiry time or KTIME_MAX if no timer is pending.
1205 */
1206u64 hrtimer_get_next_event(void)
1207{
1208 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1209 u64 expires = KTIME_MAX;
1210 unsigned long flags;
1211
1212 raw_spin_lock_irqsave(&cpu_base->lock, flags);
1213
1214 if (!__hrtimer_hres_active(cpu_base))
1215 expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL);
1216
1217 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1218
1219 return expires;
1220}
1221
1222/**
1223 * hrtimer_next_event_without - time until next expiry event w/o one timer
1224 * @exclude: timer to exclude
1225 *
1226 * Returns the next expiry time over all timers except for the @exclude one or
1227 * KTIME_MAX if none of them is pending.
1228 */
1229u64 hrtimer_next_event_without(const struct hrtimer *exclude)
1230{
1231 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1232 u64 expires = KTIME_MAX;
1233 unsigned long flags;
1234
1235 raw_spin_lock_irqsave(&cpu_base->lock, flags);
1236
1237 if (__hrtimer_hres_active(cpu_base)) {
1238 unsigned int active;
1239
1240 if (!cpu_base->softirq_activated) {
1241 active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT;
1242 expires = __hrtimer_next_event_base(cpu_base, exclude,
1243 active, KTIME_MAX);
1244 }
1245 active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD;
1246 expires = __hrtimer_next_event_base(cpu_base, exclude, active,
1247 expires);
1248 }
1249
1250 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1251
1252 return expires;
1253}
1254#endif
1255
1256static inline int hrtimer_clockid_to_base(clockid_t clock_id)
1257{
1258 if (likely(clock_id < MAX_CLOCKS)) {
1259 int base = hrtimer_clock_to_base_table[clock_id];
1260
1261 if (likely(base != HRTIMER_MAX_CLOCK_BASES))
1262 return base;
1263 }
1264 WARN(1, "Invalid clockid %d. Using MONOTONIC\n", clock_id);
1265 return HRTIMER_BASE_MONOTONIC;
1266}
1267
1268static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1269 enum hrtimer_mode mode)
1270{
1271 bool softtimer = !!(mode & HRTIMER_MODE_SOFT);
1272 int base = softtimer ? HRTIMER_MAX_CLOCK_BASES / 2 : 0;
1273 struct hrtimer_cpu_base *cpu_base;
1274
1275 memset(timer, 0, sizeof(struct hrtimer));
1276
1277 cpu_base = raw_cpu_ptr(&hrtimer_bases);
1278
1279 /*
1280 * POSIX magic: Relative CLOCK_REALTIME timers are not affected by
1281 * clock modifications, so they needs to become CLOCK_MONOTONIC to
1282 * ensure POSIX compliance.
1283 */
1284 if (clock_id == CLOCK_REALTIME && mode & HRTIMER_MODE_REL)
1285 clock_id = CLOCK_MONOTONIC;
1286
1287 base += hrtimer_clockid_to_base(clock_id);
1288 timer->is_soft = softtimer;
1289 timer->base = &cpu_base->clock_base[base];
1290 timerqueue_init(&timer->node);
1291}
1292
1293/**
1294 * hrtimer_init - initialize a timer to the given clock
1295 * @timer: the timer to be initialized
1296 * @clock_id: the clock to be used
1297 * @mode: The modes which are relevant for intitialization:
1298 * HRTIMER_MODE_ABS, HRTIMER_MODE_REL, HRTIMER_MODE_ABS_SOFT,
1299 * HRTIMER_MODE_REL_SOFT
1300 *
1301 * The PINNED variants of the above can be handed in,
1302 * but the PINNED bit is ignored as pinning happens
1303 * when the hrtimer is started
1304 */
1305void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1306 enum hrtimer_mode mode)
1307{
1308 debug_init(timer, clock_id, mode);
1309 __hrtimer_init(timer, clock_id, mode);
1310}
1311EXPORT_SYMBOL_GPL(hrtimer_init);
1312
1313/*
1314 * A timer is active, when it is enqueued into the rbtree or the
1315 * callback function is running or it's in the state of being migrated
1316 * to another cpu.
1317 *
1318 * It is important for this function to not return a false negative.
1319 */
1320bool hrtimer_active(const struct hrtimer *timer)
1321{
1322 struct hrtimer_clock_base *base;
1323 unsigned int seq;
1324
1325 do {
1326 base = READ_ONCE(timer->base);
1327 seq = raw_read_seqcount_begin(&base->seq);
1328
1329 if (timer->state != HRTIMER_STATE_INACTIVE ||
1330 base->running == timer)
1331 return true;
1332
1333 } while (read_seqcount_retry(&base->seq, seq) ||
1334 base != READ_ONCE(timer->base));
1335
1336 return false;
1337}
1338EXPORT_SYMBOL_GPL(hrtimer_active);
1339
1340/*
1341 * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3
1342 * distinct sections:
1343 *
1344 * - queued: the timer is queued
1345 * - callback: the timer is being ran
1346 * - post: the timer is inactive or (re)queued
1347 *
1348 * On the read side we ensure we observe timer->state and cpu_base->running
1349 * from the same section, if anything changed while we looked at it, we retry.
1350 * This includes timer->base changing because sequence numbers alone are
1351 * insufficient for that.
1352 *
1353 * The sequence numbers are required because otherwise we could still observe
1354 * a false negative if the read side got smeared over multiple consequtive
1355 * __run_hrtimer() invocations.
1356 */
1357
1358static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base,
1359 struct hrtimer_clock_base *base,
1360 struct hrtimer *timer, ktime_t *now,
1361 unsigned long flags)
1362{
1363 enum hrtimer_restart (*fn)(struct hrtimer *);
1364 int restart;
1365
1366 lockdep_assert_held(&cpu_base->lock);
1367
1368 debug_deactivate(timer);
1369 base->running = timer;
1370
1371 /*
1372 * Separate the ->running assignment from the ->state assignment.
1373 *
1374 * As with a regular write barrier, this ensures the read side in
1375 * hrtimer_active() cannot observe base->running == NULL &&
1376 * timer->state == INACTIVE.
1377 */
1378 raw_write_seqcount_barrier(&base->seq);
1379
1380 __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, 0);
1381 fn = timer->function;
1382
1383 /*
1384 * Clear the 'is relative' flag for the TIME_LOW_RES case. If the
1385 * timer is restarted with a period then it becomes an absolute
1386 * timer. If its not restarted it does not matter.
1387 */
1388 if (IS_ENABLED(CONFIG_TIME_LOW_RES))
1389 timer->is_rel = false;
1390
1391 /*
1392 * The timer is marked as running in the CPU base, so it is
1393 * protected against migration to a different CPU even if the lock
1394 * is dropped.
1395 */
1396 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1397 trace_hrtimer_expire_entry(timer, now);
1398 restart = fn(timer);
1399 trace_hrtimer_expire_exit(timer);
1400 raw_spin_lock_irq(&cpu_base->lock);
1401
1402 /*
1403 * Note: We clear the running state after enqueue_hrtimer and
1404 * we do not reprogram the event hardware. Happens either in
1405 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1406 *
1407 * Note: Because we dropped the cpu_base->lock above,
1408 * hrtimer_start_range_ns() can have popped in and enqueued the timer
1409 * for us already.
1410 */
1411 if (restart != HRTIMER_NORESTART &&
1412 !(timer->state & HRTIMER_STATE_ENQUEUED))
1413 enqueue_hrtimer(timer, base, HRTIMER_MODE_ABS);
1414
1415 /*
1416 * Separate the ->running assignment from the ->state assignment.
1417 *
1418 * As with a regular write barrier, this ensures the read side in
1419 * hrtimer_active() cannot observe base->running.timer == NULL &&
1420 * timer->state == INACTIVE.
1421 */
1422 raw_write_seqcount_barrier(&base->seq);
1423
1424 WARN_ON_ONCE(base->running != timer);
1425 base->running = NULL;
1426}
1427
1428static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now,
1429 unsigned long flags, unsigned int active_mask)
1430{
1431 struct hrtimer_clock_base *base;
1432 unsigned int active = cpu_base->active_bases & active_mask;
1433
1434 for_each_active_base(base, cpu_base, active) {
1435 struct timerqueue_node *node;
1436 ktime_t basenow;
1437
1438 basenow = ktime_add(now, base->offset);
1439
1440 while ((node = timerqueue_getnext(&base->active))) {
1441 struct hrtimer *timer;
1442
1443 timer = container_of(node, struct hrtimer, node);
1444
1445 /*
1446 * The immediate goal for using the softexpires is
1447 * minimizing wakeups, not running timers at the
1448 * earliest interrupt after their soft expiration.
1449 * This allows us to avoid using a Priority Search
1450 * Tree, which can answer a stabbing querry for
1451 * overlapping intervals and instead use the simple
1452 * BST we already have.
1453 * We don't add extra wakeups by delaying timers that
1454 * are right-of a not yet expired timer, because that
1455 * timer will have to trigger a wakeup anyway.
1456 */
1457 if (basenow < hrtimer_get_softexpires_tv64(timer))
1458 break;
1459
1460 __run_hrtimer(cpu_base, base, timer, &basenow, flags);
1461 }
1462 }
1463}
1464
1465static __latent_entropy void hrtimer_run_softirq(struct softirq_action *h)
1466{
1467 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1468 unsigned long flags;
1469 ktime_t now;
1470
1471 raw_spin_lock_irqsave(&cpu_base->lock, flags);
1472
1473 now = hrtimer_update_base(cpu_base);
1474 __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_SOFT);
1475
1476 cpu_base->softirq_activated = 0;
1477 hrtimer_update_softirq_timer(cpu_base, true);
1478
1479 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1480}
1481
1482#ifdef CONFIG_HIGH_RES_TIMERS
1483
1484/*
1485 * High resolution timer interrupt
1486 * Called with interrupts disabled
1487 */
1488void hrtimer_interrupt(struct clock_event_device *dev)
1489{
1490 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1491 ktime_t expires_next, now, entry_time, delta;
1492 unsigned long flags;
1493 int retries = 0;
1494
1495 BUG_ON(!cpu_base->hres_active);
1496 cpu_base->nr_events++;
1497 dev->next_event = KTIME_MAX;
1498
1499 raw_spin_lock_irqsave(&cpu_base->lock, flags);
1500 entry_time = now = hrtimer_update_base(cpu_base);
1501retry:
1502 cpu_base->in_hrtirq = 1;
1503 /*
1504 * We set expires_next to KTIME_MAX here with cpu_base->lock
1505 * held to prevent that a timer is enqueued in our queue via
1506 * the migration code. This does not affect enqueueing of
1507 * timers which run their callback and need to be requeued on
1508 * this CPU.
1509 */
1510 cpu_base->expires_next = KTIME_MAX;
1511
1512 if (!ktime_before(now, cpu_base->softirq_expires_next)) {
1513 cpu_base->softirq_expires_next = KTIME_MAX;
1514 cpu_base->softirq_activated = 1;
1515 raise_softirq_irqoff(HRTIMER_SOFTIRQ);
1516 }
1517
1518 __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD);
1519
1520 /* Reevaluate the clock bases for the next expiry */
1521 expires_next = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL);
1522 /*
1523 * Store the new expiry value so the migration code can verify
1524 * against it.
1525 */
1526 cpu_base->expires_next = expires_next;
1527 cpu_base->in_hrtirq = 0;
1528 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1529
1530 /* Reprogramming necessary ? */
1531 if (!tick_program_event(expires_next, 0)) {
1532 cpu_base->hang_detected = 0;
1533 return;
1534 }
1535
1536 /*
1537 * The next timer was already expired due to:
1538 * - tracing
1539 * - long lasting callbacks
1540 * - being scheduled away when running in a VM
1541 *
1542 * We need to prevent that we loop forever in the hrtimer
1543 * interrupt routine. We give it 3 attempts to avoid
1544 * overreacting on some spurious event.
1545 *
1546 * Acquire base lock for updating the offsets and retrieving
1547 * the current time.
1548 */
1549 raw_spin_lock_irqsave(&cpu_base->lock, flags);
1550 now = hrtimer_update_base(cpu_base);
1551 cpu_base->nr_retries++;
1552 if (++retries < 3)
1553 goto retry;
1554 /*
1555 * Give the system a chance to do something else than looping
1556 * here. We stored the entry time, so we know exactly how long
1557 * we spent here. We schedule the next event this amount of
1558 * time away.
1559 */
1560 cpu_base->nr_hangs++;
1561 cpu_base->hang_detected = 1;
1562 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1563
1564 delta = ktime_sub(now, entry_time);
1565 if ((unsigned int)delta > cpu_base->max_hang_time)
1566 cpu_base->max_hang_time = (unsigned int) delta;
1567 /*
1568 * Limit it to a sensible value as we enforce a longer
1569 * delay. Give the CPU at least 100ms to catch up.
1570 */
1571 if (delta > 100 * NSEC_PER_MSEC)
1572 expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
1573 else
1574 expires_next = ktime_add(now, delta);
1575 tick_program_event(expires_next, 1);
1576 printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n",
1577 ktime_to_ns(delta));
1578}
1579
1580/* called with interrupts disabled */
1581static inline void __hrtimer_peek_ahead_timers(void)
1582{
1583 struct tick_device *td;
1584
1585 if (!hrtimer_hres_active())
1586 return;
1587
1588 td = this_cpu_ptr(&tick_cpu_device);
1589 if (td && td->evtdev)
1590 hrtimer_interrupt(td->evtdev);
1591}
1592
1593#else /* CONFIG_HIGH_RES_TIMERS */
1594
1595static inline void __hrtimer_peek_ahead_timers(void) { }
1596
1597#endif /* !CONFIG_HIGH_RES_TIMERS */
1598
1599/*
1600 * Called from run_local_timers in hardirq context every jiffy
1601 */
1602void hrtimer_run_queues(void)
1603{
1604 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1605 unsigned long flags;
1606 ktime_t now;
1607
1608 if (__hrtimer_hres_active(cpu_base))
1609 return;
1610
1611 /*
1612 * This _is_ ugly: We have to check periodically, whether we
1613 * can switch to highres and / or nohz mode. The clocksource
1614 * switch happens with xtime_lock held. Notification from
1615 * there only sets the check bit in the tick_oneshot code,
1616 * otherwise we might deadlock vs. xtime_lock.
1617 */
1618 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) {
1619 hrtimer_switch_to_hres();
1620 return;
1621 }
1622
1623 raw_spin_lock_irqsave(&cpu_base->lock, flags);
1624 now = hrtimer_update_base(cpu_base);
1625
1626 if (!ktime_before(now, cpu_base->softirq_expires_next)) {
1627 cpu_base->softirq_expires_next = KTIME_MAX;
1628 cpu_base->softirq_activated = 1;
1629 raise_softirq_irqoff(HRTIMER_SOFTIRQ);
1630 }
1631
1632 __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD);
1633 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1634}
1635
1636/*
1637 * Sleep related functions:
1638 */
1639static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1640{
1641 struct hrtimer_sleeper *t =
1642 container_of(timer, struct hrtimer_sleeper, timer);
1643 struct task_struct *task = t->task;
1644
1645 t->task = NULL;
1646 if (task)
1647 wake_up_process(task);
1648
1649 return HRTIMER_NORESTART;
1650}
1651
1652void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1653{
1654 sl->timer.function = hrtimer_wakeup;
1655 sl->task = task;
1656}
1657EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
1658
1659int nanosleep_copyout(struct restart_block *restart, struct timespec64 *ts)
1660{
1661 switch(restart->nanosleep.type) {
1662#ifdef CONFIG_COMPAT
1663 case TT_COMPAT:
1664 if (compat_put_timespec64(ts, restart->nanosleep.compat_rmtp))
1665 return -EFAULT;
1666 break;
1667#endif
1668 case TT_NATIVE:
1669 if (put_timespec64(ts, restart->nanosleep.rmtp))
1670 return -EFAULT;
1671 break;
1672 default:
1673 BUG();
1674 }
1675 return -ERESTART_RESTARTBLOCK;
1676}
1677
1678static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1679{
1680 struct restart_block *restart;
1681
1682 hrtimer_init_sleeper(t, current);
1683
1684 do {
1685 set_current_state(TASK_INTERRUPTIBLE);
1686 hrtimer_start_expires(&t->timer, mode);
1687
1688 if (likely(t->task))
1689 freezable_schedule();
1690
1691 hrtimer_cancel(&t->timer);
1692 mode = HRTIMER_MODE_ABS;
1693
1694 } while (t->task && !signal_pending(current));
1695
1696 __set_current_state(TASK_RUNNING);
1697
1698 if (!t->task)
1699 return 0;
1700
1701 restart = ¤t->restart_block;
1702 if (restart->nanosleep.type != TT_NONE) {
1703 ktime_t rem = hrtimer_expires_remaining(&t->timer);
1704 struct timespec64 rmt;
1705
1706 if (rem <= 0)
1707 return 0;
1708 rmt = ktime_to_timespec64(rem);
1709
1710 return nanosleep_copyout(restart, &rmt);
1711 }
1712 return -ERESTART_RESTARTBLOCK;
1713}
1714
1715static long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1716{
1717 struct hrtimer_sleeper t;
1718 int ret;
1719
1720 hrtimer_init_on_stack(&t.timer, restart->nanosleep.clockid,
1721 HRTIMER_MODE_ABS);
1722 hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1723
1724 ret = do_nanosleep(&t, HRTIMER_MODE_ABS);
1725 destroy_hrtimer_on_stack(&t.timer);
1726 return ret;
1727}
1728
1729long hrtimer_nanosleep(const struct timespec64 *rqtp,
1730 const enum hrtimer_mode mode, const clockid_t clockid)
1731{
1732 struct restart_block *restart;
1733 struct hrtimer_sleeper t;
1734 int ret = 0;
1735 u64 slack;
1736
1737 slack = current->timer_slack_ns;
1738 if (dl_task(current) || rt_task(current))
1739 slack = 0;
1740
1741 hrtimer_init_on_stack(&t.timer, clockid, mode);
1742 hrtimer_set_expires_range_ns(&t.timer, timespec64_to_ktime(*rqtp), slack);
1743 ret = do_nanosleep(&t, mode);
1744 if (ret != -ERESTART_RESTARTBLOCK)
1745 goto out;
1746
1747 /* Absolute timers do not update the rmtp value and restart: */
1748 if (mode == HRTIMER_MODE_ABS) {
1749 ret = -ERESTARTNOHAND;
1750 goto out;
1751 }
1752
1753 restart = ¤t->restart_block;
1754 restart->fn = hrtimer_nanosleep_restart;
1755 restart->nanosleep.clockid = t.timer.base->clockid;
1756 restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1757out:
1758 destroy_hrtimer_on_stack(&t.timer);
1759 return ret;
1760}
1761
1762SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
1763 struct timespec __user *, rmtp)
1764{
1765 struct timespec64 tu;
1766
1767 if (get_timespec64(&tu, rqtp))
1768 return -EFAULT;
1769
1770 if (!timespec64_valid(&tu))
1771 return -EINVAL;
1772
1773 current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE;
1774 current->restart_block.nanosleep.rmtp = rmtp;
1775 return hrtimer_nanosleep(&tu, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1776}
1777
1778#ifdef CONFIG_COMPAT
1779
1780COMPAT_SYSCALL_DEFINE2(nanosleep, struct compat_timespec __user *, rqtp,
1781 struct compat_timespec __user *, rmtp)
1782{
1783 struct timespec64 tu;
1784
1785 if (compat_get_timespec64(&tu, rqtp))
1786 return -EFAULT;
1787
1788 if (!timespec64_valid(&tu))
1789 return -EINVAL;
1790
1791 current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE;
1792 current->restart_block.nanosleep.compat_rmtp = rmtp;
1793 return hrtimer_nanosleep(&tu, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1794}
1795#endif
1796
1797/*
1798 * Functions related to boot-time initialization:
1799 */
1800int hrtimers_prepare_cpu(unsigned int cpu)
1801{
1802 struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1803 int i;
1804
1805 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1806 cpu_base->clock_base[i].cpu_base = cpu_base;
1807 timerqueue_init_head(&cpu_base->clock_base[i].active);
1808 }
1809
1810 cpu_base->cpu = cpu;
1811 cpu_base->active_bases = 0;
1812 cpu_base->hres_active = 0;
1813 cpu_base->hang_detected = 0;
1814 cpu_base->next_timer = NULL;
1815 cpu_base->softirq_next_timer = NULL;
1816 cpu_base->expires_next = KTIME_MAX;
1817 cpu_base->softirq_expires_next = KTIME_MAX;
1818 return 0;
1819}
1820
1821#ifdef CONFIG_HOTPLUG_CPU
1822
1823static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1824 struct hrtimer_clock_base *new_base)
1825{
1826 struct hrtimer *timer;
1827 struct timerqueue_node *node;
1828
1829 while ((node = timerqueue_getnext(&old_base->active))) {
1830 timer = container_of(node, struct hrtimer, node);
1831 BUG_ON(hrtimer_callback_running(timer));
1832 debug_deactivate(timer);
1833
1834 /*
1835 * Mark it as ENQUEUED not INACTIVE otherwise the
1836 * timer could be seen as !active and just vanish away
1837 * under us on another CPU
1838 */
1839 __remove_hrtimer(timer, old_base, HRTIMER_STATE_ENQUEUED, 0);
1840 timer->base = new_base;
1841 /*
1842 * Enqueue the timers on the new cpu. This does not
1843 * reprogram the event device in case the timer
1844 * expires before the earliest on this CPU, but we run
1845 * hrtimer_interrupt after we migrated everything to
1846 * sort out already expired timers and reprogram the
1847 * event device.
1848 */
1849 enqueue_hrtimer(timer, new_base, HRTIMER_MODE_ABS);
1850 }
1851}
1852
1853int hrtimers_dead_cpu(unsigned int scpu)
1854{
1855 struct hrtimer_cpu_base *old_base, *new_base;
1856 int i;
1857
1858 BUG_ON(cpu_online(scpu));
1859 tick_cancel_sched_timer(scpu);
1860
1861 /*
1862 * this BH disable ensures that raise_softirq_irqoff() does
1863 * not wakeup ksoftirqd (and acquire the pi-lock) while
1864 * holding the cpu_base lock
1865 */
1866 local_bh_disable();
1867 local_irq_disable();
1868 old_base = &per_cpu(hrtimer_bases, scpu);
1869 new_base = this_cpu_ptr(&hrtimer_bases);
1870 /*
1871 * The caller is globally serialized and nobody else
1872 * takes two locks at once, deadlock is not possible.
1873 */
1874 raw_spin_lock(&new_base->lock);
1875 raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1876
1877 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1878 migrate_hrtimer_list(&old_base->clock_base[i],
1879 &new_base->clock_base[i]);
1880 }
1881
1882 /*
1883 * The migration might have changed the first expiring softirq
1884 * timer on this CPU. Update it.
1885 */
1886 hrtimer_update_softirq_timer(new_base, false);
1887
1888 raw_spin_unlock(&old_base->lock);
1889 raw_spin_unlock(&new_base->lock);
1890
1891 /* Check, if we got expired work to do */
1892 __hrtimer_peek_ahead_timers();
1893 local_irq_enable();
1894 local_bh_enable();
1895 return 0;
1896}
1897
1898#endif /* CONFIG_HOTPLUG_CPU */
1899
1900void __init hrtimers_init(void)
1901{
1902 hrtimers_prepare_cpu(smp_processor_id());
1903 open_softirq(HRTIMER_SOFTIRQ, hrtimer_run_softirq);
1904}
1905
1906/**
1907 * schedule_hrtimeout_range_clock - sleep until timeout
1908 * @expires: timeout value (ktime_t)
1909 * @delta: slack in expires timeout (ktime_t)
1910 * @mode: timer mode
1911 * @clock_id: timer clock to be used
1912 */
1913int __sched
1914schedule_hrtimeout_range_clock(ktime_t *expires, u64 delta,
1915 const enum hrtimer_mode mode, clockid_t clock_id)
1916{
1917 struct hrtimer_sleeper t;
1918
1919 /*
1920 * Optimize when a zero timeout value is given. It does not
1921 * matter whether this is an absolute or a relative time.
1922 */
1923 if (expires && *expires == 0) {
1924 __set_current_state(TASK_RUNNING);
1925 return 0;
1926 }
1927
1928 /*
1929 * A NULL parameter means "infinite"
1930 */
1931 if (!expires) {
1932 schedule();
1933 return -EINTR;
1934 }
1935
1936 hrtimer_init_on_stack(&t.timer, clock_id, mode);
1937 hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
1938
1939 hrtimer_init_sleeper(&t, current);
1940
1941 hrtimer_start_expires(&t.timer, mode);
1942
1943 if (likely(t.task))
1944 schedule();
1945
1946 hrtimer_cancel(&t.timer);
1947 destroy_hrtimer_on_stack(&t.timer);
1948
1949 __set_current_state(TASK_RUNNING);
1950
1951 return !t.task ? 0 : -EINTR;
1952}
1953
1954/**
1955 * schedule_hrtimeout_range - sleep until timeout
1956 * @expires: timeout value (ktime_t)
1957 * @delta: slack in expires timeout (ktime_t)
1958 * @mode: timer mode
1959 *
1960 * Make the current task sleep until the given expiry time has
1961 * elapsed. The routine will return immediately unless
1962 * the current task state has been set (see set_current_state()).
1963 *
1964 * The @delta argument gives the kernel the freedom to schedule the
1965 * actual wakeup to a time that is both power and performance friendly.
1966 * The kernel give the normal best effort behavior for "@expires+@delta",
1967 * but may decide to fire the timer earlier, but no earlier than @expires.
1968 *
1969 * You can set the task state as follows -
1970 *
1971 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1972 * pass before the routine returns unless the current task is explicitly
1973 * woken up, (e.g. by wake_up_process()).
1974 *
1975 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1976 * delivered to the current task or the current task is explicitly woken
1977 * up.
1978 *
1979 * The current task state is guaranteed to be TASK_RUNNING when this
1980 * routine returns.
1981 *
1982 * Returns 0 when the timer has expired. If the task was woken before the
1983 * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
1984 * by an explicit wakeup, it returns -EINTR.
1985 */
1986int __sched schedule_hrtimeout_range(ktime_t *expires, u64 delta,
1987 const enum hrtimer_mode mode)
1988{
1989 return schedule_hrtimeout_range_clock(expires, delta, mode,
1990 CLOCK_MONOTONIC);
1991}
1992EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
1993
1994/**
1995 * schedule_hrtimeout - sleep until timeout
1996 * @expires: timeout value (ktime_t)
1997 * @mode: timer mode
1998 *
1999 * Make the current task sleep until the given expiry time has
2000 * elapsed. The routine will return immediately unless
2001 * the current task state has been set (see set_current_state()).
2002 *
2003 * You can set the task state as follows -
2004 *
2005 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
2006 * pass before the routine returns unless the current task is explicitly
2007 * woken up, (e.g. by wake_up_process()).
2008 *
2009 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
2010 * delivered to the current task or the current task is explicitly woken
2011 * up.
2012 *
2013 * The current task state is guaranteed to be TASK_RUNNING when this
2014 * routine returns.
2015 *
2016 * Returns 0 when the timer has expired. If the task was woken before the
2017 * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
2018 * by an explicit wakeup, it returns -EINTR.
2019 */
2020int __sched schedule_hrtimeout(ktime_t *expires,
2021 const enum hrtimer_mode mode)
2022{
2023 return schedule_hrtimeout_range(expires, 0, mode);
2024}
2025EXPORT_SYMBOL_GPL(schedule_hrtimeout);
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
4 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
5 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
6 *
7 * High-resolution kernel timers
8 *
9 * In contrast to the low-resolution timeout API, aka timer wheel,
10 * hrtimers provide finer resolution and accuracy depending on system
11 * configuration and capabilities.
12 *
13 * Started by: Thomas Gleixner and Ingo Molnar
14 *
15 * Credits:
16 * Based on the original timer wheel code
17 *
18 * Help, testing, suggestions, bugfixes, improvements were
19 * provided by:
20 *
21 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
22 * et. al.
23 */
24
25#include <linux/cpu.h>
26#include <linux/export.h>
27#include <linux/percpu.h>
28#include <linux/hrtimer.h>
29#include <linux/notifier.h>
30#include <linux/syscalls.h>
31#include <linux/interrupt.h>
32#include <linux/tick.h>
33#include <linux/err.h>
34#include <linux/debugobjects.h>
35#include <linux/sched/signal.h>
36#include <linux/sched/sysctl.h>
37#include <linux/sched/rt.h>
38#include <linux/sched/deadline.h>
39#include <linux/sched/nohz.h>
40#include <linux/sched/debug.h>
41#include <linux/timer.h>
42#include <linux/freezer.h>
43#include <linux/compat.h>
44
45#include <linux/uaccess.h>
46
47#include <trace/events/timer.h>
48
49#include "tick-internal.h"
50
51/*
52 * Masks for selecting the soft and hard context timers from
53 * cpu_base->active
54 */
55#define MASK_SHIFT (HRTIMER_BASE_MONOTONIC_SOFT)
56#define HRTIMER_ACTIVE_HARD ((1U << MASK_SHIFT) - 1)
57#define HRTIMER_ACTIVE_SOFT (HRTIMER_ACTIVE_HARD << MASK_SHIFT)
58#define HRTIMER_ACTIVE_ALL (HRTIMER_ACTIVE_SOFT | HRTIMER_ACTIVE_HARD)
59
60/*
61 * The timer bases:
62 *
63 * There are more clockids than hrtimer bases. Thus, we index
64 * into the timer bases by the hrtimer_base_type enum. When trying
65 * to reach a base using a clockid, hrtimer_clockid_to_base()
66 * is used to convert from clockid to the proper hrtimer_base_type.
67 */
68DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
69{
70 .lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
71 .clock_base =
72 {
73 {
74 .index = HRTIMER_BASE_MONOTONIC,
75 .clockid = CLOCK_MONOTONIC,
76 .get_time = &ktime_get,
77 },
78 {
79 .index = HRTIMER_BASE_REALTIME,
80 .clockid = CLOCK_REALTIME,
81 .get_time = &ktime_get_real,
82 },
83 {
84 .index = HRTIMER_BASE_BOOTTIME,
85 .clockid = CLOCK_BOOTTIME,
86 .get_time = &ktime_get_boottime,
87 },
88 {
89 .index = HRTIMER_BASE_TAI,
90 .clockid = CLOCK_TAI,
91 .get_time = &ktime_get_clocktai,
92 },
93 {
94 .index = HRTIMER_BASE_MONOTONIC_SOFT,
95 .clockid = CLOCK_MONOTONIC,
96 .get_time = &ktime_get,
97 },
98 {
99 .index = HRTIMER_BASE_REALTIME_SOFT,
100 .clockid = CLOCK_REALTIME,
101 .get_time = &ktime_get_real,
102 },
103 {
104 .index = HRTIMER_BASE_BOOTTIME_SOFT,
105 .clockid = CLOCK_BOOTTIME,
106 .get_time = &ktime_get_boottime,
107 },
108 {
109 .index = HRTIMER_BASE_TAI_SOFT,
110 .clockid = CLOCK_TAI,
111 .get_time = &ktime_get_clocktai,
112 },
113 }
114};
115
116static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
117 /* Make sure we catch unsupported clockids */
118 [0 ... MAX_CLOCKS - 1] = HRTIMER_MAX_CLOCK_BASES,
119
120 [CLOCK_REALTIME] = HRTIMER_BASE_REALTIME,
121 [CLOCK_MONOTONIC] = HRTIMER_BASE_MONOTONIC,
122 [CLOCK_BOOTTIME] = HRTIMER_BASE_BOOTTIME,
123 [CLOCK_TAI] = HRTIMER_BASE_TAI,
124};
125
126/*
127 * Functions and macros which are different for UP/SMP systems are kept in a
128 * single place
129 */
130#ifdef CONFIG_SMP
131
132/*
133 * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base()
134 * such that hrtimer_callback_running() can unconditionally dereference
135 * timer->base->cpu_base
136 */
137static struct hrtimer_cpu_base migration_cpu_base = {
138 .clock_base = { {
139 .cpu_base = &migration_cpu_base,
140 .seq = SEQCNT_RAW_SPINLOCK_ZERO(migration_cpu_base.seq,
141 &migration_cpu_base.lock),
142 }, },
143};
144
145#define migration_base migration_cpu_base.clock_base[0]
146
147static inline bool is_migration_base(struct hrtimer_clock_base *base)
148{
149 return base == &migration_base;
150}
151
152/*
153 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
154 * means that all timers which are tied to this base via timer->base are
155 * locked, and the base itself is locked too.
156 *
157 * So __run_timers/migrate_timers can safely modify all timers which could
158 * be found on the lists/queues.
159 *
160 * When the timer's base is locked, and the timer removed from list, it is
161 * possible to set timer->base = &migration_base and drop the lock: the timer
162 * remains locked.
163 */
164static
165struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
166 unsigned long *flags)
167 __acquires(&timer->base->lock)
168{
169 struct hrtimer_clock_base *base;
170
171 for (;;) {
172 base = READ_ONCE(timer->base);
173 if (likely(base != &migration_base)) {
174 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
175 if (likely(base == timer->base))
176 return base;
177 /* The timer has migrated to another CPU: */
178 raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
179 }
180 cpu_relax();
181 }
182}
183
184/*
185 * We do not migrate the timer when it is expiring before the next
186 * event on the target cpu. When high resolution is enabled, we cannot
187 * reprogram the target cpu hardware and we would cause it to fire
188 * late. To keep it simple, we handle the high resolution enabled and
189 * disabled case similar.
190 *
191 * Called with cpu_base->lock of target cpu held.
192 */
193static int
194hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
195{
196 ktime_t expires;
197
198 expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
199 return expires < new_base->cpu_base->expires_next;
200}
201
202static inline
203struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base,
204 int pinned)
205{
206#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
207 if (static_branch_likely(&timers_migration_enabled) && !pinned)
208 return &per_cpu(hrtimer_bases, get_nohz_timer_target());
209#endif
210 return base;
211}
212
213/*
214 * We switch the timer base to a power-optimized selected CPU target,
215 * if:
216 * - NO_HZ_COMMON is enabled
217 * - timer migration is enabled
218 * - the timer callback is not running
219 * - the timer is not the first expiring timer on the new target
220 *
221 * If one of the above requirements is not fulfilled we move the timer
222 * to the current CPU or leave it on the previously assigned CPU if
223 * the timer callback is currently running.
224 */
225static inline struct hrtimer_clock_base *
226switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
227 int pinned)
228{
229 struct hrtimer_cpu_base *new_cpu_base, *this_cpu_base;
230 struct hrtimer_clock_base *new_base;
231 int basenum = base->index;
232
233 this_cpu_base = this_cpu_ptr(&hrtimer_bases);
234 new_cpu_base = get_target_base(this_cpu_base, pinned);
235again:
236 new_base = &new_cpu_base->clock_base[basenum];
237
238 if (base != new_base) {
239 /*
240 * We are trying to move timer to new_base.
241 * However we can't change timer's base while it is running,
242 * so we keep it on the same CPU. No hassle vs. reprogramming
243 * the event source in the high resolution case. The softirq
244 * code will take care of this when the timer function has
245 * completed. There is no conflict as we hold the lock until
246 * the timer is enqueued.
247 */
248 if (unlikely(hrtimer_callback_running(timer)))
249 return base;
250
251 /* See the comment in lock_hrtimer_base() */
252 WRITE_ONCE(timer->base, &migration_base);
253 raw_spin_unlock(&base->cpu_base->lock);
254 raw_spin_lock(&new_base->cpu_base->lock);
255
256 if (new_cpu_base != this_cpu_base &&
257 hrtimer_check_target(timer, new_base)) {
258 raw_spin_unlock(&new_base->cpu_base->lock);
259 raw_spin_lock(&base->cpu_base->lock);
260 new_cpu_base = this_cpu_base;
261 WRITE_ONCE(timer->base, base);
262 goto again;
263 }
264 WRITE_ONCE(timer->base, new_base);
265 } else {
266 if (new_cpu_base != this_cpu_base &&
267 hrtimer_check_target(timer, new_base)) {
268 new_cpu_base = this_cpu_base;
269 goto again;
270 }
271 }
272 return new_base;
273}
274
275#else /* CONFIG_SMP */
276
277static inline bool is_migration_base(struct hrtimer_clock_base *base)
278{
279 return false;
280}
281
282static inline struct hrtimer_clock_base *
283lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
284 __acquires(&timer->base->cpu_base->lock)
285{
286 struct hrtimer_clock_base *base = timer->base;
287
288 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
289
290 return base;
291}
292
293# define switch_hrtimer_base(t, b, p) (b)
294
295#endif /* !CONFIG_SMP */
296
297/*
298 * Functions for the union type storage format of ktime_t which are
299 * too large for inlining:
300 */
301#if BITS_PER_LONG < 64
302/*
303 * Divide a ktime value by a nanosecond value
304 */
305s64 __ktime_divns(const ktime_t kt, s64 div)
306{
307 int sft = 0;
308 s64 dclc;
309 u64 tmp;
310
311 dclc = ktime_to_ns(kt);
312 tmp = dclc < 0 ? -dclc : dclc;
313
314 /* Make sure the divisor is less than 2^32: */
315 while (div >> 32) {
316 sft++;
317 div >>= 1;
318 }
319 tmp >>= sft;
320 do_div(tmp, (u32) div);
321 return dclc < 0 ? -tmp : tmp;
322}
323EXPORT_SYMBOL_GPL(__ktime_divns);
324#endif /* BITS_PER_LONG >= 64 */
325
326/*
327 * Add two ktime values and do a safety check for overflow:
328 */
329ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
330{
331 ktime_t res = ktime_add_unsafe(lhs, rhs);
332
333 /*
334 * We use KTIME_SEC_MAX here, the maximum timeout which we can
335 * return to user space in a timespec:
336 */
337 if (res < 0 || res < lhs || res < rhs)
338 res = ktime_set(KTIME_SEC_MAX, 0);
339
340 return res;
341}
342
343EXPORT_SYMBOL_GPL(ktime_add_safe);
344
345#ifdef CONFIG_DEBUG_OBJECTS_TIMERS
346
347static const struct debug_obj_descr hrtimer_debug_descr;
348
349static void *hrtimer_debug_hint(void *addr)
350{
351 return ((struct hrtimer *) addr)->function;
352}
353
354/*
355 * fixup_init is called when:
356 * - an active object is initialized
357 */
358static bool hrtimer_fixup_init(void *addr, enum debug_obj_state state)
359{
360 struct hrtimer *timer = addr;
361
362 switch (state) {
363 case ODEBUG_STATE_ACTIVE:
364 hrtimer_cancel(timer);
365 debug_object_init(timer, &hrtimer_debug_descr);
366 return true;
367 default:
368 return false;
369 }
370}
371
372/*
373 * fixup_activate is called when:
374 * - an active object is activated
375 * - an unknown non-static object is activated
376 */
377static bool hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
378{
379 switch (state) {
380 case ODEBUG_STATE_ACTIVE:
381 WARN_ON(1);
382 fallthrough;
383 default:
384 return false;
385 }
386}
387
388/*
389 * fixup_free is called when:
390 * - an active object is freed
391 */
392static bool hrtimer_fixup_free(void *addr, enum debug_obj_state state)
393{
394 struct hrtimer *timer = addr;
395
396 switch (state) {
397 case ODEBUG_STATE_ACTIVE:
398 hrtimer_cancel(timer);
399 debug_object_free(timer, &hrtimer_debug_descr);
400 return true;
401 default:
402 return false;
403 }
404}
405
406static const struct debug_obj_descr hrtimer_debug_descr = {
407 .name = "hrtimer",
408 .debug_hint = hrtimer_debug_hint,
409 .fixup_init = hrtimer_fixup_init,
410 .fixup_activate = hrtimer_fixup_activate,
411 .fixup_free = hrtimer_fixup_free,
412};
413
414static inline void debug_hrtimer_init(struct hrtimer *timer)
415{
416 debug_object_init(timer, &hrtimer_debug_descr);
417}
418
419static inline void debug_hrtimer_activate(struct hrtimer *timer,
420 enum hrtimer_mode mode)
421{
422 debug_object_activate(timer, &hrtimer_debug_descr);
423}
424
425static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
426{
427 debug_object_deactivate(timer, &hrtimer_debug_descr);
428}
429
430static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
431 enum hrtimer_mode mode);
432
433void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
434 enum hrtimer_mode mode)
435{
436 debug_object_init_on_stack(timer, &hrtimer_debug_descr);
437 __hrtimer_init(timer, clock_id, mode);
438}
439EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
440
441static void __hrtimer_init_sleeper(struct hrtimer_sleeper *sl,
442 clockid_t clock_id, enum hrtimer_mode mode);
443
444void hrtimer_init_sleeper_on_stack(struct hrtimer_sleeper *sl,
445 clockid_t clock_id, enum hrtimer_mode mode)
446{
447 debug_object_init_on_stack(&sl->timer, &hrtimer_debug_descr);
448 __hrtimer_init_sleeper(sl, clock_id, mode);
449}
450EXPORT_SYMBOL_GPL(hrtimer_init_sleeper_on_stack);
451
452void destroy_hrtimer_on_stack(struct hrtimer *timer)
453{
454 debug_object_free(timer, &hrtimer_debug_descr);
455}
456EXPORT_SYMBOL_GPL(destroy_hrtimer_on_stack);
457
458#else
459
460static inline void debug_hrtimer_init(struct hrtimer *timer) { }
461static inline void debug_hrtimer_activate(struct hrtimer *timer,
462 enum hrtimer_mode mode) { }
463static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
464#endif
465
466static inline void
467debug_init(struct hrtimer *timer, clockid_t clockid,
468 enum hrtimer_mode mode)
469{
470 debug_hrtimer_init(timer);
471 trace_hrtimer_init(timer, clockid, mode);
472}
473
474static inline void debug_activate(struct hrtimer *timer,
475 enum hrtimer_mode mode)
476{
477 debug_hrtimer_activate(timer, mode);
478 trace_hrtimer_start(timer, mode);
479}
480
481static inline void debug_deactivate(struct hrtimer *timer)
482{
483 debug_hrtimer_deactivate(timer);
484 trace_hrtimer_cancel(timer);
485}
486
487static struct hrtimer_clock_base *
488__next_base(struct hrtimer_cpu_base *cpu_base, unsigned int *active)
489{
490 unsigned int idx;
491
492 if (!*active)
493 return NULL;
494
495 idx = __ffs(*active);
496 *active &= ~(1U << idx);
497
498 return &cpu_base->clock_base[idx];
499}
500
501#define for_each_active_base(base, cpu_base, active) \
502 while ((base = __next_base((cpu_base), &(active))))
503
504static ktime_t __hrtimer_next_event_base(struct hrtimer_cpu_base *cpu_base,
505 const struct hrtimer *exclude,
506 unsigned int active,
507 ktime_t expires_next)
508{
509 struct hrtimer_clock_base *base;
510 ktime_t expires;
511
512 for_each_active_base(base, cpu_base, active) {
513 struct timerqueue_node *next;
514 struct hrtimer *timer;
515
516 next = timerqueue_getnext(&base->active);
517 timer = container_of(next, struct hrtimer, node);
518 if (timer == exclude) {
519 /* Get to the next timer in the queue. */
520 next = timerqueue_iterate_next(next);
521 if (!next)
522 continue;
523
524 timer = container_of(next, struct hrtimer, node);
525 }
526 expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
527 if (expires < expires_next) {
528 expires_next = expires;
529
530 /* Skip cpu_base update if a timer is being excluded. */
531 if (exclude)
532 continue;
533
534 if (timer->is_soft)
535 cpu_base->softirq_next_timer = timer;
536 else
537 cpu_base->next_timer = timer;
538 }
539 }
540 /*
541 * clock_was_set() might have changed base->offset of any of
542 * the clock bases so the result might be negative. Fix it up
543 * to prevent a false positive in clockevents_program_event().
544 */
545 if (expires_next < 0)
546 expires_next = 0;
547 return expires_next;
548}
549
550/*
551 * Recomputes cpu_base::*next_timer and returns the earliest expires_next
552 * but does not set cpu_base::*expires_next, that is done by
553 * hrtimer[_force]_reprogram and hrtimer_interrupt only. When updating
554 * cpu_base::*expires_next right away, reprogramming logic would no longer
555 * work.
556 *
557 * When a softirq is pending, we can ignore the HRTIMER_ACTIVE_SOFT bases,
558 * those timers will get run whenever the softirq gets handled, at the end of
559 * hrtimer_run_softirq(), hrtimer_update_softirq_timer() will re-add these bases.
560 *
561 * Therefore softirq values are those from the HRTIMER_ACTIVE_SOFT clock bases.
562 * The !softirq values are the minima across HRTIMER_ACTIVE_ALL, unless an actual
563 * softirq is pending, in which case they're the minima of HRTIMER_ACTIVE_HARD.
564 *
565 * @active_mask must be one of:
566 * - HRTIMER_ACTIVE_ALL,
567 * - HRTIMER_ACTIVE_SOFT, or
568 * - HRTIMER_ACTIVE_HARD.
569 */
570static ktime_t
571__hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base, unsigned int active_mask)
572{
573 unsigned int active;
574 struct hrtimer *next_timer = NULL;
575 ktime_t expires_next = KTIME_MAX;
576
577 if (!cpu_base->softirq_activated && (active_mask & HRTIMER_ACTIVE_SOFT)) {
578 active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT;
579 cpu_base->softirq_next_timer = NULL;
580 expires_next = __hrtimer_next_event_base(cpu_base, NULL,
581 active, KTIME_MAX);
582
583 next_timer = cpu_base->softirq_next_timer;
584 }
585
586 if (active_mask & HRTIMER_ACTIVE_HARD) {
587 active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD;
588 cpu_base->next_timer = next_timer;
589 expires_next = __hrtimer_next_event_base(cpu_base, NULL, active,
590 expires_next);
591 }
592
593 return expires_next;
594}
595
596static ktime_t hrtimer_update_next_event(struct hrtimer_cpu_base *cpu_base)
597{
598 ktime_t expires_next, soft = KTIME_MAX;
599
600 /*
601 * If the soft interrupt has already been activated, ignore the
602 * soft bases. They will be handled in the already raised soft
603 * interrupt.
604 */
605 if (!cpu_base->softirq_activated) {
606 soft = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_SOFT);
607 /*
608 * Update the soft expiry time. clock_settime() might have
609 * affected it.
610 */
611 cpu_base->softirq_expires_next = soft;
612 }
613
614 expires_next = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_HARD);
615 /*
616 * If a softirq timer is expiring first, update cpu_base->next_timer
617 * and program the hardware with the soft expiry time.
618 */
619 if (expires_next > soft) {
620 cpu_base->next_timer = cpu_base->softirq_next_timer;
621 expires_next = soft;
622 }
623
624 return expires_next;
625}
626
627static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
628{
629 ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
630 ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
631 ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;
632
633 ktime_t now = ktime_get_update_offsets_now(&base->clock_was_set_seq,
634 offs_real, offs_boot, offs_tai);
635
636 base->clock_base[HRTIMER_BASE_REALTIME_SOFT].offset = *offs_real;
637 base->clock_base[HRTIMER_BASE_BOOTTIME_SOFT].offset = *offs_boot;
638 base->clock_base[HRTIMER_BASE_TAI_SOFT].offset = *offs_tai;
639
640 return now;
641}
642
643/*
644 * Is the high resolution mode active ?
645 */
646static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base)
647{
648 return IS_ENABLED(CONFIG_HIGH_RES_TIMERS) ?
649 cpu_base->hres_active : 0;
650}
651
652static inline int hrtimer_hres_active(void)
653{
654 return __hrtimer_hres_active(this_cpu_ptr(&hrtimer_bases));
655}
656
657static void __hrtimer_reprogram(struct hrtimer_cpu_base *cpu_base,
658 struct hrtimer *next_timer,
659 ktime_t expires_next)
660{
661 cpu_base->expires_next = expires_next;
662
663 /*
664 * If hres is not active, hardware does not have to be
665 * reprogrammed yet.
666 *
667 * If a hang was detected in the last timer interrupt then we
668 * leave the hang delay active in the hardware. We want the
669 * system to make progress. That also prevents the following
670 * scenario:
671 * T1 expires 50ms from now
672 * T2 expires 5s from now
673 *
674 * T1 is removed, so this code is called and would reprogram
675 * the hardware to 5s from now. Any hrtimer_start after that
676 * will not reprogram the hardware due to hang_detected being
677 * set. So we'd effectively block all timers until the T2 event
678 * fires.
679 */
680 if (!__hrtimer_hres_active(cpu_base) || cpu_base->hang_detected)
681 return;
682
683 tick_program_event(expires_next, 1);
684}
685
686/*
687 * Reprogram the event source with checking both queues for the
688 * next event
689 * Called with interrupts disabled and base->lock held
690 */
691static void
692hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
693{
694 ktime_t expires_next;
695
696 expires_next = hrtimer_update_next_event(cpu_base);
697
698 if (skip_equal && expires_next == cpu_base->expires_next)
699 return;
700
701 __hrtimer_reprogram(cpu_base, cpu_base->next_timer, expires_next);
702}
703
704/* High resolution timer related functions */
705#ifdef CONFIG_HIGH_RES_TIMERS
706
707/*
708 * High resolution timer enabled ?
709 */
710static bool hrtimer_hres_enabled __read_mostly = true;
711unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC;
712EXPORT_SYMBOL_GPL(hrtimer_resolution);
713
714/*
715 * Enable / Disable high resolution mode
716 */
717static int __init setup_hrtimer_hres(char *str)
718{
719 return (kstrtobool(str, &hrtimer_hres_enabled) == 0);
720}
721
722__setup("highres=", setup_hrtimer_hres);
723
724/*
725 * hrtimer_high_res_enabled - query, if the highres mode is enabled
726 */
727static inline int hrtimer_is_hres_enabled(void)
728{
729 return hrtimer_hres_enabled;
730}
731
732static void retrigger_next_event(void *arg);
733
734/*
735 * Switch to high resolution mode
736 */
737static void hrtimer_switch_to_hres(void)
738{
739 struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
740
741 if (tick_init_highres()) {
742 pr_warn("Could not switch to high resolution mode on CPU %u\n",
743 base->cpu);
744 return;
745 }
746 base->hres_active = 1;
747 hrtimer_resolution = HIGH_RES_NSEC;
748
749 tick_setup_sched_timer();
750 /* "Retrigger" the interrupt to get things going */
751 retrigger_next_event(NULL);
752}
753
754#else
755
756static inline int hrtimer_is_hres_enabled(void) { return 0; }
757static inline void hrtimer_switch_to_hres(void) { }
758
759#endif /* CONFIG_HIGH_RES_TIMERS */
760/*
761 * Retrigger next event is called after clock was set with interrupts
762 * disabled through an SMP function call or directly from low level
763 * resume code.
764 *
765 * This is only invoked when:
766 * - CONFIG_HIGH_RES_TIMERS is enabled.
767 * - CONFIG_NOHZ_COMMON is enabled
768 *
769 * For the other cases this function is empty and because the call sites
770 * are optimized out it vanishes as well, i.e. no need for lots of
771 * #ifdeffery.
772 */
773static void retrigger_next_event(void *arg)
774{
775 struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
776
777 /*
778 * When high resolution mode or nohz is active, then the offsets of
779 * CLOCK_REALTIME/TAI/BOOTTIME have to be updated. Otherwise the
780 * next tick will take care of that.
781 *
782 * If high resolution mode is active then the next expiring timer
783 * must be reevaluated and the clock event device reprogrammed if
784 * necessary.
785 *
786 * In the NOHZ case the update of the offset and the reevaluation
787 * of the next expiring timer is enough. The return from the SMP
788 * function call will take care of the reprogramming in case the
789 * CPU was in a NOHZ idle sleep.
790 */
791 if (!__hrtimer_hres_active(base) && !tick_nohz_active)
792 return;
793
794 raw_spin_lock(&base->lock);
795 hrtimer_update_base(base);
796 if (__hrtimer_hres_active(base))
797 hrtimer_force_reprogram(base, 0);
798 else
799 hrtimer_update_next_event(base);
800 raw_spin_unlock(&base->lock);
801}
802
803/*
804 * When a timer is enqueued and expires earlier than the already enqueued
805 * timers, we have to check, whether it expires earlier than the timer for
806 * which the clock event device was armed.
807 *
808 * Called with interrupts disabled and base->cpu_base.lock held
809 */
810static void hrtimer_reprogram(struct hrtimer *timer, bool reprogram)
811{
812 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
813 struct hrtimer_clock_base *base = timer->base;
814 ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
815
816 WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
817
818 /*
819 * CLOCK_REALTIME timer might be requested with an absolute
820 * expiry time which is less than base->offset. Set it to 0.
821 */
822 if (expires < 0)
823 expires = 0;
824
825 if (timer->is_soft) {
826 /*
827 * soft hrtimer could be started on a remote CPU. In this
828 * case softirq_expires_next needs to be updated on the
829 * remote CPU. The soft hrtimer will not expire before the
830 * first hard hrtimer on the remote CPU -
831 * hrtimer_check_target() prevents this case.
832 */
833 struct hrtimer_cpu_base *timer_cpu_base = base->cpu_base;
834
835 if (timer_cpu_base->softirq_activated)
836 return;
837
838 if (!ktime_before(expires, timer_cpu_base->softirq_expires_next))
839 return;
840
841 timer_cpu_base->softirq_next_timer = timer;
842 timer_cpu_base->softirq_expires_next = expires;
843
844 if (!ktime_before(expires, timer_cpu_base->expires_next) ||
845 !reprogram)
846 return;
847 }
848
849 /*
850 * If the timer is not on the current cpu, we cannot reprogram
851 * the other cpus clock event device.
852 */
853 if (base->cpu_base != cpu_base)
854 return;
855
856 if (expires >= cpu_base->expires_next)
857 return;
858
859 /*
860 * If the hrtimer interrupt is running, then it will reevaluate the
861 * clock bases and reprogram the clock event device.
862 */
863 if (cpu_base->in_hrtirq)
864 return;
865
866 cpu_base->next_timer = timer;
867
868 __hrtimer_reprogram(cpu_base, timer, expires);
869}
870
871static bool update_needs_ipi(struct hrtimer_cpu_base *cpu_base,
872 unsigned int active)
873{
874 struct hrtimer_clock_base *base;
875 unsigned int seq;
876 ktime_t expires;
877
878 /*
879 * Update the base offsets unconditionally so the following
880 * checks whether the SMP function call is required works.
881 *
882 * The update is safe even when the remote CPU is in the hrtimer
883 * interrupt or the hrtimer soft interrupt and expiring affected
884 * bases. Either it will see the update before handling a base or
885 * it will see it when it finishes the processing and reevaluates
886 * the next expiring timer.
887 */
888 seq = cpu_base->clock_was_set_seq;
889 hrtimer_update_base(cpu_base);
890
891 /*
892 * If the sequence did not change over the update then the
893 * remote CPU already handled it.
894 */
895 if (seq == cpu_base->clock_was_set_seq)
896 return false;
897
898 /*
899 * If the remote CPU is currently handling an hrtimer interrupt, it
900 * will reevaluate the first expiring timer of all clock bases
901 * before reprogramming. Nothing to do here.
902 */
903 if (cpu_base->in_hrtirq)
904 return false;
905
906 /*
907 * Walk the affected clock bases and check whether the first expiring
908 * timer in a clock base is moving ahead of the first expiring timer of
909 * @cpu_base. If so, the IPI must be invoked because per CPU clock
910 * event devices cannot be remotely reprogrammed.
911 */
912 active &= cpu_base->active_bases;
913
914 for_each_active_base(base, cpu_base, active) {
915 struct timerqueue_node *next;
916
917 next = timerqueue_getnext(&base->active);
918 expires = ktime_sub(next->expires, base->offset);
919 if (expires < cpu_base->expires_next)
920 return true;
921
922 /* Extra check for softirq clock bases */
923 if (base->clockid < HRTIMER_BASE_MONOTONIC_SOFT)
924 continue;
925 if (cpu_base->softirq_activated)
926 continue;
927 if (expires < cpu_base->softirq_expires_next)
928 return true;
929 }
930 return false;
931}
932
933/*
934 * Clock was set. This might affect CLOCK_REALTIME, CLOCK_TAI and
935 * CLOCK_BOOTTIME (for late sleep time injection).
936 *
937 * This requires to update the offsets for these clocks
938 * vs. CLOCK_MONOTONIC. When high resolution timers are enabled, then this
939 * also requires to eventually reprogram the per CPU clock event devices
940 * when the change moves an affected timer ahead of the first expiring
941 * timer on that CPU. Obviously remote per CPU clock event devices cannot
942 * be reprogrammed. The other reason why an IPI has to be sent is when the
943 * system is in !HIGH_RES and NOHZ mode. The NOHZ mode updates the offsets
944 * in the tick, which obviously might be stopped, so this has to bring out
945 * the remote CPU which might sleep in idle to get this sorted.
946 */
947void clock_was_set(unsigned int bases)
948{
949 struct hrtimer_cpu_base *cpu_base = raw_cpu_ptr(&hrtimer_bases);
950 cpumask_var_t mask;
951 int cpu;
952
953 if (!__hrtimer_hres_active(cpu_base) && !tick_nohz_active)
954 goto out_timerfd;
955
956 if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
957 on_each_cpu(retrigger_next_event, NULL, 1);
958 goto out_timerfd;
959 }
960
961 /* Avoid interrupting CPUs if possible */
962 cpus_read_lock();
963 for_each_online_cpu(cpu) {
964 unsigned long flags;
965
966 cpu_base = &per_cpu(hrtimer_bases, cpu);
967 raw_spin_lock_irqsave(&cpu_base->lock, flags);
968
969 if (update_needs_ipi(cpu_base, bases))
970 cpumask_set_cpu(cpu, mask);
971
972 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
973 }
974
975 preempt_disable();
976 smp_call_function_many(mask, retrigger_next_event, NULL, 1);
977 preempt_enable();
978 cpus_read_unlock();
979 free_cpumask_var(mask);
980
981out_timerfd:
982 timerfd_clock_was_set();
983}
984
985static void clock_was_set_work(struct work_struct *work)
986{
987 clock_was_set(CLOCK_SET_WALL);
988}
989
990static DECLARE_WORK(hrtimer_work, clock_was_set_work);
991
992/*
993 * Called from timekeeping code to reprogram the hrtimer interrupt device
994 * on all cpus and to notify timerfd.
995 */
996void clock_was_set_delayed(void)
997{
998 schedule_work(&hrtimer_work);
999}
1000
1001/*
1002 * Called during resume either directly from via timekeeping_resume()
1003 * or in the case of s2idle from tick_unfreeze() to ensure that the
1004 * hrtimers are up to date.
1005 */
1006void hrtimers_resume_local(void)
1007{
1008 lockdep_assert_irqs_disabled();
1009 /* Retrigger on the local CPU */
1010 retrigger_next_event(NULL);
1011}
1012
1013/*
1014 * Counterpart to lock_hrtimer_base above:
1015 */
1016static inline
1017void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
1018 __releases(&timer->base->cpu_base->lock)
1019{
1020 raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
1021}
1022
1023/**
1024 * hrtimer_forward - forward the timer expiry
1025 * @timer: hrtimer to forward
1026 * @now: forward past this time
1027 * @interval: the interval to forward
1028 *
1029 * Forward the timer expiry so it will expire in the future.
1030 * Returns the number of overruns.
1031 *
1032 * Can be safely called from the callback function of @timer. If
1033 * called from other contexts @timer must neither be enqueued nor
1034 * running the callback and the caller needs to take care of
1035 * serialization.
1036 *
1037 * Note: This only updates the timer expiry value and does not requeue
1038 * the timer.
1039 */
1040u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
1041{
1042 u64 orun = 1;
1043 ktime_t delta;
1044
1045 delta = ktime_sub(now, hrtimer_get_expires(timer));
1046
1047 if (delta < 0)
1048 return 0;
1049
1050 if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED))
1051 return 0;
1052
1053 if (interval < hrtimer_resolution)
1054 interval = hrtimer_resolution;
1055
1056 if (unlikely(delta >= interval)) {
1057 s64 incr = ktime_to_ns(interval);
1058
1059 orun = ktime_divns(delta, incr);
1060 hrtimer_add_expires_ns(timer, incr * orun);
1061 if (hrtimer_get_expires_tv64(timer) > now)
1062 return orun;
1063 /*
1064 * This (and the ktime_add() below) is the
1065 * correction for exact:
1066 */
1067 orun++;
1068 }
1069 hrtimer_add_expires(timer, interval);
1070
1071 return orun;
1072}
1073EXPORT_SYMBOL_GPL(hrtimer_forward);
1074
1075/*
1076 * enqueue_hrtimer - internal function to (re)start a timer
1077 *
1078 * The timer is inserted in expiry order. Insertion into the
1079 * red black tree is O(log(n)). Must hold the base lock.
1080 *
1081 * Returns 1 when the new timer is the leftmost timer in the tree.
1082 */
1083static int enqueue_hrtimer(struct hrtimer *timer,
1084 struct hrtimer_clock_base *base,
1085 enum hrtimer_mode mode)
1086{
1087 debug_activate(timer, mode);
1088 WARN_ON_ONCE(!base->cpu_base->online);
1089
1090 base->cpu_base->active_bases |= 1 << base->index;
1091
1092 /* Pairs with the lockless read in hrtimer_is_queued() */
1093 WRITE_ONCE(timer->state, HRTIMER_STATE_ENQUEUED);
1094
1095 return timerqueue_add(&base->active, &timer->node);
1096}
1097
1098/*
1099 * __remove_hrtimer - internal function to remove a timer
1100 *
1101 * Caller must hold the base lock.
1102 *
1103 * High resolution timer mode reprograms the clock event device when the
1104 * timer is the one which expires next. The caller can disable this by setting
1105 * reprogram to zero. This is useful, when the context does a reprogramming
1106 * anyway (e.g. timer interrupt)
1107 */
1108static void __remove_hrtimer(struct hrtimer *timer,
1109 struct hrtimer_clock_base *base,
1110 u8 newstate, int reprogram)
1111{
1112 struct hrtimer_cpu_base *cpu_base = base->cpu_base;
1113 u8 state = timer->state;
1114
1115 /* Pairs with the lockless read in hrtimer_is_queued() */
1116 WRITE_ONCE(timer->state, newstate);
1117 if (!(state & HRTIMER_STATE_ENQUEUED))
1118 return;
1119
1120 if (!timerqueue_del(&base->active, &timer->node))
1121 cpu_base->active_bases &= ~(1 << base->index);
1122
1123 /*
1124 * Note: If reprogram is false we do not update
1125 * cpu_base->next_timer. This happens when we remove the first
1126 * timer on a remote cpu. No harm as we never dereference
1127 * cpu_base->next_timer. So the worst thing what can happen is
1128 * an superfluous call to hrtimer_force_reprogram() on the
1129 * remote cpu later on if the same timer gets enqueued again.
1130 */
1131 if (reprogram && timer == cpu_base->next_timer)
1132 hrtimer_force_reprogram(cpu_base, 1);
1133}
1134
1135/*
1136 * remove hrtimer, called with base lock held
1137 */
1138static inline int
1139remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base,
1140 bool restart, bool keep_local)
1141{
1142 u8 state = timer->state;
1143
1144 if (state & HRTIMER_STATE_ENQUEUED) {
1145 bool reprogram;
1146
1147 /*
1148 * Remove the timer and force reprogramming when high
1149 * resolution mode is active and the timer is on the current
1150 * CPU. If we remove a timer on another CPU, reprogramming is
1151 * skipped. The interrupt event on this CPU is fired and
1152 * reprogramming happens in the interrupt handler. This is a
1153 * rare case and less expensive than a smp call.
1154 */
1155 debug_deactivate(timer);
1156 reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
1157
1158 /*
1159 * If the timer is not restarted then reprogramming is
1160 * required if the timer is local. If it is local and about
1161 * to be restarted, avoid programming it twice (on removal
1162 * and a moment later when it's requeued).
1163 */
1164 if (!restart)
1165 state = HRTIMER_STATE_INACTIVE;
1166 else
1167 reprogram &= !keep_local;
1168
1169 __remove_hrtimer(timer, base, state, reprogram);
1170 return 1;
1171 }
1172 return 0;
1173}
1174
1175static inline ktime_t hrtimer_update_lowres(struct hrtimer *timer, ktime_t tim,
1176 const enum hrtimer_mode mode)
1177{
1178#ifdef CONFIG_TIME_LOW_RES
1179 /*
1180 * CONFIG_TIME_LOW_RES indicates that the system has no way to return
1181 * granular time values. For relative timers we add hrtimer_resolution
1182 * (i.e. one jiffie) to prevent short timeouts.
1183 */
1184 timer->is_rel = mode & HRTIMER_MODE_REL;
1185 if (timer->is_rel)
1186 tim = ktime_add_safe(tim, hrtimer_resolution);
1187#endif
1188 return tim;
1189}
1190
1191static void
1192hrtimer_update_softirq_timer(struct hrtimer_cpu_base *cpu_base, bool reprogram)
1193{
1194 ktime_t expires;
1195
1196 /*
1197 * Find the next SOFT expiration.
1198 */
1199 expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_SOFT);
1200
1201 /*
1202 * reprogramming needs to be triggered, even if the next soft
1203 * hrtimer expires at the same time than the next hard
1204 * hrtimer. cpu_base->softirq_expires_next needs to be updated!
1205 */
1206 if (expires == KTIME_MAX)
1207 return;
1208
1209 /*
1210 * cpu_base->*next_timer is recomputed by __hrtimer_get_next_event()
1211 * cpu_base->*expires_next is only set by hrtimer_reprogram()
1212 */
1213 hrtimer_reprogram(cpu_base->softirq_next_timer, reprogram);
1214}
1215
1216static int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1217 u64 delta_ns, const enum hrtimer_mode mode,
1218 struct hrtimer_clock_base *base)
1219{
1220 struct hrtimer_clock_base *new_base;
1221 bool force_local, first;
1222
1223 /*
1224 * If the timer is on the local cpu base and is the first expiring
1225 * timer then this might end up reprogramming the hardware twice
1226 * (on removal and on enqueue). To avoid that by prevent the
1227 * reprogram on removal, keep the timer local to the current CPU
1228 * and enforce reprogramming after it is queued no matter whether
1229 * it is the new first expiring timer again or not.
1230 */
1231 force_local = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
1232 force_local &= base->cpu_base->next_timer == timer;
1233
1234 /*
1235 * Remove an active timer from the queue. In case it is not queued
1236 * on the current CPU, make sure that remove_hrtimer() updates the
1237 * remote data correctly.
1238 *
1239 * If it's on the current CPU and the first expiring timer, then
1240 * skip reprogramming, keep the timer local and enforce
1241 * reprogramming later if it was the first expiring timer. This
1242 * avoids programming the underlying clock event twice (once at
1243 * removal and once after enqueue).
1244 */
1245 remove_hrtimer(timer, base, true, force_local);
1246
1247 if (mode & HRTIMER_MODE_REL)
1248 tim = ktime_add_safe(tim, base->get_time());
1249
1250 tim = hrtimer_update_lowres(timer, tim, mode);
1251
1252 hrtimer_set_expires_range_ns(timer, tim, delta_ns);
1253
1254 /* Switch the timer base, if necessary: */
1255 if (!force_local) {
1256 new_base = switch_hrtimer_base(timer, base,
1257 mode & HRTIMER_MODE_PINNED);
1258 } else {
1259 new_base = base;
1260 }
1261
1262 first = enqueue_hrtimer(timer, new_base, mode);
1263 if (!force_local)
1264 return first;
1265
1266 /*
1267 * Timer was forced to stay on the current CPU to avoid
1268 * reprogramming on removal and enqueue. Force reprogram the
1269 * hardware by evaluating the new first expiring timer.
1270 */
1271 hrtimer_force_reprogram(new_base->cpu_base, 1);
1272 return 0;
1273}
1274
1275/**
1276 * hrtimer_start_range_ns - (re)start an hrtimer
1277 * @timer: the timer to be added
1278 * @tim: expiry time
1279 * @delta_ns: "slack" range for the timer
1280 * @mode: timer mode: absolute (HRTIMER_MODE_ABS) or
1281 * relative (HRTIMER_MODE_REL), and pinned (HRTIMER_MODE_PINNED);
1282 * softirq based mode is considered for debug purpose only!
1283 */
1284void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1285 u64 delta_ns, const enum hrtimer_mode mode)
1286{
1287 struct hrtimer_clock_base *base;
1288 unsigned long flags;
1289
1290 /*
1291 * Check whether the HRTIMER_MODE_SOFT bit and hrtimer.is_soft
1292 * match on CONFIG_PREEMPT_RT = n. With PREEMPT_RT check the hard
1293 * expiry mode because unmarked timers are moved to softirq expiry.
1294 */
1295 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
1296 WARN_ON_ONCE(!(mode & HRTIMER_MODE_SOFT) ^ !timer->is_soft);
1297 else
1298 WARN_ON_ONCE(!(mode & HRTIMER_MODE_HARD) ^ !timer->is_hard);
1299
1300 base = lock_hrtimer_base(timer, &flags);
1301
1302 if (__hrtimer_start_range_ns(timer, tim, delta_ns, mode, base))
1303 hrtimer_reprogram(timer, true);
1304
1305 unlock_hrtimer_base(timer, &flags);
1306}
1307EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
1308
1309/**
1310 * hrtimer_try_to_cancel - try to deactivate a timer
1311 * @timer: hrtimer to stop
1312 *
1313 * Returns:
1314 *
1315 * * 0 when the timer was not active
1316 * * 1 when the timer was active
1317 * * -1 when the timer is currently executing the callback function and
1318 * cannot be stopped
1319 */
1320int hrtimer_try_to_cancel(struct hrtimer *timer)
1321{
1322 struct hrtimer_clock_base *base;
1323 unsigned long flags;
1324 int ret = -1;
1325
1326 /*
1327 * Check lockless first. If the timer is not active (neither
1328 * enqueued nor running the callback, nothing to do here. The
1329 * base lock does not serialize against a concurrent enqueue,
1330 * so we can avoid taking it.
1331 */
1332 if (!hrtimer_active(timer))
1333 return 0;
1334
1335 base = lock_hrtimer_base(timer, &flags);
1336
1337 if (!hrtimer_callback_running(timer))
1338 ret = remove_hrtimer(timer, base, false, false);
1339
1340 unlock_hrtimer_base(timer, &flags);
1341
1342 return ret;
1343
1344}
1345EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1346
1347#ifdef CONFIG_PREEMPT_RT
1348static void hrtimer_cpu_base_init_expiry_lock(struct hrtimer_cpu_base *base)
1349{
1350 spin_lock_init(&base->softirq_expiry_lock);
1351}
1352
1353static void hrtimer_cpu_base_lock_expiry(struct hrtimer_cpu_base *base)
1354{
1355 spin_lock(&base->softirq_expiry_lock);
1356}
1357
1358static void hrtimer_cpu_base_unlock_expiry(struct hrtimer_cpu_base *base)
1359{
1360 spin_unlock(&base->softirq_expiry_lock);
1361}
1362
1363/*
1364 * The counterpart to hrtimer_cancel_wait_running().
1365 *
1366 * If there is a waiter for cpu_base->expiry_lock, then it was waiting for
1367 * the timer callback to finish. Drop expiry_lock and reacquire it. That
1368 * allows the waiter to acquire the lock and make progress.
1369 */
1370static void hrtimer_sync_wait_running(struct hrtimer_cpu_base *cpu_base,
1371 unsigned long flags)
1372{
1373 if (atomic_read(&cpu_base->timer_waiters)) {
1374 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1375 spin_unlock(&cpu_base->softirq_expiry_lock);
1376 spin_lock(&cpu_base->softirq_expiry_lock);
1377 raw_spin_lock_irq(&cpu_base->lock);
1378 }
1379}
1380
1381/*
1382 * This function is called on PREEMPT_RT kernels when the fast path
1383 * deletion of a timer failed because the timer callback function was
1384 * running.
1385 *
1386 * This prevents priority inversion: if the soft irq thread is preempted
1387 * in the middle of a timer callback, then calling del_timer_sync() can
1388 * lead to two issues:
1389 *
1390 * - If the caller is on a remote CPU then it has to spin wait for the timer
1391 * handler to complete. This can result in unbound priority inversion.
1392 *
1393 * - If the caller originates from the task which preempted the timer
1394 * handler on the same CPU, then spin waiting for the timer handler to
1395 * complete is never going to end.
1396 */
1397void hrtimer_cancel_wait_running(const struct hrtimer *timer)
1398{
1399 /* Lockless read. Prevent the compiler from reloading it below */
1400 struct hrtimer_clock_base *base = READ_ONCE(timer->base);
1401
1402 /*
1403 * Just relax if the timer expires in hard interrupt context or if
1404 * it is currently on the migration base.
1405 */
1406 if (!timer->is_soft || is_migration_base(base)) {
1407 cpu_relax();
1408 return;
1409 }
1410
1411 /*
1412 * Mark the base as contended and grab the expiry lock, which is
1413 * held by the softirq across the timer callback. Drop the lock
1414 * immediately so the softirq can expire the next timer. In theory
1415 * the timer could already be running again, but that's more than
1416 * unlikely and just causes another wait loop.
1417 */
1418 atomic_inc(&base->cpu_base->timer_waiters);
1419 spin_lock_bh(&base->cpu_base->softirq_expiry_lock);
1420 atomic_dec(&base->cpu_base->timer_waiters);
1421 spin_unlock_bh(&base->cpu_base->softirq_expiry_lock);
1422}
1423#else
1424static inline void
1425hrtimer_cpu_base_init_expiry_lock(struct hrtimer_cpu_base *base) { }
1426static inline void
1427hrtimer_cpu_base_lock_expiry(struct hrtimer_cpu_base *base) { }
1428static inline void
1429hrtimer_cpu_base_unlock_expiry(struct hrtimer_cpu_base *base) { }
1430static inline void hrtimer_sync_wait_running(struct hrtimer_cpu_base *base,
1431 unsigned long flags) { }
1432#endif
1433
1434/**
1435 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
1436 * @timer: the timer to be cancelled
1437 *
1438 * Returns:
1439 * 0 when the timer was not active
1440 * 1 when the timer was active
1441 */
1442int hrtimer_cancel(struct hrtimer *timer)
1443{
1444 int ret;
1445
1446 do {
1447 ret = hrtimer_try_to_cancel(timer);
1448
1449 if (ret < 0)
1450 hrtimer_cancel_wait_running(timer);
1451 } while (ret < 0);
1452 return ret;
1453}
1454EXPORT_SYMBOL_GPL(hrtimer_cancel);
1455
1456/**
1457 * __hrtimer_get_remaining - get remaining time for the timer
1458 * @timer: the timer to read
1459 * @adjust: adjust relative timers when CONFIG_TIME_LOW_RES=y
1460 */
1461ktime_t __hrtimer_get_remaining(const struct hrtimer *timer, bool adjust)
1462{
1463 unsigned long flags;
1464 ktime_t rem;
1465
1466 lock_hrtimer_base(timer, &flags);
1467 if (IS_ENABLED(CONFIG_TIME_LOW_RES) && adjust)
1468 rem = hrtimer_expires_remaining_adjusted(timer);
1469 else
1470 rem = hrtimer_expires_remaining(timer);
1471 unlock_hrtimer_base(timer, &flags);
1472
1473 return rem;
1474}
1475EXPORT_SYMBOL_GPL(__hrtimer_get_remaining);
1476
1477#ifdef CONFIG_NO_HZ_COMMON
1478/**
1479 * hrtimer_get_next_event - get the time until next expiry event
1480 *
1481 * Returns the next expiry time or KTIME_MAX if no timer is pending.
1482 */
1483u64 hrtimer_get_next_event(void)
1484{
1485 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1486 u64 expires = KTIME_MAX;
1487 unsigned long flags;
1488
1489 raw_spin_lock_irqsave(&cpu_base->lock, flags);
1490
1491 if (!__hrtimer_hres_active(cpu_base))
1492 expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL);
1493
1494 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1495
1496 return expires;
1497}
1498
1499/**
1500 * hrtimer_next_event_without - time until next expiry event w/o one timer
1501 * @exclude: timer to exclude
1502 *
1503 * Returns the next expiry time over all timers except for the @exclude one or
1504 * KTIME_MAX if none of them is pending.
1505 */
1506u64 hrtimer_next_event_without(const struct hrtimer *exclude)
1507{
1508 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1509 u64 expires = KTIME_MAX;
1510 unsigned long flags;
1511
1512 raw_spin_lock_irqsave(&cpu_base->lock, flags);
1513
1514 if (__hrtimer_hres_active(cpu_base)) {
1515 unsigned int active;
1516
1517 if (!cpu_base->softirq_activated) {
1518 active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT;
1519 expires = __hrtimer_next_event_base(cpu_base, exclude,
1520 active, KTIME_MAX);
1521 }
1522 active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD;
1523 expires = __hrtimer_next_event_base(cpu_base, exclude, active,
1524 expires);
1525 }
1526
1527 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1528
1529 return expires;
1530}
1531#endif
1532
1533static inline int hrtimer_clockid_to_base(clockid_t clock_id)
1534{
1535 if (likely(clock_id < MAX_CLOCKS)) {
1536 int base = hrtimer_clock_to_base_table[clock_id];
1537
1538 if (likely(base != HRTIMER_MAX_CLOCK_BASES))
1539 return base;
1540 }
1541 WARN(1, "Invalid clockid %d. Using MONOTONIC\n", clock_id);
1542 return HRTIMER_BASE_MONOTONIC;
1543}
1544
1545static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1546 enum hrtimer_mode mode)
1547{
1548 bool softtimer = !!(mode & HRTIMER_MODE_SOFT);
1549 struct hrtimer_cpu_base *cpu_base;
1550 int base;
1551
1552 /*
1553 * On PREEMPT_RT enabled kernels hrtimers which are not explicitly
1554 * marked for hard interrupt expiry mode are moved into soft
1555 * interrupt context for latency reasons and because the callbacks
1556 * can invoke functions which might sleep on RT, e.g. spin_lock().
1557 */
1558 if (IS_ENABLED(CONFIG_PREEMPT_RT) && !(mode & HRTIMER_MODE_HARD))
1559 softtimer = true;
1560
1561 memset(timer, 0, sizeof(struct hrtimer));
1562
1563 cpu_base = raw_cpu_ptr(&hrtimer_bases);
1564
1565 /*
1566 * POSIX magic: Relative CLOCK_REALTIME timers are not affected by
1567 * clock modifications, so they needs to become CLOCK_MONOTONIC to
1568 * ensure POSIX compliance.
1569 */
1570 if (clock_id == CLOCK_REALTIME && mode & HRTIMER_MODE_REL)
1571 clock_id = CLOCK_MONOTONIC;
1572
1573 base = softtimer ? HRTIMER_MAX_CLOCK_BASES / 2 : 0;
1574 base += hrtimer_clockid_to_base(clock_id);
1575 timer->is_soft = softtimer;
1576 timer->is_hard = !!(mode & HRTIMER_MODE_HARD);
1577 timer->base = &cpu_base->clock_base[base];
1578 timerqueue_init(&timer->node);
1579}
1580
1581/**
1582 * hrtimer_init - initialize a timer to the given clock
1583 * @timer: the timer to be initialized
1584 * @clock_id: the clock to be used
1585 * @mode: The modes which are relevant for initialization:
1586 * HRTIMER_MODE_ABS, HRTIMER_MODE_REL, HRTIMER_MODE_ABS_SOFT,
1587 * HRTIMER_MODE_REL_SOFT
1588 *
1589 * The PINNED variants of the above can be handed in,
1590 * but the PINNED bit is ignored as pinning happens
1591 * when the hrtimer is started
1592 */
1593void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1594 enum hrtimer_mode mode)
1595{
1596 debug_init(timer, clock_id, mode);
1597 __hrtimer_init(timer, clock_id, mode);
1598}
1599EXPORT_SYMBOL_GPL(hrtimer_init);
1600
1601/*
1602 * A timer is active, when it is enqueued into the rbtree or the
1603 * callback function is running or it's in the state of being migrated
1604 * to another cpu.
1605 *
1606 * It is important for this function to not return a false negative.
1607 */
1608bool hrtimer_active(const struct hrtimer *timer)
1609{
1610 struct hrtimer_clock_base *base;
1611 unsigned int seq;
1612
1613 do {
1614 base = READ_ONCE(timer->base);
1615 seq = raw_read_seqcount_begin(&base->seq);
1616
1617 if (timer->state != HRTIMER_STATE_INACTIVE ||
1618 base->running == timer)
1619 return true;
1620
1621 } while (read_seqcount_retry(&base->seq, seq) ||
1622 base != READ_ONCE(timer->base));
1623
1624 return false;
1625}
1626EXPORT_SYMBOL_GPL(hrtimer_active);
1627
1628/*
1629 * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3
1630 * distinct sections:
1631 *
1632 * - queued: the timer is queued
1633 * - callback: the timer is being ran
1634 * - post: the timer is inactive or (re)queued
1635 *
1636 * On the read side we ensure we observe timer->state and cpu_base->running
1637 * from the same section, if anything changed while we looked at it, we retry.
1638 * This includes timer->base changing because sequence numbers alone are
1639 * insufficient for that.
1640 *
1641 * The sequence numbers are required because otherwise we could still observe
1642 * a false negative if the read side got smeared over multiple consecutive
1643 * __run_hrtimer() invocations.
1644 */
1645
1646static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base,
1647 struct hrtimer_clock_base *base,
1648 struct hrtimer *timer, ktime_t *now,
1649 unsigned long flags) __must_hold(&cpu_base->lock)
1650{
1651 enum hrtimer_restart (*fn)(struct hrtimer *);
1652 bool expires_in_hardirq;
1653 int restart;
1654
1655 lockdep_assert_held(&cpu_base->lock);
1656
1657 debug_deactivate(timer);
1658 base->running = timer;
1659
1660 /*
1661 * Separate the ->running assignment from the ->state assignment.
1662 *
1663 * As with a regular write barrier, this ensures the read side in
1664 * hrtimer_active() cannot observe base->running == NULL &&
1665 * timer->state == INACTIVE.
1666 */
1667 raw_write_seqcount_barrier(&base->seq);
1668
1669 __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, 0);
1670 fn = timer->function;
1671
1672 /*
1673 * Clear the 'is relative' flag for the TIME_LOW_RES case. If the
1674 * timer is restarted with a period then it becomes an absolute
1675 * timer. If its not restarted it does not matter.
1676 */
1677 if (IS_ENABLED(CONFIG_TIME_LOW_RES))
1678 timer->is_rel = false;
1679
1680 /*
1681 * The timer is marked as running in the CPU base, so it is
1682 * protected against migration to a different CPU even if the lock
1683 * is dropped.
1684 */
1685 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1686 trace_hrtimer_expire_entry(timer, now);
1687 expires_in_hardirq = lockdep_hrtimer_enter(timer);
1688
1689 restart = fn(timer);
1690
1691 lockdep_hrtimer_exit(expires_in_hardirq);
1692 trace_hrtimer_expire_exit(timer);
1693 raw_spin_lock_irq(&cpu_base->lock);
1694
1695 /*
1696 * Note: We clear the running state after enqueue_hrtimer and
1697 * we do not reprogram the event hardware. Happens either in
1698 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1699 *
1700 * Note: Because we dropped the cpu_base->lock above,
1701 * hrtimer_start_range_ns() can have popped in and enqueued the timer
1702 * for us already.
1703 */
1704 if (restart != HRTIMER_NORESTART &&
1705 !(timer->state & HRTIMER_STATE_ENQUEUED))
1706 enqueue_hrtimer(timer, base, HRTIMER_MODE_ABS);
1707
1708 /*
1709 * Separate the ->running assignment from the ->state assignment.
1710 *
1711 * As with a regular write barrier, this ensures the read side in
1712 * hrtimer_active() cannot observe base->running.timer == NULL &&
1713 * timer->state == INACTIVE.
1714 */
1715 raw_write_seqcount_barrier(&base->seq);
1716
1717 WARN_ON_ONCE(base->running != timer);
1718 base->running = NULL;
1719}
1720
1721static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now,
1722 unsigned long flags, unsigned int active_mask)
1723{
1724 struct hrtimer_clock_base *base;
1725 unsigned int active = cpu_base->active_bases & active_mask;
1726
1727 for_each_active_base(base, cpu_base, active) {
1728 struct timerqueue_node *node;
1729 ktime_t basenow;
1730
1731 basenow = ktime_add(now, base->offset);
1732
1733 while ((node = timerqueue_getnext(&base->active))) {
1734 struct hrtimer *timer;
1735
1736 timer = container_of(node, struct hrtimer, node);
1737
1738 /*
1739 * The immediate goal for using the softexpires is
1740 * minimizing wakeups, not running timers at the
1741 * earliest interrupt after their soft expiration.
1742 * This allows us to avoid using a Priority Search
1743 * Tree, which can answer a stabbing query for
1744 * overlapping intervals and instead use the simple
1745 * BST we already have.
1746 * We don't add extra wakeups by delaying timers that
1747 * are right-of a not yet expired timer, because that
1748 * timer will have to trigger a wakeup anyway.
1749 */
1750 if (basenow < hrtimer_get_softexpires_tv64(timer))
1751 break;
1752
1753 __run_hrtimer(cpu_base, base, timer, &basenow, flags);
1754 if (active_mask == HRTIMER_ACTIVE_SOFT)
1755 hrtimer_sync_wait_running(cpu_base, flags);
1756 }
1757 }
1758}
1759
1760static __latent_entropy void hrtimer_run_softirq(struct softirq_action *h)
1761{
1762 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1763 unsigned long flags;
1764 ktime_t now;
1765
1766 hrtimer_cpu_base_lock_expiry(cpu_base);
1767 raw_spin_lock_irqsave(&cpu_base->lock, flags);
1768
1769 now = hrtimer_update_base(cpu_base);
1770 __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_SOFT);
1771
1772 cpu_base->softirq_activated = 0;
1773 hrtimer_update_softirq_timer(cpu_base, true);
1774
1775 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1776 hrtimer_cpu_base_unlock_expiry(cpu_base);
1777}
1778
1779#ifdef CONFIG_HIGH_RES_TIMERS
1780
1781/*
1782 * High resolution timer interrupt
1783 * Called with interrupts disabled
1784 */
1785void hrtimer_interrupt(struct clock_event_device *dev)
1786{
1787 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1788 ktime_t expires_next, now, entry_time, delta;
1789 unsigned long flags;
1790 int retries = 0;
1791
1792 BUG_ON(!cpu_base->hres_active);
1793 cpu_base->nr_events++;
1794 dev->next_event = KTIME_MAX;
1795
1796 raw_spin_lock_irqsave(&cpu_base->lock, flags);
1797 entry_time = now = hrtimer_update_base(cpu_base);
1798retry:
1799 cpu_base->in_hrtirq = 1;
1800 /*
1801 * We set expires_next to KTIME_MAX here with cpu_base->lock
1802 * held to prevent that a timer is enqueued in our queue via
1803 * the migration code. This does not affect enqueueing of
1804 * timers which run their callback and need to be requeued on
1805 * this CPU.
1806 */
1807 cpu_base->expires_next = KTIME_MAX;
1808
1809 if (!ktime_before(now, cpu_base->softirq_expires_next)) {
1810 cpu_base->softirq_expires_next = KTIME_MAX;
1811 cpu_base->softirq_activated = 1;
1812 raise_softirq_irqoff(HRTIMER_SOFTIRQ);
1813 }
1814
1815 __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD);
1816
1817 /* Reevaluate the clock bases for the [soft] next expiry */
1818 expires_next = hrtimer_update_next_event(cpu_base);
1819 /*
1820 * Store the new expiry value so the migration code can verify
1821 * against it.
1822 */
1823 cpu_base->expires_next = expires_next;
1824 cpu_base->in_hrtirq = 0;
1825 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1826
1827 /* Reprogramming necessary ? */
1828 if (!tick_program_event(expires_next, 0)) {
1829 cpu_base->hang_detected = 0;
1830 return;
1831 }
1832
1833 /*
1834 * The next timer was already expired due to:
1835 * - tracing
1836 * - long lasting callbacks
1837 * - being scheduled away when running in a VM
1838 *
1839 * We need to prevent that we loop forever in the hrtimer
1840 * interrupt routine. We give it 3 attempts to avoid
1841 * overreacting on some spurious event.
1842 *
1843 * Acquire base lock for updating the offsets and retrieving
1844 * the current time.
1845 */
1846 raw_spin_lock_irqsave(&cpu_base->lock, flags);
1847 now = hrtimer_update_base(cpu_base);
1848 cpu_base->nr_retries++;
1849 if (++retries < 3)
1850 goto retry;
1851 /*
1852 * Give the system a chance to do something else than looping
1853 * here. We stored the entry time, so we know exactly how long
1854 * we spent here. We schedule the next event this amount of
1855 * time away.
1856 */
1857 cpu_base->nr_hangs++;
1858 cpu_base->hang_detected = 1;
1859 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1860
1861 delta = ktime_sub(now, entry_time);
1862 if ((unsigned int)delta > cpu_base->max_hang_time)
1863 cpu_base->max_hang_time = (unsigned int) delta;
1864 /*
1865 * Limit it to a sensible value as we enforce a longer
1866 * delay. Give the CPU at least 100ms to catch up.
1867 */
1868 if (delta > 100 * NSEC_PER_MSEC)
1869 expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
1870 else
1871 expires_next = ktime_add(now, delta);
1872 tick_program_event(expires_next, 1);
1873 pr_warn_once("hrtimer: interrupt took %llu ns\n", ktime_to_ns(delta));
1874}
1875
1876/* called with interrupts disabled */
1877static inline void __hrtimer_peek_ahead_timers(void)
1878{
1879 struct tick_device *td;
1880
1881 if (!hrtimer_hres_active())
1882 return;
1883
1884 td = this_cpu_ptr(&tick_cpu_device);
1885 if (td && td->evtdev)
1886 hrtimer_interrupt(td->evtdev);
1887}
1888
1889#else /* CONFIG_HIGH_RES_TIMERS */
1890
1891static inline void __hrtimer_peek_ahead_timers(void) { }
1892
1893#endif /* !CONFIG_HIGH_RES_TIMERS */
1894
1895/*
1896 * Called from run_local_timers in hardirq context every jiffy
1897 */
1898void hrtimer_run_queues(void)
1899{
1900 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1901 unsigned long flags;
1902 ktime_t now;
1903
1904 if (__hrtimer_hres_active(cpu_base))
1905 return;
1906
1907 /*
1908 * This _is_ ugly: We have to check periodically, whether we
1909 * can switch to highres and / or nohz mode. The clocksource
1910 * switch happens with xtime_lock held. Notification from
1911 * there only sets the check bit in the tick_oneshot code,
1912 * otherwise we might deadlock vs. xtime_lock.
1913 */
1914 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) {
1915 hrtimer_switch_to_hres();
1916 return;
1917 }
1918
1919 raw_spin_lock_irqsave(&cpu_base->lock, flags);
1920 now = hrtimer_update_base(cpu_base);
1921
1922 if (!ktime_before(now, cpu_base->softirq_expires_next)) {
1923 cpu_base->softirq_expires_next = KTIME_MAX;
1924 cpu_base->softirq_activated = 1;
1925 raise_softirq_irqoff(HRTIMER_SOFTIRQ);
1926 }
1927
1928 __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD);
1929 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1930}
1931
1932/*
1933 * Sleep related functions:
1934 */
1935static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1936{
1937 struct hrtimer_sleeper *t =
1938 container_of(timer, struct hrtimer_sleeper, timer);
1939 struct task_struct *task = t->task;
1940
1941 t->task = NULL;
1942 if (task)
1943 wake_up_process(task);
1944
1945 return HRTIMER_NORESTART;
1946}
1947
1948/**
1949 * hrtimer_sleeper_start_expires - Start a hrtimer sleeper timer
1950 * @sl: sleeper to be started
1951 * @mode: timer mode abs/rel
1952 *
1953 * Wrapper around hrtimer_start_expires() for hrtimer_sleeper based timers
1954 * to allow PREEMPT_RT to tweak the delivery mode (soft/hardirq context)
1955 */
1956void hrtimer_sleeper_start_expires(struct hrtimer_sleeper *sl,
1957 enum hrtimer_mode mode)
1958{
1959 /*
1960 * Make the enqueue delivery mode check work on RT. If the sleeper
1961 * was initialized for hard interrupt delivery, force the mode bit.
1962 * This is a special case for hrtimer_sleepers because
1963 * hrtimer_init_sleeper() determines the delivery mode on RT so the
1964 * fiddling with this decision is avoided at the call sites.
1965 */
1966 if (IS_ENABLED(CONFIG_PREEMPT_RT) && sl->timer.is_hard)
1967 mode |= HRTIMER_MODE_HARD;
1968
1969 hrtimer_start_expires(&sl->timer, mode);
1970}
1971EXPORT_SYMBOL_GPL(hrtimer_sleeper_start_expires);
1972
1973static void __hrtimer_init_sleeper(struct hrtimer_sleeper *sl,
1974 clockid_t clock_id, enum hrtimer_mode mode)
1975{
1976 /*
1977 * On PREEMPT_RT enabled kernels hrtimers which are not explicitly
1978 * marked for hard interrupt expiry mode are moved into soft
1979 * interrupt context either for latency reasons or because the
1980 * hrtimer callback takes regular spinlocks or invokes other
1981 * functions which are not suitable for hard interrupt context on
1982 * PREEMPT_RT.
1983 *
1984 * The hrtimer_sleeper callback is RT compatible in hard interrupt
1985 * context, but there is a latency concern: Untrusted userspace can
1986 * spawn many threads which arm timers for the same expiry time on
1987 * the same CPU. That causes a latency spike due to the wakeup of
1988 * a gazillion threads.
1989 *
1990 * OTOH, privileged real-time user space applications rely on the
1991 * low latency of hard interrupt wakeups. If the current task is in
1992 * a real-time scheduling class, mark the mode for hard interrupt
1993 * expiry.
1994 */
1995 if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
1996 if (task_is_realtime(current) && !(mode & HRTIMER_MODE_SOFT))
1997 mode |= HRTIMER_MODE_HARD;
1998 }
1999
2000 __hrtimer_init(&sl->timer, clock_id, mode);
2001 sl->timer.function = hrtimer_wakeup;
2002 sl->task = current;
2003}
2004
2005/**
2006 * hrtimer_init_sleeper - initialize sleeper to the given clock
2007 * @sl: sleeper to be initialized
2008 * @clock_id: the clock to be used
2009 * @mode: timer mode abs/rel
2010 */
2011void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, clockid_t clock_id,
2012 enum hrtimer_mode mode)
2013{
2014 debug_init(&sl->timer, clock_id, mode);
2015 __hrtimer_init_sleeper(sl, clock_id, mode);
2016
2017}
2018EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
2019
2020int nanosleep_copyout(struct restart_block *restart, struct timespec64 *ts)
2021{
2022 switch(restart->nanosleep.type) {
2023#ifdef CONFIG_COMPAT_32BIT_TIME
2024 case TT_COMPAT:
2025 if (put_old_timespec32(ts, restart->nanosleep.compat_rmtp))
2026 return -EFAULT;
2027 break;
2028#endif
2029 case TT_NATIVE:
2030 if (put_timespec64(ts, restart->nanosleep.rmtp))
2031 return -EFAULT;
2032 break;
2033 default:
2034 BUG();
2035 }
2036 return -ERESTART_RESTARTBLOCK;
2037}
2038
2039static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
2040{
2041 struct restart_block *restart;
2042
2043 do {
2044 set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
2045 hrtimer_sleeper_start_expires(t, mode);
2046
2047 if (likely(t->task))
2048 schedule();
2049
2050 hrtimer_cancel(&t->timer);
2051 mode = HRTIMER_MODE_ABS;
2052
2053 } while (t->task && !signal_pending(current));
2054
2055 __set_current_state(TASK_RUNNING);
2056
2057 if (!t->task)
2058 return 0;
2059
2060 restart = ¤t->restart_block;
2061 if (restart->nanosleep.type != TT_NONE) {
2062 ktime_t rem = hrtimer_expires_remaining(&t->timer);
2063 struct timespec64 rmt;
2064
2065 if (rem <= 0)
2066 return 0;
2067 rmt = ktime_to_timespec64(rem);
2068
2069 return nanosleep_copyout(restart, &rmt);
2070 }
2071 return -ERESTART_RESTARTBLOCK;
2072}
2073
2074static long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
2075{
2076 struct hrtimer_sleeper t;
2077 int ret;
2078
2079 hrtimer_init_sleeper_on_stack(&t, restart->nanosleep.clockid,
2080 HRTIMER_MODE_ABS);
2081 hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
2082 ret = do_nanosleep(&t, HRTIMER_MODE_ABS);
2083 destroy_hrtimer_on_stack(&t.timer);
2084 return ret;
2085}
2086
2087long hrtimer_nanosleep(ktime_t rqtp, const enum hrtimer_mode mode,
2088 const clockid_t clockid)
2089{
2090 struct restart_block *restart;
2091 struct hrtimer_sleeper t;
2092 int ret = 0;
2093 u64 slack;
2094
2095 slack = current->timer_slack_ns;
2096 if (rt_task(current))
2097 slack = 0;
2098
2099 hrtimer_init_sleeper_on_stack(&t, clockid, mode);
2100 hrtimer_set_expires_range_ns(&t.timer, rqtp, slack);
2101 ret = do_nanosleep(&t, mode);
2102 if (ret != -ERESTART_RESTARTBLOCK)
2103 goto out;
2104
2105 /* Absolute timers do not update the rmtp value and restart: */
2106 if (mode == HRTIMER_MODE_ABS) {
2107 ret = -ERESTARTNOHAND;
2108 goto out;
2109 }
2110
2111 restart = ¤t->restart_block;
2112 restart->nanosleep.clockid = t.timer.base->clockid;
2113 restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
2114 set_restart_fn(restart, hrtimer_nanosleep_restart);
2115out:
2116 destroy_hrtimer_on_stack(&t.timer);
2117 return ret;
2118}
2119
2120#ifdef CONFIG_64BIT
2121
2122SYSCALL_DEFINE2(nanosleep, struct __kernel_timespec __user *, rqtp,
2123 struct __kernel_timespec __user *, rmtp)
2124{
2125 struct timespec64 tu;
2126
2127 if (get_timespec64(&tu, rqtp))
2128 return -EFAULT;
2129
2130 if (!timespec64_valid(&tu))
2131 return -EINVAL;
2132
2133 current->restart_block.fn = do_no_restart_syscall;
2134 current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE;
2135 current->restart_block.nanosleep.rmtp = rmtp;
2136 return hrtimer_nanosleep(timespec64_to_ktime(tu), HRTIMER_MODE_REL,
2137 CLOCK_MONOTONIC);
2138}
2139
2140#endif
2141
2142#ifdef CONFIG_COMPAT_32BIT_TIME
2143
2144SYSCALL_DEFINE2(nanosleep_time32, struct old_timespec32 __user *, rqtp,
2145 struct old_timespec32 __user *, rmtp)
2146{
2147 struct timespec64 tu;
2148
2149 if (get_old_timespec32(&tu, rqtp))
2150 return -EFAULT;
2151
2152 if (!timespec64_valid(&tu))
2153 return -EINVAL;
2154
2155 current->restart_block.fn = do_no_restart_syscall;
2156 current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE;
2157 current->restart_block.nanosleep.compat_rmtp = rmtp;
2158 return hrtimer_nanosleep(timespec64_to_ktime(tu), HRTIMER_MODE_REL,
2159 CLOCK_MONOTONIC);
2160}
2161#endif
2162
2163/*
2164 * Functions related to boot-time initialization:
2165 */
2166int hrtimers_prepare_cpu(unsigned int cpu)
2167{
2168 struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
2169 int i;
2170
2171 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
2172 struct hrtimer_clock_base *clock_b = &cpu_base->clock_base[i];
2173
2174 clock_b->cpu_base = cpu_base;
2175 seqcount_raw_spinlock_init(&clock_b->seq, &cpu_base->lock);
2176 timerqueue_init_head(&clock_b->active);
2177 }
2178
2179 cpu_base->cpu = cpu;
2180 cpu_base->active_bases = 0;
2181 cpu_base->hres_active = 0;
2182 cpu_base->hang_detected = 0;
2183 cpu_base->next_timer = NULL;
2184 cpu_base->softirq_next_timer = NULL;
2185 cpu_base->expires_next = KTIME_MAX;
2186 cpu_base->softirq_expires_next = KTIME_MAX;
2187 cpu_base->online = 1;
2188 hrtimer_cpu_base_init_expiry_lock(cpu_base);
2189 return 0;
2190}
2191
2192#ifdef CONFIG_HOTPLUG_CPU
2193
2194static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
2195 struct hrtimer_clock_base *new_base)
2196{
2197 struct hrtimer *timer;
2198 struct timerqueue_node *node;
2199
2200 while ((node = timerqueue_getnext(&old_base->active))) {
2201 timer = container_of(node, struct hrtimer, node);
2202 BUG_ON(hrtimer_callback_running(timer));
2203 debug_deactivate(timer);
2204
2205 /*
2206 * Mark it as ENQUEUED not INACTIVE otherwise the
2207 * timer could be seen as !active and just vanish away
2208 * under us on another CPU
2209 */
2210 __remove_hrtimer(timer, old_base, HRTIMER_STATE_ENQUEUED, 0);
2211 timer->base = new_base;
2212 /*
2213 * Enqueue the timers on the new cpu. This does not
2214 * reprogram the event device in case the timer
2215 * expires before the earliest on this CPU, but we run
2216 * hrtimer_interrupt after we migrated everything to
2217 * sort out already expired timers and reprogram the
2218 * event device.
2219 */
2220 enqueue_hrtimer(timer, new_base, HRTIMER_MODE_ABS);
2221 }
2222}
2223
2224int hrtimers_cpu_dying(unsigned int dying_cpu)
2225{
2226 struct hrtimer_cpu_base *old_base, *new_base;
2227 int i, ncpu = cpumask_first(cpu_active_mask);
2228
2229 tick_cancel_sched_timer(dying_cpu);
2230
2231 old_base = this_cpu_ptr(&hrtimer_bases);
2232 new_base = &per_cpu(hrtimer_bases, ncpu);
2233
2234 /*
2235 * The caller is globally serialized and nobody else
2236 * takes two locks at once, deadlock is not possible.
2237 */
2238 raw_spin_lock(&old_base->lock);
2239 raw_spin_lock_nested(&new_base->lock, SINGLE_DEPTH_NESTING);
2240
2241 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
2242 migrate_hrtimer_list(&old_base->clock_base[i],
2243 &new_base->clock_base[i]);
2244 }
2245
2246 /*
2247 * The migration might have changed the first expiring softirq
2248 * timer on this CPU. Update it.
2249 */
2250 __hrtimer_get_next_event(new_base, HRTIMER_ACTIVE_SOFT);
2251 /* Tell the other CPU to retrigger the next event */
2252 smp_call_function_single(ncpu, retrigger_next_event, NULL, 0);
2253
2254 raw_spin_unlock(&new_base->lock);
2255 old_base->online = 0;
2256 raw_spin_unlock(&old_base->lock);
2257
2258 return 0;
2259}
2260
2261#endif /* CONFIG_HOTPLUG_CPU */
2262
2263void __init hrtimers_init(void)
2264{
2265 hrtimers_prepare_cpu(smp_processor_id());
2266 open_softirq(HRTIMER_SOFTIRQ, hrtimer_run_softirq);
2267}
2268
2269/**
2270 * schedule_hrtimeout_range_clock - sleep until timeout
2271 * @expires: timeout value (ktime_t)
2272 * @delta: slack in expires timeout (ktime_t) for SCHED_OTHER tasks
2273 * @mode: timer mode
2274 * @clock_id: timer clock to be used
2275 */
2276int __sched
2277schedule_hrtimeout_range_clock(ktime_t *expires, u64 delta,
2278 const enum hrtimer_mode mode, clockid_t clock_id)
2279{
2280 struct hrtimer_sleeper t;
2281
2282 /*
2283 * Optimize when a zero timeout value is given. It does not
2284 * matter whether this is an absolute or a relative time.
2285 */
2286 if (expires && *expires == 0) {
2287 __set_current_state(TASK_RUNNING);
2288 return 0;
2289 }
2290
2291 /*
2292 * A NULL parameter means "infinite"
2293 */
2294 if (!expires) {
2295 schedule();
2296 return -EINTR;
2297 }
2298
2299 /*
2300 * Override any slack passed by the user if under
2301 * rt contraints.
2302 */
2303 if (rt_task(current))
2304 delta = 0;
2305
2306 hrtimer_init_sleeper_on_stack(&t, clock_id, mode);
2307 hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
2308 hrtimer_sleeper_start_expires(&t, mode);
2309
2310 if (likely(t.task))
2311 schedule();
2312
2313 hrtimer_cancel(&t.timer);
2314 destroy_hrtimer_on_stack(&t.timer);
2315
2316 __set_current_state(TASK_RUNNING);
2317
2318 return !t.task ? 0 : -EINTR;
2319}
2320EXPORT_SYMBOL_GPL(schedule_hrtimeout_range_clock);
2321
2322/**
2323 * schedule_hrtimeout_range - sleep until timeout
2324 * @expires: timeout value (ktime_t)
2325 * @delta: slack in expires timeout (ktime_t) for SCHED_OTHER tasks
2326 * @mode: timer mode
2327 *
2328 * Make the current task sleep until the given expiry time has
2329 * elapsed. The routine will return immediately unless
2330 * the current task state has been set (see set_current_state()).
2331 *
2332 * The @delta argument gives the kernel the freedom to schedule the
2333 * actual wakeup to a time that is both power and performance friendly
2334 * for regular (non RT/DL) tasks.
2335 * The kernel give the normal best effort behavior for "@expires+@delta",
2336 * but may decide to fire the timer earlier, but no earlier than @expires.
2337 *
2338 * You can set the task state as follows -
2339 *
2340 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
2341 * pass before the routine returns unless the current task is explicitly
2342 * woken up, (e.g. by wake_up_process()).
2343 *
2344 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
2345 * delivered to the current task or the current task is explicitly woken
2346 * up.
2347 *
2348 * The current task state is guaranteed to be TASK_RUNNING when this
2349 * routine returns.
2350 *
2351 * Returns 0 when the timer has expired. If the task was woken before the
2352 * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
2353 * by an explicit wakeup, it returns -EINTR.
2354 */
2355int __sched schedule_hrtimeout_range(ktime_t *expires, u64 delta,
2356 const enum hrtimer_mode mode)
2357{
2358 return schedule_hrtimeout_range_clock(expires, delta, mode,
2359 CLOCK_MONOTONIC);
2360}
2361EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
2362
2363/**
2364 * schedule_hrtimeout - sleep until timeout
2365 * @expires: timeout value (ktime_t)
2366 * @mode: timer mode
2367 *
2368 * Make the current task sleep until the given expiry time has
2369 * elapsed. The routine will return immediately unless
2370 * the current task state has been set (see set_current_state()).
2371 *
2372 * You can set the task state as follows -
2373 *
2374 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
2375 * pass before the routine returns unless the current task is explicitly
2376 * woken up, (e.g. by wake_up_process()).
2377 *
2378 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
2379 * delivered to the current task or the current task is explicitly woken
2380 * up.
2381 *
2382 * The current task state is guaranteed to be TASK_RUNNING when this
2383 * routine returns.
2384 *
2385 * Returns 0 when the timer has expired. If the task was woken before the
2386 * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
2387 * by an explicit wakeup, it returns -EINTR.
2388 */
2389int __sched schedule_hrtimeout(ktime_t *expires,
2390 const enum hrtimer_mode mode)
2391{
2392 return schedule_hrtimeout_range(expires, 0, mode);
2393}
2394EXPORT_SYMBOL_GPL(schedule_hrtimeout);