Loading...
1/*
2 * kernel/sched/core.c
3 *
4 * Core kernel scheduler code and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 */
8#include "sched.h"
9
10#include <linux/kthread.h>
11#include <linux/nospec.h>
12
13#include <asm/switch_to.h>
14#include <asm/tlb.h>
15
16#include "../workqueue_internal.h"
17#include "../smpboot.h"
18
19#define CREATE_TRACE_POINTS
20#include <trace/events/sched.h>
21
22DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
23
24#if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
25/*
26 * Debugging: various feature bits
27 *
28 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
29 * sysctl_sched_features, defined in sched.h, to allow constants propagation
30 * at compile time and compiler optimization based on features default.
31 */
32#define SCHED_FEAT(name, enabled) \
33 (1UL << __SCHED_FEAT_##name) * enabled |
34const_debug unsigned int sysctl_sched_features =
35#include "features.h"
36 0;
37#undef SCHED_FEAT
38#endif
39
40/*
41 * Number of tasks to iterate in a single balance run.
42 * Limited because this is done with IRQs disabled.
43 */
44const_debug unsigned int sysctl_sched_nr_migrate = 32;
45
46/*
47 * period over which we average the RT time consumption, measured
48 * in ms.
49 *
50 * default: 1s
51 */
52const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
53
54/*
55 * period over which we measure -rt task CPU usage in us.
56 * default: 1s
57 */
58unsigned int sysctl_sched_rt_period = 1000000;
59
60__read_mostly int scheduler_running;
61
62/*
63 * part of the period that we allow rt tasks to run in us.
64 * default: 0.95s
65 */
66int sysctl_sched_rt_runtime = 950000;
67
68/*
69 * __task_rq_lock - lock the rq @p resides on.
70 */
71struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
72 __acquires(rq->lock)
73{
74 struct rq *rq;
75
76 lockdep_assert_held(&p->pi_lock);
77
78 for (;;) {
79 rq = task_rq(p);
80 raw_spin_lock(&rq->lock);
81 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
82 rq_pin_lock(rq, rf);
83 return rq;
84 }
85 raw_spin_unlock(&rq->lock);
86
87 while (unlikely(task_on_rq_migrating(p)))
88 cpu_relax();
89 }
90}
91
92/*
93 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
94 */
95struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
96 __acquires(p->pi_lock)
97 __acquires(rq->lock)
98{
99 struct rq *rq;
100
101 for (;;) {
102 raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
103 rq = task_rq(p);
104 raw_spin_lock(&rq->lock);
105 /*
106 * move_queued_task() task_rq_lock()
107 *
108 * ACQUIRE (rq->lock)
109 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
110 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
111 * [S] ->cpu = new_cpu [L] task_rq()
112 * [L] ->on_rq
113 * RELEASE (rq->lock)
114 *
115 * If we observe the old CPU in task_rq_lock, the acquire of
116 * the old rq->lock will fully serialize against the stores.
117 *
118 * If we observe the new CPU in task_rq_lock, the acquire will
119 * pair with the WMB to ensure we must then also see migrating.
120 */
121 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
122 rq_pin_lock(rq, rf);
123 return rq;
124 }
125 raw_spin_unlock(&rq->lock);
126 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
127
128 while (unlikely(task_on_rq_migrating(p)))
129 cpu_relax();
130 }
131}
132
133/*
134 * RQ-clock updating methods:
135 */
136
137static void update_rq_clock_task(struct rq *rq, s64 delta)
138{
139/*
140 * In theory, the compile should just see 0 here, and optimize out the call
141 * to sched_rt_avg_update. But I don't trust it...
142 */
143#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
144 s64 steal = 0, irq_delta = 0;
145#endif
146#ifdef CONFIG_IRQ_TIME_ACCOUNTING
147 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
148
149 /*
150 * Since irq_time is only updated on {soft,}irq_exit, we might run into
151 * this case when a previous update_rq_clock() happened inside a
152 * {soft,}irq region.
153 *
154 * When this happens, we stop ->clock_task and only update the
155 * prev_irq_time stamp to account for the part that fit, so that a next
156 * update will consume the rest. This ensures ->clock_task is
157 * monotonic.
158 *
159 * It does however cause some slight miss-attribution of {soft,}irq
160 * time, a more accurate solution would be to update the irq_time using
161 * the current rq->clock timestamp, except that would require using
162 * atomic ops.
163 */
164 if (irq_delta > delta)
165 irq_delta = delta;
166
167 rq->prev_irq_time += irq_delta;
168 delta -= irq_delta;
169#endif
170#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
171 if (static_key_false((¶virt_steal_rq_enabled))) {
172 steal = paravirt_steal_clock(cpu_of(rq));
173 steal -= rq->prev_steal_time_rq;
174
175 if (unlikely(steal > delta))
176 steal = delta;
177
178 rq->prev_steal_time_rq += steal;
179 delta -= steal;
180 }
181#endif
182
183 rq->clock_task += delta;
184
185#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
186 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
187 sched_rt_avg_update(rq, irq_delta + steal);
188#endif
189}
190
191void update_rq_clock(struct rq *rq)
192{
193 s64 delta;
194
195 lockdep_assert_held(&rq->lock);
196
197 if (rq->clock_update_flags & RQCF_ACT_SKIP)
198 return;
199
200#ifdef CONFIG_SCHED_DEBUG
201 if (sched_feat(WARN_DOUBLE_CLOCK))
202 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
203 rq->clock_update_flags |= RQCF_UPDATED;
204#endif
205
206 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
207 if (delta < 0)
208 return;
209 rq->clock += delta;
210 update_rq_clock_task(rq, delta);
211}
212
213
214#ifdef CONFIG_SCHED_HRTICK
215/*
216 * Use HR-timers to deliver accurate preemption points.
217 */
218
219static void hrtick_clear(struct rq *rq)
220{
221 if (hrtimer_active(&rq->hrtick_timer))
222 hrtimer_cancel(&rq->hrtick_timer);
223}
224
225/*
226 * High-resolution timer tick.
227 * Runs from hardirq context with interrupts disabled.
228 */
229static enum hrtimer_restart hrtick(struct hrtimer *timer)
230{
231 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
232 struct rq_flags rf;
233
234 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
235
236 rq_lock(rq, &rf);
237 update_rq_clock(rq);
238 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
239 rq_unlock(rq, &rf);
240
241 return HRTIMER_NORESTART;
242}
243
244#ifdef CONFIG_SMP
245
246static void __hrtick_restart(struct rq *rq)
247{
248 struct hrtimer *timer = &rq->hrtick_timer;
249
250 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
251}
252
253/*
254 * called from hardirq (IPI) context
255 */
256static void __hrtick_start(void *arg)
257{
258 struct rq *rq = arg;
259 struct rq_flags rf;
260
261 rq_lock(rq, &rf);
262 __hrtick_restart(rq);
263 rq->hrtick_csd_pending = 0;
264 rq_unlock(rq, &rf);
265}
266
267/*
268 * Called to set the hrtick timer state.
269 *
270 * called with rq->lock held and irqs disabled
271 */
272void hrtick_start(struct rq *rq, u64 delay)
273{
274 struct hrtimer *timer = &rq->hrtick_timer;
275 ktime_t time;
276 s64 delta;
277
278 /*
279 * Don't schedule slices shorter than 10000ns, that just
280 * doesn't make sense and can cause timer DoS.
281 */
282 delta = max_t(s64, delay, 10000LL);
283 time = ktime_add_ns(timer->base->get_time(), delta);
284
285 hrtimer_set_expires(timer, time);
286
287 if (rq == this_rq()) {
288 __hrtick_restart(rq);
289 } else if (!rq->hrtick_csd_pending) {
290 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
291 rq->hrtick_csd_pending = 1;
292 }
293}
294
295#else
296/*
297 * Called to set the hrtick timer state.
298 *
299 * called with rq->lock held and irqs disabled
300 */
301void hrtick_start(struct rq *rq, u64 delay)
302{
303 /*
304 * Don't schedule slices shorter than 10000ns, that just
305 * doesn't make sense. Rely on vruntime for fairness.
306 */
307 delay = max_t(u64, delay, 10000LL);
308 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
309 HRTIMER_MODE_REL_PINNED);
310}
311#endif /* CONFIG_SMP */
312
313static void hrtick_rq_init(struct rq *rq)
314{
315#ifdef CONFIG_SMP
316 rq->hrtick_csd_pending = 0;
317
318 rq->hrtick_csd.flags = 0;
319 rq->hrtick_csd.func = __hrtick_start;
320 rq->hrtick_csd.info = rq;
321#endif
322
323 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
324 rq->hrtick_timer.function = hrtick;
325}
326#else /* CONFIG_SCHED_HRTICK */
327static inline void hrtick_clear(struct rq *rq)
328{
329}
330
331static inline void hrtick_rq_init(struct rq *rq)
332{
333}
334#endif /* CONFIG_SCHED_HRTICK */
335
336/*
337 * cmpxchg based fetch_or, macro so it works for different integer types
338 */
339#define fetch_or(ptr, mask) \
340 ({ \
341 typeof(ptr) _ptr = (ptr); \
342 typeof(mask) _mask = (mask); \
343 typeof(*_ptr) _old, _val = *_ptr; \
344 \
345 for (;;) { \
346 _old = cmpxchg(_ptr, _val, _val | _mask); \
347 if (_old == _val) \
348 break; \
349 _val = _old; \
350 } \
351 _old; \
352})
353
354#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
355/*
356 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
357 * this avoids any races wrt polling state changes and thereby avoids
358 * spurious IPIs.
359 */
360static bool set_nr_and_not_polling(struct task_struct *p)
361{
362 struct thread_info *ti = task_thread_info(p);
363 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
364}
365
366/*
367 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
368 *
369 * If this returns true, then the idle task promises to call
370 * sched_ttwu_pending() and reschedule soon.
371 */
372static bool set_nr_if_polling(struct task_struct *p)
373{
374 struct thread_info *ti = task_thread_info(p);
375 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
376
377 for (;;) {
378 if (!(val & _TIF_POLLING_NRFLAG))
379 return false;
380 if (val & _TIF_NEED_RESCHED)
381 return true;
382 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
383 if (old == val)
384 break;
385 val = old;
386 }
387 return true;
388}
389
390#else
391static bool set_nr_and_not_polling(struct task_struct *p)
392{
393 set_tsk_need_resched(p);
394 return true;
395}
396
397#ifdef CONFIG_SMP
398static bool set_nr_if_polling(struct task_struct *p)
399{
400 return false;
401}
402#endif
403#endif
404
405void wake_q_add(struct wake_q_head *head, struct task_struct *task)
406{
407 struct wake_q_node *node = &task->wake_q;
408
409 /*
410 * Atomically grab the task, if ->wake_q is !nil already it means
411 * its already queued (either by us or someone else) and will get the
412 * wakeup due to that.
413 *
414 * This cmpxchg() implies a full barrier, which pairs with the write
415 * barrier implied by the wakeup in wake_up_q().
416 */
417 if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
418 return;
419
420 get_task_struct(task);
421
422 /*
423 * The head is context local, there can be no concurrency.
424 */
425 *head->lastp = node;
426 head->lastp = &node->next;
427}
428
429void wake_up_q(struct wake_q_head *head)
430{
431 struct wake_q_node *node = head->first;
432
433 while (node != WAKE_Q_TAIL) {
434 struct task_struct *task;
435
436 task = container_of(node, struct task_struct, wake_q);
437 BUG_ON(!task);
438 /* Task can safely be re-inserted now: */
439 node = node->next;
440 task->wake_q.next = NULL;
441
442 /*
443 * wake_up_process() implies a wmb() to pair with the queueing
444 * in wake_q_add() so as not to miss wakeups.
445 */
446 wake_up_process(task);
447 put_task_struct(task);
448 }
449}
450
451/*
452 * resched_curr - mark rq's current task 'to be rescheduled now'.
453 *
454 * On UP this means the setting of the need_resched flag, on SMP it
455 * might also involve a cross-CPU call to trigger the scheduler on
456 * the target CPU.
457 */
458void resched_curr(struct rq *rq)
459{
460 struct task_struct *curr = rq->curr;
461 int cpu;
462
463 lockdep_assert_held(&rq->lock);
464
465 if (test_tsk_need_resched(curr))
466 return;
467
468 cpu = cpu_of(rq);
469
470 if (cpu == smp_processor_id()) {
471 set_tsk_need_resched(curr);
472 set_preempt_need_resched();
473 return;
474 }
475
476 if (set_nr_and_not_polling(curr))
477 smp_send_reschedule(cpu);
478 else
479 trace_sched_wake_idle_without_ipi(cpu);
480}
481
482void resched_cpu(int cpu)
483{
484 struct rq *rq = cpu_rq(cpu);
485 unsigned long flags;
486
487 raw_spin_lock_irqsave(&rq->lock, flags);
488 if (cpu_online(cpu) || cpu == smp_processor_id())
489 resched_curr(rq);
490 raw_spin_unlock_irqrestore(&rq->lock, flags);
491}
492
493#ifdef CONFIG_SMP
494#ifdef CONFIG_NO_HZ_COMMON
495/*
496 * In the semi idle case, use the nearest busy CPU for migrating timers
497 * from an idle CPU. This is good for power-savings.
498 *
499 * We don't do similar optimization for completely idle system, as
500 * selecting an idle CPU will add more delays to the timers than intended
501 * (as that CPU's timer base may not be uptodate wrt jiffies etc).
502 */
503int get_nohz_timer_target(void)
504{
505 int i, cpu = smp_processor_id();
506 struct sched_domain *sd;
507
508 if (!idle_cpu(cpu) && housekeeping_cpu(cpu, HK_FLAG_TIMER))
509 return cpu;
510
511 rcu_read_lock();
512 for_each_domain(cpu, sd) {
513 for_each_cpu(i, sched_domain_span(sd)) {
514 if (cpu == i)
515 continue;
516
517 if (!idle_cpu(i) && housekeeping_cpu(i, HK_FLAG_TIMER)) {
518 cpu = i;
519 goto unlock;
520 }
521 }
522 }
523
524 if (!housekeeping_cpu(cpu, HK_FLAG_TIMER))
525 cpu = housekeeping_any_cpu(HK_FLAG_TIMER);
526unlock:
527 rcu_read_unlock();
528 return cpu;
529}
530
531/*
532 * When add_timer_on() enqueues a timer into the timer wheel of an
533 * idle CPU then this timer might expire before the next timer event
534 * which is scheduled to wake up that CPU. In case of a completely
535 * idle system the next event might even be infinite time into the
536 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
537 * leaves the inner idle loop so the newly added timer is taken into
538 * account when the CPU goes back to idle and evaluates the timer
539 * wheel for the next timer event.
540 */
541static void wake_up_idle_cpu(int cpu)
542{
543 struct rq *rq = cpu_rq(cpu);
544
545 if (cpu == smp_processor_id())
546 return;
547
548 if (set_nr_and_not_polling(rq->idle))
549 smp_send_reschedule(cpu);
550 else
551 trace_sched_wake_idle_without_ipi(cpu);
552}
553
554static bool wake_up_full_nohz_cpu(int cpu)
555{
556 /*
557 * We just need the target to call irq_exit() and re-evaluate
558 * the next tick. The nohz full kick at least implies that.
559 * If needed we can still optimize that later with an
560 * empty IRQ.
561 */
562 if (cpu_is_offline(cpu))
563 return true; /* Don't try to wake offline CPUs. */
564 if (tick_nohz_full_cpu(cpu)) {
565 if (cpu != smp_processor_id() ||
566 tick_nohz_tick_stopped())
567 tick_nohz_full_kick_cpu(cpu);
568 return true;
569 }
570
571 return false;
572}
573
574/*
575 * Wake up the specified CPU. If the CPU is going offline, it is the
576 * caller's responsibility to deal with the lost wakeup, for example,
577 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
578 */
579void wake_up_nohz_cpu(int cpu)
580{
581 if (!wake_up_full_nohz_cpu(cpu))
582 wake_up_idle_cpu(cpu);
583}
584
585static inline bool got_nohz_idle_kick(void)
586{
587 int cpu = smp_processor_id();
588
589 if (!(atomic_read(nohz_flags(cpu)) & NOHZ_KICK_MASK))
590 return false;
591
592 if (idle_cpu(cpu) && !need_resched())
593 return true;
594
595 /*
596 * We can't run Idle Load Balance on this CPU for this time so we
597 * cancel it and clear NOHZ_BALANCE_KICK
598 */
599 atomic_andnot(NOHZ_KICK_MASK, nohz_flags(cpu));
600 return false;
601}
602
603#else /* CONFIG_NO_HZ_COMMON */
604
605static inline bool got_nohz_idle_kick(void)
606{
607 return false;
608}
609
610#endif /* CONFIG_NO_HZ_COMMON */
611
612#ifdef CONFIG_NO_HZ_FULL
613bool sched_can_stop_tick(struct rq *rq)
614{
615 int fifo_nr_running;
616
617 /* Deadline tasks, even if single, need the tick */
618 if (rq->dl.dl_nr_running)
619 return false;
620
621 /*
622 * If there are more than one RR tasks, we need the tick to effect the
623 * actual RR behaviour.
624 */
625 if (rq->rt.rr_nr_running) {
626 if (rq->rt.rr_nr_running == 1)
627 return true;
628 else
629 return false;
630 }
631
632 /*
633 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
634 * forced preemption between FIFO tasks.
635 */
636 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
637 if (fifo_nr_running)
638 return true;
639
640 /*
641 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
642 * if there's more than one we need the tick for involuntary
643 * preemption.
644 */
645 if (rq->nr_running > 1)
646 return false;
647
648 return true;
649}
650#endif /* CONFIG_NO_HZ_FULL */
651
652void sched_avg_update(struct rq *rq)
653{
654 s64 period = sched_avg_period();
655
656 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
657 /*
658 * Inline assembly required to prevent the compiler
659 * optimising this loop into a divmod call.
660 * See __iter_div_u64_rem() for another example of this.
661 */
662 asm("" : "+rm" (rq->age_stamp));
663 rq->age_stamp += period;
664 rq->rt_avg /= 2;
665 }
666}
667
668#endif /* CONFIG_SMP */
669
670#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
671 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
672/*
673 * Iterate task_group tree rooted at *from, calling @down when first entering a
674 * node and @up when leaving it for the final time.
675 *
676 * Caller must hold rcu_lock or sufficient equivalent.
677 */
678int walk_tg_tree_from(struct task_group *from,
679 tg_visitor down, tg_visitor up, void *data)
680{
681 struct task_group *parent, *child;
682 int ret;
683
684 parent = from;
685
686down:
687 ret = (*down)(parent, data);
688 if (ret)
689 goto out;
690 list_for_each_entry_rcu(child, &parent->children, siblings) {
691 parent = child;
692 goto down;
693
694up:
695 continue;
696 }
697 ret = (*up)(parent, data);
698 if (ret || parent == from)
699 goto out;
700
701 child = parent;
702 parent = parent->parent;
703 if (parent)
704 goto up;
705out:
706 return ret;
707}
708
709int tg_nop(struct task_group *tg, void *data)
710{
711 return 0;
712}
713#endif
714
715static void set_load_weight(struct task_struct *p, bool update_load)
716{
717 int prio = p->static_prio - MAX_RT_PRIO;
718 struct load_weight *load = &p->se.load;
719
720 /*
721 * SCHED_IDLE tasks get minimal weight:
722 */
723 if (idle_policy(p->policy)) {
724 load->weight = scale_load(WEIGHT_IDLEPRIO);
725 load->inv_weight = WMULT_IDLEPRIO;
726 return;
727 }
728
729 /*
730 * SCHED_OTHER tasks have to update their load when changing their
731 * weight
732 */
733 if (update_load && p->sched_class == &fair_sched_class) {
734 reweight_task(p, prio);
735 } else {
736 load->weight = scale_load(sched_prio_to_weight[prio]);
737 load->inv_weight = sched_prio_to_wmult[prio];
738 }
739}
740
741static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
742{
743 if (!(flags & ENQUEUE_NOCLOCK))
744 update_rq_clock(rq);
745
746 if (!(flags & ENQUEUE_RESTORE))
747 sched_info_queued(rq, p);
748
749 p->sched_class->enqueue_task(rq, p, flags);
750}
751
752static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
753{
754 if (!(flags & DEQUEUE_NOCLOCK))
755 update_rq_clock(rq);
756
757 if (!(flags & DEQUEUE_SAVE))
758 sched_info_dequeued(rq, p);
759
760 p->sched_class->dequeue_task(rq, p, flags);
761}
762
763void activate_task(struct rq *rq, struct task_struct *p, int flags)
764{
765 if (task_contributes_to_load(p))
766 rq->nr_uninterruptible--;
767
768 enqueue_task(rq, p, flags);
769}
770
771void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
772{
773 if (task_contributes_to_load(p))
774 rq->nr_uninterruptible++;
775
776 dequeue_task(rq, p, flags);
777}
778
779/*
780 * __normal_prio - return the priority that is based on the static prio
781 */
782static inline int __normal_prio(struct task_struct *p)
783{
784 return p->static_prio;
785}
786
787/*
788 * Calculate the expected normal priority: i.e. priority
789 * without taking RT-inheritance into account. Might be
790 * boosted by interactivity modifiers. Changes upon fork,
791 * setprio syscalls, and whenever the interactivity
792 * estimator recalculates.
793 */
794static inline int normal_prio(struct task_struct *p)
795{
796 int prio;
797
798 if (task_has_dl_policy(p))
799 prio = MAX_DL_PRIO-1;
800 else if (task_has_rt_policy(p))
801 prio = MAX_RT_PRIO-1 - p->rt_priority;
802 else
803 prio = __normal_prio(p);
804 return prio;
805}
806
807/*
808 * Calculate the current priority, i.e. the priority
809 * taken into account by the scheduler. This value might
810 * be boosted by RT tasks, or might be boosted by
811 * interactivity modifiers. Will be RT if the task got
812 * RT-boosted. If not then it returns p->normal_prio.
813 */
814static int effective_prio(struct task_struct *p)
815{
816 p->normal_prio = normal_prio(p);
817 /*
818 * If we are RT tasks or we were boosted to RT priority,
819 * keep the priority unchanged. Otherwise, update priority
820 * to the normal priority:
821 */
822 if (!rt_prio(p->prio))
823 return p->normal_prio;
824 return p->prio;
825}
826
827/**
828 * task_curr - is this task currently executing on a CPU?
829 * @p: the task in question.
830 *
831 * Return: 1 if the task is currently executing. 0 otherwise.
832 */
833inline int task_curr(const struct task_struct *p)
834{
835 return cpu_curr(task_cpu(p)) == p;
836}
837
838/*
839 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
840 * use the balance_callback list if you want balancing.
841 *
842 * this means any call to check_class_changed() must be followed by a call to
843 * balance_callback().
844 */
845static inline void check_class_changed(struct rq *rq, struct task_struct *p,
846 const struct sched_class *prev_class,
847 int oldprio)
848{
849 if (prev_class != p->sched_class) {
850 if (prev_class->switched_from)
851 prev_class->switched_from(rq, p);
852
853 p->sched_class->switched_to(rq, p);
854 } else if (oldprio != p->prio || dl_task(p))
855 p->sched_class->prio_changed(rq, p, oldprio);
856}
857
858void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
859{
860 const struct sched_class *class;
861
862 if (p->sched_class == rq->curr->sched_class) {
863 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
864 } else {
865 for_each_class(class) {
866 if (class == rq->curr->sched_class)
867 break;
868 if (class == p->sched_class) {
869 resched_curr(rq);
870 break;
871 }
872 }
873 }
874
875 /*
876 * A queue event has occurred, and we're going to schedule. In
877 * this case, we can save a useless back to back clock update.
878 */
879 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
880 rq_clock_skip_update(rq);
881}
882
883#ifdef CONFIG_SMP
884
885static inline bool is_per_cpu_kthread(struct task_struct *p)
886{
887 if (!(p->flags & PF_KTHREAD))
888 return false;
889
890 if (p->nr_cpus_allowed != 1)
891 return false;
892
893 return true;
894}
895
896/*
897 * Per-CPU kthreads are allowed to run on !actie && online CPUs, see
898 * __set_cpus_allowed_ptr() and select_fallback_rq().
899 */
900static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
901{
902 if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
903 return false;
904
905 if (is_per_cpu_kthread(p))
906 return cpu_online(cpu);
907
908 return cpu_active(cpu);
909}
910
911/*
912 * This is how migration works:
913 *
914 * 1) we invoke migration_cpu_stop() on the target CPU using
915 * stop_one_cpu().
916 * 2) stopper starts to run (implicitly forcing the migrated thread
917 * off the CPU)
918 * 3) it checks whether the migrated task is still in the wrong runqueue.
919 * 4) if it's in the wrong runqueue then the migration thread removes
920 * it and puts it into the right queue.
921 * 5) stopper completes and stop_one_cpu() returns and the migration
922 * is done.
923 */
924
925/*
926 * move_queued_task - move a queued task to new rq.
927 *
928 * Returns (locked) new rq. Old rq's lock is released.
929 */
930static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
931 struct task_struct *p, int new_cpu)
932{
933 lockdep_assert_held(&rq->lock);
934
935 p->on_rq = TASK_ON_RQ_MIGRATING;
936 dequeue_task(rq, p, DEQUEUE_NOCLOCK);
937 set_task_cpu(p, new_cpu);
938 rq_unlock(rq, rf);
939
940 rq = cpu_rq(new_cpu);
941
942 rq_lock(rq, rf);
943 BUG_ON(task_cpu(p) != new_cpu);
944 enqueue_task(rq, p, 0);
945 p->on_rq = TASK_ON_RQ_QUEUED;
946 check_preempt_curr(rq, p, 0);
947
948 return rq;
949}
950
951struct migration_arg {
952 struct task_struct *task;
953 int dest_cpu;
954};
955
956/*
957 * Move (not current) task off this CPU, onto the destination CPU. We're doing
958 * this because either it can't run here any more (set_cpus_allowed()
959 * away from this CPU, or CPU going down), or because we're
960 * attempting to rebalance this task on exec (sched_exec).
961 *
962 * So we race with normal scheduler movements, but that's OK, as long
963 * as the task is no longer on this CPU.
964 */
965static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
966 struct task_struct *p, int dest_cpu)
967{
968 /* Affinity changed (again). */
969 if (!is_cpu_allowed(p, dest_cpu))
970 return rq;
971
972 update_rq_clock(rq);
973 rq = move_queued_task(rq, rf, p, dest_cpu);
974
975 return rq;
976}
977
978/*
979 * migration_cpu_stop - this will be executed by a highprio stopper thread
980 * and performs thread migration by bumping thread off CPU then
981 * 'pushing' onto another runqueue.
982 */
983static int migration_cpu_stop(void *data)
984{
985 struct migration_arg *arg = data;
986 struct task_struct *p = arg->task;
987 struct rq *rq = this_rq();
988 struct rq_flags rf;
989
990 /*
991 * The original target CPU might have gone down and we might
992 * be on another CPU but it doesn't matter.
993 */
994 local_irq_disable();
995 /*
996 * We need to explicitly wake pending tasks before running
997 * __migrate_task() such that we will not miss enforcing cpus_allowed
998 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
999 */
1000 sched_ttwu_pending();
1001
1002 raw_spin_lock(&p->pi_lock);
1003 rq_lock(rq, &rf);
1004 /*
1005 * If task_rq(p) != rq, it cannot be migrated here, because we're
1006 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1007 * we're holding p->pi_lock.
1008 */
1009 if (task_rq(p) == rq) {
1010 if (task_on_rq_queued(p))
1011 rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
1012 else
1013 p->wake_cpu = arg->dest_cpu;
1014 }
1015 rq_unlock(rq, &rf);
1016 raw_spin_unlock(&p->pi_lock);
1017
1018 local_irq_enable();
1019 return 0;
1020}
1021
1022/*
1023 * sched_class::set_cpus_allowed must do the below, but is not required to
1024 * actually call this function.
1025 */
1026void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
1027{
1028 cpumask_copy(&p->cpus_allowed, new_mask);
1029 p->nr_cpus_allowed = cpumask_weight(new_mask);
1030}
1031
1032void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1033{
1034 struct rq *rq = task_rq(p);
1035 bool queued, running;
1036
1037 lockdep_assert_held(&p->pi_lock);
1038
1039 queued = task_on_rq_queued(p);
1040 running = task_current(rq, p);
1041
1042 if (queued) {
1043 /*
1044 * Because __kthread_bind() calls this on blocked tasks without
1045 * holding rq->lock.
1046 */
1047 lockdep_assert_held(&rq->lock);
1048 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
1049 }
1050 if (running)
1051 put_prev_task(rq, p);
1052
1053 p->sched_class->set_cpus_allowed(p, new_mask);
1054
1055 if (queued)
1056 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
1057 if (running)
1058 set_curr_task(rq, p);
1059}
1060
1061/*
1062 * Change a given task's CPU affinity. Migrate the thread to a
1063 * proper CPU and schedule it away if the CPU it's executing on
1064 * is removed from the allowed bitmask.
1065 *
1066 * NOTE: the caller must have a valid reference to the task, the
1067 * task must not exit() & deallocate itself prematurely. The
1068 * call is not atomic; no spinlocks may be held.
1069 */
1070static int __set_cpus_allowed_ptr(struct task_struct *p,
1071 const struct cpumask *new_mask, bool check)
1072{
1073 const struct cpumask *cpu_valid_mask = cpu_active_mask;
1074 unsigned int dest_cpu;
1075 struct rq_flags rf;
1076 struct rq *rq;
1077 int ret = 0;
1078
1079 rq = task_rq_lock(p, &rf);
1080 update_rq_clock(rq);
1081
1082 if (p->flags & PF_KTHREAD) {
1083 /*
1084 * Kernel threads are allowed on online && !active CPUs
1085 */
1086 cpu_valid_mask = cpu_online_mask;
1087 }
1088
1089 /*
1090 * Must re-check here, to close a race against __kthread_bind(),
1091 * sched_setaffinity() is not guaranteed to observe the flag.
1092 */
1093 if (check && (p->flags & PF_NO_SETAFFINITY)) {
1094 ret = -EINVAL;
1095 goto out;
1096 }
1097
1098 if (cpumask_equal(&p->cpus_allowed, new_mask))
1099 goto out;
1100
1101 if (!cpumask_intersects(new_mask, cpu_valid_mask)) {
1102 ret = -EINVAL;
1103 goto out;
1104 }
1105
1106 do_set_cpus_allowed(p, new_mask);
1107
1108 if (p->flags & PF_KTHREAD) {
1109 /*
1110 * For kernel threads that do indeed end up on online &&
1111 * !active we want to ensure they are strict per-CPU threads.
1112 */
1113 WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
1114 !cpumask_intersects(new_mask, cpu_active_mask) &&
1115 p->nr_cpus_allowed != 1);
1116 }
1117
1118 /* Can the task run on the task's current CPU? If so, we're done */
1119 if (cpumask_test_cpu(task_cpu(p), new_mask))
1120 goto out;
1121
1122 dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask);
1123 if (task_running(rq, p) || p->state == TASK_WAKING) {
1124 struct migration_arg arg = { p, dest_cpu };
1125 /* Need help from migration thread: drop lock and wait. */
1126 task_rq_unlock(rq, p, &rf);
1127 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1128 tlb_migrate_finish(p->mm);
1129 return 0;
1130 } else if (task_on_rq_queued(p)) {
1131 /*
1132 * OK, since we're going to drop the lock immediately
1133 * afterwards anyway.
1134 */
1135 rq = move_queued_task(rq, &rf, p, dest_cpu);
1136 }
1137out:
1138 task_rq_unlock(rq, p, &rf);
1139
1140 return ret;
1141}
1142
1143int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1144{
1145 return __set_cpus_allowed_ptr(p, new_mask, false);
1146}
1147EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1148
1149void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1150{
1151#ifdef CONFIG_SCHED_DEBUG
1152 /*
1153 * We should never call set_task_cpu() on a blocked task,
1154 * ttwu() will sort out the placement.
1155 */
1156 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1157 !p->on_rq);
1158
1159 /*
1160 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1161 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1162 * time relying on p->on_rq.
1163 */
1164 WARN_ON_ONCE(p->state == TASK_RUNNING &&
1165 p->sched_class == &fair_sched_class &&
1166 (p->on_rq && !task_on_rq_migrating(p)));
1167
1168#ifdef CONFIG_LOCKDEP
1169 /*
1170 * The caller should hold either p->pi_lock or rq->lock, when changing
1171 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1172 *
1173 * sched_move_task() holds both and thus holding either pins the cgroup,
1174 * see task_group().
1175 *
1176 * Furthermore, all task_rq users should acquire both locks, see
1177 * task_rq_lock().
1178 */
1179 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1180 lockdep_is_held(&task_rq(p)->lock)));
1181#endif
1182 /*
1183 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
1184 */
1185 WARN_ON_ONCE(!cpu_online(new_cpu));
1186#endif
1187
1188 trace_sched_migrate_task(p, new_cpu);
1189
1190 if (task_cpu(p) != new_cpu) {
1191 if (p->sched_class->migrate_task_rq)
1192 p->sched_class->migrate_task_rq(p);
1193 p->se.nr_migrations++;
1194 perf_event_task_migrate(p);
1195 }
1196
1197 __set_task_cpu(p, new_cpu);
1198}
1199
1200static void __migrate_swap_task(struct task_struct *p, int cpu)
1201{
1202 if (task_on_rq_queued(p)) {
1203 struct rq *src_rq, *dst_rq;
1204 struct rq_flags srf, drf;
1205
1206 src_rq = task_rq(p);
1207 dst_rq = cpu_rq(cpu);
1208
1209 rq_pin_lock(src_rq, &srf);
1210 rq_pin_lock(dst_rq, &drf);
1211
1212 p->on_rq = TASK_ON_RQ_MIGRATING;
1213 deactivate_task(src_rq, p, 0);
1214 set_task_cpu(p, cpu);
1215 activate_task(dst_rq, p, 0);
1216 p->on_rq = TASK_ON_RQ_QUEUED;
1217 check_preempt_curr(dst_rq, p, 0);
1218
1219 rq_unpin_lock(dst_rq, &drf);
1220 rq_unpin_lock(src_rq, &srf);
1221
1222 } else {
1223 /*
1224 * Task isn't running anymore; make it appear like we migrated
1225 * it before it went to sleep. This means on wakeup we make the
1226 * previous CPU our target instead of where it really is.
1227 */
1228 p->wake_cpu = cpu;
1229 }
1230}
1231
1232struct migration_swap_arg {
1233 struct task_struct *src_task, *dst_task;
1234 int src_cpu, dst_cpu;
1235};
1236
1237static int migrate_swap_stop(void *data)
1238{
1239 struct migration_swap_arg *arg = data;
1240 struct rq *src_rq, *dst_rq;
1241 int ret = -EAGAIN;
1242
1243 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1244 return -EAGAIN;
1245
1246 src_rq = cpu_rq(arg->src_cpu);
1247 dst_rq = cpu_rq(arg->dst_cpu);
1248
1249 double_raw_lock(&arg->src_task->pi_lock,
1250 &arg->dst_task->pi_lock);
1251 double_rq_lock(src_rq, dst_rq);
1252
1253 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1254 goto unlock;
1255
1256 if (task_cpu(arg->src_task) != arg->src_cpu)
1257 goto unlock;
1258
1259 if (!cpumask_test_cpu(arg->dst_cpu, &arg->src_task->cpus_allowed))
1260 goto unlock;
1261
1262 if (!cpumask_test_cpu(arg->src_cpu, &arg->dst_task->cpus_allowed))
1263 goto unlock;
1264
1265 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1266 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1267
1268 ret = 0;
1269
1270unlock:
1271 double_rq_unlock(src_rq, dst_rq);
1272 raw_spin_unlock(&arg->dst_task->pi_lock);
1273 raw_spin_unlock(&arg->src_task->pi_lock);
1274
1275 return ret;
1276}
1277
1278/*
1279 * Cross migrate two tasks
1280 */
1281int migrate_swap(struct task_struct *cur, struct task_struct *p)
1282{
1283 struct migration_swap_arg arg;
1284 int ret = -EINVAL;
1285
1286 arg = (struct migration_swap_arg){
1287 .src_task = cur,
1288 .src_cpu = task_cpu(cur),
1289 .dst_task = p,
1290 .dst_cpu = task_cpu(p),
1291 };
1292
1293 if (arg.src_cpu == arg.dst_cpu)
1294 goto out;
1295
1296 /*
1297 * These three tests are all lockless; this is OK since all of them
1298 * will be re-checked with proper locks held further down the line.
1299 */
1300 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1301 goto out;
1302
1303 if (!cpumask_test_cpu(arg.dst_cpu, &arg.src_task->cpus_allowed))
1304 goto out;
1305
1306 if (!cpumask_test_cpu(arg.src_cpu, &arg.dst_task->cpus_allowed))
1307 goto out;
1308
1309 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1310 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1311
1312out:
1313 return ret;
1314}
1315
1316/*
1317 * wait_task_inactive - wait for a thread to unschedule.
1318 *
1319 * If @match_state is nonzero, it's the @p->state value just checked and
1320 * not expected to change. If it changes, i.e. @p might have woken up,
1321 * then return zero. When we succeed in waiting for @p to be off its CPU,
1322 * we return a positive number (its total switch count). If a second call
1323 * a short while later returns the same number, the caller can be sure that
1324 * @p has remained unscheduled the whole time.
1325 *
1326 * The caller must ensure that the task *will* unschedule sometime soon,
1327 * else this function might spin for a *long* time. This function can't
1328 * be called with interrupts off, or it may introduce deadlock with
1329 * smp_call_function() if an IPI is sent by the same process we are
1330 * waiting to become inactive.
1331 */
1332unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1333{
1334 int running, queued;
1335 struct rq_flags rf;
1336 unsigned long ncsw;
1337 struct rq *rq;
1338
1339 for (;;) {
1340 /*
1341 * We do the initial early heuristics without holding
1342 * any task-queue locks at all. We'll only try to get
1343 * the runqueue lock when things look like they will
1344 * work out!
1345 */
1346 rq = task_rq(p);
1347
1348 /*
1349 * If the task is actively running on another CPU
1350 * still, just relax and busy-wait without holding
1351 * any locks.
1352 *
1353 * NOTE! Since we don't hold any locks, it's not
1354 * even sure that "rq" stays as the right runqueue!
1355 * But we don't care, since "task_running()" will
1356 * return false if the runqueue has changed and p
1357 * is actually now running somewhere else!
1358 */
1359 while (task_running(rq, p)) {
1360 if (match_state && unlikely(p->state != match_state))
1361 return 0;
1362 cpu_relax();
1363 }
1364
1365 /*
1366 * Ok, time to look more closely! We need the rq
1367 * lock now, to be *sure*. If we're wrong, we'll
1368 * just go back and repeat.
1369 */
1370 rq = task_rq_lock(p, &rf);
1371 trace_sched_wait_task(p);
1372 running = task_running(rq, p);
1373 queued = task_on_rq_queued(p);
1374 ncsw = 0;
1375 if (!match_state || p->state == match_state)
1376 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1377 task_rq_unlock(rq, p, &rf);
1378
1379 /*
1380 * If it changed from the expected state, bail out now.
1381 */
1382 if (unlikely(!ncsw))
1383 break;
1384
1385 /*
1386 * Was it really running after all now that we
1387 * checked with the proper locks actually held?
1388 *
1389 * Oops. Go back and try again..
1390 */
1391 if (unlikely(running)) {
1392 cpu_relax();
1393 continue;
1394 }
1395
1396 /*
1397 * It's not enough that it's not actively running,
1398 * it must be off the runqueue _entirely_, and not
1399 * preempted!
1400 *
1401 * So if it was still runnable (but just not actively
1402 * running right now), it's preempted, and we should
1403 * yield - it could be a while.
1404 */
1405 if (unlikely(queued)) {
1406 ktime_t to = NSEC_PER_SEC / HZ;
1407
1408 set_current_state(TASK_UNINTERRUPTIBLE);
1409 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1410 continue;
1411 }
1412
1413 /*
1414 * Ahh, all good. It wasn't running, and it wasn't
1415 * runnable, which means that it will never become
1416 * running in the future either. We're all done!
1417 */
1418 break;
1419 }
1420
1421 return ncsw;
1422}
1423
1424/***
1425 * kick_process - kick a running thread to enter/exit the kernel
1426 * @p: the to-be-kicked thread
1427 *
1428 * Cause a process which is running on another CPU to enter
1429 * kernel-mode, without any delay. (to get signals handled.)
1430 *
1431 * NOTE: this function doesn't have to take the runqueue lock,
1432 * because all it wants to ensure is that the remote task enters
1433 * the kernel. If the IPI races and the task has been migrated
1434 * to another CPU then no harm is done and the purpose has been
1435 * achieved as well.
1436 */
1437void kick_process(struct task_struct *p)
1438{
1439 int cpu;
1440
1441 preempt_disable();
1442 cpu = task_cpu(p);
1443 if ((cpu != smp_processor_id()) && task_curr(p))
1444 smp_send_reschedule(cpu);
1445 preempt_enable();
1446}
1447EXPORT_SYMBOL_GPL(kick_process);
1448
1449/*
1450 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1451 *
1452 * A few notes on cpu_active vs cpu_online:
1453 *
1454 * - cpu_active must be a subset of cpu_online
1455 *
1456 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
1457 * see __set_cpus_allowed_ptr(). At this point the newly online
1458 * CPU isn't yet part of the sched domains, and balancing will not
1459 * see it.
1460 *
1461 * - on CPU-down we clear cpu_active() to mask the sched domains and
1462 * avoid the load balancer to place new tasks on the to be removed
1463 * CPU. Existing tasks will remain running there and will be taken
1464 * off.
1465 *
1466 * This means that fallback selection must not select !active CPUs.
1467 * And can assume that any active CPU must be online. Conversely
1468 * select_task_rq() below may allow selection of !active CPUs in order
1469 * to satisfy the above rules.
1470 */
1471static int select_fallback_rq(int cpu, struct task_struct *p)
1472{
1473 int nid = cpu_to_node(cpu);
1474 const struct cpumask *nodemask = NULL;
1475 enum { cpuset, possible, fail } state = cpuset;
1476 int dest_cpu;
1477
1478 /*
1479 * If the node that the CPU is on has been offlined, cpu_to_node()
1480 * will return -1. There is no CPU on the node, and we should
1481 * select the CPU on the other node.
1482 */
1483 if (nid != -1) {
1484 nodemask = cpumask_of_node(nid);
1485
1486 /* Look for allowed, online CPU in same node. */
1487 for_each_cpu(dest_cpu, nodemask) {
1488 if (!cpu_active(dest_cpu))
1489 continue;
1490 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
1491 return dest_cpu;
1492 }
1493 }
1494
1495 for (;;) {
1496 /* Any allowed, online CPU? */
1497 for_each_cpu(dest_cpu, &p->cpus_allowed) {
1498 if (!is_cpu_allowed(p, dest_cpu))
1499 continue;
1500
1501 goto out;
1502 }
1503
1504 /* No more Mr. Nice Guy. */
1505 switch (state) {
1506 case cpuset:
1507 if (IS_ENABLED(CONFIG_CPUSETS)) {
1508 cpuset_cpus_allowed_fallback(p);
1509 state = possible;
1510 break;
1511 }
1512 /* Fall-through */
1513 case possible:
1514 do_set_cpus_allowed(p, cpu_possible_mask);
1515 state = fail;
1516 break;
1517
1518 case fail:
1519 BUG();
1520 break;
1521 }
1522 }
1523
1524out:
1525 if (state != cpuset) {
1526 /*
1527 * Don't tell them about moving exiting tasks or
1528 * kernel threads (both mm NULL), since they never
1529 * leave kernel.
1530 */
1531 if (p->mm && printk_ratelimit()) {
1532 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1533 task_pid_nr(p), p->comm, cpu);
1534 }
1535 }
1536
1537 return dest_cpu;
1538}
1539
1540/*
1541 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1542 */
1543static inline
1544int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1545{
1546 lockdep_assert_held(&p->pi_lock);
1547
1548 if (p->nr_cpus_allowed > 1)
1549 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1550 else
1551 cpu = cpumask_any(&p->cpus_allowed);
1552
1553 /*
1554 * In order not to call set_task_cpu() on a blocking task we need
1555 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1556 * CPU.
1557 *
1558 * Since this is common to all placement strategies, this lives here.
1559 *
1560 * [ this allows ->select_task() to simply return task_cpu(p) and
1561 * not worry about this generic constraint ]
1562 */
1563 if (unlikely(!is_cpu_allowed(p, cpu)))
1564 cpu = select_fallback_rq(task_cpu(p), p);
1565
1566 return cpu;
1567}
1568
1569static void update_avg(u64 *avg, u64 sample)
1570{
1571 s64 diff = sample - *avg;
1572 *avg += diff >> 3;
1573}
1574
1575void sched_set_stop_task(int cpu, struct task_struct *stop)
1576{
1577 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
1578 struct task_struct *old_stop = cpu_rq(cpu)->stop;
1579
1580 if (stop) {
1581 /*
1582 * Make it appear like a SCHED_FIFO task, its something
1583 * userspace knows about and won't get confused about.
1584 *
1585 * Also, it will make PI more or less work without too
1586 * much confusion -- but then, stop work should not
1587 * rely on PI working anyway.
1588 */
1589 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m);
1590
1591 stop->sched_class = &stop_sched_class;
1592 }
1593
1594 cpu_rq(cpu)->stop = stop;
1595
1596 if (old_stop) {
1597 /*
1598 * Reset it back to a normal scheduling class so that
1599 * it can die in pieces.
1600 */
1601 old_stop->sched_class = &rt_sched_class;
1602 }
1603}
1604
1605#else
1606
1607static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1608 const struct cpumask *new_mask, bool check)
1609{
1610 return set_cpus_allowed_ptr(p, new_mask);
1611}
1612
1613#endif /* CONFIG_SMP */
1614
1615static void
1616ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1617{
1618 struct rq *rq;
1619
1620 if (!schedstat_enabled())
1621 return;
1622
1623 rq = this_rq();
1624
1625#ifdef CONFIG_SMP
1626 if (cpu == rq->cpu) {
1627 __schedstat_inc(rq->ttwu_local);
1628 __schedstat_inc(p->se.statistics.nr_wakeups_local);
1629 } else {
1630 struct sched_domain *sd;
1631
1632 __schedstat_inc(p->se.statistics.nr_wakeups_remote);
1633 rcu_read_lock();
1634 for_each_domain(rq->cpu, sd) {
1635 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1636 __schedstat_inc(sd->ttwu_wake_remote);
1637 break;
1638 }
1639 }
1640 rcu_read_unlock();
1641 }
1642
1643 if (wake_flags & WF_MIGRATED)
1644 __schedstat_inc(p->se.statistics.nr_wakeups_migrate);
1645#endif /* CONFIG_SMP */
1646
1647 __schedstat_inc(rq->ttwu_count);
1648 __schedstat_inc(p->se.statistics.nr_wakeups);
1649
1650 if (wake_flags & WF_SYNC)
1651 __schedstat_inc(p->se.statistics.nr_wakeups_sync);
1652}
1653
1654static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1655{
1656 activate_task(rq, p, en_flags);
1657 p->on_rq = TASK_ON_RQ_QUEUED;
1658
1659 /* If a worker is waking up, notify the workqueue: */
1660 if (p->flags & PF_WQ_WORKER)
1661 wq_worker_waking_up(p, cpu_of(rq));
1662}
1663
1664/*
1665 * Mark the task runnable and perform wakeup-preemption.
1666 */
1667static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
1668 struct rq_flags *rf)
1669{
1670 check_preempt_curr(rq, p, wake_flags);
1671 p->state = TASK_RUNNING;
1672 trace_sched_wakeup(p);
1673
1674#ifdef CONFIG_SMP
1675 if (p->sched_class->task_woken) {
1676 /*
1677 * Our task @p is fully woken up and running; so its safe to
1678 * drop the rq->lock, hereafter rq is only used for statistics.
1679 */
1680 rq_unpin_lock(rq, rf);
1681 p->sched_class->task_woken(rq, p);
1682 rq_repin_lock(rq, rf);
1683 }
1684
1685 if (rq->idle_stamp) {
1686 u64 delta = rq_clock(rq) - rq->idle_stamp;
1687 u64 max = 2*rq->max_idle_balance_cost;
1688
1689 update_avg(&rq->avg_idle, delta);
1690
1691 if (rq->avg_idle > max)
1692 rq->avg_idle = max;
1693
1694 rq->idle_stamp = 0;
1695 }
1696#endif
1697}
1698
1699static void
1700ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
1701 struct rq_flags *rf)
1702{
1703 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
1704
1705 lockdep_assert_held(&rq->lock);
1706
1707#ifdef CONFIG_SMP
1708 if (p->sched_contributes_to_load)
1709 rq->nr_uninterruptible--;
1710
1711 if (wake_flags & WF_MIGRATED)
1712 en_flags |= ENQUEUE_MIGRATED;
1713#endif
1714
1715 ttwu_activate(rq, p, en_flags);
1716 ttwu_do_wakeup(rq, p, wake_flags, rf);
1717}
1718
1719/*
1720 * Called in case the task @p isn't fully descheduled from its runqueue,
1721 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1722 * since all we need to do is flip p->state to TASK_RUNNING, since
1723 * the task is still ->on_rq.
1724 */
1725static int ttwu_remote(struct task_struct *p, int wake_flags)
1726{
1727 struct rq_flags rf;
1728 struct rq *rq;
1729 int ret = 0;
1730
1731 rq = __task_rq_lock(p, &rf);
1732 if (task_on_rq_queued(p)) {
1733 /* check_preempt_curr() may use rq clock */
1734 update_rq_clock(rq);
1735 ttwu_do_wakeup(rq, p, wake_flags, &rf);
1736 ret = 1;
1737 }
1738 __task_rq_unlock(rq, &rf);
1739
1740 return ret;
1741}
1742
1743#ifdef CONFIG_SMP
1744void sched_ttwu_pending(void)
1745{
1746 struct rq *rq = this_rq();
1747 struct llist_node *llist = llist_del_all(&rq->wake_list);
1748 struct task_struct *p, *t;
1749 struct rq_flags rf;
1750
1751 if (!llist)
1752 return;
1753
1754 rq_lock_irqsave(rq, &rf);
1755 update_rq_clock(rq);
1756
1757 llist_for_each_entry_safe(p, t, llist, wake_entry)
1758 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
1759
1760 rq_unlock_irqrestore(rq, &rf);
1761}
1762
1763void scheduler_ipi(void)
1764{
1765 /*
1766 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1767 * TIF_NEED_RESCHED remotely (for the first time) will also send
1768 * this IPI.
1769 */
1770 preempt_fold_need_resched();
1771
1772 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1773 return;
1774
1775 /*
1776 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1777 * traditionally all their work was done from the interrupt return
1778 * path. Now that we actually do some work, we need to make sure
1779 * we do call them.
1780 *
1781 * Some archs already do call them, luckily irq_enter/exit nest
1782 * properly.
1783 *
1784 * Arguably we should visit all archs and update all handlers,
1785 * however a fair share of IPIs are still resched only so this would
1786 * somewhat pessimize the simple resched case.
1787 */
1788 irq_enter();
1789 sched_ttwu_pending();
1790
1791 /*
1792 * Check if someone kicked us for doing the nohz idle load balance.
1793 */
1794 if (unlikely(got_nohz_idle_kick())) {
1795 this_rq()->idle_balance = 1;
1796 raise_softirq_irqoff(SCHED_SOFTIRQ);
1797 }
1798 irq_exit();
1799}
1800
1801static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
1802{
1803 struct rq *rq = cpu_rq(cpu);
1804
1805 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
1806
1807 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1808 if (!set_nr_if_polling(rq->idle))
1809 smp_send_reschedule(cpu);
1810 else
1811 trace_sched_wake_idle_without_ipi(cpu);
1812 }
1813}
1814
1815void wake_up_if_idle(int cpu)
1816{
1817 struct rq *rq = cpu_rq(cpu);
1818 struct rq_flags rf;
1819
1820 rcu_read_lock();
1821
1822 if (!is_idle_task(rcu_dereference(rq->curr)))
1823 goto out;
1824
1825 if (set_nr_if_polling(rq->idle)) {
1826 trace_sched_wake_idle_without_ipi(cpu);
1827 } else {
1828 rq_lock_irqsave(rq, &rf);
1829 if (is_idle_task(rq->curr))
1830 smp_send_reschedule(cpu);
1831 /* Else CPU is not idle, do nothing here: */
1832 rq_unlock_irqrestore(rq, &rf);
1833 }
1834
1835out:
1836 rcu_read_unlock();
1837}
1838
1839bool cpus_share_cache(int this_cpu, int that_cpu)
1840{
1841 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1842}
1843#endif /* CONFIG_SMP */
1844
1845static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
1846{
1847 struct rq *rq = cpu_rq(cpu);
1848 struct rq_flags rf;
1849
1850#if defined(CONFIG_SMP)
1851 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1852 sched_clock_cpu(cpu); /* Sync clocks across CPUs */
1853 ttwu_queue_remote(p, cpu, wake_flags);
1854 return;
1855 }
1856#endif
1857
1858 rq_lock(rq, &rf);
1859 update_rq_clock(rq);
1860 ttwu_do_activate(rq, p, wake_flags, &rf);
1861 rq_unlock(rq, &rf);
1862}
1863
1864/*
1865 * Notes on Program-Order guarantees on SMP systems.
1866 *
1867 * MIGRATION
1868 *
1869 * The basic program-order guarantee on SMP systems is that when a task [t]
1870 * migrates, all its activity on its old CPU [c0] happens-before any subsequent
1871 * execution on its new CPU [c1].
1872 *
1873 * For migration (of runnable tasks) this is provided by the following means:
1874 *
1875 * A) UNLOCK of the rq(c0)->lock scheduling out task t
1876 * B) migration for t is required to synchronize *both* rq(c0)->lock and
1877 * rq(c1)->lock (if not at the same time, then in that order).
1878 * C) LOCK of the rq(c1)->lock scheduling in task
1879 *
1880 * Transitivity guarantees that B happens after A and C after B.
1881 * Note: we only require RCpc transitivity.
1882 * Note: the CPU doing B need not be c0 or c1
1883 *
1884 * Example:
1885 *
1886 * CPU0 CPU1 CPU2
1887 *
1888 * LOCK rq(0)->lock
1889 * sched-out X
1890 * sched-in Y
1891 * UNLOCK rq(0)->lock
1892 *
1893 * LOCK rq(0)->lock // orders against CPU0
1894 * dequeue X
1895 * UNLOCK rq(0)->lock
1896 *
1897 * LOCK rq(1)->lock
1898 * enqueue X
1899 * UNLOCK rq(1)->lock
1900 *
1901 * LOCK rq(1)->lock // orders against CPU2
1902 * sched-out Z
1903 * sched-in X
1904 * UNLOCK rq(1)->lock
1905 *
1906 *
1907 * BLOCKING -- aka. SLEEP + WAKEUP
1908 *
1909 * For blocking we (obviously) need to provide the same guarantee as for
1910 * migration. However the means are completely different as there is no lock
1911 * chain to provide order. Instead we do:
1912 *
1913 * 1) smp_store_release(X->on_cpu, 0)
1914 * 2) smp_cond_load_acquire(!X->on_cpu)
1915 *
1916 * Example:
1917 *
1918 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
1919 *
1920 * LOCK rq(0)->lock LOCK X->pi_lock
1921 * dequeue X
1922 * sched-out X
1923 * smp_store_release(X->on_cpu, 0);
1924 *
1925 * smp_cond_load_acquire(&X->on_cpu, !VAL);
1926 * X->state = WAKING
1927 * set_task_cpu(X,2)
1928 *
1929 * LOCK rq(2)->lock
1930 * enqueue X
1931 * X->state = RUNNING
1932 * UNLOCK rq(2)->lock
1933 *
1934 * LOCK rq(2)->lock // orders against CPU1
1935 * sched-out Z
1936 * sched-in X
1937 * UNLOCK rq(2)->lock
1938 *
1939 * UNLOCK X->pi_lock
1940 * UNLOCK rq(0)->lock
1941 *
1942 *
1943 * However; for wakeups there is a second guarantee we must provide, namely we
1944 * must observe the state that lead to our wakeup. That is, not only must our
1945 * task observe its own prior state, it must also observe the stores prior to
1946 * its wakeup.
1947 *
1948 * This means that any means of doing remote wakeups must order the CPU doing
1949 * the wakeup against the CPU the task is going to end up running on. This,
1950 * however, is already required for the regular Program-Order guarantee above,
1951 * since the waking CPU is the one issueing the ACQUIRE (smp_cond_load_acquire).
1952 *
1953 */
1954
1955/**
1956 * try_to_wake_up - wake up a thread
1957 * @p: the thread to be awakened
1958 * @state: the mask of task states that can be woken
1959 * @wake_flags: wake modifier flags (WF_*)
1960 *
1961 * If (@state & @p->state) @p->state = TASK_RUNNING.
1962 *
1963 * If the task was not queued/runnable, also place it back on a runqueue.
1964 *
1965 * Atomic against schedule() which would dequeue a task, also see
1966 * set_current_state().
1967 *
1968 * Return: %true if @p->state changes (an actual wakeup was done),
1969 * %false otherwise.
1970 */
1971static int
1972try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1973{
1974 unsigned long flags;
1975 int cpu, success = 0;
1976
1977 /*
1978 * If we are going to wake up a thread waiting for CONDITION we
1979 * need to ensure that CONDITION=1 done by the caller can not be
1980 * reordered with p->state check below. This pairs with mb() in
1981 * set_current_state() the waiting thread does.
1982 */
1983 raw_spin_lock_irqsave(&p->pi_lock, flags);
1984 smp_mb__after_spinlock();
1985 if (!(p->state & state))
1986 goto out;
1987
1988 trace_sched_waking(p);
1989
1990 /* We're going to change ->state: */
1991 success = 1;
1992 cpu = task_cpu(p);
1993
1994 /*
1995 * Ensure we load p->on_rq _after_ p->state, otherwise it would
1996 * be possible to, falsely, observe p->on_rq == 0 and get stuck
1997 * in smp_cond_load_acquire() below.
1998 *
1999 * sched_ttwu_pending() try_to_wake_up()
2000 * [S] p->on_rq = 1; [L] P->state
2001 * UNLOCK rq->lock -----.
2002 * \
2003 * +--- RMB
2004 * schedule() /
2005 * LOCK rq->lock -----'
2006 * UNLOCK rq->lock
2007 *
2008 * [task p]
2009 * [S] p->state = UNINTERRUPTIBLE [L] p->on_rq
2010 *
2011 * Pairs with the UNLOCK+LOCK on rq->lock from the
2012 * last wakeup of our task and the schedule that got our task
2013 * current.
2014 */
2015 smp_rmb();
2016 if (p->on_rq && ttwu_remote(p, wake_flags))
2017 goto stat;
2018
2019#ifdef CONFIG_SMP
2020 /*
2021 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2022 * possible to, falsely, observe p->on_cpu == 0.
2023 *
2024 * One must be running (->on_cpu == 1) in order to remove oneself
2025 * from the runqueue.
2026 *
2027 * [S] ->on_cpu = 1; [L] ->on_rq
2028 * UNLOCK rq->lock
2029 * RMB
2030 * LOCK rq->lock
2031 * [S] ->on_rq = 0; [L] ->on_cpu
2032 *
2033 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock
2034 * from the consecutive calls to schedule(); the first switching to our
2035 * task, the second putting it to sleep.
2036 */
2037 smp_rmb();
2038
2039 /*
2040 * If the owning (remote) CPU is still in the middle of schedule() with
2041 * this task as prev, wait until its done referencing the task.
2042 *
2043 * Pairs with the smp_store_release() in finish_task().
2044 *
2045 * This ensures that tasks getting woken will be fully ordered against
2046 * their previous state and preserve Program Order.
2047 */
2048 smp_cond_load_acquire(&p->on_cpu, !VAL);
2049
2050 p->sched_contributes_to_load = !!task_contributes_to_load(p);
2051 p->state = TASK_WAKING;
2052
2053 if (p->in_iowait) {
2054 delayacct_blkio_end(p);
2055 atomic_dec(&task_rq(p)->nr_iowait);
2056 }
2057
2058 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
2059 if (task_cpu(p) != cpu) {
2060 wake_flags |= WF_MIGRATED;
2061 set_task_cpu(p, cpu);
2062 }
2063
2064#else /* CONFIG_SMP */
2065
2066 if (p->in_iowait) {
2067 delayacct_blkio_end(p);
2068 atomic_dec(&task_rq(p)->nr_iowait);
2069 }
2070
2071#endif /* CONFIG_SMP */
2072
2073 ttwu_queue(p, cpu, wake_flags);
2074stat:
2075 ttwu_stat(p, cpu, wake_flags);
2076out:
2077 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2078
2079 return success;
2080}
2081
2082/**
2083 * try_to_wake_up_local - try to wake up a local task with rq lock held
2084 * @p: the thread to be awakened
2085 * @rf: request-queue flags for pinning
2086 *
2087 * Put @p on the run-queue if it's not already there. The caller must
2088 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2089 * the current task.
2090 */
2091static void try_to_wake_up_local(struct task_struct *p, struct rq_flags *rf)
2092{
2093 struct rq *rq = task_rq(p);
2094
2095 if (WARN_ON_ONCE(rq != this_rq()) ||
2096 WARN_ON_ONCE(p == current))
2097 return;
2098
2099 lockdep_assert_held(&rq->lock);
2100
2101 if (!raw_spin_trylock(&p->pi_lock)) {
2102 /*
2103 * This is OK, because current is on_cpu, which avoids it being
2104 * picked for load-balance and preemption/IRQs are still
2105 * disabled avoiding further scheduler activity on it and we've
2106 * not yet picked a replacement task.
2107 */
2108 rq_unlock(rq, rf);
2109 raw_spin_lock(&p->pi_lock);
2110 rq_relock(rq, rf);
2111 }
2112
2113 if (!(p->state & TASK_NORMAL))
2114 goto out;
2115
2116 trace_sched_waking(p);
2117
2118 if (!task_on_rq_queued(p)) {
2119 if (p->in_iowait) {
2120 delayacct_blkio_end(p);
2121 atomic_dec(&rq->nr_iowait);
2122 }
2123 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK);
2124 }
2125
2126 ttwu_do_wakeup(rq, p, 0, rf);
2127 ttwu_stat(p, smp_processor_id(), 0);
2128out:
2129 raw_spin_unlock(&p->pi_lock);
2130}
2131
2132/**
2133 * wake_up_process - Wake up a specific process
2134 * @p: The process to be woken up.
2135 *
2136 * Attempt to wake up the nominated process and move it to the set of runnable
2137 * processes.
2138 *
2139 * Return: 1 if the process was woken up, 0 if it was already running.
2140 *
2141 * It may be assumed that this function implies a write memory barrier before
2142 * changing the task state if and only if any tasks are woken up.
2143 */
2144int wake_up_process(struct task_struct *p)
2145{
2146 return try_to_wake_up(p, TASK_NORMAL, 0);
2147}
2148EXPORT_SYMBOL(wake_up_process);
2149
2150int wake_up_state(struct task_struct *p, unsigned int state)
2151{
2152 return try_to_wake_up(p, state, 0);
2153}
2154
2155/*
2156 * Perform scheduler related setup for a newly forked process p.
2157 * p is forked by current.
2158 *
2159 * __sched_fork() is basic setup used by init_idle() too:
2160 */
2161static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
2162{
2163 p->on_rq = 0;
2164
2165 p->se.on_rq = 0;
2166 p->se.exec_start = 0;
2167 p->se.sum_exec_runtime = 0;
2168 p->se.prev_sum_exec_runtime = 0;
2169 p->se.nr_migrations = 0;
2170 p->se.vruntime = 0;
2171 INIT_LIST_HEAD(&p->se.group_node);
2172
2173#ifdef CONFIG_FAIR_GROUP_SCHED
2174 p->se.cfs_rq = NULL;
2175#endif
2176
2177#ifdef CONFIG_SCHEDSTATS
2178 /* Even if schedstat is disabled, there should not be garbage */
2179 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2180#endif
2181
2182 RB_CLEAR_NODE(&p->dl.rb_node);
2183 init_dl_task_timer(&p->dl);
2184 init_dl_inactive_task_timer(&p->dl);
2185 __dl_clear_params(p);
2186
2187 INIT_LIST_HEAD(&p->rt.run_list);
2188 p->rt.timeout = 0;
2189 p->rt.time_slice = sched_rr_timeslice;
2190 p->rt.on_rq = 0;
2191 p->rt.on_list = 0;
2192
2193#ifdef CONFIG_PREEMPT_NOTIFIERS
2194 INIT_HLIST_HEAD(&p->preempt_notifiers);
2195#endif
2196
2197#ifdef CONFIG_NUMA_BALANCING
2198 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
2199 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2200 p->mm->numa_scan_seq = 0;
2201 }
2202
2203 if (clone_flags & CLONE_VM)
2204 p->numa_preferred_nid = current->numa_preferred_nid;
2205 else
2206 p->numa_preferred_nid = -1;
2207
2208 p->node_stamp = 0ULL;
2209 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
2210 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
2211 p->numa_work.next = &p->numa_work;
2212 p->numa_faults = NULL;
2213 p->last_task_numa_placement = 0;
2214 p->last_sum_exec_runtime = 0;
2215
2216 p->numa_group = NULL;
2217#endif /* CONFIG_NUMA_BALANCING */
2218}
2219
2220DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2221
2222#ifdef CONFIG_NUMA_BALANCING
2223
2224void set_numabalancing_state(bool enabled)
2225{
2226 if (enabled)
2227 static_branch_enable(&sched_numa_balancing);
2228 else
2229 static_branch_disable(&sched_numa_balancing);
2230}
2231
2232#ifdef CONFIG_PROC_SYSCTL
2233int sysctl_numa_balancing(struct ctl_table *table, int write,
2234 void __user *buffer, size_t *lenp, loff_t *ppos)
2235{
2236 struct ctl_table t;
2237 int err;
2238 int state = static_branch_likely(&sched_numa_balancing);
2239
2240 if (write && !capable(CAP_SYS_ADMIN))
2241 return -EPERM;
2242
2243 t = *table;
2244 t.data = &state;
2245 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2246 if (err < 0)
2247 return err;
2248 if (write)
2249 set_numabalancing_state(state);
2250 return err;
2251}
2252#endif
2253#endif
2254
2255#ifdef CONFIG_SCHEDSTATS
2256
2257DEFINE_STATIC_KEY_FALSE(sched_schedstats);
2258static bool __initdata __sched_schedstats = false;
2259
2260static void set_schedstats(bool enabled)
2261{
2262 if (enabled)
2263 static_branch_enable(&sched_schedstats);
2264 else
2265 static_branch_disable(&sched_schedstats);
2266}
2267
2268void force_schedstat_enabled(void)
2269{
2270 if (!schedstat_enabled()) {
2271 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2272 static_branch_enable(&sched_schedstats);
2273 }
2274}
2275
2276static int __init setup_schedstats(char *str)
2277{
2278 int ret = 0;
2279 if (!str)
2280 goto out;
2281
2282 /*
2283 * This code is called before jump labels have been set up, so we can't
2284 * change the static branch directly just yet. Instead set a temporary
2285 * variable so init_schedstats() can do it later.
2286 */
2287 if (!strcmp(str, "enable")) {
2288 __sched_schedstats = true;
2289 ret = 1;
2290 } else if (!strcmp(str, "disable")) {
2291 __sched_schedstats = false;
2292 ret = 1;
2293 }
2294out:
2295 if (!ret)
2296 pr_warn("Unable to parse schedstats=\n");
2297
2298 return ret;
2299}
2300__setup("schedstats=", setup_schedstats);
2301
2302static void __init init_schedstats(void)
2303{
2304 set_schedstats(__sched_schedstats);
2305}
2306
2307#ifdef CONFIG_PROC_SYSCTL
2308int sysctl_schedstats(struct ctl_table *table, int write,
2309 void __user *buffer, size_t *lenp, loff_t *ppos)
2310{
2311 struct ctl_table t;
2312 int err;
2313 int state = static_branch_likely(&sched_schedstats);
2314
2315 if (write && !capable(CAP_SYS_ADMIN))
2316 return -EPERM;
2317
2318 t = *table;
2319 t.data = &state;
2320 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2321 if (err < 0)
2322 return err;
2323 if (write)
2324 set_schedstats(state);
2325 return err;
2326}
2327#endif /* CONFIG_PROC_SYSCTL */
2328#else /* !CONFIG_SCHEDSTATS */
2329static inline void init_schedstats(void) {}
2330#endif /* CONFIG_SCHEDSTATS */
2331
2332/*
2333 * fork()/clone()-time setup:
2334 */
2335int sched_fork(unsigned long clone_flags, struct task_struct *p)
2336{
2337 unsigned long flags;
2338 int cpu = get_cpu();
2339
2340 __sched_fork(clone_flags, p);
2341 /*
2342 * We mark the process as NEW here. This guarantees that
2343 * nobody will actually run it, and a signal or other external
2344 * event cannot wake it up and insert it on the runqueue either.
2345 */
2346 p->state = TASK_NEW;
2347
2348 /*
2349 * Make sure we do not leak PI boosting priority to the child.
2350 */
2351 p->prio = current->normal_prio;
2352
2353 /*
2354 * Revert to default priority/policy on fork if requested.
2355 */
2356 if (unlikely(p->sched_reset_on_fork)) {
2357 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2358 p->policy = SCHED_NORMAL;
2359 p->static_prio = NICE_TO_PRIO(0);
2360 p->rt_priority = 0;
2361 } else if (PRIO_TO_NICE(p->static_prio) < 0)
2362 p->static_prio = NICE_TO_PRIO(0);
2363
2364 p->prio = p->normal_prio = __normal_prio(p);
2365 set_load_weight(p, false);
2366
2367 /*
2368 * We don't need the reset flag anymore after the fork. It has
2369 * fulfilled its duty:
2370 */
2371 p->sched_reset_on_fork = 0;
2372 }
2373
2374 if (dl_prio(p->prio)) {
2375 put_cpu();
2376 return -EAGAIN;
2377 } else if (rt_prio(p->prio)) {
2378 p->sched_class = &rt_sched_class;
2379 } else {
2380 p->sched_class = &fair_sched_class;
2381 }
2382
2383 init_entity_runnable_average(&p->se);
2384
2385 /*
2386 * The child is not yet in the pid-hash so no cgroup attach races,
2387 * and the cgroup is pinned to this child due to cgroup_fork()
2388 * is ran before sched_fork().
2389 *
2390 * Silence PROVE_RCU.
2391 */
2392 raw_spin_lock_irqsave(&p->pi_lock, flags);
2393 /*
2394 * We're setting the CPU for the first time, we don't migrate,
2395 * so use __set_task_cpu().
2396 */
2397 __set_task_cpu(p, cpu);
2398 if (p->sched_class->task_fork)
2399 p->sched_class->task_fork(p);
2400 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2401
2402#ifdef CONFIG_SCHED_INFO
2403 if (likely(sched_info_on()))
2404 memset(&p->sched_info, 0, sizeof(p->sched_info));
2405#endif
2406#if defined(CONFIG_SMP)
2407 p->on_cpu = 0;
2408#endif
2409 init_task_preempt_count(p);
2410#ifdef CONFIG_SMP
2411 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2412 RB_CLEAR_NODE(&p->pushable_dl_tasks);
2413#endif
2414
2415 put_cpu();
2416 return 0;
2417}
2418
2419unsigned long to_ratio(u64 period, u64 runtime)
2420{
2421 if (runtime == RUNTIME_INF)
2422 return BW_UNIT;
2423
2424 /*
2425 * Doing this here saves a lot of checks in all
2426 * the calling paths, and returning zero seems
2427 * safe for them anyway.
2428 */
2429 if (period == 0)
2430 return 0;
2431
2432 return div64_u64(runtime << BW_SHIFT, period);
2433}
2434
2435/*
2436 * wake_up_new_task - wake up a newly created task for the first time.
2437 *
2438 * This function will do some initial scheduler statistics housekeeping
2439 * that must be done for every newly created context, then puts the task
2440 * on the runqueue and wakes it.
2441 */
2442void wake_up_new_task(struct task_struct *p)
2443{
2444 struct rq_flags rf;
2445 struct rq *rq;
2446
2447 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2448 p->state = TASK_RUNNING;
2449#ifdef CONFIG_SMP
2450 /*
2451 * Fork balancing, do it here and not earlier because:
2452 * - cpus_allowed can change in the fork path
2453 * - any previously selected CPU might disappear through hotplug
2454 *
2455 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
2456 * as we're not fully set-up yet.
2457 */
2458 p->recent_used_cpu = task_cpu(p);
2459 __set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2460#endif
2461 rq = __task_rq_lock(p, &rf);
2462 update_rq_clock(rq);
2463 post_init_entity_util_avg(&p->se);
2464
2465 activate_task(rq, p, ENQUEUE_NOCLOCK);
2466 p->on_rq = TASK_ON_RQ_QUEUED;
2467 trace_sched_wakeup_new(p);
2468 check_preempt_curr(rq, p, WF_FORK);
2469#ifdef CONFIG_SMP
2470 if (p->sched_class->task_woken) {
2471 /*
2472 * Nothing relies on rq->lock after this, so its fine to
2473 * drop it.
2474 */
2475 rq_unpin_lock(rq, &rf);
2476 p->sched_class->task_woken(rq, p);
2477 rq_repin_lock(rq, &rf);
2478 }
2479#endif
2480 task_rq_unlock(rq, p, &rf);
2481}
2482
2483#ifdef CONFIG_PREEMPT_NOTIFIERS
2484
2485static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
2486
2487void preempt_notifier_inc(void)
2488{
2489 static_branch_inc(&preempt_notifier_key);
2490}
2491EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2492
2493void preempt_notifier_dec(void)
2494{
2495 static_branch_dec(&preempt_notifier_key);
2496}
2497EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2498
2499/**
2500 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2501 * @notifier: notifier struct to register
2502 */
2503void preempt_notifier_register(struct preempt_notifier *notifier)
2504{
2505 if (!static_branch_unlikely(&preempt_notifier_key))
2506 WARN(1, "registering preempt_notifier while notifiers disabled\n");
2507
2508 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers);
2509}
2510EXPORT_SYMBOL_GPL(preempt_notifier_register);
2511
2512/**
2513 * preempt_notifier_unregister - no longer interested in preemption notifications
2514 * @notifier: notifier struct to unregister
2515 *
2516 * This is *not* safe to call from within a preemption notifier.
2517 */
2518void preempt_notifier_unregister(struct preempt_notifier *notifier)
2519{
2520 hlist_del(¬ifier->link);
2521}
2522EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2523
2524static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
2525{
2526 struct preempt_notifier *notifier;
2527
2528 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2529 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2530}
2531
2532static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2533{
2534 if (static_branch_unlikely(&preempt_notifier_key))
2535 __fire_sched_in_preempt_notifiers(curr);
2536}
2537
2538static void
2539__fire_sched_out_preempt_notifiers(struct task_struct *curr,
2540 struct task_struct *next)
2541{
2542 struct preempt_notifier *notifier;
2543
2544 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2545 notifier->ops->sched_out(notifier, next);
2546}
2547
2548static __always_inline void
2549fire_sched_out_preempt_notifiers(struct task_struct *curr,
2550 struct task_struct *next)
2551{
2552 if (static_branch_unlikely(&preempt_notifier_key))
2553 __fire_sched_out_preempt_notifiers(curr, next);
2554}
2555
2556#else /* !CONFIG_PREEMPT_NOTIFIERS */
2557
2558static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2559{
2560}
2561
2562static inline void
2563fire_sched_out_preempt_notifiers(struct task_struct *curr,
2564 struct task_struct *next)
2565{
2566}
2567
2568#endif /* CONFIG_PREEMPT_NOTIFIERS */
2569
2570static inline void prepare_task(struct task_struct *next)
2571{
2572#ifdef CONFIG_SMP
2573 /*
2574 * Claim the task as running, we do this before switching to it
2575 * such that any running task will have this set.
2576 */
2577 next->on_cpu = 1;
2578#endif
2579}
2580
2581static inline void finish_task(struct task_struct *prev)
2582{
2583#ifdef CONFIG_SMP
2584 /*
2585 * After ->on_cpu is cleared, the task can be moved to a different CPU.
2586 * We must ensure this doesn't happen until the switch is completely
2587 * finished.
2588 *
2589 * In particular, the load of prev->state in finish_task_switch() must
2590 * happen before this.
2591 *
2592 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
2593 */
2594 smp_store_release(&prev->on_cpu, 0);
2595#endif
2596}
2597
2598static inline void
2599prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
2600{
2601 /*
2602 * Since the runqueue lock will be released by the next
2603 * task (which is an invalid locking op but in the case
2604 * of the scheduler it's an obvious special-case), so we
2605 * do an early lockdep release here:
2606 */
2607 rq_unpin_lock(rq, rf);
2608 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2609#ifdef CONFIG_DEBUG_SPINLOCK
2610 /* this is a valid case when another task releases the spinlock */
2611 rq->lock.owner = next;
2612#endif
2613}
2614
2615static inline void finish_lock_switch(struct rq *rq)
2616{
2617 /*
2618 * If we are tracking spinlock dependencies then we have to
2619 * fix up the runqueue lock - which gets 'carried over' from
2620 * prev into current:
2621 */
2622 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
2623 raw_spin_unlock_irq(&rq->lock);
2624}
2625
2626/*
2627 * NOP if the arch has not defined these:
2628 */
2629
2630#ifndef prepare_arch_switch
2631# define prepare_arch_switch(next) do { } while (0)
2632#endif
2633
2634#ifndef finish_arch_post_lock_switch
2635# define finish_arch_post_lock_switch() do { } while (0)
2636#endif
2637
2638/**
2639 * prepare_task_switch - prepare to switch tasks
2640 * @rq: the runqueue preparing to switch
2641 * @prev: the current task that is being switched out
2642 * @next: the task we are going to switch to.
2643 *
2644 * This is called with the rq lock held and interrupts off. It must
2645 * be paired with a subsequent finish_task_switch after the context
2646 * switch.
2647 *
2648 * prepare_task_switch sets up locking and calls architecture specific
2649 * hooks.
2650 */
2651static inline void
2652prepare_task_switch(struct rq *rq, struct task_struct *prev,
2653 struct task_struct *next)
2654{
2655 sched_info_switch(rq, prev, next);
2656 perf_event_task_sched_out(prev, next);
2657 fire_sched_out_preempt_notifiers(prev, next);
2658 prepare_task(next);
2659 prepare_arch_switch(next);
2660}
2661
2662/**
2663 * finish_task_switch - clean up after a task-switch
2664 * @prev: the thread we just switched away from.
2665 *
2666 * finish_task_switch must be called after the context switch, paired
2667 * with a prepare_task_switch call before the context switch.
2668 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2669 * and do any other architecture-specific cleanup actions.
2670 *
2671 * Note that we may have delayed dropping an mm in context_switch(). If
2672 * so, we finish that here outside of the runqueue lock. (Doing it
2673 * with the lock held can cause deadlocks; see schedule() for
2674 * details.)
2675 *
2676 * The context switch have flipped the stack from under us and restored the
2677 * local variables which were saved when this task called schedule() in the
2678 * past. prev == current is still correct but we need to recalculate this_rq
2679 * because prev may have moved to another CPU.
2680 */
2681static struct rq *finish_task_switch(struct task_struct *prev)
2682 __releases(rq->lock)
2683{
2684 struct rq *rq = this_rq();
2685 struct mm_struct *mm = rq->prev_mm;
2686 long prev_state;
2687
2688 /*
2689 * The previous task will have left us with a preempt_count of 2
2690 * because it left us after:
2691 *
2692 * schedule()
2693 * preempt_disable(); // 1
2694 * __schedule()
2695 * raw_spin_lock_irq(&rq->lock) // 2
2696 *
2697 * Also, see FORK_PREEMPT_COUNT.
2698 */
2699 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
2700 "corrupted preempt_count: %s/%d/0x%x\n",
2701 current->comm, current->pid, preempt_count()))
2702 preempt_count_set(FORK_PREEMPT_COUNT);
2703
2704 rq->prev_mm = NULL;
2705
2706 /*
2707 * A task struct has one reference for the use as "current".
2708 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2709 * schedule one last time. The schedule call will never return, and
2710 * the scheduled task must drop that reference.
2711 *
2712 * We must observe prev->state before clearing prev->on_cpu (in
2713 * finish_task), otherwise a concurrent wakeup can get prev
2714 * running on another CPU and we could rave with its RUNNING -> DEAD
2715 * transition, resulting in a double drop.
2716 */
2717 prev_state = prev->state;
2718 vtime_task_switch(prev);
2719 perf_event_task_sched_in(prev, current);
2720 finish_task(prev);
2721 finish_lock_switch(rq);
2722 finish_arch_post_lock_switch();
2723
2724 fire_sched_in_preempt_notifiers(current);
2725 /*
2726 * When switching through a kernel thread, the loop in
2727 * membarrier_{private,global}_expedited() may have observed that
2728 * kernel thread and not issued an IPI. It is therefore possible to
2729 * schedule between user->kernel->user threads without passing though
2730 * switch_mm(). Membarrier requires a barrier after storing to
2731 * rq->curr, before returning to userspace, so provide them here:
2732 *
2733 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
2734 * provided by mmdrop(),
2735 * - a sync_core for SYNC_CORE.
2736 */
2737 if (mm) {
2738 membarrier_mm_sync_core_before_usermode(mm);
2739 mmdrop(mm);
2740 }
2741 if (unlikely(prev_state & (TASK_DEAD|TASK_PARKED))) {
2742 switch (prev_state) {
2743 case TASK_DEAD:
2744 if (prev->sched_class->task_dead)
2745 prev->sched_class->task_dead(prev);
2746
2747 /*
2748 * Remove function-return probe instances associated with this
2749 * task and put them back on the free list.
2750 */
2751 kprobe_flush_task(prev);
2752
2753 /* Task is done with its stack. */
2754 put_task_stack(prev);
2755
2756 put_task_struct(prev);
2757 break;
2758
2759 case TASK_PARKED:
2760 kthread_park_complete(prev);
2761 break;
2762 }
2763 }
2764
2765 tick_nohz_task_switch();
2766 return rq;
2767}
2768
2769#ifdef CONFIG_SMP
2770
2771/* rq->lock is NOT held, but preemption is disabled */
2772static void __balance_callback(struct rq *rq)
2773{
2774 struct callback_head *head, *next;
2775 void (*func)(struct rq *rq);
2776 unsigned long flags;
2777
2778 raw_spin_lock_irqsave(&rq->lock, flags);
2779 head = rq->balance_callback;
2780 rq->balance_callback = NULL;
2781 while (head) {
2782 func = (void (*)(struct rq *))head->func;
2783 next = head->next;
2784 head->next = NULL;
2785 head = next;
2786
2787 func(rq);
2788 }
2789 raw_spin_unlock_irqrestore(&rq->lock, flags);
2790}
2791
2792static inline void balance_callback(struct rq *rq)
2793{
2794 if (unlikely(rq->balance_callback))
2795 __balance_callback(rq);
2796}
2797
2798#else
2799
2800static inline void balance_callback(struct rq *rq)
2801{
2802}
2803
2804#endif
2805
2806/**
2807 * schedule_tail - first thing a freshly forked thread must call.
2808 * @prev: the thread we just switched away from.
2809 */
2810asmlinkage __visible void schedule_tail(struct task_struct *prev)
2811 __releases(rq->lock)
2812{
2813 struct rq *rq;
2814
2815 /*
2816 * New tasks start with FORK_PREEMPT_COUNT, see there and
2817 * finish_task_switch() for details.
2818 *
2819 * finish_task_switch() will drop rq->lock() and lower preempt_count
2820 * and the preempt_enable() will end up enabling preemption (on
2821 * PREEMPT_COUNT kernels).
2822 */
2823
2824 rq = finish_task_switch(prev);
2825 balance_callback(rq);
2826 preempt_enable();
2827
2828 if (current->set_child_tid)
2829 put_user(task_pid_vnr(current), current->set_child_tid);
2830}
2831
2832/*
2833 * context_switch - switch to the new MM and the new thread's register state.
2834 */
2835static __always_inline struct rq *
2836context_switch(struct rq *rq, struct task_struct *prev,
2837 struct task_struct *next, struct rq_flags *rf)
2838{
2839 struct mm_struct *mm, *oldmm;
2840
2841 prepare_task_switch(rq, prev, next);
2842
2843 mm = next->mm;
2844 oldmm = prev->active_mm;
2845 /*
2846 * For paravirt, this is coupled with an exit in switch_to to
2847 * combine the page table reload and the switch backend into
2848 * one hypercall.
2849 */
2850 arch_start_context_switch(prev);
2851
2852 /*
2853 * If mm is non-NULL, we pass through switch_mm(). If mm is
2854 * NULL, we will pass through mmdrop() in finish_task_switch().
2855 * Both of these contain the full memory barrier required by
2856 * membarrier after storing to rq->curr, before returning to
2857 * user-space.
2858 */
2859 if (!mm) {
2860 next->active_mm = oldmm;
2861 mmgrab(oldmm);
2862 enter_lazy_tlb(oldmm, next);
2863 } else
2864 switch_mm_irqs_off(oldmm, mm, next);
2865
2866 if (!prev->mm) {
2867 prev->active_mm = NULL;
2868 rq->prev_mm = oldmm;
2869 }
2870
2871 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
2872
2873 prepare_lock_switch(rq, next, rf);
2874
2875 /* Here we just switch the register state and the stack. */
2876 switch_to(prev, next, prev);
2877 barrier();
2878
2879 return finish_task_switch(prev);
2880}
2881
2882/*
2883 * nr_running and nr_context_switches:
2884 *
2885 * externally visible scheduler statistics: current number of runnable
2886 * threads, total number of context switches performed since bootup.
2887 */
2888unsigned long nr_running(void)
2889{
2890 unsigned long i, sum = 0;
2891
2892 for_each_online_cpu(i)
2893 sum += cpu_rq(i)->nr_running;
2894
2895 return sum;
2896}
2897
2898/*
2899 * Check if only the current task is running on the CPU.
2900 *
2901 * Caution: this function does not check that the caller has disabled
2902 * preemption, thus the result might have a time-of-check-to-time-of-use
2903 * race. The caller is responsible to use it correctly, for example:
2904 *
2905 * - from a non-preemptable section (of course)
2906 *
2907 * - from a thread that is bound to a single CPU
2908 *
2909 * - in a loop with very short iterations (e.g. a polling loop)
2910 */
2911bool single_task_running(void)
2912{
2913 return raw_rq()->nr_running == 1;
2914}
2915EXPORT_SYMBOL(single_task_running);
2916
2917unsigned long long nr_context_switches(void)
2918{
2919 int i;
2920 unsigned long long sum = 0;
2921
2922 for_each_possible_cpu(i)
2923 sum += cpu_rq(i)->nr_switches;
2924
2925 return sum;
2926}
2927
2928/*
2929 * IO-wait accounting, and how its mostly bollocks (on SMP).
2930 *
2931 * The idea behind IO-wait account is to account the idle time that we could
2932 * have spend running if it were not for IO. That is, if we were to improve the
2933 * storage performance, we'd have a proportional reduction in IO-wait time.
2934 *
2935 * This all works nicely on UP, where, when a task blocks on IO, we account
2936 * idle time as IO-wait, because if the storage were faster, it could've been
2937 * running and we'd not be idle.
2938 *
2939 * This has been extended to SMP, by doing the same for each CPU. This however
2940 * is broken.
2941 *
2942 * Imagine for instance the case where two tasks block on one CPU, only the one
2943 * CPU will have IO-wait accounted, while the other has regular idle. Even
2944 * though, if the storage were faster, both could've ran at the same time,
2945 * utilising both CPUs.
2946 *
2947 * This means, that when looking globally, the current IO-wait accounting on
2948 * SMP is a lower bound, by reason of under accounting.
2949 *
2950 * Worse, since the numbers are provided per CPU, they are sometimes
2951 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
2952 * associated with any one particular CPU, it can wake to another CPU than it
2953 * blocked on. This means the per CPU IO-wait number is meaningless.
2954 *
2955 * Task CPU affinities can make all that even more 'interesting'.
2956 */
2957
2958unsigned long nr_iowait(void)
2959{
2960 unsigned long i, sum = 0;
2961
2962 for_each_possible_cpu(i)
2963 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2964
2965 return sum;
2966}
2967
2968/*
2969 * Consumers of these two interfaces, like for example the cpufreq menu
2970 * governor are using nonsensical data. Boosting frequency for a CPU that has
2971 * IO-wait which might not even end up running the task when it does become
2972 * runnable.
2973 */
2974
2975unsigned long nr_iowait_cpu(int cpu)
2976{
2977 struct rq *this = cpu_rq(cpu);
2978 return atomic_read(&this->nr_iowait);
2979}
2980
2981void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2982{
2983 struct rq *rq = this_rq();
2984 *nr_waiters = atomic_read(&rq->nr_iowait);
2985 *load = rq->load.weight;
2986}
2987
2988#ifdef CONFIG_SMP
2989
2990/*
2991 * sched_exec - execve() is a valuable balancing opportunity, because at
2992 * this point the task has the smallest effective memory and cache footprint.
2993 */
2994void sched_exec(void)
2995{
2996 struct task_struct *p = current;
2997 unsigned long flags;
2998 int dest_cpu;
2999
3000 raw_spin_lock_irqsave(&p->pi_lock, flags);
3001 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
3002 if (dest_cpu == smp_processor_id())
3003 goto unlock;
3004
3005 if (likely(cpu_active(dest_cpu))) {
3006 struct migration_arg arg = { p, dest_cpu };
3007
3008 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3009 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
3010 return;
3011 }
3012unlock:
3013 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3014}
3015
3016#endif
3017
3018DEFINE_PER_CPU(struct kernel_stat, kstat);
3019DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
3020
3021EXPORT_PER_CPU_SYMBOL(kstat);
3022EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
3023
3024/*
3025 * The function fair_sched_class.update_curr accesses the struct curr
3026 * and its field curr->exec_start; when called from task_sched_runtime(),
3027 * we observe a high rate of cache misses in practice.
3028 * Prefetching this data results in improved performance.
3029 */
3030static inline void prefetch_curr_exec_start(struct task_struct *p)
3031{
3032#ifdef CONFIG_FAIR_GROUP_SCHED
3033 struct sched_entity *curr = (&p->se)->cfs_rq->curr;
3034#else
3035 struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
3036#endif
3037 prefetch(curr);
3038 prefetch(&curr->exec_start);
3039}
3040
3041/*
3042 * Return accounted runtime for the task.
3043 * In case the task is currently running, return the runtime plus current's
3044 * pending runtime that have not been accounted yet.
3045 */
3046unsigned long long task_sched_runtime(struct task_struct *p)
3047{
3048 struct rq_flags rf;
3049 struct rq *rq;
3050 u64 ns;
3051
3052#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
3053 /*
3054 * 64-bit doesn't need locks to atomically read a 64-bit value.
3055 * So we have a optimization chance when the task's delta_exec is 0.
3056 * Reading ->on_cpu is racy, but this is ok.
3057 *
3058 * If we race with it leaving CPU, we'll take a lock. So we're correct.
3059 * If we race with it entering CPU, unaccounted time is 0. This is
3060 * indistinguishable from the read occurring a few cycles earlier.
3061 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
3062 * been accounted, so we're correct here as well.
3063 */
3064 if (!p->on_cpu || !task_on_rq_queued(p))
3065 return p->se.sum_exec_runtime;
3066#endif
3067
3068 rq = task_rq_lock(p, &rf);
3069 /*
3070 * Must be ->curr _and_ ->on_rq. If dequeued, we would
3071 * project cycles that may never be accounted to this
3072 * thread, breaking clock_gettime().
3073 */
3074 if (task_current(rq, p) && task_on_rq_queued(p)) {
3075 prefetch_curr_exec_start(p);
3076 update_rq_clock(rq);
3077 p->sched_class->update_curr(rq);
3078 }
3079 ns = p->se.sum_exec_runtime;
3080 task_rq_unlock(rq, p, &rf);
3081
3082 return ns;
3083}
3084
3085/*
3086 * This function gets called by the timer code, with HZ frequency.
3087 * We call it with interrupts disabled.
3088 */
3089void scheduler_tick(void)
3090{
3091 int cpu = smp_processor_id();
3092 struct rq *rq = cpu_rq(cpu);
3093 struct task_struct *curr = rq->curr;
3094 struct rq_flags rf;
3095
3096 sched_clock_tick();
3097
3098 rq_lock(rq, &rf);
3099
3100 update_rq_clock(rq);
3101 curr->sched_class->task_tick(rq, curr, 0);
3102 cpu_load_update_active(rq);
3103 calc_global_load_tick(rq);
3104
3105 rq_unlock(rq, &rf);
3106
3107 perf_event_task_tick();
3108
3109#ifdef CONFIG_SMP
3110 rq->idle_balance = idle_cpu(cpu);
3111 trigger_load_balance(rq);
3112#endif
3113}
3114
3115#ifdef CONFIG_NO_HZ_FULL
3116
3117struct tick_work {
3118 int cpu;
3119 struct delayed_work work;
3120};
3121
3122static struct tick_work __percpu *tick_work_cpu;
3123
3124static void sched_tick_remote(struct work_struct *work)
3125{
3126 struct delayed_work *dwork = to_delayed_work(work);
3127 struct tick_work *twork = container_of(dwork, struct tick_work, work);
3128 int cpu = twork->cpu;
3129 struct rq *rq = cpu_rq(cpu);
3130 struct rq_flags rf;
3131
3132 /*
3133 * Handle the tick only if it appears the remote CPU is running in full
3134 * dynticks mode. The check is racy by nature, but missing a tick or
3135 * having one too much is no big deal because the scheduler tick updates
3136 * statistics and checks timeslices in a time-independent way, regardless
3137 * of when exactly it is running.
3138 */
3139 if (!idle_cpu(cpu) && tick_nohz_tick_stopped_cpu(cpu)) {
3140 struct task_struct *curr;
3141 u64 delta;
3142
3143 rq_lock_irq(rq, &rf);
3144 update_rq_clock(rq);
3145 curr = rq->curr;
3146 delta = rq_clock_task(rq) - curr->se.exec_start;
3147
3148 /*
3149 * Make sure the next tick runs within a reasonable
3150 * amount of time.
3151 */
3152 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
3153 curr->sched_class->task_tick(rq, curr, 0);
3154 rq_unlock_irq(rq, &rf);
3155 }
3156
3157 /*
3158 * Run the remote tick once per second (1Hz). This arbitrary
3159 * frequency is large enough to avoid overload but short enough
3160 * to keep scheduler internal stats reasonably up to date.
3161 */
3162 queue_delayed_work(system_unbound_wq, dwork, HZ);
3163}
3164
3165static void sched_tick_start(int cpu)
3166{
3167 struct tick_work *twork;
3168
3169 if (housekeeping_cpu(cpu, HK_FLAG_TICK))
3170 return;
3171
3172 WARN_ON_ONCE(!tick_work_cpu);
3173
3174 twork = per_cpu_ptr(tick_work_cpu, cpu);
3175 twork->cpu = cpu;
3176 INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
3177 queue_delayed_work(system_unbound_wq, &twork->work, HZ);
3178}
3179
3180#ifdef CONFIG_HOTPLUG_CPU
3181static void sched_tick_stop(int cpu)
3182{
3183 struct tick_work *twork;
3184
3185 if (housekeeping_cpu(cpu, HK_FLAG_TICK))
3186 return;
3187
3188 WARN_ON_ONCE(!tick_work_cpu);
3189
3190 twork = per_cpu_ptr(tick_work_cpu, cpu);
3191 cancel_delayed_work_sync(&twork->work);
3192}
3193#endif /* CONFIG_HOTPLUG_CPU */
3194
3195int __init sched_tick_offload_init(void)
3196{
3197 tick_work_cpu = alloc_percpu(struct tick_work);
3198 BUG_ON(!tick_work_cpu);
3199
3200 return 0;
3201}
3202
3203#else /* !CONFIG_NO_HZ_FULL */
3204static inline void sched_tick_start(int cpu) { }
3205static inline void sched_tick_stop(int cpu) { }
3206#endif
3207
3208#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3209 defined(CONFIG_PREEMPT_TRACER))
3210/*
3211 * If the value passed in is equal to the current preempt count
3212 * then we just disabled preemption. Start timing the latency.
3213 */
3214static inline void preempt_latency_start(int val)
3215{
3216 if (preempt_count() == val) {
3217 unsigned long ip = get_lock_parent_ip();
3218#ifdef CONFIG_DEBUG_PREEMPT
3219 current->preempt_disable_ip = ip;
3220#endif
3221 trace_preempt_off(CALLER_ADDR0, ip);
3222 }
3223}
3224
3225void preempt_count_add(int val)
3226{
3227#ifdef CONFIG_DEBUG_PREEMPT
3228 /*
3229 * Underflow?
3230 */
3231 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3232 return;
3233#endif
3234 __preempt_count_add(val);
3235#ifdef CONFIG_DEBUG_PREEMPT
3236 /*
3237 * Spinlock count overflowing soon?
3238 */
3239 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3240 PREEMPT_MASK - 10);
3241#endif
3242 preempt_latency_start(val);
3243}
3244EXPORT_SYMBOL(preempt_count_add);
3245NOKPROBE_SYMBOL(preempt_count_add);
3246
3247/*
3248 * If the value passed in equals to the current preempt count
3249 * then we just enabled preemption. Stop timing the latency.
3250 */
3251static inline void preempt_latency_stop(int val)
3252{
3253 if (preempt_count() == val)
3254 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
3255}
3256
3257void preempt_count_sub(int val)
3258{
3259#ifdef CONFIG_DEBUG_PREEMPT
3260 /*
3261 * Underflow?
3262 */
3263 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3264 return;
3265 /*
3266 * Is the spinlock portion underflowing?
3267 */
3268 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3269 !(preempt_count() & PREEMPT_MASK)))
3270 return;
3271#endif
3272
3273 preempt_latency_stop(val);
3274 __preempt_count_sub(val);
3275}
3276EXPORT_SYMBOL(preempt_count_sub);
3277NOKPROBE_SYMBOL(preempt_count_sub);
3278
3279#else
3280static inline void preempt_latency_start(int val) { }
3281static inline void preempt_latency_stop(int val) { }
3282#endif
3283
3284static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
3285{
3286#ifdef CONFIG_DEBUG_PREEMPT
3287 return p->preempt_disable_ip;
3288#else
3289 return 0;
3290#endif
3291}
3292
3293/*
3294 * Print scheduling while atomic bug:
3295 */
3296static noinline void __schedule_bug(struct task_struct *prev)
3297{
3298 /* Save this before calling printk(), since that will clobber it */
3299 unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
3300
3301 if (oops_in_progress)
3302 return;
3303
3304 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3305 prev->comm, prev->pid, preempt_count());
3306
3307 debug_show_held_locks(prev);
3308 print_modules();
3309 if (irqs_disabled())
3310 print_irqtrace_events(prev);
3311 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
3312 && in_atomic_preempt_off()) {
3313 pr_err("Preemption disabled at:");
3314 print_ip_sym(preempt_disable_ip);
3315 pr_cont("\n");
3316 }
3317 if (panic_on_warn)
3318 panic("scheduling while atomic\n");
3319
3320 dump_stack();
3321 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
3322}
3323
3324/*
3325 * Various schedule()-time debugging checks and statistics:
3326 */
3327static inline void schedule_debug(struct task_struct *prev)
3328{
3329#ifdef CONFIG_SCHED_STACK_END_CHECK
3330 if (task_stack_end_corrupted(prev))
3331 panic("corrupted stack end detected inside scheduler\n");
3332#endif
3333
3334 if (unlikely(in_atomic_preempt_off())) {
3335 __schedule_bug(prev);
3336 preempt_count_set(PREEMPT_DISABLED);
3337 }
3338 rcu_sleep_check();
3339
3340 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3341
3342 schedstat_inc(this_rq()->sched_count);
3343}
3344
3345/*
3346 * Pick up the highest-prio task:
3347 */
3348static inline struct task_struct *
3349pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
3350{
3351 const struct sched_class *class;
3352 struct task_struct *p;
3353
3354 /*
3355 * Optimization: we know that if all tasks are in the fair class we can
3356 * call that function directly, but only if the @prev task wasn't of a
3357 * higher scheduling class, because otherwise those loose the
3358 * opportunity to pull in more work from other CPUs.
3359 */
3360 if (likely((prev->sched_class == &idle_sched_class ||
3361 prev->sched_class == &fair_sched_class) &&
3362 rq->nr_running == rq->cfs.h_nr_running)) {
3363
3364 p = fair_sched_class.pick_next_task(rq, prev, rf);
3365 if (unlikely(p == RETRY_TASK))
3366 goto again;
3367
3368 /* Assumes fair_sched_class->next == idle_sched_class */
3369 if (unlikely(!p))
3370 p = idle_sched_class.pick_next_task(rq, prev, rf);
3371
3372 return p;
3373 }
3374
3375again:
3376 for_each_class(class) {
3377 p = class->pick_next_task(rq, prev, rf);
3378 if (p) {
3379 if (unlikely(p == RETRY_TASK))
3380 goto again;
3381 return p;
3382 }
3383 }
3384
3385 /* The idle class should always have a runnable task: */
3386 BUG();
3387}
3388
3389/*
3390 * __schedule() is the main scheduler function.
3391 *
3392 * The main means of driving the scheduler and thus entering this function are:
3393 *
3394 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3395 *
3396 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3397 * paths. For example, see arch/x86/entry_64.S.
3398 *
3399 * To drive preemption between tasks, the scheduler sets the flag in timer
3400 * interrupt handler scheduler_tick().
3401 *
3402 * 3. Wakeups don't really cause entry into schedule(). They add a
3403 * task to the run-queue and that's it.
3404 *
3405 * Now, if the new task added to the run-queue preempts the current
3406 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3407 * called on the nearest possible occasion:
3408 *
3409 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
3410 *
3411 * - in syscall or exception context, at the next outmost
3412 * preempt_enable(). (this might be as soon as the wake_up()'s
3413 * spin_unlock()!)
3414 *
3415 * - in IRQ context, return from interrupt-handler to
3416 * preemptible context
3417 *
3418 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3419 * then at the next:
3420 *
3421 * - cond_resched() call
3422 * - explicit schedule() call
3423 * - return from syscall or exception to user-space
3424 * - return from interrupt-handler to user-space
3425 *
3426 * WARNING: must be called with preemption disabled!
3427 */
3428static void __sched notrace __schedule(bool preempt)
3429{
3430 struct task_struct *prev, *next;
3431 unsigned long *switch_count;
3432 struct rq_flags rf;
3433 struct rq *rq;
3434 int cpu;
3435
3436 cpu = smp_processor_id();
3437 rq = cpu_rq(cpu);
3438 prev = rq->curr;
3439
3440 schedule_debug(prev);
3441
3442 if (sched_feat(HRTICK))
3443 hrtick_clear(rq);
3444
3445 local_irq_disable();
3446 rcu_note_context_switch(preempt);
3447
3448 /*
3449 * Make sure that signal_pending_state()->signal_pending() below
3450 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3451 * done by the caller to avoid the race with signal_wake_up().
3452 *
3453 * The membarrier system call requires a full memory barrier
3454 * after coming from user-space, before storing to rq->curr.
3455 */
3456 rq_lock(rq, &rf);
3457 smp_mb__after_spinlock();
3458
3459 /* Promote REQ to ACT */
3460 rq->clock_update_flags <<= 1;
3461 update_rq_clock(rq);
3462
3463 switch_count = &prev->nivcsw;
3464 if (!preempt && prev->state) {
3465 if (unlikely(signal_pending_state(prev->state, prev))) {
3466 prev->state = TASK_RUNNING;
3467 } else {
3468 deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
3469 prev->on_rq = 0;
3470
3471 if (prev->in_iowait) {
3472 atomic_inc(&rq->nr_iowait);
3473 delayacct_blkio_start();
3474 }
3475
3476 /*
3477 * If a worker went to sleep, notify and ask workqueue
3478 * whether it wants to wake up a task to maintain
3479 * concurrency.
3480 */
3481 if (prev->flags & PF_WQ_WORKER) {
3482 struct task_struct *to_wakeup;
3483
3484 to_wakeup = wq_worker_sleeping(prev);
3485 if (to_wakeup)
3486 try_to_wake_up_local(to_wakeup, &rf);
3487 }
3488 }
3489 switch_count = &prev->nvcsw;
3490 }
3491
3492 next = pick_next_task(rq, prev, &rf);
3493 clear_tsk_need_resched(prev);
3494 clear_preempt_need_resched();
3495
3496 if (likely(prev != next)) {
3497 rq->nr_switches++;
3498 rq->curr = next;
3499 /*
3500 * The membarrier system call requires each architecture
3501 * to have a full memory barrier after updating
3502 * rq->curr, before returning to user-space.
3503 *
3504 * Here are the schemes providing that barrier on the
3505 * various architectures:
3506 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
3507 * switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
3508 * - finish_lock_switch() for weakly-ordered
3509 * architectures where spin_unlock is a full barrier,
3510 * - switch_to() for arm64 (weakly-ordered, spin_unlock
3511 * is a RELEASE barrier),
3512 */
3513 ++*switch_count;
3514
3515 trace_sched_switch(preempt, prev, next);
3516
3517 /* Also unlocks the rq: */
3518 rq = context_switch(rq, prev, next, &rf);
3519 } else {
3520 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
3521 rq_unlock_irq(rq, &rf);
3522 }
3523
3524 balance_callback(rq);
3525}
3526
3527void __noreturn do_task_dead(void)
3528{
3529 /* Causes final put_task_struct in finish_task_switch(): */
3530 set_special_state(TASK_DEAD);
3531
3532 /* Tell freezer to ignore us: */
3533 current->flags |= PF_NOFREEZE;
3534
3535 __schedule(false);
3536 BUG();
3537
3538 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
3539 for (;;)
3540 cpu_relax();
3541}
3542
3543static inline void sched_submit_work(struct task_struct *tsk)
3544{
3545 if (!tsk->state || tsk_is_pi_blocked(tsk))
3546 return;
3547 /*
3548 * If we are going to sleep and we have plugged IO queued,
3549 * make sure to submit it to avoid deadlocks.
3550 */
3551 if (blk_needs_flush_plug(tsk))
3552 blk_schedule_flush_plug(tsk);
3553}
3554
3555asmlinkage __visible void __sched schedule(void)
3556{
3557 struct task_struct *tsk = current;
3558
3559 sched_submit_work(tsk);
3560 do {
3561 preempt_disable();
3562 __schedule(false);
3563 sched_preempt_enable_no_resched();
3564 } while (need_resched());
3565}
3566EXPORT_SYMBOL(schedule);
3567
3568/*
3569 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
3570 * state (have scheduled out non-voluntarily) by making sure that all
3571 * tasks have either left the run queue or have gone into user space.
3572 * As idle tasks do not do either, they must not ever be preempted
3573 * (schedule out non-voluntarily).
3574 *
3575 * schedule_idle() is similar to schedule_preempt_disable() except that it
3576 * never enables preemption because it does not call sched_submit_work().
3577 */
3578void __sched schedule_idle(void)
3579{
3580 /*
3581 * As this skips calling sched_submit_work(), which the idle task does
3582 * regardless because that function is a nop when the task is in a
3583 * TASK_RUNNING state, make sure this isn't used someplace that the
3584 * current task can be in any other state. Note, idle is always in the
3585 * TASK_RUNNING state.
3586 */
3587 WARN_ON_ONCE(current->state);
3588 do {
3589 __schedule(false);
3590 } while (need_resched());
3591}
3592
3593#ifdef CONFIG_CONTEXT_TRACKING
3594asmlinkage __visible void __sched schedule_user(void)
3595{
3596 /*
3597 * If we come here after a random call to set_need_resched(),
3598 * or we have been woken up remotely but the IPI has not yet arrived,
3599 * we haven't yet exited the RCU idle mode. Do it here manually until
3600 * we find a better solution.
3601 *
3602 * NB: There are buggy callers of this function. Ideally we
3603 * should warn if prev_state != CONTEXT_USER, but that will trigger
3604 * too frequently to make sense yet.
3605 */
3606 enum ctx_state prev_state = exception_enter();
3607 schedule();
3608 exception_exit(prev_state);
3609}
3610#endif
3611
3612/**
3613 * schedule_preempt_disabled - called with preemption disabled
3614 *
3615 * Returns with preemption disabled. Note: preempt_count must be 1
3616 */
3617void __sched schedule_preempt_disabled(void)
3618{
3619 sched_preempt_enable_no_resched();
3620 schedule();
3621 preempt_disable();
3622}
3623
3624static void __sched notrace preempt_schedule_common(void)
3625{
3626 do {
3627 /*
3628 * Because the function tracer can trace preempt_count_sub()
3629 * and it also uses preempt_enable/disable_notrace(), if
3630 * NEED_RESCHED is set, the preempt_enable_notrace() called
3631 * by the function tracer will call this function again and
3632 * cause infinite recursion.
3633 *
3634 * Preemption must be disabled here before the function
3635 * tracer can trace. Break up preempt_disable() into two
3636 * calls. One to disable preemption without fear of being
3637 * traced. The other to still record the preemption latency,
3638 * which can also be traced by the function tracer.
3639 */
3640 preempt_disable_notrace();
3641 preempt_latency_start(1);
3642 __schedule(true);
3643 preempt_latency_stop(1);
3644 preempt_enable_no_resched_notrace();
3645
3646 /*
3647 * Check again in case we missed a preemption opportunity
3648 * between schedule and now.
3649 */
3650 } while (need_resched());
3651}
3652
3653#ifdef CONFIG_PREEMPT
3654/*
3655 * this is the entry point to schedule() from in-kernel preemption
3656 * off of preempt_enable. Kernel preemptions off return from interrupt
3657 * occur there and call schedule directly.
3658 */
3659asmlinkage __visible void __sched notrace preempt_schedule(void)
3660{
3661 /*
3662 * If there is a non-zero preempt_count or interrupts are disabled,
3663 * we do not want to preempt the current task. Just return..
3664 */
3665 if (likely(!preemptible()))
3666 return;
3667
3668 preempt_schedule_common();
3669}
3670NOKPROBE_SYMBOL(preempt_schedule);
3671EXPORT_SYMBOL(preempt_schedule);
3672
3673/**
3674 * preempt_schedule_notrace - preempt_schedule called by tracing
3675 *
3676 * The tracing infrastructure uses preempt_enable_notrace to prevent
3677 * recursion and tracing preempt enabling caused by the tracing
3678 * infrastructure itself. But as tracing can happen in areas coming
3679 * from userspace or just about to enter userspace, a preempt enable
3680 * can occur before user_exit() is called. This will cause the scheduler
3681 * to be called when the system is still in usermode.
3682 *
3683 * To prevent this, the preempt_enable_notrace will use this function
3684 * instead of preempt_schedule() to exit user context if needed before
3685 * calling the scheduler.
3686 */
3687asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
3688{
3689 enum ctx_state prev_ctx;
3690
3691 if (likely(!preemptible()))
3692 return;
3693
3694 do {
3695 /*
3696 * Because the function tracer can trace preempt_count_sub()
3697 * and it also uses preempt_enable/disable_notrace(), if
3698 * NEED_RESCHED is set, the preempt_enable_notrace() called
3699 * by the function tracer will call this function again and
3700 * cause infinite recursion.
3701 *
3702 * Preemption must be disabled here before the function
3703 * tracer can trace. Break up preempt_disable() into two
3704 * calls. One to disable preemption without fear of being
3705 * traced. The other to still record the preemption latency,
3706 * which can also be traced by the function tracer.
3707 */
3708 preempt_disable_notrace();
3709 preempt_latency_start(1);
3710 /*
3711 * Needs preempt disabled in case user_exit() is traced
3712 * and the tracer calls preempt_enable_notrace() causing
3713 * an infinite recursion.
3714 */
3715 prev_ctx = exception_enter();
3716 __schedule(true);
3717 exception_exit(prev_ctx);
3718
3719 preempt_latency_stop(1);
3720 preempt_enable_no_resched_notrace();
3721 } while (need_resched());
3722}
3723EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
3724
3725#endif /* CONFIG_PREEMPT */
3726
3727/*
3728 * this is the entry point to schedule() from kernel preemption
3729 * off of irq context.
3730 * Note, that this is called and return with irqs disabled. This will
3731 * protect us against recursive calling from irq.
3732 */
3733asmlinkage __visible void __sched preempt_schedule_irq(void)
3734{
3735 enum ctx_state prev_state;
3736
3737 /* Catch callers which need to be fixed */
3738 BUG_ON(preempt_count() || !irqs_disabled());
3739
3740 prev_state = exception_enter();
3741
3742 do {
3743 preempt_disable();
3744 local_irq_enable();
3745 __schedule(true);
3746 local_irq_disable();
3747 sched_preempt_enable_no_resched();
3748 } while (need_resched());
3749
3750 exception_exit(prev_state);
3751}
3752
3753int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
3754 void *key)
3755{
3756 return try_to_wake_up(curr->private, mode, wake_flags);
3757}
3758EXPORT_SYMBOL(default_wake_function);
3759
3760#ifdef CONFIG_RT_MUTEXES
3761
3762static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
3763{
3764 if (pi_task)
3765 prio = min(prio, pi_task->prio);
3766
3767 return prio;
3768}
3769
3770static inline int rt_effective_prio(struct task_struct *p, int prio)
3771{
3772 struct task_struct *pi_task = rt_mutex_get_top_task(p);
3773
3774 return __rt_effective_prio(pi_task, prio);
3775}
3776
3777/*
3778 * rt_mutex_setprio - set the current priority of a task
3779 * @p: task to boost
3780 * @pi_task: donor task
3781 *
3782 * This function changes the 'effective' priority of a task. It does
3783 * not touch ->normal_prio like __setscheduler().
3784 *
3785 * Used by the rt_mutex code to implement priority inheritance
3786 * logic. Call site only calls if the priority of the task changed.
3787 */
3788void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
3789{
3790 int prio, oldprio, queued, running, queue_flag =
3791 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
3792 const struct sched_class *prev_class;
3793 struct rq_flags rf;
3794 struct rq *rq;
3795
3796 /* XXX used to be waiter->prio, not waiter->task->prio */
3797 prio = __rt_effective_prio(pi_task, p->normal_prio);
3798
3799 /*
3800 * If nothing changed; bail early.
3801 */
3802 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
3803 return;
3804
3805 rq = __task_rq_lock(p, &rf);
3806 update_rq_clock(rq);
3807 /*
3808 * Set under pi_lock && rq->lock, such that the value can be used under
3809 * either lock.
3810 *
3811 * Note that there is loads of tricky to make this pointer cache work
3812 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
3813 * ensure a task is de-boosted (pi_task is set to NULL) before the
3814 * task is allowed to run again (and can exit). This ensures the pointer
3815 * points to a blocked task -- which guaratees the task is present.
3816 */
3817 p->pi_top_task = pi_task;
3818
3819 /*
3820 * For FIFO/RR we only need to set prio, if that matches we're done.
3821 */
3822 if (prio == p->prio && !dl_prio(prio))
3823 goto out_unlock;
3824
3825 /*
3826 * Idle task boosting is a nono in general. There is one
3827 * exception, when PREEMPT_RT and NOHZ is active:
3828 *
3829 * The idle task calls get_next_timer_interrupt() and holds
3830 * the timer wheel base->lock on the CPU and another CPU wants
3831 * to access the timer (probably to cancel it). We can safely
3832 * ignore the boosting request, as the idle CPU runs this code
3833 * with interrupts disabled and will complete the lock
3834 * protected section without being interrupted. So there is no
3835 * real need to boost.
3836 */
3837 if (unlikely(p == rq->idle)) {
3838 WARN_ON(p != rq->curr);
3839 WARN_ON(p->pi_blocked_on);
3840 goto out_unlock;
3841 }
3842
3843 trace_sched_pi_setprio(p, pi_task);
3844 oldprio = p->prio;
3845
3846 if (oldprio == prio)
3847 queue_flag &= ~DEQUEUE_MOVE;
3848
3849 prev_class = p->sched_class;
3850 queued = task_on_rq_queued(p);
3851 running = task_current(rq, p);
3852 if (queued)
3853 dequeue_task(rq, p, queue_flag);
3854 if (running)
3855 put_prev_task(rq, p);
3856
3857 /*
3858 * Boosting condition are:
3859 * 1. -rt task is running and holds mutex A
3860 * --> -dl task blocks on mutex A
3861 *
3862 * 2. -dl task is running and holds mutex A
3863 * --> -dl task blocks on mutex A and could preempt the
3864 * running task
3865 */
3866 if (dl_prio(prio)) {
3867 if (!dl_prio(p->normal_prio) ||
3868 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3869 p->dl.dl_boosted = 1;
3870 queue_flag |= ENQUEUE_REPLENISH;
3871 } else
3872 p->dl.dl_boosted = 0;
3873 p->sched_class = &dl_sched_class;
3874 } else if (rt_prio(prio)) {
3875 if (dl_prio(oldprio))
3876 p->dl.dl_boosted = 0;
3877 if (oldprio < prio)
3878 queue_flag |= ENQUEUE_HEAD;
3879 p->sched_class = &rt_sched_class;
3880 } else {
3881 if (dl_prio(oldprio))
3882 p->dl.dl_boosted = 0;
3883 if (rt_prio(oldprio))
3884 p->rt.timeout = 0;
3885 p->sched_class = &fair_sched_class;
3886 }
3887
3888 p->prio = prio;
3889
3890 if (queued)
3891 enqueue_task(rq, p, queue_flag);
3892 if (running)
3893 set_curr_task(rq, p);
3894
3895 check_class_changed(rq, p, prev_class, oldprio);
3896out_unlock:
3897 /* Avoid rq from going away on us: */
3898 preempt_disable();
3899 __task_rq_unlock(rq, &rf);
3900
3901 balance_callback(rq);
3902 preempt_enable();
3903}
3904#else
3905static inline int rt_effective_prio(struct task_struct *p, int prio)
3906{
3907 return prio;
3908}
3909#endif
3910
3911void set_user_nice(struct task_struct *p, long nice)
3912{
3913 bool queued, running;
3914 int old_prio, delta;
3915 struct rq_flags rf;
3916 struct rq *rq;
3917
3918 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
3919 return;
3920 /*
3921 * We have to be careful, if called from sys_setpriority(),
3922 * the task might be in the middle of scheduling on another CPU.
3923 */
3924 rq = task_rq_lock(p, &rf);
3925 update_rq_clock(rq);
3926
3927 /*
3928 * The RT priorities are set via sched_setscheduler(), but we still
3929 * allow the 'normal' nice value to be set - but as expected
3930 * it wont have any effect on scheduling until the task is
3931 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3932 */
3933 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3934 p->static_prio = NICE_TO_PRIO(nice);
3935 goto out_unlock;
3936 }
3937 queued = task_on_rq_queued(p);
3938 running = task_current(rq, p);
3939 if (queued)
3940 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
3941 if (running)
3942 put_prev_task(rq, p);
3943
3944 p->static_prio = NICE_TO_PRIO(nice);
3945 set_load_weight(p, true);
3946 old_prio = p->prio;
3947 p->prio = effective_prio(p);
3948 delta = p->prio - old_prio;
3949
3950 if (queued) {
3951 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
3952 /*
3953 * If the task increased its priority or is running and
3954 * lowered its priority, then reschedule its CPU:
3955 */
3956 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3957 resched_curr(rq);
3958 }
3959 if (running)
3960 set_curr_task(rq, p);
3961out_unlock:
3962 task_rq_unlock(rq, p, &rf);
3963}
3964EXPORT_SYMBOL(set_user_nice);
3965
3966/*
3967 * can_nice - check if a task can reduce its nice value
3968 * @p: task
3969 * @nice: nice value
3970 */
3971int can_nice(const struct task_struct *p, const int nice)
3972{
3973 /* Convert nice value [19,-20] to rlimit style value [1,40]: */
3974 int nice_rlim = nice_to_rlimit(nice);
3975
3976 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3977 capable(CAP_SYS_NICE));
3978}
3979
3980#ifdef __ARCH_WANT_SYS_NICE
3981
3982/*
3983 * sys_nice - change the priority of the current process.
3984 * @increment: priority increment
3985 *
3986 * sys_setpriority is a more generic, but much slower function that
3987 * does similar things.
3988 */
3989SYSCALL_DEFINE1(nice, int, increment)
3990{
3991 long nice, retval;
3992
3993 /*
3994 * Setpriority might change our priority at the same moment.
3995 * We don't have to worry. Conceptually one call occurs first
3996 * and we have a single winner.
3997 */
3998 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3999 nice = task_nice(current) + increment;
4000
4001 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
4002 if (increment < 0 && !can_nice(current, nice))
4003 return -EPERM;
4004
4005 retval = security_task_setnice(current, nice);
4006 if (retval)
4007 return retval;
4008
4009 set_user_nice(current, nice);
4010 return 0;
4011}
4012
4013#endif
4014
4015/**
4016 * task_prio - return the priority value of a given task.
4017 * @p: the task in question.
4018 *
4019 * Return: The priority value as seen by users in /proc.
4020 * RT tasks are offset by -200. Normal tasks are centered
4021 * around 0, value goes from -16 to +15.
4022 */
4023int task_prio(const struct task_struct *p)
4024{
4025 return p->prio - MAX_RT_PRIO;
4026}
4027
4028/**
4029 * idle_cpu - is a given CPU idle currently?
4030 * @cpu: the processor in question.
4031 *
4032 * Return: 1 if the CPU is currently idle. 0 otherwise.
4033 */
4034int idle_cpu(int cpu)
4035{
4036 struct rq *rq = cpu_rq(cpu);
4037
4038 if (rq->curr != rq->idle)
4039 return 0;
4040
4041 if (rq->nr_running)
4042 return 0;
4043
4044#ifdef CONFIG_SMP
4045 if (!llist_empty(&rq->wake_list))
4046 return 0;
4047#endif
4048
4049 return 1;
4050}
4051
4052/**
4053 * idle_task - return the idle task for a given CPU.
4054 * @cpu: the processor in question.
4055 *
4056 * Return: The idle task for the CPU @cpu.
4057 */
4058struct task_struct *idle_task(int cpu)
4059{
4060 return cpu_rq(cpu)->idle;
4061}
4062
4063/**
4064 * find_process_by_pid - find a process with a matching PID value.
4065 * @pid: the pid in question.
4066 *
4067 * The task of @pid, if found. %NULL otherwise.
4068 */
4069static struct task_struct *find_process_by_pid(pid_t pid)
4070{
4071 return pid ? find_task_by_vpid(pid) : current;
4072}
4073
4074/*
4075 * sched_setparam() passes in -1 for its policy, to let the functions
4076 * it calls know not to change it.
4077 */
4078#define SETPARAM_POLICY -1
4079
4080static void __setscheduler_params(struct task_struct *p,
4081 const struct sched_attr *attr)
4082{
4083 int policy = attr->sched_policy;
4084
4085 if (policy == SETPARAM_POLICY)
4086 policy = p->policy;
4087
4088 p->policy = policy;
4089
4090 if (dl_policy(policy))
4091 __setparam_dl(p, attr);
4092 else if (fair_policy(policy))
4093 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
4094
4095 /*
4096 * __sched_setscheduler() ensures attr->sched_priority == 0 when
4097 * !rt_policy. Always setting this ensures that things like
4098 * getparam()/getattr() don't report silly values for !rt tasks.
4099 */
4100 p->rt_priority = attr->sched_priority;
4101 p->normal_prio = normal_prio(p);
4102 set_load_weight(p, true);
4103}
4104
4105/* Actually do priority change: must hold pi & rq lock. */
4106static void __setscheduler(struct rq *rq, struct task_struct *p,
4107 const struct sched_attr *attr, bool keep_boost)
4108{
4109 __setscheduler_params(p, attr);
4110
4111 /*
4112 * Keep a potential priority boosting if called from
4113 * sched_setscheduler().
4114 */
4115 p->prio = normal_prio(p);
4116 if (keep_boost)
4117 p->prio = rt_effective_prio(p, p->prio);
4118
4119 if (dl_prio(p->prio))
4120 p->sched_class = &dl_sched_class;
4121 else if (rt_prio(p->prio))
4122 p->sched_class = &rt_sched_class;
4123 else
4124 p->sched_class = &fair_sched_class;
4125}
4126
4127/*
4128 * Check the target process has a UID that matches the current process's:
4129 */
4130static bool check_same_owner(struct task_struct *p)
4131{
4132 const struct cred *cred = current_cred(), *pcred;
4133 bool match;
4134
4135 rcu_read_lock();
4136 pcred = __task_cred(p);
4137 match = (uid_eq(cred->euid, pcred->euid) ||
4138 uid_eq(cred->euid, pcred->uid));
4139 rcu_read_unlock();
4140 return match;
4141}
4142
4143static int __sched_setscheduler(struct task_struct *p,
4144 const struct sched_attr *attr,
4145 bool user, bool pi)
4146{
4147 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
4148 MAX_RT_PRIO - 1 - attr->sched_priority;
4149 int retval, oldprio, oldpolicy = -1, queued, running;
4150 int new_effective_prio, policy = attr->sched_policy;
4151 const struct sched_class *prev_class;
4152 struct rq_flags rf;
4153 int reset_on_fork;
4154 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
4155 struct rq *rq;
4156
4157 /* The pi code expects interrupts enabled */
4158 BUG_ON(pi && in_interrupt());
4159recheck:
4160 /* Double check policy once rq lock held: */
4161 if (policy < 0) {
4162 reset_on_fork = p->sched_reset_on_fork;
4163 policy = oldpolicy = p->policy;
4164 } else {
4165 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
4166
4167 if (!valid_policy(policy))
4168 return -EINVAL;
4169 }
4170
4171 if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
4172 return -EINVAL;
4173
4174 /*
4175 * Valid priorities for SCHED_FIFO and SCHED_RR are
4176 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4177 * SCHED_BATCH and SCHED_IDLE is 0.
4178 */
4179 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
4180 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
4181 return -EINVAL;
4182 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
4183 (rt_policy(policy) != (attr->sched_priority != 0)))
4184 return -EINVAL;
4185
4186 /*
4187 * Allow unprivileged RT tasks to decrease priority:
4188 */
4189 if (user && !capable(CAP_SYS_NICE)) {
4190 if (fair_policy(policy)) {
4191 if (attr->sched_nice < task_nice(p) &&
4192 !can_nice(p, attr->sched_nice))
4193 return -EPERM;
4194 }
4195
4196 if (rt_policy(policy)) {
4197 unsigned long rlim_rtprio =
4198 task_rlimit(p, RLIMIT_RTPRIO);
4199
4200 /* Can't set/change the rt policy: */
4201 if (policy != p->policy && !rlim_rtprio)
4202 return -EPERM;
4203
4204 /* Can't increase priority: */
4205 if (attr->sched_priority > p->rt_priority &&
4206 attr->sched_priority > rlim_rtprio)
4207 return -EPERM;
4208 }
4209
4210 /*
4211 * Can't set/change SCHED_DEADLINE policy at all for now
4212 * (safest behavior); in the future we would like to allow
4213 * unprivileged DL tasks to increase their relative deadline
4214 * or reduce their runtime (both ways reducing utilization)
4215 */
4216 if (dl_policy(policy))
4217 return -EPERM;
4218
4219 /*
4220 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4221 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
4222 */
4223 if (idle_policy(p->policy) && !idle_policy(policy)) {
4224 if (!can_nice(p, task_nice(p)))
4225 return -EPERM;
4226 }
4227
4228 /* Can't change other user's priorities: */
4229 if (!check_same_owner(p))
4230 return -EPERM;
4231
4232 /* Normal users shall not reset the sched_reset_on_fork flag: */
4233 if (p->sched_reset_on_fork && !reset_on_fork)
4234 return -EPERM;
4235 }
4236
4237 if (user) {
4238 if (attr->sched_flags & SCHED_FLAG_SUGOV)
4239 return -EINVAL;
4240
4241 retval = security_task_setscheduler(p);
4242 if (retval)
4243 return retval;
4244 }
4245
4246 /*
4247 * Make sure no PI-waiters arrive (or leave) while we are
4248 * changing the priority of the task:
4249 *
4250 * To be able to change p->policy safely, the appropriate
4251 * runqueue lock must be held.
4252 */
4253 rq = task_rq_lock(p, &rf);
4254 update_rq_clock(rq);
4255
4256 /*
4257 * Changing the policy of the stop threads its a very bad idea:
4258 */
4259 if (p == rq->stop) {
4260 task_rq_unlock(rq, p, &rf);
4261 return -EINVAL;
4262 }
4263
4264 /*
4265 * If not changing anything there's no need to proceed further,
4266 * but store a possible modification of reset_on_fork.
4267 */
4268 if (unlikely(policy == p->policy)) {
4269 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
4270 goto change;
4271 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
4272 goto change;
4273 if (dl_policy(policy) && dl_param_changed(p, attr))
4274 goto change;
4275
4276 p->sched_reset_on_fork = reset_on_fork;
4277 task_rq_unlock(rq, p, &rf);
4278 return 0;
4279 }
4280change:
4281
4282 if (user) {
4283#ifdef CONFIG_RT_GROUP_SCHED
4284 /*
4285 * Do not allow realtime tasks into groups that have no runtime
4286 * assigned.
4287 */
4288 if (rt_bandwidth_enabled() && rt_policy(policy) &&
4289 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4290 !task_group_is_autogroup(task_group(p))) {
4291 task_rq_unlock(rq, p, &rf);
4292 return -EPERM;
4293 }
4294#endif
4295#ifdef CONFIG_SMP
4296 if (dl_bandwidth_enabled() && dl_policy(policy) &&
4297 !(attr->sched_flags & SCHED_FLAG_SUGOV)) {
4298 cpumask_t *span = rq->rd->span;
4299
4300 /*
4301 * Don't allow tasks with an affinity mask smaller than
4302 * the entire root_domain to become SCHED_DEADLINE. We
4303 * will also fail if there's no bandwidth available.
4304 */
4305 if (!cpumask_subset(span, &p->cpus_allowed) ||
4306 rq->rd->dl_bw.bw == 0) {
4307 task_rq_unlock(rq, p, &rf);
4308 return -EPERM;
4309 }
4310 }
4311#endif
4312 }
4313
4314 /* Re-check policy now with rq lock held: */
4315 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4316 policy = oldpolicy = -1;
4317 task_rq_unlock(rq, p, &rf);
4318 goto recheck;
4319 }
4320
4321 /*
4322 * If setscheduling to SCHED_DEADLINE (or changing the parameters
4323 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
4324 * is available.
4325 */
4326 if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
4327 task_rq_unlock(rq, p, &rf);
4328 return -EBUSY;
4329 }
4330
4331 p->sched_reset_on_fork = reset_on_fork;
4332 oldprio = p->prio;
4333
4334 if (pi) {
4335 /*
4336 * Take priority boosted tasks into account. If the new
4337 * effective priority is unchanged, we just store the new
4338 * normal parameters and do not touch the scheduler class and
4339 * the runqueue. This will be done when the task deboost
4340 * itself.
4341 */
4342 new_effective_prio = rt_effective_prio(p, newprio);
4343 if (new_effective_prio == oldprio)
4344 queue_flags &= ~DEQUEUE_MOVE;
4345 }
4346
4347 queued = task_on_rq_queued(p);
4348 running = task_current(rq, p);
4349 if (queued)
4350 dequeue_task(rq, p, queue_flags);
4351 if (running)
4352 put_prev_task(rq, p);
4353
4354 prev_class = p->sched_class;
4355 __setscheduler(rq, p, attr, pi);
4356
4357 if (queued) {
4358 /*
4359 * We enqueue to tail when the priority of a task is
4360 * increased (user space view).
4361 */
4362 if (oldprio < p->prio)
4363 queue_flags |= ENQUEUE_HEAD;
4364
4365 enqueue_task(rq, p, queue_flags);
4366 }
4367 if (running)
4368 set_curr_task(rq, p);
4369
4370 check_class_changed(rq, p, prev_class, oldprio);
4371
4372 /* Avoid rq from going away on us: */
4373 preempt_disable();
4374 task_rq_unlock(rq, p, &rf);
4375
4376 if (pi)
4377 rt_mutex_adjust_pi(p);
4378
4379 /* Run balance callbacks after we've adjusted the PI chain: */
4380 balance_callback(rq);
4381 preempt_enable();
4382
4383 return 0;
4384}
4385
4386static int _sched_setscheduler(struct task_struct *p, int policy,
4387 const struct sched_param *param, bool check)
4388{
4389 struct sched_attr attr = {
4390 .sched_policy = policy,
4391 .sched_priority = param->sched_priority,
4392 .sched_nice = PRIO_TO_NICE(p->static_prio),
4393 };
4394
4395 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
4396 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
4397 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4398 policy &= ~SCHED_RESET_ON_FORK;
4399 attr.sched_policy = policy;
4400 }
4401
4402 return __sched_setscheduler(p, &attr, check, true);
4403}
4404/**
4405 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4406 * @p: the task in question.
4407 * @policy: new policy.
4408 * @param: structure containing the new RT priority.
4409 *
4410 * Return: 0 on success. An error code otherwise.
4411 *
4412 * NOTE that the task may be already dead.
4413 */
4414int sched_setscheduler(struct task_struct *p, int policy,
4415 const struct sched_param *param)
4416{
4417 return _sched_setscheduler(p, policy, param, true);
4418}
4419EXPORT_SYMBOL_GPL(sched_setscheduler);
4420
4421int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
4422{
4423 return __sched_setscheduler(p, attr, true, true);
4424}
4425EXPORT_SYMBOL_GPL(sched_setattr);
4426
4427int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
4428{
4429 return __sched_setscheduler(p, attr, false, true);
4430}
4431
4432/**
4433 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4434 * @p: the task in question.
4435 * @policy: new policy.
4436 * @param: structure containing the new RT priority.
4437 *
4438 * Just like sched_setscheduler, only don't bother checking if the
4439 * current context has permission. For example, this is needed in
4440 * stop_machine(): we create temporary high priority worker threads,
4441 * but our caller might not have that capability.
4442 *
4443 * Return: 0 on success. An error code otherwise.
4444 */
4445int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4446 const struct sched_param *param)
4447{
4448 return _sched_setscheduler(p, policy, param, false);
4449}
4450EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
4451
4452static int
4453do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4454{
4455 struct sched_param lparam;
4456 struct task_struct *p;
4457 int retval;
4458
4459 if (!param || pid < 0)
4460 return -EINVAL;
4461 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4462 return -EFAULT;
4463
4464 rcu_read_lock();
4465 retval = -ESRCH;
4466 p = find_process_by_pid(pid);
4467 if (p != NULL)
4468 retval = sched_setscheduler(p, policy, &lparam);
4469 rcu_read_unlock();
4470
4471 return retval;
4472}
4473
4474/*
4475 * Mimics kernel/events/core.c perf_copy_attr().
4476 */
4477static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
4478{
4479 u32 size;
4480 int ret;
4481
4482 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
4483 return -EFAULT;
4484
4485 /* Zero the full structure, so that a short copy will be nice: */
4486 memset(attr, 0, sizeof(*attr));
4487
4488 ret = get_user(size, &uattr->size);
4489 if (ret)
4490 return ret;
4491
4492 /* Bail out on silly large: */
4493 if (size > PAGE_SIZE)
4494 goto err_size;
4495
4496 /* ABI compatibility quirk: */
4497 if (!size)
4498 size = SCHED_ATTR_SIZE_VER0;
4499
4500 if (size < SCHED_ATTR_SIZE_VER0)
4501 goto err_size;
4502
4503 /*
4504 * If we're handed a bigger struct than we know of,
4505 * ensure all the unknown bits are 0 - i.e. new
4506 * user-space does not rely on any kernel feature
4507 * extensions we dont know about yet.
4508 */
4509 if (size > sizeof(*attr)) {
4510 unsigned char __user *addr;
4511 unsigned char __user *end;
4512 unsigned char val;
4513
4514 addr = (void __user *)uattr + sizeof(*attr);
4515 end = (void __user *)uattr + size;
4516
4517 for (; addr < end; addr++) {
4518 ret = get_user(val, addr);
4519 if (ret)
4520 return ret;
4521 if (val)
4522 goto err_size;
4523 }
4524 size = sizeof(*attr);
4525 }
4526
4527 ret = copy_from_user(attr, uattr, size);
4528 if (ret)
4529 return -EFAULT;
4530
4531 /*
4532 * XXX: Do we want to be lenient like existing syscalls; or do we want
4533 * to be strict and return an error on out-of-bounds values?
4534 */
4535 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
4536
4537 return 0;
4538
4539err_size:
4540 put_user(sizeof(*attr), &uattr->size);
4541 return -E2BIG;
4542}
4543
4544/**
4545 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4546 * @pid: the pid in question.
4547 * @policy: new policy.
4548 * @param: structure containing the new RT priority.
4549 *
4550 * Return: 0 on success. An error code otherwise.
4551 */
4552SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
4553{
4554 if (policy < 0)
4555 return -EINVAL;
4556
4557 return do_sched_setscheduler(pid, policy, param);
4558}
4559
4560/**
4561 * sys_sched_setparam - set/change the RT priority of a thread
4562 * @pid: the pid in question.
4563 * @param: structure containing the new RT priority.
4564 *
4565 * Return: 0 on success. An error code otherwise.
4566 */
4567SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4568{
4569 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
4570}
4571
4572/**
4573 * sys_sched_setattr - same as above, but with extended sched_attr
4574 * @pid: the pid in question.
4575 * @uattr: structure containing the extended parameters.
4576 * @flags: for future extension.
4577 */
4578SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4579 unsigned int, flags)
4580{
4581 struct sched_attr attr;
4582 struct task_struct *p;
4583 int retval;
4584
4585 if (!uattr || pid < 0 || flags)
4586 return -EINVAL;
4587
4588 retval = sched_copy_attr(uattr, &attr);
4589 if (retval)
4590 return retval;
4591
4592 if ((int)attr.sched_policy < 0)
4593 return -EINVAL;
4594
4595 rcu_read_lock();
4596 retval = -ESRCH;
4597 p = find_process_by_pid(pid);
4598 if (p != NULL)
4599 retval = sched_setattr(p, &attr);
4600 rcu_read_unlock();
4601
4602 return retval;
4603}
4604
4605/**
4606 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4607 * @pid: the pid in question.
4608 *
4609 * Return: On success, the policy of the thread. Otherwise, a negative error
4610 * code.
4611 */
4612SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4613{
4614 struct task_struct *p;
4615 int retval;
4616
4617 if (pid < 0)
4618 return -EINVAL;
4619
4620 retval = -ESRCH;
4621 rcu_read_lock();
4622 p = find_process_by_pid(pid);
4623 if (p) {
4624 retval = security_task_getscheduler(p);
4625 if (!retval)
4626 retval = p->policy
4627 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4628 }
4629 rcu_read_unlock();
4630 return retval;
4631}
4632
4633/**
4634 * sys_sched_getparam - get the RT priority of a thread
4635 * @pid: the pid in question.
4636 * @param: structure containing the RT priority.
4637 *
4638 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4639 * code.
4640 */
4641SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4642{
4643 struct sched_param lp = { .sched_priority = 0 };
4644 struct task_struct *p;
4645 int retval;
4646
4647 if (!param || pid < 0)
4648 return -EINVAL;
4649
4650 rcu_read_lock();
4651 p = find_process_by_pid(pid);
4652 retval = -ESRCH;
4653 if (!p)
4654 goto out_unlock;
4655
4656 retval = security_task_getscheduler(p);
4657 if (retval)
4658 goto out_unlock;
4659
4660 if (task_has_rt_policy(p))
4661 lp.sched_priority = p->rt_priority;
4662 rcu_read_unlock();
4663
4664 /*
4665 * This one might sleep, we cannot do it with a spinlock held ...
4666 */
4667 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4668
4669 return retval;
4670
4671out_unlock:
4672 rcu_read_unlock();
4673 return retval;
4674}
4675
4676static int sched_read_attr(struct sched_attr __user *uattr,
4677 struct sched_attr *attr,
4678 unsigned int usize)
4679{
4680 int ret;
4681
4682 if (!access_ok(VERIFY_WRITE, uattr, usize))
4683 return -EFAULT;
4684
4685 /*
4686 * If we're handed a smaller struct than we know of,
4687 * ensure all the unknown bits are 0 - i.e. old
4688 * user-space does not get uncomplete information.
4689 */
4690 if (usize < sizeof(*attr)) {
4691 unsigned char *addr;
4692 unsigned char *end;
4693
4694 addr = (void *)attr + usize;
4695 end = (void *)attr + sizeof(*attr);
4696
4697 for (; addr < end; addr++) {
4698 if (*addr)
4699 return -EFBIG;
4700 }
4701
4702 attr->size = usize;
4703 }
4704
4705 ret = copy_to_user(uattr, attr, attr->size);
4706 if (ret)
4707 return -EFAULT;
4708
4709 return 0;
4710}
4711
4712/**
4713 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
4714 * @pid: the pid in question.
4715 * @uattr: structure containing the extended parameters.
4716 * @size: sizeof(attr) for fwd/bwd comp.
4717 * @flags: for future extension.
4718 */
4719SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4720 unsigned int, size, unsigned int, flags)
4721{
4722 struct sched_attr attr = {
4723 .size = sizeof(struct sched_attr),
4724 };
4725 struct task_struct *p;
4726 int retval;
4727
4728 if (!uattr || pid < 0 || size > PAGE_SIZE ||
4729 size < SCHED_ATTR_SIZE_VER0 || flags)
4730 return -EINVAL;
4731
4732 rcu_read_lock();
4733 p = find_process_by_pid(pid);
4734 retval = -ESRCH;
4735 if (!p)
4736 goto out_unlock;
4737
4738 retval = security_task_getscheduler(p);
4739 if (retval)
4740 goto out_unlock;
4741
4742 attr.sched_policy = p->policy;
4743 if (p->sched_reset_on_fork)
4744 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4745 if (task_has_dl_policy(p))
4746 __getparam_dl(p, &attr);
4747 else if (task_has_rt_policy(p))
4748 attr.sched_priority = p->rt_priority;
4749 else
4750 attr.sched_nice = task_nice(p);
4751
4752 rcu_read_unlock();
4753
4754 retval = sched_read_attr(uattr, &attr, size);
4755 return retval;
4756
4757out_unlock:
4758 rcu_read_unlock();
4759 return retval;
4760}
4761
4762long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4763{
4764 cpumask_var_t cpus_allowed, new_mask;
4765 struct task_struct *p;
4766 int retval;
4767
4768 rcu_read_lock();
4769
4770 p = find_process_by_pid(pid);
4771 if (!p) {
4772 rcu_read_unlock();
4773 return -ESRCH;
4774 }
4775
4776 /* Prevent p going away */
4777 get_task_struct(p);
4778 rcu_read_unlock();
4779
4780 if (p->flags & PF_NO_SETAFFINITY) {
4781 retval = -EINVAL;
4782 goto out_put_task;
4783 }
4784 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4785 retval = -ENOMEM;
4786 goto out_put_task;
4787 }
4788 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4789 retval = -ENOMEM;
4790 goto out_free_cpus_allowed;
4791 }
4792 retval = -EPERM;
4793 if (!check_same_owner(p)) {
4794 rcu_read_lock();
4795 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4796 rcu_read_unlock();
4797 goto out_free_new_mask;
4798 }
4799 rcu_read_unlock();
4800 }
4801
4802 retval = security_task_setscheduler(p);
4803 if (retval)
4804 goto out_free_new_mask;
4805
4806
4807 cpuset_cpus_allowed(p, cpus_allowed);
4808 cpumask_and(new_mask, in_mask, cpus_allowed);
4809
4810 /*
4811 * Since bandwidth control happens on root_domain basis,
4812 * if admission test is enabled, we only admit -deadline
4813 * tasks allowed to run on all the CPUs in the task's
4814 * root_domain.
4815 */
4816#ifdef CONFIG_SMP
4817 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4818 rcu_read_lock();
4819 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4820 retval = -EBUSY;
4821 rcu_read_unlock();
4822 goto out_free_new_mask;
4823 }
4824 rcu_read_unlock();
4825 }
4826#endif
4827again:
4828 retval = __set_cpus_allowed_ptr(p, new_mask, true);
4829
4830 if (!retval) {
4831 cpuset_cpus_allowed(p, cpus_allowed);
4832 if (!cpumask_subset(new_mask, cpus_allowed)) {
4833 /*
4834 * We must have raced with a concurrent cpuset
4835 * update. Just reset the cpus_allowed to the
4836 * cpuset's cpus_allowed
4837 */
4838 cpumask_copy(new_mask, cpus_allowed);
4839 goto again;
4840 }
4841 }
4842out_free_new_mask:
4843 free_cpumask_var(new_mask);
4844out_free_cpus_allowed:
4845 free_cpumask_var(cpus_allowed);
4846out_put_task:
4847 put_task_struct(p);
4848 return retval;
4849}
4850
4851static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4852 struct cpumask *new_mask)
4853{
4854 if (len < cpumask_size())
4855 cpumask_clear(new_mask);
4856 else if (len > cpumask_size())
4857 len = cpumask_size();
4858
4859 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4860}
4861
4862/**
4863 * sys_sched_setaffinity - set the CPU affinity of a process
4864 * @pid: pid of the process
4865 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4866 * @user_mask_ptr: user-space pointer to the new CPU mask
4867 *
4868 * Return: 0 on success. An error code otherwise.
4869 */
4870SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4871 unsigned long __user *, user_mask_ptr)
4872{
4873 cpumask_var_t new_mask;
4874 int retval;
4875
4876 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4877 return -ENOMEM;
4878
4879 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4880 if (retval == 0)
4881 retval = sched_setaffinity(pid, new_mask);
4882 free_cpumask_var(new_mask);
4883 return retval;
4884}
4885
4886long sched_getaffinity(pid_t pid, struct cpumask *mask)
4887{
4888 struct task_struct *p;
4889 unsigned long flags;
4890 int retval;
4891
4892 rcu_read_lock();
4893
4894 retval = -ESRCH;
4895 p = find_process_by_pid(pid);
4896 if (!p)
4897 goto out_unlock;
4898
4899 retval = security_task_getscheduler(p);
4900 if (retval)
4901 goto out_unlock;
4902
4903 raw_spin_lock_irqsave(&p->pi_lock, flags);
4904 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4905 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4906
4907out_unlock:
4908 rcu_read_unlock();
4909
4910 return retval;
4911}
4912
4913/**
4914 * sys_sched_getaffinity - get the CPU affinity of a process
4915 * @pid: pid of the process
4916 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4917 * @user_mask_ptr: user-space pointer to hold the current CPU mask
4918 *
4919 * Return: size of CPU mask copied to user_mask_ptr on success. An
4920 * error code otherwise.
4921 */
4922SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4923 unsigned long __user *, user_mask_ptr)
4924{
4925 int ret;
4926 cpumask_var_t mask;
4927
4928 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4929 return -EINVAL;
4930 if (len & (sizeof(unsigned long)-1))
4931 return -EINVAL;
4932
4933 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4934 return -ENOMEM;
4935
4936 ret = sched_getaffinity(pid, mask);
4937 if (ret == 0) {
4938 unsigned int retlen = min(len, cpumask_size());
4939
4940 if (copy_to_user(user_mask_ptr, mask, retlen))
4941 ret = -EFAULT;
4942 else
4943 ret = retlen;
4944 }
4945 free_cpumask_var(mask);
4946
4947 return ret;
4948}
4949
4950/**
4951 * sys_sched_yield - yield the current processor to other threads.
4952 *
4953 * This function yields the current CPU to other tasks. If there are no
4954 * other threads running on this CPU then this function will return.
4955 *
4956 * Return: 0.
4957 */
4958static void do_sched_yield(void)
4959{
4960 struct rq_flags rf;
4961 struct rq *rq;
4962
4963 local_irq_disable();
4964 rq = this_rq();
4965 rq_lock(rq, &rf);
4966
4967 schedstat_inc(rq->yld_count);
4968 current->sched_class->yield_task(rq);
4969
4970 /*
4971 * Since we are going to call schedule() anyway, there's
4972 * no need to preempt or enable interrupts:
4973 */
4974 preempt_disable();
4975 rq_unlock(rq, &rf);
4976 sched_preempt_enable_no_resched();
4977
4978 schedule();
4979}
4980
4981SYSCALL_DEFINE0(sched_yield)
4982{
4983 do_sched_yield();
4984 return 0;
4985}
4986
4987#ifndef CONFIG_PREEMPT
4988int __sched _cond_resched(void)
4989{
4990 if (should_resched(0)) {
4991 preempt_schedule_common();
4992 return 1;
4993 }
4994 rcu_all_qs();
4995 return 0;
4996}
4997EXPORT_SYMBOL(_cond_resched);
4998#endif
4999
5000/*
5001 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
5002 * call schedule, and on return reacquire the lock.
5003 *
5004 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
5005 * operations here to prevent schedule() from being called twice (once via
5006 * spin_unlock(), once by hand).
5007 */
5008int __cond_resched_lock(spinlock_t *lock)
5009{
5010 int resched = should_resched(PREEMPT_LOCK_OFFSET);
5011 int ret = 0;
5012
5013 lockdep_assert_held(lock);
5014
5015 if (spin_needbreak(lock) || resched) {
5016 spin_unlock(lock);
5017 if (resched)
5018 preempt_schedule_common();
5019 else
5020 cpu_relax();
5021 ret = 1;
5022 spin_lock(lock);
5023 }
5024 return ret;
5025}
5026EXPORT_SYMBOL(__cond_resched_lock);
5027
5028int __sched __cond_resched_softirq(void)
5029{
5030 BUG_ON(!in_softirq());
5031
5032 if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
5033 local_bh_enable();
5034 preempt_schedule_common();
5035 local_bh_disable();
5036 return 1;
5037 }
5038 return 0;
5039}
5040EXPORT_SYMBOL(__cond_resched_softirq);
5041
5042/**
5043 * yield - yield the current processor to other threads.
5044 *
5045 * Do not ever use this function, there's a 99% chance you're doing it wrong.
5046 *
5047 * The scheduler is at all times free to pick the calling task as the most
5048 * eligible task to run, if removing the yield() call from your code breaks
5049 * it, its already broken.
5050 *
5051 * Typical broken usage is:
5052 *
5053 * while (!event)
5054 * yield();
5055 *
5056 * where one assumes that yield() will let 'the other' process run that will
5057 * make event true. If the current task is a SCHED_FIFO task that will never
5058 * happen. Never use yield() as a progress guarantee!!
5059 *
5060 * If you want to use yield() to wait for something, use wait_event().
5061 * If you want to use yield() to be 'nice' for others, use cond_resched().
5062 * If you still want to use yield(), do not!
5063 */
5064void __sched yield(void)
5065{
5066 set_current_state(TASK_RUNNING);
5067 do_sched_yield();
5068}
5069EXPORT_SYMBOL(yield);
5070
5071/**
5072 * yield_to - yield the current processor to another thread in
5073 * your thread group, or accelerate that thread toward the
5074 * processor it's on.
5075 * @p: target task
5076 * @preempt: whether task preemption is allowed or not
5077 *
5078 * It's the caller's job to ensure that the target task struct
5079 * can't go away on us before we can do any checks.
5080 *
5081 * Return:
5082 * true (>0) if we indeed boosted the target task.
5083 * false (0) if we failed to boost the target.
5084 * -ESRCH if there's no task to yield to.
5085 */
5086int __sched yield_to(struct task_struct *p, bool preempt)
5087{
5088 struct task_struct *curr = current;
5089 struct rq *rq, *p_rq;
5090 unsigned long flags;
5091 int yielded = 0;
5092
5093 local_irq_save(flags);
5094 rq = this_rq();
5095
5096again:
5097 p_rq = task_rq(p);
5098 /*
5099 * If we're the only runnable task on the rq and target rq also
5100 * has only one task, there's absolutely no point in yielding.
5101 */
5102 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
5103 yielded = -ESRCH;
5104 goto out_irq;
5105 }
5106
5107 double_rq_lock(rq, p_rq);
5108 if (task_rq(p) != p_rq) {
5109 double_rq_unlock(rq, p_rq);
5110 goto again;
5111 }
5112
5113 if (!curr->sched_class->yield_to_task)
5114 goto out_unlock;
5115
5116 if (curr->sched_class != p->sched_class)
5117 goto out_unlock;
5118
5119 if (task_running(p_rq, p) || p->state)
5120 goto out_unlock;
5121
5122 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
5123 if (yielded) {
5124 schedstat_inc(rq->yld_count);
5125 /*
5126 * Make p's CPU reschedule; pick_next_entity takes care of
5127 * fairness.
5128 */
5129 if (preempt && rq != p_rq)
5130 resched_curr(p_rq);
5131 }
5132
5133out_unlock:
5134 double_rq_unlock(rq, p_rq);
5135out_irq:
5136 local_irq_restore(flags);
5137
5138 if (yielded > 0)
5139 schedule();
5140
5141 return yielded;
5142}
5143EXPORT_SYMBOL_GPL(yield_to);
5144
5145int io_schedule_prepare(void)
5146{
5147 int old_iowait = current->in_iowait;
5148
5149 current->in_iowait = 1;
5150 blk_schedule_flush_plug(current);
5151
5152 return old_iowait;
5153}
5154
5155void io_schedule_finish(int token)
5156{
5157 current->in_iowait = token;
5158}
5159
5160/*
5161 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5162 * that process accounting knows that this is a task in IO wait state.
5163 */
5164long __sched io_schedule_timeout(long timeout)
5165{
5166 int token;
5167 long ret;
5168
5169 token = io_schedule_prepare();
5170 ret = schedule_timeout(timeout);
5171 io_schedule_finish(token);
5172
5173 return ret;
5174}
5175EXPORT_SYMBOL(io_schedule_timeout);
5176
5177void io_schedule(void)
5178{
5179 int token;
5180
5181 token = io_schedule_prepare();
5182 schedule();
5183 io_schedule_finish(token);
5184}
5185EXPORT_SYMBOL(io_schedule);
5186
5187/**
5188 * sys_sched_get_priority_max - return maximum RT priority.
5189 * @policy: scheduling class.
5190 *
5191 * Return: On success, this syscall returns the maximum
5192 * rt_priority that can be used by a given scheduling class.
5193 * On failure, a negative error code is returned.
5194 */
5195SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
5196{
5197 int ret = -EINVAL;
5198
5199 switch (policy) {
5200 case SCHED_FIFO:
5201 case SCHED_RR:
5202 ret = MAX_USER_RT_PRIO-1;
5203 break;
5204 case SCHED_DEADLINE:
5205 case SCHED_NORMAL:
5206 case SCHED_BATCH:
5207 case SCHED_IDLE:
5208 ret = 0;
5209 break;
5210 }
5211 return ret;
5212}
5213
5214/**
5215 * sys_sched_get_priority_min - return minimum RT priority.
5216 * @policy: scheduling class.
5217 *
5218 * Return: On success, this syscall returns the minimum
5219 * rt_priority that can be used by a given scheduling class.
5220 * On failure, a negative error code is returned.
5221 */
5222SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5223{
5224 int ret = -EINVAL;
5225
5226 switch (policy) {
5227 case SCHED_FIFO:
5228 case SCHED_RR:
5229 ret = 1;
5230 break;
5231 case SCHED_DEADLINE:
5232 case SCHED_NORMAL:
5233 case SCHED_BATCH:
5234 case SCHED_IDLE:
5235 ret = 0;
5236 }
5237 return ret;
5238}
5239
5240static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
5241{
5242 struct task_struct *p;
5243 unsigned int time_slice;
5244 struct rq_flags rf;
5245 struct rq *rq;
5246 int retval;
5247
5248 if (pid < 0)
5249 return -EINVAL;
5250
5251 retval = -ESRCH;
5252 rcu_read_lock();
5253 p = find_process_by_pid(pid);
5254 if (!p)
5255 goto out_unlock;
5256
5257 retval = security_task_getscheduler(p);
5258 if (retval)
5259 goto out_unlock;
5260
5261 rq = task_rq_lock(p, &rf);
5262 time_slice = 0;
5263 if (p->sched_class->get_rr_interval)
5264 time_slice = p->sched_class->get_rr_interval(rq, p);
5265 task_rq_unlock(rq, p, &rf);
5266
5267 rcu_read_unlock();
5268 jiffies_to_timespec64(time_slice, t);
5269 return 0;
5270
5271out_unlock:
5272 rcu_read_unlock();
5273 return retval;
5274}
5275
5276/**
5277 * sys_sched_rr_get_interval - return the default timeslice of a process.
5278 * @pid: pid of the process.
5279 * @interval: userspace pointer to the timeslice value.
5280 *
5281 * this syscall writes the default timeslice value of a given process
5282 * into the user-space timespec buffer. A value of '0' means infinity.
5283 *
5284 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
5285 * an error code.
5286 */
5287SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5288 struct timespec __user *, interval)
5289{
5290 struct timespec64 t;
5291 int retval = sched_rr_get_interval(pid, &t);
5292
5293 if (retval == 0)
5294 retval = put_timespec64(&t, interval);
5295
5296 return retval;
5297}
5298
5299#ifdef CONFIG_COMPAT
5300COMPAT_SYSCALL_DEFINE2(sched_rr_get_interval,
5301 compat_pid_t, pid,
5302 struct compat_timespec __user *, interval)
5303{
5304 struct timespec64 t;
5305 int retval = sched_rr_get_interval(pid, &t);
5306
5307 if (retval == 0)
5308 retval = compat_put_timespec64(&t, interval);
5309 return retval;
5310}
5311#endif
5312
5313void sched_show_task(struct task_struct *p)
5314{
5315 unsigned long free = 0;
5316 int ppid;
5317
5318 if (!try_get_task_stack(p))
5319 return;
5320
5321 printk(KERN_INFO "%-15.15s %c", p->comm, task_state_to_char(p));
5322
5323 if (p->state == TASK_RUNNING)
5324 printk(KERN_CONT " running task ");
5325#ifdef CONFIG_DEBUG_STACK_USAGE
5326 free = stack_not_used(p);
5327#endif
5328 ppid = 0;
5329 rcu_read_lock();
5330 if (pid_alive(p))
5331 ppid = task_pid_nr(rcu_dereference(p->real_parent));
5332 rcu_read_unlock();
5333 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5334 task_pid_nr(p), ppid,
5335 (unsigned long)task_thread_info(p)->flags);
5336
5337 print_worker_info(KERN_INFO, p);
5338 show_stack(p, NULL);
5339 put_task_stack(p);
5340}
5341EXPORT_SYMBOL_GPL(sched_show_task);
5342
5343static inline bool
5344state_filter_match(unsigned long state_filter, struct task_struct *p)
5345{
5346 /* no filter, everything matches */
5347 if (!state_filter)
5348 return true;
5349
5350 /* filter, but doesn't match */
5351 if (!(p->state & state_filter))
5352 return false;
5353
5354 /*
5355 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
5356 * TASK_KILLABLE).
5357 */
5358 if (state_filter == TASK_UNINTERRUPTIBLE && p->state == TASK_IDLE)
5359 return false;
5360
5361 return true;
5362}
5363
5364
5365void show_state_filter(unsigned long state_filter)
5366{
5367 struct task_struct *g, *p;
5368
5369#if BITS_PER_LONG == 32
5370 printk(KERN_INFO
5371 " task PC stack pid father\n");
5372#else
5373 printk(KERN_INFO
5374 " task PC stack pid father\n");
5375#endif
5376 rcu_read_lock();
5377 for_each_process_thread(g, p) {
5378 /*
5379 * reset the NMI-timeout, listing all files on a slow
5380 * console might take a lot of time:
5381 * Also, reset softlockup watchdogs on all CPUs, because
5382 * another CPU might be blocked waiting for us to process
5383 * an IPI.
5384 */
5385 touch_nmi_watchdog();
5386 touch_all_softlockup_watchdogs();
5387 if (state_filter_match(state_filter, p))
5388 sched_show_task(p);
5389 }
5390
5391#ifdef CONFIG_SCHED_DEBUG
5392 if (!state_filter)
5393 sysrq_sched_debug_show();
5394#endif
5395 rcu_read_unlock();
5396 /*
5397 * Only show locks if all tasks are dumped:
5398 */
5399 if (!state_filter)
5400 debug_show_all_locks();
5401}
5402
5403/**
5404 * init_idle - set up an idle thread for a given CPU
5405 * @idle: task in question
5406 * @cpu: CPU the idle task belongs to
5407 *
5408 * NOTE: this function does not set the idle thread's NEED_RESCHED
5409 * flag, to make booting more robust.
5410 */
5411void init_idle(struct task_struct *idle, int cpu)
5412{
5413 struct rq *rq = cpu_rq(cpu);
5414 unsigned long flags;
5415
5416 raw_spin_lock_irqsave(&idle->pi_lock, flags);
5417 raw_spin_lock(&rq->lock);
5418
5419 __sched_fork(0, idle);
5420 idle->state = TASK_RUNNING;
5421 idle->se.exec_start = sched_clock();
5422 idle->flags |= PF_IDLE;
5423
5424 kasan_unpoison_task_stack(idle);
5425
5426#ifdef CONFIG_SMP
5427 /*
5428 * Its possible that init_idle() gets called multiple times on a task,
5429 * in that case do_set_cpus_allowed() will not do the right thing.
5430 *
5431 * And since this is boot we can forgo the serialization.
5432 */
5433 set_cpus_allowed_common(idle, cpumask_of(cpu));
5434#endif
5435 /*
5436 * We're having a chicken and egg problem, even though we are
5437 * holding rq->lock, the CPU isn't yet set to this CPU so the
5438 * lockdep check in task_group() will fail.
5439 *
5440 * Similar case to sched_fork(). / Alternatively we could
5441 * use task_rq_lock() here and obtain the other rq->lock.
5442 *
5443 * Silence PROVE_RCU
5444 */
5445 rcu_read_lock();
5446 __set_task_cpu(idle, cpu);
5447 rcu_read_unlock();
5448
5449 rq->curr = rq->idle = idle;
5450 idle->on_rq = TASK_ON_RQ_QUEUED;
5451#ifdef CONFIG_SMP
5452 idle->on_cpu = 1;
5453#endif
5454 raw_spin_unlock(&rq->lock);
5455 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
5456
5457 /* Set the preempt count _outside_ the spinlocks! */
5458 init_idle_preempt_count(idle, cpu);
5459
5460 /*
5461 * The idle tasks have their own, simple scheduling class:
5462 */
5463 idle->sched_class = &idle_sched_class;
5464 ftrace_graph_init_idle_task(idle, cpu);
5465 vtime_init_idle(idle, cpu);
5466#ifdef CONFIG_SMP
5467 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5468#endif
5469}
5470
5471#ifdef CONFIG_SMP
5472
5473int cpuset_cpumask_can_shrink(const struct cpumask *cur,
5474 const struct cpumask *trial)
5475{
5476 int ret = 1;
5477
5478 if (!cpumask_weight(cur))
5479 return ret;
5480
5481 ret = dl_cpuset_cpumask_can_shrink(cur, trial);
5482
5483 return ret;
5484}
5485
5486int task_can_attach(struct task_struct *p,
5487 const struct cpumask *cs_cpus_allowed)
5488{
5489 int ret = 0;
5490
5491 /*
5492 * Kthreads which disallow setaffinity shouldn't be moved
5493 * to a new cpuset; we don't want to change their CPU
5494 * affinity and isolating such threads by their set of
5495 * allowed nodes is unnecessary. Thus, cpusets are not
5496 * applicable for such threads. This prevents checking for
5497 * success of set_cpus_allowed_ptr() on all attached tasks
5498 * before cpus_allowed may be changed.
5499 */
5500 if (p->flags & PF_NO_SETAFFINITY) {
5501 ret = -EINVAL;
5502 goto out;
5503 }
5504
5505 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
5506 cs_cpus_allowed))
5507 ret = dl_task_can_attach(p, cs_cpus_allowed);
5508
5509out:
5510 return ret;
5511}
5512
5513bool sched_smp_initialized __read_mostly;
5514
5515#ifdef CONFIG_NUMA_BALANCING
5516/* Migrate current task p to target_cpu */
5517int migrate_task_to(struct task_struct *p, int target_cpu)
5518{
5519 struct migration_arg arg = { p, target_cpu };
5520 int curr_cpu = task_cpu(p);
5521
5522 if (curr_cpu == target_cpu)
5523 return 0;
5524
5525 if (!cpumask_test_cpu(target_cpu, &p->cpus_allowed))
5526 return -EINVAL;
5527
5528 /* TODO: This is not properly updating schedstats */
5529
5530 trace_sched_move_numa(p, curr_cpu, target_cpu);
5531 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5532}
5533
5534/*
5535 * Requeue a task on a given node and accurately track the number of NUMA
5536 * tasks on the runqueues
5537 */
5538void sched_setnuma(struct task_struct *p, int nid)
5539{
5540 bool queued, running;
5541 struct rq_flags rf;
5542 struct rq *rq;
5543
5544 rq = task_rq_lock(p, &rf);
5545 queued = task_on_rq_queued(p);
5546 running = task_current(rq, p);
5547
5548 if (queued)
5549 dequeue_task(rq, p, DEQUEUE_SAVE);
5550 if (running)
5551 put_prev_task(rq, p);
5552
5553 p->numa_preferred_nid = nid;
5554
5555 if (queued)
5556 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
5557 if (running)
5558 set_curr_task(rq, p);
5559 task_rq_unlock(rq, p, &rf);
5560}
5561#endif /* CONFIG_NUMA_BALANCING */
5562
5563#ifdef CONFIG_HOTPLUG_CPU
5564/*
5565 * Ensure that the idle task is using init_mm right before its CPU goes
5566 * offline.
5567 */
5568void idle_task_exit(void)
5569{
5570 struct mm_struct *mm = current->active_mm;
5571
5572 BUG_ON(cpu_online(smp_processor_id()));
5573
5574 if (mm != &init_mm) {
5575 switch_mm(mm, &init_mm, current);
5576 current->active_mm = &init_mm;
5577 finish_arch_post_lock_switch();
5578 }
5579 mmdrop(mm);
5580}
5581
5582/*
5583 * Since this CPU is going 'away' for a while, fold any nr_active delta
5584 * we might have. Assumes we're called after migrate_tasks() so that the
5585 * nr_active count is stable. We need to take the teardown thread which
5586 * is calling this into account, so we hand in adjust = 1 to the load
5587 * calculation.
5588 *
5589 * Also see the comment "Global load-average calculations".
5590 */
5591static void calc_load_migrate(struct rq *rq)
5592{
5593 long delta = calc_load_fold_active(rq, 1);
5594 if (delta)
5595 atomic_long_add(delta, &calc_load_tasks);
5596}
5597
5598static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5599{
5600}
5601
5602static const struct sched_class fake_sched_class = {
5603 .put_prev_task = put_prev_task_fake,
5604};
5605
5606static struct task_struct fake_task = {
5607 /*
5608 * Avoid pull_{rt,dl}_task()
5609 */
5610 .prio = MAX_PRIO + 1,
5611 .sched_class = &fake_sched_class,
5612};
5613
5614/*
5615 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5616 * try_to_wake_up()->select_task_rq().
5617 *
5618 * Called with rq->lock held even though we'er in stop_machine() and
5619 * there's no concurrency possible, we hold the required locks anyway
5620 * because of lock validation efforts.
5621 */
5622static void migrate_tasks(struct rq *dead_rq, struct rq_flags *rf)
5623{
5624 struct rq *rq = dead_rq;
5625 struct task_struct *next, *stop = rq->stop;
5626 struct rq_flags orf = *rf;
5627 int dest_cpu;
5628
5629 /*
5630 * Fudge the rq selection such that the below task selection loop
5631 * doesn't get stuck on the currently eligible stop task.
5632 *
5633 * We're currently inside stop_machine() and the rq is either stuck
5634 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5635 * either way we should never end up calling schedule() until we're
5636 * done here.
5637 */
5638 rq->stop = NULL;
5639
5640 /*
5641 * put_prev_task() and pick_next_task() sched
5642 * class method both need to have an up-to-date
5643 * value of rq->clock[_task]
5644 */
5645 update_rq_clock(rq);
5646
5647 for (;;) {
5648 /*
5649 * There's this thread running, bail when that's the only
5650 * remaining thread:
5651 */
5652 if (rq->nr_running == 1)
5653 break;
5654
5655 /*
5656 * pick_next_task() assumes pinned rq->lock:
5657 */
5658 next = pick_next_task(rq, &fake_task, rf);
5659 BUG_ON(!next);
5660 put_prev_task(rq, next);
5661
5662 /*
5663 * Rules for changing task_struct::cpus_allowed are holding
5664 * both pi_lock and rq->lock, such that holding either
5665 * stabilizes the mask.
5666 *
5667 * Drop rq->lock is not quite as disastrous as it usually is
5668 * because !cpu_active at this point, which means load-balance
5669 * will not interfere. Also, stop-machine.
5670 */
5671 rq_unlock(rq, rf);
5672 raw_spin_lock(&next->pi_lock);
5673 rq_relock(rq, rf);
5674
5675 /*
5676 * Since we're inside stop-machine, _nothing_ should have
5677 * changed the task, WARN if weird stuff happened, because in
5678 * that case the above rq->lock drop is a fail too.
5679 */
5680 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
5681 raw_spin_unlock(&next->pi_lock);
5682 continue;
5683 }
5684
5685 /* Find suitable destination for @next, with force if needed. */
5686 dest_cpu = select_fallback_rq(dead_rq->cpu, next);
5687 rq = __migrate_task(rq, rf, next, dest_cpu);
5688 if (rq != dead_rq) {
5689 rq_unlock(rq, rf);
5690 rq = dead_rq;
5691 *rf = orf;
5692 rq_relock(rq, rf);
5693 }
5694 raw_spin_unlock(&next->pi_lock);
5695 }
5696
5697 rq->stop = stop;
5698}
5699#endif /* CONFIG_HOTPLUG_CPU */
5700
5701void set_rq_online(struct rq *rq)
5702{
5703 if (!rq->online) {
5704 const struct sched_class *class;
5705
5706 cpumask_set_cpu(rq->cpu, rq->rd->online);
5707 rq->online = 1;
5708
5709 for_each_class(class) {
5710 if (class->rq_online)
5711 class->rq_online(rq);
5712 }
5713 }
5714}
5715
5716void set_rq_offline(struct rq *rq)
5717{
5718 if (rq->online) {
5719 const struct sched_class *class;
5720
5721 for_each_class(class) {
5722 if (class->rq_offline)
5723 class->rq_offline(rq);
5724 }
5725
5726 cpumask_clear_cpu(rq->cpu, rq->rd->online);
5727 rq->online = 0;
5728 }
5729}
5730
5731static void set_cpu_rq_start_time(unsigned int cpu)
5732{
5733 struct rq *rq = cpu_rq(cpu);
5734
5735 rq->age_stamp = sched_clock_cpu(cpu);
5736}
5737
5738/*
5739 * used to mark begin/end of suspend/resume:
5740 */
5741static int num_cpus_frozen;
5742
5743/*
5744 * Update cpusets according to cpu_active mask. If cpusets are
5745 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
5746 * around partition_sched_domains().
5747 *
5748 * If we come here as part of a suspend/resume, don't touch cpusets because we
5749 * want to restore it back to its original state upon resume anyway.
5750 */
5751static void cpuset_cpu_active(void)
5752{
5753 if (cpuhp_tasks_frozen) {
5754 /*
5755 * num_cpus_frozen tracks how many CPUs are involved in suspend
5756 * resume sequence. As long as this is not the last online
5757 * operation in the resume sequence, just build a single sched
5758 * domain, ignoring cpusets.
5759 */
5760 partition_sched_domains(1, NULL, NULL);
5761 if (--num_cpus_frozen)
5762 return;
5763 /*
5764 * This is the last CPU online operation. So fall through and
5765 * restore the original sched domains by considering the
5766 * cpuset configurations.
5767 */
5768 cpuset_force_rebuild();
5769 }
5770 cpuset_update_active_cpus();
5771}
5772
5773static int cpuset_cpu_inactive(unsigned int cpu)
5774{
5775 if (!cpuhp_tasks_frozen) {
5776 if (dl_cpu_busy(cpu))
5777 return -EBUSY;
5778 cpuset_update_active_cpus();
5779 } else {
5780 num_cpus_frozen++;
5781 partition_sched_domains(1, NULL, NULL);
5782 }
5783 return 0;
5784}
5785
5786int sched_cpu_activate(unsigned int cpu)
5787{
5788 struct rq *rq = cpu_rq(cpu);
5789 struct rq_flags rf;
5790
5791 set_cpu_active(cpu, true);
5792
5793 if (sched_smp_initialized) {
5794 sched_domains_numa_masks_set(cpu);
5795 cpuset_cpu_active();
5796 }
5797
5798 /*
5799 * Put the rq online, if not already. This happens:
5800 *
5801 * 1) In the early boot process, because we build the real domains
5802 * after all CPUs have been brought up.
5803 *
5804 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
5805 * domains.
5806 */
5807 rq_lock_irqsave(rq, &rf);
5808 if (rq->rd) {
5809 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5810 set_rq_online(rq);
5811 }
5812 rq_unlock_irqrestore(rq, &rf);
5813
5814 update_max_interval();
5815
5816 return 0;
5817}
5818
5819int sched_cpu_deactivate(unsigned int cpu)
5820{
5821 int ret;
5822
5823 set_cpu_active(cpu, false);
5824 /*
5825 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
5826 * users of this state to go away such that all new such users will
5827 * observe it.
5828 *
5829 * Do sync before park smpboot threads to take care the rcu boost case.
5830 */
5831 synchronize_rcu_mult(call_rcu, call_rcu_sched);
5832
5833 if (!sched_smp_initialized)
5834 return 0;
5835
5836 ret = cpuset_cpu_inactive(cpu);
5837 if (ret) {
5838 set_cpu_active(cpu, true);
5839 return ret;
5840 }
5841 sched_domains_numa_masks_clear(cpu);
5842 return 0;
5843}
5844
5845static void sched_rq_cpu_starting(unsigned int cpu)
5846{
5847 struct rq *rq = cpu_rq(cpu);
5848
5849 rq->calc_load_update = calc_load_update;
5850 update_max_interval();
5851}
5852
5853int sched_cpu_starting(unsigned int cpu)
5854{
5855 set_cpu_rq_start_time(cpu);
5856 sched_rq_cpu_starting(cpu);
5857 sched_tick_start(cpu);
5858 return 0;
5859}
5860
5861#ifdef CONFIG_HOTPLUG_CPU
5862int sched_cpu_dying(unsigned int cpu)
5863{
5864 struct rq *rq = cpu_rq(cpu);
5865 struct rq_flags rf;
5866
5867 /* Handle pending wakeups and then migrate everything off */
5868 sched_ttwu_pending();
5869 sched_tick_stop(cpu);
5870
5871 rq_lock_irqsave(rq, &rf);
5872 if (rq->rd) {
5873 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5874 set_rq_offline(rq);
5875 }
5876 migrate_tasks(rq, &rf);
5877 BUG_ON(rq->nr_running != 1);
5878 rq_unlock_irqrestore(rq, &rf);
5879
5880 calc_load_migrate(rq);
5881 update_max_interval();
5882 nohz_balance_exit_idle(rq);
5883 hrtick_clear(rq);
5884 return 0;
5885}
5886#endif
5887
5888#ifdef CONFIG_SCHED_SMT
5889DEFINE_STATIC_KEY_FALSE(sched_smt_present);
5890
5891static void sched_init_smt(void)
5892{
5893 /*
5894 * We've enumerated all CPUs and will assume that if any CPU
5895 * has SMT siblings, CPU0 will too.
5896 */
5897 if (cpumask_weight(cpu_smt_mask(0)) > 1)
5898 static_branch_enable(&sched_smt_present);
5899}
5900#else
5901static inline void sched_init_smt(void) { }
5902#endif
5903
5904void __init sched_init_smp(void)
5905{
5906 sched_init_numa();
5907
5908 /*
5909 * There's no userspace yet to cause hotplug operations; hence all the
5910 * CPU masks are stable and all blatant races in the below code cannot
5911 * happen.
5912 */
5913 mutex_lock(&sched_domains_mutex);
5914 sched_init_domains(cpu_active_mask);
5915 mutex_unlock(&sched_domains_mutex);
5916
5917 /* Move init over to a non-isolated CPU */
5918 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0)
5919 BUG();
5920 sched_init_granularity();
5921
5922 init_sched_rt_class();
5923 init_sched_dl_class();
5924
5925 sched_init_smt();
5926
5927 sched_smp_initialized = true;
5928}
5929
5930static int __init migration_init(void)
5931{
5932 sched_rq_cpu_starting(smp_processor_id());
5933 return 0;
5934}
5935early_initcall(migration_init);
5936
5937#else
5938void __init sched_init_smp(void)
5939{
5940 sched_init_granularity();
5941}
5942#endif /* CONFIG_SMP */
5943
5944int in_sched_functions(unsigned long addr)
5945{
5946 return in_lock_functions(addr) ||
5947 (addr >= (unsigned long)__sched_text_start
5948 && addr < (unsigned long)__sched_text_end);
5949}
5950
5951#ifdef CONFIG_CGROUP_SCHED
5952/*
5953 * Default task group.
5954 * Every task in system belongs to this group at bootup.
5955 */
5956struct task_group root_task_group;
5957LIST_HEAD(task_groups);
5958
5959/* Cacheline aligned slab cache for task_group */
5960static struct kmem_cache *task_group_cache __read_mostly;
5961#endif
5962
5963DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
5964DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
5965
5966void __init sched_init(void)
5967{
5968 int i, j;
5969 unsigned long alloc_size = 0, ptr;
5970
5971 sched_clock_init();
5972 wait_bit_init();
5973
5974#ifdef CONFIG_FAIR_GROUP_SCHED
5975 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
5976#endif
5977#ifdef CONFIG_RT_GROUP_SCHED
5978 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
5979#endif
5980 if (alloc_size) {
5981 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
5982
5983#ifdef CONFIG_FAIR_GROUP_SCHED
5984 root_task_group.se = (struct sched_entity **)ptr;
5985 ptr += nr_cpu_ids * sizeof(void **);
5986
5987 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
5988 ptr += nr_cpu_ids * sizeof(void **);
5989
5990#endif /* CONFIG_FAIR_GROUP_SCHED */
5991#ifdef CONFIG_RT_GROUP_SCHED
5992 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
5993 ptr += nr_cpu_ids * sizeof(void **);
5994
5995 root_task_group.rt_rq = (struct rt_rq **)ptr;
5996 ptr += nr_cpu_ids * sizeof(void **);
5997
5998#endif /* CONFIG_RT_GROUP_SCHED */
5999 }
6000#ifdef CONFIG_CPUMASK_OFFSTACK
6001 for_each_possible_cpu(i) {
6002 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
6003 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
6004 per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
6005 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
6006 }
6007#endif /* CONFIG_CPUMASK_OFFSTACK */
6008
6009 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
6010 init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
6011
6012#ifdef CONFIG_SMP
6013 init_defrootdomain();
6014#endif
6015
6016#ifdef CONFIG_RT_GROUP_SCHED
6017 init_rt_bandwidth(&root_task_group.rt_bandwidth,
6018 global_rt_period(), global_rt_runtime());
6019#endif /* CONFIG_RT_GROUP_SCHED */
6020
6021#ifdef CONFIG_CGROUP_SCHED
6022 task_group_cache = KMEM_CACHE(task_group, 0);
6023
6024 list_add(&root_task_group.list, &task_groups);
6025 INIT_LIST_HEAD(&root_task_group.children);
6026 INIT_LIST_HEAD(&root_task_group.siblings);
6027 autogroup_init(&init_task);
6028#endif /* CONFIG_CGROUP_SCHED */
6029
6030 for_each_possible_cpu(i) {
6031 struct rq *rq;
6032
6033 rq = cpu_rq(i);
6034 raw_spin_lock_init(&rq->lock);
6035 rq->nr_running = 0;
6036 rq->calc_load_active = 0;
6037 rq->calc_load_update = jiffies + LOAD_FREQ;
6038 init_cfs_rq(&rq->cfs);
6039 init_rt_rq(&rq->rt);
6040 init_dl_rq(&rq->dl);
6041#ifdef CONFIG_FAIR_GROUP_SCHED
6042 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6043 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6044 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
6045 /*
6046 * How much CPU bandwidth does root_task_group get?
6047 *
6048 * In case of task-groups formed thr' the cgroup filesystem, it
6049 * gets 100% of the CPU resources in the system. This overall
6050 * system CPU resource is divided among the tasks of
6051 * root_task_group and its child task-groups in a fair manner,
6052 * based on each entity's (task or task-group's) weight
6053 * (se->load.weight).
6054 *
6055 * In other words, if root_task_group has 10 tasks of weight
6056 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6057 * then A0's share of the CPU resource is:
6058 *
6059 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6060 *
6061 * We achieve this by letting root_task_group's tasks sit
6062 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6063 */
6064 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6065 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6066#endif /* CONFIG_FAIR_GROUP_SCHED */
6067
6068 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6069#ifdef CONFIG_RT_GROUP_SCHED
6070 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6071#endif
6072
6073 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6074 rq->cpu_load[j] = 0;
6075
6076#ifdef CONFIG_SMP
6077 rq->sd = NULL;
6078 rq->rd = NULL;
6079 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
6080 rq->balance_callback = NULL;
6081 rq->active_balance = 0;
6082 rq->next_balance = jiffies;
6083 rq->push_cpu = 0;
6084 rq->cpu = i;
6085 rq->online = 0;
6086 rq->idle_stamp = 0;
6087 rq->avg_idle = 2*sysctl_sched_migration_cost;
6088 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
6089
6090 INIT_LIST_HEAD(&rq->cfs_tasks);
6091
6092 rq_attach_root(rq, &def_root_domain);
6093#ifdef CONFIG_NO_HZ_COMMON
6094 rq->last_load_update_tick = jiffies;
6095 rq->last_blocked_load_update_tick = jiffies;
6096 atomic_set(&rq->nohz_flags, 0);
6097#endif
6098#endif /* CONFIG_SMP */
6099 hrtick_rq_init(rq);
6100 atomic_set(&rq->nr_iowait, 0);
6101 }
6102
6103 set_load_weight(&init_task, false);
6104
6105 /*
6106 * The boot idle thread does lazy MMU switching as well:
6107 */
6108 mmgrab(&init_mm);
6109 enter_lazy_tlb(&init_mm, current);
6110
6111 /*
6112 * Make us the idle thread. Technically, schedule() should not be
6113 * called from this thread, however somewhere below it might be,
6114 * but because we are the idle thread, we just pick up running again
6115 * when this runqueue becomes "idle".
6116 */
6117 init_idle(current, smp_processor_id());
6118
6119 calc_load_update = jiffies + LOAD_FREQ;
6120
6121#ifdef CONFIG_SMP
6122 idle_thread_set_boot_cpu();
6123 set_cpu_rq_start_time(smp_processor_id());
6124#endif
6125 init_sched_fair_class();
6126
6127 init_schedstats();
6128
6129 scheduler_running = 1;
6130}
6131
6132#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6133static inline int preempt_count_equals(int preempt_offset)
6134{
6135 int nested = preempt_count() + rcu_preempt_depth();
6136
6137 return (nested == preempt_offset);
6138}
6139
6140void __might_sleep(const char *file, int line, int preempt_offset)
6141{
6142 /*
6143 * Blocking primitives will set (and therefore destroy) current->state,
6144 * since we will exit with TASK_RUNNING make sure we enter with it,
6145 * otherwise we will destroy state.
6146 */
6147 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
6148 "do not call blocking ops when !TASK_RUNNING; "
6149 "state=%lx set at [<%p>] %pS\n",
6150 current->state,
6151 (void *)current->task_state_change,
6152 (void *)current->task_state_change);
6153
6154 ___might_sleep(file, line, preempt_offset);
6155}
6156EXPORT_SYMBOL(__might_sleep);
6157
6158void ___might_sleep(const char *file, int line, int preempt_offset)
6159{
6160 /* Ratelimiting timestamp: */
6161 static unsigned long prev_jiffy;
6162
6163 unsigned long preempt_disable_ip;
6164
6165 /* WARN_ON_ONCE() by default, no rate limit required: */
6166 rcu_sleep_check();
6167
6168 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
6169 !is_idle_task(current)) ||
6170 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
6171 oops_in_progress)
6172 return;
6173
6174 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6175 return;
6176 prev_jiffy = jiffies;
6177
6178 /* Save this before calling printk(), since that will clobber it: */
6179 preempt_disable_ip = get_preempt_disable_ip(current);
6180
6181 printk(KERN_ERR
6182 "BUG: sleeping function called from invalid context at %s:%d\n",
6183 file, line);
6184 printk(KERN_ERR
6185 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6186 in_atomic(), irqs_disabled(),
6187 current->pid, current->comm);
6188
6189 if (task_stack_end_corrupted(current))
6190 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
6191
6192 debug_show_held_locks(current);
6193 if (irqs_disabled())
6194 print_irqtrace_events(current);
6195 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
6196 && !preempt_count_equals(preempt_offset)) {
6197 pr_err("Preemption disabled at:");
6198 print_ip_sym(preempt_disable_ip);
6199 pr_cont("\n");
6200 }
6201 dump_stack();
6202 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
6203}
6204EXPORT_SYMBOL(___might_sleep);
6205#endif
6206
6207#ifdef CONFIG_MAGIC_SYSRQ
6208void normalize_rt_tasks(void)
6209{
6210 struct task_struct *g, *p;
6211 struct sched_attr attr = {
6212 .sched_policy = SCHED_NORMAL,
6213 };
6214
6215 read_lock(&tasklist_lock);
6216 for_each_process_thread(g, p) {
6217 /*
6218 * Only normalize user tasks:
6219 */
6220 if (p->flags & PF_KTHREAD)
6221 continue;
6222
6223 p->se.exec_start = 0;
6224 schedstat_set(p->se.statistics.wait_start, 0);
6225 schedstat_set(p->se.statistics.sleep_start, 0);
6226 schedstat_set(p->se.statistics.block_start, 0);
6227
6228 if (!dl_task(p) && !rt_task(p)) {
6229 /*
6230 * Renice negative nice level userspace
6231 * tasks back to 0:
6232 */
6233 if (task_nice(p) < 0)
6234 set_user_nice(p, 0);
6235 continue;
6236 }
6237
6238 __sched_setscheduler(p, &attr, false, false);
6239 }
6240 read_unlock(&tasklist_lock);
6241}
6242
6243#endif /* CONFIG_MAGIC_SYSRQ */
6244
6245#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
6246/*
6247 * These functions are only useful for the IA64 MCA handling, or kdb.
6248 *
6249 * They can only be called when the whole system has been
6250 * stopped - every CPU needs to be quiescent, and no scheduling
6251 * activity can take place. Using them for anything else would
6252 * be a serious bug, and as a result, they aren't even visible
6253 * under any other configuration.
6254 */
6255
6256/**
6257 * curr_task - return the current task for a given CPU.
6258 * @cpu: the processor in question.
6259 *
6260 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6261 *
6262 * Return: The current task for @cpu.
6263 */
6264struct task_struct *curr_task(int cpu)
6265{
6266 return cpu_curr(cpu);
6267}
6268
6269#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
6270
6271#ifdef CONFIG_IA64
6272/**
6273 * set_curr_task - set the current task for a given CPU.
6274 * @cpu: the processor in question.
6275 * @p: the task pointer to set.
6276 *
6277 * Description: This function must only be used when non-maskable interrupts
6278 * are serviced on a separate stack. It allows the architecture to switch the
6279 * notion of the current task on a CPU in a non-blocking manner. This function
6280 * must be called with all CPU's synchronized, and interrupts disabled, the
6281 * and caller must save the original value of the current task (see
6282 * curr_task() above) and restore that value before reenabling interrupts and
6283 * re-starting the system.
6284 *
6285 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6286 */
6287void ia64_set_curr_task(int cpu, struct task_struct *p)
6288{
6289 cpu_curr(cpu) = p;
6290}
6291
6292#endif
6293
6294#ifdef CONFIG_CGROUP_SCHED
6295/* task_group_lock serializes the addition/removal of task groups */
6296static DEFINE_SPINLOCK(task_group_lock);
6297
6298static void sched_free_group(struct task_group *tg)
6299{
6300 free_fair_sched_group(tg);
6301 free_rt_sched_group(tg);
6302 autogroup_free(tg);
6303 kmem_cache_free(task_group_cache, tg);
6304}
6305
6306/* allocate runqueue etc for a new task group */
6307struct task_group *sched_create_group(struct task_group *parent)
6308{
6309 struct task_group *tg;
6310
6311 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
6312 if (!tg)
6313 return ERR_PTR(-ENOMEM);
6314
6315 if (!alloc_fair_sched_group(tg, parent))
6316 goto err;
6317
6318 if (!alloc_rt_sched_group(tg, parent))
6319 goto err;
6320
6321 return tg;
6322
6323err:
6324 sched_free_group(tg);
6325 return ERR_PTR(-ENOMEM);
6326}
6327
6328void sched_online_group(struct task_group *tg, struct task_group *parent)
6329{
6330 unsigned long flags;
6331
6332 spin_lock_irqsave(&task_group_lock, flags);
6333 list_add_rcu(&tg->list, &task_groups);
6334
6335 /* Root should already exist: */
6336 WARN_ON(!parent);
6337
6338 tg->parent = parent;
6339 INIT_LIST_HEAD(&tg->children);
6340 list_add_rcu(&tg->siblings, &parent->children);
6341 spin_unlock_irqrestore(&task_group_lock, flags);
6342
6343 online_fair_sched_group(tg);
6344}
6345
6346/* rcu callback to free various structures associated with a task group */
6347static void sched_free_group_rcu(struct rcu_head *rhp)
6348{
6349 /* Now it should be safe to free those cfs_rqs: */
6350 sched_free_group(container_of(rhp, struct task_group, rcu));
6351}
6352
6353void sched_destroy_group(struct task_group *tg)
6354{
6355 /* Wait for possible concurrent references to cfs_rqs complete: */
6356 call_rcu(&tg->rcu, sched_free_group_rcu);
6357}
6358
6359void sched_offline_group(struct task_group *tg)
6360{
6361 unsigned long flags;
6362
6363 /* End participation in shares distribution: */
6364 unregister_fair_sched_group(tg);
6365
6366 spin_lock_irqsave(&task_group_lock, flags);
6367 list_del_rcu(&tg->list);
6368 list_del_rcu(&tg->siblings);
6369 spin_unlock_irqrestore(&task_group_lock, flags);
6370}
6371
6372static void sched_change_group(struct task_struct *tsk, int type)
6373{
6374 struct task_group *tg;
6375
6376 /*
6377 * All callers are synchronized by task_rq_lock(); we do not use RCU
6378 * which is pointless here. Thus, we pass "true" to task_css_check()
6379 * to prevent lockdep warnings.
6380 */
6381 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
6382 struct task_group, css);
6383 tg = autogroup_task_group(tsk, tg);
6384 tsk->sched_task_group = tg;
6385
6386#ifdef CONFIG_FAIR_GROUP_SCHED
6387 if (tsk->sched_class->task_change_group)
6388 tsk->sched_class->task_change_group(tsk, type);
6389 else
6390#endif
6391 set_task_rq(tsk, task_cpu(tsk));
6392}
6393
6394/*
6395 * Change task's runqueue when it moves between groups.
6396 *
6397 * The caller of this function should have put the task in its new group by
6398 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
6399 * its new group.
6400 */
6401void sched_move_task(struct task_struct *tsk)
6402{
6403 int queued, running, queue_flags =
6404 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
6405 struct rq_flags rf;
6406 struct rq *rq;
6407
6408 rq = task_rq_lock(tsk, &rf);
6409 update_rq_clock(rq);
6410
6411 running = task_current(rq, tsk);
6412 queued = task_on_rq_queued(tsk);
6413
6414 if (queued)
6415 dequeue_task(rq, tsk, queue_flags);
6416 if (running)
6417 put_prev_task(rq, tsk);
6418
6419 sched_change_group(tsk, TASK_MOVE_GROUP);
6420
6421 if (queued)
6422 enqueue_task(rq, tsk, queue_flags);
6423 if (running)
6424 set_curr_task(rq, tsk);
6425
6426 task_rq_unlock(rq, tsk, &rf);
6427}
6428
6429static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
6430{
6431 return css ? container_of(css, struct task_group, css) : NULL;
6432}
6433
6434static struct cgroup_subsys_state *
6435cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
6436{
6437 struct task_group *parent = css_tg(parent_css);
6438 struct task_group *tg;
6439
6440 if (!parent) {
6441 /* This is early initialization for the top cgroup */
6442 return &root_task_group.css;
6443 }
6444
6445 tg = sched_create_group(parent);
6446 if (IS_ERR(tg))
6447 return ERR_PTR(-ENOMEM);
6448
6449 return &tg->css;
6450}
6451
6452/* Expose task group only after completing cgroup initialization */
6453static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
6454{
6455 struct task_group *tg = css_tg(css);
6456 struct task_group *parent = css_tg(css->parent);
6457
6458 if (parent)
6459 sched_online_group(tg, parent);
6460 return 0;
6461}
6462
6463static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
6464{
6465 struct task_group *tg = css_tg(css);
6466
6467 sched_offline_group(tg);
6468}
6469
6470static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
6471{
6472 struct task_group *tg = css_tg(css);
6473
6474 /*
6475 * Relies on the RCU grace period between css_released() and this.
6476 */
6477 sched_free_group(tg);
6478}
6479
6480/*
6481 * This is called before wake_up_new_task(), therefore we really only
6482 * have to set its group bits, all the other stuff does not apply.
6483 */
6484static void cpu_cgroup_fork(struct task_struct *task)
6485{
6486 struct rq_flags rf;
6487 struct rq *rq;
6488
6489 rq = task_rq_lock(task, &rf);
6490
6491 update_rq_clock(rq);
6492 sched_change_group(task, TASK_SET_GROUP);
6493
6494 task_rq_unlock(rq, task, &rf);
6495}
6496
6497static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
6498{
6499 struct task_struct *task;
6500 struct cgroup_subsys_state *css;
6501 int ret = 0;
6502
6503 cgroup_taskset_for_each(task, css, tset) {
6504#ifdef CONFIG_RT_GROUP_SCHED
6505 if (!sched_rt_can_attach(css_tg(css), task))
6506 return -EINVAL;
6507#else
6508 /* We don't support RT-tasks being in separate groups */
6509 if (task->sched_class != &fair_sched_class)
6510 return -EINVAL;
6511#endif
6512 /*
6513 * Serialize against wake_up_new_task() such that if its
6514 * running, we're sure to observe its full state.
6515 */
6516 raw_spin_lock_irq(&task->pi_lock);
6517 /*
6518 * Avoid calling sched_move_task() before wake_up_new_task()
6519 * has happened. This would lead to problems with PELT, due to
6520 * move wanting to detach+attach while we're not attached yet.
6521 */
6522 if (task->state == TASK_NEW)
6523 ret = -EINVAL;
6524 raw_spin_unlock_irq(&task->pi_lock);
6525
6526 if (ret)
6527 break;
6528 }
6529 return ret;
6530}
6531
6532static void cpu_cgroup_attach(struct cgroup_taskset *tset)
6533{
6534 struct task_struct *task;
6535 struct cgroup_subsys_state *css;
6536
6537 cgroup_taskset_for_each(task, css, tset)
6538 sched_move_task(task);
6539}
6540
6541#ifdef CONFIG_FAIR_GROUP_SCHED
6542static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
6543 struct cftype *cftype, u64 shareval)
6544{
6545 return sched_group_set_shares(css_tg(css), scale_load(shareval));
6546}
6547
6548static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
6549 struct cftype *cft)
6550{
6551 struct task_group *tg = css_tg(css);
6552
6553 return (u64) scale_load_down(tg->shares);
6554}
6555
6556#ifdef CONFIG_CFS_BANDWIDTH
6557static DEFINE_MUTEX(cfs_constraints_mutex);
6558
6559const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
6560const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
6561
6562static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
6563
6564static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
6565{
6566 int i, ret = 0, runtime_enabled, runtime_was_enabled;
6567 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6568
6569 if (tg == &root_task_group)
6570 return -EINVAL;
6571
6572 /*
6573 * Ensure we have at some amount of bandwidth every period. This is
6574 * to prevent reaching a state of large arrears when throttled via
6575 * entity_tick() resulting in prolonged exit starvation.
6576 */
6577 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
6578 return -EINVAL;
6579
6580 /*
6581 * Likewise, bound things on the otherside by preventing insane quota
6582 * periods. This also allows us to normalize in computing quota
6583 * feasibility.
6584 */
6585 if (period > max_cfs_quota_period)
6586 return -EINVAL;
6587
6588 /*
6589 * Prevent race between setting of cfs_rq->runtime_enabled and
6590 * unthrottle_offline_cfs_rqs().
6591 */
6592 get_online_cpus();
6593 mutex_lock(&cfs_constraints_mutex);
6594 ret = __cfs_schedulable(tg, period, quota);
6595 if (ret)
6596 goto out_unlock;
6597
6598 runtime_enabled = quota != RUNTIME_INF;
6599 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
6600 /*
6601 * If we need to toggle cfs_bandwidth_used, off->on must occur
6602 * before making related changes, and on->off must occur afterwards
6603 */
6604 if (runtime_enabled && !runtime_was_enabled)
6605 cfs_bandwidth_usage_inc();
6606 raw_spin_lock_irq(&cfs_b->lock);
6607 cfs_b->period = ns_to_ktime(period);
6608 cfs_b->quota = quota;
6609
6610 __refill_cfs_bandwidth_runtime(cfs_b);
6611
6612 /* Restart the period timer (if active) to handle new period expiry: */
6613 if (runtime_enabled)
6614 start_cfs_bandwidth(cfs_b);
6615
6616 raw_spin_unlock_irq(&cfs_b->lock);
6617
6618 for_each_online_cpu(i) {
6619 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
6620 struct rq *rq = cfs_rq->rq;
6621 struct rq_flags rf;
6622
6623 rq_lock_irq(rq, &rf);
6624 cfs_rq->runtime_enabled = runtime_enabled;
6625 cfs_rq->runtime_remaining = 0;
6626
6627 if (cfs_rq->throttled)
6628 unthrottle_cfs_rq(cfs_rq);
6629 rq_unlock_irq(rq, &rf);
6630 }
6631 if (runtime_was_enabled && !runtime_enabled)
6632 cfs_bandwidth_usage_dec();
6633out_unlock:
6634 mutex_unlock(&cfs_constraints_mutex);
6635 put_online_cpus();
6636
6637 return ret;
6638}
6639
6640int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
6641{
6642 u64 quota, period;
6643
6644 period = ktime_to_ns(tg->cfs_bandwidth.period);
6645 if (cfs_quota_us < 0)
6646 quota = RUNTIME_INF;
6647 else
6648 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
6649
6650 return tg_set_cfs_bandwidth(tg, period, quota);
6651}
6652
6653long tg_get_cfs_quota(struct task_group *tg)
6654{
6655 u64 quota_us;
6656
6657 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
6658 return -1;
6659
6660 quota_us = tg->cfs_bandwidth.quota;
6661 do_div(quota_us, NSEC_PER_USEC);
6662
6663 return quota_us;
6664}
6665
6666int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
6667{
6668 u64 quota, period;
6669
6670 period = (u64)cfs_period_us * NSEC_PER_USEC;
6671 quota = tg->cfs_bandwidth.quota;
6672
6673 return tg_set_cfs_bandwidth(tg, period, quota);
6674}
6675
6676long tg_get_cfs_period(struct task_group *tg)
6677{
6678 u64 cfs_period_us;
6679
6680 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
6681 do_div(cfs_period_us, NSEC_PER_USEC);
6682
6683 return cfs_period_us;
6684}
6685
6686static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
6687 struct cftype *cft)
6688{
6689 return tg_get_cfs_quota(css_tg(css));
6690}
6691
6692static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
6693 struct cftype *cftype, s64 cfs_quota_us)
6694{
6695 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
6696}
6697
6698static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
6699 struct cftype *cft)
6700{
6701 return tg_get_cfs_period(css_tg(css));
6702}
6703
6704static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
6705 struct cftype *cftype, u64 cfs_period_us)
6706{
6707 return tg_set_cfs_period(css_tg(css), cfs_period_us);
6708}
6709
6710struct cfs_schedulable_data {
6711 struct task_group *tg;
6712 u64 period, quota;
6713};
6714
6715/*
6716 * normalize group quota/period to be quota/max_period
6717 * note: units are usecs
6718 */
6719static u64 normalize_cfs_quota(struct task_group *tg,
6720 struct cfs_schedulable_data *d)
6721{
6722 u64 quota, period;
6723
6724 if (tg == d->tg) {
6725 period = d->period;
6726 quota = d->quota;
6727 } else {
6728 period = tg_get_cfs_period(tg);
6729 quota = tg_get_cfs_quota(tg);
6730 }
6731
6732 /* note: these should typically be equivalent */
6733 if (quota == RUNTIME_INF || quota == -1)
6734 return RUNTIME_INF;
6735
6736 return to_ratio(period, quota);
6737}
6738
6739static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
6740{
6741 struct cfs_schedulable_data *d = data;
6742 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6743 s64 quota = 0, parent_quota = -1;
6744
6745 if (!tg->parent) {
6746 quota = RUNTIME_INF;
6747 } else {
6748 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
6749
6750 quota = normalize_cfs_quota(tg, d);
6751 parent_quota = parent_b->hierarchical_quota;
6752
6753 /*
6754 * Ensure max(child_quota) <= parent_quota. On cgroup2,
6755 * always take the min. On cgroup1, only inherit when no
6756 * limit is set:
6757 */
6758 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
6759 quota = min(quota, parent_quota);
6760 } else {
6761 if (quota == RUNTIME_INF)
6762 quota = parent_quota;
6763 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
6764 return -EINVAL;
6765 }
6766 }
6767 cfs_b->hierarchical_quota = quota;
6768
6769 return 0;
6770}
6771
6772static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
6773{
6774 int ret;
6775 struct cfs_schedulable_data data = {
6776 .tg = tg,
6777 .period = period,
6778 .quota = quota,
6779 };
6780
6781 if (quota != RUNTIME_INF) {
6782 do_div(data.period, NSEC_PER_USEC);
6783 do_div(data.quota, NSEC_PER_USEC);
6784 }
6785
6786 rcu_read_lock();
6787 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
6788 rcu_read_unlock();
6789
6790 return ret;
6791}
6792
6793static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
6794{
6795 struct task_group *tg = css_tg(seq_css(sf));
6796 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6797
6798 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
6799 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
6800 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
6801
6802 return 0;
6803}
6804#endif /* CONFIG_CFS_BANDWIDTH */
6805#endif /* CONFIG_FAIR_GROUP_SCHED */
6806
6807#ifdef CONFIG_RT_GROUP_SCHED
6808static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
6809 struct cftype *cft, s64 val)
6810{
6811 return sched_group_set_rt_runtime(css_tg(css), val);
6812}
6813
6814static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
6815 struct cftype *cft)
6816{
6817 return sched_group_rt_runtime(css_tg(css));
6818}
6819
6820static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
6821 struct cftype *cftype, u64 rt_period_us)
6822{
6823 return sched_group_set_rt_period(css_tg(css), rt_period_us);
6824}
6825
6826static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
6827 struct cftype *cft)
6828{
6829 return sched_group_rt_period(css_tg(css));
6830}
6831#endif /* CONFIG_RT_GROUP_SCHED */
6832
6833static struct cftype cpu_legacy_files[] = {
6834#ifdef CONFIG_FAIR_GROUP_SCHED
6835 {
6836 .name = "shares",
6837 .read_u64 = cpu_shares_read_u64,
6838 .write_u64 = cpu_shares_write_u64,
6839 },
6840#endif
6841#ifdef CONFIG_CFS_BANDWIDTH
6842 {
6843 .name = "cfs_quota_us",
6844 .read_s64 = cpu_cfs_quota_read_s64,
6845 .write_s64 = cpu_cfs_quota_write_s64,
6846 },
6847 {
6848 .name = "cfs_period_us",
6849 .read_u64 = cpu_cfs_period_read_u64,
6850 .write_u64 = cpu_cfs_period_write_u64,
6851 },
6852 {
6853 .name = "stat",
6854 .seq_show = cpu_cfs_stat_show,
6855 },
6856#endif
6857#ifdef CONFIG_RT_GROUP_SCHED
6858 {
6859 .name = "rt_runtime_us",
6860 .read_s64 = cpu_rt_runtime_read,
6861 .write_s64 = cpu_rt_runtime_write,
6862 },
6863 {
6864 .name = "rt_period_us",
6865 .read_u64 = cpu_rt_period_read_uint,
6866 .write_u64 = cpu_rt_period_write_uint,
6867 },
6868#endif
6869 { } /* Terminate */
6870};
6871
6872static int cpu_extra_stat_show(struct seq_file *sf,
6873 struct cgroup_subsys_state *css)
6874{
6875#ifdef CONFIG_CFS_BANDWIDTH
6876 {
6877 struct task_group *tg = css_tg(css);
6878 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6879 u64 throttled_usec;
6880
6881 throttled_usec = cfs_b->throttled_time;
6882 do_div(throttled_usec, NSEC_PER_USEC);
6883
6884 seq_printf(sf, "nr_periods %d\n"
6885 "nr_throttled %d\n"
6886 "throttled_usec %llu\n",
6887 cfs_b->nr_periods, cfs_b->nr_throttled,
6888 throttled_usec);
6889 }
6890#endif
6891 return 0;
6892}
6893
6894#ifdef CONFIG_FAIR_GROUP_SCHED
6895static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
6896 struct cftype *cft)
6897{
6898 struct task_group *tg = css_tg(css);
6899 u64 weight = scale_load_down(tg->shares);
6900
6901 return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
6902}
6903
6904static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
6905 struct cftype *cft, u64 weight)
6906{
6907 /*
6908 * cgroup weight knobs should use the common MIN, DFL and MAX
6909 * values which are 1, 100 and 10000 respectively. While it loses
6910 * a bit of range on both ends, it maps pretty well onto the shares
6911 * value used by scheduler and the round-trip conversions preserve
6912 * the original value over the entire range.
6913 */
6914 if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
6915 return -ERANGE;
6916
6917 weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
6918
6919 return sched_group_set_shares(css_tg(css), scale_load(weight));
6920}
6921
6922static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
6923 struct cftype *cft)
6924{
6925 unsigned long weight = scale_load_down(css_tg(css)->shares);
6926 int last_delta = INT_MAX;
6927 int prio, delta;
6928
6929 /* find the closest nice value to the current weight */
6930 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
6931 delta = abs(sched_prio_to_weight[prio] - weight);
6932 if (delta >= last_delta)
6933 break;
6934 last_delta = delta;
6935 }
6936
6937 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
6938}
6939
6940static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
6941 struct cftype *cft, s64 nice)
6942{
6943 unsigned long weight;
6944 int idx;
6945
6946 if (nice < MIN_NICE || nice > MAX_NICE)
6947 return -ERANGE;
6948
6949 idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
6950 idx = array_index_nospec(idx, 40);
6951 weight = sched_prio_to_weight[idx];
6952
6953 return sched_group_set_shares(css_tg(css), scale_load(weight));
6954}
6955#endif
6956
6957static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
6958 long period, long quota)
6959{
6960 if (quota < 0)
6961 seq_puts(sf, "max");
6962 else
6963 seq_printf(sf, "%ld", quota);
6964
6965 seq_printf(sf, " %ld\n", period);
6966}
6967
6968/* caller should put the current value in *@periodp before calling */
6969static int __maybe_unused cpu_period_quota_parse(char *buf,
6970 u64 *periodp, u64 *quotap)
6971{
6972 char tok[21]; /* U64_MAX */
6973
6974 if (!sscanf(buf, "%s %llu", tok, periodp))
6975 return -EINVAL;
6976
6977 *periodp *= NSEC_PER_USEC;
6978
6979 if (sscanf(tok, "%llu", quotap))
6980 *quotap *= NSEC_PER_USEC;
6981 else if (!strcmp(tok, "max"))
6982 *quotap = RUNTIME_INF;
6983 else
6984 return -EINVAL;
6985
6986 return 0;
6987}
6988
6989#ifdef CONFIG_CFS_BANDWIDTH
6990static int cpu_max_show(struct seq_file *sf, void *v)
6991{
6992 struct task_group *tg = css_tg(seq_css(sf));
6993
6994 cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
6995 return 0;
6996}
6997
6998static ssize_t cpu_max_write(struct kernfs_open_file *of,
6999 char *buf, size_t nbytes, loff_t off)
7000{
7001 struct task_group *tg = css_tg(of_css(of));
7002 u64 period = tg_get_cfs_period(tg);
7003 u64 quota;
7004 int ret;
7005
7006 ret = cpu_period_quota_parse(buf, &period, "a);
7007 if (!ret)
7008 ret = tg_set_cfs_bandwidth(tg, period, quota);
7009 return ret ?: nbytes;
7010}
7011#endif
7012
7013static struct cftype cpu_files[] = {
7014#ifdef CONFIG_FAIR_GROUP_SCHED
7015 {
7016 .name = "weight",
7017 .flags = CFTYPE_NOT_ON_ROOT,
7018 .read_u64 = cpu_weight_read_u64,
7019 .write_u64 = cpu_weight_write_u64,
7020 },
7021 {
7022 .name = "weight.nice",
7023 .flags = CFTYPE_NOT_ON_ROOT,
7024 .read_s64 = cpu_weight_nice_read_s64,
7025 .write_s64 = cpu_weight_nice_write_s64,
7026 },
7027#endif
7028#ifdef CONFIG_CFS_BANDWIDTH
7029 {
7030 .name = "max",
7031 .flags = CFTYPE_NOT_ON_ROOT,
7032 .seq_show = cpu_max_show,
7033 .write = cpu_max_write,
7034 },
7035#endif
7036 { } /* terminate */
7037};
7038
7039struct cgroup_subsys cpu_cgrp_subsys = {
7040 .css_alloc = cpu_cgroup_css_alloc,
7041 .css_online = cpu_cgroup_css_online,
7042 .css_released = cpu_cgroup_css_released,
7043 .css_free = cpu_cgroup_css_free,
7044 .css_extra_stat_show = cpu_extra_stat_show,
7045 .fork = cpu_cgroup_fork,
7046 .can_attach = cpu_cgroup_can_attach,
7047 .attach = cpu_cgroup_attach,
7048 .legacy_cftypes = cpu_legacy_files,
7049 .dfl_cftypes = cpu_files,
7050 .early_init = true,
7051 .threaded = true,
7052};
7053
7054#endif /* CONFIG_CGROUP_SCHED */
7055
7056void dump_cpu_task(int cpu)
7057{
7058 pr_info("Task dump for CPU %d:\n", cpu);
7059 sched_show_task(cpu_curr(cpu));
7060}
7061
7062/*
7063 * Nice levels are multiplicative, with a gentle 10% change for every
7064 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
7065 * nice 1, it will get ~10% less CPU time than another CPU-bound task
7066 * that remained on nice 0.
7067 *
7068 * The "10% effect" is relative and cumulative: from _any_ nice level,
7069 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
7070 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
7071 * If a task goes up by ~10% and another task goes down by ~10% then
7072 * the relative distance between them is ~25%.)
7073 */
7074const int sched_prio_to_weight[40] = {
7075 /* -20 */ 88761, 71755, 56483, 46273, 36291,
7076 /* -15 */ 29154, 23254, 18705, 14949, 11916,
7077 /* -10 */ 9548, 7620, 6100, 4904, 3906,
7078 /* -5 */ 3121, 2501, 1991, 1586, 1277,
7079 /* 0 */ 1024, 820, 655, 526, 423,
7080 /* 5 */ 335, 272, 215, 172, 137,
7081 /* 10 */ 110, 87, 70, 56, 45,
7082 /* 15 */ 36, 29, 23, 18, 15,
7083};
7084
7085/*
7086 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
7087 *
7088 * In cases where the weight does not change often, we can use the
7089 * precalculated inverse to speed up arithmetics by turning divisions
7090 * into multiplications:
7091 */
7092const u32 sched_prio_to_wmult[40] = {
7093 /* -20 */ 48388, 59856, 76040, 92818, 118348,
7094 /* -15 */ 147320, 184698, 229616, 287308, 360437,
7095 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
7096 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
7097 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
7098 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
7099 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
7100 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
7101};
7102
7103#undef CREATE_TRACE_POINTS
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * kernel/sched/core.c
4 *
5 * Core kernel scheduler code and related syscalls
6 *
7 * Copyright (C) 1991-2002 Linus Torvalds
8 */
9#include <linux/highmem.h>
10#include <linux/hrtimer_api.h>
11#include <linux/ktime_api.h>
12#include <linux/sched/signal.h>
13#include <linux/syscalls_api.h>
14#include <linux/debug_locks.h>
15#include <linux/prefetch.h>
16#include <linux/capability.h>
17#include <linux/pgtable_api.h>
18#include <linux/wait_bit.h>
19#include <linux/jiffies.h>
20#include <linux/spinlock_api.h>
21#include <linux/cpumask_api.h>
22#include <linux/lockdep_api.h>
23#include <linux/hardirq.h>
24#include <linux/softirq.h>
25#include <linux/refcount_api.h>
26#include <linux/topology.h>
27#include <linux/sched/clock.h>
28#include <linux/sched/cond_resched.h>
29#include <linux/sched/cputime.h>
30#include <linux/sched/debug.h>
31#include <linux/sched/hotplug.h>
32#include <linux/sched/init.h>
33#include <linux/sched/isolation.h>
34#include <linux/sched/loadavg.h>
35#include <linux/sched/mm.h>
36#include <linux/sched/nohz.h>
37#include <linux/sched/rseq_api.h>
38#include <linux/sched/rt.h>
39
40#include <linux/blkdev.h>
41#include <linux/context_tracking.h>
42#include <linux/cpuset.h>
43#include <linux/delayacct.h>
44#include <linux/init_task.h>
45#include <linux/interrupt.h>
46#include <linux/ioprio.h>
47#include <linux/kallsyms.h>
48#include <linux/kcov.h>
49#include <linux/kprobes.h>
50#include <linux/llist_api.h>
51#include <linux/mmu_context.h>
52#include <linux/mmzone.h>
53#include <linux/mutex_api.h>
54#include <linux/nmi.h>
55#include <linux/nospec.h>
56#include <linux/perf_event_api.h>
57#include <linux/profile.h>
58#include <linux/psi.h>
59#include <linux/rcuwait_api.h>
60#include <linux/rseq.h>
61#include <linux/sched/wake_q.h>
62#include <linux/scs.h>
63#include <linux/slab.h>
64#include <linux/syscalls.h>
65#include <linux/vtime.h>
66#include <linux/wait_api.h>
67#include <linux/workqueue_api.h>
68
69#ifdef CONFIG_PREEMPT_DYNAMIC
70# ifdef CONFIG_GENERIC_ENTRY
71# include <linux/entry-common.h>
72# endif
73#endif
74
75#include <uapi/linux/sched/types.h>
76
77#include <asm/irq_regs.h>
78#include <asm/switch_to.h>
79#include <asm/tlb.h>
80
81#define CREATE_TRACE_POINTS
82#include <linux/sched/rseq_api.h>
83#include <trace/events/sched.h>
84#include <trace/events/ipi.h>
85#undef CREATE_TRACE_POINTS
86
87#include "sched.h"
88#include "stats.h"
89
90#include "autogroup.h"
91#include "pelt.h"
92#include "smp.h"
93#include "stats.h"
94
95#include "../workqueue_internal.h"
96#include "../../io_uring/io-wq.h"
97#include "../smpboot.h"
98
99EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpu);
100EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpumask);
101
102/*
103 * Export tracepoints that act as a bare tracehook (ie: have no trace event
104 * associated with them) to allow external modules to probe them.
105 */
106EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
107EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
108EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
109EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
110EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
111EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_thermal_tp);
112EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp);
113EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
114EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp);
115EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp);
116EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp);
117EXPORT_TRACEPOINT_SYMBOL_GPL(sched_compute_energy_tp);
118
119DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
120
121#ifdef CONFIG_SCHED_DEBUG
122/*
123 * Debugging: various feature bits
124 *
125 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
126 * sysctl_sched_features, defined in sched.h, to allow constants propagation
127 * at compile time and compiler optimization based on features default.
128 */
129#define SCHED_FEAT(name, enabled) \
130 (1UL << __SCHED_FEAT_##name) * enabled |
131const_debug unsigned int sysctl_sched_features =
132#include "features.h"
133 0;
134#undef SCHED_FEAT
135
136/*
137 * Print a warning if need_resched is set for the given duration (if
138 * LATENCY_WARN is enabled).
139 *
140 * If sysctl_resched_latency_warn_once is set, only one warning will be shown
141 * per boot.
142 */
143__read_mostly int sysctl_resched_latency_warn_ms = 100;
144__read_mostly int sysctl_resched_latency_warn_once = 1;
145#endif /* CONFIG_SCHED_DEBUG */
146
147/*
148 * Number of tasks to iterate in a single balance run.
149 * Limited because this is done with IRQs disabled.
150 */
151const_debug unsigned int sysctl_sched_nr_migrate = SCHED_NR_MIGRATE_BREAK;
152
153__read_mostly int scheduler_running;
154
155#ifdef CONFIG_SCHED_CORE
156
157DEFINE_STATIC_KEY_FALSE(__sched_core_enabled);
158
159/* kernel prio, less is more */
160static inline int __task_prio(const struct task_struct *p)
161{
162 if (p->sched_class == &stop_sched_class) /* trumps deadline */
163 return -2;
164
165 if (rt_prio(p->prio)) /* includes deadline */
166 return p->prio; /* [-1, 99] */
167
168 if (p->sched_class == &idle_sched_class)
169 return MAX_RT_PRIO + NICE_WIDTH; /* 140 */
170
171 return MAX_RT_PRIO + MAX_NICE; /* 120, squash fair */
172}
173
174/*
175 * l(a,b)
176 * le(a,b) := !l(b,a)
177 * g(a,b) := l(b,a)
178 * ge(a,b) := !l(a,b)
179 */
180
181/* real prio, less is less */
182static inline bool prio_less(const struct task_struct *a,
183 const struct task_struct *b, bool in_fi)
184{
185
186 int pa = __task_prio(a), pb = __task_prio(b);
187
188 if (-pa < -pb)
189 return true;
190
191 if (-pb < -pa)
192 return false;
193
194 if (pa == -1) /* dl_prio() doesn't work because of stop_class above */
195 return !dl_time_before(a->dl.deadline, b->dl.deadline);
196
197 if (pa == MAX_RT_PRIO + MAX_NICE) /* fair */
198 return cfs_prio_less(a, b, in_fi);
199
200 return false;
201}
202
203static inline bool __sched_core_less(const struct task_struct *a,
204 const struct task_struct *b)
205{
206 if (a->core_cookie < b->core_cookie)
207 return true;
208
209 if (a->core_cookie > b->core_cookie)
210 return false;
211
212 /* flip prio, so high prio is leftmost */
213 if (prio_less(b, a, !!task_rq(a)->core->core_forceidle_count))
214 return true;
215
216 return false;
217}
218
219#define __node_2_sc(node) rb_entry((node), struct task_struct, core_node)
220
221static inline bool rb_sched_core_less(struct rb_node *a, const struct rb_node *b)
222{
223 return __sched_core_less(__node_2_sc(a), __node_2_sc(b));
224}
225
226static inline int rb_sched_core_cmp(const void *key, const struct rb_node *node)
227{
228 const struct task_struct *p = __node_2_sc(node);
229 unsigned long cookie = (unsigned long)key;
230
231 if (cookie < p->core_cookie)
232 return -1;
233
234 if (cookie > p->core_cookie)
235 return 1;
236
237 return 0;
238}
239
240void sched_core_enqueue(struct rq *rq, struct task_struct *p)
241{
242 rq->core->core_task_seq++;
243
244 if (!p->core_cookie)
245 return;
246
247 rb_add(&p->core_node, &rq->core_tree, rb_sched_core_less);
248}
249
250void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags)
251{
252 rq->core->core_task_seq++;
253
254 if (sched_core_enqueued(p)) {
255 rb_erase(&p->core_node, &rq->core_tree);
256 RB_CLEAR_NODE(&p->core_node);
257 }
258
259 /*
260 * Migrating the last task off the cpu, with the cpu in forced idle
261 * state. Reschedule to create an accounting edge for forced idle,
262 * and re-examine whether the core is still in forced idle state.
263 */
264 if (!(flags & DEQUEUE_SAVE) && rq->nr_running == 1 &&
265 rq->core->core_forceidle_count && rq->curr == rq->idle)
266 resched_curr(rq);
267}
268
269static int sched_task_is_throttled(struct task_struct *p, int cpu)
270{
271 if (p->sched_class->task_is_throttled)
272 return p->sched_class->task_is_throttled(p, cpu);
273
274 return 0;
275}
276
277static struct task_struct *sched_core_next(struct task_struct *p, unsigned long cookie)
278{
279 struct rb_node *node = &p->core_node;
280 int cpu = task_cpu(p);
281
282 do {
283 node = rb_next(node);
284 if (!node)
285 return NULL;
286
287 p = __node_2_sc(node);
288 if (p->core_cookie != cookie)
289 return NULL;
290
291 } while (sched_task_is_throttled(p, cpu));
292
293 return p;
294}
295
296/*
297 * Find left-most (aka, highest priority) and unthrottled task matching @cookie.
298 * If no suitable task is found, NULL will be returned.
299 */
300static struct task_struct *sched_core_find(struct rq *rq, unsigned long cookie)
301{
302 struct task_struct *p;
303 struct rb_node *node;
304
305 node = rb_find_first((void *)cookie, &rq->core_tree, rb_sched_core_cmp);
306 if (!node)
307 return NULL;
308
309 p = __node_2_sc(node);
310 if (!sched_task_is_throttled(p, rq->cpu))
311 return p;
312
313 return sched_core_next(p, cookie);
314}
315
316/*
317 * Magic required such that:
318 *
319 * raw_spin_rq_lock(rq);
320 * ...
321 * raw_spin_rq_unlock(rq);
322 *
323 * ends up locking and unlocking the _same_ lock, and all CPUs
324 * always agree on what rq has what lock.
325 *
326 * XXX entirely possible to selectively enable cores, don't bother for now.
327 */
328
329static DEFINE_MUTEX(sched_core_mutex);
330static atomic_t sched_core_count;
331static struct cpumask sched_core_mask;
332
333static void sched_core_lock(int cpu, unsigned long *flags)
334{
335 const struct cpumask *smt_mask = cpu_smt_mask(cpu);
336 int t, i = 0;
337
338 local_irq_save(*flags);
339 for_each_cpu(t, smt_mask)
340 raw_spin_lock_nested(&cpu_rq(t)->__lock, i++);
341}
342
343static void sched_core_unlock(int cpu, unsigned long *flags)
344{
345 const struct cpumask *smt_mask = cpu_smt_mask(cpu);
346 int t;
347
348 for_each_cpu(t, smt_mask)
349 raw_spin_unlock(&cpu_rq(t)->__lock);
350 local_irq_restore(*flags);
351}
352
353static void __sched_core_flip(bool enabled)
354{
355 unsigned long flags;
356 int cpu, t;
357
358 cpus_read_lock();
359
360 /*
361 * Toggle the online cores, one by one.
362 */
363 cpumask_copy(&sched_core_mask, cpu_online_mask);
364 for_each_cpu(cpu, &sched_core_mask) {
365 const struct cpumask *smt_mask = cpu_smt_mask(cpu);
366
367 sched_core_lock(cpu, &flags);
368
369 for_each_cpu(t, smt_mask)
370 cpu_rq(t)->core_enabled = enabled;
371
372 cpu_rq(cpu)->core->core_forceidle_start = 0;
373
374 sched_core_unlock(cpu, &flags);
375
376 cpumask_andnot(&sched_core_mask, &sched_core_mask, smt_mask);
377 }
378
379 /*
380 * Toggle the offline CPUs.
381 */
382 for_each_cpu_andnot(cpu, cpu_possible_mask, cpu_online_mask)
383 cpu_rq(cpu)->core_enabled = enabled;
384
385 cpus_read_unlock();
386}
387
388static void sched_core_assert_empty(void)
389{
390 int cpu;
391
392 for_each_possible_cpu(cpu)
393 WARN_ON_ONCE(!RB_EMPTY_ROOT(&cpu_rq(cpu)->core_tree));
394}
395
396static void __sched_core_enable(void)
397{
398 static_branch_enable(&__sched_core_enabled);
399 /*
400 * Ensure all previous instances of raw_spin_rq_*lock() have finished
401 * and future ones will observe !sched_core_disabled().
402 */
403 synchronize_rcu();
404 __sched_core_flip(true);
405 sched_core_assert_empty();
406}
407
408static void __sched_core_disable(void)
409{
410 sched_core_assert_empty();
411 __sched_core_flip(false);
412 static_branch_disable(&__sched_core_enabled);
413}
414
415void sched_core_get(void)
416{
417 if (atomic_inc_not_zero(&sched_core_count))
418 return;
419
420 mutex_lock(&sched_core_mutex);
421 if (!atomic_read(&sched_core_count))
422 __sched_core_enable();
423
424 smp_mb__before_atomic();
425 atomic_inc(&sched_core_count);
426 mutex_unlock(&sched_core_mutex);
427}
428
429static void __sched_core_put(struct work_struct *work)
430{
431 if (atomic_dec_and_mutex_lock(&sched_core_count, &sched_core_mutex)) {
432 __sched_core_disable();
433 mutex_unlock(&sched_core_mutex);
434 }
435}
436
437void sched_core_put(void)
438{
439 static DECLARE_WORK(_work, __sched_core_put);
440
441 /*
442 * "There can be only one"
443 *
444 * Either this is the last one, or we don't actually need to do any
445 * 'work'. If it is the last *again*, we rely on
446 * WORK_STRUCT_PENDING_BIT.
447 */
448 if (!atomic_add_unless(&sched_core_count, -1, 1))
449 schedule_work(&_work);
450}
451
452#else /* !CONFIG_SCHED_CORE */
453
454static inline void sched_core_enqueue(struct rq *rq, struct task_struct *p) { }
455static inline void
456sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) { }
457
458#endif /* CONFIG_SCHED_CORE */
459
460/*
461 * Serialization rules:
462 *
463 * Lock order:
464 *
465 * p->pi_lock
466 * rq->lock
467 * hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls)
468 *
469 * rq1->lock
470 * rq2->lock where: rq1 < rq2
471 *
472 * Regular state:
473 *
474 * Normal scheduling state is serialized by rq->lock. __schedule() takes the
475 * local CPU's rq->lock, it optionally removes the task from the runqueue and
476 * always looks at the local rq data structures to find the most eligible task
477 * to run next.
478 *
479 * Task enqueue is also under rq->lock, possibly taken from another CPU.
480 * Wakeups from another LLC domain might use an IPI to transfer the enqueue to
481 * the local CPU to avoid bouncing the runqueue state around [ see
482 * ttwu_queue_wakelist() ]
483 *
484 * Task wakeup, specifically wakeups that involve migration, are horribly
485 * complicated to avoid having to take two rq->locks.
486 *
487 * Special state:
488 *
489 * System-calls and anything external will use task_rq_lock() which acquires
490 * both p->pi_lock and rq->lock. As a consequence the state they change is
491 * stable while holding either lock:
492 *
493 * - sched_setaffinity()/
494 * set_cpus_allowed_ptr(): p->cpus_ptr, p->nr_cpus_allowed
495 * - set_user_nice(): p->se.load, p->*prio
496 * - __sched_setscheduler(): p->sched_class, p->policy, p->*prio,
497 * p->se.load, p->rt_priority,
498 * p->dl.dl_{runtime, deadline, period, flags, bw, density}
499 * - sched_setnuma(): p->numa_preferred_nid
500 * - sched_move_task(): p->sched_task_group
501 * - uclamp_update_active() p->uclamp*
502 *
503 * p->state <- TASK_*:
504 *
505 * is changed locklessly using set_current_state(), __set_current_state() or
506 * set_special_state(), see their respective comments, or by
507 * try_to_wake_up(). This latter uses p->pi_lock to serialize against
508 * concurrent self.
509 *
510 * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }:
511 *
512 * is set by activate_task() and cleared by deactivate_task(), under
513 * rq->lock. Non-zero indicates the task is runnable, the special
514 * ON_RQ_MIGRATING state is used for migration without holding both
515 * rq->locks. It indicates task_cpu() is not stable, see task_rq_lock().
516 *
517 * p->on_cpu <- { 0, 1 }:
518 *
519 * is set by prepare_task() and cleared by finish_task() such that it will be
520 * set before p is scheduled-in and cleared after p is scheduled-out, both
521 * under rq->lock. Non-zero indicates the task is running on its CPU.
522 *
523 * [ The astute reader will observe that it is possible for two tasks on one
524 * CPU to have ->on_cpu = 1 at the same time. ]
525 *
526 * task_cpu(p): is changed by set_task_cpu(), the rules are:
527 *
528 * - Don't call set_task_cpu() on a blocked task:
529 *
530 * We don't care what CPU we're not running on, this simplifies hotplug,
531 * the CPU assignment of blocked tasks isn't required to be valid.
532 *
533 * - for try_to_wake_up(), called under p->pi_lock:
534 *
535 * This allows try_to_wake_up() to only take one rq->lock, see its comment.
536 *
537 * - for migration called under rq->lock:
538 * [ see task_on_rq_migrating() in task_rq_lock() ]
539 *
540 * o move_queued_task()
541 * o detach_task()
542 *
543 * - for migration called under double_rq_lock():
544 *
545 * o __migrate_swap_task()
546 * o push_rt_task() / pull_rt_task()
547 * o push_dl_task() / pull_dl_task()
548 * o dl_task_offline_migration()
549 *
550 */
551
552void raw_spin_rq_lock_nested(struct rq *rq, int subclass)
553{
554 raw_spinlock_t *lock;
555
556 /* Matches synchronize_rcu() in __sched_core_enable() */
557 preempt_disable();
558 if (sched_core_disabled()) {
559 raw_spin_lock_nested(&rq->__lock, subclass);
560 /* preempt_count *MUST* be > 1 */
561 preempt_enable_no_resched();
562 return;
563 }
564
565 for (;;) {
566 lock = __rq_lockp(rq);
567 raw_spin_lock_nested(lock, subclass);
568 if (likely(lock == __rq_lockp(rq))) {
569 /* preempt_count *MUST* be > 1 */
570 preempt_enable_no_resched();
571 return;
572 }
573 raw_spin_unlock(lock);
574 }
575}
576
577bool raw_spin_rq_trylock(struct rq *rq)
578{
579 raw_spinlock_t *lock;
580 bool ret;
581
582 /* Matches synchronize_rcu() in __sched_core_enable() */
583 preempt_disable();
584 if (sched_core_disabled()) {
585 ret = raw_spin_trylock(&rq->__lock);
586 preempt_enable();
587 return ret;
588 }
589
590 for (;;) {
591 lock = __rq_lockp(rq);
592 ret = raw_spin_trylock(lock);
593 if (!ret || (likely(lock == __rq_lockp(rq)))) {
594 preempt_enable();
595 return ret;
596 }
597 raw_spin_unlock(lock);
598 }
599}
600
601void raw_spin_rq_unlock(struct rq *rq)
602{
603 raw_spin_unlock(rq_lockp(rq));
604}
605
606#ifdef CONFIG_SMP
607/*
608 * double_rq_lock - safely lock two runqueues
609 */
610void double_rq_lock(struct rq *rq1, struct rq *rq2)
611{
612 lockdep_assert_irqs_disabled();
613
614 if (rq_order_less(rq2, rq1))
615 swap(rq1, rq2);
616
617 raw_spin_rq_lock(rq1);
618 if (__rq_lockp(rq1) != __rq_lockp(rq2))
619 raw_spin_rq_lock_nested(rq2, SINGLE_DEPTH_NESTING);
620
621 double_rq_clock_clear_update(rq1, rq2);
622}
623#endif
624
625/*
626 * __task_rq_lock - lock the rq @p resides on.
627 */
628struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
629 __acquires(rq->lock)
630{
631 struct rq *rq;
632
633 lockdep_assert_held(&p->pi_lock);
634
635 for (;;) {
636 rq = task_rq(p);
637 raw_spin_rq_lock(rq);
638 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
639 rq_pin_lock(rq, rf);
640 return rq;
641 }
642 raw_spin_rq_unlock(rq);
643
644 while (unlikely(task_on_rq_migrating(p)))
645 cpu_relax();
646 }
647}
648
649/*
650 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
651 */
652struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
653 __acquires(p->pi_lock)
654 __acquires(rq->lock)
655{
656 struct rq *rq;
657
658 for (;;) {
659 raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
660 rq = task_rq(p);
661 raw_spin_rq_lock(rq);
662 /*
663 * move_queued_task() task_rq_lock()
664 *
665 * ACQUIRE (rq->lock)
666 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
667 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
668 * [S] ->cpu = new_cpu [L] task_rq()
669 * [L] ->on_rq
670 * RELEASE (rq->lock)
671 *
672 * If we observe the old CPU in task_rq_lock(), the acquire of
673 * the old rq->lock will fully serialize against the stores.
674 *
675 * If we observe the new CPU in task_rq_lock(), the address
676 * dependency headed by '[L] rq = task_rq()' and the acquire
677 * will pair with the WMB to ensure we then also see migrating.
678 */
679 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
680 rq_pin_lock(rq, rf);
681 return rq;
682 }
683 raw_spin_rq_unlock(rq);
684 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
685
686 while (unlikely(task_on_rq_migrating(p)))
687 cpu_relax();
688 }
689}
690
691/*
692 * RQ-clock updating methods:
693 */
694
695static void update_rq_clock_task(struct rq *rq, s64 delta)
696{
697/*
698 * In theory, the compile should just see 0 here, and optimize out the call
699 * to sched_rt_avg_update. But I don't trust it...
700 */
701 s64 __maybe_unused steal = 0, irq_delta = 0;
702
703#ifdef CONFIG_IRQ_TIME_ACCOUNTING
704 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
705
706 /*
707 * Since irq_time is only updated on {soft,}irq_exit, we might run into
708 * this case when a previous update_rq_clock() happened inside a
709 * {soft,}irq region.
710 *
711 * When this happens, we stop ->clock_task and only update the
712 * prev_irq_time stamp to account for the part that fit, so that a next
713 * update will consume the rest. This ensures ->clock_task is
714 * monotonic.
715 *
716 * It does however cause some slight miss-attribution of {soft,}irq
717 * time, a more accurate solution would be to update the irq_time using
718 * the current rq->clock timestamp, except that would require using
719 * atomic ops.
720 */
721 if (irq_delta > delta)
722 irq_delta = delta;
723
724 rq->prev_irq_time += irq_delta;
725 delta -= irq_delta;
726 psi_account_irqtime(rq->curr, irq_delta);
727 delayacct_irq(rq->curr, irq_delta);
728#endif
729#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
730 if (static_key_false((¶virt_steal_rq_enabled))) {
731 steal = paravirt_steal_clock(cpu_of(rq));
732 steal -= rq->prev_steal_time_rq;
733
734 if (unlikely(steal > delta))
735 steal = delta;
736
737 rq->prev_steal_time_rq += steal;
738 delta -= steal;
739 }
740#endif
741
742 rq->clock_task += delta;
743
744#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
745 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
746 update_irq_load_avg(rq, irq_delta + steal);
747#endif
748 update_rq_clock_pelt(rq, delta);
749}
750
751void update_rq_clock(struct rq *rq)
752{
753 s64 delta;
754
755 lockdep_assert_rq_held(rq);
756
757 if (rq->clock_update_flags & RQCF_ACT_SKIP)
758 return;
759
760#ifdef CONFIG_SCHED_DEBUG
761 if (sched_feat(WARN_DOUBLE_CLOCK))
762 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
763 rq->clock_update_flags |= RQCF_UPDATED;
764#endif
765
766 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
767 if (delta < 0)
768 return;
769 rq->clock += delta;
770 update_rq_clock_task(rq, delta);
771}
772
773#ifdef CONFIG_SCHED_HRTICK
774/*
775 * Use HR-timers to deliver accurate preemption points.
776 */
777
778static void hrtick_clear(struct rq *rq)
779{
780 if (hrtimer_active(&rq->hrtick_timer))
781 hrtimer_cancel(&rq->hrtick_timer);
782}
783
784/*
785 * High-resolution timer tick.
786 * Runs from hardirq context with interrupts disabled.
787 */
788static enum hrtimer_restart hrtick(struct hrtimer *timer)
789{
790 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
791 struct rq_flags rf;
792
793 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
794
795 rq_lock(rq, &rf);
796 update_rq_clock(rq);
797 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
798 rq_unlock(rq, &rf);
799
800 return HRTIMER_NORESTART;
801}
802
803#ifdef CONFIG_SMP
804
805static void __hrtick_restart(struct rq *rq)
806{
807 struct hrtimer *timer = &rq->hrtick_timer;
808 ktime_t time = rq->hrtick_time;
809
810 hrtimer_start(timer, time, HRTIMER_MODE_ABS_PINNED_HARD);
811}
812
813/*
814 * called from hardirq (IPI) context
815 */
816static void __hrtick_start(void *arg)
817{
818 struct rq *rq = arg;
819 struct rq_flags rf;
820
821 rq_lock(rq, &rf);
822 __hrtick_restart(rq);
823 rq_unlock(rq, &rf);
824}
825
826/*
827 * Called to set the hrtick timer state.
828 *
829 * called with rq->lock held and irqs disabled
830 */
831void hrtick_start(struct rq *rq, u64 delay)
832{
833 struct hrtimer *timer = &rq->hrtick_timer;
834 s64 delta;
835
836 /*
837 * Don't schedule slices shorter than 10000ns, that just
838 * doesn't make sense and can cause timer DoS.
839 */
840 delta = max_t(s64, delay, 10000LL);
841 rq->hrtick_time = ktime_add_ns(timer->base->get_time(), delta);
842
843 if (rq == this_rq())
844 __hrtick_restart(rq);
845 else
846 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
847}
848
849#else
850/*
851 * Called to set the hrtick timer state.
852 *
853 * called with rq->lock held and irqs disabled
854 */
855void hrtick_start(struct rq *rq, u64 delay)
856{
857 /*
858 * Don't schedule slices shorter than 10000ns, that just
859 * doesn't make sense. Rely on vruntime for fairness.
860 */
861 delay = max_t(u64, delay, 10000LL);
862 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
863 HRTIMER_MODE_REL_PINNED_HARD);
864}
865
866#endif /* CONFIG_SMP */
867
868static void hrtick_rq_init(struct rq *rq)
869{
870#ifdef CONFIG_SMP
871 INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq);
872#endif
873 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
874 rq->hrtick_timer.function = hrtick;
875}
876#else /* CONFIG_SCHED_HRTICK */
877static inline void hrtick_clear(struct rq *rq)
878{
879}
880
881static inline void hrtick_rq_init(struct rq *rq)
882{
883}
884#endif /* CONFIG_SCHED_HRTICK */
885
886/*
887 * cmpxchg based fetch_or, macro so it works for different integer types
888 */
889#define fetch_or(ptr, mask) \
890 ({ \
891 typeof(ptr) _ptr = (ptr); \
892 typeof(mask) _mask = (mask); \
893 typeof(*_ptr) _val = *_ptr; \
894 \
895 do { \
896 } while (!try_cmpxchg(_ptr, &_val, _val | _mask)); \
897 _val; \
898})
899
900#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
901/*
902 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
903 * this avoids any races wrt polling state changes and thereby avoids
904 * spurious IPIs.
905 */
906static inline bool set_nr_and_not_polling(struct task_struct *p)
907{
908 struct thread_info *ti = task_thread_info(p);
909 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
910}
911
912/*
913 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
914 *
915 * If this returns true, then the idle task promises to call
916 * sched_ttwu_pending() and reschedule soon.
917 */
918static bool set_nr_if_polling(struct task_struct *p)
919{
920 struct thread_info *ti = task_thread_info(p);
921 typeof(ti->flags) val = READ_ONCE(ti->flags);
922
923 do {
924 if (!(val & _TIF_POLLING_NRFLAG))
925 return false;
926 if (val & _TIF_NEED_RESCHED)
927 return true;
928 } while (!try_cmpxchg(&ti->flags, &val, val | _TIF_NEED_RESCHED));
929
930 return true;
931}
932
933#else
934static inline bool set_nr_and_not_polling(struct task_struct *p)
935{
936 set_tsk_need_resched(p);
937 return true;
938}
939
940#ifdef CONFIG_SMP
941static inline bool set_nr_if_polling(struct task_struct *p)
942{
943 return false;
944}
945#endif
946#endif
947
948static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
949{
950 struct wake_q_node *node = &task->wake_q;
951
952 /*
953 * Atomically grab the task, if ->wake_q is !nil already it means
954 * it's already queued (either by us or someone else) and will get the
955 * wakeup due to that.
956 *
957 * In order to ensure that a pending wakeup will observe our pending
958 * state, even in the failed case, an explicit smp_mb() must be used.
959 */
960 smp_mb__before_atomic();
961 if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
962 return false;
963
964 /*
965 * The head is context local, there can be no concurrency.
966 */
967 *head->lastp = node;
968 head->lastp = &node->next;
969 return true;
970}
971
972/**
973 * wake_q_add() - queue a wakeup for 'later' waking.
974 * @head: the wake_q_head to add @task to
975 * @task: the task to queue for 'later' wakeup
976 *
977 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
978 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
979 * instantly.
980 *
981 * This function must be used as-if it were wake_up_process(); IOW the task
982 * must be ready to be woken at this location.
983 */
984void wake_q_add(struct wake_q_head *head, struct task_struct *task)
985{
986 if (__wake_q_add(head, task))
987 get_task_struct(task);
988}
989
990/**
991 * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
992 * @head: the wake_q_head to add @task to
993 * @task: the task to queue for 'later' wakeup
994 *
995 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
996 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
997 * instantly.
998 *
999 * This function must be used as-if it were wake_up_process(); IOW the task
1000 * must be ready to be woken at this location.
1001 *
1002 * This function is essentially a task-safe equivalent to wake_q_add(). Callers
1003 * that already hold reference to @task can call the 'safe' version and trust
1004 * wake_q to do the right thing depending whether or not the @task is already
1005 * queued for wakeup.
1006 */
1007void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
1008{
1009 if (!__wake_q_add(head, task))
1010 put_task_struct(task);
1011}
1012
1013void wake_up_q(struct wake_q_head *head)
1014{
1015 struct wake_q_node *node = head->first;
1016
1017 while (node != WAKE_Q_TAIL) {
1018 struct task_struct *task;
1019
1020 task = container_of(node, struct task_struct, wake_q);
1021 /* Task can safely be re-inserted now: */
1022 node = node->next;
1023 task->wake_q.next = NULL;
1024
1025 /*
1026 * wake_up_process() executes a full barrier, which pairs with
1027 * the queueing in wake_q_add() so as not to miss wakeups.
1028 */
1029 wake_up_process(task);
1030 put_task_struct(task);
1031 }
1032}
1033
1034/*
1035 * resched_curr - mark rq's current task 'to be rescheduled now'.
1036 *
1037 * On UP this means the setting of the need_resched flag, on SMP it
1038 * might also involve a cross-CPU call to trigger the scheduler on
1039 * the target CPU.
1040 */
1041void resched_curr(struct rq *rq)
1042{
1043 struct task_struct *curr = rq->curr;
1044 int cpu;
1045
1046 lockdep_assert_rq_held(rq);
1047
1048 if (test_tsk_need_resched(curr))
1049 return;
1050
1051 cpu = cpu_of(rq);
1052
1053 if (cpu == smp_processor_id()) {
1054 set_tsk_need_resched(curr);
1055 set_preempt_need_resched();
1056 return;
1057 }
1058
1059 if (set_nr_and_not_polling(curr))
1060 smp_send_reschedule(cpu);
1061 else
1062 trace_sched_wake_idle_without_ipi(cpu);
1063}
1064
1065void resched_cpu(int cpu)
1066{
1067 struct rq *rq = cpu_rq(cpu);
1068 unsigned long flags;
1069
1070 raw_spin_rq_lock_irqsave(rq, flags);
1071 if (cpu_online(cpu) || cpu == smp_processor_id())
1072 resched_curr(rq);
1073 raw_spin_rq_unlock_irqrestore(rq, flags);
1074}
1075
1076#ifdef CONFIG_SMP
1077#ifdef CONFIG_NO_HZ_COMMON
1078/*
1079 * In the semi idle case, use the nearest busy CPU for migrating timers
1080 * from an idle CPU. This is good for power-savings.
1081 *
1082 * We don't do similar optimization for completely idle system, as
1083 * selecting an idle CPU will add more delays to the timers than intended
1084 * (as that CPU's timer base may not be uptodate wrt jiffies etc).
1085 */
1086int get_nohz_timer_target(void)
1087{
1088 int i, cpu = smp_processor_id(), default_cpu = -1;
1089 struct sched_domain *sd;
1090 const struct cpumask *hk_mask;
1091
1092 if (housekeeping_cpu(cpu, HK_TYPE_TIMER)) {
1093 if (!idle_cpu(cpu))
1094 return cpu;
1095 default_cpu = cpu;
1096 }
1097
1098 hk_mask = housekeeping_cpumask(HK_TYPE_TIMER);
1099
1100 guard(rcu)();
1101
1102 for_each_domain(cpu, sd) {
1103 for_each_cpu_and(i, sched_domain_span(sd), hk_mask) {
1104 if (cpu == i)
1105 continue;
1106
1107 if (!idle_cpu(i))
1108 return i;
1109 }
1110 }
1111
1112 if (default_cpu == -1)
1113 default_cpu = housekeeping_any_cpu(HK_TYPE_TIMER);
1114
1115 return default_cpu;
1116}
1117
1118/*
1119 * When add_timer_on() enqueues a timer into the timer wheel of an
1120 * idle CPU then this timer might expire before the next timer event
1121 * which is scheduled to wake up that CPU. In case of a completely
1122 * idle system the next event might even be infinite time into the
1123 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1124 * leaves the inner idle loop so the newly added timer is taken into
1125 * account when the CPU goes back to idle and evaluates the timer
1126 * wheel for the next timer event.
1127 */
1128static void wake_up_idle_cpu(int cpu)
1129{
1130 struct rq *rq = cpu_rq(cpu);
1131
1132 if (cpu == smp_processor_id())
1133 return;
1134
1135 /*
1136 * Set TIF_NEED_RESCHED and send an IPI if in the non-polling
1137 * part of the idle loop. This forces an exit from the idle loop
1138 * and a round trip to schedule(). Now this could be optimized
1139 * because a simple new idle loop iteration is enough to
1140 * re-evaluate the next tick. Provided some re-ordering of tick
1141 * nohz functions that would need to follow TIF_NR_POLLING
1142 * clearing:
1143 *
1144 * - On most archs, a simple fetch_or on ti::flags with a
1145 * "0" value would be enough to know if an IPI needs to be sent.
1146 *
1147 * - x86 needs to perform a last need_resched() check between
1148 * monitor and mwait which doesn't take timers into account.
1149 * There a dedicated TIF_TIMER flag would be required to
1150 * fetch_or here and be checked along with TIF_NEED_RESCHED
1151 * before mwait().
1152 *
1153 * However, remote timer enqueue is not such a frequent event
1154 * and testing of the above solutions didn't appear to report
1155 * much benefits.
1156 */
1157 if (set_nr_and_not_polling(rq->idle))
1158 smp_send_reschedule(cpu);
1159 else
1160 trace_sched_wake_idle_without_ipi(cpu);
1161}
1162
1163static bool wake_up_full_nohz_cpu(int cpu)
1164{
1165 /*
1166 * We just need the target to call irq_exit() and re-evaluate
1167 * the next tick. The nohz full kick at least implies that.
1168 * If needed we can still optimize that later with an
1169 * empty IRQ.
1170 */
1171 if (cpu_is_offline(cpu))
1172 return true; /* Don't try to wake offline CPUs. */
1173 if (tick_nohz_full_cpu(cpu)) {
1174 if (cpu != smp_processor_id() ||
1175 tick_nohz_tick_stopped())
1176 tick_nohz_full_kick_cpu(cpu);
1177 return true;
1178 }
1179
1180 return false;
1181}
1182
1183/*
1184 * Wake up the specified CPU. If the CPU is going offline, it is the
1185 * caller's responsibility to deal with the lost wakeup, for example,
1186 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
1187 */
1188void wake_up_nohz_cpu(int cpu)
1189{
1190 if (!wake_up_full_nohz_cpu(cpu))
1191 wake_up_idle_cpu(cpu);
1192}
1193
1194static void nohz_csd_func(void *info)
1195{
1196 struct rq *rq = info;
1197 int cpu = cpu_of(rq);
1198 unsigned int flags;
1199
1200 /*
1201 * Release the rq::nohz_csd.
1202 */
1203 flags = atomic_fetch_andnot(NOHZ_KICK_MASK | NOHZ_NEWILB_KICK, nohz_flags(cpu));
1204 WARN_ON(!(flags & NOHZ_KICK_MASK));
1205
1206 rq->idle_balance = idle_cpu(cpu);
1207 if (rq->idle_balance && !need_resched()) {
1208 rq->nohz_idle_balance = flags;
1209 raise_softirq_irqoff(SCHED_SOFTIRQ);
1210 }
1211}
1212
1213#endif /* CONFIG_NO_HZ_COMMON */
1214
1215#ifdef CONFIG_NO_HZ_FULL
1216static inline bool __need_bw_check(struct rq *rq, struct task_struct *p)
1217{
1218 if (rq->nr_running != 1)
1219 return false;
1220
1221 if (p->sched_class != &fair_sched_class)
1222 return false;
1223
1224 if (!task_on_rq_queued(p))
1225 return false;
1226
1227 return true;
1228}
1229
1230bool sched_can_stop_tick(struct rq *rq)
1231{
1232 int fifo_nr_running;
1233
1234 /* Deadline tasks, even if single, need the tick */
1235 if (rq->dl.dl_nr_running)
1236 return false;
1237
1238 /*
1239 * If there are more than one RR tasks, we need the tick to affect the
1240 * actual RR behaviour.
1241 */
1242 if (rq->rt.rr_nr_running) {
1243 if (rq->rt.rr_nr_running == 1)
1244 return true;
1245 else
1246 return false;
1247 }
1248
1249 /*
1250 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
1251 * forced preemption between FIFO tasks.
1252 */
1253 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
1254 if (fifo_nr_running)
1255 return true;
1256
1257 /*
1258 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
1259 * if there's more than one we need the tick for involuntary
1260 * preemption.
1261 */
1262 if (rq->nr_running > 1)
1263 return false;
1264
1265 /*
1266 * If there is one task and it has CFS runtime bandwidth constraints
1267 * and it's on the cpu now we don't want to stop the tick.
1268 * This check prevents clearing the bit if a newly enqueued task here is
1269 * dequeued by migrating while the constrained task continues to run.
1270 * E.g. going from 2->1 without going through pick_next_task().
1271 */
1272 if (sched_feat(HZ_BW) && __need_bw_check(rq, rq->curr)) {
1273 if (cfs_task_bw_constrained(rq->curr))
1274 return false;
1275 }
1276
1277 return true;
1278}
1279#endif /* CONFIG_NO_HZ_FULL */
1280#endif /* CONFIG_SMP */
1281
1282#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
1283 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
1284/*
1285 * Iterate task_group tree rooted at *from, calling @down when first entering a
1286 * node and @up when leaving it for the final time.
1287 *
1288 * Caller must hold rcu_lock or sufficient equivalent.
1289 */
1290int walk_tg_tree_from(struct task_group *from,
1291 tg_visitor down, tg_visitor up, void *data)
1292{
1293 struct task_group *parent, *child;
1294 int ret;
1295
1296 parent = from;
1297
1298down:
1299 ret = (*down)(parent, data);
1300 if (ret)
1301 goto out;
1302 list_for_each_entry_rcu(child, &parent->children, siblings) {
1303 parent = child;
1304 goto down;
1305
1306up:
1307 continue;
1308 }
1309 ret = (*up)(parent, data);
1310 if (ret || parent == from)
1311 goto out;
1312
1313 child = parent;
1314 parent = parent->parent;
1315 if (parent)
1316 goto up;
1317out:
1318 return ret;
1319}
1320
1321int tg_nop(struct task_group *tg, void *data)
1322{
1323 return 0;
1324}
1325#endif
1326
1327static void set_load_weight(struct task_struct *p, bool update_load)
1328{
1329 int prio = p->static_prio - MAX_RT_PRIO;
1330 struct load_weight *load = &p->se.load;
1331
1332 /*
1333 * SCHED_IDLE tasks get minimal weight:
1334 */
1335 if (task_has_idle_policy(p)) {
1336 load->weight = scale_load(WEIGHT_IDLEPRIO);
1337 load->inv_weight = WMULT_IDLEPRIO;
1338 return;
1339 }
1340
1341 /*
1342 * SCHED_OTHER tasks have to update their load when changing their
1343 * weight
1344 */
1345 if (update_load && p->sched_class == &fair_sched_class) {
1346 reweight_task(p, prio);
1347 } else {
1348 load->weight = scale_load(sched_prio_to_weight[prio]);
1349 load->inv_weight = sched_prio_to_wmult[prio];
1350 }
1351}
1352
1353#ifdef CONFIG_UCLAMP_TASK
1354/*
1355 * Serializes updates of utilization clamp values
1356 *
1357 * The (slow-path) user-space triggers utilization clamp value updates which
1358 * can require updates on (fast-path) scheduler's data structures used to
1359 * support enqueue/dequeue operations.
1360 * While the per-CPU rq lock protects fast-path update operations, user-space
1361 * requests are serialized using a mutex to reduce the risk of conflicting
1362 * updates or API abuses.
1363 */
1364static DEFINE_MUTEX(uclamp_mutex);
1365
1366/* Max allowed minimum utilization */
1367static unsigned int __maybe_unused sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
1368
1369/* Max allowed maximum utilization */
1370static unsigned int __maybe_unused sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
1371
1372/*
1373 * By default RT tasks run at the maximum performance point/capacity of the
1374 * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to
1375 * SCHED_CAPACITY_SCALE.
1376 *
1377 * This knob allows admins to change the default behavior when uclamp is being
1378 * used. In battery powered devices, particularly, running at the maximum
1379 * capacity and frequency will increase energy consumption and shorten the
1380 * battery life.
1381 *
1382 * This knob only affects RT tasks that their uclamp_se->user_defined == false.
1383 *
1384 * This knob will not override the system default sched_util_clamp_min defined
1385 * above.
1386 */
1387static unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE;
1388
1389/* All clamps are required to be less or equal than these values */
1390static struct uclamp_se uclamp_default[UCLAMP_CNT];
1391
1392/*
1393 * This static key is used to reduce the uclamp overhead in the fast path. It
1394 * primarily disables the call to uclamp_rq_{inc, dec}() in
1395 * enqueue/dequeue_task().
1396 *
1397 * This allows users to continue to enable uclamp in their kernel config with
1398 * minimum uclamp overhead in the fast path.
1399 *
1400 * As soon as userspace modifies any of the uclamp knobs, the static key is
1401 * enabled, since we have an actual users that make use of uclamp
1402 * functionality.
1403 *
1404 * The knobs that would enable this static key are:
1405 *
1406 * * A task modifying its uclamp value with sched_setattr().
1407 * * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs.
1408 * * An admin modifying the cgroup cpu.uclamp.{min, max}
1409 */
1410DEFINE_STATIC_KEY_FALSE(sched_uclamp_used);
1411
1412/* Integer rounded range for each bucket */
1413#define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)
1414
1415#define for_each_clamp_id(clamp_id) \
1416 for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
1417
1418static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
1419{
1420 return min_t(unsigned int, clamp_value / UCLAMP_BUCKET_DELTA, UCLAMP_BUCKETS - 1);
1421}
1422
1423static inline unsigned int uclamp_none(enum uclamp_id clamp_id)
1424{
1425 if (clamp_id == UCLAMP_MIN)
1426 return 0;
1427 return SCHED_CAPACITY_SCALE;
1428}
1429
1430static inline void uclamp_se_set(struct uclamp_se *uc_se,
1431 unsigned int value, bool user_defined)
1432{
1433 uc_se->value = value;
1434 uc_se->bucket_id = uclamp_bucket_id(value);
1435 uc_se->user_defined = user_defined;
1436}
1437
1438static inline unsigned int
1439uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
1440 unsigned int clamp_value)
1441{
1442 /*
1443 * Avoid blocked utilization pushing up the frequency when we go
1444 * idle (which drops the max-clamp) by retaining the last known
1445 * max-clamp.
1446 */
1447 if (clamp_id == UCLAMP_MAX) {
1448 rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
1449 return clamp_value;
1450 }
1451
1452 return uclamp_none(UCLAMP_MIN);
1453}
1454
1455static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
1456 unsigned int clamp_value)
1457{
1458 /* Reset max-clamp retention only on idle exit */
1459 if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1460 return;
1461
1462 uclamp_rq_set(rq, clamp_id, clamp_value);
1463}
1464
1465static inline
1466unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
1467 unsigned int clamp_value)
1468{
1469 struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
1470 int bucket_id = UCLAMP_BUCKETS - 1;
1471
1472 /*
1473 * Since both min and max clamps are max aggregated, find the
1474 * top most bucket with tasks in.
1475 */
1476 for ( ; bucket_id >= 0; bucket_id--) {
1477 if (!bucket[bucket_id].tasks)
1478 continue;
1479 return bucket[bucket_id].value;
1480 }
1481
1482 /* No tasks -- default clamp values */
1483 return uclamp_idle_value(rq, clamp_id, clamp_value);
1484}
1485
1486static void __uclamp_update_util_min_rt_default(struct task_struct *p)
1487{
1488 unsigned int default_util_min;
1489 struct uclamp_se *uc_se;
1490
1491 lockdep_assert_held(&p->pi_lock);
1492
1493 uc_se = &p->uclamp_req[UCLAMP_MIN];
1494
1495 /* Only sync if user didn't override the default */
1496 if (uc_se->user_defined)
1497 return;
1498
1499 default_util_min = sysctl_sched_uclamp_util_min_rt_default;
1500 uclamp_se_set(uc_se, default_util_min, false);
1501}
1502
1503static void uclamp_update_util_min_rt_default(struct task_struct *p)
1504{
1505 if (!rt_task(p))
1506 return;
1507
1508 /* Protect updates to p->uclamp_* */
1509 guard(task_rq_lock)(p);
1510 __uclamp_update_util_min_rt_default(p);
1511}
1512
1513static inline struct uclamp_se
1514uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id)
1515{
1516 /* Copy by value as we could modify it */
1517 struct uclamp_se uc_req = p->uclamp_req[clamp_id];
1518#ifdef CONFIG_UCLAMP_TASK_GROUP
1519 unsigned int tg_min, tg_max, value;
1520
1521 /*
1522 * Tasks in autogroups or root task group will be
1523 * restricted by system defaults.
1524 */
1525 if (task_group_is_autogroup(task_group(p)))
1526 return uc_req;
1527 if (task_group(p) == &root_task_group)
1528 return uc_req;
1529
1530 tg_min = task_group(p)->uclamp[UCLAMP_MIN].value;
1531 tg_max = task_group(p)->uclamp[UCLAMP_MAX].value;
1532 value = uc_req.value;
1533 value = clamp(value, tg_min, tg_max);
1534 uclamp_se_set(&uc_req, value, false);
1535#endif
1536
1537 return uc_req;
1538}
1539
1540/*
1541 * The effective clamp bucket index of a task depends on, by increasing
1542 * priority:
1543 * - the task specific clamp value, when explicitly requested from userspace
1544 * - the task group effective clamp value, for tasks not either in the root
1545 * group or in an autogroup
1546 * - the system default clamp value, defined by the sysadmin
1547 */
1548static inline struct uclamp_se
1549uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
1550{
1551 struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id);
1552 struct uclamp_se uc_max = uclamp_default[clamp_id];
1553
1554 /* System default restrictions always apply */
1555 if (unlikely(uc_req.value > uc_max.value))
1556 return uc_max;
1557
1558 return uc_req;
1559}
1560
1561unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
1562{
1563 struct uclamp_se uc_eff;
1564
1565 /* Task currently refcounted: use back-annotated (effective) value */
1566 if (p->uclamp[clamp_id].active)
1567 return (unsigned long)p->uclamp[clamp_id].value;
1568
1569 uc_eff = uclamp_eff_get(p, clamp_id);
1570
1571 return (unsigned long)uc_eff.value;
1572}
1573
1574/*
1575 * When a task is enqueued on a rq, the clamp bucket currently defined by the
1576 * task's uclamp::bucket_id is refcounted on that rq. This also immediately
1577 * updates the rq's clamp value if required.
1578 *
1579 * Tasks can have a task-specific value requested from user-space, track
1580 * within each bucket the maximum value for tasks refcounted in it.
1581 * This "local max aggregation" allows to track the exact "requested" value
1582 * for each bucket when all its RUNNABLE tasks require the same clamp.
1583 */
1584static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
1585 enum uclamp_id clamp_id)
1586{
1587 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1588 struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1589 struct uclamp_bucket *bucket;
1590
1591 lockdep_assert_rq_held(rq);
1592
1593 /* Update task effective clamp */
1594 p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
1595
1596 bucket = &uc_rq->bucket[uc_se->bucket_id];
1597 bucket->tasks++;
1598 uc_se->active = true;
1599
1600 uclamp_idle_reset(rq, clamp_id, uc_se->value);
1601
1602 /*
1603 * Local max aggregation: rq buckets always track the max
1604 * "requested" clamp value of its RUNNABLE tasks.
1605 */
1606 if (bucket->tasks == 1 || uc_se->value > bucket->value)
1607 bucket->value = uc_se->value;
1608
1609 if (uc_se->value > uclamp_rq_get(rq, clamp_id))
1610 uclamp_rq_set(rq, clamp_id, uc_se->value);
1611}
1612
1613/*
1614 * When a task is dequeued from a rq, the clamp bucket refcounted by the task
1615 * is released. If this is the last task reference counting the rq's max
1616 * active clamp value, then the rq's clamp value is updated.
1617 *
1618 * Both refcounted tasks and rq's cached clamp values are expected to be
1619 * always valid. If it's detected they are not, as defensive programming,
1620 * enforce the expected state and warn.
1621 */
1622static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
1623 enum uclamp_id clamp_id)
1624{
1625 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1626 struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1627 struct uclamp_bucket *bucket;
1628 unsigned int bkt_clamp;
1629 unsigned int rq_clamp;
1630
1631 lockdep_assert_rq_held(rq);
1632
1633 /*
1634 * If sched_uclamp_used was enabled after task @p was enqueued,
1635 * we could end up with unbalanced call to uclamp_rq_dec_id().
1636 *
1637 * In this case the uc_se->active flag should be false since no uclamp
1638 * accounting was performed at enqueue time and we can just return
1639 * here.
1640 *
1641 * Need to be careful of the following enqueue/dequeue ordering
1642 * problem too
1643 *
1644 * enqueue(taskA)
1645 * // sched_uclamp_used gets enabled
1646 * enqueue(taskB)
1647 * dequeue(taskA)
1648 * // Must not decrement bucket->tasks here
1649 * dequeue(taskB)
1650 *
1651 * where we could end up with stale data in uc_se and
1652 * bucket[uc_se->bucket_id].
1653 *
1654 * The following check here eliminates the possibility of such race.
1655 */
1656 if (unlikely(!uc_se->active))
1657 return;
1658
1659 bucket = &uc_rq->bucket[uc_se->bucket_id];
1660
1661 SCHED_WARN_ON(!bucket->tasks);
1662 if (likely(bucket->tasks))
1663 bucket->tasks--;
1664
1665 uc_se->active = false;
1666
1667 /*
1668 * Keep "local max aggregation" simple and accept to (possibly)
1669 * overboost some RUNNABLE tasks in the same bucket.
1670 * The rq clamp bucket value is reset to its base value whenever
1671 * there are no more RUNNABLE tasks refcounting it.
1672 */
1673 if (likely(bucket->tasks))
1674 return;
1675
1676 rq_clamp = uclamp_rq_get(rq, clamp_id);
1677 /*
1678 * Defensive programming: this should never happen. If it happens,
1679 * e.g. due to future modification, warn and fixup the expected value.
1680 */
1681 SCHED_WARN_ON(bucket->value > rq_clamp);
1682 if (bucket->value >= rq_clamp) {
1683 bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
1684 uclamp_rq_set(rq, clamp_id, bkt_clamp);
1685 }
1686}
1687
1688static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
1689{
1690 enum uclamp_id clamp_id;
1691
1692 /*
1693 * Avoid any overhead until uclamp is actually used by the userspace.
1694 *
1695 * The condition is constructed such that a NOP is generated when
1696 * sched_uclamp_used is disabled.
1697 */
1698 if (!static_branch_unlikely(&sched_uclamp_used))
1699 return;
1700
1701 if (unlikely(!p->sched_class->uclamp_enabled))
1702 return;
1703
1704 for_each_clamp_id(clamp_id)
1705 uclamp_rq_inc_id(rq, p, clamp_id);
1706
1707 /* Reset clamp idle holding when there is one RUNNABLE task */
1708 if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
1709 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1710}
1711
1712static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
1713{
1714 enum uclamp_id clamp_id;
1715
1716 /*
1717 * Avoid any overhead until uclamp is actually used by the userspace.
1718 *
1719 * The condition is constructed such that a NOP is generated when
1720 * sched_uclamp_used is disabled.
1721 */
1722 if (!static_branch_unlikely(&sched_uclamp_used))
1723 return;
1724
1725 if (unlikely(!p->sched_class->uclamp_enabled))
1726 return;
1727
1728 for_each_clamp_id(clamp_id)
1729 uclamp_rq_dec_id(rq, p, clamp_id);
1730}
1731
1732static inline void uclamp_rq_reinc_id(struct rq *rq, struct task_struct *p,
1733 enum uclamp_id clamp_id)
1734{
1735 if (!p->uclamp[clamp_id].active)
1736 return;
1737
1738 uclamp_rq_dec_id(rq, p, clamp_id);
1739 uclamp_rq_inc_id(rq, p, clamp_id);
1740
1741 /*
1742 * Make sure to clear the idle flag if we've transiently reached 0
1743 * active tasks on rq.
1744 */
1745 if (clamp_id == UCLAMP_MAX && (rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1746 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1747}
1748
1749static inline void
1750uclamp_update_active(struct task_struct *p)
1751{
1752 enum uclamp_id clamp_id;
1753 struct rq_flags rf;
1754 struct rq *rq;
1755
1756 /*
1757 * Lock the task and the rq where the task is (or was) queued.
1758 *
1759 * We might lock the (previous) rq of a !RUNNABLE task, but that's the
1760 * price to pay to safely serialize util_{min,max} updates with
1761 * enqueues, dequeues and migration operations.
1762 * This is the same locking schema used by __set_cpus_allowed_ptr().
1763 */
1764 rq = task_rq_lock(p, &rf);
1765
1766 /*
1767 * Setting the clamp bucket is serialized by task_rq_lock().
1768 * If the task is not yet RUNNABLE and its task_struct is not
1769 * affecting a valid clamp bucket, the next time it's enqueued,
1770 * it will already see the updated clamp bucket value.
1771 */
1772 for_each_clamp_id(clamp_id)
1773 uclamp_rq_reinc_id(rq, p, clamp_id);
1774
1775 task_rq_unlock(rq, p, &rf);
1776}
1777
1778#ifdef CONFIG_UCLAMP_TASK_GROUP
1779static inline void
1780uclamp_update_active_tasks(struct cgroup_subsys_state *css)
1781{
1782 struct css_task_iter it;
1783 struct task_struct *p;
1784
1785 css_task_iter_start(css, 0, &it);
1786 while ((p = css_task_iter_next(&it)))
1787 uclamp_update_active(p);
1788 css_task_iter_end(&it);
1789}
1790
1791static void cpu_util_update_eff(struct cgroup_subsys_state *css);
1792#endif
1793
1794#ifdef CONFIG_SYSCTL
1795#ifdef CONFIG_UCLAMP_TASK
1796#ifdef CONFIG_UCLAMP_TASK_GROUP
1797static void uclamp_update_root_tg(void)
1798{
1799 struct task_group *tg = &root_task_group;
1800
1801 uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN],
1802 sysctl_sched_uclamp_util_min, false);
1803 uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX],
1804 sysctl_sched_uclamp_util_max, false);
1805
1806 guard(rcu)();
1807 cpu_util_update_eff(&root_task_group.css);
1808}
1809#else
1810static void uclamp_update_root_tg(void) { }
1811#endif
1812
1813static void uclamp_sync_util_min_rt_default(void)
1814{
1815 struct task_struct *g, *p;
1816
1817 /*
1818 * copy_process() sysctl_uclamp
1819 * uclamp_min_rt = X;
1820 * write_lock(&tasklist_lock) read_lock(&tasklist_lock)
1821 * // link thread smp_mb__after_spinlock()
1822 * write_unlock(&tasklist_lock) read_unlock(&tasklist_lock);
1823 * sched_post_fork() for_each_process_thread()
1824 * __uclamp_sync_rt() __uclamp_sync_rt()
1825 *
1826 * Ensures that either sched_post_fork() will observe the new
1827 * uclamp_min_rt or for_each_process_thread() will observe the new
1828 * task.
1829 */
1830 read_lock(&tasklist_lock);
1831 smp_mb__after_spinlock();
1832 read_unlock(&tasklist_lock);
1833
1834 guard(rcu)();
1835 for_each_process_thread(g, p)
1836 uclamp_update_util_min_rt_default(p);
1837}
1838
1839static int sysctl_sched_uclamp_handler(struct ctl_table *table, int write,
1840 void *buffer, size_t *lenp, loff_t *ppos)
1841{
1842 bool update_root_tg = false;
1843 int old_min, old_max, old_min_rt;
1844 int result;
1845
1846 guard(mutex)(&uclamp_mutex);
1847
1848 old_min = sysctl_sched_uclamp_util_min;
1849 old_max = sysctl_sched_uclamp_util_max;
1850 old_min_rt = sysctl_sched_uclamp_util_min_rt_default;
1851
1852 result = proc_dointvec(table, write, buffer, lenp, ppos);
1853 if (result)
1854 goto undo;
1855 if (!write)
1856 return 0;
1857
1858 if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
1859 sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE ||
1860 sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) {
1861
1862 result = -EINVAL;
1863 goto undo;
1864 }
1865
1866 if (old_min != sysctl_sched_uclamp_util_min) {
1867 uclamp_se_set(&uclamp_default[UCLAMP_MIN],
1868 sysctl_sched_uclamp_util_min, false);
1869 update_root_tg = true;
1870 }
1871 if (old_max != sysctl_sched_uclamp_util_max) {
1872 uclamp_se_set(&uclamp_default[UCLAMP_MAX],
1873 sysctl_sched_uclamp_util_max, false);
1874 update_root_tg = true;
1875 }
1876
1877 if (update_root_tg) {
1878 static_branch_enable(&sched_uclamp_used);
1879 uclamp_update_root_tg();
1880 }
1881
1882 if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) {
1883 static_branch_enable(&sched_uclamp_used);
1884 uclamp_sync_util_min_rt_default();
1885 }
1886
1887 /*
1888 * We update all RUNNABLE tasks only when task groups are in use.
1889 * Otherwise, keep it simple and do just a lazy update at each next
1890 * task enqueue time.
1891 */
1892 return 0;
1893
1894undo:
1895 sysctl_sched_uclamp_util_min = old_min;
1896 sysctl_sched_uclamp_util_max = old_max;
1897 sysctl_sched_uclamp_util_min_rt_default = old_min_rt;
1898 return result;
1899}
1900#endif
1901#endif
1902
1903static int uclamp_validate(struct task_struct *p,
1904 const struct sched_attr *attr)
1905{
1906 int util_min = p->uclamp_req[UCLAMP_MIN].value;
1907 int util_max = p->uclamp_req[UCLAMP_MAX].value;
1908
1909 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) {
1910 util_min = attr->sched_util_min;
1911
1912 if (util_min + 1 > SCHED_CAPACITY_SCALE + 1)
1913 return -EINVAL;
1914 }
1915
1916 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) {
1917 util_max = attr->sched_util_max;
1918
1919 if (util_max + 1 > SCHED_CAPACITY_SCALE + 1)
1920 return -EINVAL;
1921 }
1922
1923 if (util_min != -1 && util_max != -1 && util_min > util_max)
1924 return -EINVAL;
1925
1926 /*
1927 * We have valid uclamp attributes; make sure uclamp is enabled.
1928 *
1929 * We need to do that here, because enabling static branches is a
1930 * blocking operation which obviously cannot be done while holding
1931 * scheduler locks.
1932 */
1933 static_branch_enable(&sched_uclamp_used);
1934
1935 return 0;
1936}
1937
1938static bool uclamp_reset(const struct sched_attr *attr,
1939 enum uclamp_id clamp_id,
1940 struct uclamp_se *uc_se)
1941{
1942 /* Reset on sched class change for a non user-defined clamp value. */
1943 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)) &&
1944 !uc_se->user_defined)
1945 return true;
1946
1947 /* Reset on sched_util_{min,max} == -1. */
1948 if (clamp_id == UCLAMP_MIN &&
1949 attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
1950 attr->sched_util_min == -1) {
1951 return true;
1952 }
1953
1954 if (clamp_id == UCLAMP_MAX &&
1955 attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
1956 attr->sched_util_max == -1) {
1957 return true;
1958 }
1959
1960 return false;
1961}
1962
1963static void __setscheduler_uclamp(struct task_struct *p,
1964 const struct sched_attr *attr)
1965{
1966 enum uclamp_id clamp_id;
1967
1968 for_each_clamp_id(clamp_id) {
1969 struct uclamp_se *uc_se = &p->uclamp_req[clamp_id];
1970 unsigned int value;
1971
1972 if (!uclamp_reset(attr, clamp_id, uc_se))
1973 continue;
1974
1975 /*
1976 * RT by default have a 100% boost value that could be modified
1977 * at runtime.
1978 */
1979 if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
1980 value = sysctl_sched_uclamp_util_min_rt_default;
1981 else
1982 value = uclamp_none(clamp_id);
1983
1984 uclamp_se_set(uc_se, value, false);
1985
1986 }
1987
1988 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)))
1989 return;
1990
1991 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
1992 attr->sched_util_min != -1) {
1993 uclamp_se_set(&p->uclamp_req[UCLAMP_MIN],
1994 attr->sched_util_min, true);
1995 }
1996
1997 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
1998 attr->sched_util_max != -1) {
1999 uclamp_se_set(&p->uclamp_req[UCLAMP_MAX],
2000 attr->sched_util_max, true);
2001 }
2002}
2003
2004static void uclamp_fork(struct task_struct *p)
2005{
2006 enum uclamp_id clamp_id;
2007
2008 /*
2009 * We don't need to hold task_rq_lock() when updating p->uclamp_* here
2010 * as the task is still at its early fork stages.
2011 */
2012 for_each_clamp_id(clamp_id)
2013 p->uclamp[clamp_id].active = false;
2014
2015 if (likely(!p->sched_reset_on_fork))
2016 return;
2017
2018 for_each_clamp_id(clamp_id) {
2019 uclamp_se_set(&p->uclamp_req[clamp_id],
2020 uclamp_none(clamp_id), false);
2021 }
2022}
2023
2024static void uclamp_post_fork(struct task_struct *p)
2025{
2026 uclamp_update_util_min_rt_default(p);
2027}
2028
2029static void __init init_uclamp_rq(struct rq *rq)
2030{
2031 enum uclamp_id clamp_id;
2032 struct uclamp_rq *uc_rq = rq->uclamp;
2033
2034 for_each_clamp_id(clamp_id) {
2035 uc_rq[clamp_id] = (struct uclamp_rq) {
2036 .value = uclamp_none(clamp_id)
2037 };
2038 }
2039
2040 rq->uclamp_flags = UCLAMP_FLAG_IDLE;
2041}
2042
2043static void __init init_uclamp(void)
2044{
2045 struct uclamp_se uc_max = {};
2046 enum uclamp_id clamp_id;
2047 int cpu;
2048
2049 for_each_possible_cpu(cpu)
2050 init_uclamp_rq(cpu_rq(cpu));
2051
2052 for_each_clamp_id(clamp_id) {
2053 uclamp_se_set(&init_task.uclamp_req[clamp_id],
2054 uclamp_none(clamp_id), false);
2055 }
2056
2057 /* System defaults allow max clamp values for both indexes */
2058 uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
2059 for_each_clamp_id(clamp_id) {
2060 uclamp_default[clamp_id] = uc_max;
2061#ifdef CONFIG_UCLAMP_TASK_GROUP
2062 root_task_group.uclamp_req[clamp_id] = uc_max;
2063 root_task_group.uclamp[clamp_id] = uc_max;
2064#endif
2065 }
2066}
2067
2068#else /* CONFIG_UCLAMP_TASK */
2069static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
2070static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
2071static inline int uclamp_validate(struct task_struct *p,
2072 const struct sched_attr *attr)
2073{
2074 return -EOPNOTSUPP;
2075}
2076static void __setscheduler_uclamp(struct task_struct *p,
2077 const struct sched_attr *attr) { }
2078static inline void uclamp_fork(struct task_struct *p) { }
2079static inline void uclamp_post_fork(struct task_struct *p) { }
2080static inline void init_uclamp(void) { }
2081#endif /* CONFIG_UCLAMP_TASK */
2082
2083bool sched_task_on_rq(struct task_struct *p)
2084{
2085 return task_on_rq_queued(p);
2086}
2087
2088unsigned long get_wchan(struct task_struct *p)
2089{
2090 unsigned long ip = 0;
2091 unsigned int state;
2092
2093 if (!p || p == current)
2094 return 0;
2095
2096 /* Only get wchan if task is blocked and we can keep it that way. */
2097 raw_spin_lock_irq(&p->pi_lock);
2098 state = READ_ONCE(p->__state);
2099 smp_rmb(); /* see try_to_wake_up() */
2100 if (state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq)
2101 ip = __get_wchan(p);
2102 raw_spin_unlock_irq(&p->pi_lock);
2103
2104 return ip;
2105}
2106
2107static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2108{
2109 if (!(flags & ENQUEUE_NOCLOCK))
2110 update_rq_clock(rq);
2111
2112 if (!(flags & ENQUEUE_RESTORE)) {
2113 sched_info_enqueue(rq, p);
2114 psi_enqueue(p, (flags & ENQUEUE_WAKEUP) && !(flags & ENQUEUE_MIGRATED));
2115 }
2116
2117 uclamp_rq_inc(rq, p);
2118 p->sched_class->enqueue_task(rq, p, flags);
2119
2120 if (sched_core_enabled(rq))
2121 sched_core_enqueue(rq, p);
2122}
2123
2124static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
2125{
2126 if (sched_core_enabled(rq))
2127 sched_core_dequeue(rq, p, flags);
2128
2129 if (!(flags & DEQUEUE_NOCLOCK))
2130 update_rq_clock(rq);
2131
2132 if (!(flags & DEQUEUE_SAVE)) {
2133 sched_info_dequeue(rq, p);
2134 psi_dequeue(p, flags & DEQUEUE_SLEEP);
2135 }
2136
2137 uclamp_rq_dec(rq, p);
2138 p->sched_class->dequeue_task(rq, p, flags);
2139}
2140
2141void activate_task(struct rq *rq, struct task_struct *p, int flags)
2142{
2143 if (task_on_rq_migrating(p))
2144 flags |= ENQUEUE_MIGRATED;
2145 if (flags & ENQUEUE_MIGRATED)
2146 sched_mm_cid_migrate_to(rq, p);
2147
2148 enqueue_task(rq, p, flags);
2149
2150 WRITE_ONCE(p->on_rq, TASK_ON_RQ_QUEUED);
2151 ASSERT_EXCLUSIVE_WRITER(p->on_rq);
2152}
2153
2154void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
2155{
2156 WRITE_ONCE(p->on_rq, (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING);
2157 ASSERT_EXCLUSIVE_WRITER(p->on_rq);
2158
2159 dequeue_task(rq, p, flags);
2160}
2161
2162static inline int __normal_prio(int policy, int rt_prio, int nice)
2163{
2164 int prio;
2165
2166 if (dl_policy(policy))
2167 prio = MAX_DL_PRIO - 1;
2168 else if (rt_policy(policy))
2169 prio = MAX_RT_PRIO - 1 - rt_prio;
2170 else
2171 prio = NICE_TO_PRIO(nice);
2172
2173 return prio;
2174}
2175
2176/*
2177 * Calculate the expected normal priority: i.e. priority
2178 * without taking RT-inheritance into account. Might be
2179 * boosted by interactivity modifiers. Changes upon fork,
2180 * setprio syscalls, and whenever the interactivity
2181 * estimator recalculates.
2182 */
2183static inline int normal_prio(struct task_struct *p)
2184{
2185 return __normal_prio(p->policy, p->rt_priority, PRIO_TO_NICE(p->static_prio));
2186}
2187
2188/*
2189 * Calculate the current priority, i.e. the priority
2190 * taken into account by the scheduler. This value might
2191 * be boosted by RT tasks, or might be boosted by
2192 * interactivity modifiers. Will be RT if the task got
2193 * RT-boosted. If not then it returns p->normal_prio.
2194 */
2195static int effective_prio(struct task_struct *p)
2196{
2197 p->normal_prio = normal_prio(p);
2198 /*
2199 * If we are RT tasks or we were boosted to RT priority,
2200 * keep the priority unchanged. Otherwise, update priority
2201 * to the normal priority:
2202 */
2203 if (!rt_prio(p->prio))
2204 return p->normal_prio;
2205 return p->prio;
2206}
2207
2208/**
2209 * task_curr - is this task currently executing on a CPU?
2210 * @p: the task in question.
2211 *
2212 * Return: 1 if the task is currently executing. 0 otherwise.
2213 */
2214inline int task_curr(const struct task_struct *p)
2215{
2216 return cpu_curr(task_cpu(p)) == p;
2217}
2218
2219/*
2220 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
2221 * use the balance_callback list if you want balancing.
2222 *
2223 * this means any call to check_class_changed() must be followed by a call to
2224 * balance_callback().
2225 */
2226static inline void check_class_changed(struct rq *rq, struct task_struct *p,
2227 const struct sched_class *prev_class,
2228 int oldprio)
2229{
2230 if (prev_class != p->sched_class) {
2231 if (prev_class->switched_from)
2232 prev_class->switched_from(rq, p);
2233
2234 p->sched_class->switched_to(rq, p);
2235 } else if (oldprio != p->prio || dl_task(p))
2236 p->sched_class->prio_changed(rq, p, oldprio);
2237}
2238
2239void wakeup_preempt(struct rq *rq, struct task_struct *p, int flags)
2240{
2241 if (p->sched_class == rq->curr->sched_class)
2242 rq->curr->sched_class->wakeup_preempt(rq, p, flags);
2243 else if (sched_class_above(p->sched_class, rq->curr->sched_class))
2244 resched_curr(rq);
2245
2246 /*
2247 * A queue event has occurred, and we're going to schedule. In
2248 * this case, we can save a useless back to back clock update.
2249 */
2250 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
2251 rq_clock_skip_update(rq);
2252}
2253
2254static __always_inline
2255int __task_state_match(struct task_struct *p, unsigned int state)
2256{
2257 if (READ_ONCE(p->__state) & state)
2258 return 1;
2259
2260 if (READ_ONCE(p->saved_state) & state)
2261 return -1;
2262
2263 return 0;
2264}
2265
2266static __always_inline
2267int task_state_match(struct task_struct *p, unsigned int state)
2268{
2269 /*
2270 * Serialize against current_save_and_set_rtlock_wait_state(),
2271 * current_restore_rtlock_saved_state(), and __refrigerator().
2272 */
2273 guard(raw_spinlock_irq)(&p->pi_lock);
2274 return __task_state_match(p, state);
2275}
2276
2277/*
2278 * wait_task_inactive - wait for a thread to unschedule.
2279 *
2280 * Wait for the thread to block in any of the states set in @match_state.
2281 * If it changes, i.e. @p might have woken up, then return zero. When we
2282 * succeed in waiting for @p to be off its CPU, we return a positive number
2283 * (its total switch count). If a second call a short while later returns the
2284 * same number, the caller can be sure that @p has remained unscheduled the
2285 * whole time.
2286 *
2287 * The caller must ensure that the task *will* unschedule sometime soon,
2288 * else this function might spin for a *long* time. This function can't
2289 * be called with interrupts off, or it may introduce deadlock with
2290 * smp_call_function() if an IPI is sent by the same process we are
2291 * waiting to become inactive.
2292 */
2293unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state)
2294{
2295 int running, queued, match;
2296 struct rq_flags rf;
2297 unsigned long ncsw;
2298 struct rq *rq;
2299
2300 for (;;) {
2301 /*
2302 * We do the initial early heuristics without holding
2303 * any task-queue locks at all. We'll only try to get
2304 * the runqueue lock when things look like they will
2305 * work out!
2306 */
2307 rq = task_rq(p);
2308
2309 /*
2310 * If the task is actively running on another CPU
2311 * still, just relax and busy-wait without holding
2312 * any locks.
2313 *
2314 * NOTE! Since we don't hold any locks, it's not
2315 * even sure that "rq" stays as the right runqueue!
2316 * But we don't care, since "task_on_cpu()" will
2317 * return false if the runqueue has changed and p
2318 * is actually now running somewhere else!
2319 */
2320 while (task_on_cpu(rq, p)) {
2321 if (!task_state_match(p, match_state))
2322 return 0;
2323 cpu_relax();
2324 }
2325
2326 /*
2327 * Ok, time to look more closely! We need the rq
2328 * lock now, to be *sure*. If we're wrong, we'll
2329 * just go back and repeat.
2330 */
2331 rq = task_rq_lock(p, &rf);
2332 trace_sched_wait_task(p);
2333 running = task_on_cpu(rq, p);
2334 queued = task_on_rq_queued(p);
2335 ncsw = 0;
2336 if ((match = __task_state_match(p, match_state))) {
2337 /*
2338 * When matching on p->saved_state, consider this task
2339 * still queued so it will wait.
2340 */
2341 if (match < 0)
2342 queued = 1;
2343 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2344 }
2345 task_rq_unlock(rq, p, &rf);
2346
2347 /*
2348 * If it changed from the expected state, bail out now.
2349 */
2350 if (unlikely(!ncsw))
2351 break;
2352
2353 /*
2354 * Was it really running after all now that we
2355 * checked with the proper locks actually held?
2356 *
2357 * Oops. Go back and try again..
2358 */
2359 if (unlikely(running)) {
2360 cpu_relax();
2361 continue;
2362 }
2363
2364 /*
2365 * It's not enough that it's not actively running,
2366 * it must be off the runqueue _entirely_, and not
2367 * preempted!
2368 *
2369 * So if it was still runnable (but just not actively
2370 * running right now), it's preempted, and we should
2371 * yield - it could be a while.
2372 */
2373 if (unlikely(queued)) {
2374 ktime_t to = NSEC_PER_SEC / HZ;
2375
2376 set_current_state(TASK_UNINTERRUPTIBLE);
2377 schedule_hrtimeout(&to, HRTIMER_MODE_REL_HARD);
2378 continue;
2379 }
2380
2381 /*
2382 * Ahh, all good. It wasn't running, and it wasn't
2383 * runnable, which means that it will never become
2384 * running in the future either. We're all done!
2385 */
2386 break;
2387 }
2388
2389 return ncsw;
2390}
2391
2392#ifdef CONFIG_SMP
2393
2394static void
2395__do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx);
2396
2397static int __set_cpus_allowed_ptr(struct task_struct *p,
2398 struct affinity_context *ctx);
2399
2400static void migrate_disable_switch(struct rq *rq, struct task_struct *p)
2401{
2402 struct affinity_context ac = {
2403 .new_mask = cpumask_of(rq->cpu),
2404 .flags = SCA_MIGRATE_DISABLE,
2405 };
2406
2407 if (likely(!p->migration_disabled))
2408 return;
2409
2410 if (p->cpus_ptr != &p->cpus_mask)
2411 return;
2412
2413 /*
2414 * Violates locking rules! see comment in __do_set_cpus_allowed().
2415 */
2416 __do_set_cpus_allowed(p, &ac);
2417}
2418
2419void migrate_disable(void)
2420{
2421 struct task_struct *p = current;
2422
2423 if (p->migration_disabled) {
2424 p->migration_disabled++;
2425 return;
2426 }
2427
2428 guard(preempt)();
2429 this_rq()->nr_pinned++;
2430 p->migration_disabled = 1;
2431}
2432EXPORT_SYMBOL_GPL(migrate_disable);
2433
2434void migrate_enable(void)
2435{
2436 struct task_struct *p = current;
2437 struct affinity_context ac = {
2438 .new_mask = &p->cpus_mask,
2439 .flags = SCA_MIGRATE_ENABLE,
2440 };
2441
2442 if (p->migration_disabled > 1) {
2443 p->migration_disabled--;
2444 return;
2445 }
2446
2447 if (WARN_ON_ONCE(!p->migration_disabled))
2448 return;
2449
2450 /*
2451 * Ensure stop_task runs either before or after this, and that
2452 * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule().
2453 */
2454 guard(preempt)();
2455 if (p->cpus_ptr != &p->cpus_mask)
2456 __set_cpus_allowed_ptr(p, &ac);
2457 /*
2458 * Mustn't clear migration_disabled() until cpus_ptr points back at the
2459 * regular cpus_mask, otherwise things that race (eg.
2460 * select_fallback_rq) get confused.
2461 */
2462 barrier();
2463 p->migration_disabled = 0;
2464 this_rq()->nr_pinned--;
2465}
2466EXPORT_SYMBOL_GPL(migrate_enable);
2467
2468static inline bool rq_has_pinned_tasks(struct rq *rq)
2469{
2470 return rq->nr_pinned;
2471}
2472
2473/*
2474 * Per-CPU kthreads are allowed to run on !active && online CPUs, see
2475 * __set_cpus_allowed_ptr() and select_fallback_rq().
2476 */
2477static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
2478{
2479 /* When not in the task's cpumask, no point in looking further. */
2480 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
2481 return false;
2482
2483 /* migrate_disabled() must be allowed to finish. */
2484 if (is_migration_disabled(p))
2485 return cpu_online(cpu);
2486
2487 /* Non kernel threads are not allowed during either online or offline. */
2488 if (!(p->flags & PF_KTHREAD))
2489 return cpu_active(cpu) && task_cpu_possible(cpu, p);
2490
2491 /* KTHREAD_IS_PER_CPU is always allowed. */
2492 if (kthread_is_per_cpu(p))
2493 return cpu_online(cpu);
2494
2495 /* Regular kernel threads don't get to stay during offline. */
2496 if (cpu_dying(cpu))
2497 return false;
2498
2499 /* But are allowed during online. */
2500 return cpu_online(cpu);
2501}
2502
2503/*
2504 * This is how migration works:
2505 *
2506 * 1) we invoke migration_cpu_stop() on the target CPU using
2507 * stop_one_cpu().
2508 * 2) stopper starts to run (implicitly forcing the migrated thread
2509 * off the CPU)
2510 * 3) it checks whether the migrated task is still in the wrong runqueue.
2511 * 4) if it's in the wrong runqueue then the migration thread removes
2512 * it and puts it into the right queue.
2513 * 5) stopper completes and stop_one_cpu() returns and the migration
2514 * is done.
2515 */
2516
2517/*
2518 * move_queued_task - move a queued task to new rq.
2519 *
2520 * Returns (locked) new rq. Old rq's lock is released.
2521 */
2522static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
2523 struct task_struct *p, int new_cpu)
2524{
2525 lockdep_assert_rq_held(rq);
2526
2527 deactivate_task(rq, p, DEQUEUE_NOCLOCK);
2528 set_task_cpu(p, new_cpu);
2529 rq_unlock(rq, rf);
2530
2531 rq = cpu_rq(new_cpu);
2532
2533 rq_lock(rq, rf);
2534 WARN_ON_ONCE(task_cpu(p) != new_cpu);
2535 activate_task(rq, p, 0);
2536 wakeup_preempt(rq, p, 0);
2537
2538 return rq;
2539}
2540
2541struct migration_arg {
2542 struct task_struct *task;
2543 int dest_cpu;
2544 struct set_affinity_pending *pending;
2545};
2546
2547/*
2548 * @refs: number of wait_for_completion()
2549 * @stop_pending: is @stop_work in use
2550 */
2551struct set_affinity_pending {
2552 refcount_t refs;
2553 unsigned int stop_pending;
2554 struct completion done;
2555 struct cpu_stop_work stop_work;
2556 struct migration_arg arg;
2557};
2558
2559/*
2560 * Move (not current) task off this CPU, onto the destination CPU. We're doing
2561 * this because either it can't run here any more (set_cpus_allowed()
2562 * away from this CPU, or CPU going down), or because we're
2563 * attempting to rebalance this task on exec (sched_exec).
2564 *
2565 * So we race with normal scheduler movements, but that's OK, as long
2566 * as the task is no longer on this CPU.
2567 */
2568static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
2569 struct task_struct *p, int dest_cpu)
2570{
2571 /* Affinity changed (again). */
2572 if (!is_cpu_allowed(p, dest_cpu))
2573 return rq;
2574
2575 rq = move_queued_task(rq, rf, p, dest_cpu);
2576
2577 return rq;
2578}
2579
2580/*
2581 * migration_cpu_stop - this will be executed by a highprio stopper thread
2582 * and performs thread migration by bumping thread off CPU then
2583 * 'pushing' onto another runqueue.
2584 */
2585static int migration_cpu_stop(void *data)
2586{
2587 struct migration_arg *arg = data;
2588 struct set_affinity_pending *pending = arg->pending;
2589 struct task_struct *p = arg->task;
2590 struct rq *rq = this_rq();
2591 bool complete = false;
2592 struct rq_flags rf;
2593
2594 /*
2595 * The original target CPU might have gone down and we might
2596 * be on another CPU but it doesn't matter.
2597 */
2598 local_irq_save(rf.flags);
2599 /*
2600 * We need to explicitly wake pending tasks before running
2601 * __migrate_task() such that we will not miss enforcing cpus_ptr
2602 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
2603 */
2604 flush_smp_call_function_queue();
2605
2606 raw_spin_lock(&p->pi_lock);
2607 rq_lock(rq, &rf);
2608
2609 /*
2610 * If we were passed a pending, then ->stop_pending was set, thus
2611 * p->migration_pending must have remained stable.
2612 */
2613 WARN_ON_ONCE(pending && pending != p->migration_pending);
2614
2615 /*
2616 * If task_rq(p) != rq, it cannot be migrated here, because we're
2617 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
2618 * we're holding p->pi_lock.
2619 */
2620 if (task_rq(p) == rq) {
2621 if (is_migration_disabled(p))
2622 goto out;
2623
2624 if (pending) {
2625 p->migration_pending = NULL;
2626 complete = true;
2627
2628 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask))
2629 goto out;
2630 }
2631
2632 if (task_on_rq_queued(p)) {
2633 update_rq_clock(rq);
2634 rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
2635 } else {
2636 p->wake_cpu = arg->dest_cpu;
2637 }
2638
2639 /*
2640 * XXX __migrate_task() can fail, at which point we might end
2641 * up running on a dodgy CPU, AFAICT this can only happen
2642 * during CPU hotplug, at which point we'll get pushed out
2643 * anyway, so it's probably not a big deal.
2644 */
2645
2646 } else if (pending) {
2647 /*
2648 * This happens when we get migrated between migrate_enable()'s
2649 * preempt_enable() and scheduling the stopper task. At that
2650 * point we're a regular task again and not current anymore.
2651 *
2652 * A !PREEMPT kernel has a giant hole here, which makes it far
2653 * more likely.
2654 */
2655
2656 /*
2657 * The task moved before the stopper got to run. We're holding
2658 * ->pi_lock, so the allowed mask is stable - if it got
2659 * somewhere allowed, we're done.
2660 */
2661 if (cpumask_test_cpu(task_cpu(p), p->cpus_ptr)) {
2662 p->migration_pending = NULL;
2663 complete = true;
2664 goto out;
2665 }
2666
2667 /*
2668 * When migrate_enable() hits a rq mis-match we can't reliably
2669 * determine is_migration_disabled() and so have to chase after
2670 * it.
2671 */
2672 WARN_ON_ONCE(!pending->stop_pending);
2673 preempt_disable();
2674 task_rq_unlock(rq, p, &rf);
2675 stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop,
2676 &pending->arg, &pending->stop_work);
2677 preempt_enable();
2678 return 0;
2679 }
2680out:
2681 if (pending)
2682 pending->stop_pending = false;
2683 task_rq_unlock(rq, p, &rf);
2684
2685 if (complete)
2686 complete_all(&pending->done);
2687
2688 return 0;
2689}
2690
2691int push_cpu_stop(void *arg)
2692{
2693 struct rq *lowest_rq = NULL, *rq = this_rq();
2694 struct task_struct *p = arg;
2695
2696 raw_spin_lock_irq(&p->pi_lock);
2697 raw_spin_rq_lock(rq);
2698
2699 if (task_rq(p) != rq)
2700 goto out_unlock;
2701
2702 if (is_migration_disabled(p)) {
2703 p->migration_flags |= MDF_PUSH;
2704 goto out_unlock;
2705 }
2706
2707 p->migration_flags &= ~MDF_PUSH;
2708
2709 if (p->sched_class->find_lock_rq)
2710 lowest_rq = p->sched_class->find_lock_rq(p, rq);
2711
2712 if (!lowest_rq)
2713 goto out_unlock;
2714
2715 // XXX validate p is still the highest prio task
2716 if (task_rq(p) == rq) {
2717 deactivate_task(rq, p, 0);
2718 set_task_cpu(p, lowest_rq->cpu);
2719 activate_task(lowest_rq, p, 0);
2720 resched_curr(lowest_rq);
2721 }
2722
2723 double_unlock_balance(rq, lowest_rq);
2724
2725out_unlock:
2726 rq->push_busy = false;
2727 raw_spin_rq_unlock(rq);
2728 raw_spin_unlock_irq(&p->pi_lock);
2729
2730 put_task_struct(p);
2731 return 0;
2732}
2733
2734/*
2735 * sched_class::set_cpus_allowed must do the below, but is not required to
2736 * actually call this function.
2737 */
2738void set_cpus_allowed_common(struct task_struct *p, struct affinity_context *ctx)
2739{
2740 if (ctx->flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) {
2741 p->cpus_ptr = ctx->new_mask;
2742 return;
2743 }
2744
2745 cpumask_copy(&p->cpus_mask, ctx->new_mask);
2746 p->nr_cpus_allowed = cpumask_weight(ctx->new_mask);
2747
2748 /*
2749 * Swap in a new user_cpus_ptr if SCA_USER flag set
2750 */
2751 if (ctx->flags & SCA_USER)
2752 swap(p->user_cpus_ptr, ctx->user_mask);
2753}
2754
2755static void
2756__do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx)
2757{
2758 struct rq *rq = task_rq(p);
2759 bool queued, running;
2760
2761 /*
2762 * This here violates the locking rules for affinity, since we're only
2763 * supposed to change these variables while holding both rq->lock and
2764 * p->pi_lock.
2765 *
2766 * HOWEVER, it magically works, because ttwu() is the only code that
2767 * accesses these variables under p->pi_lock and only does so after
2768 * smp_cond_load_acquire(&p->on_cpu, !VAL), and we're in __schedule()
2769 * before finish_task().
2770 *
2771 * XXX do further audits, this smells like something putrid.
2772 */
2773 if (ctx->flags & SCA_MIGRATE_DISABLE)
2774 SCHED_WARN_ON(!p->on_cpu);
2775 else
2776 lockdep_assert_held(&p->pi_lock);
2777
2778 queued = task_on_rq_queued(p);
2779 running = task_current(rq, p);
2780
2781 if (queued) {
2782 /*
2783 * Because __kthread_bind() calls this on blocked tasks without
2784 * holding rq->lock.
2785 */
2786 lockdep_assert_rq_held(rq);
2787 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
2788 }
2789 if (running)
2790 put_prev_task(rq, p);
2791
2792 p->sched_class->set_cpus_allowed(p, ctx);
2793
2794 if (queued)
2795 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
2796 if (running)
2797 set_next_task(rq, p);
2798}
2799
2800/*
2801 * Used for kthread_bind() and select_fallback_rq(), in both cases the user
2802 * affinity (if any) should be destroyed too.
2803 */
2804void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
2805{
2806 struct affinity_context ac = {
2807 .new_mask = new_mask,
2808 .user_mask = NULL,
2809 .flags = SCA_USER, /* clear the user requested mask */
2810 };
2811 union cpumask_rcuhead {
2812 cpumask_t cpumask;
2813 struct rcu_head rcu;
2814 };
2815
2816 __do_set_cpus_allowed(p, &ac);
2817
2818 /*
2819 * Because this is called with p->pi_lock held, it is not possible
2820 * to use kfree() here (when PREEMPT_RT=y), therefore punt to using
2821 * kfree_rcu().
2822 */
2823 kfree_rcu((union cpumask_rcuhead *)ac.user_mask, rcu);
2824}
2825
2826static cpumask_t *alloc_user_cpus_ptr(int node)
2827{
2828 /*
2829 * See do_set_cpus_allowed() above for the rcu_head usage.
2830 */
2831 int size = max_t(int, cpumask_size(), sizeof(struct rcu_head));
2832
2833 return kmalloc_node(size, GFP_KERNEL, node);
2834}
2835
2836int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src,
2837 int node)
2838{
2839 cpumask_t *user_mask;
2840 unsigned long flags;
2841
2842 /*
2843 * Always clear dst->user_cpus_ptr first as their user_cpus_ptr's
2844 * may differ by now due to racing.
2845 */
2846 dst->user_cpus_ptr = NULL;
2847
2848 /*
2849 * This check is racy and losing the race is a valid situation.
2850 * It is not worth the extra overhead of taking the pi_lock on
2851 * every fork/clone.
2852 */
2853 if (data_race(!src->user_cpus_ptr))
2854 return 0;
2855
2856 user_mask = alloc_user_cpus_ptr(node);
2857 if (!user_mask)
2858 return -ENOMEM;
2859
2860 /*
2861 * Use pi_lock to protect content of user_cpus_ptr
2862 *
2863 * Though unlikely, user_cpus_ptr can be reset to NULL by a concurrent
2864 * do_set_cpus_allowed().
2865 */
2866 raw_spin_lock_irqsave(&src->pi_lock, flags);
2867 if (src->user_cpus_ptr) {
2868 swap(dst->user_cpus_ptr, user_mask);
2869 cpumask_copy(dst->user_cpus_ptr, src->user_cpus_ptr);
2870 }
2871 raw_spin_unlock_irqrestore(&src->pi_lock, flags);
2872
2873 if (unlikely(user_mask))
2874 kfree(user_mask);
2875
2876 return 0;
2877}
2878
2879static inline struct cpumask *clear_user_cpus_ptr(struct task_struct *p)
2880{
2881 struct cpumask *user_mask = NULL;
2882
2883 swap(p->user_cpus_ptr, user_mask);
2884
2885 return user_mask;
2886}
2887
2888void release_user_cpus_ptr(struct task_struct *p)
2889{
2890 kfree(clear_user_cpus_ptr(p));
2891}
2892
2893/*
2894 * This function is wildly self concurrent; here be dragons.
2895 *
2896 *
2897 * When given a valid mask, __set_cpus_allowed_ptr() must block until the
2898 * designated task is enqueued on an allowed CPU. If that task is currently
2899 * running, we have to kick it out using the CPU stopper.
2900 *
2901 * Migrate-Disable comes along and tramples all over our nice sandcastle.
2902 * Consider:
2903 *
2904 * Initial conditions: P0->cpus_mask = [0, 1]
2905 *
2906 * P0@CPU0 P1
2907 *
2908 * migrate_disable();
2909 * <preempted>
2910 * set_cpus_allowed_ptr(P0, [1]);
2911 *
2912 * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes
2913 * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region).
2914 * This means we need the following scheme:
2915 *
2916 * P0@CPU0 P1
2917 *
2918 * migrate_disable();
2919 * <preempted>
2920 * set_cpus_allowed_ptr(P0, [1]);
2921 * <blocks>
2922 * <resumes>
2923 * migrate_enable();
2924 * __set_cpus_allowed_ptr();
2925 * <wakes local stopper>
2926 * `--> <woken on migration completion>
2927 *
2928 * Now the fun stuff: there may be several P1-like tasks, i.e. multiple
2929 * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any
2930 * task p are serialized by p->pi_lock, which we can leverage: the one that
2931 * should come into effect at the end of the Migrate-Disable region is the last
2932 * one. This means we only need to track a single cpumask (i.e. p->cpus_mask),
2933 * but we still need to properly signal those waiting tasks at the appropriate
2934 * moment.
2935 *
2936 * This is implemented using struct set_affinity_pending. The first
2937 * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will
2938 * setup an instance of that struct and install it on the targeted task_struct.
2939 * Any and all further callers will reuse that instance. Those then wait for
2940 * a completion signaled at the tail of the CPU stopper callback (1), triggered
2941 * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()).
2942 *
2943 *
2944 * (1) In the cases covered above. There is one more where the completion is
2945 * signaled within affine_move_task() itself: when a subsequent affinity request
2946 * occurs after the stopper bailed out due to the targeted task still being
2947 * Migrate-Disable. Consider:
2948 *
2949 * Initial conditions: P0->cpus_mask = [0, 1]
2950 *
2951 * CPU0 P1 P2
2952 * <P0>
2953 * migrate_disable();
2954 * <preempted>
2955 * set_cpus_allowed_ptr(P0, [1]);
2956 * <blocks>
2957 * <migration/0>
2958 * migration_cpu_stop()
2959 * is_migration_disabled()
2960 * <bails>
2961 * set_cpus_allowed_ptr(P0, [0, 1]);
2962 * <signal completion>
2963 * <awakes>
2964 *
2965 * Note that the above is safe vs a concurrent migrate_enable(), as any
2966 * pending affinity completion is preceded by an uninstallation of
2967 * p->migration_pending done with p->pi_lock held.
2968 */
2969static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf,
2970 int dest_cpu, unsigned int flags)
2971 __releases(rq->lock)
2972 __releases(p->pi_lock)
2973{
2974 struct set_affinity_pending my_pending = { }, *pending = NULL;
2975 bool stop_pending, complete = false;
2976
2977 /* Can the task run on the task's current CPU? If so, we're done */
2978 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) {
2979 struct task_struct *push_task = NULL;
2980
2981 if ((flags & SCA_MIGRATE_ENABLE) &&
2982 (p->migration_flags & MDF_PUSH) && !rq->push_busy) {
2983 rq->push_busy = true;
2984 push_task = get_task_struct(p);
2985 }
2986
2987 /*
2988 * If there are pending waiters, but no pending stop_work,
2989 * then complete now.
2990 */
2991 pending = p->migration_pending;
2992 if (pending && !pending->stop_pending) {
2993 p->migration_pending = NULL;
2994 complete = true;
2995 }
2996
2997 preempt_disable();
2998 task_rq_unlock(rq, p, rf);
2999 if (push_task) {
3000 stop_one_cpu_nowait(rq->cpu, push_cpu_stop,
3001 p, &rq->push_work);
3002 }
3003 preempt_enable();
3004
3005 if (complete)
3006 complete_all(&pending->done);
3007
3008 return 0;
3009 }
3010
3011 if (!(flags & SCA_MIGRATE_ENABLE)) {
3012 /* serialized by p->pi_lock */
3013 if (!p->migration_pending) {
3014 /* Install the request */
3015 refcount_set(&my_pending.refs, 1);
3016 init_completion(&my_pending.done);
3017 my_pending.arg = (struct migration_arg) {
3018 .task = p,
3019 .dest_cpu = dest_cpu,
3020 .pending = &my_pending,
3021 };
3022
3023 p->migration_pending = &my_pending;
3024 } else {
3025 pending = p->migration_pending;
3026 refcount_inc(&pending->refs);
3027 /*
3028 * Affinity has changed, but we've already installed a
3029 * pending. migration_cpu_stop() *must* see this, else
3030 * we risk a completion of the pending despite having a
3031 * task on a disallowed CPU.
3032 *
3033 * Serialized by p->pi_lock, so this is safe.
3034 */
3035 pending->arg.dest_cpu = dest_cpu;
3036 }
3037 }
3038 pending = p->migration_pending;
3039 /*
3040 * - !MIGRATE_ENABLE:
3041 * we'll have installed a pending if there wasn't one already.
3042 *
3043 * - MIGRATE_ENABLE:
3044 * we're here because the current CPU isn't matching anymore,
3045 * the only way that can happen is because of a concurrent
3046 * set_cpus_allowed_ptr() call, which should then still be
3047 * pending completion.
3048 *
3049 * Either way, we really should have a @pending here.
3050 */
3051 if (WARN_ON_ONCE(!pending)) {
3052 task_rq_unlock(rq, p, rf);
3053 return -EINVAL;
3054 }
3055
3056 if (task_on_cpu(rq, p) || READ_ONCE(p->__state) == TASK_WAKING) {
3057 /*
3058 * MIGRATE_ENABLE gets here because 'p == current', but for
3059 * anything else we cannot do is_migration_disabled(), punt
3060 * and have the stopper function handle it all race-free.
3061 */
3062 stop_pending = pending->stop_pending;
3063 if (!stop_pending)
3064 pending->stop_pending = true;
3065
3066 if (flags & SCA_MIGRATE_ENABLE)
3067 p->migration_flags &= ~MDF_PUSH;
3068
3069 preempt_disable();
3070 task_rq_unlock(rq, p, rf);
3071 if (!stop_pending) {
3072 stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop,
3073 &pending->arg, &pending->stop_work);
3074 }
3075 preempt_enable();
3076
3077 if (flags & SCA_MIGRATE_ENABLE)
3078 return 0;
3079 } else {
3080
3081 if (!is_migration_disabled(p)) {
3082 if (task_on_rq_queued(p))
3083 rq = move_queued_task(rq, rf, p, dest_cpu);
3084
3085 if (!pending->stop_pending) {
3086 p->migration_pending = NULL;
3087 complete = true;
3088 }
3089 }
3090 task_rq_unlock(rq, p, rf);
3091
3092 if (complete)
3093 complete_all(&pending->done);
3094 }
3095
3096 wait_for_completion(&pending->done);
3097
3098 if (refcount_dec_and_test(&pending->refs))
3099 wake_up_var(&pending->refs); /* No UaF, just an address */
3100
3101 /*
3102 * Block the original owner of &pending until all subsequent callers
3103 * have seen the completion and decremented the refcount
3104 */
3105 wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs));
3106
3107 /* ARGH */
3108 WARN_ON_ONCE(my_pending.stop_pending);
3109
3110 return 0;
3111}
3112
3113/*
3114 * Called with both p->pi_lock and rq->lock held; drops both before returning.
3115 */
3116static int __set_cpus_allowed_ptr_locked(struct task_struct *p,
3117 struct affinity_context *ctx,
3118 struct rq *rq,
3119 struct rq_flags *rf)
3120 __releases(rq->lock)
3121 __releases(p->pi_lock)
3122{
3123 const struct cpumask *cpu_allowed_mask = task_cpu_possible_mask(p);
3124 const struct cpumask *cpu_valid_mask = cpu_active_mask;
3125 bool kthread = p->flags & PF_KTHREAD;
3126 unsigned int dest_cpu;
3127 int ret = 0;
3128
3129 update_rq_clock(rq);
3130
3131 if (kthread || is_migration_disabled(p)) {
3132 /*
3133 * Kernel threads are allowed on online && !active CPUs,
3134 * however, during cpu-hot-unplug, even these might get pushed
3135 * away if not KTHREAD_IS_PER_CPU.
3136 *
3137 * Specifically, migration_disabled() tasks must not fail the
3138 * cpumask_any_and_distribute() pick below, esp. so on
3139 * SCA_MIGRATE_ENABLE, otherwise we'll not call
3140 * set_cpus_allowed_common() and actually reset p->cpus_ptr.
3141 */
3142 cpu_valid_mask = cpu_online_mask;
3143 }
3144
3145 if (!kthread && !cpumask_subset(ctx->new_mask, cpu_allowed_mask)) {
3146 ret = -EINVAL;
3147 goto out;
3148 }
3149
3150 /*
3151 * Must re-check here, to close a race against __kthread_bind(),
3152 * sched_setaffinity() is not guaranteed to observe the flag.
3153 */
3154 if ((ctx->flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) {
3155 ret = -EINVAL;
3156 goto out;
3157 }
3158
3159 if (!(ctx->flags & SCA_MIGRATE_ENABLE)) {
3160 if (cpumask_equal(&p->cpus_mask, ctx->new_mask)) {
3161 if (ctx->flags & SCA_USER)
3162 swap(p->user_cpus_ptr, ctx->user_mask);
3163 goto out;
3164 }
3165
3166 if (WARN_ON_ONCE(p == current &&
3167 is_migration_disabled(p) &&
3168 !cpumask_test_cpu(task_cpu(p), ctx->new_mask))) {
3169 ret = -EBUSY;
3170 goto out;
3171 }
3172 }
3173
3174 /*
3175 * Picking a ~random cpu helps in cases where we are changing affinity
3176 * for groups of tasks (ie. cpuset), so that load balancing is not
3177 * immediately required to distribute the tasks within their new mask.
3178 */
3179 dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, ctx->new_mask);
3180 if (dest_cpu >= nr_cpu_ids) {
3181 ret = -EINVAL;
3182 goto out;
3183 }
3184
3185 __do_set_cpus_allowed(p, ctx);
3186
3187 return affine_move_task(rq, p, rf, dest_cpu, ctx->flags);
3188
3189out:
3190 task_rq_unlock(rq, p, rf);
3191
3192 return ret;
3193}
3194
3195/*
3196 * Change a given task's CPU affinity. Migrate the thread to a
3197 * proper CPU and schedule it away if the CPU it's executing on
3198 * is removed from the allowed bitmask.
3199 *
3200 * NOTE: the caller must have a valid reference to the task, the
3201 * task must not exit() & deallocate itself prematurely. The
3202 * call is not atomic; no spinlocks may be held.
3203 */
3204static int __set_cpus_allowed_ptr(struct task_struct *p,
3205 struct affinity_context *ctx)
3206{
3207 struct rq_flags rf;
3208 struct rq *rq;
3209
3210 rq = task_rq_lock(p, &rf);
3211 /*
3212 * Masking should be skipped if SCA_USER or any of the SCA_MIGRATE_*
3213 * flags are set.
3214 */
3215 if (p->user_cpus_ptr &&
3216 !(ctx->flags & (SCA_USER | SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) &&
3217 cpumask_and(rq->scratch_mask, ctx->new_mask, p->user_cpus_ptr))
3218 ctx->new_mask = rq->scratch_mask;
3219
3220 return __set_cpus_allowed_ptr_locked(p, ctx, rq, &rf);
3221}
3222
3223int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
3224{
3225 struct affinity_context ac = {
3226 .new_mask = new_mask,
3227 .flags = 0,
3228 };
3229
3230 return __set_cpus_allowed_ptr(p, &ac);
3231}
3232EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
3233
3234/*
3235 * Change a given task's CPU affinity to the intersection of its current
3236 * affinity mask and @subset_mask, writing the resulting mask to @new_mask.
3237 * If user_cpus_ptr is defined, use it as the basis for restricting CPU
3238 * affinity or use cpu_online_mask instead.
3239 *
3240 * If the resulting mask is empty, leave the affinity unchanged and return
3241 * -EINVAL.
3242 */
3243static int restrict_cpus_allowed_ptr(struct task_struct *p,
3244 struct cpumask *new_mask,
3245 const struct cpumask *subset_mask)
3246{
3247 struct affinity_context ac = {
3248 .new_mask = new_mask,
3249 .flags = 0,
3250 };
3251 struct rq_flags rf;
3252 struct rq *rq;
3253 int err;
3254
3255 rq = task_rq_lock(p, &rf);
3256
3257 /*
3258 * Forcefully restricting the affinity of a deadline task is
3259 * likely to cause problems, so fail and noisily override the
3260 * mask entirely.
3261 */
3262 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
3263 err = -EPERM;
3264 goto err_unlock;
3265 }
3266
3267 if (!cpumask_and(new_mask, task_user_cpus(p), subset_mask)) {
3268 err = -EINVAL;
3269 goto err_unlock;
3270 }
3271
3272 return __set_cpus_allowed_ptr_locked(p, &ac, rq, &rf);
3273
3274err_unlock:
3275 task_rq_unlock(rq, p, &rf);
3276 return err;
3277}
3278
3279/*
3280 * Restrict the CPU affinity of task @p so that it is a subset of
3281 * task_cpu_possible_mask() and point @p->user_cpus_ptr to a copy of the
3282 * old affinity mask. If the resulting mask is empty, we warn and walk
3283 * up the cpuset hierarchy until we find a suitable mask.
3284 */
3285void force_compatible_cpus_allowed_ptr(struct task_struct *p)
3286{
3287 cpumask_var_t new_mask;
3288 const struct cpumask *override_mask = task_cpu_possible_mask(p);
3289
3290 alloc_cpumask_var(&new_mask, GFP_KERNEL);
3291
3292 /*
3293 * __migrate_task() can fail silently in the face of concurrent
3294 * offlining of the chosen destination CPU, so take the hotplug
3295 * lock to ensure that the migration succeeds.
3296 */
3297 cpus_read_lock();
3298 if (!cpumask_available(new_mask))
3299 goto out_set_mask;
3300
3301 if (!restrict_cpus_allowed_ptr(p, new_mask, override_mask))
3302 goto out_free_mask;
3303
3304 /*
3305 * We failed to find a valid subset of the affinity mask for the
3306 * task, so override it based on its cpuset hierarchy.
3307 */
3308 cpuset_cpus_allowed(p, new_mask);
3309 override_mask = new_mask;
3310
3311out_set_mask:
3312 if (printk_ratelimit()) {
3313 printk_deferred("Overriding affinity for process %d (%s) to CPUs %*pbl\n",
3314 task_pid_nr(p), p->comm,
3315 cpumask_pr_args(override_mask));
3316 }
3317
3318 WARN_ON(set_cpus_allowed_ptr(p, override_mask));
3319out_free_mask:
3320 cpus_read_unlock();
3321 free_cpumask_var(new_mask);
3322}
3323
3324static int
3325__sched_setaffinity(struct task_struct *p, struct affinity_context *ctx);
3326
3327/*
3328 * Restore the affinity of a task @p which was previously restricted by a
3329 * call to force_compatible_cpus_allowed_ptr().
3330 *
3331 * It is the caller's responsibility to serialise this with any calls to
3332 * force_compatible_cpus_allowed_ptr(@p).
3333 */
3334void relax_compatible_cpus_allowed_ptr(struct task_struct *p)
3335{
3336 struct affinity_context ac = {
3337 .new_mask = task_user_cpus(p),
3338 .flags = 0,
3339 };
3340 int ret;
3341
3342 /*
3343 * Try to restore the old affinity mask with __sched_setaffinity().
3344 * Cpuset masking will be done there too.
3345 */
3346 ret = __sched_setaffinity(p, &ac);
3347 WARN_ON_ONCE(ret);
3348}
3349
3350void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
3351{
3352#ifdef CONFIG_SCHED_DEBUG
3353 unsigned int state = READ_ONCE(p->__state);
3354
3355 /*
3356 * We should never call set_task_cpu() on a blocked task,
3357 * ttwu() will sort out the placement.
3358 */
3359 WARN_ON_ONCE(state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq);
3360
3361 /*
3362 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
3363 * because schedstat_wait_{start,end} rebase migrating task's wait_start
3364 * time relying on p->on_rq.
3365 */
3366 WARN_ON_ONCE(state == TASK_RUNNING &&
3367 p->sched_class == &fair_sched_class &&
3368 (p->on_rq && !task_on_rq_migrating(p)));
3369
3370#ifdef CONFIG_LOCKDEP
3371 /*
3372 * The caller should hold either p->pi_lock or rq->lock, when changing
3373 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
3374 *
3375 * sched_move_task() holds both and thus holding either pins the cgroup,
3376 * see task_group().
3377 *
3378 * Furthermore, all task_rq users should acquire both locks, see
3379 * task_rq_lock().
3380 */
3381 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
3382 lockdep_is_held(__rq_lockp(task_rq(p)))));
3383#endif
3384 /*
3385 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
3386 */
3387 WARN_ON_ONCE(!cpu_online(new_cpu));
3388
3389 WARN_ON_ONCE(is_migration_disabled(p));
3390#endif
3391
3392 trace_sched_migrate_task(p, new_cpu);
3393
3394 if (task_cpu(p) != new_cpu) {
3395 if (p->sched_class->migrate_task_rq)
3396 p->sched_class->migrate_task_rq(p, new_cpu);
3397 p->se.nr_migrations++;
3398 rseq_migrate(p);
3399 sched_mm_cid_migrate_from(p);
3400 perf_event_task_migrate(p);
3401 }
3402
3403 __set_task_cpu(p, new_cpu);
3404}
3405
3406#ifdef CONFIG_NUMA_BALANCING
3407static void __migrate_swap_task(struct task_struct *p, int cpu)
3408{
3409 if (task_on_rq_queued(p)) {
3410 struct rq *src_rq, *dst_rq;
3411 struct rq_flags srf, drf;
3412
3413 src_rq = task_rq(p);
3414 dst_rq = cpu_rq(cpu);
3415
3416 rq_pin_lock(src_rq, &srf);
3417 rq_pin_lock(dst_rq, &drf);
3418
3419 deactivate_task(src_rq, p, 0);
3420 set_task_cpu(p, cpu);
3421 activate_task(dst_rq, p, 0);
3422 wakeup_preempt(dst_rq, p, 0);
3423
3424 rq_unpin_lock(dst_rq, &drf);
3425 rq_unpin_lock(src_rq, &srf);
3426
3427 } else {
3428 /*
3429 * Task isn't running anymore; make it appear like we migrated
3430 * it before it went to sleep. This means on wakeup we make the
3431 * previous CPU our target instead of where it really is.
3432 */
3433 p->wake_cpu = cpu;
3434 }
3435}
3436
3437struct migration_swap_arg {
3438 struct task_struct *src_task, *dst_task;
3439 int src_cpu, dst_cpu;
3440};
3441
3442static int migrate_swap_stop(void *data)
3443{
3444 struct migration_swap_arg *arg = data;
3445 struct rq *src_rq, *dst_rq;
3446
3447 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
3448 return -EAGAIN;
3449
3450 src_rq = cpu_rq(arg->src_cpu);
3451 dst_rq = cpu_rq(arg->dst_cpu);
3452
3453 guard(double_raw_spinlock)(&arg->src_task->pi_lock, &arg->dst_task->pi_lock);
3454 guard(double_rq_lock)(src_rq, dst_rq);
3455
3456 if (task_cpu(arg->dst_task) != arg->dst_cpu)
3457 return -EAGAIN;
3458
3459 if (task_cpu(arg->src_task) != arg->src_cpu)
3460 return -EAGAIN;
3461
3462 if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
3463 return -EAGAIN;
3464
3465 if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
3466 return -EAGAIN;
3467
3468 __migrate_swap_task(arg->src_task, arg->dst_cpu);
3469 __migrate_swap_task(arg->dst_task, arg->src_cpu);
3470
3471 return 0;
3472}
3473
3474/*
3475 * Cross migrate two tasks
3476 */
3477int migrate_swap(struct task_struct *cur, struct task_struct *p,
3478 int target_cpu, int curr_cpu)
3479{
3480 struct migration_swap_arg arg;
3481 int ret = -EINVAL;
3482
3483 arg = (struct migration_swap_arg){
3484 .src_task = cur,
3485 .src_cpu = curr_cpu,
3486 .dst_task = p,
3487 .dst_cpu = target_cpu,
3488 };
3489
3490 if (arg.src_cpu == arg.dst_cpu)
3491 goto out;
3492
3493 /*
3494 * These three tests are all lockless; this is OK since all of them
3495 * will be re-checked with proper locks held further down the line.
3496 */
3497 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
3498 goto out;
3499
3500 if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
3501 goto out;
3502
3503 if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
3504 goto out;
3505
3506 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
3507 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
3508
3509out:
3510 return ret;
3511}
3512#endif /* CONFIG_NUMA_BALANCING */
3513
3514/***
3515 * kick_process - kick a running thread to enter/exit the kernel
3516 * @p: the to-be-kicked thread
3517 *
3518 * Cause a process which is running on another CPU to enter
3519 * kernel-mode, without any delay. (to get signals handled.)
3520 *
3521 * NOTE: this function doesn't have to take the runqueue lock,
3522 * because all it wants to ensure is that the remote task enters
3523 * the kernel. If the IPI races and the task has been migrated
3524 * to another CPU then no harm is done and the purpose has been
3525 * achieved as well.
3526 */
3527void kick_process(struct task_struct *p)
3528{
3529 guard(preempt)();
3530 int cpu = task_cpu(p);
3531
3532 if ((cpu != smp_processor_id()) && task_curr(p))
3533 smp_send_reschedule(cpu);
3534}
3535EXPORT_SYMBOL_GPL(kick_process);
3536
3537/*
3538 * ->cpus_ptr is protected by both rq->lock and p->pi_lock
3539 *
3540 * A few notes on cpu_active vs cpu_online:
3541 *
3542 * - cpu_active must be a subset of cpu_online
3543 *
3544 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
3545 * see __set_cpus_allowed_ptr(). At this point the newly online
3546 * CPU isn't yet part of the sched domains, and balancing will not
3547 * see it.
3548 *
3549 * - on CPU-down we clear cpu_active() to mask the sched domains and
3550 * avoid the load balancer to place new tasks on the to be removed
3551 * CPU. Existing tasks will remain running there and will be taken
3552 * off.
3553 *
3554 * This means that fallback selection must not select !active CPUs.
3555 * And can assume that any active CPU must be online. Conversely
3556 * select_task_rq() below may allow selection of !active CPUs in order
3557 * to satisfy the above rules.
3558 */
3559static int select_fallback_rq(int cpu, struct task_struct *p)
3560{
3561 int nid = cpu_to_node(cpu);
3562 const struct cpumask *nodemask = NULL;
3563 enum { cpuset, possible, fail } state = cpuset;
3564 int dest_cpu;
3565
3566 /*
3567 * If the node that the CPU is on has been offlined, cpu_to_node()
3568 * will return -1. There is no CPU on the node, and we should
3569 * select the CPU on the other node.
3570 */
3571 if (nid != -1) {
3572 nodemask = cpumask_of_node(nid);
3573
3574 /* Look for allowed, online CPU in same node. */
3575 for_each_cpu(dest_cpu, nodemask) {
3576 if (is_cpu_allowed(p, dest_cpu))
3577 return dest_cpu;
3578 }
3579 }
3580
3581 for (;;) {
3582 /* Any allowed, online CPU? */
3583 for_each_cpu(dest_cpu, p->cpus_ptr) {
3584 if (!is_cpu_allowed(p, dest_cpu))
3585 continue;
3586
3587 goto out;
3588 }
3589
3590 /* No more Mr. Nice Guy. */
3591 switch (state) {
3592 case cpuset:
3593 if (cpuset_cpus_allowed_fallback(p)) {
3594 state = possible;
3595 break;
3596 }
3597 fallthrough;
3598 case possible:
3599 /*
3600 * XXX When called from select_task_rq() we only
3601 * hold p->pi_lock and again violate locking order.
3602 *
3603 * More yuck to audit.
3604 */
3605 do_set_cpus_allowed(p, task_cpu_possible_mask(p));
3606 state = fail;
3607 break;
3608 case fail:
3609 BUG();
3610 break;
3611 }
3612 }
3613
3614out:
3615 if (state != cpuset) {
3616 /*
3617 * Don't tell them about moving exiting tasks or
3618 * kernel threads (both mm NULL), since they never
3619 * leave kernel.
3620 */
3621 if (p->mm && printk_ratelimit()) {
3622 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
3623 task_pid_nr(p), p->comm, cpu);
3624 }
3625 }
3626
3627 return dest_cpu;
3628}
3629
3630/*
3631 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
3632 */
3633static inline
3634int select_task_rq(struct task_struct *p, int cpu, int wake_flags)
3635{
3636 lockdep_assert_held(&p->pi_lock);
3637
3638 if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p))
3639 cpu = p->sched_class->select_task_rq(p, cpu, wake_flags);
3640 else
3641 cpu = cpumask_any(p->cpus_ptr);
3642
3643 /*
3644 * In order not to call set_task_cpu() on a blocking task we need
3645 * to rely on ttwu() to place the task on a valid ->cpus_ptr
3646 * CPU.
3647 *
3648 * Since this is common to all placement strategies, this lives here.
3649 *
3650 * [ this allows ->select_task() to simply return task_cpu(p) and
3651 * not worry about this generic constraint ]
3652 */
3653 if (unlikely(!is_cpu_allowed(p, cpu)))
3654 cpu = select_fallback_rq(task_cpu(p), p);
3655
3656 return cpu;
3657}
3658
3659void sched_set_stop_task(int cpu, struct task_struct *stop)
3660{
3661 static struct lock_class_key stop_pi_lock;
3662 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
3663 struct task_struct *old_stop = cpu_rq(cpu)->stop;
3664
3665 if (stop) {
3666 /*
3667 * Make it appear like a SCHED_FIFO task, its something
3668 * userspace knows about and won't get confused about.
3669 *
3670 * Also, it will make PI more or less work without too
3671 * much confusion -- but then, stop work should not
3672 * rely on PI working anyway.
3673 */
3674 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m);
3675
3676 stop->sched_class = &stop_sched_class;
3677
3678 /*
3679 * The PI code calls rt_mutex_setprio() with ->pi_lock held to
3680 * adjust the effective priority of a task. As a result,
3681 * rt_mutex_setprio() can trigger (RT) balancing operations,
3682 * which can then trigger wakeups of the stop thread to push
3683 * around the current task.
3684 *
3685 * The stop task itself will never be part of the PI-chain, it
3686 * never blocks, therefore that ->pi_lock recursion is safe.
3687 * Tell lockdep about this by placing the stop->pi_lock in its
3688 * own class.
3689 */
3690 lockdep_set_class(&stop->pi_lock, &stop_pi_lock);
3691 }
3692
3693 cpu_rq(cpu)->stop = stop;
3694
3695 if (old_stop) {
3696 /*
3697 * Reset it back to a normal scheduling class so that
3698 * it can die in pieces.
3699 */
3700 old_stop->sched_class = &rt_sched_class;
3701 }
3702}
3703
3704#else /* CONFIG_SMP */
3705
3706static inline int __set_cpus_allowed_ptr(struct task_struct *p,
3707 struct affinity_context *ctx)
3708{
3709 return set_cpus_allowed_ptr(p, ctx->new_mask);
3710}
3711
3712static inline void migrate_disable_switch(struct rq *rq, struct task_struct *p) { }
3713
3714static inline bool rq_has_pinned_tasks(struct rq *rq)
3715{
3716 return false;
3717}
3718
3719static inline cpumask_t *alloc_user_cpus_ptr(int node)
3720{
3721 return NULL;
3722}
3723
3724#endif /* !CONFIG_SMP */
3725
3726static void
3727ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
3728{
3729 struct rq *rq;
3730
3731 if (!schedstat_enabled())
3732 return;
3733
3734 rq = this_rq();
3735
3736#ifdef CONFIG_SMP
3737 if (cpu == rq->cpu) {
3738 __schedstat_inc(rq->ttwu_local);
3739 __schedstat_inc(p->stats.nr_wakeups_local);
3740 } else {
3741 struct sched_domain *sd;
3742
3743 __schedstat_inc(p->stats.nr_wakeups_remote);
3744
3745 guard(rcu)();
3746 for_each_domain(rq->cpu, sd) {
3747 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3748 __schedstat_inc(sd->ttwu_wake_remote);
3749 break;
3750 }
3751 }
3752 }
3753
3754 if (wake_flags & WF_MIGRATED)
3755 __schedstat_inc(p->stats.nr_wakeups_migrate);
3756#endif /* CONFIG_SMP */
3757
3758 __schedstat_inc(rq->ttwu_count);
3759 __schedstat_inc(p->stats.nr_wakeups);
3760
3761 if (wake_flags & WF_SYNC)
3762 __schedstat_inc(p->stats.nr_wakeups_sync);
3763}
3764
3765/*
3766 * Mark the task runnable.
3767 */
3768static inline void ttwu_do_wakeup(struct task_struct *p)
3769{
3770 WRITE_ONCE(p->__state, TASK_RUNNING);
3771 trace_sched_wakeup(p);
3772}
3773
3774static void
3775ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
3776 struct rq_flags *rf)
3777{
3778 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
3779
3780 lockdep_assert_rq_held(rq);
3781
3782 if (p->sched_contributes_to_load)
3783 rq->nr_uninterruptible--;
3784
3785#ifdef CONFIG_SMP
3786 if (wake_flags & WF_MIGRATED)
3787 en_flags |= ENQUEUE_MIGRATED;
3788 else
3789#endif
3790 if (p->in_iowait) {
3791 delayacct_blkio_end(p);
3792 atomic_dec(&task_rq(p)->nr_iowait);
3793 }
3794
3795 activate_task(rq, p, en_flags);
3796 wakeup_preempt(rq, p, wake_flags);
3797
3798 ttwu_do_wakeup(p);
3799
3800#ifdef CONFIG_SMP
3801 if (p->sched_class->task_woken) {
3802 /*
3803 * Our task @p is fully woken up and running; so it's safe to
3804 * drop the rq->lock, hereafter rq is only used for statistics.
3805 */
3806 rq_unpin_lock(rq, rf);
3807 p->sched_class->task_woken(rq, p);
3808 rq_repin_lock(rq, rf);
3809 }
3810
3811 if (rq->idle_stamp) {
3812 u64 delta = rq_clock(rq) - rq->idle_stamp;
3813 u64 max = 2*rq->max_idle_balance_cost;
3814
3815 update_avg(&rq->avg_idle, delta);
3816
3817 if (rq->avg_idle > max)
3818 rq->avg_idle = max;
3819
3820 rq->idle_stamp = 0;
3821 }
3822#endif
3823
3824 p->dl_server = NULL;
3825}
3826
3827/*
3828 * Consider @p being inside a wait loop:
3829 *
3830 * for (;;) {
3831 * set_current_state(TASK_UNINTERRUPTIBLE);
3832 *
3833 * if (CONDITION)
3834 * break;
3835 *
3836 * schedule();
3837 * }
3838 * __set_current_state(TASK_RUNNING);
3839 *
3840 * between set_current_state() and schedule(). In this case @p is still
3841 * runnable, so all that needs doing is change p->state back to TASK_RUNNING in
3842 * an atomic manner.
3843 *
3844 * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq
3845 * then schedule() must still happen and p->state can be changed to
3846 * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we
3847 * need to do a full wakeup with enqueue.
3848 *
3849 * Returns: %true when the wakeup is done,
3850 * %false otherwise.
3851 */
3852static int ttwu_runnable(struct task_struct *p, int wake_flags)
3853{
3854 struct rq_flags rf;
3855 struct rq *rq;
3856 int ret = 0;
3857
3858 rq = __task_rq_lock(p, &rf);
3859 if (task_on_rq_queued(p)) {
3860 if (!task_on_cpu(rq, p)) {
3861 /*
3862 * When on_rq && !on_cpu the task is preempted, see if
3863 * it should preempt the task that is current now.
3864 */
3865 update_rq_clock(rq);
3866 wakeup_preempt(rq, p, wake_flags);
3867 }
3868 ttwu_do_wakeup(p);
3869 ret = 1;
3870 }
3871 __task_rq_unlock(rq, &rf);
3872
3873 return ret;
3874}
3875
3876#ifdef CONFIG_SMP
3877void sched_ttwu_pending(void *arg)
3878{
3879 struct llist_node *llist = arg;
3880 struct rq *rq = this_rq();
3881 struct task_struct *p, *t;
3882 struct rq_flags rf;
3883
3884 if (!llist)
3885 return;
3886
3887 rq_lock_irqsave(rq, &rf);
3888 update_rq_clock(rq);
3889
3890 llist_for_each_entry_safe(p, t, llist, wake_entry.llist) {
3891 if (WARN_ON_ONCE(p->on_cpu))
3892 smp_cond_load_acquire(&p->on_cpu, !VAL);
3893
3894 if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq)))
3895 set_task_cpu(p, cpu_of(rq));
3896
3897 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
3898 }
3899
3900 /*
3901 * Must be after enqueueing at least once task such that
3902 * idle_cpu() does not observe a false-negative -- if it does,
3903 * it is possible for select_idle_siblings() to stack a number
3904 * of tasks on this CPU during that window.
3905 *
3906 * It is ok to clear ttwu_pending when another task pending.
3907 * We will receive IPI after local irq enabled and then enqueue it.
3908 * Since now nr_running > 0, idle_cpu() will always get correct result.
3909 */
3910 WRITE_ONCE(rq->ttwu_pending, 0);
3911 rq_unlock_irqrestore(rq, &rf);
3912}
3913
3914/*
3915 * Prepare the scene for sending an IPI for a remote smp_call
3916 *
3917 * Returns true if the caller can proceed with sending the IPI.
3918 * Returns false otherwise.
3919 */
3920bool call_function_single_prep_ipi(int cpu)
3921{
3922 if (set_nr_if_polling(cpu_rq(cpu)->idle)) {
3923 trace_sched_wake_idle_without_ipi(cpu);
3924 return false;
3925 }
3926
3927 return true;
3928}
3929
3930/*
3931 * Queue a task on the target CPUs wake_list and wake the CPU via IPI if
3932 * necessary. The wakee CPU on receipt of the IPI will queue the task
3933 * via sched_ttwu_wakeup() for activation so the wakee incurs the cost
3934 * of the wakeup instead of the waker.
3935 */
3936static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3937{
3938 struct rq *rq = cpu_rq(cpu);
3939
3940 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
3941
3942 WRITE_ONCE(rq->ttwu_pending, 1);
3943 __smp_call_single_queue(cpu, &p->wake_entry.llist);
3944}
3945
3946void wake_up_if_idle(int cpu)
3947{
3948 struct rq *rq = cpu_rq(cpu);
3949
3950 guard(rcu)();
3951 if (is_idle_task(rcu_dereference(rq->curr))) {
3952 guard(rq_lock_irqsave)(rq);
3953 if (is_idle_task(rq->curr))
3954 resched_curr(rq);
3955 }
3956}
3957
3958bool cpus_share_cache(int this_cpu, int that_cpu)
3959{
3960 if (this_cpu == that_cpu)
3961 return true;
3962
3963 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
3964}
3965
3966/*
3967 * Whether CPUs are share cache resources, which means LLC on non-cluster
3968 * machines and LLC tag or L2 on machines with clusters.
3969 */
3970bool cpus_share_resources(int this_cpu, int that_cpu)
3971{
3972 if (this_cpu == that_cpu)
3973 return true;
3974
3975 return per_cpu(sd_share_id, this_cpu) == per_cpu(sd_share_id, that_cpu);
3976}
3977
3978static inline bool ttwu_queue_cond(struct task_struct *p, int cpu)
3979{
3980 /*
3981 * Do not complicate things with the async wake_list while the CPU is
3982 * in hotplug state.
3983 */
3984 if (!cpu_active(cpu))
3985 return false;
3986
3987 /* Ensure the task will still be allowed to run on the CPU. */
3988 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
3989 return false;
3990
3991 /*
3992 * If the CPU does not share cache, then queue the task on the
3993 * remote rqs wakelist to avoid accessing remote data.
3994 */
3995 if (!cpus_share_cache(smp_processor_id(), cpu))
3996 return true;
3997
3998 if (cpu == smp_processor_id())
3999 return false;
4000
4001 /*
4002 * If the wakee cpu is idle, or the task is descheduling and the
4003 * only running task on the CPU, then use the wakelist to offload
4004 * the task activation to the idle (or soon-to-be-idle) CPU as
4005 * the current CPU is likely busy. nr_running is checked to
4006 * avoid unnecessary task stacking.
4007 *
4008 * Note that we can only get here with (wakee) p->on_rq=0,
4009 * p->on_cpu can be whatever, we've done the dequeue, so
4010 * the wakee has been accounted out of ->nr_running.
4011 */
4012 if (!cpu_rq(cpu)->nr_running)
4013 return true;
4014
4015 return false;
4016}
4017
4018static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
4019{
4020 if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(p, cpu)) {
4021 sched_clock_cpu(cpu); /* Sync clocks across CPUs */
4022 __ttwu_queue_wakelist(p, cpu, wake_flags);
4023 return true;
4024 }
4025
4026 return false;
4027}
4028
4029#else /* !CONFIG_SMP */
4030
4031static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
4032{
4033 return false;
4034}
4035
4036#endif /* CONFIG_SMP */
4037
4038static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
4039{
4040 struct rq *rq = cpu_rq(cpu);
4041 struct rq_flags rf;
4042
4043 if (ttwu_queue_wakelist(p, cpu, wake_flags))
4044 return;
4045
4046 rq_lock(rq, &rf);
4047 update_rq_clock(rq);
4048 ttwu_do_activate(rq, p, wake_flags, &rf);
4049 rq_unlock(rq, &rf);
4050}
4051
4052/*
4053 * Invoked from try_to_wake_up() to check whether the task can be woken up.
4054 *
4055 * The caller holds p::pi_lock if p != current or has preemption
4056 * disabled when p == current.
4057 *
4058 * The rules of saved_state:
4059 *
4060 * The related locking code always holds p::pi_lock when updating
4061 * p::saved_state, which means the code is fully serialized in both cases.
4062 *
4063 * For PREEMPT_RT, the lock wait and lock wakeups happen via TASK_RTLOCK_WAIT.
4064 * No other bits set. This allows to distinguish all wakeup scenarios.
4065 *
4066 * For FREEZER, the wakeup happens via TASK_FROZEN. No other bits set. This
4067 * allows us to prevent early wakeup of tasks before they can be run on
4068 * asymmetric ISA architectures (eg ARMv9).
4069 */
4070static __always_inline
4071bool ttwu_state_match(struct task_struct *p, unsigned int state, int *success)
4072{
4073 int match;
4074
4075 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) {
4076 WARN_ON_ONCE((state & TASK_RTLOCK_WAIT) &&
4077 state != TASK_RTLOCK_WAIT);
4078 }
4079
4080 *success = !!(match = __task_state_match(p, state));
4081
4082 /*
4083 * Saved state preserves the task state across blocking on
4084 * an RT lock or TASK_FREEZABLE tasks. If the state matches,
4085 * set p::saved_state to TASK_RUNNING, but do not wake the task
4086 * because it waits for a lock wakeup or __thaw_task(). Also
4087 * indicate success because from the regular waker's point of
4088 * view this has succeeded.
4089 *
4090 * After acquiring the lock the task will restore p::__state
4091 * from p::saved_state which ensures that the regular
4092 * wakeup is not lost. The restore will also set
4093 * p::saved_state to TASK_RUNNING so any further tests will
4094 * not result in false positives vs. @success
4095 */
4096 if (match < 0)
4097 p->saved_state = TASK_RUNNING;
4098
4099 return match > 0;
4100}
4101
4102/*
4103 * Notes on Program-Order guarantees on SMP systems.
4104 *
4105 * MIGRATION
4106 *
4107 * The basic program-order guarantee on SMP systems is that when a task [t]
4108 * migrates, all its activity on its old CPU [c0] happens-before any subsequent
4109 * execution on its new CPU [c1].
4110 *
4111 * For migration (of runnable tasks) this is provided by the following means:
4112 *
4113 * A) UNLOCK of the rq(c0)->lock scheduling out task t
4114 * B) migration for t is required to synchronize *both* rq(c0)->lock and
4115 * rq(c1)->lock (if not at the same time, then in that order).
4116 * C) LOCK of the rq(c1)->lock scheduling in task
4117 *
4118 * Release/acquire chaining guarantees that B happens after A and C after B.
4119 * Note: the CPU doing B need not be c0 or c1
4120 *
4121 * Example:
4122 *
4123 * CPU0 CPU1 CPU2
4124 *
4125 * LOCK rq(0)->lock
4126 * sched-out X
4127 * sched-in Y
4128 * UNLOCK rq(0)->lock
4129 *
4130 * LOCK rq(0)->lock // orders against CPU0
4131 * dequeue X
4132 * UNLOCK rq(0)->lock
4133 *
4134 * LOCK rq(1)->lock
4135 * enqueue X
4136 * UNLOCK rq(1)->lock
4137 *
4138 * LOCK rq(1)->lock // orders against CPU2
4139 * sched-out Z
4140 * sched-in X
4141 * UNLOCK rq(1)->lock
4142 *
4143 *
4144 * BLOCKING -- aka. SLEEP + WAKEUP
4145 *
4146 * For blocking we (obviously) need to provide the same guarantee as for
4147 * migration. However the means are completely different as there is no lock
4148 * chain to provide order. Instead we do:
4149 *
4150 * 1) smp_store_release(X->on_cpu, 0) -- finish_task()
4151 * 2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up()
4152 *
4153 * Example:
4154 *
4155 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
4156 *
4157 * LOCK rq(0)->lock LOCK X->pi_lock
4158 * dequeue X
4159 * sched-out X
4160 * smp_store_release(X->on_cpu, 0);
4161 *
4162 * smp_cond_load_acquire(&X->on_cpu, !VAL);
4163 * X->state = WAKING
4164 * set_task_cpu(X,2)
4165 *
4166 * LOCK rq(2)->lock
4167 * enqueue X
4168 * X->state = RUNNING
4169 * UNLOCK rq(2)->lock
4170 *
4171 * LOCK rq(2)->lock // orders against CPU1
4172 * sched-out Z
4173 * sched-in X
4174 * UNLOCK rq(2)->lock
4175 *
4176 * UNLOCK X->pi_lock
4177 * UNLOCK rq(0)->lock
4178 *
4179 *
4180 * However, for wakeups there is a second guarantee we must provide, namely we
4181 * must ensure that CONDITION=1 done by the caller can not be reordered with
4182 * accesses to the task state; see try_to_wake_up() and set_current_state().
4183 */
4184
4185/**
4186 * try_to_wake_up - wake up a thread
4187 * @p: the thread to be awakened
4188 * @state: the mask of task states that can be woken
4189 * @wake_flags: wake modifier flags (WF_*)
4190 *
4191 * Conceptually does:
4192 *
4193 * If (@state & @p->state) @p->state = TASK_RUNNING.
4194 *
4195 * If the task was not queued/runnable, also place it back on a runqueue.
4196 *
4197 * This function is atomic against schedule() which would dequeue the task.
4198 *
4199 * It issues a full memory barrier before accessing @p->state, see the comment
4200 * with set_current_state().
4201 *
4202 * Uses p->pi_lock to serialize against concurrent wake-ups.
4203 *
4204 * Relies on p->pi_lock stabilizing:
4205 * - p->sched_class
4206 * - p->cpus_ptr
4207 * - p->sched_task_group
4208 * in order to do migration, see its use of select_task_rq()/set_task_cpu().
4209 *
4210 * Tries really hard to only take one task_rq(p)->lock for performance.
4211 * Takes rq->lock in:
4212 * - ttwu_runnable() -- old rq, unavoidable, see comment there;
4213 * - ttwu_queue() -- new rq, for enqueue of the task;
4214 * - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us.
4215 *
4216 * As a consequence we race really badly with just about everything. See the
4217 * many memory barriers and their comments for details.
4218 *
4219 * Return: %true if @p->state changes (an actual wakeup was done),
4220 * %false otherwise.
4221 */
4222int try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
4223{
4224 guard(preempt)();
4225 int cpu, success = 0;
4226
4227 if (p == current) {
4228 /*
4229 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
4230 * == smp_processor_id()'. Together this means we can special
4231 * case the whole 'p->on_rq && ttwu_runnable()' case below
4232 * without taking any locks.
4233 *
4234 * In particular:
4235 * - we rely on Program-Order guarantees for all the ordering,
4236 * - we're serialized against set_special_state() by virtue of
4237 * it disabling IRQs (this allows not taking ->pi_lock).
4238 */
4239 if (!ttwu_state_match(p, state, &success))
4240 goto out;
4241
4242 trace_sched_waking(p);
4243 ttwu_do_wakeup(p);
4244 goto out;
4245 }
4246
4247 /*
4248 * If we are going to wake up a thread waiting for CONDITION we
4249 * need to ensure that CONDITION=1 done by the caller can not be
4250 * reordered with p->state check below. This pairs with smp_store_mb()
4251 * in set_current_state() that the waiting thread does.
4252 */
4253 scoped_guard (raw_spinlock_irqsave, &p->pi_lock) {
4254 smp_mb__after_spinlock();
4255 if (!ttwu_state_match(p, state, &success))
4256 break;
4257
4258 trace_sched_waking(p);
4259
4260 /*
4261 * Ensure we load p->on_rq _after_ p->state, otherwise it would
4262 * be possible to, falsely, observe p->on_rq == 0 and get stuck
4263 * in smp_cond_load_acquire() below.
4264 *
4265 * sched_ttwu_pending() try_to_wake_up()
4266 * STORE p->on_rq = 1 LOAD p->state
4267 * UNLOCK rq->lock
4268 *
4269 * __schedule() (switch to task 'p')
4270 * LOCK rq->lock smp_rmb();
4271 * smp_mb__after_spinlock();
4272 * UNLOCK rq->lock
4273 *
4274 * [task p]
4275 * STORE p->state = UNINTERRUPTIBLE LOAD p->on_rq
4276 *
4277 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
4278 * __schedule(). See the comment for smp_mb__after_spinlock().
4279 *
4280 * A similar smp_rmb() lives in __task_needs_rq_lock().
4281 */
4282 smp_rmb();
4283 if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags))
4284 break;
4285
4286#ifdef CONFIG_SMP
4287 /*
4288 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
4289 * possible to, falsely, observe p->on_cpu == 0.
4290 *
4291 * One must be running (->on_cpu == 1) in order to remove oneself
4292 * from the runqueue.
4293 *
4294 * __schedule() (switch to task 'p') try_to_wake_up()
4295 * STORE p->on_cpu = 1 LOAD p->on_rq
4296 * UNLOCK rq->lock
4297 *
4298 * __schedule() (put 'p' to sleep)
4299 * LOCK rq->lock smp_rmb();
4300 * smp_mb__after_spinlock();
4301 * STORE p->on_rq = 0 LOAD p->on_cpu
4302 *
4303 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
4304 * __schedule(). See the comment for smp_mb__after_spinlock().
4305 *
4306 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure
4307 * schedule()'s deactivate_task() has 'happened' and p will no longer
4308 * care about it's own p->state. See the comment in __schedule().
4309 */
4310 smp_acquire__after_ctrl_dep();
4311
4312 /*
4313 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq
4314 * == 0), which means we need to do an enqueue, change p->state to
4315 * TASK_WAKING such that we can unlock p->pi_lock before doing the
4316 * enqueue, such as ttwu_queue_wakelist().
4317 */
4318 WRITE_ONCE(p->__state, TASK_WAKING);
4319
4320 /*
4321 * If the owning (remote) CPU is still in the middle of schedule() with
4322 * this task as prev, considering queueing p on the remote CPUs wake_list
4323 * which potentially sends an IPI instead of spinning on p->on_cpu to
4324 * let the waker make forward progress. This is safe because IRQs are
4325 * disabled and the IPI will deliver after on_cpu is cleared.
4326 *
4327 * Ensure we load task_cpu(p) after p->on_cpu:
4328 *
4329 * set_task_cpu(p, cpu);
4330 * STORE p->cpu = @cpu
4331 * __schedule() (switch to task 'p')
4332 * LOCK rq->lock
4333 * smp_mb__after_spin_lock() smp_cond_load_acquire(&p->on_cpu)
4334 * STORE p->on_cpu = 1 LOAD p->cpu
4335 *
4336 * to ensure we observe the correct CPU on which the task is currently
4337 * scheduling.
4338 */
4339 if (smp_load_acquire(&p->on_cpu) &&
4340 ttwu_queue_wakelist(p, task_cpu(p), wake_flags))
4341 break;
4342
4343 /*
4344 * If the owning (remote) CPU is still in the middle of schedule() with
4345 * this task as prev, wait until it's done referencing the task.
4346 *
4347 * Pairs with the smp_store_release() in finish_task().
4348 *
4349 * This ensures that tasks getting woken will be fully ordered against
4350 * their previous state and preserve Program Order.
4351 */
4352 smp_cond_load_acquire(&p->on_cpu, !VAL);
4353
4354 cpu = select_task_rq(p, p->wake_cpu, wake_flags | WF_TTWU);
4355 if (task_cpu(p) != cpu) {
4356 if (p->in_iowait) {
4357 delayacct_blkio_end(p);
4358 atomic_dec(&task_rq(p)->nr_iowait);
4359 }
4360
4361 wake_flags |= WF_MIGRATED;
4362 psi_ttwu_dequeue(p);
4363 set_task_cpu(p, cpu);
4364 }
4365#else
4366 cpu = task_cpu(p);
4367#endif /* CONFIG_SMP */
4368
4369 ttwu_queue(p, cpu, wake_flags);
4370 }
4371out:
4372 if (success)
4373 ttwu_stat(p, task_cpu(p), wake_flags);
4374
4375 return success;
4376}
4377
4378static bool __task_needs_rq_lock(struct task_struct *p)
4379{
4380 unsigned int state = READ_ONCE(p->__state);
4381
4382 /*
4383 * Since pi->lock blocks try_to_wake_up(), we don't need rq->lock when
4384 * the task is blocked. Make sure to check @state since ttwu() can drop
4385 * locks at the end, see ttwu_queue_wakelist().
4386 */
4387 if (state == TASK_RUNNING || state == TASK_WAKING)
4388 return true;
4389
4390 /*
4391 * Ensure we load p->on_rq after p->__state, otherwise it would be
4392 * possible to, falsely, observe p->on_rq == 0.
4393 *
4394 * See try_to_wake_up() for a longer comment.
4395 */
4396 smp_rmb();
4397 if (p->on_rq)
4398 return true;
4399
4400#ifdef CONFIG_SMP
4401 /*
4402 * Ensure the task has finished __schedule() and will not be referenced
4403 * anymore. Again, see try_to_wake_up() for a longer comment.
4404 */
4405 smp_rmb();
4406 smp_cond_load_acquire(&p->on_cpu, !VAL);
4407#endif
4408
4409 return false;
4410}
4411
4412/**
4413 * task_call_func - Invoke a function on task in fixed state
4414 * @p: Process for which the function is to be invoked, can be @current.
4415 * @func: Function to invoke.
4416 * @arg: Argument to function.
4417 *
4418 * Fix the task in it's current state by avoiding wakeups and or rq operations
4419 * and call @func(@arg) on it. This function can use ->on_rq and task_curr()
4420 * to work out what the state is, if required. Given that @func can be invoked
4421 * with a runqueue lock held, it had better be quite lightweight.
4422 *
4423 * Returns:
4424 * Whatever @func returns
4425 */
4426int task_call_func(struct task_struct *p, task_call_f func, void *arg)
4427{
4428 struct rq *rq = NULL;
4429 struct rq_flags rf;
4430 int ret;
4431
4432 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
4433
4434 if (__task_needs_rq_lock(p))
4435 rq = __task_rq_lock(p, &rf);
4436
4437 /*
4438 * At this point the task is pinned; either:
4439 * - blocked and we're holding off wakeups (pi->lock)
4440 * - woken, and we're holding off enqueue (rq->lock)
4441 * - queued, and we're holding off schedule (rq->lock)
4442 * - running, and we're holding off de-schedule (rq->lock)
4443 *
4444 * The called function (@func) can use: task_curr(), p->on_rq and
4445 * p->__state to differentiate between these states.
4446 */
4447 ret = func(p, arg);
4448
4449 if (rq)
4450 rq_unlock(rq, &rf);
4451
4452 raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags);
4453 return ret;
4454}
4455
4456/**
4457 * cpu_curr_snapshot - Return a snapshot of the currently running task
4458 * @cpu: The CPU on which to snapshot the task.
4459 *
4460 * Returns the task_struct pointer of the task "currently" running on
4461 * the specified CPU. If the same task is running on that CPU throughout,
4462 * the return value will be a pointer to that task's task_struct structure.
4463 * If the CPU did any context switches even vaguely concurrently with the
4464 * execution of this function, the return value will be a pointer to the
4465 * task_struct structure of a randomly chosen task that was running on
4466 * that CPU somewhere around the time that this function was executing.
4467 *
4468 * If the specified CPU was offline, the return value is whatever it
4469 * is, perhaps a pointer to the task_struct structure of that CPU's idle
4470 * task, but there is no guarantee. Callers wishing a useful return
4471 * value must take some action to ensure that the specified CPU remains
4472 * online throughout.
4473 *
4474 * This function executes full memory barriers before and after fetching
4475 * the pointer, which permits the caller to confine this function's fetch
4476 * with respect to the caller's accesses to other shared variables.
4477 */
4478struct task_struct *cpu_curr_snapshot(int cpu)
4479{
4480 struct task_struct *t;
4481
4482 smp_mb(); /* Pairing determined by caller's synchronization design. */
4483 t = rcu_dereference(cpu_curr(cpu));
4484 smp_mb(); /* Pairing determined by caller's synchronization design. */
4485 return t;
4486}
4487
4488/**
4489 * wake_up_process - Wake up a specific process
4490 * @p: The process to be woken up.
4491 *
4492 * Attempt to wake up the nominated process and move it to the set of runnable
4493 * processes.
4494 *
4495 * Return: 1 if the process was woken up, 0 if it was already running.
4496 *
4497 * This function executes a full memory barrier before accessing the task state.
4498 */
4499int wake_up_process(struct task_struct *p)
4500{
4501 return try_to_wake_up(p, TASK_NORMAL, 0);
4502}
4503EXPORT_SYMBOL(wake_up_process);
4504
4505int wake_up_state(struct task_struct *p, unsigned int state)
4506{
4507 return try_to_wake_up(p, state, 0);
4508}
4509
4510/*
4511 * Perform scheduler related setup for a newly forked process p.
4512 * p is forked by current.
4513 *
4514 * __sched_fork() is basic setup used by init_idle() too:
4515 */
4516static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
4517{
4518 p->on_rq = 0;
4519
4520 p->se.on_rq = 0;
4521 p->se.exec_start = 0;
4522 p->se.sum_exec_runtime = 0;
4523 p->se.prev_sum_exec_runtime = 0;
4524 p->se.nr_migrations = 0;
4525 p->se.vruntime = 0;
4526 p->se.vlag = 0;
4527 p->se.slice = sysctl_sched_base_slice;
4528 INIT_LIST_HEAD(&p->se.group_node);
4529
4530#ifdef CONFIG_FAIR_GROUP_SCHED
4531 p->se.cfs_rq = NULL;
4532#endif
4533
4534#ifdef CONFIG_SCHEDSTATS
4535 /* Even if schedstat is disabled, there should not be garbage */
4536 memset(&p->stats, 0, sizeof(p->stats));
4537#endif
4538
4539 init_dl_entity(&p->dl);
4540
4541 INIT_LIST_HEAD(&p->rt.run_list);
4542 p->rt.timeout = 0;
4543 p->rt.time_slice = sched_rr_timeslice;
4544 p->rt.on_rq = 0;
4545 p->rt.on_list = 0;
4546
4547#ifdef CONFIG_PREEMPT_NOTIFIERS
4548 INIT_HLIST_HEAD(&p->preempt_notifiers);
4549#endif
4550
4551#ifdef CONFIG_COMPACTION
4552 p->capture_control = NULL;
4553#endif
4554 init_numa_balancing(clone_flags, p);
4555#ifdef CONFIG_SMP
4556 p->wake_entry.u_flags = CSD_TYPE_TTWU;
4557 p->migration_pending = NULL;
4558#endif
4559 init_sched_mm_cid(p);
4560}
4561
4562DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
4563
4564#ifdef CONFIG_NUMA_BALANCING
4565
4566int sysctl_numa_balancing_mode;
4567
4568static void __set_numabalancing_state(bool enabled)
4569{
4570 if (enabled)
4571 static_branch_enable(&sched_numa_balancing);
4572 else
4573 static_branch_disable(&sched_numa_balancing);
4574}
4575
4576void set_numabalancing_state(bool enabled)
4577{
4578 if (enabled)
4579 sysctl_numa_balancing_mode = NUMA_BALANCING_NORMAL;
4580 else
4581 sysctl_numa_balancing_mode = NUMA_BALANCING_DISABLED;
4582 __set_numabalancing_state(enabled);
4583}
4584
4585#ifdef CONFIG_PROC_SYSCTL
4586static void reset_memory_tiering(void)
4587{
4588 struct pglist_data *pgdat;
4589
4590 for_each_online_pgdat(pgdat) {
4591 pgdat->nbp_threshold = 0;
4592 pgdat->nbp_th_nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
4593 pgdat->nbp_th_start = jiffies_to_msecs(jiffies);
4594 }
4595}
4596
4597static int sysctl_numa_balancing(struct ctl_table *table, int write,
4598 void *buffer, size_t *lenp, loff_t *ppos)
4599{
4600 struct ctl_table t;
4601 int err;
4602 int state = sysctl_numa_balancing_mode;
4603
4604 if (write && !capable(CAP_SYS_ADMIN))
4605 return -EPERM;
4606
4607 t = *table;
4608 t.data = &state;
4609 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4610 if (err < 0)
4611 return err;
4612 if (write) {
4613 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
4614 (state & NUMA_BALANCING_MEMORY_TIERING))
4615 reset_memory_tiering();
4616 sysctl_numa_balancing_mode = state;
4617 __set_numabalancing_state(state);
4618 }
4619 return err;
4620}
4621#endif
4622#endif
4623
4624#ifdef CONFIG_SCHEDSTATS
4625
4626DEFINE_STATIC_KEY_FALSE(sched_schedstats);
4627
4628static void set_schedstats(bool enabled)
4629{
4630 if (enabled)
4631 static_branch_enable(&sched_schedstats);
4632 else
4633 static_branch_disable(&sched_schedstats);
4634}
4635
4636void force_schedstat_enabled(void)
4637{
4638 if (!schedstat_enabled()) {
4639 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
4640 static_branch_enable(&sched_schedstats);
4641 }
4642}
4643
4644static int __init setup_schedstats(char *str)
4645{
4646 int ret = 0;
4647 if (!str)
4648 goto out;
4649
4650 if (!strcmp(str, "enable")) {
4651 set_schedstats(true);
4652 ret = 1;
4653 } else if (!strcmp(str, "disable")) {
4654 set_schedstats(false);
4655 ret = 1;
4656 }
4657out:
4658 if (!ret)
4659 pr_warn("Unable to parse schedstats=\n");
4660
4661 return ret;
4662}
4663__setup("schedstats=", setup_schedstats);
4664
4665#ifdef CONFIG_PROC_SYSCTL
4666static int sysctl_schedstats(struct ctl_table *table, int write, void *buffer,
4667 size_t *lenp, loff_t *ppos)
4668{
4669 struct ctl_table t;
4670 int err;
4671 int state = static_branch_likely(&sched_schedstats);
4672
4673 if (write && !capable(CAP_SYS_ADMIN))
4674 return -EPERM;
4675
4676 t = *table;
4677 t.data = &state;
4678 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4679 if (err < 0)
4680 return err;
4681 if (write)
4682 set_schedstats(state);
4683 return err;
4684}
4685#endif /* CONFIG_PROC_SYSCTL */
4686#endif /* CONFIG_SCHEDSTATS */
4687
4688#ifdef CONFIG_SYSCTL
4689static struct ctl_table sched_core_sysctls[] = {
4690#ifdef CONFIG_SCHEDSTATS
4691 {
4692 .procname = "sched_schedstats",
4693 .data = NULL,
4694 .maxlen = sizeof(unsigned int),
4695 .mode = 0644,
4696 .proc_handler = sysctl_schedstats,
4697 .extra1 = SYSCTL_ZERO,
4698 .extra2 = SYSCTL_ONE,
4699 },
4700#endif /* CONFIG_SCHEDSTATS */
4701#ifdef CONFIG_UCLAMP_TASK
4702 {
4703 .procname = "sched_util_clamp_min",
4704 .data = &sysctl_sched_uclamp_util_min,
4705 .maxlen = sizeof(unsigned int),
4706 .mode = 0644,
4707 .proc_handler = sysctl_sched_uclamp_handler,
4708 },
4709 {
4710 .procname = "sched_util_clamp_max",
4711 .data = &sysctl_sched_uclamp_util_max,
4712 .maxlen = sizeof(unsigned int),
4713 .mode = 0644,
4714 .proc_handler = sysctl_sched_uclamp_handler,
4715 },
4716 {
4717 .procname = "sched_util_clamp_min_rt_default",
4718 .data = &sysctl_sched_uclamp_util_min_rt_default,
4719 .maxlen = sizeof(unsigned int),
4720 .mode = 0644,
4721 .proc_handler = sysctl_sched_uclamp_handler,
4722 },
4723#endif /* CONFIG_UCLAMP_TASK */
4724#ifdef CONFIG_NUMA_BALANCING
4725 {
4726 .procname = "numa_balancing",
4727 .data = NULL, /* filled in by handler */
4728 .maxlen = sizeof(unsigned int),
4729 .mode = 0644,
4730 .proc_handler = sysctl_numa_balancing,
4731 .extra1 = SYSCTL_ZERO,
4732 .extra2 = SYSCTL_FOUR,
4733 },
4734#endif /* CONFIG_NUMA_BALANCING */
4735 {}
4736};
4737static int __init sched_core_sysctl_init(void)
4738{
4739 register_sysctl_init("kernel", sched_core_sysctls);
4740 return 0;
4741}
4742late_initcall(sched_core_sysctl_init);
4743#endif /* CONFIG_SYSCTL */
4744
4745/*
4746 * fork()/clone()-time setup:
4747 */
4748int sched_fork(unsigned long clone_flags, struct task_struct *p)
4749{
4750 __sched_fork(clone_flags, p);
4751 /*
4752 * We mark the process as NEW here. This guarantees that
4753 * nobody will actually run it, and a signal or other external
4754 * event cannot wake it up and insert it on the runqueue either.
4755 */
4756 p->__state = TASK_NEW;
4757
4758 /*
4759 * Make sure we do not leak PI boosting priority to the child.
4760 */
4761 p->prio = current->normal_prio;
4762
4763 uclamp_fork(p);
4764
4765 /*
4766 * Revert to default priority/policy on fork if requested.
4767 */
4768 if (unlikely(p->sched_reset_on_fork)) {
4769 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
4770 p->policy = SCHED_NORMAL;
4771 p->static_prio = NICE_TO_PRIO(0);
4772 p->rt_priority = 0;
4773 } else if (PRIO_TO_NICE(p->static_prio) < 0)
4774 p->static_prio = NICE_TO_PRIO(0);
4775
4776 p->prio = p->normal_prio = p->static_prio;
4777 set_load_weight(p, false);
4778
4779 /*
4780 * We don't need the reset flag anymore after the fork. It has
4781 * fulfilled its duty:
4782 */
4783 p->sched_reset_on_fork = 0;
4784 }
4785
4786 if (dl_prio(p->prio))
4787 return -EAGAIN;
4788 else if (rt_prio(p->prio))
4789 p->sched_class = &rt_sched_class;
4790 else
4791 p->sched_class = &fair_sched_class;
4792
4793 init_entity_runnable_average(&p->se);
4794
4795
4796#ifdef CONFIG_SCHED_INFO
4797 if (likely(sched_info_on()))
4798 memset(&p->sched_info, 0, sizeof(p->sched_info));
4799#endif
4800#if defined(CONFIG_SMP)
4801 p->on_cpu = 0;
4802#endif
4803 init_task_preempt_count(p);
4804#ifdef CONFIG_SMP
4805 plist_node_init(&p->pushable_tasks, MAX_PRIO);
4806 RB_CLEAR_NODE(&p->pushable_dl_tasks);
4807#endif
4808 return 0;
4809}
4810
4811void sched_cgroup_fork(struct task_struct *p, struct kernel_clone_args *kargs)
4812{
4813 unsigned long flags;
4814
4815 /*
4816 * Because we're not yet on the pid-hash, p->pi_lock isn't strictly
4817 * required yet, but lockdep gets upset if rules are violated.
4818 */
4819 raw_spin_lock_irqsave(&p->pi_lock, flags);
4820#ifdef CONFIG_CGROUP_SCHED
4821 if (1) {
4822 struct task_group *tg;
4823 tg = container_of(kargs->cset->subsys[cpu_cgrp_id],
4824 struct task_group, css);
4825 tg = autogroup_task_group(p, tg);
4826 p->sched_task_group = tg;
4827 }
4828#endif
4829 rseq_migrate(p);
4830 /*
4831 * We're setting the CPU for the first time, we don't migrate,
4832 * so use __set_task_cpu().
4833 */
4834 __set_task_cpu(p, smp_processor_id());
4835 if (p->sched_class->task_fork)
4836 p->sched_class->task_fork(p);
4837 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4838}
4839
4840void sched_post_fork(struct task_struct *p)
4841{
4842 uclamp_post_fork(p);
4843}
4844
4845unsigned long to_ratio(u64 period, u64 runtime)
4846{
4847 if (runtime == RUNTIME_INF)
4848 return BW_UNIT;
4849
4850 /*
4851 * Doing this here saves a lot of checks in all
4852 * the calling paths, and returning zero seems
4853 * safe for them anyway.
4854 */
4855 if (period == 0)
4856 return 0;
4857
4858 return div64_u64(runtime << BW_SHIFT, period);
4859}
4860
4861/*
4862 * wake_up_new_task - wake up a newly created task for the first time.
4863 *
4864 * This function will do some initial scheduler statistics housekeeping
4865 * that must be done for every newly created context, then puts the task
4866 * on the runqueue and wakes it.
4867 */
4868void wake_up_new_task(struct task_struct *p)
4869{
4870 struct rq_flags rf;
4871 struct rq *rq;
4872
4873 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
4874 WRITE_ONCE(p->__state, TASK_RUNNING);
4875#ifdef CONFIG_SMP
4876 /*
4877 * Fork balancing, do it here and not earlier because:
4878 * - cpus_ptr can change in the fork path
4879 * - any previously selected CPU might disappear through hotplug
4880 *
4881 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
4882 * as we're not fully set-up yet.
4883 */
4884 p->recent_used_cpu = task_cpu(p);
4885 rseq_migrate(p);
4886 __set_task_cpu(p, select_task_rq(p, task_cpu(p), WF_FORK));
4887#endif
4888 rq = __task_rq_lock(p, &rf);
4889 update_rq_clock(rq);
4890 post_init_entity_util_avg(p);
4891
4892 activate_task(rq, p, ENQUEUE_NOCLOCK);
4893 trace_sched_wakeup_new(p);
4894 wakeup_preempt(rq, p, WF_FORK);
4895#ifdef CONFIG_SMP
4896 if (p->sched_class->task_woken) {
4897 /*
4898 * Nothing relies on rq->lock after this, so it's fine to
4899 * drop it.
4900 */
4901 rq_unpin_lock(rq, &rf);
4902 p->sched_class->task_woken(rq, p);
4903 rq_repin_lock(rq, &rf);
4904 }
4905#endif
4906 task_rq_unlock(rq, p, &rf);
4907}
4908
4909#ifdef CONFIG_PREEMPT_NOTIFIERS
4910
4911static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
4912
4913void preempt_notifier_inc(void)
4914{
4915 static_branch_inc(&preempt_notifier_key);
4916}
4917EXPORT_SYMBOL_GPL(preempt_notifier_inc);
4918
4919void preempt_notifier_dec(void)
4920{
4921 static_branch_dec(&preempt_notifier_key);
4922}
4923EXPORT_SYMBOL_GPL(preempt_notifier_dec);
4924
4925/**
4926 * preempt_notifier_register - tell me when current is being preempted & rescheduled
4927 * @notifier: notifier struct to register
4928 */
4929void preempt_notifier_register(struct preempt_notifier *notifier)
4930{
4931 if (!static_branch_unlikely(&preempt_notifier_key))
4932 WARN(1, "registering preempt_notifier while notifiers disabled\n");
4933
4934 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers);
4935}
4936EXPORT_SYMBOL_GPL(preempt_notifier_register);
4937
4938/**
4939 * preempt_notifier_unregister - no longer interested in preemption notifications
4940 * @notifier: notifier struct to unregister
4941 *
4942 * This is *not* safe to call from within a preemption notifier.
4943 */
4944void preempt_notifier_unregister(struct preempt_notifier *notifier)
4945{
4946 hlist_del(¬ifier->link);
4947}
4948EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
4949
4950static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
4951{
4952 struct preempt_notifier *notifier;
4953
4954 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
4955 notifier->ops->sched_in(notifier, raw_smp_processor_id());
4956}
4957
4958static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
4959{
4960 if (static_branch_unlikely(&preempt_notifier_key))
4961 __fire_sched_in_preempt_notifiers(curr);
4962}
4963
4964static void
4965__fire_sched_out_preempt_notifiers(struct task_struct *curr,
4966 struct task_struct *next)
4967{
4968 struct preempt_notifier *notifier;
4969
4970 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
4971 notifier->ops->sched_out(notifier, next);
4972}
4973
4974static __always_inline void
4975fire_sched_out_preempt_notifiers(struct task_struct *curr,
4976 struct task_struct *next)
4977{
4978 if (static_branch_unlikely(&preempt_notifier_key))
4979 __fire_sched_out_preempt_notifiers(curr, next);
4980}
4981
4982#else /* !CONFIG_PREEMPT_NOTIFIERS */
4983
4984static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
4985{
4986}
4987
4988static inline void
4989fire_sched_out_preempt_notifiers(struct task_struct *curr,
4990 struct task_struct *next)
4991{
4992}
4993
4994#endif /* CONFIG_PREEMPT_NOTIFIERS */
4995
4996static inline void prepare_task(struct task_struct *next)
4997{
4998#ifdef CONFIG_SMP
4999 /*
5000 * Claim the task as running, we do this before switching to it
5001 * such that any running task will have this set.
5002 *
5003 * See the smp_load_acquire(&p->on_cpu) case in ttwu() and
5004 * its ordering comment.
5005 */
5006 WRITE_ONCE(next->on_cpu, 1);
5007#endif
5008}
5009
5010static inline void finish_task(struct task_struct *prev)
5011{
5012#ifdef CONFIG_SMP
5013 /*
5014 * This must be the very last reference to @prev from this CPU. After
5015 * p->on_cpu is cleared, the task can be moved to a different CPU. We
5016 * must ensure this doesn't happen until the switch is completely
5017 * finished.
5018 *
5019 * In particular, the load of prev->state in finish_task_switch() must
5020 * happen before this.
5021 *
5022 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
5023 */
5024 smp_store_release(&prev->on_cpu, 0);
5025#endif
5026}
5027
5028#ifdef CONFIG_SMP
5029
5030static void do_balance_callbacks(struct rq *rq, struct balance_callback *head)
5031{
5032 void (*func)(struct rq *rq);
5033 struct balance_callback *next;
5034
5035 lockdep_assert_rq_held(rq);
5036
5037 while (head) {
5038 func = (void (*)(struct rq *))head->func;
5039 next = head->next;
5040 head->next = NULL;
5041 head = next;
5042
5043 func(rq);
5044 }
5045}
5046
5047static void balance_push(struct rq *rq);
5048
5049/*
5050 * balance_push_callback is a right abuse of the callback interface and plays
5051 * by significantly different rules.
5052 *
5053 * Where the normal balance_callback's purpose is to be ran in the same context
5054 * that queued it (only later, when it's safe to drop rq->lock again),
5055 * balance_push_callback is specifically targeted at __schedule().
5056 *
5057 * This abuse is tolerated because it places all the unlikely/odd cases behind
5058 * a single test, namely: rq->balance_callback == NULL.
5059 */
5060struct balance_callback balance_push_callback = {
5061 .next = NULL,
5062 .func = balance_push,
5063};
5064
5065static inline struct balance_callback *
5066__splice_balance_callbacks(struct rq *rq, bool split)
5067{
5068 struct balance_callback *head = rq->balance_callback;
5069
5070 if (likely(!head))
5071 return NULL;
5072
5073 lockdep_assert_rq_held(rq);
5074 /*
5075 * Must not take balance_push_callback off the list when
5076 * splice_balance_callbacks() and balance_callbacks() are not
5077 * in the same rq->lock section.
5078 *
5079 * In that case it would be possible for __schedule() to interleave
5080 * and observe the list empty.
5081 */
5082 if (split && head == &balance_push_callback)
5083 head = NULL;
5084 else
5085 rq->balance_callback = NULL;
5086
5087 return head;
5088}
5089
5090static inline struct balance_callback *splice_balance_callbacks(struct rq *rq)
5091{
5092 return __splice_balance_callbacks(rq, true);
5093}
5094
5095static void __balance_callbacks(struct rq *rq)
5096{
5097 do_balance_callbacks(rq, __splice_balance_callbacks(rq, false));
5098}
5099
5100static inline void balance_callbacks(struct rq *rq, struct balance_callback *head)
5101{
5102 unsigned long flags;
5103
5104 if (unlikely(head)) {
5105 raw_spin_rq_lock_irqsave(rq, flags);
5106 do_balance_callbacks(rq, head);
5107 raw_spin_rq_unlock_irqrestore(rq, flags);
5108 }
5109}
5110
5111#else
5112
5113static inline void __balance_callbacks(struct rq *rq)
5114{
5115}
5116
5117static inline struct balance_callback *splice_balance_callbacks(struct rq *rq)
5118{
5119 return NULL;
5120}
5121
5122static inline void balance_callbacks(struct rq *rq, struct balance_callback *head)
5123{
5124}
5125
5126#endif
5127
5128static inline void
5129prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
5130{
5131 /*
5132 * Since the runqueue lock will be released by the next
5133 * task (which is an invalid locking op but in the case
5134 * of the scheduler it's an obvious special-case), so we
5135 * do an early lockdep release here:
5136 */
5137 rq_unpin_lock(rq, rf);
5138 spin_release(&__rq_lockp(rq)->dep_map, _THIS_IP_);
5139#ifdef CONFIG_DEBUG_SPINLOCK
5140 /* this is a valid case when another task releases the spinlock */
5141 rq_lockp(rq)->owner = next;
5142#endif
5143}
5144
5145static inline void finish_lock_switch(struct rq *rq)
5146{
5147 /*
5148 * If we are tracking spinlock dependencies then we have to
5149 * fix up the runqueue lock - which gets 'carried over' from
5150 * prev into current:
5151 */
5152 spin_acquire(&__rq_lockp(rq)->dep_map, 0, 0, _THIS_IP_);
5153 __balance_callbacks(rq);
5154 raw_spin_rq_unlock_irq(rq);
5155}
5156
5157/*
5158 * NOP if the arch has not defined these:
5159 */
5160
5161#ifndef prepare_arch_switch
5162# define prepare_arch_switch(next) do { } while (0)
5163#endif
5164
5165#ifndef finish_arch_post_lock_switch
5166# define finish_arch_post_lock_switch() do { } while (0)
5167#endif
5168
5169static inline void kmap_local_sched_out(void)
5170{
5171#ifdef CONFIG_KMAP_LOCAL
5172 if (unlikely(current->kmap_ctrl.idx))
5173 __kmap_local_sched_out();
5174#endif
5175}
5176
5177static inline void kmap_local_sched_in(void)
5178{
5179#ifdef CONFIG_KMAP_LOCAL
5180 if (unlikely(current->kmap_ctrl.idx))
5181 __kmap_local_sched_in();
5182#endif
5183}
5184
5185/**
5186 * prepare_task_switch - prepare to switch tasks
5187 * @rq: the runqueue preparing to switch
5188 * @prev: the current task that is being switched out
5189 * @next: the task we are going to switch to.
5190 *
5191 * This is called with the rq lock held and interrupts off. It must
5192 * be paired with a subsequent finish_task_switch after the context
5193 * switch.
5194 *
5195 * prepare_task_switch sets up locking and calls architecture specific
5196 * hooks.
5197 */
5198static inline void
5199prepare_task_switch(struct rq *rq, struct task_struct *prev,
5200 struct task_struct *next)
5201{
5202 kcov_prepare_switch(prev);
5203 sched_info_switch(rq, prev, next);
5204 perf_event_task_sched_out(prev, next);
5205 rseq_preempt(prev);
5206 fire_sched_out_preempt_notifiers(prev, next);
5207 kmap_local_sched_out();
5208 prepare_task(next);
5209 prepare_arch_switch(next);
5210}
5211
5212/**
5213 * finish_task_switch - clean up after a task-switch
5214 * @prev: the thread we just switched away from.
5215 *
5216 * finish_task_switch must be called after the context switch, paired
5217 * with a prepare_task_switch call before the context switch.
5218 * finish_task_switch will reconcile locking set up by prepare_task_switch,
5219 * and do any other architecture-specific cleanup actions.
5220 *
5221 * Note that we may have delayed dropping an mm in context_switch(). If
5222 * so, we finish that here outside of the runqueue lock. (Doing it
5223 * with the lock held can cause deadlocks; see schedule() for
5224 * details.)
5225 *
5226 * The context switch have flipped the stack from under us and restored the
5227 * local variables which were saved when this task called schedule() in the
5228 * past. prev == current is still correct but we need to recalculate this_rq
5229 * because prev may have moved to another CPU.
5230 */
5231static struct rq *finish_task_switch(struct task_struct *prev)
5232 __releases(rq->lock)
5233{
5234 struct rq *rq = this_rq();
5235 struct mm_struct *mm = rq->prev_mm;
5236 unsigned int prev_state;
5237
5238 /*
5239 * The previous task will have left us with a preempt_count of 2
5240 * because it left us after:
5241 *
5242 * schedule()
5243 * preempt_disable(); // 1
5244 * __schedule()
5245 * raw_spin_lock_irq(&rq->lock) // 2
5246 *
5247 * Also, see FORK_PREEMPT_COUNT.
5248 */
5249 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
5250 "corrupted preempt_count: %s/%d/0x%x\n",
5251 current->comm, current->pid, preempt_count()))
5252 preempt_count_set(FORK_PREEMPT_COUNT);
5253
5254 rq->prev_mm = NULL;
5255
5256 /*
5257 * A task struct has one reference for the use as "current".
5258 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
5259 * schedule one last time. The schedule call will never return, and
5260 * the scheduled task must drop that reference.
5261 *
5262 * We must observe prev->state before clearing prev->on_cpu (in
5263 * finish_task), otherwise a concurrent wakeup can get prev
5264 * running on another CPU and we could rave with its RUNNING -> DEAD
5265 * transition, resulting in a double drop.
5266 */
5267 prev_state = READ_ONCE(prev->__state);
5268 vtime_task_switch(prev);
5269 perf_event_task_sched_in(prev, current);
5270 finish_task(prev);
5271 tick_nohz_task_switch();
5272 finish_lock_switch(rq);
5273 finish_arch_post_lock_switch();
5274 kcov_finish_switch(current);
5275 /*
5276 * kmap_local_sched_out() is invoked with rq::lock held and
5277 * interrupts disabled. There is no requirement for that, but the
5278 * sched out code does not have an interrupt enabled section.
5279 * Restoring the maps on sched in does not require interrupts being
5280 * disabled either.
5281 */
5282 kmap_local_sched_in();
5283
5284 fire_sched_in_preempt_notifiers(current);
5285 /*
5286 * When switching through a kernel thread, the loop in
5287 * membarrier_{private,global}_expedited() may have observed that
5288 * kernel thread and not issued an IPI. It is therefore possible to
5289 * schedule between user->kernel->user threads without passing though
5290 * switch_mm(). Membarrier requires a barrier after storing to
5291 * rq->curr, before returning to userspace, so provide them here:
5292 *
5293 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
5294 * provided by mmdrop_lazy_tlb(),
5295 * - a sync_core for SYNC_CORE.
5296 */
5297 if (mm) {
5298 membarrier_mm_sync_core_before_usermode(mm);
5299 mmdrop_lazy_tlb_sched(mm);
5300 }
5301
5302 if (unlikely(prev_state == TASK_DEAD)) {
5303 if (prev->sched_class->task_dead)
5304 prev->sched_class->task_dead(prev);
5305
5306 /* Task is done with its stack. */
5307 put_task_stack(prev);
5308
5309 put_task_struct_rcu_user(prev);
5310 }
5311
5312 return rq;
5313}
5314
5315/**
5316 * schedule_tail - first thing a freshly forked thread must call.
5317 * @prev: the thread we just switched away from.
5318 */
5319asmlinkage __visible void schedule_tail(struct task_struct *prev)
5320 __releases(rq->lock)
5321{
5322 /*
5323 * New tasks start with FORK_PREEMPT_COUNT, see there and
5324 * finish_task_switch() for details.
5325 *
5326 * finish_task_switch() will drop rq->lock() and lower preempt_count
5327 * and the preempt_enable() will end up enabling preemption (on
5328 * PREEMPT_COUNT kernels).
5329 */
5330
5331 finish_task_switch(prev);
5332 preempt_enable();
5333
5334 if (current->set_child_tid)
5335 put_user(task_pid_vnr(current), current->set_child_tid);
5336
5337 calculate_sigpending();
5338}
5339
5340/*
5341 * context_switch - switch to the new MM and the new thread's register state.
5342 */
5343static __always_inline struct rq *
5344context_switch(struct rq *rq, struct task_struct *prev,
5345 struct task_struct *next, struct rq_flags *rf)
5346{
5347 prepare_task_switch(rq, prev, next);
5348
5349 /*
5350 * For paravirt, this is coupled with an exit in switch_to to
5351 * combine the page table reload and the switch backend into
5352 * one hypercall.
5353 */
5354 arch_start_context_switch(prev);
5355
5356 /*
5357 * kernel -> kernel lazy + transfer active
5358 * user -> kernel lazy + mmgrab_lazy_tlb() active
5359 *
5360 * kernel -> user switch + mmdrop_lazy_tlb() active
5361 * user -> user switch
5362 *
5363 * switch_mm_cid() needs to be updated if the barriers provided
5364 * by context_switch() are modified.
5365 */
5366 if (!next->mm) { // to kernel
5367 enter_lazy_tlb(prev->active_mm, next);
5368
5369 next->active_mm = prev->active_mm;
5370 if (prev->mm) // from user
5371 mmgrab_lazy_tlb(prev->active_mm);
5372 else
5373 prev->active_mm = NULL;
5374 } else { // to user
5375 membarrier_switch_mm(rq, prev->active_mm, next->mm);
5376 /*
5377 * sys_membarrier() requires an smp_mb() between setting
5378 * rq->curr / membarrier_switch_mm() and returning to userspace.
5379 *
5380 * The below provides this either through switch_mm(), or in
5381 * case 'prev->active_mm == next->mm' through
5382 * finish_task_switch()'s mmdrop().
5383 */
5384 switch_mm_irqs_off(prev->active_mm, next->mm, next);
5385 lru_gen_use_mm(next->mm);
5386
5387 if (!prev->mm) { // from kernel
5388 /* will mmdrop_lazy_tlb() in finish_task_switch(). */
5389 rq->prev_mm = prev->active_mm;
5390 prev->active_mm = NULL;
5391 }
5392 }
5393
5394 /* switch_mm_cid() requires the memory barriers above. */
5395 switch_mm_cid(rq, prev, next);
5396
5397 prepare_lock_switch(rq, next, rf);
5398
5399 /* Here we just switch the register state and the stack. */
5400 switch_to(prev, next, prev);
5401 barrier();
5402
5403 return finish_task_switch(prev);
5404}
5405
5406/*
5407 * nr_running and nr_context_switches:
5408 *
5409 * externally visible scheduler statistics: current number of runnable
5410 * threads, total number of context switches performed since bootup.
5411 */
5412unsigned int nr_running(void)
5413{
5414 unsigned int i, sum = 0;
5415
5416 for_each_online_cpu(i)
5417 sum += cpu_rq(i)->nr_running;
5418
5419 return sum;
5420}
5421
5422/*
5423 * Check if only the current task is running on the CPU.
5424 *
5425 * Caution: this function does not check that the caller has disabled
5426 * preemption, thus the result might have a time-of-check-to-time-of-use
5427 * race. The caller is responsible to use it correctly, for example:
5428 *
5429 * - from a non-preemptible section (of course)
5430 *
5431 * - from a thread that is bound to a single CPU
5432 *
5433 * - in a loop with very short iterations (e.g. a polling loop)
5434 */
5435bool single_task_running(void)
5436{
5437 return raw_rq()->nr_running == 1;
5438}
5439EXPORT_SYMBOL(single_task_running);
5440
5441unsigned long long nr_context_switches_cpu(int cpu)
5442{
5443 return cpu_rq(cpu)->nr_switches;
5444}
5445
5446unsigned long long nr_context_switches(void)
5447{
5448 int i;
5449 unsigned long long sum = 0;
5450
5451 for_each_possible_cpu(i)
5452 sum += cpu_rq(i)->nr_switches;
5453
5454 return sum;
5455}
5456
5457/*
5458 * Consumers of these two interfaces, like for example the cpuidle menu
5459 * governor, are using nonsensical data. Preferring shallow idle state selection
5460 * for a CPU that has IO-wait which might not even end up running the task when
5461 * it does become runnable.
5462 */
5463
5464unsigned int nr_iowait_cpu(int cpu)
5465{
5466 return atomic_read(&cpu_rq(cpu)->nr_iowait);
5467}
5468
5469/*
5470 * IO-wait accounting, and how it's mostly bollocks (on SMP).
5471 *
5472 * The idea behind IO-wait account is to account the idle time that we could
5473 * have spend running if it were not for IO. That is, if we were to improve the
5474 * storage performance, we'd have a proportional reduction in IO-wait time.
5475 *
5476 * This all works nicely on UP, where, when a task blocks on IO, we account
5477 * idle time as IO-wait, because if the storage were faster, it could've been
5478 * running and we'd not be idle.
5479 *
5480 * This has been extended to SMP, by doing the same for each CPU. This however
5481 * is broken.
5482 *
5483 * Imagine for instance the case where two tasks block on one CPU, only the one
5484 * CPU will have IO-wait accounted, while the other has regular idle. Even
5485 * though, if the storage were faster, both could've ran at the same time,
5486 * utilising both CPUs.
5487 *
5488 * This means, that when looking globally, the current IO-wait accounting on
5489 * SMP is a lower bound, by reason of under accounting.
5490 *
5491 * Worse, since the numbers are provided per CPU, they are sometimes
5492 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
5493 * associated with any one particular CPU, it can wake to another CPU than it
5494 * blocked on. This means the per CPU IO-wait number is meaningless.
5495 *
5496 * Task CPU affinities can make all that even more 'interesting'.
5497 */
5498
5499unsigned int nr_iowait(void)
5500{
5501 unsigned int i, sum = 0;
5502
5503 for_each_possible_cpu(i)
5504 sum += nr_iowait_cpu(i);
5505
5506 return sum;
5507}
5508
5509#ifdef CONFIG_SMP
5510
5511/*
5512 * sched_exec - execve() is a valuable balancing opportunity, because at
5513 * this point the task has the smallest effective memory and cache footprint.
5514 */
5515void sched_exec(void)
5516{
5517 struct task_struct *p = current;
5518 struct migration_arg arg;
5519 int dest_cpu;
5520
5521 scoped_guard (raw_spinlock_irqsave, &p->pi_lock) {
5522 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), WF_EXEC);
5523 if (dest_cpu == smp_processor_id())
5524 return;
5525
5526 if (unlikely(!cpu_active(dest_cpu)))
5527 return;
5528
5529 arg = (struct migration_arg){ p, dest_cpu };
5530 }
5531 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
5532}
5533
5534#endif
5535
5536DEFINE_PER_CPU(struct kernel_stat, kstat);
5537DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
5538
5539EXPORT_PER_CPU_SYMBOL(kstat);
5540EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
5541
5542/*
5543 * The function fair_sched_class.update_curr accesses the struct curr
5544 * and its field curr->exec_start; when called from task_sched_runtime(),
5545 * we observe a high rate of cache misses in practice.
5546 * Prefetching this data results in improved performance.
5547 */
5548static inline void prefetch_curr_exec_start(struct task_struct *p)
5549{
5550#ifdef CONFIG_FAIR_GROUP_SCHED
5551 struct sched_entity *curr = (&p->se)->cfs_rq->curr;
5552#else
5553 struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
5554#endif
5555 prefetch(curr);
5556 prefetch(&curr->exec_start);
5557}
5558
5559/*
5560 * Return accounted runtime for the task.
5561 * In case the task is currently running, return the runtime plus current's
5562 * pending runtime that have not been accounted yet.
5563 */
5564unsigned long long task_sched_runtime(struct task_struct *p)
5565{
5566 struct rq_flags rf;
5567 struct rq *rq;
5568 u64 ns;
5569
5570#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
5571 /*
5572 * 64-bit doesn't need locks to atomically read a 64-bit value.
5573 * So we have a optimization chance when the task's delta_exec is 0.
5574 * Reading ->on_cpu is racy, but this is ok.
5575 *
5576 * If we race with it leaving CPU, we'll take a lock. So we're correct.
5577 * If we race with it entering CPU, unaccounted time is 0. This is
5578 * indistinguishable from the read occurring a few cycles earlier.
5579 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
5580 * been accounted, so we're correct here as well.
5581 */
5582 if (!p->on_cpu || !task_on_rq_queued(p))
5583 return p->se.sum_exec_runtime;
5584#endif
5585
5586 rq = task_rq_lock(p, &rf);
5587 /*
5588 * Must be ->curr _and_ ->on_rq. If dequeued, we would
5589 * project cycles that may never be accounted to this
5590 * thread, breaking clock_gettime().
5591 */
5592 if (task_current(rq, p) && task_on_rq_queued(p)) {
5593 prefetch_curr_exec_start(p);
5594 update_rq_clock(rq);
5595 p->sched_class->update_curr(rq);
5596 }
5597 ns = p->se.sum_exec_runtime;
5598 task_rq_unlock(rq, p, &rf);
5599
5600 return ns;
5601}
5602
5603#ifdef CONFIG_SCHED_DEBUG
5604static u64 cpu_resched_latency(struct rq *rq)
5605{
5606 int latency_warn_ms = READ_ONCE(sysctl_resched_latency_warn_ms);
5607 u64 resched_latency, now = rq_clock(rq);
5608 static bool warned_once;
5609
5610 if (sysctl_resched_latency_warn_once && warned_once)
5611 return 0;
5612
5613 if (!need_resched() || !latency_warn_ms)
5614 return 0;
5615
5616 if (system_state == SYSTEM_BOOTING)
5617 return 0;
5618
5619 if (!rq->last_seen_need_resched_ns) {
5620 rq->last_seen_need_resched_ns = now;
5621 rq->ticks_without_resched = 0;
5622 return 0;
5623 }
5624
5625 rq->ticks_without_resched++;
5626 resched_latency = now - rq->last_seen_need_resched_ns;
5627 if (resched_latency <= latency_warn_ms * NSEC_PER_MSEC)
5628 return 0;
5629
5630 warned_once = true;
5631
5632 return resched_latency;
5633}
5634
5635static int __init setup_resched_latency_warn_ms(char *str)
5636{
5637 long val;
5638
5639 if ((kstrtol(str, 0, &val))) {
5640 pr_warn("Unable to set resched_latency_warn_ms\n");
5641 return 1;
5642 }
5643
5644 sysctl_resched_latency_warn_ms = val;
5645 return 1;
5646}
5647__setup("resched_latency_warn_ms=", setup_resched_latency_warn_ms);
5648#else
5649static inline u64 cpu_resched_latency(struct rq *rq) { return 0; }
5650#endif /* CONFIG_SCHED_DEBUG */
5651
5652/*
5653 * This function gets called by the timer code, with HZ frequency.
5654 * We call it with interrupts disabled.
5655 */
5656void scheduler_tick(void)
5657{
5658 int cpu = smp_processor_id();
5659 struct rq *rq = cpu_rq(cpu);
5660 struct task_struct *curr = rq->curr;
5661 struct rq_flags rf;
5662 unsigned long thermal_pressure;
5663 u64 resched_latency;
5664
5665 if (housekeeping_cpu(cpu, HK_TYPE_TICK))
5666 arch_scale_freq_tick();
5667
5668 sched_clock_tick();
5669
5670 rq_lock(rq, &rf);
5671
5672 update_rq_clock(rq);
5673 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
5674 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure);
5675 curr->sched_class->task_tick(rq, curr, 0);
5676 if (sched_feat(LATENCY_WARN))
5677 resched_latency = cpu_resched_latency(rq);
5678 calc_global_load_tick(rq);
5679 sched_core_tick(rq);
5680 task_tick_mm_cid(rq, curr);
5681
5682 rq_unlock(rq, &rf);
5683
5684 if (sched_feat(LATENCY_WARN) && resched_latency)
5685 resched_latency_warn(cpu, resched_latency);
5686
5687 perf_event_task_tick();
5688
5689 if (curr->flags & PF_WQ_WORKER)
5690 wq_worker_tick(curr);
5691
5692#ifdef CONFIG_SMP
5693 rq->idle_balance = idle_cpu(cpu);
5694 trigger_load_balance(rq);
5695#endif
5696}
5697
5698#ifdef CONFIG_NO_HZ_FULL
5699
5700struct tick_work {
5701 int cpu;
5702 atomic_t state;
5703 struct delayed_work work;
5704};
5705/* Values for ->state, see diagram below. */
5706#define TICK_SCHED_REMOTE_OFFLINE 0
5707#define TICK_SCHED_REMOTE_OFFLINING 1
5708#define TICK_SCHED_REMOTE_RUNNING 2
5709
5710/*
5711 * State diagram for ->state:
5712 *
5713 *
5714 * TICK_SCHED_REMOTE_OFFLINE
5715 * | ^
5716 * | |
5717 * | | sched_tick_remote()
5718 * | |
5719 * | |
5720 * +--TICK_SCHED_REMOTE_OFFLINING
5721 * | ^
5722 * | |
5723 * sched_tick_start() | | sched_tick_stop()
5724 * | |
5725 * V |
5726 * TICK_SCHED_REMOTE_RUNNING
5727 *
5728 *
5729 * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
5730 * and sched_tick_start() are happy to leave the state in RUNNING.
5731 */
5732
5733static struct tick_work __percpu *tick_work_cpu;
5734
5735static void sched_tick_remote(struct work_struct *work)
5736{
5737 struct delayed_work *dwork = to_delayed_work(work);
5738 struct tick_work *twork = container_of(dwork, struct tick_work, work);
5739 int cpu = twork->cpu;
5740 struct rq *rq = cpu_rq(cpu);
5741 int os;
5742
5743 /*
5744 * Handle the tick only if it appears the remote CPU is running in full
5745 * dynticks mode. The check is racy by nature, but missing a tick or
5746 * having one too much is no big deal because the scheduler tick updates
5747 * statistics and checks timeslices in a time-independent way, regardless
5748 * of when exactly it is running.
5749 */
5750 if (tick_nohz_tick_stopped_cpu(cpu)) {
5751 guard(rq_lock_irq)(rq);
5752 struct task_struct *curr = rq->curr;
5753
5754 if (cpu_online(cpu)) {
5755 update_rq_clock(rq);
5756
5757 if (!is_idle_task(curr)) {
5758 /*
5759 * Make sure the next tick runs within a
5760 * reasonable amount of time.
5761 */
5762 u64 delta = rq_clock_task(rq) - curr->se.exec_start;
5763 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
5764 }
5765 curr->sched_class->task_tick(rq, curr, 0);
5766
5767 calc_load_nohz_remote(rq);
5768 }
5769 }
5770
5771 /*
5772 * Run the remote tick once per second (1Hz). This arbitrary
5773 * frequency is large enough to avoid overload but short enough
5774 * to keep scheduler internal stats reasonably up to date. But
5775 * first update state to reflect hotplug activity if required.
5776 */
5777 os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
5778 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
5779 if (os == TICK_SCHED_REMOTE_RUNNING)
5780 queue_delayed_work(system_unbound_wq, dwork, HZ);
5781}
5782
5783static void sched_tick_start(int cpu)
5784{
5785 int os;
5786 struct tick_work *twork;
5787
5788 if (housekeeping_cpu(cpu, HK_TYPE_TICK))
5789 return;
5790
5791 WARN_ON_ONCE(!tick_work_cpu);
5792
5793 twork = per_cpu_ptr(tick_work_cpu, cpu);
5794 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
5795 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
5796 if (os == TICK_SCHED_REMOTE_OFFLINE) {
5797 twork->cpu = cpu;
5798 INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
5799 queue_delayed_work(system_unbound_wq, &twork->work, HZ);
5800 }
5801}
5802
5803#ifdef CONFIG_HOTPLUG_CPU
5804static void sched_tick_stop(int cpu)
5805{
5806 struct tick_work *twork;
5807 int os;
5808
5809 if (housekeeping_cpu(cpu, HK_TYPE_TICK))
5810 return;
5811
5812 WARN_ON_ONCE(!tick_work_cpu);
5813
5814 twork = per_cpu_ptr(tick_work_cpu, cpu);
5815 /* There cannot be competing actions, but don't rely on stop-machine. */
5816 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
5817 WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
5818 /* Don't cancel, as this would mess up the state machine. */
5819}
5820#endif /* CONFIG_HOTPLUG_CPU */
5821
5822int __init sched_tick_offload_init(void)
5823{
5824 tick_work_cpu = alloc_percpu(struct tick_work);
5825 BUG_ON(!tick_work_cpu);
5826 return 0;
5827}
5828
5829#else /* !CONFIG_NO_HZ_FULL */
5830static inline void sched_tick_start(int cpu) { }
5831static inline void sched_tick_stop(int cpu) { }
5832#endif
5833
5834#if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
5835 defined(CONFIG_TRACE_PREEMPT_TOGGLE))
5836/*
5837 * If the value passed in is equal to the current preempt count
5838 * then we just disabled preemption. Start timing the latency.
5839 */
5840static inline void preempt_latency_start(int val)
5841{
5842 if (preempt_count() == val) {
5843 unsigned long ip = get_lock_parent_ip();
5844#ifdef CONFIG_DEBUG_PREEMPT
5845 current->preempt_disable_ip = ip;
5846#endif
5847 trace_preempt_off(CALLER_ADDR0, ip);
5848 }
5849}
5850
5851void preempt_count_add(int val)
5852{
5853#ifdef CONFIG_DEBUG_PREEMPT
5854 /*
5855 * Underflow?
5856 */
5857 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5858 return;
5859#endif
5860 __preempt_count_add(val);
5861#ifdef CONFIG_DEBUG_PREEMPT
5862 /*
5863 * Spinlock count overflowing soon?
5864 */
5865 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5866 PREEMPT_MASK - 10);
5867#endif
5868 preempt_latency_start(val);
5869}
5870EXPORT_SYMBOL(preempt_count_add);
5871NOKPROBE_SYMBOL(preempt_count_add);
5872
5873/*
5874 * If the value passed in equals to the current preempt count
5875 * then we just enabled preemption. Stop timing the latency.
5876 */
5877static inline void preempt_latency_stop(int val)
5878{
5879 if (preempt_count() == val)
5880 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
5881}
5882
5883void preempt_count_sub(int val)
5884{
5885#ifdef CONFIG_DEBUG_PREEMPT
5886 /*
5887 * Underflow?
5888 */
5889 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
5890 return;
5891 /*
5892 * Is the spinlock portion underflowing?
5893 */
5894 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5895 !(preempt_count() & PREEMPT_MASK)))
5896 return;
5897#endif
5898
5899 preempt_latency_stop(val);
5900 __preempt_count_sub(val);
5901}
5902EXPORT_SYMBOL(preempt_count_sub);
5903NOKPROBE_SYMBOL(preempt_count_sub);
5904
5905#else
5906static inline void preempt_latency_start(int val) { }
5907static inline void preempt_latency_stop(int val) { }
5908#endif
5909
5910static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
5911{
5912#ifdef CONFIG_DEBUG_PREEMPT
5913 return p->preempt_disable_ip;
5914#else
5915 return 0;
5916#endif
5917}
5918
5919/*
5920 * Print scheduling while atomic bug:
5921 */
5922static noinline void __schedule_bug(struct task_struct *prev)
5923{
5924 /* Save this before calling printk(), since that will clobber it */
5925 unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
5926
5927 if (oops_in_progress)
5928 return;
5929
5930 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5931 prev->comm, prev->pid, preempt_count());
5932
5933 debug_show_held_locks(prev);
5934 print_modules();
5935 if (irqs_disabled())
5936 print_irqtrace_events(prev);
5937 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) {
5938 pr_err("Preemption disabled at:");
5939 print_ip_sym(KERN_ERR, preempt_disable_ip);
5940 }
5941 check_panic_on_warn("scheduling while atomic");
5942
5943 dump_stack();
5944 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
5945}
5946
5947/*
5948 * Various schedule()-time debugging checks and statistics:
5949 */
5950static inline void schedule_debug(struct task_struct *prev, bool preempt)
5951{
5952#ifdef CONFIG_SCHED_STACK_END_CHECK
5953 if (task_stack_end_corrupted(prev))
5954 panic("corrupted stack end detected inside scheduler\n");
5955
5956 if (task_scs_end_corrupted(prev))
5957 panic("corrupted shadow stack detected inside scheduler\n");
5958#endif
5959
5960#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
5961 if (!preempt && READ_ONCE(prev->__state) && prev->non_block_count) {
5962 printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
5963 prev->comm, prev->pid, prev->non_block_count);
5964 dump_stack();
5965 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
5966 }
5967#endif
5968
5969 if (unlikely(in_atomic_preempt_off())) {
5970 __schedule_bug(prev);
5971 preempt_count_set(PREEMPT_DISABLED);
5972 }
5973 rcu_sleep_check();
5974 SCHED_WARN_ON(ct_state() == CONTEXT_USER);
5975
5976 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5977
5978 schedstat_inc(this_rq()->sched_count);
5979}
5980
5981static void put_prev_task_balance(struct rq *rq, struct task_struct *prev,
5982 struct rq_flags *rf)
5983{
5984#ifdef CONFIG_SMP
5985 const struct sched_class *class;
5986 /*
5987 * We must do the balancing pass before put_prev_task(), such
5988 * that when we release the rq->lock the task is in the same
5989 * state as before we took rq->lock.
5990 *
5991 * We can terminate the balance pass as soon as we know there is
5992 * a runnable task of @class priority or higher.
5993 */
5994 for_class_range(class, prev->sched_class, &idle_sched_class) {
5995 if (class->balance(rq, prev, rf))
5996 break;
5997 }
5998#endif
5999
6000 put_prev_task(rq, prev);
6001}
6002
6003/*
6004 * Pick up the highest-prio task:
6005 */
6006static inline struct task_struct *
6007__pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6008{
6009 const struct sched_class *class;
6010 struct task_struct *p;
6011
6012 /*
6013 * Optimization: we know that if all tasks are in the fair class we can
6014 * call that function directly, but only if the @prev task wasn't of a
6015 * higher scheduling class, because otherwise those lose the
6016 * opportunity to pull in more work from other CPUs.
6017 */
6018 if (likely(!sched_class_above(prev->sched_class, &fair_sched_class) &&
6019 rq->nr_running == rq->cfs.h_nr_running)) {
6020
6021 p = pick_next_task_fair(rq, prev, rf);
6022 if (unlikely(p == RETRY_TASK))
6023 goto restart;
6024
6025 /* Assume the next prioritized class is idle_sched_class */
6026 if (!p) {
6027 put_prev_task(rq, prev);
6028 p = pick_next_task_idle(rq);
6029 }
6030
6031 /*
6032 * This is the fast path; it cannot be a DL server pick;
6033 * therefore even if @p == @prev, ->dl_server must be NULL.
6034 */
6035 if (p->dl_server)
6036 p->dl_server = NULL;
6037
6038 return p;
6039 }
6040
6041restart:
6042 put_prev_task_balance(rq, prev, rf);
6043
6044 /*
6045 * We've updated @prev and no longer need the server link, clear it.
6046 * Must be done before ->pick_next_task() because that can (re)set
6047 * ->dl_server.
6048 */
6049 if (prev->dl_server)
6050 prev->dl_server = NULL;
6051
6052 for_each_class(class) {
6053 p = class->pick_next_task(rq);
6054 if (p)
6055 return p;
6056 }
6057
6058 BUG(); /* The idle class should always have a runnable task. */
6059}
6060
6061#ifdef CONFIG_SCHED_CORE
6062static inline bool is_task_rq_idle(struct task_struct *t)
6063{
6064 return (task_rq(t)->idle == t);
6065}
6066
6067static inline bool cookie_equals(struct task_struct *a, unsigned long cookie)
6068{
6069 return is_task_rq_idle(a) || (a->core_cookie == cookie);
6070}
6071
6072static inline bool cookie_match(struct task_struct *a, struct task_struct *b)
6073{
6074 if (is_task_rq_idle(a) || is_task_rq_idle(b))
6075 return true;
6076
6077 return a->core_cookie == b->core_cookie;
6078}
6079
6080static inline struct task_struct *pick_task(struct rq *rq)
6081{
6082 const struct sched_class *class;
6083 struct task_struct *p;
6084
6085 for_each_class(class) {
6086 p = class->pick_task(rq);
6087 if (p)
6088 return p;
6089 }
6090
6091 BUG(); /* The idle class should always have a runnable task. */
6092}
6093
6094extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi);
6095
6096static void queue_core_balance(struct rq *rq);
6097
6098static struct task_struct *
6099pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6100{
6101 struct task_struct *next, *p, *max = NULL;
6102 const struct cpumask *smt_mask;
6103 bool fi_before = false;
6104 bool core_clock_updated = (rq == rq->core);
6105 unsigned long cookie;
6106 int i, cpu, occ = 0;
6107 struct rq *rq_i;
6108 bool need_sync;
6109
6110 if (!sched_core_enabled(rq))
6111 return __pick_next_task(rq, prev, rf);
6112
6113 cpu = cpu_of(rq);
6114
6115 /* Stopper task is switching into idle, no need core-wide selection. */
6116 if (cpu_is_offline(cpu)) {
6117 /*
6118 * Reset core_pick so that we don't enter the fastpath when
6119 * coming online. core_pick would already be migrated to
6120 * another cpu during offline.
6121 */
6122 rq->core_pick = NULL;
6123 return __pick_next_task(rq, prev, rf);
6124 }
6125
6126 /*
6127 * If there were no {en,de}queues since we picked (IOW, the task
6128 * pointers are all still valid), and we haven't scheduled the last
6129 * pick yet, do so now.
6130 *
6131 * rq->core_pick can be NULL if no selection was made for a CPU because
6132 * it was either offline or went offline during a sibling's core-wide
6133 * selection. In this case, do a core-wide selection.
6134 */
6135 if (rq->core->core_pick_seq == rq->core->core_task_seq &&
6136 rq->core->core_pick_seq != rq->core_sched_seq &&
6137 rq->core_pick) {
6138 WRITE_ONCE(rq->core_sched_seq, rq->core->core_pick_seq);
6139
6140 next = rq->core_pick;
6141 if (next != prev) {
6142 put_prev_task(rq, prev);
6143 set_next_task(rq, next);
6144 }
6145
6146 rq->core_pick = NULL;
6147 goto out;
6148 }
6149
6150 put_prev_task_balance(rq, prev, rf);
6151
6152 smt_mask = cpu_smt_mask(cpu);
6153 need_sync = !!rq->core->core_cookie;
6154
6155 /* reset state */
6156 rq->core->core_cookie = 0UL;
6157 if (rq->core->core_forceidle_count) {
6158 if (!core_clock_updated) {
6159 update_rq_clock(rq->core);
6160 core_clock_updated = true;
6161 }
6162 sched_core_account_forceidle(rq);
6163 /* reset after accounting force idle */
6164 rq->core->core_forceidle_start = 0;
6165 rq->core->core_forceidle_count = 0;
6166 rq->core->core_forceidle_occupation = 0;
6167 need_sync = true;
6168 fi_before = true;
6169 }
6170
6171 /*
6172 * core->core_task_seq, core->core_pick_seq, rq->core_sched_seq
6173 *
6174 * @task_seq guards the task state ({en,de}queues)
6175 * @pick_seq is the @task_seq we did a selection on
6176 * @sched_seq is the @pick_seq we scheduled
6177 *
6178 * However, preemptions can cause multiple picks on the same task set.
6179 * 'Fix' this by also increasing @task_seq for every pick.
6180 */
6181 rq->core->core_task_seq++;
6182
6183 /*
6184 * Optimize for common case where this CPU has no cookies
6185 * and there are no cookied tasks running on siblings.
6186 */
6187 if (!need_sync) {
6188 next = pick_task(rq);
6189 if (!next->core_cookie) {
6190 rq->core_pick = NULL;
6191 /*
6192 * For robustness, update the min_vruntime_fi for
6193 * unconstrained picks as well.
6194 */
6195 WARN_ON_ONCE(fi_before);
6196 task_vruntime_update(rq, next, false);
6197 goto out_set_next;
6198 }
6199 }
6200
6201 /*
6202 * For each thread: do the regular task pick and find the max prio task
6203 * amongst them.
6204 *
6205 * Tie-break prio towards the current CPU
6206 */
6207 for_each_cpu_wrap(i, smt_mask, cpu) {
6208 rq_i = cpu_rq(i);
6209
6210 /*
6211 * Current cpu always has its clock updated on entrance to
6212 * pick_next_task(). If the current cpu is not the core,
6213 * the core may also have been updated above.
6214 */
6215 if (i != cpu && (rq_i != rq->core || !core_clock_updated))
6216 update_rq_clock(rq_i);
6217
6218 p = rq_i->core_pick = pick_task(rq_i);
6219 if (!max || prio_less(max, p, fi_before))
6220 max = p;
6221 }
6222
6223 cookie = rq->core->core_cookie = max->core_cookie;
6224
6225 /*
6226 * For each thread: try and find a runnable task that matches @max or
6227 * force idle.
6228 */
6229 for_each_cpu(i, smt_mask) {
6230 rq_i = cpu_rq(i);
6231 p = rq_i->core_pick;
6232
6233 if (!cookie_equals(p, cookie)) {
6234 p = NULL;
6235 if (cookie)
6236 p = sched_core_find(rq_i, cookie);
6237 if (!p)
6238 p = idle_sched_class.pick_task(rq_i);
6239 }
6240
6241 rq_i->core_pick = p;
6242
6243 if (p == rq_i->idle) {
6244 if (rq_i->nr_running) {
6245 rq->core->core_forceidle_count++;
6246 if (!fi_before)
6247 rq->core->core_forceidle_seq++;
6248 }
6249 } else {
6250 occ++;
6251 }
6252 }
6253
6254 if (schedstat_enabled() && rq->core->core_forceidle_count) {
6255 rq->core->core_forceidle_start = rq_clock(rq->core);
6256 rq->core->core_forceidle_occupation = occ;
6257 }
6258
6259 rq->core->core_pick_seq = rq->core->core_task_seq;
6260 next = rq->core_pick;
6261 rq->core_sched_seq = rq->core->core_pick_seq;
6262
6263 /* Something should have been selected for current CPU */
6264 WARN_ON_ONCE(!next);
6265
6266 /*
6267 * Reschedule siblings
6268 *
6269 * NOTE: L1TF -- at this point we're no longer running the old task and
6270 * sending an IPI (below) ensures the sibling will no longer be running
6271 * their task. This ensures there is no inter-sibling overlap between
6272 * non-matching user state.
6273 */
6274 for_each_cpu(i, smt_mask) {
6275 rq_i = cpu_rq(i);
6276
6277 /*
6278 * An online sibling might have gone offline before a task
6279 * could be picked for it, or it might be offline but later
6280 * happen to come online, but its too late and nothing was
6281 * picked for it. That's Ok - it will pick tasks for itself,
6282 * so ignore it.
6283 */
6284 if (!rq_i->core_pick)
6285 continue;
6286
6287 /*
6288 * Update for new !FI->FI transitions, or if continuing to be in !FI:
6289 * fi_before fi update?
6290 * 0 0 1
6291 * 0 1 1
6292 * 1 0 1
6293 * 1 1 0
6294 */
6295 if (!(fi_before && rq->core->core_forceidle_count))
6296 task_vruntime_update(rq_i, rq_i->core_pick, !!rq->core->core_forceidle_count);
6297
6298 rq_i->core_pick->core_occupation = occ;
6299
6300 if (i == cpu) {
6301 rq_i->core_pick = NULL;
6302 continue;
6303 }
6304
6305 /* Did we break L1TF mitigation requirements? */
6306 WARN_ON_ONCE(!cookie_match(next, rq_i->core_pick));
6307
6308 if (rq_i->curr == rq_i->core_pick) {
6309 rq_i->core_pick = NULL;
6310 continue;
6311 }
6312
6313 resched_curr(rq_i);
6314 }
6315
6316out_set_next:
6317 set_next_task(rq, next);
6318out:
6319 if (rq->core->core_forceidle_count && next == rq->idle)
6320 queue_core_balance(rq);
6321
6322 return next;
6323}
6324
6325static bool try_steal_cookie(int this, int that)
6326{
6327 struct rq *dst = cpu_rq(this), *src = cpu_rq(that);
6328 struct task_struct *p;
6329 unsigned long cookie;
6330 bool success = false;
6331
6332 guard(irq)();
6333 guard(double_rq_lock)(dst, src);
6334
6335 cookie = dst->core->core_cookie;
6336 if (!cookie)
6337 return false;
6338
6339 if (dst->curr != dst->idle)
6340 return false;
6341
6342 p = sched_core_find(src, cookie);
6343 if (!p)
6344 return false;
6345
6346 do {
6347 if (p == src->core_pick || p == src->curr)
6348 goto next;
6349
6350 if (!is_cpu_allowed(p, this))
6351 goto next;
6352
6353 if (p->core_occupation > dst->idle->core_occupation)
6354 goto next;
6355 /*
6356 * sched_core_find() and sched_core_next() will ensure
6357 * that task @p is not throttled now, we also need to
6358 * check whether the runqueue of the destination CPU is
6359 * being throttled.
6360 */
6361 if (sched_task_is_throttled(p, this))
6362 goto next;
6363
6364 deactivate_task(src, p, 0);
6365 set_task_cpu(p, this);
6366 activate_task(dst, p, 0);
6367
6368 resched_curr(dst);
6369
6370 success = true;
6371 break;
6372
6373next:
6374 p = sched_core_next(p, cookie);
6375 } while (p);
6376
6377 return success;
6378}
6379
6380static bool steal_cookie_task(int cpu, struct sched_domain *sd)
6381{
6382 int i;
6383
6384 for_each_cpu_wrap(i, sched_domain_span(sd), cpu + 1) {
6385 if (i == cpu)
6386 continue;
6387
6388 if (need_resched())
6389 break;
6390
6391 if (try_steal_cookie(cpu, i))
6392 return true;
6393 }
6394
6395 return false;
6396}
6397
6398static void sched_core_balance(struct rq *rq)
6399{
6400 struct sched_domain *sd;
6401 int cpu = cpu_of(rq);
6402
6403 guard(preempt)();
6404 guard(rcu)();
6405
6406 raw_spin_rq_unlock_irq(rq);
6407 for_each_domain(cpu, sd) {
6408 if (need_resched())
6409 break;
6410
6411 if (steal_cookie_task(cpu, sd))
6412 break;
6413 }
6414 raw_spin_rq_lock_irq(rq);
6415}
6416
6417static DEFINE_PER_CPU(struct balance_callback, core_balance_head);
6418
6419static void queue_core_balance(struct rq *rq)
6420{
6421 if (!sched_core_enabled(rq))
6422 return;
6423
6424 if (!rq->core->core_cookie)
6425 return;
6426
6427 if (!rq->nr_running) /* not forced idle */
6428 return;
6429
6430 queue_balance_callback(rq, &per_cpu(core_balance_head, rq->cpu), sched_core_balance);
6431}
6432
6433DEFINE_LOCK_GUARD_1(core_lock, int,
6434 sched_core_lock(*_T->lock, &_T->flags),
6435 sched_core_unlock(*_T->lock, &_T->flags),
6436 unsigned long flags)
6437
6438static void sched_core_cpu_starting(unsigned int cpu)
6439{
6440 const struct cpumask *smt_mask = cpu_smt_mask(cpu);
6441 struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
6442 int t;
6443
6444 guard(core_lock)(&cpu);
6445
6446 WARN_ON_ONCE(rq->core != rq);
6447
6448 /* if we're the first, we'll be our own leader */
6449 if (cpumask_weight(smt_mask) == 1)
6450 return;
6451
6452 /* find the leader */
6453 for_each_cpu(t, smt_mask) {
6454 if (t == cpu)
6455 continue;
6456 rq = cpu_rq(t);
6457 if (rq->core == rq) {
6458 core_rq = rq;
6459 break;
6460 }
6461 }
6462
6463 if (WARN_ON_ONCE(!core_rq)) /* whoopsie */
6464 return;
6465
6466 /* install and validate core_rq */
6467 for_each_cpu(t, smt_mask) {
6468 rq = cpu_rq(t);
6469
6470 if (t == cpu)
6471 rq->core = core_rq;
6472
6473 WARN_ON_ONCE(rq->core != core_rq);
6474 }
6475}
6476
6477static void sched_core_cpu_deactivate(unsigned int cpu)
6478{
6479 const struct cpumask *smt_mask = cpu_smt_mask(cpu);
6480 struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
6481 int t;
6482
6483 guard(core_lock)(&cpu);
6484
6485 /* if we're the last man standing, nothing to do */
6486 if (cpumask_weight(smt_mask) == 1) {
6487 WARN_ON_ONCE(rq->core != rq);
6488 return;
6489 }
6490
6491 /* if we're not the leader, nothing to do */
6492 if (rq->core != rq)
6493 return;
6494
6495 /* find a new leader */
6496 for_each_cpu(t, smt_mask) {
6497 if (t == cpu)
6498 continue;
6499 core_rq = cpu_rq(t);
6500 break;
6501 }
6502
6503 if (WARN_ON_ONCE(!core_rq)) /* impossible */
6504 return;
6505
6506 /* copy the shared state to the new leader */
6507 core_rq->core_task_seq = rq->core_task_seq;
6508 core_rq->core_pick_seq = rq->core_pick_seq;
6509 core_rq->core_cookie = rq->core_cookie;
6510 core_rq->core_forceidle_count = rq->core_forceidle_count;
6511 core_rq->core_forceidle_seq = rq->core_forceidle_seq;
6512 core_rq->core_forceidle_occupation = rq->core_forceidle_occupation;
6513
6514 /*
6515 * Accounting edge for forced idle is handled in pick_next_task().
6516 * Don't need another one here, since the hotplug thread shouldn't
6517 * have a cookie.
6518 */
6519 core_rq->core_forceidle_start = 0;
6520
6521 /* install new leader */
6522 for_each_cpu(t, smt_mask) {
6523 rq = cpu_rq(t);
6524 rq->core = core_rq;
6525 }
6526}
6527
6528static inline void sched_core_cpu_dying(unsigned int cpu)
6529{
6530 struct rq *rq = cpu_rq(cpu);
6531
6532 if (rq->core != rq)
6533 rq->core = rq;
6534}
6535
6536#else /* !CONFIG_SCHED_CORE */
6537
6538static inline void sched_core_cpu_starting(unsigned int cpu) {}
6539static inline void sched_core_cpu_deactivate(unsigned int cpu) {}
6540static inline void sched_core_cpu_dying(unsigned int cpu) {}
6541
6542static struct task_struct *
6543pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6544{
6545 return __pick_next_task(rq, prev, rf);
6546}
6547
6548#endif /* CONFIG_SCHED_CORE */
6549
6550/*
6551 * Constants for the sched_mode argument of __schedule().
6552 *
6553 * The mode argument allows RT enabled kernels to differentiate a
6554 * preemption from blocking on an 'sleeping' spin/rwlock. Note that
6555 * SM_MASK_PREEMPT for !RT has all bits set, which allows the compiler to
6556 * optimize the AND operation out and just check for zero.
6557 */
6558#define SM_NONE 0x0
6559#define SM_PREEMPT 0x1
6560#define SM_RTLOCK_WAIT 0x2
6561
6562#ifndef CONFIG_PREEMPT_RT
6563# define SM_MASK_PREEMPT (~0U)
6564#else
6565# define SM_MASK_PREEMPT SM_PREEMPT
6566#endif
6567
6568/*
6569 * __schedule() is the main scheduler function.
6570 *
6571 * The main means of driving the scheduler and thus entering this function are:
6572 *
6573 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
6574 *
6575 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
6576 * paths. For example, see arch/x86/entry_64.S.
6577 *
6578 * To drive preemption between tasks, the scheduler sets the flag in timer
6579 * interrupt handler scheduler_tick().
6580 *
6581 * 3. Wakeups don't really cause entry into schedule(). They add a
6582 * task to the run-queue and that's it.
6583 *
6584 * Now, if the new task added to the run-queue preempts the current
6585 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
6586 * called on the nearest possible occasion:
6587 *
6588 * - If the kernel is preemptible (CONFIG_PREEMPTION=y):
6589 *
6590 * - in syscall or exception context, at the next outmost
6591 * preempt_enable(). (this might be as soon as the wake_up()'s
6592 * spin_unlock()!)
6593 *
6594 * - in IRQ context, return from interrupt-handler to
6595 * preemptible context
6596 *
6597 * - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
6598 * then at the next:
6599 *
6600 * - cond_resched() call
6601 * - explicit schedule() call
6602 * - return from syscall or exception to user-space
6603 * - return from interrupt-handler to user-space
6604 *
6605 * WARNING: must be called with preemption disabled!
6606 */
6607static void __sched notrace __schedule(unsigned int sched_mode)
6608{
6609 struct task_struct *prev, *next;
6610 unsigned long *switch_count;
6611 unsigned long prev_state;
6612 struct rq_flags rf;
6613 struct rq *rq;
6614 int cpu;
6615
6616 cpu = smp_processor_id();
6617 rq = cpu_rq(cpu);
6618 prev = rq->curr;
6619
6620 schedule_debug(prev, !!sched_mode);
6621
6622 if (sched_feat(HRTICK) || sched_feat(HRTICK_DL))
6623 hrtick_clear(rq);
6624
6625 local_irq_disable();
6626 rcu_note_context_switch(!!sched_mode);
6627
6628 /*
6629 * Make sure that signal_pending_state()->signal_pending() below
6630 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
6631 * done by the caller to avoid the race with signal_wake_up():
6632 *
6633 * __set_current_state(@state) signal_wake_up()
6634 * schedule() set_tsk_thread_flag(p, TIF_SIGPENDING)
6635 * wake_up_state(p, state)
6636 * LOCK rq->lock LOCK p->pi_state
6637 * smp_mb__after_spinlock() smp_mb__after_spinlock()
6638 * if (signal_pending_state()) if (p->state & @state)
6639 *
6640 * Also, the membarrier system call requires a full memory barrier
6641 * after coming from user-space, before storing to rq->curr.
6642 */
6643 rq_lock(rq, &rf);
6644 smp_mb__after_spinlock();
6645
6646 /* Promote REQ to ACT */
6647 rq->clock_update_flags <<= 1;
6648 update_rq_clock(rq);
6649 rq->clock_update_flags = RQCF_UPDATED;
6650
6651 switch_count = &prev->nivcsw;
6652
6653 /*
6654 * We must load prev->state once (task_struct::state is volatile), such
6655 * that we form a control dependency vs deactivate_task() below.
6656 */
6657 prev_state = READ_ONCE(prev->__state);
6658 if (!(sched_mode & SM_MASK_PREEMPT) && prev_state) {
6659 if (signal_pending_state(prev_state, prev)) {
6660 WRITE_ONCE(prev->__state, TASK_RUNNING);
6661 } else {
6662 prev->sched_contributes_to_load =
6663 (prev_state & TASK_UNINTERRUPTIBLE) &&
6664 !(prev_state & TASK_NOLOAD) &&
6665 !(prev_state & TASK_FROZEN);
6666
6667 if (prev->sched_contributes_to_load)
6668 rq->nr_uninterruptible++;
6669
6670 /*
6671 * __schedule() ttwu()
6672 * prev_state = prev->state; if (p->on_rq && ...)
6673 * if (prev_state) goto out;
6674 * p->on_rq = 0; smp_acquire__after_ctrl_dep();
6675 * p->state = TASK_WAKING
6676 *
6677 * Where __schedule() and ttwu() have matching control dependencies.
6678 *
6679 * After this, schedule() must not care about p->state any more.
6680 */
6681 deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
6682
6683 if (prev->in_iowait) {
6684 atomic_inc(&rq->nr_iowait);
6685 delayacct_blkio_start();
6686 }
6687 }
6688 switch_count = &prev->nvcsw;
6689 }
6690
6691 next = pick_next_task(rq, prev, &rf);
6692 clear_tsk_need_resched(prev);
6693 clear_preempt_need_resched();
6694#ifdef CONFIG_SCHED_DEBUG
6695 rq->last_seen_need_resched_ns = 0;
6696#endif
6697
6698 if (likely(prev != next)) {
6699 rq->nr_switches++;
6700 /*
6701 * RCU users of rcu_dereference(rq->curr) may not see
6702 * changes to task_struct made by pick_next_task().
6703 */
6704 RCU_INIT_POINTER(rq->curr, next);
6705 /*
6706 * The membarrier system call requires each architecture
6707 * to have a full memory barrier after updating
6708 * rq->curr, before returning to user-space.
6709 *
6710 * Here are the schemes providing that barrier on the
6711 * various architectures:
6712 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
6713 * switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
6714 * - finish_lock_switch() for weakly-ordered
6715 * architectures where spin_unlock is a full barrier,
6716 * - switch_to() for arm64 (weakly-ordered, spin_unlock
6717 * is a RELEASE barrier),
6718 */
6719 ++*switch_count;
6720
6721 migrate_disable_switch(rq, prev);
6722 psi_sched_switch(prev, next, !task_on_rq_queued(prev));
6723
6724 trace_sched_switch(sched_mode & SM_MASK_PREEMPT, prev, next, prev_state);
6725
6726 /* Also unlocks the rq: */
6727 rq = context_switch(rq, prev, next, &rf);
6728 } else {
6729 rq_unpin_lock(rq, &rf);
6730 __balance_callbacks(rq);
6731 raw_spin_rq_unlock_irq(rq);
6732 }
6733}
6734
6735void __noreturn do_task_dead(void)
6736{
6737 /* Causes final put_task_struct in finish_task_switch(): */
6738 set_special_state(TASK_DEAD);
6739
6740 /* Tell freezer to ignore us: */
6741 current->flags |= PF_NOFREEZE;
6742
6743 __schedule(SM_NONE);
6744 BUG();
6745
6746 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
6747 for (;;)
6748 cpu_relax();
6749}
6750
6751static inline void sched_submit_work(struct task_struct *tsk)
6752{
6753 static DEFINE_WAIT_OVERRIDE_MAP(sched_map, LD_WAIT_CONFIG);
6754 unsigned int task_flags;
6755
6756 /*
6757 * Establish LD_WAIT_CONFIG context to ensure none of the code called
6758 * will use a blocking primitive -- which would lead to recursion.
6759 */
6760 lock_map_acquire_try(&sched_map);
6761
6762 task_flags = tsk->flags;
6763 /*
6764 * If a worker goes to sleep, notify and ask workqueue whether it
6765 * wants to wake up a task to maintain concurrency.
6766 */
6767 if (task_flags & PF_WQ_WORKER)
6768 wq_worker_sleeping(tsk);
6769 else if (task_flags & PF_IO_WORKER)
6770 io_wq_worker_sleeping(tsk);
6771
6772 /*
6773 * spinlock and rwlock must not flush block requests. This will
6774 * deadlock if the callback attempts to acquire a lock which is
6775 * already acquired.
6776 */
6777 SCHED_WARN_ON(current->__state & TASK_RTLOCK_WAIT);
6778
6779 /*
6780 * If we are going to sleep and we have plugged IO queued,
6781 * make sure to submit it to avoid deadlocks.
6782 */
6783 blk_flush_plug(tsk->plug, true);
6784
6785 lock_map_release(&sched_map);
6786}
6787
6788static void sched_update_worker(struct task_struct *tsk)
6789{
6790 if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
6791 if (tsk->flags & PF_WQ_WORKER)
6792 wq_worker_running(tsk);
6793 else
6794 io_wq_worker_running(tsk);
6795 }
6796}
6797
6798static __always_inline void __schedule_loop(unsigned int sched_mode)
6799{
6800 do {
6801 preempt_disable();
6802 __schedule(sched_mode);
6803 sched_preempt_enable_no_resched();
6804 } while (need_resched());
6805}
6806
6807asmlinkage __visible void __sched schedule(void)
6808{
6809 struct task_struct *tsk = current;
6810
6811#ifdef CONFIG_RT_MUTEXES
6812 lockdep_assert(!tsk->sched_rt_mutex);
6813#endif
6814
6815 if (!task_is_running(tsk))
6816 sched_submit_work(tsk);
6817 __schedule_loop(SM_NONE);
6818 sched_update_worker(tsk);
6819}
6820EXPORT_SYMBOL(schedule);
6821
6822/*
6823 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
6824 * state (have scheduled out non-voluntarily) by making sure that all
6825 * tasks have either left the run queue or have gone into user space.
6826 * As idle tasks do not do either, they must not ever be preempted
6827 * (schedule out non-voluntarily).
6828 *
6829 * schedule_idle() is similar to schedule_preempt_disable() except that it
6830 * never enables preemption because it does not call sched_submit_work().
6831 */
6832void __sched schedule_idle(void)
6833{
6834 /*
6835 * As this skips calling sched_submit_work(), which the idle task does
6836 * regardless because that function is a nop when the task is in a
6837 * TASK_RUNNING state, make sure this isn't used someplace that the
6838 * current task can be in any other state. Note, idle is always in the
6839 * TASK_RUNNING state.
6840 */
6841 WARN_ON_ONCE(current->__state);
6842 do {
6843 __schedule(SM_NONE);
6844 } while (need_resched());
6845}
6846
6847#if defined(CONFIG_CONTEXT_TRACKING_USER) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_USER_OFFSTACK)
6848asmlinkage __visible void __sched schedule_user(void)
6849{
6850 /*
6851 * If we come here after a random call to set_need_resched(),
6852 * or we have been woken up remotely but the IPI has not yet arrived,
6853 * we haven't yet exited the RCU idle mode. Do it here manually until
6854 * we find a better solution.
6855 *
6856 * NB: There are buggy callers of this function. Ideally we
6857 * should warn if prev_state != CONTEXT_USER, but that will trigger
6858 * too frequently to make sense yet.
6859 */
6860 enum ctx_state prev_state = exception_enter();
6861 schedule();
6862 exception_exit(prev_state);
6863}
6864#endif
6865
6866/**
6867 * schedule_preempt_disabled - called with preemption disabled
6868 *
6869 * Returns with preemption disabled. Note: preempt_count must be 1
6870 */
6871void __sched schedule_preempt_disabled(void)
6872{
6873 sched_preempt_enable_no_resched();
6874 schedule();
6875 preempt_disable();
6876}
6877
6878#ifdef CONFIG_PREEMPT_RT
6879void __sched notrace schedule_rtlock(void)
6880{
6881 __schedule_loop(SM_RTLOCK_WAIT);
6882}
6883NOKPROBE_SYMBOL(schedule_rtlock);
6884#endif
6885
6886static void __sched notrace preempt_schedule_common(void)
6887{
6888 do {
6889 /*
6890 * Because the function tracer can trace preempt_count_sub()
6891 * and it also uses preempt_enable/disable_notrace(), if
6892 * NEED_RESCHED is set, the preempt_enable_notrace() called
6893 * by the function tracer will call this function again and
6894 * cause infinite recursion.
6895 *
6896 * Preemption must be disabled here before the function
6897 * tracer can trace. Break up preempt_disable() into two
6898 * calls. One to disable preemption without fear of being
6899 * traced. The other to still record the preemption latency,
6900 * which can also be traced by the function tracer.
6901 */
6902 preempt_disable_notrace();
6903 preempt_latency_start(1);
6904 __schedule(SM_PREEMPT);
6905 preempt_latency_stop(1);
6906 preempt_enable_no_resched_notrace();
6907
6908 /*
6909 * Check again in case we missed a preemption opportunity
6910 * between schedule and now.
6911 */
6912 } while (need_resched());
6913}
6914
6915#ifdef CONFIG_PREEMPTION
6916/*
6917 * This is the entry point to schedule() from in-kernel preemption
6918 * off of preempt_enable.
6919 */
6920asmlinkage __visible void __sched notrace preempt_schedule(void)
6921{
6922 /*
6923 * If there is a non-zero preempt_count or interrupts are disabled,
6924 * we do not want to preempt the current task. Just return..
6925 */
6926 if (likely(!preemptible()))
6927 return;
6928 preempt_schedule_common();
6929}
6930NOKPROBE_SYMBOL(preempt_schedule);
6931EXPORT_SYMBOL(preempt_schedule);
6932
6933#ifdef CONFIG_PREEMPT_DYNAMIC
6934#if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
6935#ifndef preempt_schedule_dynamic_enabled
6936#define preempt_schedule_dynamic_enabled preempt_schedule
6937#define preempt_schedule_dynamic_disabled NULL
6938#endif
6939DEFINE_STATIC_CALL(preempt_schedule, preempt_schedule_dynamic_enabled);
6940EXPORT_STATIC_CALL_TRAMP(preempt_schedule);
6941#elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
6942static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule);
6943void __sched notrace dynamic_preempt_schedule(void)
6944{
6945 if (!static_branch_unlikely(&sk_dynamic_preempt_schedule))
6946 return;
6947 preempt_schedule();
6948}
6949NOKPROBE_SYMBOL(dynamic_preempt_schedule);
6950EXPORT_SYMBOL(dynamic_preempt_schedule);
6951#endif
6952#endif
6953
6954/**
6955 * preempt_schedule_notrace - preempt_schedule called by tracing
6956 *
6957 * The tracing infrastructure uses preempt_enable_notrace to prevent
6958 * recursion and tracing preempt enabling caused by the tracing
6959 * infrastructure itself. But as tracing can happen in areas coming
6960 * from userspace or just about to enter userspace, a preempt enable
6961 * can occur before user_exit() is called. This will cause the scheduler
6962 * to be called when the system is still in usermode.
6963 *
6964 * To prevent this, the preempt_enable_notrace will use this function
6965 * instead of preempt_schedule() to exit user context if needed before
6966 * calling the scheduler.
6967 */
6968asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
6969{
6970 enum ctx_state prev_ctx;
6971
6972 if (likely(!preemptible()))
6973 return;
6974
6975 do {
6976 /*
6977 * Because the function tracer can trace preempt_count_sub()
6978 * and it also uses preempt_enable/disable_notrace(), if
6979 * NEED_RESCHED is set, the preempt_enable_notrace() called
6980 * by the function tracer will call this function again and
6981 * cause infinite recursion.
6982 *
6983 * Preemption must be disabled here before the function
6984 * tracer can trace. Break up preempt_disable() into two
6985 * calls. One to disable preemption without fear of being
6986 * traced. The other to still record the preemption latency,
6987 * which can also be traced by the function tracer.
6988 */
6989 preempt_disable_notrace();
6990 preempt_latency_start(1);
6991 /*
6992 * Needs preempt disabled in case user_exit() is traced
6993 * and the tracer calls preempt_enable_notrace() causing
6994 * an infinite recursion.
6995 */
6996 prev_ctx = exception_enter();
6997 __schedule(SM_PREEMPT);
6998 exception_exit(prev_ctx);
6999
7000 preempt_latency_stop(1);
7001 preempt_enable_no_resched_notrace();
7002 } while (need_resched());
7003}
7004EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
7005
7006#ifdef CONFIG_PREEMPT_DYNAMIC
7007#if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
7008#ifndef preempt_schedule_notrace_dynamic_enabled
7009#define preempt_schedule_notrace_dynamic_enabled preempt_schedule_notrace
7010#define preempt_schedule_notrace_dynamic_disabled NULL
7011#endif
7012DEFINE_STATIC_CALL(preempt_schedule_notrace, preempt_schedule_notrace_dynamic_enabled);
7013EXPORT_STATIC_CALL_TRAMP(preempt_schedule_notrace);
7014#elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
7015static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule_notrace);
7016void __sched notrace dynamic_preempt_schedule_notrace(void)
7017{
7018 if (!static_branch_unlikely(&sk_dynamic_preempt_schedule_notrace))
7019 return;
7020 preempt_schedule_notrace();
7021}
7022NOKPROBE_SYMBOL(dynamic_preempt_schedule_notrace);
7023EXPORT_SYMBOL(dynamic_preempt_schedule_notrace);
7024#endif
7025#endif
7026
7027#endif /* CONFIG_PREEMPTION */
7028
7029/*
7030 * This is the entry point to schedule() from kernel preemption
7031 * off of irq context.
7032 * Note, that this is called and return with irqs disabled. This will
7033 * protect us against recursive calling from irq.
7034 */
7035asmlinkage __visible void __sched preempt_schedule_irq(void)
7036{
7037 enum ctx_state prev_state;
7038
7039 /* Catch callers which need to be fixed */
7040 BUG_ON(preempt_count() || !irqs_disabled());
7041
7042 prev_state = exception_enter();
7043
7044 do {
7045 preempt_disable();
7046 local_irq_enable();
7047 __schedule(SM_PREEMPT);
7048 local_irq_disable();
7049 sched_preempt_enable_no_resched();
7050 } while (need_resched());
7051
7052 exception_exit(prev_state);
7053}
7054
7055int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
7056 void *key)
7057{
7058 WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~(WF_SYNC|WF_CURRENT_CPU));
7059 return try_to_wake_up(curr->private, mode, wake_flags);
7060}
7061EXPORT_SYMBOL(default_wake_function);
7062
7063static void __setscheduler_prio(struct task_struct *p, int prio)
7064{
7065 if (dl_prio(prio))
7066 p->sched_class = &dl_sched_class;
7067 else if (rt_prio(prio))
7068 p->sched_class = &rt_sched_class;
7069 else
7070 p->sched_class = &fair_sched_class;
7071
7072 p->prio = prio;
7073}
7074
7075#ifdef CONFIG_RT_MUTEXES
7076
7077/*
7078 * Would be more useful with typeof()/auto_type but they don't mix with
7079 * bit-fields. Since it's a local thing, use int. Keep the generic sounding
7080 * name such that if someone were to implement this function we get to compare
7081 * notes.
7082 */
7083#define fetch_and_set(x, v) ({ int _x = (x); (x) = (v); _x; })
7084
7085void rt_mutex_pre_schedule(void)
7086{
7087 lockdep_assert(!fetch_and_set(current->sched_rt_mutex, 1));
7088 sched_submit_work(current);
7089}
7090
7091void rt_mutex_schedule(void)
7092{
7093 lockdep_assert(current->sched_rt_mutex);
7094 __schedule_loop(SM_NONE);
7095}
7096
7097void rt_mutex_post_schedule(void)
7098{
7099 sched_update_worker(current);
7100 lockdep_assert(fetch_and_set(current->sched_rt_mutex, 0));
7101}
7102
7103static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
7104{
7105 if (pi_task)
7106 prio = min(prio, pi_task->prio);
7107
7108 return prio;
7109}
7110
7111static inline int rt_effective_prio(struct task_struct *p, int prio)
7112{
7113 struct task_struct *pi_task = rt_mutex_get_top_task(p);
7114
7115 return __rt_effective_prio(pi_task, prio);
7116}
7117
7118/*
7119 * rt_mutex_setprio - set the current priority of a task
7120 * @p: task to boost
7121 * @pi_task: donor task
7122 *
7123 * This function changes the 'effective' priority of a task. It does
7124 * not touch ->normal_prio like __setscheduler().
7125 *
7126 * Used by the rt_mutex code to implement priority inheritance
7127 * logic. Call site only calls if the priority of the task changed.
7128 */
7129void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
7130{
7131 int prio, oldprio, queued, running, queue_flag =
7132 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
7133 const struct sched_class *prev_class;
7134 struct rq_flags rf;
7135 struct rq *rq;
7136
7137 /* XXX used to be waiter->prio, not waiter->task->prio */
7138 prio = __rt_effective_prio(pi_task, p->normal_prio);
7139
7140 /*
7141 * If nothing changed; bail early.
7142 */
7143 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
7144 return;
7145
7146 rq = __task_rq_lock(p, &rf);
7147 update_rq_clock(rq);
7148 /*
7149 * Set under pi_lock && rq->lock, such that the value can be used under
7150 * either lock.
7151 *
7152 * Note that there is loads of tricky to make this pointer cache work
7153 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
7154 * ensure a task is de-boosted (pi_task is set to NULL) before the
7155 * task is allowed to run again (and can exit). This ensures the pointer
7156 * points to a blocked task -- which guarantees the task is present.
7157 */
7158 p->pi_top_task = pi_task;
7159
7160 /*
7161 * For FIFO/RR we only need to set prio, if that matches we're done.
7162 */
7163 if (prio == p->prio && !dl_prio(prio))
7164 goto out_unlock;
7165
7166 /*
7167 * Idle task boosting is a nono in general. There is one
7168 * exception, when PREEMPT_RT and NOHZ is active:
7169 *
7170 * The idle task calls get_next_timer_interrupt() and holds
7171 * the timer wheel base->lock on the CPU and another CPU wants
7172 * to access the timer (probably to cancel it). We can safely
7173 * ignore the boosting request, as the idle CPU runs this code
7174 * with interrupts disabled and will complete the lock
7175 * protected section without being interrupted. So there is no
7176 * real need to boost.
7177 */
7178 if (unlikely(p == rq->idle)) {
7179 WARN_ON(p != rq->curr);
7180 WARN_ON(p->pi_blocked_on);
7181 goto out_unlock;
7182 }
7183
7184 trace_sched_pi_setprio(p, pi_task);
7185 oldprio = p->prio;
7186
7187 if (oldprio == prio)
7188 queue_flag &= ~DEQUEUE_MOVE;
7189
7190 prev_class = p->sched_class;
7191 queued = task_on_rq_queued(p);
7192 running = task_current(rq, p);
7193 if (queued)
7194 dequeue_task(rq, p, queue_flag);
7195 if (running)
7196 put_prev_task(rq, p);
7197
7198 /*
7199 * Boosting condition are:
7200 * 1. -rt task is running and holds mutex A
7201 * --> -dl task blocks on mutex A
7202 *
7203 * 2. -dl task is running and holds mutex A
7204 * --> -dl task blocks on mutex A and could preempt the
7205 * running task
7206 */
7207 if (dl_prio(prio)) {
7208 if (!dl_prio(p->normal_prio) ||
7209 (pi_task && dl_prio(pi_task->prio) &&
7210 dl_entity_preempt(&pi_task->dl, &p->dl))) {
7211 p->dl.pi_se = pi_task->dl.pi_se;
7212 queue_flag |= ENQUEUE_REPLENISH;
7213 } else {
7214 p->dl.pi_se = &p->dl;
7215 }
7216 } else if (rt_prio(prio)) {
7217 if (dl_prio(oldprio))
7218 p->dl.pi_se = &p->dl;
7219 if (oldprio < prio)
7220 queue_flag |= ENQUEUE_HEAD;
7221 } else {
7222 if (dl_prio(oldprio))
7223 p->dl.pi_se = &p->dl;
7224 if (rt_prio(oldprio))
7225 p->rt.timeout = 0;
7226 }
7227
7228 __setscheduler_prio(p, prio);
7229
7230 if (queued)
7231 enqueue_task(rq, p, queue_flag);
7232 if (running)
7233 set_next_task(rq, p);
7234
7235 check_class_changed(rq, p, prev_class, oldprio);
7236out_unlock:
7237 /* Avoid rq from going away on us: */
7238 preempt_disable();
7239
7240 rq_unpin_lock(rq, &rf);
7241 __balance_callbacks(rq);
7242 raw_spin_rq_unlock(rq);
7243
7244 preempt_enable();
7245}
7246#else
7247static inline int rt_effective_prio(struct task_struct *p, int prio)
7248{
7249 return prio;
7250}
7251#endif
7252
7253void set_user_nice(struct task_struct *p, long nice)
7254{
7255 bool queued, running;
7256 struct rq *rq;
7257 int old_prio;
7258
7259 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
7260 return;
7261 /*
7262 * We have to be careful, if called from sys_setpriority(),
7263 * the task might be in the middle of scheduling on another CPU.
7264 */
7265 CLASS(task_rq_lock, rq_guard)(p);
7266 rq = rq_guard.rq;
7267
7268 update_rq_clock(rq);
7269
7270 /*
7271 * The RT priorities are set via sched_setscheduler(), but we still
7272 * allow the 'normal' nice value to be set - but as expected
7273 * it won't have any effect on scheduling until the task is
7274 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
7275 */
7276 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
7277 p->static_prio = NICE_TO_PRIO(nice);
7278 return;
7279 }
7280
7281 queued = task_on_rq_queued(p);
7282 running = task_current(rq, p);
7283 if (queued)
7284 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
7285 if (running)
7286 put_prev_task(rq, p);
7287
7288 p->static_prio = NICE_TO_PRIO(nice);
7289 set_load_weight(p, true);
7290 old_prio = p->prio;
7291 p->prio = effective_prio(p);
7292
7293 if (queued)
7294 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
7295 if (running)
7296 set_next_task(rq, p);
7297
7298 /*
7299 * If the task increased its priority or is running and
7300 * lowered its priority, then reschedule its CPU:
7301 */
7302 p->sched_class->prio_changed(rq, p, old_prio);
7303}
7304EXPORT_SYMBOL(set_user_nice);
7305
7306/*
7307 * is_nice_reduction - check if nice value is an actual reduction
7308 *
7309 * Similar to can_nice() but does not perform a capability check.
7310 *
7311 * @p: task
7312 * @nice: nice value
7313 */
7314static bool is_nice_reduction(const struct task_struct *p, const int nice)
7315{
7316 /* Convert nice value [19,-20] to rlimit style value [1,40]: */
7317 int nice_rlim = nice_to_rlimit(nice);
7318
7319 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE));
7320}
7321
7322/*
7323 * can_nice - check if a task can reduce its nice value
7324 * @p: task
7325 * @nice: nice value
7326 */
7327int can_nice(const struct task_struct *p, const int nice)
7328{
7329 return is_nice_reduction(p, nice) || capable(CAP_SYS_NICE);
7330}
7331
7332#ifdef __ARCH_WANT_SYS_NICE
7333
7334/*
7335 * sys_nice - change the priority of the current process.
7336 * @increment: priority increment
7337 *
7338 * sys_setpriority is a more generic, but much slower function that
7339 * does similar things.
7340 */
7341SYSCALL_DEFINE1(nice, int, increment)
7342{
7343 long nice, retval;
7344
7345 /*
7346 * Setpriority might change our priority at the same moment.
7347 * We don't have to worry. Conceptually one call occurs first
7348 * and we have a single winner.
7349 */
7350 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
7351 nice = task_nice(current) + increment;
7352
7353 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
7354 if (increment < 0 && !can_nice(current, nice))
7355 return -EPERM;
7356
7357 retval = security_task_setnice(current, nice);
7358 if (retval)
7359 return retval;
7360
7361 set_user_nice(current, nice);
7362 return 0;
7363}
7364
7365#endif
7366
7367/**
7368 * task_prio - return the priority value of a given task.
7369 * @p: the task in question.
7370 *
7371 * Return: The priority value as seen by users in /proc.
7372 *
7373 * sched policy return value kernel prio user prio/nice
7374 *
7375 * normal, batch, idle [0 ... 39] [100 ... 139] 0/[-20 ... 19]
7376 * fifo, rr [-2 ... -100] [98 ... 0] [1 ... 99]
7377 * deadline -101 -1 0
7378 */
7379int task_prio(const struct task_struct *p)
7380{
7381 return p->prio - MAX_RT_PRIO;
7382}
7383
7384/**
7385 * idle_cpu - is a given CPU idle currently?
7386 * @cpu: the processor in question.
7387 *
7388 * Return: 1 if the CPU is currently idle. 0 otherwise.
7389 */
7390int idle_cpu(int cpu)
7391{
7392 struct rq *rq = cpu_rq(cpu);
7393
7394 if (rq->curr != rq->idle)
7395 return 0;
7396
7397 if (rq->nr_running)
7398 return 0;
7399
7400#ifdef CONFIG_SMP
7401 if (rq->ttwu_pending)
7402 return 0;
7403#endif
7404
7405 return 1;
7406}
7407
7408/**
7409 * available_idle_cpu - is a given CPU idle for enqueuing work.
7410 * @cpu: the CPU in question.
7411 *
7412 * Return: 1 if the CPU is currently idle. 0 otherwise.
7413 */
7414int available_idle_cpu(int cpu)
7415{
7416 if (!idle_cpu(cpu))
7417 return 0;
7418
7419 if (vcpu_is_preempted(cpu))
7420 return 0;
7421
7422 return 1;
7423}
7424
7425/**
7426 * idle_task - return the idle task for a given CPU.
7427 * @cpu: the processor in question.
7428 *
7429 * Return: The idle task for the CPU @cpu.
7430 */
7431struct task_struct *idle_task(int cpu)
7432{
7433 return cpu_rq(cpu)->idle;
7434}
7435
7436#ifdef CONFIG_SCHED_CORE
7437int sched_core_idle_cpu(int cpu)
7438{
7439 struct rq *rq = cpu_rq(cpu);
7440
7441 if (sched_core_enabled(rq) && rq->curr == rq->idle)
7442 return 1;
7443
7444 return idle_cpu(cpu);
7445}
7446
7447#endif
7448
7449#ifdef CONFIG_SMP
7450/*
7451 * This function computes an effective utilization for the given CPU, to be
7452 * used for frequency selection given the linear relation: f = u * f_max.
7453 *
7454 * The scheduler tracks the following metrics:
7455 *
7456 * cpu_util_{cfs,rt,dl,irq}()
7457 * cpu_bw_dl()
7458 *
7459 * Where the cfs,rt and dl util numbers are tracked with the same metric and
7460 * synchronized windows and are thus directly comparable.
7461 *
7462 * The cfs,rt,dl utilization are the running times measured with rq->clock_task
7463 * which excludes things like IRQ and steal-time. These latter are then accrued
7464 * in the irq utilization.
7465 *
7466 * The DL bandwidth number otoh is not a measured metric but a value computed
7467 * based on the task model parameters and gives the minimal utilization
7468 * required to meet deadlines.
7469 */
7470unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
7471 unsigned long *min,
7472 unsigned long *max)
7473{
7474 unsigned long util, irq, scale;
7475 struct rq *rq = cpu_rq(cpu);
7476
7477 scale = arch_scale_cpu_capacity(cpu);
7478
7479 /*
7480 * Early check to see if IRQ/steal time saturates the CPU, can be
7481 * because of inaccuracies in how we track these -- see
7482 * update_irq_load_avg().
7483 */
7484 irq = cpu_util_irq(rq);
7485 if (unlikely(irq >= scale)) {
7486 if (min)
7487 *min = scale;
7488 if (max)
7489 *max = scale;
7490 return scale;
7491 }
7492
7493 if (min) {
7494 /*
7495 * The minimum utilization returns the highest level between:
7496 * - the computed DL bandwidth needed with the IRQ pressure which
7497 * steals time to the deadline task.
7498 * - The minimum performance requirement for CFS and/or RT.
7499 */
7500 *min = max(irq + cpu_bw_dl(rq), uclamp_rq_get(rq, UCLAMP_MIN));
7501
7502 /*
7503 * When an RT task is runnable and uclamp is not used, we must
7504 * ensure that the task will run at maximum compute capacity.
7505 */
7506 if (!uclamp_is_used() && rt_rq_is_runnable(&rq->rt))
7507 *min = max(*min, scale);
7508 }
7509
7510 /*
7511 * Because the time spend on RT/DL tasks is visible as 'lost' time to
7512 * CFS tasks and we use the same metric to track the effective
7513 * utilization (PELT windows are synchronized) we can directly add them
7514 * to obtain the CPU's actual utilization.
7515 */
7516 util = util_cfs + cpu_util_rt(rq);
7517 util += cpu_util_dl(rq);
7518
7519 /*
7520 * The maximum hint is a soft bandwidth requirement, which can be lower
7521 * than the actual utilization because of uclamp_max requirements.
7522 */
7523 if (max)
7524 *max = min(scale, uclamp_rq_get(rq, UCLAMP_MAX));
7525
7526 if (util >= scale)
7527 return scale;
7528
7529 /*
7530 * There is still idle time; further improve the number by using the
7531 * irq metric. Because IRQ/steal time is hidden from the task clock we
7532 * need to scale the task numbers:
7533 *
7534 * max - irq
7535 * U' = irq + --------- * U
7536 * max
7537 */
7538 util = scale_irq_capacity(util, irq, scale);
7539 util += irq;
7540
7541 return min(scale, util);
7542}
7543
7544unsigned long sched_cpu_util(int cpu)
7545{
7546 return effective_cpu_util(cpu, cpu_util_cfs(cpu), NULL, NULL);
7547}
7548#endif /* CONFIG_SMP */
7549
7550/**
7551 * find_process_by_pid - find a process with a matching PID value.
7552 * @pid: the pid in question.
7553 *
7554 * The task of @pid, if found. %NULL otherwise.
7555 */
7556static struct task_struct *find_process_by_pid(pid_t pid)
7557{
7558 return pid ? find_task_by_vpid(pid) : current;
7559}
7560
7561static struct task_struct *find_get_task(pid_t pid)
7562{
7563 struct task_struct *p;
7564 guard(rcu)();
7565
7566 p = find_process_by_pid(pid);
7567 if (likely(p))
7568 get_task_struct(p);
7569
7570 return p;
7571}
7572
7573DEFINE_CLASS(find_get_task, struct task_struct *, if (_T) put_task_struct(_T),
7574 find_get_task(pid), pid_t pid)
7575
7576/*
7577 * sched_setparam() passes in -1 for its policy, to let the functions
7578 * it calls know not to change it.
7579 */
7580#define SETPARAM_POLICY -1
7581
7582static void __setscheduler_params(struct task_struct *p,
7583 const struct sched_attr *attr)
7584{
7585 int policy = attr->sched_policy;
7586
7587 if (policy == SETPARAM_POLICY)
7588 policy = p->policy;
7589
7590 p->policy = policy;
7591
7592 if (dl_policy(policy))
7593 __setparam_dl(p, attr);
7594 else if (fair_policy(policy))
7595 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
7596
7597 /*
7598 * __sched_setscheduler() ensures attr->sched_priority == 0 when
7599 * !rt_policy. Always setting this ensures that things like
7600 * getparam()/getattr() don't report silly values for !rt tasks.
7601 */
7602 p->rt_priority = attr->sched_priority;
7603 p->normal_prio = normal_prio(p);
7604 set_load_weight(p, true);
7605}
7606
7607/*
7608 * Check the target process has a UID that matches the current process's:
7609 */
7610static bool check_same_owner(struct task_struct *p)
7611{
7612 const struct cred *cred = current_cred(), *pcred;
7613 guard(rcu)();
7614
7615 pcred = __task_cred(p);
7616 return (uid_eq(cred->euid, pcred->euid) ||
7617 uid_eq(cred->euid, pcred->uid));
7618}
7619
7620/*
7621 * Allow unprivileged RT tasks to decrease priority.
7622 * Only issue a capable test if needed and only once to avoid an audit
7623 * event on permitted non-privileged operations:
7624 */
7625static int user_check_sched_setscheduler(struct task_struct *p,
7626 const struct sched_attr *attr,
7627 int policy, int reset_on_fork)
7628{
7629 if (fair_policy(policy)) {
7630 if (attr->sched_nice < task_nice(p) &&
7631 !is_nice_reduction(p, attr->sched_nice))
7632 goto req_priv;
7633 }
7634
7635 if (rt_policy(policy)) {
7636 unsigned long rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO);
7637
7638 /* Can't set/change the rt policy: */
7639 if (policy != p->policy && !rlim_rtprio)
7640 goto req_priv;
7641
7642 /* Can't increase priority: */
7643 if (attr->sched_priority > p->rt_priority &&
7644 attr->sched_priority > rlim_rtprio)
7645 goto req_priv;
7646 }
7647
7648 /*
7649 * Can't set/change SCHED_DEADLINE policy at all for now
7650 * (safest behavior); in the future we would like to allow
7651 * unprivileged DL tasks to increase their relative deadline
7652 * or reduce their runtime (both ways reducing utilization)
7653 */
7654 if (dl_policy(policy))
7655 goto req_priv;
7656
7657 /*
7658 * Treat SCHED_IDLE as nice 20. Only allow a switch to
7659 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
7660 */
7661 if (task_has_idle_policy(p) && !idle_policy(policy)) {
7662 if (!is_nice_reduction(p, task_nice(p)))
7663 goto req_priv;
7664 }
7665
7666 /* Can't change other user's priorities: */
7667 if (!check_same_owner(p))
7668 goto req_priv;
7669
7670 /* Normal users shall not reset the sched_reset_on_fork flag: */
7671 if (p->sched_reset_on_fork && !reset_on_fork)
7672 goto req_priv;
7673
7674 return 0;
7675
7676req_priv:
7677 if (!capable(CAP_SYS_NICE))
7678 return -EPERM;
7679
7680 return 0;
7681}
7682
7683static int __sched_setscheduler(struct task_struct *p,
7684 const struct sched_attr *attr,
7685 bool user, bool pi)
7686{
7687 int oldpolicy = -1, policy = attr->sched_policy;
7688 int retval, oldprio, newprio, queued, running;
7689 const struct sched_class *prev_class;
7690 struct balance_callback *head;
7691 struct rq_flags rf;
7692 int reset_on_fork;
7693 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
7694 struct rq *rq;
7695 bool cpuset_locked = false;
7696
7697 /* The pi code expects interrupts enabled */
7698 BUG_ON(pi && in_interrupt());
7699recheck:
7700 /* Double check policy once rq lock held: */
7701 if (policy < 0) {
7702 reset_on_fork = p->sched_reset_on_fork;
7703 policy = oldpolicy = p->policy;
7704 } else {
7705 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
7706
7707 if (!valid_policy(policy))
7708 return -EINVAL;
7709 }
7710
7711 if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
7712 return -EINVAL;
7713
7714 /*
7715 * Valid priorities for SCHED_FIFO and SCHED_RR are
7716 * 1..MAX_RT_PRIO-1, valid priority for SCHED_NORMAL,
7717 * SCHED_BATCH and SCHED_IDLE is 0.
7718 */
7719 if (attr->sched_priority > MAX_RT_PRIO-1)
7720 return -EINVAL;
7721 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
7722 (rt_policy(policy) != (attr->sched_priority != 0)))
7723 return -EINVAL;
7724
7725 if (user) {
7726 retval = user_check_sched_setscheduler(p, attr, policy, reset_on_fork);
7727 if (retval)
7728 return retval;
7729
7730 if (attr->sched_flags & SCHED_FLAG_SUGOV)
7731 return -EINVAL;
7732
7733 retval = security_task_setscheduler(p);
7734 if (retval)
7735 return retval;
7736 }
7737
7738 /* Update task specific "requested" clamps */
7739 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) {
7740 retval = uclamp_validate(p, attr);
7741 if (retval)
7742 return retval;
7743 }
7744
7745 /*
7746 * SCHED_DEADLINE bandwidth accounting relies on stable cpusets
7747 * information.
7748 */
7749 if (dl_policy(policy) || dl_policy(p->policy)) {
7750 cpuset_locked = true;
7751 cpuset_lock();
7752 }
7753
7754 /*
7755 * Make sure no PI-waiters arrive (or leave) while we are
7756 * changing the priority of the task:
7757 *
7758 * To be able to change p->policy safely, the appropriate
7759 * runqueue lock must be held.
7760 */
7761 rq = task_rq_lock(p, &rf);
7762 update_rq_clock(rq);
7763
7764 /*
7765 * Changing the policy of the stop threads its a very bad idea:
7766 */
7767 if (p == rq->stop) {
7768 retval = -EINVAL;
7769 goto unlock;
7770 }
7771
7772 /*
7773 * If not changing anything there's no need to proceed further,
7774 * but store a possible modification of reset_on_fork.
7775 */
7776 if (unlikely(policy == p->policy)) {
7777 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
7778 goto change;
7779 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
7780 goto change;
7781 if (dl_policy(policy) && dl_param_changed(p, attr))
7782 goto change;
7783 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)
7784 goto change;
7785
7786 p->sched_reset_on_fork = reset_on_fork;
7787 retval = 0;
7788 goto unlock;
7789 }
7790change:
7791
7792 if (user) {
7793#ifdef CONFIG_RT_GROUP_SCHED
7794 /*
7795 * Do not allow realtime tasks into groups that have no runtime
7796 * assigned.
7797 */
7798 if (rt_bandwidth_enabled() && rt_policy(policy) &&
7799 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
7800 !task_group_is_autogroup(task_group(p))) {
7801 retval = -EPERM;
7802 goto unlock;
7803 }
7804#endif
7805#ifdef CONFIG_SMP
7806 if (dl_bandwidth_enabled() && dl_policy(policy) &&
7807 !(attr->sched_flags & SCHED_FLAG_SUGOV)) {
7808 cpumask_t *span = rq->rd->span;
7809
7810 /*
7811 * Don't allow tasks with an affinity mask smaller than
7812 * the entire root_domain to become SCHED_DEADLINE. We
7813 * will also fail if there's no bandwidth available.
7814 */
7815 if (!cpumask_subset(span, p->cpus_ptr) ||
7816 rq->rd->dl_bw.bw == 0) {
7817 retval = -EPERM;
7818 goto unlock;
7819 }
7820 }
7821#endif
7822 }
7823
7824 /* Re-check policy now with rq lock held: */
7825 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
7826 policy = oldpolicy = -1;
7827 task_rq_unlock(rq, p, &rf);
7828 if (cpuset_locked)
7829 cpuset_unlock();
7830 goto recheck;
7831 }
7832
7833 /*
7834 * If setscheduling to SCHED_DEADLINE (or changing the parameters
7835 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
7836 * is available.
7837 */
7838 if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
7839 retval = -EBUSY;
7840 goto unlock;
7841 }
7842
7843 p->sched_reset_on_fork = reset_on_fork;
7844 oldprio = p->prio;
7845
7846 newprio = __normal_prio(policy, attr->sched_priority, attr->sched_nice);
7847 if (pi) {
7848 /*
7849 * Take priority boosted tasks into account. If the new
7850 * effective priority is unchanged, we just store the new
7851 * normal parameters and do not touch the scheduler class and
7852 * the runqueue. This will be done when the task deboost
7853 * itself.
7854 */
7855 newprio = rt_effective_prio(p, newprio);
7856 if (newprio == oldprio)
7857 queue_flags &= ~DEQUEUE_MOVE;
7858 }
7859
7860 queued = task_on_rq_queued(p);
7861 running = task_current(rq, p);
7862 if (queued)
7863 dequeue_task(rq, p, queue_flags);
7864 if (running)
7865 put_prev_task(rq, p);
7866
7867 prev_class = p->sched_class;
7868
7869 if (!(attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)) {
7870 __setscheduler_params(p, attr);
7871 __setscheduler_prio(p, newprio);
7872 }
7873 __setscheduler_uclamp(p, attr);
7874
7875 if (queued) {
7876 /*
7877 * We enqueue to tail when the priority of a task is
7878 * increased (user space view).
7879 */
7880 if (oldprio < p->prio)
7881 queue_flags |= ENQUEUE_HEAD;
7882
7883 enqueue_task(rq, p, queue_flags);
7884 }
7885 if (running)
7886 set_next_task(rq, p);
7887
7888 check_class_changed(rq, p, prev_class, oldprio);
7889
7890 /* Avoid rq from going away on us: */
7891 preempt_disable();
7892 head = splice_balance_callbacks(rq);
7893 task_rq_unlock(rq, p, &rf);
7894
7895 if (pi) {
7896 if (cpuset_locked)
7897 cpuset_unlock();
7898 rt_mutex_adjust_pi(p);
7899 }
7900
7901 /* Run balance callbacks after we've adjusted the PI chain: */
7902 balance_callbacks(rq, head);
7903 preempt_enable();
7904
7905 return 0;
7906
7907unlock:
7908 task_rq_unlock(rq, p, &rf);
7909 if (cpuset_locked)
7910 cpuset_unlock();
7911 return retval;
7912}
7913
7914static int _sched_setscheduler(struct task_struct *p, int policy,
7915 const struct sched_param *param, bool check)
7916{
7917 struct sched_attr attr = {
7918 .sched_policy = policy,
7919 .sched_priority = param->sched_priority,
7920 .sched_nice = PRIO_TO_NICE(p->static_prio),
7921 };
7922
7923 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
7924 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
7925 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
7926 policy &= ~SCHED_RESET_ON_FORK;
7927 attr.sched_policy = policy;
7928 }
7929
7930 return __sched_setscheduler(p, &attr, check, true);
7931}
7932/**
7933 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
7934 * @p: the task in question.
7935 * @policy: new policy.
7936 * @param: structure containing the new RT priority.
7937 *
7938 * Use sched_set_fifo(), read its comment.
7939 *
7940 * Return: 0 on success. An error code otherwise.
7941 *
7942 * NOTE that the task may be already dead.
7943 */
7944int sched_setscheduler(struct task_struct *p, int policy,
7945 const struct sched_param *param)
7946{
7947 return _sched_setscheduler(p, policy, param, true);
7948}
7949
7950int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
7951{
7952 return __sched_setscheduler(p, attr, true, true);
7953}
7954
7955int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
7956{
7957 return __sched_setscheduler(p, attr, false, true);
7958}
7959EXPORT_SYMBOL_GPL(sched_setattr_nocheck);
7960
7961/**
7962 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
7963 * @p: the task in question.
7964 * @policy: new policy.
7965 * @param: structure containing the new RT priority.
7966 *
7967 * Just like sched_setscheduler, only don't bother checking if the
7968 * current context has permission. For example, this is needed in
7969 * stop_machine(): we create temporary high priority worker threads,
7970 * but our caller might not have that capability.
7971 *
7972 * Return: 0 on success. An error code otherwise.
7973 */
7974int sched_setscheduler_nocheck(struct task_struct *p, int policy,
7975 const struct sched_param *param)
7976{
7977 return _sched_setscheduler(p, policy, param, false);
7978}
7979
7980/*
7981 * SCHED_FIFO is a broken scheduler model; that is, it is fundamentally
7982 * incapable of resource management, which is the one thing an OS really should
7983 * be doing.
7984 *
7985 * This is of course the reason it is limited to privileged users only.
7986 *
7987 * Worse still; it is fundamentally impossible to compose static priority
7988 * workloads. You cannot take two correctly working static prio workloads
7989 * and smash them together and still expect them to work.
7990 *
7991 * For this reason 'all' FIFO tasks the kernel creates are basically at:
7992 *
7993 * MAX_RT_PRIO / 2
7994 *
7995 * The administrator _MUST_ configure the system, the kernel simply doesn't
7996 * know enough information to make a sensible choice.
7997 */
7998void sched_set_fifo(struct task_struct *p)
7999{
8000 struct sched_param sp = { .sched_priority = MAX_RT_PRIO / 2 };
8001 WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
8002}
8003EXPORT_SYMBOL_GPL(sched_set_fifo);
8004
8005/*
8006 * For when you don't much care about FIFO, but want to be above SCHED_NORMAL.
8007 */
8008void sched_set_fifo_low(struct task_struct *p)
8009{
8010 struct sched_param sp = { .sched_priority = 1 };
8011 WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
8012}
8013EXPORT_SYMBOL_GPL(sched_set_fifo_low);
8014
8015void sched_set_normal(struct task_struct *p, int nice)
8016{
8017 struct sched_attr attr = {
8018 .sched_policy = SCHED_NORMAL,
8019 .sched_nice = nice,
8020 };
8021 WARN_ON_ONCE(sched_setattr_nocheck(p, &attr) != 0);
8022}
8023EXPORT_SYMBOL_GPL(sched_set_normal);
8024
8025static int
8026do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
8027{
8028 struct sched_param lparam;
8029
8030 if (!param || pid < 0)
8031 return -EINVAL;
8032 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
8033 return -EFAULT;
8034
8035 CLASS(find_get_task, p)(pid);
8036 if (!p)
8037 return -ESRCH;
8038
8039 return sched_setscheduler(p, policy, &lparam);
8040}
8041
8042/*
8043 * Mimics kernel/events/core.c perf_copy_attr().
8044 */
8045static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
8046{
8047 u32 size;
8048 int ret;
8049
8050 /* Zero the full structure, so that a short copy will be nice: */
8051 memset(attr, 0, sizeof(*attr));
8052
8053 ret = get_user(size, &uattr->size);
8054 if (ret)
8055 return ret;
8056
8057 /* ABI compatibility quirk: */
8058 if (!size)
8059 size = SCHED_ATTR_SIZE_VER0;
8060 if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE)
8061 goto err_size;
8062
8063 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
8064 if (ret) {
8065 if (ret == -E2BIG)
8066 goto err_size;
8067 return ret;
8068 }
8069
8070 if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) &&
8071 size < SCHED_ATTR_SIZE_VER1)
8072 return -EINVAL;
8073
8074 /*
8075 * XXX: Do we want to be lenient like existing syscalls; or do we want
8076 * to be strict and return an error on out-of-bounds values?
8077 */
8078 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
8079
8080 return 0;
8081
8082err_size:
8083 put_user(sizeof(*attr), &uattr->size);
8084 return -E2BIG;
8085}
8086
8087static void get_params(struct task_struct *p, struct sched_attr *attr)
8088{
8089 if (task_has_dl_policy(p))
8090 __getparam_dl(p, attr);
8091 else if (task_has_rt_policy(p))
8092 attr->sched_priority = p->rt_priority;
8093 else
8094 attr->sched_nice = task_nice(p);
8095}
8096
8097/**
8098 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
8099 * @pid: the pid in question.
8100 * @policy: new policy.
8101 * @param: structure containing the new RT priority.
8102 *
8103 * Return: 0 on success. An error code otherwise.
8104 */
8105SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
8106{
8107 if (policy < 0)
8108 return -EINVAL;
8109
8110 return do_sched_setscheduler(pid, policy, param);
8111}
8112
8113/**
8114 * sys_sched_setparam - set/change the RT priority of a thread
8115 * @pid: the pid in question.
8116 * @param: structure containing the new RT priority.
8117 *
8118 * Return: 0 on success. An error code otherwise.
8119 */
8120SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
8121{
8122 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
8123}
8124
8125/**
8126 * sys_sched_setattr - same as above, but with extended sched_attr
8127 * @pid: the pid in question.
8128 * @uattr: structure containing the extended parameters.
8129 * @flags: for future extension.
8130 */
8131SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
8132 unsigned int, flags)
8133{
8134 struct sched_attr attr;
8135 int retval;
8136
8137 if (!uattr || pid < 0 || flags)
8138 return -EINVAL;
8139
8140 retval = sched_copy_attr(uattr, &attr);
8141 if (retval)
8142 return retval;
8143
8144 if ((int)attr.sched_policy < 0)
8145 return -EINVAL;
8146 if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY)
8147 attr.sched_policy = SETPARAM_POLICY;
8148
8149 CLASS(find_get_task, p)(pid);
8150 if (!p)
8151 return -ESRCH;
8152
8153 if (attr.sched_flags & SCHED_FLAG_KEEP_PARAMS)
8154 get_params(p, &attr);
8155
8156 return sched_setattr(p, &attr);
8157}
8158
8159/**
8160 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
8161 * @pid: the pid in question.
8162 *
8163 * Return: On success, the policy of the thread. Otherwise, a negative error
8164 * code.
8165 */
8166SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
8167{
8168 struct task_struct *p;
8169 int retval;
8170
8171 if (pid < 0)
8172 return -EINVAL;
8173
8174 guard(rcu)();
8175 p = find_process_by_pid(pid);
8176 if (!p)
8177 return -ESRCH;
8178
8179 retval = security_task_getscheduler(p);
8180 if (!retval) {
8181 retval = p->policy;
8182 if (p->sched_reset_on_fork)
8183 retval |= SCHED_RESET_ON_FORK;
8184 }
8185 return retval;
8186}
8187
8188/**
8189 * sys_sched_getparam - get the RT priority of a thread
8190 * @pid: the pid in question.
8191 * @param: structure containing the RT priority.
8192 *
8193 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
8194 * code.
8195 */
8196SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
8197{
8198 struct sched_param lp = { .sched_priority = 0 };
8199 struct task_struct *p;
8200 int retval;
8201
8202 if (!param || pid < 0)
8203 return -EINVAL;
8204
8205 scoped_guard (rcu) {
8206 p = find_process_by_pid(pid);
8207 if (!p)
8208 return -ESRCH;
8209
8210 retval = security_task_getscheduler(p);
8211 if (retval)
8212 return retval;
8213
8214 if (task_has_rt_policy(p))
8215 lp.sched_priority = p->rt_priority;
8216 }
8217
8218 /*
8219 * This one might sleep, we cannot do it with a spinlock held ...
8220 */
8221 return copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
8222}
8223
8224/*
8225 * Copy the kernel size attribute structure (which might be larger
8226 * than what user-space knows about) to user-space.
8227 *
8228 * Note that all cases are valid: user-space buffer can be larger or
8229 * smaller than the kernel-space buffer. The usual case is that both
8230 * have the same size.
8231 */
8232static int
8233sched_attr_copy_to_user(struct sched_attr __user *uattr,
8234 struct sched_attr *kattr,
8235 unsigned int usize)
8236{
8237 unsigned int ksize = sizeof(*kattr);
8238
8239 if (!access_ok(uattr, usize))
8240 return -EFAULT;
8241
8242 /*
8243 * sched_getattr() ABI forwards and backwards compatibility:
8244 *
8245 * If usize == ksize then we just copy everything to user-space and all is good.
8246 *
8247 * If usize < ksize then we only copy as much as user-space has space for,
8248 * this keeps ABI compatibility as well. We skip the rest.
8249 *
8250 * If usize > ksize then user-space is using a newer version of the ABI,
8251 * which part the kernel doesn't know about. Just ignore it - tooling can
8252 * detect the kernel's knowledge of attributes from the attr->size value
8253 * which is set to ksize in this case.
8254 */
8255 kattr->size = min(usize, ksize);
8256
8257 if (copy_to_user(uattr, kattr, kattr->size))
8258 return -EFAULT;
8259
8260 return 0;
8261}
8262
8263/**
8264 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
8265 * @pid: the pid in question.
8266 * @uattr: structure containing the extended parameters.
8267 * @usize: sizeof(attr) for fwd/bwd comp.
8268 * @flags: for future extension.
8269 */
8270SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
8271 unsigned int, usize, unsigned int, flags)
8272{
8273 struct sched_attr kattr = { };
8274 struct task_struct *p;
8275 int retval;
8276
8277 if (!uattr || pid < 0 || usize > PAGE_SIZE ||
8278 usize < SCHED_ATTR_SIZE_VER0 || flags)
8279 return -EINVAL;
8280
8281 scoped_guard (rcu) {
8282 p = find_process_by_pid(pid);
8283 if (!p)
8284 return -ESRCH;
8285
8286 retval = security_task_getscheduler(p);
8287 if (retval)
8288 return retval;
8289
8290 kattr.sched_policy = p->policy;
8291 if (p->sched_reset_on_fork)
8292 kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
8293 get_params(p, &kattr);
8294 kattr.sched_flags &= SCHED_FLAG_ALL;
8295
8296#ifdef CONFIG_UCLAMP_TASK
8297 /*
8298 * This could race with another potential updater, but this is fine
8299 * because it'll correctly read the old or the new value. We don't need
8300 * to guarantee who wins the race as long as it doesn't return garbage.
8301 */
8302 kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value;
8303 kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value;
8304#endif
8305 }
8306
8307 return sched_attr_copy_to_user(uattr, &kattr, usize);
8308}
8309
8310#ifdef CONFIG_SMP
8311int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask)
8312{
8313 /*
8314 * If the task isn't a deadline task or admission control is
8315 * disabled then we don't care about affinity changes.
8316 */
8317 if (!task_has_dl_policy(p) || !dl_bandwidth_enabled())
8318 return 0;
8319
8320 /*
8321 * Since bandwidth control happens on root_domain basis,
8322 * if admission test is enabled, we only admit -deadline
8323 * tasks allowed to run on all the CPUs in the task's
8324 * root_domain.
8325 */
8326 guard(rcu)();
8327 if (!cpumask_subset(task_rq(p)->rd->span, mask))
8328 return -EBUSY;
8329
8330 return 0;
8331}
8332#endif
8333
8334static int
8335__sched_setaffinity(struct task_struct *p, struct affinity_context *ctx)
8336{
8337 int retval;
8338 cpumask_var_t cpus_allowed, new_mask;
8339
8340 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL))
8341 return -ENOMEM;
8342
8343 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
8344 retval = -ENOMEM;
8345 goto out_free_cpus_allowed;
8346 }
8347
8348 cpuset_cpus_allowed(p, cpus_allowed);
8349 cpumask_and(new_mask, ctx->new_mask, cpus_allowed);
8350
8351 ctx->new_mask = new_mask;
8352 ctx->flags |= SCA_CHECK;
8353
8354 retval = dl_task_check_affinity(p, new_mask);
8355 if (retval)
8356 goto out_free_new_mask;
8357
8358 retval = __set_cpus_allowed_ptr(p, ctx);
8359 if (retval)
8360 goto out_free_new_mask;
8361
8362 cpuset_cpus_allowed(p, cpus_allowed);
8363 if (!cpumask_subset(new_mask, cpus_allowed)) {
8364 /*
8365 * We must have raced with a concurrent cpuset update.
8366 * Just reset the cpumask to the cpuset's cpus_allowed.
8367 */
8368 cpumask_copy(new_mask, cpus_allowed);
8369
8370 /*
8371 * If SCA_USER is set, a 2nd call to __set_cpus_allowed_ptr()
8372 * will restore the previous user_cpus_ptr value.
8373 *
8374 * In the unlikely event a previous user_cpus_ptr exists,
8375 * we need to further restrict the mask to what is allowed
8376 * by that old user_cpus_ptr.
8377 */
8378 if (unlikely((ctx->flags & SCA_USER) && ctx->user_mask)) {
8379 bool empty = !cpumask_and(new_mask, new_mask,
8380 ctx->user_mask);
8381
8382 if (WARN_ON_ONCE(empty))
8383 cpumask_copy(new_mask, cpus_allowed);
8384 }
8385 __set_cpus_allowed_ptr(p, ctx);
8386 retval = -EINVAL;
8387 }
8388
8389out_free_new_mask:
8390 free_cpumask_var(new_mask);
8391out_free_cpus_allowed:
8392 free_cpumask_var(cpus_allowed);
8393 return retval;
8394}
8395
8396long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
8397{
8398 struct affinity_context ac;
8399 struct cpumask *user_mask;
8400 int retval;
8401
8402 CLASS(find_get_task, p)(pid);
8403 if (!p)
8404 return -ESRCH;
8405
8406 if (p->flags & PF_NO_SETAFFINITY)
8407 return -EINVAL;
8408
8409 if (!check_same_owner(p)) {
8410 guard(rcu)();
8411 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE))
8412 return -EPERM;
8413 }
8414
8415 retval = security_task_setscheduler(p);
8416 if (retval)
8417 return retval;
8418
8419 /*
8420 * With non-SMP configs, user_cpus_ptr/user_mask isn't used and
8421 * alloc_user_cpus_ptr() returns NULL.
8422 */
8423 user_mask = alloc_user_cpus_ptr(NUMA_NO_NODE);
8424 if (user_mask) {
8425 cpumask_copy(user_mask, in_mask);
8426 } else if (IS_ENABLED(CONFIG_SMP)) {
8427 return -ENOMEM;
8428 }
8429
8430 ac = (struct affinity_context){
8431 .new_mask = in_mask,
8432 .user_mask = user_mask,
8433 .flags = SCA_USER,
8434 };
8435
8436 retval = __sched_setaffinity(p, &ac);
8437 kfree(ac.user_mask);
8438
8439 return retval;
8440}
8441
8442static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
8443 struct cpumask *new_mask)
8444{
8445 if (len < cpumask_size())
8446 cpumask_clear(new_mask);
8447 else if (len > cpumask_size())
8448 len = cpumask_size();
8449
8450 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
8451}
8452
8453/**
8454 * sys_sched_setaffinity - set the CPU affinity of a process
8455 * @pid: pid of the process
8456 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
8457 * @user_mask_ptr: user-space pointer to the new CPU mask
8458 *
8459 * Return: 0 on success. An error code otherwise.
8460 */
8461SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
8462 unsigned long __user *, user_mask_ptr)
8463{
8464 cpumask_var_t new_mask;
8465 int retval;
8466
8467 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
8468 return -ENOMEM;
8469
8470 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
8471 if (retval == 0)
8472 retval = sched_setaffinity(pid, new_mask);
8473 free_cpumask_var(new_mask);
8474 return retval;
8475}
8476
8477long sched_getaffinity(pid_t pid, struct cpumask *mask)
8478{
8479 struct task_struct *p;
8480 int retval;
8481
8482 guard(rcu)();
8483 p = find_process_by_pid(pid);
8484 if (!p)
8485 return -ESRCH;
8486
8487 retval = security_task_getscheduler(p);
8488 if (retval)
8489 return retval;
8490
8491 guard(raw_spinlock_irqsave)(&p->pi_lock);
8492 cpumask_and(mask, &p->cpus_mask, cpu_active_mask);
8493
8494 return 0;
8495}
8496
8497/**
8498 * sys_sched_getaffinity - get the CPU affinity of a process
8499 * @pid: pid of the process
8500 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
8501 * @user_mask_ptr: user-space pointer to hold the current CPU mask
8502 *
8503 * Return: size of CPU mask copied to user_mask_ptr on success. An
8504 * error code otherwise.
8505 */
8506SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
8507 unsigned long __user *, user_mask_ptr)
8508{
8509 int ret;
8510 cpumask_var_t mask;
8511
8512 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
8513 return -EINVAL;
8514 if (len & (sizeof(unsigned long)-1))
8515 return -EINVAL;
8516
8517 if (!zalloc_cpumask_var(&mask, GFP_KERNEL))
8518 return -ENOMEM;
8519
8520 ret = sched_getaffinity(pid, mask);
8521 if (ret == 0) {
8522 unsigned int retlen = min(len, cpumask_size());
8523
8524 if (copy_to_user(user_mask_ptr, cpumask_bits(mask), retlen))
8525 ret = -EFAULT;
8526 else
8527 ret = retlen;
8528 }
8529 free_cpumask_var(mask);
8530
8531 return ret;
8532}
8533
8534static void do_sched_yield(void)
8535{
8536 struct rq_flags rf;
8537 struct rq *rq;
8538
8539 rq = this_rq_lock_irq(&rf);
8540
8541 schedstat_inc(rq->yld_count);
8542 current->sched_class->yield_task(rq);
8543
8544 preempt_disable();
8545 rq_unlock_irq(rq, &rf);
8546 sched_preempt_enable_no_resched();
8547
8548 schedule();
8549}
8550
8551/**
8552 * sys_sched_yield - yield the current processor to other threads.
8553 *
8554 * This function yields the current CPU to other tasks. If there are no
8555 * other threads running on this CPU then this function will return.
8556 *
8557 * Return: 0.
8558 */
8559SYSCALL_DEFINE0(sched_yield)
8560{
8561 do_sched_yield();
8562 return 0;
8563}
8564
8565#if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
8566int __sched __cond_resched(void)
8567{
8568 if (should_resched(0)) {
8569 preempt_schedule_common();
8570 return 1;
8571 }
8572 /*
8573 * In preemptible kernels, ->rcu_read_lock_nesting tells the tick
8574 * whether the current CPU is in an RCU read-side critical section,
8575 * so the tick can report quiescent states even for CPUs looping
8576 * in kernel context. In contrast, in non-preemptible kernels,
8577 * RCU readers leave no in-memory hints, which means that CPU-bound
8578 * processes executing in kernel context might never report an
8579 * RCU quiescent state. Therefore, the following code causes
8580 * cond_resched() to report a quiescent state, but only when RCU
8581 * is in urgent need of one.
8582 */
8583#ifndef CONFIG_PREEMPT_RCU
8584 rcu_all_qs();
8585#endif
8586 return 0;
8587}
8588EXPORT_SYMBOL(__cond_resched);
8589#endif
8590
8591#ifdef CONFIG_PREEMPT_DYNAMIC
8592#if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
8593#define cond_resched_dynamic_enabled __cond_resched
8594#define cond_resched_dynamic_disabled ((void *)&__static_call_return0)
8595DEFINE_STATIC_CALL_RET0(cond_resched, __cond_resched);
8596EXPORT_STATIC_CALL_TRAMP(cond_resched);
8597
8598#define might_resched_dynamic_enabled __cond_resched
8599#define might_resched_dynamic_disabled ((void *)&__static_call_return0)
8600DEFINE_STATIC_CALL_RET0(might_resched, __cond_resched);
8601EXPORT_STATIC_CALL_TRAMP(might_resched);
8602#elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
8603static DEFINE_STATIC_KEY_FALSE(sk_dynamic_cond_resched);
8604int __sched dynamic_cond_resched(void)
8605{
8606 klp_sched_try_switch();
8607 if (!static_branch_unlikely(&sk_dynamic_cond_resched))
8608 return 0;
8609 return __cond_resched();
8610}
8611EXPORT_SYMBOL(dynamic_cond_resched);
8612
8613static DEFINE_STATIC_KEY_FALSE(sk_dynamic_might_resched);
8614int __sched dynamic_might_resched(void)
8615{
8616 if (!static_branch_unlikely(&sk_dynamic_might_resched))
8617 return 0;
8618 return __cond_resched();
8619}
8620EXPORT_SYMBOL(dynamic_might_resched);
8621#endif
8622#endif
8623
8624/*
8625 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
8626 * call schedule, and on return reacquire the lock.
8627 *
8628 * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
8629 * operations here to prevent schedule() from being called twice (once via
8630 * spin_unlock(), once by hand).
8631 */
8632int __cond_resched_lock(spinlock_t *lock)
8633{
8634 int resched = should_resched(PREEMPT_LOCK_OFFSET);
8635 int ret = 0;
8636
8637 lockdep_assert_held(lock);
8638
8639 if (spin_needbreak(lock) || resched) {
8640 spin_unlock(lock);
8641 if (!_cond_resched())
8642 cpu_relax();
8643 ret = 1;
8644 spin_lock(lock);
8645 }
8646 return ret;
8647}
8648EXPORT_SYMBOL(__cond_resched_lock);
8649
8650int __cond_resched_rwlock_read(rwlock_t *lock)
8651{
8652 int resched = should_resched(PREEMPT_LOCK_OFFSET);
8653 int ret = 0;
8654
8655 lockdep_assert_held_read(lock);
8656
8657 if (rwlock_needbreak(lock) || resched) {
8658 read_unlock(lock);
8659 if (!_cond_resched())
8660 cpu_relax();
8661 ret = 1;
8662 read_lock(lock);
8663 }
8664 return ret;
8665}
8666EXPORT_SYMBOL(__cond_resched_rwlock_read);
8667
8668int __cond_resched_rwlock_write(rwlock_t *lock)
8669{
8670 int resched = should_resched(PREEMPT_LOCK_OFFSET);
8671 int ret = 0;
8672
8673 lockdep_assert_held_write(lock);
8674
8675 if (rwlock_needbreak(lock) || resched) {
8676 write_unlock(lock);
8677 if (!_cond_resched())
8678 cpu_relax();
8679 ret = 1;
8680 write_lock(lock);
8681 }
8682 return ret;
8683}
8684EXPORT_SYMBOL(__cond_resched_rwlock_write);
8685
8686#ifdef CONFIG_PREEMPT_DYNAMIC
8687
8688#ifdef CONFIG_GENERIC_ENTRY
8689#include <linux/entry-common.h>
8690#endif
8691
8692/*
8693 * SC:cond_resched
8694 * SC:might_resched
8695 * SC:preempt_schedule
8696 * SC:preempt_schedule_notrace
8697 * SC:irqentry_exit_cond_resched
8698 *
8699 *
8700 * NONE:
8701 * cond_resched <- __cond_resched
8702 * might_resched <- RET0
8703 * preempt_schedule <- NOP
8704 * preempt_schedule_notrace <- NOP
8705 * irqentry_exit_cond_resched <- NOP
8706 *
8707 * VOLUNTARY:
8708 * cond_resched <- __cond_resched
8709 * might_resched <- __cond_resched
8710 * preempt_schedule <- NOP
8711 * preempt_schedule_notrace <- NOP
8712 * irqentry_exit_cond_resched <- NOP
8713 *
8714 * FULL:
8715 * cond_resched <- RET0
8716 * might_resched <- RET0
8717 * preempt_schedule <- preempt_schedule
8718 * preempt_schedule_notrace <- preempt_schedule_notrace
8719 * irqentry_exit_cond_resched <- irqentry_exit_cond_resched
8720 */
8721
8722enum {
8723 preempt_dynamic_undefined = -1,
8724 preempt_dynamic_none,
8725 preempt_dynamic_voluntary,
8726 preempt_dynamic_full,
8727};
8728
8729int preempt_dynamic_mode = preempt_dynamic_undefined;
8730
8731int sched_dynamic_mode(const char *str)
8732{
8733 if (!strcmp(str, "none"))
8734 return preempt_dynamic_none;
8735
8736 if (!strcmp(str, "voluntary"))
8737 return preempt_dynamic_voluntary;
8738
8739 if (!strcmp(str, "full"))
8740 return preempt_dynamic_full;
8741
8742 return -EINVAL;
8743}
8744
8745#if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
8746#define preempt_dynamic_enable(f) static_call_update(f, f##_dynamic_enabled)
8747#define preempt_dynamic_disable(f) static_call_update(f, f##_dynamic_disabled)
8748#elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
8749#define preempt_dynamic_enable(f) static_key_enable(&sk_dynamic_##f.key)
8750#define preempt_dynamic_disable(f) static_key_disable(&sk_dynamic_##f.key)
8751#else
8752#error "Unsupported PREEMPT_DYNAMIC mechanism"
8753#endif
8754
8755static DEFINE_MUTEX(sched_dynamic_mutex);
8756static bool klp_override;
8757
8758static void __sched_dynamic_update(int mode)
8759{
8760 /*
8761 * Avoid {NONE,VOLUNTARY} -> FULL transitions from ever ending up in
8762 * the ZERO state, which is invalid.
8763 */
8764 if (!klp_override)
8765 preempt_dynamic_enable(cond_resched);
8766 preempt_dynamic_enable(might_resched);
8767 preempt_dynamic_enable(preempt_schedule);
8768 preempt_dynamic_enable(preempt_schedule_notrace);
8769 preempt_dynamic_enable(irqentry_exit_cond_resched);
8770
8771 switch (mode) {
8772 case preempt_dynamic_none:
8773 if (!klp_override)
8774 preempt_dynamic_enable(cond_resched);
8775 preempt_dynamic_disable(might_resched);
8776 preempt_dynamic_disable(preempt_schedule);
8777 preempt_dynamic_disable(preempt_schedule_notrace);
8778 preempt_dynamic_disable(irqentry_exit_cond_resched);
8779 if (mode != preempt_dynamic_mode)
8780 pr_info("Dynamic Preempt: none\n");
8781 break;
8782
8783 case preempt_dynamic_voluntary:
8784 if (!klp_override)
8785 preempt_dynamic_enable(cond_resched);
8786 preempt_dynamic_enable(might_resched);
8787 preempt_dynamic_disable(preempt_schedule);
8788 preempt_dynamic_disable(preempt_schedule_notrace);
8789 preempt_dynamic_disable(irqentry_exit_cond_resched);
8790 if (mode != preempt_dynamic_mode)
8791 pr_info("Dynamic Preempt: voluntary\n");
8792 break;
8793
8794 case preempt_dynamic_full:
8795 if (!klp_override)
8796 preempt_dynamic_disable(cond_resched);
8797 preempt_dynamic_disable(might_resched);
8798 preempt_dynamic_enable(preempt_schedule);
8799 preempt_dynamic_enable(preempt_schedule_notrace);
8800 preempt_dynamic_enable(irqentry_exit_cond_resched);
8801 if (mode != preempt_dynamic_mode)
8802 pr_info("Dynamic Preempt: full\n");
8803 break;
8804 }
8805
8806 preempt_dynamic_mode = mode;
8807}
8808
8809void sched_dynamic_update(int mode)
8810{
8811 mutex_lock(&sched_dynamic_mutex);
8812 __sched_dynamic_update(mode);
8813 mutex_unlock(&sched_dynamic_mutex);
8814}
8815
8816#ifdef CONFIG_HAVE_PREEMPT_DYNAMIC_CALL
8817
8818static int klp_cond_resched(void)
8819{
8820 __klp_sched_try_switch();
8821 return __cond_resched();
8822}
8823
8824void sched_dynamic_klp_enable(void)
8825{
8826 mutex_lock(&sched_dynamic_mutex);
8827
8828 klp_override = true;
8829 static_call_update(cond_resched, klp_cond_resched);
8830
8831 mutex_unlock(&sched_dynamic_mutex);
8832}
8833
8834void sched_dynamic_klp_disable(void)
8835{
8836 mutex_lock(&sched_dynamic_mutex);
8837
8838 klp_override = false;
8839 __sched_dynamic_update(preempt_dynamic_mode);
8840
8841 mutex_unlock(&sched_dynamic_mutex);
8842}
8843
8844#endif /* CONFIG_HAVE_PREEMPT_DYNAMIC_CALL */
8845
8846static int __init setup_preempt_mode(char *str)
8847{
8848 int mode = sched_dynamic_mode(str);
8849 if (mode < 0) {
8850 pr_warn("Dynamic Preempt: unsupported mode: %s\n", str);
8851 return 0;
8852 }
8853
8854 sched_dynamic_update(mode);
8855 return 1;
8856}
8857__setup("preempt=", setup_preempt_mode);
8858
8859static void __init preempt_dynamic_init(void)
8860{
8861 if (preempt_dynamic_mode == preempt_dynamic_undefined) {
8862 if (IS_ENABLED(CONFIG_PREEMPT_NONE)) {
8863 sched_dynamic_update(preempt_dynamic_none);
8864 } else if (IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY)) {
8865 sched_dynamic_update(preempt_dynamic_voluntary);
8866 } else {
8867 /* Default static call setting, nothing to do */
8868 WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT));
8869 preempt_dynamic_mode = preempt_dynamic_full;
8870 pr_info("Dynamic Preempt: full\n");
8871 }
8872 }
8873}
8874
8875#define PREEMPT_MODEL_ACCESSOR(mode) \
8876 bool preempt_model_##mode(void) \
8877 { \
8878 WARN_ON_ONCE(preempt_dynamic_mode == preempt_dynamic_undefined); \
8879 return preempt_dynamic_mode == preempt_dynamic_##mode; \
8880 } \
8881 EXPORT_SYMBOL_GPL(preempt_model_##mode)
8882
8883PREEMPT_MODEL_ACCESSOR(none);
8884PREEMPT_MODEL_ACCESSOR(voluntary);
8885PREEMPT_MODEL_ACCESSOR(full);
8886
8887#else /* !CONFIG_PREEMPT_DYNAMIC */
8888
8889static inline void preempt_dynamic_init(void) { }
8890
8891#endif /* #ifdef CONFIG_PREEMPT_DYNAMIC */
8892
8893/**
8894 * yield - yield the current processor to other threads.
8895 *
8896 * Do not ever use this function, there's a 99% chance you're doing it wrong.
8897 *
8898 * The scheduler is at all times free to pick the calling task as the most
8899 * eligible task to run, if removing the yield() call from your code breaks
8900 * it, it's already broken.
8901 *
8902 * Typical broken usage is:
8903 *
8904 * while (!event)
8905 * yield();
8906 *
8907 * where one assumes that yield() will let 'the other' process run that will
8908 * make event true. If the current task is a SCHED_FIFO task that will never
8909 * happen. Never use yield() as a progress guarantee!!
8910 *
8911 * If you want to use yield() to wait for something, use wait_event().
8912 * If you want to use yield() to be 'nice' for others, use cond_resched().
8913 * If you still want to use yield(), do not!
8914 */
8915void __sched yield(void)
8916{
8917 set_current_state(TASK_RUNNING);
8918 do_sched_yield();
8919}
8920EXPORT_SYMBOL(yield);
8921
8922/**
8923 * yield_to - yield the current processor to another thread in
8924 * your thread group, or accelerate that thread toward the
8925 * processor it's on.
8926 * @p: target task
8927 * @preempt: whether task preemption is allowed or not
8928 *
8929 * It's the caller's job to ensure that the target task struct
8930 * can't go away on us before we can do any checks.
8931 *
8932 * Return:
8933 * true (>0) if we indeed boosted the target task.
8934 * false (0) if we failed to boost the target.
8935 * -ESRCH if there's no task to yield to.
8936 */
8937int __sched yield_to(struct task_struct *p, bool preempt)
8938{
8939 struct task_struct *curr = current;
8940 struct rq *rq, *p_rq;
8941 int yielded = 0;
8942
8943 scoped_guard (irqsave) {
8944 rq = this_rq();
8945
8946again:
8947 p_rq = task_rq(p);
8948 /*
8949 * If we're the only runnable task on the rq and target rq also
8950 * has only one task, there's absolutely no point in yielding.
8951 */
8952 if (rq->nr_running == 1 && p_rq->nr_running == 1)
8953 return -ESRCH;
8954
8955 guard(double_rq_lock)(rq, p_rq);
8956 if (task_rq(p) != p_rq)
8957 goto again;
8958
8959 if (!curr->sched_class->yield_to_task)
8960 return 0;
8961
8962 if (curr->sched_class != p->sched_class)
8963 return 0;
8964
8965 if (task_on_cpu(p_rq, p) || !task_is_running(p))
8966 return 0;
8967
8968 yielded = curr->sched_class->yield_to_task(rq, p);
8969 if (yielded) {
8970 schedstat_inc(rq->yld_count);
8971 /*
8972 * Make p's CPU reschedule; pick_next_entity
8973 * takes care of fairness.
8974 */
8975 if (preempt && rq != p_rq)
8976 resched_curr(p_rq);
8977 }
8978 }
8979
8980 if (yielded)
8981 schedule();
8982
8983 return yielded;
8984}
8985EXPORT_SYMBOL_GPL(yield_to);
8986
8987int io_schedule_prepare(void)
8988{
8989 int old_iowait = current->in_iowait;
8990
8991 current->in_iowait = 1;
8992 blk_flush_plug(current->plug, true);
8993 return old_iowait;
8994}
8995
8996void io_schedule_finish(int token)
8997{
8998 current->in_iowait = token;
8999}
9000
9001/*
9002 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
9003 * that process accounting knows that this is a task in IO wait state.
9004 */
9005long __sched io_schedule_timeout(long timeout)
9006{
9007 int token;
9008 long ret;
9009
9010 token = io_schedule_prepare();
9011 ret = schedule_timeout(timeout);
9012 io_schedule_finish(token);
9013
9014 return ret;
9015}
9016EXPORT_SYMBOL(io_schedule_timeout);
9017
9018void __sched io_schedule(void)
9019{
9020 int token;
9021
9022 token = io_schedule_prepare();
9023 schedule();
9024 io_schedule_finish(token);
9025}
9026EXPORT_SYMBOL(io_schedule);
9027
9028/**
9029 * sys_sched_get_priority_max - return maximum RT priority.
9030 * @policy: scheduling class.
9031 *
9032 * Return: On success, this syscall returns the maximum
9033 * rt_priority that can be used by a given scheduling class.
9034 * On failure, a negative error code is returned.
9035 */
9036SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
9037{
9038 int ret = -EINVAL;
9039
9040 switch (policy) {
9041 case SCHED_FIFO:
9042 case SCHED_RR:
9043 ret = MAX_RT_PRIO-1;
9044 break;
9045 case SCHED_DEADLINE:
9046 case SCHED_NORMAL:
9047 case SCHED_BATCH:
9048 case SCHED_IDLE:
9049 ret = 0;
9050 break;
9051 }
9052 return ret;
9053}
9054
9055/**
9056 * sys_sched_get_priority_min - return minimum RT priority.
9057 * @policy: scheduling class.
9058 *
9059 * Return: On success, this syscall returns the minimum
9060 * rt_priority that can be used by a given scheduling class.
9061 * On failure, a negative error code is returned.
9062 */
9063SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
9064{
9065 int ret = -EINVAL;
9066
9067 switch (policy) {
9068 case SCHED_FIFO:
9069 case SCHED_RR:
9070 ret = 1;
9071 break;
9072 case SCHED_DEADLINE:
9073 case SCHED_NORMAL:
9074 case SCHED_BATCH:
9075 case SCHED_IDLE:
9076 ret = 0;
9077 }
9078 return ret;
9079}
9080
9081static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
9082{
9083 unsigned int time_slice = 0;
9084 int retval;
9085
9086 if (pid < 0)
9087 return -EINVAL;
9088
9089 scoped_guard (rcu) {
9090 struct task_struct *p = find_process_by_pid(pid);
9091 if (!p)
9092 return -ESRCH;
9093
9094 retval = security_task_getscheduler(p);
9095 if (retval)
9096 return retval;
9097
9098 scoped_guard (task_rq_lock, p) {
9099 struct rq *rq = scope.rq;
9100 if (p->sched_class->get_rr_interval)
9101 time_slice = p->sched_class->get_rr_interval(rq, p);
9102 }
9103 }
9104
9105 jiffies_to_timespec64(time_slice, t);
9106 return 0;
9107}
9108
9109/**
9110 * sys_sched_rr_get_interval - return the default timeslice of a process.
9111 * @pid: pid of the process.
9112 * @interval: userspace pointer to the timeslice value.
9113 *
9114 * this syscall writes the default timeslice value of a given process
9115 * into the user-space timespec buffer. A value of '0' means infinity.
9116 *
9117 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
9118 * an error code.
9119 */
9120SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
9121 struct __kernel_timespec __user *, interval)
9122{
9123 struct timespec64 t;
9124 int retval = sched_rr_get_interval(pid, &t);
9125
9126 if (retval == 0)
9127 retval = put_timespec64(&t, interval);
9128
9129 return retval;
9130}
9131
9132#ifdef CONFIG_COMPAT_32BIT_TIME
9133SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
9134 struct old_timespec32 __user *, interval)
9135{
9136 struct timespec64 t;
9137 int retval = sched_rr_get_interval(pid, &t);
9138
9139 if (retval == 0)
9140 retval = put_old_timespec32(&t, interval);
9141 return retval;
9142}
9143#endif
9144
9145void sched_show_task(struct task_struct *p)
9146{
9147 unsigned long free = 0;
9148 int ppid;
9149
9150 if (!try_get_task_stack(p))
9151 return;
9152
9153 pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p));
9154
9155 if (task_is_running(p))
9156 pr_cont(" running task ");
9157#ifdef CONFIG_DEBUG_STACK_USAGE
9158 free = stack_not_used(p);
9159#endif
9160 ppid = 0;
9161 rcu_read_lock();
9162 if (pid_alive(p))
9163 ppid = task_pid_nr(rcu_dereference(p->real_parent));
9164 rcu_read_unlock();
9165 pr_cont(" stack:%-5lu pid:%-5d tgid:%-5d ppid:%-6d flags:0x%08lx\n",
9166 free, task_pid_nr(p), task_tgid_nr(p),
9167 ppid, read_task_thread_flags(p));
9168
9169 print_worker_info(KERN_INFO, p);
9170 print_stop_info(KERN_INFO, p);
9171 show_stack(p, NULL, KERN_INFO);
9172 put_task_stack(p);
9173}
9174EXPORT_SYMBOL_GPL(sched_show_task);
9175
9176static inline bool
9177state_filter_match(unsigned long state_filter, struct task_struct *p)
9178{
9179 unsigned int state = READ_ONCE(p->__state);
9180
9181 /* no filter, everything matches */
9182 if (!state_filter)
9183 return true;
9184
9185 /* filter, but doesn't match */
9186 if (!(state & state_filter))
9187 return false;
9188
9189 /*
9190 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
9191 * TASK_KILLABLE).
9192 */
9193 if (state_filter == TASK_UNINTERRUPTIBLE && (state & TASK_NOLOAD))
9194 return false;
9195
9196 return true;
9197}
9198
9199
9200void show_state_filter(unsigned int state_filter)
9201{
9202 struct task_struct *g, *p;
9203
9204 rcu_read_lock();
9205 for_each_process_thread(g, p) {
9206 /*
9207 * reset the NMI-timeout, listing all files on a slow
9208 * console might take a lot of time:
9209 * Also, reset softlockup watchdogs on all CPUs, because
9210 * another CPU might be blocked waiting for us to process
9211 * an IPI.
9212 */
9213 touch_nmi_watchdog();
9214 touch_all_softlockup_watchdogs();
9215 if (state_filter_match(state_filter, p))
9216 sched_show_task(p);
9217 }
9218
9219#ifdef CONFIG_SCHED_DEBUG
9220 if (!state_filter)
9221 sysrq_sched_debug_show();
9222#endif
9223 rcu_read_unlock();
9224 /*
9225 * Only show locks if all tasks are dumped:
9226 */
9227 if (!state_filter)
9228 debug_show_all_locks();
9229}
9230
9231/**
9232 * init_idle - set up an idle thread for a given CPU
9233 * @idle: task in question
9234 * @cpu: CPU the idle task belongs to
9235 *
9236 * NOTE: this function does not set the idle thread's NEED_RESCHED
9237 * flag, to make booting more robust.
9238 */
9239void __init init_idle(struct task_struct *idle, int cpu)
9240{
9241#ifdef CONFIG_SMP
9242 struct affinity_context ac = (struct affinity_context) {
9243 .new_mask = cpumask_of(cpu),
9244 .flags = 0,
9245 };
9246#endif
9247 struct rq *rq = cpu_rq(cpu);
9248 unsigned long flags;
9249
9250 __sched_fork(0, idle);
9251
9252 raw_spin_lock_irqsave(&idle->pi_lock, flags);
9253 raw_spin_rq_lock(rq);
9254
9255 idle->__state = TASK_RUNNING;
9256 idle->se.exec_start = sched_clock();
9257 /*
9258 * PF_KTHREAD should already be set at this point; regardless, make it
9259 * look like a proper per-CPU kthread.
9260 */
9261 idle->flags |= PF_KTHREAD | PF_NO_SETAFFINITY;
9262 kthread_set_per_cpu(idle, cpu);
9263
9264#ifdef CONFIG_SMP
9265 /*
9266 * It's possible that init_idle() gets called multiple times on a task,
9267 * in that case do_set_cpus_allowed() will not do the right thing.
9268 *
9269 * And since this is boot we can forgo the serialization.
9270 */
9271 set_cpus_allowed_common(idle, &ac);
9272#endif
9273 /*
9274 * We're having a chicken and egg problem, even though we are
9275 * holding rq->lock, the CPU isn't yet set to this CPU so the
9276 * lockdep check in task_group() will fail.
9277 *
9278 * Similar case to sched_fork(). / Alternatively we could
9279 * use task_rq_lock() here and obtain the other rq->lock.
9280 *
9281 * Silence PROVE_RCU
9282 */
9283 rcu_read_lock();
9284 __set_task_cpu(idle, cpu);
9285 rcu_read_unlock();
9286
9287 rq->idle = idle;
9288 rcu_assign_pointer(rq->curr, idle);
9289 idle->on_rq = TASK_ON_RQ_QUEUED;
9290#ifdef CONFIG_SMP
9291 idle->on_cpu = 1;
9292#endif
9293 raw_spin_rq_unlock(rq);
9294 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
9295
9296 /* Set the preempt count _outside_ the spinlocks! */
9297 init_idle_preempt_count(idle, cpu);
9298
9299 /*
9300 * The idle tasks have their own, simple scheduling class:
9301 */
9302 idle->sched_class = &idle_sched_class;
9303 ftrace_graph_init_idle_task(idle, cpu);
9304 vtime_init_idle(idle, cpu);
9305#ifdef CONFIG_SMP
9306 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
9307#endif
9308}
9309
9310#ifdef CONFIG_SMP
9311
9312int cpuset_cpumask_can_shrink(const struct cpumask *cur,
9313 const struct cpumask *trial)
9314{
9315 int ret = 1;
9316
9317 if (cpumask_empty(cur))
9318 return ret;
9319
9320 ret = dl_cpuset_cpumask_can_shrink(cur, trial);
9321
9322 return ret;
9323}
9324
9325int task_can_attach(struct task_struct *p)
9326{
9327 int ret = 0;
9328
9329 /*
9330 * Kthreads which disallow setaffinity shouldn't be moved
9331 * to a new cpuset; we don't want to change their CPU
9332 * affinity and isolating such threads by their set of
9333 * allowed nodes is unnecessary. Thus, cpusets are not
9334 * applicable for such threads. This prevents checking for
9335 * success of set_cpus_allowed_ptr() on all attached tasks
9336 * before cpus_mask may be changed.
9337 */
9338 if (p->flags & PF_NO_SETAFFINITY)
9339 ret = -EINVAL;
9340
9341 return ret;
9342}
9343
9344bool sched_smp_initialized __read_mostly;
9345
9346#ifdef CONFIG_NUMA_BALANCING
9347/* Migrate current task p to target_cpu */
9348int migrate_task_to(struct task_struct *p, int target_cpu)
9349{
9350 struct migration_arg arg = { p, target_cpu };
9351 int curr_cpu = task_cpu(p);
9352
9353 if (curr_cpu == target_cpu)
9354 return 0;
9355
9356 if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
9357 return -EINVAL;
9358
9359 /* TODO: This is not properly updating schedstats */
9360
9361 trace_sched_move_numa(p, curr_cpu, target_cpu);
9362 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
9363}
9364
9365/*
9366 * Requeue a task on a given node and accurately track the number of NUMA
9367 * tasks on the runqueues
9368 */
9369void sched_setnuma(struct task_struct *p, int nid)
9370{
9371 bool queued, running;
9372 struct rq_flags rf;
9373 struct rq *rq;
9374
9375 rq = task_rq_lock(p, &rf);
9376 queued = task_on_rq_queued(p);
9377 running = task_current(rq, p);
9378
9379 if (queued)
9380 dequeue_task(rq, p, DEQUEUE_SAVE);
9381 if (running)
9382 put_prev_task(rq, p);
9383
9384 p->numa_preferred_nid = nid;
9385
9386 if (queued)
9387 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
9388 if (running)
9389 set_next_task(rq, p);
9390 task_rq_unlock(rq, p, &rf);
9391}
9392#endif /* CONFIG_NUMA_BALANCING */
9393
9394#ifdef CONFIG_HOTPLUG_CPU
9395/*
9396 * Ensure that the idle task is using init_mm right before its CPU goes
9397 * offline.
9398 */
9399void idle_task_exit(void)
9400{
9401 struct mm_struct *mm = current->active_mm;
9402
9403 BUG_ON(cpu_online(smp_processor_id()));
9404 BUG_ON(current != this_rq()->idle);
9405
9406 if (mm != &init_mm) {
9407 switch_mm(mm, &init_mm, current);
9408 finish_arch_post_lock_switch();
9409 }
9410
9411 /* finish_cpu(), as ran on the BP, will clean up the active_mm state */
9412}
9413
9414static int __balance_push_cpu_stop(void *arg)
9415{
9416 struct task_struct *p = arg;
9417 struct rq *rq = this_rq();
9418 struct rq_flags rf;
9419 int cpu;
9420
9421 raw_spin_lock_irq(&p->pi_lock);
9422 rq_lock(rq, &rf);
9423
9424 update_rq_clock(rq);
9425
9426 if (task_rq(p) == rq && task_on_rq_queued(p)) {
9427 cpu = select_fallback_rq(rq->cpu, p);
9428 rq = __migrate_task(rq, &rf, p, cpu);
9429 }
9430
9431 rq_unlock(rq, &rf);
9432 raw_spin_unlock_irq(&p->pi_lock);
9433
9434 put_task_struct(p);
9435
9436 return 0;
9437}
9438
9439static DEFINE_PER_CPU(struct cpu_stop_work, push_work);
9440
9441/*
9442 * Ensure we only run per-cpu kthreads once the CPU goes !active.
9443 *
9444 * This is enabled below SCHED_AP_ACTIVE; when !cpu_active(), but only
9445 * effective when the hotplug motion is down.
9446 */
9447static void balance_push(struct rq *rq)
9448{
9449 struct task_struct *push_task = rq->curr;
9450
9451 lockdep_assert_rq_held(rq);
9452
9453 /*
9454 * Ensure the thing is persistent until balance_push_set(.on = false);
9455 */
9456 rq->balance_callback = &balance_push_callback;
9457
9458 /*
9459 * Only active while going offline and when invoked on the outgoing
9460 * CPU.
9461 */
9462 if (!cpu_dying(rq->cpu) || rq != this_rq())
9463 return;
9464
9465 /*
9466 * Both the cpu-hotplug and stop task are in this case and are
9467 * required to complete the hotplug process.
9468 */
9469 if (kthread_is_per_cpu(push_task) ||
9470 is_migration_disabled(push_task)) {
9471
9472 /*
9473 * If this is the idle task on the outgoing CPU try to wake
9474 * up the hotplug control thread which might wait for the
9475 * last task to vanish. The rcuwait_active() check is
9476 * accurate here because the waiter is pinned on this CPU
9477 * and can't obviously be running in parallel.
9478 *
9479 * On RT kernels this also has to check whether there are
9480 * pinned and scheduled out tasks on the runqueue. They
9481 * need to leave the migrate disabled section first.
9482 */
9483 if (!rq->nr_running && !rq_has_pinned_tasks(rq) &&
9484 rcuwait_active(&rq->hotplug_wait)) {
9485 raw_spin_rq_unlock(rq);
9486 rcuwait_wake_up(&rq->hotplug_wait);
9487 raw_spin_rq_lock(rq);
9488 }
9489 return;
9490 }
9491
9492 get_task_struct(push_task);
9493 /*
9494 * Temporarily drop rq->lock such that we can wake-up the stop task.
9495 * Both preemption and IRQs are still disabled.
9496 */
9497 preempt_disable();
9498 raw_spin_rq_unlock(rq);
9499 stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task,
9500 this_cpu_ptr(&push_work));
9501 preempt_enable();
9502 /*
9503 * At this point need_resched() is true and we'll take the loop in
9504 * schedule(). The next pick is obviously going to be the stop task
9505 * which kthread_is_per_cpu() and will push this task away.
9506 */
9507 raw_spin_rq_lock(rq);
9508}
9509
9510static void balance_push_set(int cpu, bool on)
9511{
9512 struct rq *rq = cpu_rq(cpu);
9513 struct rq_flags rf;
9514
9515 rq_lock_irqsave(rq, &rf);
9516 if (on) {
9517 WARN_ON_ONCE(rq->balance_callback);
9518 rq->balance_callback = &balance_push_callback;
9519 } else if (rq->balance_callback == &balance_push_callback) {
9520 rq->balance_callback = NULL;
9521 }
9522 rq_unlock_irqrestore(rq, &rf);
9523}
9524
9525/*
9526 * Invoked from a CPUs hotplug control thread after the CPU has been marked
9527 * inactive. All tasks which are not per CPU kernel threads are either
9528 * pushed off this CPU now via balance_push() or placed on a different CPU
9529 * during wakeup. Wait until the CPU is quiescent.
9530 */
9531static void balance_hotplug_wait(void)
9532{
9533 struct rq *rq = this_rq();
9534
9535 rcuwait_wait_event(&rq->hotplug_wait,
9536 rq->nr_running == 1 && !rq_has_pinned_tasks(rq),
9537 TASK_UNINTERRUPTIBLE);
9538}
9539
9540#else
9541
9542static inline void balance_push(struct rq *rq)
9543{
9544}
9545
9546static inline void balance_push_set(int cpu, bool on)
9547{
9548}
9549
9550static inline void balance_hotplug_wait(void)
9551{
9552}
9553
9554#endif /* CONFIG_HOTPLUG_CPU */
9555
9556void set_rq_online(struct rq *rq)
9557{
9558 if (!rq->online) {
9559 const struct sched_class *class;
9560
9561 cpumask_set_cpu(rq->cpu, rq->rd->online);
9562 rq->online = 1;
9563
9564 for_each_class(class) {
9565 if (class->rq_online)
9566 class->rq_online(rq);
9567 }
9568 }
9569}
9570
9571void set_rq_offline(struct rq *rq)
9572{
9573 if (rq->online) {
9574 const struct sched_class *class;
9575
9576 update_rq_clock(rq);
9577 for_each_class(class) {
9578 if (class->rq_offline)
9579 class->rq_offline(rq);
9580 }
9581
9582 cpumask_clear_cpu(rq->cpu, rq->rd->online);
9583 rq->online = 0;
9584 }
9585}
9586
9587/*
9588 * used to mark begin/end of suspend/resume:
9589 */
9590static int num_cpus_frozen;
9591
9592/*
9593 * Update cpusets according to cpu_active mask. If cpusets are
9594 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
9595 * around partition_sched_domains().
9596 *
9597 * If we come here as part of a suspend/resume, don't touch cpusets because we
9598 * want to restore it back to its original state upon resume anyway.
9599 */
9600static void cpuset_cpu_active(void)
9601{
9602 if (cpuhp_tasks_frozen) {
9603 /*
9604 * num_cpus_frozen tracks how many CPUs are involved in suspend
9605 * resume sequence. As long as this is not the last online
9606 * operation in the resume sequence, just build a single sched
9607 * domain, ignoring cpusets.
9608 */
9609 partition_sched_domains(1, NULL, NULL);
9610 if (--num_cpus_frozen)
9611 return;
9612 /*
9613 * This is the last CPU online operation. So fall through and
9614 * restore the original sched domains by considering the
9615 * cpuset configurations.
9616 */
9617 cpuset_force_rebuild();
9618 }
9619 cpuset_update_active_cpus();
9620}
9621
9622static int cpuset_cpu_inactive(unsigned int cpu)
9623{
9624 if (!cpuhp_tasks_frozen) {
9625 int ret = dl_bw_check_overflow(cpu);
9626
9627 if (ret)
9628 return ret;
9629 cpuset_update_active_cpus();
9630 } else {
9631 num_cpus_frozen++;
9632 partition_sched_domains(1, NULL, NULL);
9633 }
9634 return 0;
9635}
9636
9637int sched_cpu_activate(unsigned int cpu)
9638{
9639 struct rq *rq = cpu_rq(cpu);
9640 struct rq_flags rf;
9641
9642 /*
9643 * Clear the balance_push callback and prepare to schedule
9644 * regular tasks.
9645 */
9646 balance_push_set(cpu, false);
9647
9648#ifdef CONFIG_SCHED_SMT
9649 /*
9650 * When going up, increment the number of cores with SMT present.
9651 */
9652 if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
9653 static_branch_inc_cpuslocked(&sched_smt_present);
9654#endif
9655 set_cpu_active(cpu, true);
9656
9657 if (sched_smp_initialized) {
9658 sched_update_numa(cpu, true);
9659 sched_domains_numa_masks_set(cpu);
9660 cpuset_cpu_active();
9661 }
9662
9663 /*
9664 * Put the rq online, if not already. This happens:
9665 *
9666 * 1) In the early boot process, because we build the real domains
9667 * after all CPUs have been brought up.
9668 *
9669 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
9670 * domains.
9671 */
9672 rq_lock_irqsave(rq, &rf);
9673 if (rq->rd) {
9674 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
9675 set_rq_online(rq);
9676 }
9677 rq_unlock_irqrestore(rq, &rf);
9678
9679 return 0;
9680}
9681
9682int sched_cpu_deactivate(unsigned int cpu)
9683{
9684 struct rq *rq = cpu_rq(cpu);
9685 struct rq_flags rf;
9686 int ret;
9687
9688 /*
9689 * Remove CPU from nohz.idle_cpus_mask to prevent participating in
9690 * load balancing when not active
9691 */
9692 nohz_balance_exit_idle(rq);
9693
9694 set_cpu_active(cpu, false);
9695
9696 /*
9697 * From this point forward, this CPU will refuse to run any task that
9698 * is not: migrate_disable() or KTHREAD_IS_PER_CPU, and will actively
9699 * push those tasks away until this gets cleared, see
9700 * sched_cpu_dying().
9701 */
9702 balance_push_set(cpu, true);
9703
9704 /*
9705 * We've cleared cpu_active_mask / set balance_push, wait for all
9706 * preempt-disabled and RCU users of this state to go away such that
9707 * all new such users will observe it.
9708 *
9709 * Specifically, we rely on ttwu to no longer target this CPU, see
9710 * ttwu_queue_cond() and is_cpu_allowed().
9711 *
9712 * Do sync before park smpboot threads to take care the rcu boost case.
9713 */
9714 synchronize_rcu();
9715
9716 rq_lock_irqsave(rq, &rf);
9717 if (rq->rd) {
9718 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
9719 set_rq_offline(rq);
9720 }
9721 rq_unlock_irqrestore(rq, &rf);
9722
9723#ifdef CONFIG_SCHED_SMT
9724 /*
9725 * When going down, decrement the number of cores with SMT present.
9726 */
9727 if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
9728 static_branch_dec_cpuslocked(&sched_smt_present);
9729
9730 sched_core_cpu_deactivate(cpu);
9731#endif
9732
9733 if (!sched_smp_initialized)
9734 return 0;
9735
9736 sched_update_numa(cpu, false);
9737 ret = cpuset_cpu_inactive(cpu);
9738 if (ret) {
9739 balance_push_set(cpu, false);
9740 set_cpu_active(cpu, true);
9741 sched_update_numa(cpu, true);
9742 return ret;
9743 }
9744 sched_domains_numa_masks_clear(cpu);
9745 return 0;
9746}
9747
9748static void sched_rq_cpu_starting(unsigned int cpu)
9749{
9750 struct rq *rq = cpu_rq(cpu);
9751
9752 rq->calc_load_update = calc_load_update;
9753 update_max_interval();
9754}
9755
9756int sched_cpu_starting(unsigned int cpu)
9757{
9758 sched_core_cpu_starting(cpu);
9759 sched_rq_cpu_starting(cpu);
9760 sched_tick_start(cpu);
9761 return 0;
9762}
9763
9764#ifdef CONFIG_HOTPLUG_CPU
9765
9766/*
9767 * Invoked immediately before the stopper thread is invoked to bring the
9768 * CPU down completely. At this point all per CPU kthreads except the
9769 * hotplug thread (current) and the stopper thread (inactive) have been
9770 * either parked or have been unbound from the outgoing CPU. Ensure that
9771 * any of those which might be on the way out are gone.
9772 *
9773 * If after this point a bound task is being woken on this CPU then the
9774 * responsible hotplug callback has failed to do it's job.
9775 * sched_cpu_dying() will catch it with the appropriate fireworks.
9776 */
9777int sched_cpu_wait_empty(unsigned int cpu)
9778{
9779 balance_hotplug_wait();
9780 return 0;
9781}
9782
9783/*
9784 * Since this CPU is going 'away' for a while, fold any nr_active delta we
9785 * might have. Called from the CPU stopper task after ensuring that the
9786 * stopper is the last running task on the CPU, so nr_active count is
9787 * stable. We need to take the teardown thread which is calling this into
9788 * account, so we hand in adjust = 1 to the load calculation.
9789 *
9790 * Also see the comment "Global load-average calculations".
9791 */
9792static void calc_load_migrate(struct rq *rq)
9793{
9794 long delta = calc_load_fold_active(rq, 1);
9795
9796 if (delta)
9797 atomic_long_add(delta, &calc_load_tasks);
9798}
9799
9800static void dump_rq_tasks(struct rq *rq, const char *loglvl)
9801{
9802 struct task_struct *g, *p;
9803 int cpu = cpu_of(rq);
9804
9805 lockdep_assert_rq_held(rq);
9806
9807 printk("%sCPU%d enqueued tasks (%u total):\n", loglvl, cpu, rq->nr_running);
9808 for_each_process_thread(g, p) {
9809 if (task_cpu(p) != cpu)
9810 continue;
9811
9812 if (!task_on_rq_queued(p))
9813 continue;
9814
9815 printk("%s\tpid: %d, name: %s\n", loglvl, p->pid, p->comm);
9816 }
9817}
9818
9819int sched_cpu_dying(unsigned int cpu)
9820{
9821 struct rq *rq = cpu_rq(cpu);
9822 struct rq_flags rf;
9823
9824 /* Handle pending wakeups and then migrate everything off */
9825 sched_tick_stop(cpu);
9826
9827 rq_lock_irqsave(rq, &rf);
9828 if (rq->nr_running != 1 || rq_has_pinned_tasks(rq)) {
9829 WARN(true, "Dying CPU not properly vacated!");
9830 dump_rq_tasks(rq, KERN_WARNING);
9831 }
9832 rq_unlock_irqrestore(rq, &rf);
9833
9834 calc_load_migrate(rq);
9835 update_max_interval();
9836 hrtick_clear(rq);
9837 sched_core_cpu_dying(cpu);
9838 return 0;
9839}
9840#endif
9841
9842void __init sched_init_smp(void)
9843{
9844 sched_init_numa(NUMA_NO_NODE);
9845
9846 /*
9847 * There's no userspace yet to cause hotplug operations; hence all the
9848 * CPU masks are stable and all blatant races in the below code cannot
9849 * happen.
9850 */
9851 mutex_lock(&sched_domains_mutex);
9852 sched_init_domains(cpu_active_mask);
9853 mutex_unlock(&sched_domains_mutex);
9854
9855 /* Move init over to a non-isolated CPU */
9856 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_TYPE_DOMAIN)) < 0)
9857 BUG();
9858 current->flags &= ~PF_NO_SETAFFINITY;
9859 sched_init_granularity();
9860
9861 init_sched_rt_class();
9862 init_sched_dl_class();
9863
9864 sched_smp_initialized = true;
9865}
9866
9867static int __init migration_init(void)
9868{
9869 sched_cpu_starting(smp_processor_id());
9870 return 0;
9871}
9872early_initcall(migration_init);
9873
9874#else
9875void __init sched_init_smp(void)
9876{
9877 sched_init_granularity();
9878}
9879#endif /* CONFIG_SMP */
9880
9881int in_sched_functions(unsigned long addr)
9882{
9883 return in_lock_functions(addr) ||
9884 (addr >= (unsigned long)__sched_text_start
9885 && addr < (unsigned long)__sched_text_end);
9886}
9887
9888#ifdef CONFIG_CGROUP_SCHED
9889/*
9890 * Default task group.
9891 * Every task in system belongs to this group at bootup.
9892 */
9893struct task_group root_task_group;
9894LIST_HEAD(task_groups);
9895
9896/* Cacheline aligned slab cache for task_group */
9897static struct kmem_cache *task_group_cache __ro_after_init;
9898#endif
9899
9900void __init sched_init(void)
9901{
9902 unsigned long ptr = 0;
9903 int i;
9904
9905 /* Make sure the linker didn't screw up */
9906 BUG_ON(&idle_sched_class != &fair_sched_class + 1 ||
9907 &fair_sched_class != &rt_sched_class + 1 ||
9908 &rt_sched_class != &dl_sched_class + 1);
9909#ifdef CONFIG_SMP
9910 BUG_ON(&dl_sched_class != &stop_sched_class + 1);
9911#endif
9912
9913 wait_bit_init();
9914
9915#ifdef CONFIG_FAIR_GROUP_SCHED
9916 ptr += 2 * nr_cpu_ids * sizeof(void **);
9917#endif
9918#ifdef CONFIG_RT_GROUP_SCHED
9919 ptr += 2 * nr_cpu_ids * sizeof(void **);
9920#endif
9921 if (ptr) {
9922 ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT);
9923
9924#ifdef CONFIG_FAIR_GROUP_SCHED
9925 root_task_group.se = (struct sched_entity **)ptr;
9926 ptr += nr_cpu_ids * sizeof(void **);
9927
9928 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
9929 ptr += nr_cpu_ids * sizeof(void **);
9930
9931 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
9932 init_cfs_bandwidth(&root_task_group.cfs_bandwidth, NULL);
9933#endif /* CONFIG_FAIR_GROUP_SCHED */
9934#ifdef CONFIG_RT_GROUP_SCHED
9935 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
9936 ptr += nr_cpu_ids * sizeof(void **);
9937
9938 root_task_group.rt_rq = (struct rt_rq **)ptr;
9939 ptr += nr_cpu_ids * sizeof(void **);
9940
9941#endif /* CONFIG_RT_GROUP_SCHED */
9942 }
9943
9944 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
9945
9946#ifdef CONFIG_SMP
9947 init_defrootdomain();
9948#endif
9949
9950#ifdef CONFIG_RT_GROUP_SCHED
9951 init_rt_bandwidth(&root_task_group.rt_bandwidth,
9952 global_rt_period(), global_rt_runtime());
9953#endif /* CONFIG_RT_GROUP_SCHED */
9954
9955#ifdef CONFIG_CGROUP_SCHED
9956 task_group_cache = KMEM_CACHE(task_group, 0);
9957
9958 list_add(&root_task_group.list, &task_groups);
9959 INIT_LIST_HEAD(&root_task_group.children);
9960 INIT_LIST_HEAD(&root_task_group.siblings);
9961 autogroup_init(&init_task);
9962#endif /* CONFIG_CGROUP_SCHED */
9963
9964 for_each_possible_cpu(i) {
9965 struct rq *rq;
9966
9967 rq = cpu_rq(i);
9968 raw_spin_lock_init(&rq->__lock);
9969 rq->nr_running = 0;
9970 rq->calc_load_active = 0;
9971 rq->calc_load_update = jiffies + LOAD_FREQ;
9972 init_cfs_rq(&rq->cfs);
9973 init_rt_rq(&rq->rt);
9974 init_dl_rq(&rq->dl);
9975#ifdef CONFIG_FAIR_GROUP_SCHED
9976 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
9977 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
9978 /*
9979 * How much CPU bandwidth does root_task_group get?
9980 *
9981 * In case of task-groups formed thr' the cgroup filesystem, it
9982 * gets 100% of the CPU resources in the system. This overall
9983 * system CPU resource is divided among the tasks of
9984 * root_task_group and its child task-groups in a fair manner,
9985 * based on each entity's (task or task-group's) weight
9986 * (se->load.weight).
9987 *
9988 * In other words, if root_task_group has 10 tasks of weight
9989 * 1024) and two child groups A0 and A1 (of weight 1024 each),
9990 * then A0's share of the CPU resource is:
9991 *
9992 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
9993 *
9994 * We achieve this by letting root_task_group's tasks sit
9995 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
9996 */
9997 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
9998#endif /* CONFIG_FAIR_GROUP_SCHED */
9999
10000 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
10001#ifdef CONFIG_RT_GROUP_SCHED
10002 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
10003#endif
10004#ifdef CONFIG_SMP
10005 rq->sd = NULL;
10006 rq->rd = NULL;
10007 rq->cpu_capacity = SCHED_CAPACITY_SCALE;
10008 rq->balance_callback = &balance_push_callback;
10009 rq->active_balance = 0;
10010 rq->next_balance = jiffies;
10011 rq->push_cpu = 0;
10012 rq->cpu = i;
10013 rq->online = 0;
10014 rq->idle_stamp = 0;
10015 rq->avg_idle = 2*sysctl_sched_migration_cost;
10016 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
10017
10018 INIT_LIST_HEAD(&rq->cfs_tasks);
10019
10020 rq_attach_root(rq, &def_root_domain);
10021#ifdef CONFIG_NO_HZ_COMMON
10022 rq->last_blocked_load_update_tick = jiffies;
10023 atomic_set(&rq->nohz_flags, 0);
10024
10025 INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq);
10026#endif
10027#ifdef CONFIG_HOTPLUG_CPU
10028 rcuwait_init(&rq->hotplug_wait);
10029#endif
10030#endif /* CONFIG_SMP */
10031 hrtick_rq_init(rq);
10032 atomic_set(&rq->nr_iowait, 0);
10033
10034#ifdef CONFIG_SCHED_CORE
10035 rq->core = rq;
10036 rq->core_pick = NULL;
10037 rq->core_enabled = 0;
10038 rq->core_tree = RB_ROOT;
10039 rq->core_forceidle_count = 0;
10040 rq->core_forceidle_occupation = 0;
10041 rq->core_forceidle_start = 0;
10042
10043 rq->core_cookie = 0UL;
10044#endif
10045 zalloc_cpumask_var_node(&rq->scratch_mask, GFP_KERNEL, cpu_to_node(i));
10046 }
10047
10048 set_load_weight(&init_task, false);
10049
10050 /*
10051 * The boot idle thread does lazy MMU switching as well:
10052 */
10053 mmgrab_lazy_tlb(&init_mm);
10054 enter_lazy_tlb(&init_mm, current);
10055
10056 /*
10057 * The idle task doesn't need the kthread struct to function, but it
10058 * is dressed up as a per-CPU kthread and thus needs to play the part
10059 * if we want to avoid special-casing it in code that deals with per-CPU
10060 * kthreads.
10061 */
10062 WARN_ON(!set_kthread_struct(current));
10063
10064 /*
10065 * Make us the idle thread. Technically, schedule() should not be
10066 * called from this thread, however somewhere below it might be,
10067 * but because we are the idle thread, we just pick up running again
10068 * when this runqueue becomes "idle".
10069 */
10070 init_idle(current, smp_processor_id());
10071
10072 calc_load_update = jiffies + LOAD_FREQ;
10073
10074#ifdef CONFIG_SMP
10075 idle_thread_set_boot_cpu();
10076 balance_push_set(smp_processor_id(), false);
10077#endif
10078 init_sched_fair_class();
10079
10080 psi_init();
10081
10082 init_uclamp();
10083
10084 preempt_dynamic_init();
10085
10086 scheduler_running = 1;
10087}
10088
10089#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
10090
10091void __might_sleep(const char *file, int line)
10092{
10093 unsigned int state = get_current_state();
10094 /*
10095 * Blocking primitives will set (and therefore destroy) current->state,
10096 * since we will exit with TASK_RUNNING make sure we enter with it,
10097 * otherwise we will destroy state.
10098 */
10099 WARN_ONCE(state != TASK_RUNNING && current->task_state_change,
10100 "do not call blocking ops when !TASK_RUNNING; "
10101 "state=%x set at [<%p>] %pS\n", state,
10102 (void *)current->task_state_change,
10103 (void *)current->task_state_change);
10104
10105 __might_resched(file, line, 0);
10106}
10107EXPORT_SYMBOL(__might_sleep);
10108
10109static void print_preempt_disable_ip(int preempt_offset, unsigned long ip)
10110{
10111 if (!IS_ENABLED(CONFIG_DEBUG_PREEMPT))
10112 return;
10113
10114 if (preempt_count() == preempt_offset)
10115 return;
10116
10117 pr_err("Preemption disabled at:");
10118 print_ip_sym(KERN_ERR, ip);
10119}
10120
10121static inline bool resched_offsets_ok(unsigned int offsets)
10122{
10123 unsigned int nested = preempt_count();
10124
10125 nested += rcu_preempt_depth() << MIGHT_RESCHED_RCU_SHIFT;
10126
10127 return nested == offsets;
10128}
10129
10130void __might_resched(const char *file, int line, unsigned int offsets)
10131{
10132 /* Ratelimiting timestamp: */
10133 static unsigned long prev_jiffy;
10134
10135 unsigned long preempt_disable_ip;
10136
10137 /* WARN_ON_ONCE() by default, no rate limit required: */
10138 rcu_sleep_check();
10139
10140 if ((resched_offsets_ok(offsets) && !irqs_disabled() &&
10141 !is_idle_task(current) && !current->non_block_count) ||
10142 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
10143 oops_in_progress)
10144 return;
10145
10146 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
10147 return;
10148 prev_jiffy = jiffies;
10149
10150 /* Save this before calling printk(), since that will clobber it: */
10151 preempt_disable_ip = get_preempt_disable_ip(current);
10152
10153 pr_err("BUG: sleeping function called from invalid context at %s:%d\n",
10154 file, line);
10155 pr_err("in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
10156 in_atomic(), irqs_disabled(), current->non_block_count,
10157 current->pid, current->comm);
10158 pr_err("preempt_count: %x, expected: %x\n", preempt_count(),
10159 offsets & MIGHT_RESCHED_PREEMPT_MASK);
10160
10161 if (IS_ENABLED(CONFIG_PREEMPT_RCU)) {
10162 pr_err("RCU nest depth: %d, expected: %u\n",
10163 rcu_preempt_depth(), offsets >> MIGHT_RESCHED_RCU_SHIFT);
10164 }
10165
10166 if (task_stack_end_corrupted(current))
10167 pr_emerg("Thread overran stack, or stack corrupted\n");
10168
10169 debug_show_held_locks(current);
10170 if (irqs_disabled())
10171 print_irqtrace_events(current);
10172
10173 print_preempt_disable_ip(offsets & MIGHT_RESCHED_PREEMPT_MASK,
10174 preempt_disable_ip);
10175
10176 dump_stack();
10177 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
10178}
10179EXPORT_SYMBOL(__might_resched);
10180
10181void __cant_sleep(const char *file, int line, int preempt_offset)
10182{
10183 static unsigned long prev_jiffy;
10184
10185 if (irqs_disabled())
10186 return;
10187
10188 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
10189 return;
10190
10191 if (preempt_count() > preempt_offset)
10192 return;
10193
10194 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
10195 return;
10196 prev_jiffy = jiffies;
10197
10198 printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
10199 printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
10200 in_atomic(), irqs_disabled(),
10201 current->pid, current->comm);
10202
10203 debug_show_held_locks(current);
10204 dump_stack();
10205 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
10206}
10207EXPORT_SYMBOL_GPL(__cant_sleep);
10208
10209#ifdef CONFIG_SMP
10210void __cant_migrate(const char *file, int line)
10211{
10212 static unsigned long prev_jiffy;
10213
10214 if (irqs_disabled())
10215 return;
10216
10217 if (is_migration_disabled(current))
10218 return;
10219
10220 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
10221 return;
10222
10223 if (preempt_count() > 0)
10224 return;
10225
10226 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
10227 return;
10228 prev_jiffy = jiffies;
10229
10230 pr_err("BUG: assuming non migratable context at %s:%d\n", file, line);
10231 pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n",
10232 in_atomic(), irqs_disabled(), is_migration_disabled(current),
10233 current->pid, current->comm);
10234
10235 debug_show_held_locks(current);
10236 dump_stack();
10237 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
10238}
10239EXPORT_SYMBOL_GPL(__cant_migrate);
10240#endif
10241#endif
10242
10243#ifdef CONFIG_MAGIC_SYSRQ
10244void normalize_rt_tasks(void)
10245{
10246 struct task_struct *g, *p;
10247 struct sched_attr attr = {
10248 .sched_policy = SCHED_NORMAL,
10249 };
10250
10251 read_lock(&tasklist_lock);
10252 for_each_process_thread(g, p) {
10253 /*
10254 * Only normalize user tasks:
10255 */
10256 if (p->flags & PF_KTHREAD)
10257 continue;
10258
10259 p->se.exec_start = 0;
10260 schedstat_set(p->stats.wait_start, 0);
10261 schedstat_set(p->stats.sleep_start, 0);
10262 schedstat_set(p->stats.block_start, 0);
10263
10264 if (!dl_task(p) && !rt_task(p)) {
10265 /*
10266 * Renice negative nice level userspace
10267 * tasks back to 0:
10268 */
10269 if (task_nice(p) < 0)
10270 set_user_nice(p, 0);
10271 continue;
10272 }
10273
10274 __sched_setscheduler(p, &attr, false, false);
10275 }
10276 read_unlock(&tasklist_lock);
10277}
10278
10279#endif /* CONFIG_MAGIC_SYSRQ */
10280
10281#if defined(CONFIG_KGDB_KDB)
10282/*
10283 * These functions are only useful for kdb.
10284 *
10285 * They can only be called when the whole system has been
10286 * stopped - every CPU needs to be quiescent, and no scheduling
10287 * activity can take place. Using them for anything else would
10288 * be a serious bug, and as a result, they aren't even visible
10289 * under any other configuration.
10290 */
10291
10292/**
10293 * curr_task - return the current task for a given CPU.
10294 * @cpu: the processor in question.
10295 *
10296 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
10297 *
10298 * Return: The current task for @cpu.
10299 */
10300struct task_struct *curr_task(int cpu)
10301{
10302 return cpu_curr(cpu);
10303}
10304
10305#endif /* defined(CONFIG_KGDB_KDB) */
10306
10307#ifdef CONFIG_CGROUP_SCHED
10308/* task_group_lock serializes the addition/removal of task groups */
10309static DEFINE_SPINLOCK(task_group_lock);
10310
10311static inline void alloc_uclamp_sched_group(struct task_group *tg,
10312 struct task_group *parent)
10313{
10314#ifdef CONFIG_UCLAMP_TASK_GROUP
10315 enum uclamp_id clamp_id;
10316
10317 for_each_clamp_id(clamp_id) {
10318 uclamp_se_set(&tg->uclamp_req[clamp_id],
10319 uclamp_none(clamp_id), false);
10320 tg->uclamp[clamp_id] = parent->uclamp[clamp_id];
10321 }
10322#endif
10323}
10324
10325static void sched_free_group(struct task_group *tg)
10326{
10327 free_fair_sched_group(tg);
10328 free_rt_sched_group(tg);
10329 autogroup_free(tg);
10330 kmem_cache_free(task_group_cache, tg);
10331}
10332
10333static void sched_free_group_rcu(struct rcu_head *rcu)
10334{
10335 sched_free_group(container_of(rcu, struct task_group, rcu));
10336}
10337
10338static void sched_unregister_group(struct task_group *tg)
10339{
10340 unregister_fair_sched_group(tg);
10341 unregister_rt_sched_group(tg);
10342 /*
10343 * We have to wait for yet another RCU grace period to expire, as
10344 * print_cfs_stats() might run concurrently.
10345 */
10346 call_rcu(&tg->rcu, sched_free_group_rcu);
10347}
10348
10349/* allocate runqueue etc for a new task group */
10350struct task_group *sched_create_group(struct task_group *parent)
10351{
10352 struct task_group *tg;
10353
10354 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
10355 if (!tg)
10356 return ERR_PTR(-ENOMEM);
10357
10358 if (!alloc_fair_sched_group(tg, parent))
10359 goto err;
10360
10361 if (!alloc_rt_sched_group(tg, parent))
10362 goto err;
10363
10364 alloc_uclamp_sched_group(tg, parent);
10365
10366 return tg;
10367
10368err:
10369 sched_free_group(tg);
10370 return ERR_PTR(-ENOMEM);
10371}
10372
10373void sched_online_group(struct task_group *tg, struct task_group *parent)
10374{
10375 unsigned long flags;
10376
10377 spin_lock_irqsave(&task_group_lock, flags);
10378 list_add_rcu(&tg->list, &task_groups);
10379
10380 /* Root should already exist: */
10381 WARN_ON(!parent);
10382
10383 tg->parent = parent;
10384 INIT_LIST_HEAD(&tg->children);
10385 list_add_rcu(&tg->siblings, &parent->children);
10386 spin_unlock_irqrestore(&task_group_lock, flags);
10387
10388 online_fair_sched_group(tg);
10389}
10390
10391/* rcu callback to free various structures associated with a task group */
10392static void sched_unregister_group_rcu(struct rcu_head *rhp)
10393{
10394 /* Now it should be safe to free those cfs_rqs: */
10395 sched_unregister_group(container_of(rhp, struct task_group, rcu));
10396}
10397
10398void sched_destroy_group(struct task_group *tg)
10399{
10400 /* Wait for possible concurrent references to cfs_rqs complete: */
10401 call_rcu(&tg->rcu, sched_unregister_group_rcu);
10402}
10403
10404void sched_release_group(struct task_group *tg)
10405{
10406 unsigned long flags;
10407
10408 /*
10409 * Unlink first, to avoid walk_tg_tree_from() from finding us (via
10410 * sched_cfs_period_timer()).
10411 *
10412 * For this to be effective, we have to wait for all pending users of
10413 * this task group to leave their RCU critical section to ensure no new
10414 * user will see our dying task group any more. Specifically ensure
10415 * that tg_unthrottle_up() won't add decayed cfs_rq's to it.
10416 *
10417 * We therefore defer calling unregister_fair_sched_group() to
10418 * sched_unregister_group() which is guarantied to get called only after the
10419 * current RCU grace period has expired.
10420 */
10421 spin_lock_irqsave(&task_group_lock, flags);
10422 list_del_rcu(&tg->list);
10423 list_del_rcu(&tg->siblings);
10424 spin_unlock_irqrestore(&task_group_lock, flags);
10425}
10426
10427static struct task_group *sched_get_task_group(struct task_struct *tsk)
10428{
10429 struct task_group *tg;
10430
10431 /*
10432 * All callers are synchronized by task_rq_lock(); we do not use RCU
10433 * which is pointless here. Thus, we pass "true" to task_css_check()
10434 * to prevent lockdep warnings.
10435 */
10436 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
10437 struct task_group, css);
10438 tg = autogroup_task_group(tsk, tg);
10439
10440 return tg;
10441}
10442
10443static void sched_change_group(struct task_struct *tsk, struct task_group *group)
10444{
10445 tsk->sched_task_group = group;
10446
10447#ifdef CONFIG_FAIR_GROUP_SCHED
10448 if (tsk->sched_class->task_change_group)
10449 tsk->sched_class->task_change_group(tsk);
10450 else
10451#endif
10452 set_task_rq(tsk, task_cpu(tsk));
10453}
10454
10455/*
10456 * Change task's runqueue when it moves between groups.
10457 *
10458 * The caller of this function should have put the task in its new group by
10459 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
10460 * its new group.
10461 */
10462void sched_move_task(struct task_struct *tsk)
10463{
10464 int queued, running, queue_flags =
10465 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
10466 struct task_group *group;
10467 struct rq *rq;
10468
10469 CLASS(task_rq_lock, rq_guard)(tsk);
10470 rq = rq_guard.rq;
10471
10472 /*
10473 * Esp. with SCHED_AUTOGROUP enabled it is possible to get superfluous
10474 * group changes.
10475 */
10476 group = sched_get_task_group(tsk);
10477 if (group == tsk->sched_task_group)
10478 return;
10479
10480 update_rq_clock(rq);
10481
10482 running = task_current(rq, tsk);
10483 queued = task_on_rq_queued(tsk);
10484
10485 if (queued)
10486 dequeue_task(rq, tsk, queue_flags);
10487 if (running)
10488 put_prev_task(rq, tsk);
10489
10490 sched_change_group(tsk, group);
10491
10492 if (queued)
10493 enqueue_task(rq, tsk, queue_flags);
10494 if (running) {
10495 set_next_task(rq, tsk);
10496 /*
10497 * After changing group, the running task may have joined a
10498 * throttled one but it's still the running task. Trigger a
10499 * resched to make sure that task can still run.
10500 */
10501 resched_curr(rq);
10502 }
10503}
10504
10505static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
10506{
10507 return css ? container_of(css, struct task_group, css) : NULL;
10508}
10509
10510static struct cgroup_subsys_state *
10511cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
10512{
10513 struct task_group *parent = css_tg(parent_css);
10514 struct task_group *tg;
10515
10516 if (!parent) {
10517 /* This is early initialization for the top cgroup */
10518 return &root_task_group.css;
10519 }
10520
10521 tg = sched_create_group(parent);
10522 if (IS_ERR(tg))
10523 return ERR_PTR(-ENOMEM);
10524
10525 return &tg->css;
10526}
10527
10528/* Expose task group only after completing cgroup initialization */
10529static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
10530{
10531 struct task_group *tg = css_tg(css);
10532 struct task_group *parent = css_tg(css->parent);
10533
10534 if (parent)
10535 sched_online_group(tg, parent);
10536
10537#ifdef CONFIG_UCLAMP_TASK_GROUP
10538 /* Propagate the effective uclamp value for the new group */
10539 guard(mutex)(&uclamp_mutex);
10540 guard(rcu)();
10541 cpu_util_update_eff(css);
10542#endif
10543
10544 return 0;
10545}
10546
10547static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
10548{
10549 struct task_group *tg = css_tg(css);
10550
10551 sched_release_group(tg);
10552}
10553
10554static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
10555{
10556 struct task_group *tg = css_tg(css);
10557
10558 /*
10559 * Relies on the RCU grace period between css_released() and this.
10560 */
10561 sched_unregister_group(tg);
10562}
10563
10564#ifdef CONFIG_RT_GROUP_SCHED
10565static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
10566{
10567 struct task_struct *task;
10568 struct cgroup_subsys_state *css;
10569
10570 cgroup_taskset_for_each(task, css, tset) {
10571 if (!sched_rt_can_attach(css_tg(css), task))
10572 return -EINVAL;
10573 }
10574 return 0;
10575}
10576#endif
10577
10578static void cpu_cgroup_attach(struct cgroup_taskset *tset)
10579{
10580 struct task_struct *task;
10581 struct cgroup_subsys_state *css;
10582
10583 cgroup_taskset_for_each(task, css, tset)
10584 sched_move_task(task);
10585}
10586
10587#ifdef CONFIG_UCLAMP_TASK_GROUP
10588static void cpu_util_update_eff(struct cgroup_subsys_state *css)
10589{
10590 struct cgroup_subsys_state *top_css = css;
10591 struct uclamp_se *uc_parent = NULL;
10592 struct uclamp_se *uc_se = NULL;
10593 unsigned int eff[UCLAMP_CNT];
10594 enum uclamp_id clamp_id;
10595 unsigned int clamps;
10596
10597 lockdep_assert_held(&uclamp_mutex);
10598 SCHED_WARN_ON(!rcu_read_lock_held());
10599
10600 css_for_each_descendant_pre(css, top_css) {
10601 uc_parent = css_tg(css)->parent
10602 ? css_tg(css)->parent->uclamp : NULL;
10603
10604 for_each_clamp_id(clamp_id) {
10605 /* Assume effective clamps matches requested clamps */
10606 eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value;
10607 /* Cap effective clamps with parent's effective clamps */
10608 if (uc_parent &&
10609 eff[clamp_id] > uc_parent[clamp_id].value) {
10610 eff[clamp_id] = uc_parent[clamp_id].value;
10611 }
10612 }
10613 /* Ensure protection is always capped by limit */
10614 eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
10615
10616 /* Propagate most restrictive effective clamps */
10617 clamps = 0x0;
10618 uc_se = css_tg(css)->uclamp;
10619 for_each_clamp_id(clamp_id) {
10620 if (eff[clamp_id] == uc_se[clamp_id].value)
10621 continue;
10622 uc_se[clamp_id].value = eff[clamp_id];
10623 uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]);
10624 clamps |= (0x1 << clamp_id);
10625 }
10626 if (!clamps) {
10627 css = css_rightmost_descendant(css);
10628 continue;
10629 }
10630
10631 /* Immediately update descendants RUNNABLE tasks */
10632 uclamp_update_active_tasks(css);
10633 }
10634}
10635
10636/*
10637 * Integer 10^N with a given N exponent by casting to integer the literal "1eN"
10638 * C expression. Since there is no way to convert a macro argument (N) into a
10639 * character constant, use two levels of macros.
10640 */
10641#define _POW10(exp) ((unsigned int)1e##exp)
10642#define POW10(exp) _POW10(exp)
10643
10644struct uclamp_request {
10645#define UCLAMP_PERCENT_SHIFT 2
10646#define UCLAMP_PERCENT_SCALE (100 * POW10(UCLAMP_PERCENT_SHIFT))
10647 s64 percent;
10648 u64 util;
10649 int ret;
10650};
10651
10652static inline struct uclamp_request
10653capacity_from_percent(char *buf)
10654{
10655 struct uclamp_request req = {
10656 .percent = UCLAMP_PERCENT_SCALE,
10657 .util = SCHED_CAPACITY_SCALE,
10658 .ret = 0,
10659 };
10660
10661 buf = strim(buf);
10662 if (strcmp(buf, "max")) {
10663 req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT,
10664 &req.percent);
10665 if (req.ret)
10666 return req;
10667 if ((u64)req.percent > UCLAMP_PERCENT_SCALE) {
10668 req.ret = -ERANGE;
10669 return req;
10670 }
10671
10672 req.util = req.percent << SCHED_CAPACITY_SHIFT;
10673 req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
10674 }
10675
10676 return req;
10677}
10678
10679static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
10680 size_t nbytes, loff_t off,
10681 enum uclamp_id clamp_id)
10682{
10683 struct uclamp_request req;
10684 struct task_group *tg;
10685
10686 req = capacity_from_percent(buf);
10687 if (req.ret)
10688 return req.ret;
10689
10690 static_branch_enable(&sched_uclamp_used);
10691
10692 guard(mutex)(&uclamp_mutex);
10693 guard(rcu)();
10694
10695 tg = css_tg(of_css(of));
10696 if (tg->uclamp_req[clamp_id].value != req.util)
10697 uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false);
10698
10699 /*
10700 * Because of not recoverable conversion rounding we keep track of the
10701 * exact requested value
10702 */
10703 tg->uclamp_pct[clamp_id] = req.percent;
10704
10705 /* Update effective clamps to track the most restrictive value */
10706 cpu_util_update_eff(of_css(of));
10707
10708 return nbytes;
10709}
10710
10711static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
10712 char *buf, size_t nbytes,
10713 loff_t off)
10714{
10715 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN);
10716}
10717
10718static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
10719 char *buf, size_t nbytes,
10720 loff_t off)
10721{
10722 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX);
10723}
10724
10725static inline void cpu_uclamp_print(struct seq_file *sf,
10726 enum uclamp_id clamp_id)
10727{
10728 struct task_group *tg;
10729 u64 util_clamp;
10730 u64 percent;
10731 u32 rem;
10732
10733 scoped_guard (rcu) {
10734 tg = css_tg(seq_css(sf));
10735 util_clamp = tg->uclamp_req[clamp_id].value;
10736 }
10737
10738 if (util_clamp == SCHED_CAPACITY_SCALE) {
10739 seq_puts(sf, "max\n");
10740 return;
10741 }
10742
10743 percent = tg->uclamp_pct[clamp_id];
10744 percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem);
10745 seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
10746}
10747
10748static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
10749{
10750 cpu_uclamp_print(sf, UCLAMP_MIN);
10751 return 0;
10752}
10753
10754static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
10755{
10756 cpu_uclamp_print(sf, UCLAMP_MAX);
10757 return 0;
10758}
10759#endif /* CONFIG_UCLAMP_TASK_GROUP */
10760
10761#ifdef CONFIG_FAIR_GROUP_SCHED
10762static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
10763 struct cftype *cftype, u64 shareval)
10764{
10765 if (shareval > scale_load_down(ULONG_MAX))
10766 shareval = MAX_SHARES;
10767 return sched_group_set_shares(css_tg(css), scale_load(shareval));
10768}
10769
10770static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
10771 struct cftype *cft)
10772{
10773 struct task_group *tg = css_tg(css);
10774
10775 return (u64) scale_load_down(tg->shares);
10776}
10777
10778#ifdef CONFIG_CFS_BANDWIDTH
10779static DEFINE_MUTEX(cfs_constraints_mutex);
10780
10781const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
10782static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
10783/* More than 203 days if BW_SHIFT equals 20. */
10784static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC;
10785
10786static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
10787
10788static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota,
10789 u64 burst)
10790{
10791 int i, ret = 0, runtime_enabled, runtime_was_enabled;
10792 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
10793
10794 if (tg == &root_task_group)
10795 return -EINVAL;
10796
10797 /*
10798 * Ensure we have at some amount of bandwidth every period. This is
10799 * to prevent reaching a state of large arrears when throttled via
10800 * entity_tick() resulting in prolonged exit starvation.
10801 */
10802 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
10803 return -EINVAL;
10804
10805 /*
10806 * Likewise, bound things on the other side by preventing insane quota
10807 * periods. This also allows us to normalize in computing quota
10808 * feasibility.
10809 */
10810 if (period > max_cfs_quota_period)
10811 return -EINVAL;
10812
10813 /*
10814 * Bound quota to defend quota against overflow during bandwidth shift.
10815 */
10816 if (quota != RUNTIME_INF && quota > max_cfs_runtime)
10817 return -EINVAL;
10818
10819 if (quota != RUNTIME_INF && (burst > quota ||
10820 burst + quota > max_cfs_runtime))
10821 return -EINVAL;
10822
10823 /*
10824 * Prevent race between setting of cfs_rq->runtime_enabled and
10825 * unthrottle_offline_cfs_rqs().
10826 */
10827 guard(cpus_read_lock)();
10828 guard(mutex)(&cfs_constraints_mutex);
10829
10830 ret = __cfs_schedulable(tg, period, quota);
10831 if (ret)
10832 return ret;
10833
10834 runtime_enabled = quota != RUNTIME_INF;
10835 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
10836 /*
10837 * If we need to toggle cfs_bandwidth_used, off->on must occur
10838 * before making related changes, and on->off must occur afterwards
10839 */
10840 if (runtime_enabled && !runtime_was_enabled)
10841 cfs_bandwidth_usage_inc();
10842
10843 scoped_guard (raw_spinlock_irq, &cfs_b->lock) {
10844 cfs_b->period = ns_to_ktime(period);
10845 cfs_b->quota = quota;
10846 cfs_b->burst = burst;
10847
10848 __refill_cfs_bandwidth_runtime(cfs_b);
10849
10850 /*
10851 * Restart the period timer (if active) to handle new
10852 * period expiry:
10853 */
10854 if (runtime_enabled)
10855 start_cfs_bandwidth(cfs_b);
10856 }
10857
10858 for_each_online_cpu(i) {
10859 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
10860 struct rq *rq = cfs_rq->rq;
10861
10862 guard(rq_lock_irq)(rq);
10863 cfs_rq->runtime_enabled = runtime_enabled;
10864 cfs_rq->runtime_remaining = 0;
10865
10866 if (cfs_rq->throttled)
10867 unthrottle_cfs_rq(cfs_rq);
10868 }
10869
10870 if (runtime_was_enabled && !runtime_enabled)
10871 cfs_bandwidth_usage_dec();
10872
10873 return 0;
10874}
10875
10876static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
10877{
10878 u64 quota, period, burst;
10879
10880 period = ktime_to_ns(tg->cfs_bandwidth.period);
10881 burst = tg->cfs_bandwidth.burst;
10882 if (cfs_quota_us < 0)
10883 quota = RUNTIME_INF;
10884 else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
10885 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
10886 else
10887 return -EINVAL;
10888
10889 return tg_set_cfs_bandwidth(tg, period, quota, burst);
10890}
10891
10892static long tg_get_cfs_quota(struct task_group *tg)
10893{
10894 u64 quota_us;
10895
10896 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
10897 return -1;
10898
10899 quota_us = tg->cfs_bandwidth.quota;
10900 do_div(quota_us, NSEC_PER_USEC);
10901
10902 return quota_us;
10903}
10904
10905static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
10906{
10907 u64 quota, period, burst;
10908
10909 if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
10910 return -EINVAL;
10911
10912 period = (u64)cfs_period_us * NSEC_PER_USEC;
10913 quota = tg->cfs_bandwidth.quota;
10914 burst = tg->cfs_bandwidth.burst;
10915
10916 return tg_set_cfs_bandwidth(tg, period, quota, burst);
10917}
10918
10919static long tg_get_cfs_period(struct task_group *tg)
10920{
10921 u64 cfs_period_us;
10922
10923 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
10924 do_div(cfs_period_us, NSEC_PER_USEC);
10925
10926 return cfs_period_us;
10927}
10928
10929static int tg_set_cfs_burst(struct task_group *tg, long cfs_burst_us)
10930{
10931 u64 quota, period, burst;
10932
10933 if ((u64)cfs_burst_us > U64_MAX / NSEC_PER_USEC)
10934 return -EINVAL;
10935
10936 burst = (u64)cfs_burst_us * NSEC_PER_USEC;
10937 period = ktime_to_ns(tg->cfs_bandwidth.period);
10938 quota = tg->cfs_bandwidth.quota;
10939
10940 return tg_set_cfs_bandwidth(tg, period, quota, burst);
10941}
10942
10943static long tg_get_cfs_burst(struct task_group *tg)
10944{
10945 u64 burst_us;
10946
10947 burst_us = tg->cfs_bandwidth.burst;
10948 do_div(burst_us, NSEC_PER_USEC);
10949
10950 return burst_us;
10951}
10952
10953static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
10954 struct cftype *cft)
10955{
10956 return tg_get_cfs_quota(css_tg(css));
10957}
10958
10959static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
10960 struct cftype *cftype, s64 cfs_quota_us)
10961{
10962 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
10963}
10964
10965static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
10966 struct cftype *cft)
10967{
10968 return tg_get_cfs_period(css_tg(css));
10969}
10970
10971static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
10972 struct cftype *cftype, u64 cfs_period_us)
10973{
10974 return tg_set_cfs_period(css_tg(css), cfs_period_us);
10975}
10976
10977static u64 cpu_cfs_burst_read_u64(struct cgroup_subsys_state *css,
10978 struct cftype *cft)
10979{
10980 return tg_get_cfs_burst(css_tg(css));
10981}
10982
10983static int cpu_cfs_burst_write_u64(struct cgroup_subsys_state *css,
10984 struct cftype *cftype, u64 cfs_burst_us)
10985{
10986 return tg_set_cfs_burst(css_tg(css), cfs_burst_us);
10987}
10988
10989struct cfs_schedulable_data {
10990 struct task_group *tg;
10991 u64 period, quota;
10992};
10993
10994/*
10995 * normalize group quota/period to be quota/max_period
10996 * note: units are usecs
10997 */
10998static u64 normalize_cfs_quota(struct task_group *tg,
10999 struct cfs_schedulable_data *d)
11000{
11001 u64 quota, period;
11002
11003 if (tg == d->tg) {
11004 period = d->period;
11005 quota = d->quota;
11006 } else {
11007 period = tg_get_cfs_period(tg);
11008 quota = tg_get_cfs_quota(tg);
11009 }
11010
11011 /* note: these should typically be equivalent */
11012 if (quota == RUNTIME_INF || quota == -1)
11013 return RUNTIME_INF;
11014
11015 return to_ratio(period, quota);
11016}
11017
11018static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
11019{
11020 struct cfs_schedulable_data *d = data;
11021 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
11022 s64 quota = 0, parent_quota = -1;
11023
11024 if (!tg->parent) {
11025 quota = RUNTIME_INF;
11026 } else {
11027 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
11028
11029 quota = normalize_cfs_quota(tg, d);
11030 parent_quota = parent_b->hierarchical_quota;
11031
11032 /*
11033 * Ensure max(child_quota) <= parent_quota. On cgroup2,
11034 * always take the non-RUNTIME_INF min. On cgroup1, only
11035 * inherit when no limit is set. In both cases this is used
11036 * by the scheduler to determine if a given CFS task has a
11037 * bandwidth constraint at some higher level.
11038 */
11039 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
11040 if (quota == RUNTIME_INF)
11041 quota = parent_quota;
11042 else if (parent_quota != RUNTIME_INF)
11043 quota = min(quota, parent_quota);
11044 } else {
11045 if (quota == RUNTIME_INF)
11046 quota = parent_quota;
11047 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
11048 return -EINVAL;
11049 }
11050 }
11051 cfs_b->hierarchical_quota = quota;
11052
11053 return 0;
11054}
11055
11056static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
11057{
11058 struct cfs_schedulable_data data = {
11059 .tg = tg,
11060 .period = period,
11061 .quota = quota,
11062 };
11063
11064 if (quota != RUNTIME_INF) {
11065 do_div(data.period, NSEC_PER_USEC);
11066 do_div(data.quota, NSEC_PER_USEC);
11067 }
11068
11069 guard(rcu)();
11070 return walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
11071}
11072
11073static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
11074{
11075 struct task_group *tg = css_tg(seq_css(sf));
11076 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
11077
11078 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
11079 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
11080 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
11081
11082 if (schedstat_enabled() && tg != &root_task_group) {
11083 struct sched_statistics *stats;
11084 u64 ws = 0;
11085 int i;
11086
11087 for_each_possible_cpu(i) {
11088 stats = __schedstats_from_se(tg->se[i]);
11089 ws += schedstat_val(stats->wait_sum);
11090 }
11091
11092 seq_printf(sf, "wait_sum %llu\n", ws);
11093 }
11094
11095 seq_printf(sf, "nr_bursts %d\n", cfs_b->nr_burst);
11096 seq_printf(sf, "burst_time %llu\n", cfs_b->burst_time);
11097
11098 return 0;
11099}
11100
11101static u64 throttled_time_self(struct task_group *tg)
11102{
11103 int i;
11104 u64 total = 0;
11105
11106 for_each_possible_cpu(i) {
11107 total += READ_ONCE(tg->cfs_rq[i]->throttled_clock_self_time);
11108 }
11109
11110 return total;
11111}
11112
11113static int cpu_cfs_local_stat_show(struct seq_file *sf, void *v)
11114{
11115 struct task_group *tg = css_tg(seq_css(sf));
11116
11117 seq_printf(sf, "throttled_time %llu\n", throttled_time_self(tg));
11118
11119 return 0;
11120}
11121#endif /* CONFIG_CFS_BANDWIDTH */
11122#endif /* CONFIG_FAIR_GROUP_SCHED */
11123
11124#ifdef CONFIG_RT_GROUP_SCHED
11125static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
11126 struct cftype *cft, s64 val)
11127{
11128 return sched_group_set_rt_runtime(css_tg(css), val);
11129}
11130
11131static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
11132 struct cftype *cft)
11133{
11134 return sched_group_rt_runtime(css_tg(css));
11135}
11136
11137static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
11138 struct cftype *cftype, u64 rt_period_us)
11139{
11140 return sched_group_set_rt_period(css_tg(css), rt_period_us);
11141}
11142
11143static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
11144 struct cftype *cft)
11145{
11146 return sched_group_rt_period(css_tg(css));
11147}
11148#endif /* CONFIG_RT_GROUP_SCHED */
11149
11150#ifdef CONFIG_FAIR_GROUP_SCHED
11151static s64 cpu_idle_read_s64(struct cgroup_subsys_state *css,
11152 struct cftype *cft)
11153{
11154 return css_tg(css)->idle;
11155}
11156
11157static int cpu_idle_write_s64(struct cgroup_subsys_state *css,
11158 struct cftype *cft, s64 idle)
11159{
11160 return sched_group_set_idle(css_tg(css), idle);
11161}
11162#endif
11163
11164static struct cftype cpu_legacy_files[] = {
11165#ifdef CONFIG_FAIR_GROUP_SCHED
11166 {
11167 .name = "shares",
11168 .read_u64 = cpu_shares_read_u64,
11169 .write_u64 = cpu_shares_write_u64,
11170 },
11171 {
11172 .name = "idle",
11173 .read_s64 = cpu_idle_read_s64,
11174 .write_s64 = cpu_idle_write_s64,
11175 },
11176#endif
11177#ifdef CONFIG_CFS_BANDWIDTH
11178 {
11179 .name = "cfs_quota_us",
11180 .read_s64 = cpu_cfs_quota_read_s64,
11181 .write_s64 = cpu_cfs_quota_write_s64,
11182 },
11183 {
11184 .name = "cfs_period_us",
11185 .read_u64 = cpu_cfs_period_read_u64,
11186 .write_u64 = cpu_cfs_period_write_u64,
11187 },
11188 {
11189 .name = "cfs_burst_us",
11190 .read_u64 = cpu_cfs_burst_read_u64,
11191 .write_u64 = cpu_cfs_burst_write_u64,
11192 },
11193 {
11194 .name = "stat",
11195 .seq_show = cpu_cfs_stat_show,
11196 },
11197 {
11198 .name = "stat.local",
11199 .seq_show = cpu_cfs_local_stat_show,
11200 },
11201#endif
11202#ifdef CONFIG_RT_GROUP_SCHED
11203 {
11204 .name = "rt_runtime_us",
11205 .read_s64 = cpu_rt_runtime_read,
11206 .write_s64 = cpu_rt_runtime_write,
11207 },
11208 {
11209 .name = "rt_period_us",
11210 .read_u64 = cpu_rt_period_read_uint,
11211 .write_u64 = cpu_rt_period_write_uint,
11212 },
11213#endif
11214#ifdef CONFIG_UCLAMP_TASK_GROUP
11215 {
11216 .name = "uclamp.min",
11217 .flags = CFTYPE_NOT_ON_ROOT,
11218 .seq_show = cpu_uclamp_min_show,
11219 .write = cpu_uclamp_min_write,
11220 },
11221 {
11222 .name = "uclamp.max",
11223 .flags = CFTYPE_NOT_ON_ROOT,
11224 .seq_show = cpu_uclamp_max_show,
11225 .write = cpu_uclamp_max_write,
11226 },
11227#endif
11228 { } /* Terminate */
11229};
11230
11231static int cpu_extra_stat_show(struct seq_file *sf,
11232 struct cgroup_subsys_state *css)
11233{
11234#ifdef CONFIG_CFS_BANDWIDTH
11235 {
11236 struct task_group *tg = css_tg(css);
11237 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
11238 u64 throttled_usec, burst_usec;
11239
11240 throttled_usec = cfs_b->throttled_time;
11241 do_div(throttled_usec, NSEC_PER_USEC);
11242 burst_usec = cfs_b->burst_time;
11243 do_div(burst_usec, NSEC_PER_USEC);
11244
11245 seq_printf(sf, "nr_periods %d\n"
11246 "nr_throttled %d\n"
11247 "throttled_usec %llu\n"
11248 "nr_bursts %d\n"
11249 "burst_usec %llu\n",
11250 cfs_b->nr_periods, cfs_b->nr_throttled,
11251 throttled_usec, cfs_b->nr_burst, burst_usec);
11252 }
11253#endif
11254 return 0;
11255}
11256
11257static int cpu_local_stat_show(struct seq_file *sf,
11258 struct cgroup_subsys_state *css)
11259{
11260#ifdef CONFIG_CFS_BANDWIDTH
11261 {
11262 struct task_group *tg = css_tg(css);
11263 u64 throttled_self_usec;
11264
11265 throttled_self_usec = throttled_time_self(tg);
11266 do_div(throttled_self_usec, NSEC_PER_USEC);
11267
11268 seq_printf(sf, "throttled_usec %llu\n",
11269 throttled_self_usec);
11270 }
11271#endif
11272 return 0;
11273}
11274
11275#ifdef CONFIG_FAIR_GROUP_SCHED
11276static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
11277 struct cftype *cft)
11278{
11279 struct task_group *tg = css_tg(css);
11280 u64 weight = scale_load_down(tg->shares);
11281
11282 return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
11283}
11284
11285static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
11286 struct cftype *cft, u64 weight)
11287{
11288 /*
11289 * cgroup weight knobs should use the common MIN, DFL and MAX
11290 * values which are 1, 100 and 10000 respectively. While it loses
11291 * a bit of range on both ends, it maps pretty well onto the shares
11292 * value used by scheduler and the round-trip conversions preserve
11293 * the original value over the entire range.
11294 */
11295 if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
11296 return -ERANGE;
11297
11298 weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
11299
11300 return sched_group_set_shares(css_tg(css), scale_load(weight));
11301}
11302
11303static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
11304 struct cftype *cft)
11305{
11306 unsigned long weight = scale_load_down(css_tg(css)->shares);
11307 int last_delta = INT_MAX;
11308 int prio, delta;
11309
11310 /* find the closest nice value to the current weight */
11311 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
11312 delta = abs(sched_prio_to_weight[prio] - weight);
11313 if (delta >= last_delta)
11314 break;
11315 last_delta = delta;
11316 }
11317
11318 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
11319}
11320
11321static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
11322 struct cftype *cft, s64 nice)
11323{
11324 unsigned long weight;
11325 int idx;
11326
11327 if (nice < MIN_NICE || nice > MAX_NICE)
11328 return -ERANGE;
11329
11330 idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
11331 idx = array_index_nospec(idx, 40);
11332 weight = sched_prio_to_weight[idx];
11333
11334 return sched_group_set_shares(css_tg(css), scale_load(weight));
11335}
11336#endif
11337
11338static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
11339 long period, long quota)
11340{
11341 if (quota < 0)
11342 seq_puts(sf, "max");
11343 else
11344 seq_printf(sf, "%ld", quota);
11345
11346 seq_printf(sf, " %ld\n", period);
11347}
11348
11349/* caller should put the current value in *@periodp before calling */
11350static int __maybe_unused cpu_period_quota_parse(char *buf,
11351 u64 *periodp, u64 *quotap)
11352{
11353 char tok[21]; /* U64_MAX */
11354
11355 if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
11356 return -EINVAL;
11357
11358 *periodp *= NSEC_PER_USEC;
11359
11360 if (sscanf(tok, "%llu", quotap))
11361 *quotap *= NSEC_PER_USEC;
11362 else if (!strcmp(tok, "max"))
11363 *quotap = RUNTIME_INF;
11364 else
11365 return -EINVAL;
11366
11367 return 0;
11368}
11369
11370#ifdef CONFIG_CFS_BANDWIDTH
11371static int cpu_max_show(struct seq_file *sf, void *v)
11372{
11373 struct task_group *tg = css_tg(seq_css(sf));
11374
11375 cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
11376 return 0;
11377}
11378
11379static ssize_t cpu_max_write(struct kernfs_open_file *of,
11380 char *buf, size_t nbytes, loff_t off)
11381{
11382 struct task_group *tg = css_tg(of_css(of));
11383 u64 period = tg_get_cfs_period(tg);
11384 u64 burst = tg_get_cfs_burst(tg);
11385 u64 quota;
11386 int ret;
11387
11388 ret = cpu_period_quota_parse(buf, &period, "a);
11389 if (!ret)
11390 ret = tg_set_cfs_bandwidth(tg, period, quota, burst);
11391 return ret ?: nbytes;
11392}
11393#endif
11394
11395static struct cftype cpu_files[] = {
11396#ifdef CONFIG_FAIR_GROUP_SCHED
11397 {
11398 .name = "weight",
11399 .flags = CFTYPE_NOT_ON_ROOT,
11400 .read_u64 = cpu_weight_read_u64,
11401 .write_u64 = cpu_weight_write_u64,
11402 },
11403 {
11404 .name = "weight.nice",
11405 .flags = CFTYPE_NOT_ON_ROOT,
11406 .read_s64 = cpu_weight_nice_read_s64,
11407 .write_s64 = cpu_weight_nice_write_s64,
11408 },
11409 {
11410 .name = "idle",
11411 .flags = CFTYPE_NOT_ON_ROOT,
11412 .read_s64 = cpu_idle_read_s64,
11413 .write_s64 = cpu_idle_write_s64,
11414 },
11415#endif
11416#ifdef CONFIG_CFS_BANDWIDTH
11417 {
11418 .name = "max",
11419 .flags = CFTYPE_NOT_ON_ROOT,
11420 .seq_show = cpu_max_show,
11421 .write = cpu_max_write,
11422 },
11423 {
11424 .name = "max.burst",
11425 .flags = CFTYPE_NOT_ON_ROOT,
11426 .read_u64 = cpu_cfs_burst_read_u64,
11427 .write_u64 = cpu_cfs_burst_write_u64,
11428 },
11429#endif
11430#ifdef CONFIG_UCLAMP_TASK_GROUP
11431 {
11432 .name = "uclamp.min",
11433 .flags = CFTYPE_NOT_ON_ROOT,
11434 .seq_show = cpu_uclamp_min_show,
11435 .write = cpu_uclamp_min_write,
11436 },
11437 {
11438 .name = "uclamp.max",
11439 .flags = CFTYPE_NOT_ON_ROOT,
11440 .seq_show = cpu_uclamp_max_show,
11441 .write = cpu_uclamp_max_write,
11442 },
11443#endif
11444 { } /* terminate */
11445};
11446
11447struct cgroup_subsys cpu_cgrp_subsys = {
11448 .css_alloc = cpu_cgroup_css_alloc,
11449 .css_online = cpu_cgroup_css_online,
11450 .css_released = cpu_cgroup_css_released,
11451 .css_free = cpu_cgroup_css_free,
11452 .css_extra_stat_show = cpu_extra_stat_show,
11453 .css_local_stat_show = cpu_local_stat_show,
11454#ifdef CONFIG_RT_GROUP_SCHED
11455 .can_attach = cpu_cgroup_can_attach,
11456#endif
11457 .attach = cpu_cgroup_attach,
11458 .legacy_cftypes = cpu_legacy_files,
11459 .dfl_cftypes = cpu_files,
11460 .early_init = true,
11461 .threaded = true,
11462};
11463
11464#endif /* CONFIG_CGROUP_SCHED */
11465
11466void dump_cpu_task(int cpu)
11467{
11468 if (cpu == smp_processor_id() && in_hardirq()) {
11469 struct pt_regs *regs;
11470
11471 regs = get_irq_regs();
11472 if (regs) {
11473 show_regs(regs);
11474 return;
11475 }
11476 }
11477
11478 if (trigger_single_cpu_backtrace(cpu))
11479 return;
11480
11481 pr_info("Task dump for CPU %d:\n", cpu);
11482 sched_show_task(cpu_curr(cpu));
11483}
11484
11485/*
11486 * Nice levels are multiplicative, with a gentle 10% change for every
11487 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
11488 * nice 1, it will get ~10% less CPU time than another CPU-bound task
11489 * that remained on nice 0.
11490 *
11491 * The "10% effect" is relative and cumulative: from _any_ nice level,
11492 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
11493 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
11494 * If a task goes up by ~10% and another task goes down by ~10% then
11495 * the relative distance between them is ~25%.)
11496 */
11497const int sched_prio_to_weight[40] = {
11498 /* -20 */ 88761, 71755, 56483, 46273, 36291,
11499 /* -15 */ 29154, 23254, 18705, 14949, 11916,
11500 /* -10 */ 9548, 7620, 6100, 4904, 3906,
11501 /* -5 */ 3121, 2501, 1991, 1586, 1277,
11502 /* 0 */ 1024, 820, 655, 526, 423,
11503 /* 5 */ 335, 272, 215, 172, 137,
11504 /* 10 */ 110, 87, 70, 56, 45,
11505 /* 15 */ 36, 29, 23, 18, 15,
11506};
11507
11508/*
11509 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
11510 *
11511 * In cases where the weight does not change often, we can use the
11512 * precalculated inverse to speed up arithmetics by turning divisions
11513 * into multiplications:
11514 */
11515const u32 sched_prio_to_wmult[40] = {
11516 /* -20 */ 48388, 59856, 76040, 92818, 118348,
11517 /* -15 */ 147320, 184698, 229616, 287308, 360437,
11518 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
11519 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
11520 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
11521 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
11522 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
11523 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
11524};
11525
11526void call_trace_sched_update_nr_running(struct rq *rq, int count)
11527{
11528 trace_sched_update_nr_running_tp(rq, count);
11529}
11530
11531#ifdef CONFIG_SCHED_MM_CID
11532
11533/*
11534 * @cid_lock: Guarantee forward-progress of cid allocation.
11535 *
11536 * Concurrency ID allocation within a bitmap is mostly lock-free. The cid_lock
11537 * is only used when contention is detected by the lock-free allocation so
11538 * forward progress can be guaranteed.
11539 */
11540DEFINE_RAW_SPINLOCK(cid_lock);
11541
11542/*
11543 * @use_cid_lock: Select cid allocation behavior: lock-free vs spinlock.
11544 *
11545 * When @use_cid_lock is 0, the cid allocation is lock-free. When contention is
11546 * detected, it is set to 1 to ensure that all newly coming allocations are
11547 * serialized by @cid_lock until the allocation which detected contention
11548 * completes and sets @use_cid_lock back to 0. This guarantees forward progress
11549 * of a cid allocation.
11550 */
11551int use_cid_lock;
11552
11553/*
11554 * mm_cid remote-clear implements a lock-free algorithm to clear per-mm/cpu cid
11555 * concurrently with respect to the execution of the source runqueue context
11556 * switch.
11557 *
11558 * There is one basic properties we want to guarantee here:
11559 *
11560 * (1) Remote-clear should _never_ mark a per-cpu cid UNSET when it is actively
11561 * used by a task. That would lead to concurrent allocation of the cid and
11562 * userspace corruption.
11563 *
11564 * Provide this guarantee by introducing a Dekker memory ordering to guarantee
11565 * that a pair of loads observe at least one of a pair of stores, which can be
11566 * shown as:
11567 *
11568 * X = Y = 0
11569 *
11570 * w[X]=1 w[Y]=1
11571 * MB MB
11572 * r[Y]=y r[X]=x
11573 *
11574 * Which guarantees that x==0 && y==0 is impossible. But rather than using
11575 * values 0 and 1, this algorithm cares about specific state transitions of the
11576 * runqueue current task (as updated by the scheduler context switch), and the
11577 * per-mm/cpu cid value.
11578 *
11579 * Let's introduce task (Y) which has task->mm == mm and task (N) which has
11580 * task->mm != mm for the rest of the discussion. There are two scheduler state
11581 * transitions on context switch we care about:
11582 *
11583 * (TSA) Store to rq->curr with transition from (N) to (Y)
11584 *
11585 * (TSB) Store to rq->curr with transition from (Y) to (N)
11586 *
11587 * On the remote-clear side, there is one transition we care about:
11588 *
11589 * (TMA) cmpxchg to *pcpu_cid to set the LAZY flag
11590 *
11591 * There is also a transition to UNSET state which can be performed from all
11592 * sides (scheduler, remote-clear). It is always performed with a cmpxchg which
11593 * guarantees that only a single thread will succeed:
11594 *
11595 * (TMB) cmpxchg to *pcpu_cid to mark UNSET
11596 *
11597 * Just to be clear, what we do _not_ want to happen is a transition to UNSET
11598 * when a thread is actively using the cid (property (1)).
11599 *
11600 * Let's looks at the relevant combinations of TSA/TSB, and TMA transitions.
11601 *
11602 * Scenario A) (TSA)+(TMA) (from next task perspective)
11603 *
11604 * CPU0 CPU1
11605 *
11606 * Context switch CS-1 Remote-clear
11607 * - store to rq->curr: (N)->(Y) (TSA) - cmpxchg to *pcpu_id to LAZY (TMA)
11608 * (implied barrier after cmpxchg)
11609 * - switch_mm_cid()
11610 * - memory barrier (see switch_mm_cid()
11611 * comment explaining how this barrier
11612 * is combined with other scheduler
11613 * barriers)
11614 * - mm_cid_get (next)
11615 * - READ_ONCE(*pcpu_cid) - rcu_dereference(src_rq->curr)
11616 *
11617 * This Dekker ensures that either task (Y) is observed by the
11618 * rcu_dereference() or the LAZY flag is observed by READ_ONCE(), or both are
11619 * observed.
11620 *
11621 * If task (Y) store is observed by rcu_dereference(), it means that there is
11622 * still an active task on the cpu. Remote-clear will therefore not transition
11623 * to UNSET, which fulfills property (1).
11624 *
11625 * If task (Y) is not observed, but the lazy flag is observed by READ_ONCE(),
11626 * it will move its state to UNSET, which clears the percpu cid perhaps
11627 * uselessly (which is not an issue for correctness). Because task (Y) is not
11628 * observed, CPU1 can move ahead to set the state to UNSET. Because moving
11629 * state to UNSET is done with a cmpxchg expecting that the old state has the
11630 * LAZY flag set, only one thread will successfully UNSET.
11631 *
11632 * If both states (LAZY flag and task (Y)) are observed, the thread on CPU0
11633 * will observe the LAZY flag and transition to UNSET (perhaps uselessly), and
11634 * CPU1 will observe task (Y) and do nothing more, which is fine.
11635 *
11636 * What we are effectively preventing with this Dekker is a scenario where
11637 * neither LAZY flag nor store (Y) are observed, which would fail property (1)
11638 * because this would UNSET a cid which is actively used.
11639 */
11640
11641void sched_mm_cid_migrate_from(struct task_struct *t)
11642{
11643 t->migrate_from_cpu = task_cpu(t);
11644}
11645
11646static
11647int __sched_mm_cid_migrate_from_fetch_cid(struct rq *src_rq,
11648 struct task_struct *t,
11649 struct mm_cid *src_pcpu_cid)
11650{
11651 struct mm_struct *mm = t->mm;
11652 struct task_struct *src_task;
11653 int src_cid, last_mm_cid;
11654
11655 if (!mm)
11656 return -1;
11657
11658 last_mm_cid = t->last_mm_cid;
11659 /*
11660 * If the migrated task has no last cid, or if the current
11661 * task on src rq uses the cid, it means the source cid does not need
11662 * to be moved to the destination cpu.
11663 */
11664 if (last_mm_cid == -1)
11665 return -1;
11666 src_cid = READ_ONCE(src_pcpu_cid->cid);
11667 if (!mm_cid_is_valid(src_cid) || last_mm_cid != src_cid)
11668 return -1;
11669
11670 /*
11671 * If we observe an active task using the mm on this rq, it means we
11672 * are not the last task to be migrated from this cpu for this mm, so
11673 * there is no need to move src_cid to the destination cpu.
11674 */
11675 guard(rcu)();
11676 src_task = rcu_dereference(src_rq->curr);
11677 if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) {
11678 t->last_mm_cid = -1;
11679 return -1;
11680 }
11681
11682 return src_cid;
11683}
11684
11685static
11686int __sched_mm_cid_migrate_from_try_steal_cid(struct rq *src_rq,
11687 struct task_struct *t,
11688 struct mm_cid *src_pcpu_cid,
11689 int src_cid)
11690{
11691 struct task_struct *src_task;
11692 struct mm_struct *mm = t->mm;
11693 int lazy_cid;
11694
11695 if (src_cid == -1)
11696 return -1;
11697
11698 /*
11699 * Attempt to clear the source cpu cid to move it to the destination
11700 * cpu.
11701 */
11702 lazy_cid = mm_cid_set_lazy_put(src_cid);
11703 if (!try_cmpxchg(&src_pcpu_cid->cid, &src_cid, lazy_cid))
11704 return -1;
11705
11706 /*
11707 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
11708 * rq->curr->mm matches the scheduler barrier in context_switch()
11709 * between store to rq->curr and load of prev and next task's
11710 * per-mm/cpu cid.
11711 *
11712 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
11713 * rq->curr->mm_cid_active matches the barrier in
11714 * sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and
11715 * sched_mm_cid_after_execve() between store to t->mm_cid_active and
11716 * load of per-mm/cpu cid.
11717 */
11718
11719 /*
11720 * If we observe an active task using the mm on this rq after setting
11721 * the lazy-put flag, this task will be responsible for transitioning
11722 * from lazy-put flag set to MM_CID_UNSET.
11723 */
11724 scoped_guard (rcu) {
11725 src_task = rcu_dereference(src_rq->curr);
11726 if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) {
11727 /*
11728 * We observed an active task for this mm, there is therefore
11729 * no point in moving this cid to the destination cpu.
11730 */
11731 t->last_mm_cid = -1;
11732 return -1;
11733 }
11734 }
11735
11736 /*
11737 * The src_cid is unused, so it can be unset.
11738 */
11739 if (!try_cmpxchg(&src_pcpu_cid->cid, &lazy_cid, MM_CID_UNSET))
11740 return -1;
11741 return src_cid;
11742}
11743
11744/*
11745 * Migration to dst cpu. Called with dst_rq lock held.
11746 * Interrupts are disabled, which keeps the window of cid ownership without the
11747 * source rq lock held small.
11748 */
11749void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t)
11750{
11751 struct mm_cid *src_pcpu_cid, *dst_pcpu_cid;
11752 struct mm_struct *mm = t->mm;
11753 int src_cid, dst_cid, src_cpu;
11754 struct rq *src_rq;
11755
11756 lockdep_assert_rq_held(dst_rq);
11757
11758 if (!mm)
11759 return;
11760 src_cpu = t->migrate_from_cpu;
11761 if (src_cpu == -1) {
11762 t->last_mm_cid = -1;
11763 return;
11764 }
11765 /*
11766 * Move the src cid if the dst cid is unset. This keeps id
11767 * allocation closest to 0 in cases where few threads migrate around
11768 * many cpus.
11769 *
11770 * If destination cid is already set, we may have to just clear
11771 * the src cid to ensure compactness in frequent migrations
11772 * scenarios.
11773 *
11774 * It is not useful to clear the src cid when the number of threads is
11775 * greater or equal to the number of allowed cpus, because user-space
11776 * can expect that the number of allowed cids can reach the number of
11777 * allowed cpus.
11778 */
11779 dst_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu_of(dst_rq));
11780 dst_cid = READ_ONCE(dst_pcpu_cid->cid);
11781 if (!mm_cid_is_unset(dst_cid) &&
11782 atomic_read(&mm->mm_users) >= t->nr_cpus_allowed)
11783 return;
11784 src_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, src_cpu);
11785 src_rq = cpu_rq(src_cpu);
11786 src_cid = __sched_mm_cid_migrate_from_fetch_cid(src_rq, t, src_pcpu_cid);
11787 if (src_cid == -1)
11788 return;
11789 src_cid = __sched_mm_cid_migrate_from_try_steal_cid(src_rq, t, src_pcpu_cid,
11790 src_cid);
11791 if (src_cid == -1)
11792 return;
11793 if (!mm_cid_is_unset(dst_cid)) {
11794 __mm_cid_put(mm, src_cid);
11795 return;
11796 }
11797 /* Move src_cid to dst cpu. */
11798 mm_cid_snapshot_time(dst_rq, mm);
11799 WRITE_ONCE(dst_pcpu_cid->cid, src_cid);
11800}
11801
11802static void sched_mm_cid_remote_clear(struct mm_struct *mm, struct mm_cid *pcpu_cid,
11803 int cpu)
11804{
11805 struct rq *rq = cpu_rq(cpu);
11806 struct task_struct *t;
11807 int cid, lazy_cid;
11808
11809 cid = READ_ONCE(pcpu_cid->cid);
11810 if (!mm_cid_is_valid(cid))
11811 return;
11812
11813 /*
11814 * Clear the cpu cid if it is set to keep cid allocation compact. If
11815 * there happens to be other tasks left on the source cpu using this
11816 * mm, the next task using this mm will reallocate its cid on context
11817 * switch.
11818 */
11819 lazy_cid = mm_cid_set_lazy_put(cid);
11820 if (!try_cmpxchg(&pcpu_cid->cid, &cid, lazy_cid))
11821 return;
11822
11823 /*
11824 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
11825 * rq->curr->mm matches the scheduler barrier in context_switch()
11826 * between store to rq->curr and load of prev and next task's
11827 * per-mm/cpu cid.
11828 *
11829 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
11830 * rq->curr->mm_cid_active matches the barrier in
11831 * sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and
11832 * sched_mm_cid_after_execve() between store to t->mm_cid_active and
11833 * load of per-mm/cpu cid.
11834 */
11835
11836 /*
11837 * If we observe an active task using the mm on this rq after setting
11838 * the lazy-put flag, that task will be responsible for transitioning
11839 * from lazy-put flag set to MM_CID_UNSET.
11840 */
11841 scoped_guard (rcu) {
11842 t = rcu_dereference(rq->curr);
11843 if (READ_ONCE(t->mm_cid_active) && t->mm == mm)
11844 return;
11845 }
11846
11847 /*
11848 * The cid is unused, so it can be unset.
11849 * Disable interrupts to keep the window of cid ownership without rq
11850 * lock small.
11851 */
11852 scoped_guard (irqsave) {
11853 if (try_cmpxchg(&pcpu_cid->cid, &lazy_cid, MM_CID_UNSET))
11854 __mm_cid_put(mm, cid);
11855 }
11856}
11857
11858static void sched_mm_cid_remote_clear_old(struct mm_struct *mm, int cpu)
11859{
11860 struct rq *rq = cpu_rq(cpu);
11861 struct mm_cid *pcpu_cid;
11862 struct task_struct *curr;
11863 u64 rq_clock;
11864
11865 /*
11866 * rq->clock load is racy on 32-bit but one spurious clear once in a
11867 * while is irrelevant.
11868 */
11869 rq_clock = READ_ONCE(rq->clock);
11870 pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu);
11871
11872 /*
11873 * In order to take care of infrequently scheduled tasks, bump the time
11874 * snapshot associated with this cid if an active task using the mm is
11875 * observed on this rq.
11876 */
11877 scoped_guard (rcu) {
11878 curr = rcu_dereference(rq->curr);
11879 if (READ_ONCE(curr->mm_cid_active) && curr->mm == mm) {
11880 WRITE_ONCE(pcpu_cid->time, rq_clock);
11881 return;
11882 }
11883 }
11884
11885 if (rq_clock < pcpu_cid->time + SCHED_MM_CID_PERIOD_NS)
11886 return;
11887 sched_mm_cid_remote_clear(mm, pcpu_cid, cpu);
11888}
11889
11890static void sched_mm_cid_remote_clear_weight(struct mm_struct *mm, int cpu,
11891 int weight)
11892{
11893 struct mm_cid *pcpu_cid;
11894 int cid;
11895
11896 pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu);
11897 cid = READ_ONCE(pcpu_cid->cid);
11898 if (!mm_cid_is_valid(cid) || cid < weight)
11899 return;
11900 sched_mm_cid_remote_clear(mm, pcpu_cid, cpu);
11901}
11902
11903static void task_mm_cid_work(struct callback_head *work)
11904{
11905 unsigned long now = jiffies, old_scan, next_scan;
11906 struct task_struct *t = current;
11907 struct cpumask *cidmask;
11908 struct mm_struct *mm;
11909 int weight, cpu;
11910
11911 SCHED_WARN_ON(t != container_of(work, struct task_struct, cid_work));
11912
11913 work->next = work; /* Prevent double-add */
11914 if (t->flags & PF_EXITING)
11915 return;
11916 mm = t->mm;
11917 if (!mm)
11918 return;
11919 old_scan = READ_ONCE(mm->mm_cid_next_scan);
11920 next_scan = now + msecs_to_jiffies(MM_CID_SCAN_DELAY);
11921 if (!old_scan) {
11922 unsigned long res;
11923
11924 res = cmpxchg(&mm->mm_cid_next_scan, old_scan, next_scan);
11925 if (res != old_scan)
11926 old_scan = res;
11927 else
11928 old_scan = next_scan;
11929 }
11930 if (time_before(now, old_scan))
11931 return;
11932 if (!try_cmpxchg(&mm->mm_cid_next_scan, &old_scan, next_scan))
11933 return;
11934 cidmask = mm_cidmask(mm);
11935 /* Clear cids that were not recently used. */
11936 for_each_possible_cpu(cpu)
11937 sched_mm_cid_remote_clear_old(mm, cpu);
11938 weight = cpumask_weight(cidmask);
11939 /*
11940 * Clear cids that are greater or equal to the cidmask weight to
11941 * recompact it.
11942 */
11943 for_each_possible_cpu(cpu)
11944 sched_mm_cid_remote_clear_weight(mm, cpu, weight);
11945}
11946
11947void init_sched_mm_cid(struct task_struct *t)
11948{
11949 struct mm_struct *mm = t->mm;
11950 int mm_users = 0;
11951
11952 if (mm) {
11953 mm_users = atomic_read(&mm->mm_users);
11954 if (mm_users == 1)
11955 mm->mm_cid_next_scan = jiffies + msecs_to_jiffies(MM_CID_SCAN_DELAY);
11956 }
11957 t->cid_work.next = &t->cid_work; /* Protect against double add */
11958 init_task_work(&t->cid_work, task_mm_cid_work);
11959}
11960
11961void task_tick_mm_cid(struct rq *rq, struct task_struct *curr)
11962{
11963 struct callback_head *work = &curr->cid_work;
11964 unsigned long now = jiffies;
11965
11966 if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) ||
11967 work->next != work)
11968 return;
11969 if (time_before(now, READ_ONCE(curr->mm->mm_cid_next_scan)))
11970 return;
11971 task_work_add(curr, work, TWA_RESUME);
11972}
11973
11974void sched_mm_cid_exit_signals(struct task_struct *t)
11975{
11976 struct mm_struct *mm = t->mm;
11977 struct rq *rq;
11978
11979 if (!mm)
11980 return;
11981
11982 preempt_disable();
11983 rq = this_rq();
11984 guard(rq_lock_irqsave)(rq);
11985 preempt_enable_no_resched(); /* holding spinlock */
11986 WRITE_ONCE(t->mm_cid_active, 0);
11987 /*
11988 * Store t->mm_cid_active before loading per-mm/cpu cid.
11989 * Matches barrier in sched_mm_cid_remote_clear_old().
11990 */
11991 smp_mb();
11992 mm_cid_put(mm);
11993 t->last_mm_cid = t->mm_cid = -1;
11994}
11995
11996void sched_mm_cid_before_execve(struct task_struct *t)
11997{
11998 struct mm_struct *mm = t->mm;
11999 struct rq *rq;
12000
12001 if (!mm)
12002 return;
12003
12004 preempt_disable();
12005 rq = this_rq();
12006 guard(rq_lock_irqsave)(rq);
12007 preempt_enable_no_resched(); /* holding spinlock */
12008 WRITE_ONCE(t->mm_cid_active, 0);
12009 /*
12010 * Store t->mm_cid_active before loading per-mm/cpu cid.
12011 * Matches barrier in sched_mm_cid_remote_clear_old().
12012 */
12013 smp_mb();
12014 mm_cid_put(mm);
12015 t->last_mm_cid = t->mm_cid = -1;
12016}
12017
12018void sched_mm_cid_after_execve(struct task_struct *t)
12019{
12020 struct mm_struct *mm = t->mm;
12021 struct rq *rq;
12022
12023 if (!mm)
12024 return;
12025
12026 preempt_disable();
12027 rq = this_rq();
12028 scoped_guard (rq_lock_irqsave, rq) {
12029 preempt_enable_no_resched(); /* holding spinlock */
12030 WRITE_ONCE(t->mm_cid_active, 1);
12031 /*
12032 * Store t->mm_cid_active before loading per-mm/cpu cid.
12033 * Matches barrier in sched_mm_cid_remote_clear_old().
12034 */
12035 smp_mb();
12036 t->last_mm_cid = t->mm_cid = mm_cid_get(rq, mm);
12037 }
12038 rseq_set_notify_resume(t);
12039}
12040
12041void sched_mm_cid_fork(struct task_struct *t)
12042{
12043 WARN_ON_ONCE(!t->mm || t->mm_cid != -1);
12044 t->mm_cid_active = 1;
12045}
12046#endif