Linux Audio

Check our new training course

Loading...
v4.17
 
  1/*
  2 * Queued spinlock
  3 *
  4 * This program is free software; you can redistribute it and/or modify
  5 * it under the terms of the GNU General Public License as published by
  6 * the Free Software Foundation; either version 2 of the License, or
  7 * (at your option) any later version.
  8 *
  9 * This program is distributed in the hope that it will be useful,
 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 12 * GNU General Public License for more details.
 13 *
 14 * (C) Copyright 2013-2015 Hewlett-Packard Development Company, L.P.
 15 * (C) Copyright 2013-2014 Red Hat, Inc.
 16 * (C) Copyright 2015 Intel Corp.
 17 * (C) Copyright 2015 Hewlett-Packard Enterprise Development LP
 18 *
 19 * Authors: Waiman Long <waiman.long@hpe.com>
 20 *          Peter Zijlstra <peterz@infradead.org>
 21 */
 22
 23#ifndef _GEN_PV_LOCK_SLOWPATH
 24
 25#include <linux/smp.h>
 26#include <linux/bug.h>
 27#include <linux/cpumask.h>
 28#include <linux/percpu.h>
 29#include <linux/hardirq.h>
 30#include <linux/mutex.h>
 31#include <linux/prefetch.h>
 32#include <asm/byteorder.h>
 33#include <asm/qspinlock.h>
 
 
 
 
 
 
 34
 35/*
 36 * The basic principle of a queue-based spinlock can best be understood
 37 * by studying a classic queue-based spinlock implementation called the
 38 * MCS lock. The paper below provides a good description for this kind
 39 * of lock.
 40 *
 41 * http://www.cise.ufl.edu/tr/DOC/REP-1992-71.pdf
 42 *
 43 * This queued spinlock implementation is based on the MCS lock, however to make
 44 * it fit the 4 bytes we assume spinlock_t to be, and preserve its existing
 45 * API, we must modify it somehow.
 
 46 *
 47 * In particular; where the traditional MCS lock consists of a tail pointer
 48 * (8 bytes) and needs the next pointer (another 8 bytes) of its own node to
 49 * unlock the next pending (next->locked), we compress both these: {tail,
 50 * next->locked} into a single u32 value.
 51 *
 52 * Since a spinlock disables recursion of its own context and there is a limit
 53 * to the contexts that can nest; namely: task, softirq, hardirq, nmi. As there
 54 * are at most 4 nesting levels, it can be encoded by a 2-bit number. Now
 55 * we can encode the tail by combining the 2-bit nesting level with the cpu
 56 * number. With one byte for the lock value and 3 bytes for the tail, only a
 57 * 32-bit word is now needed. Even though we only need 1 bit for the lock,
 58 * we extend it to a full byte to achieve better performance for architectures
 59 * that support atomic byte write.
 60 *
 61 * We also change the first spinner to spin on the lock bit instead of its
 62 * node; whereby avoiding the need to carry a node from lock to unlock, and
 63 * preserving existing lock API. This also makes the unlock code simpler and
 64 * faster.
 65 *
 66 * N.B. The current implementation only supports architectures that allow
 67 *      atomic operations on smaller 8-bit and 16-bit data types.
 68 *
 69 */
 70
 71#include "mcs_spinlock.h"
 
 72
 
 
 
 
 
 
 
 
 
 
 
 
 73#ifdef CONFIG_PARAVIRT_SPINLOCKS
 74#define MAX_NODES	8
 75#else
 76#define MAX_NODES	4
 
 
 
 
 
 
 
 
 
 
 
 77#endif
 78
 79/*
 80 * Per-CPU queue node structures; we can never have more than 4 nested
 81 * contexts: task, softirq, hardirq, nmi.
 82 *
 83 * Exactly fits one 64-byte cacheline on a 64-bit architecture.
 84 *
 85 * PV doubles the storage and uses the second cacheline for PV state.
 86 */
 87static DEFINE_PER_CPU_ALIGNED(struct mcs_spinlock, mcs_nodes[MAX_NODES]);
 88
 89/*
 90 * We must be able to distinguish between no-tail and the tail at 0:0,
 91 * therefore increment the cpu number by one.
 92 */
 93
 94static inline __pure u32 encode_tail(int cpu, int idx)
 95{
 96	u32 tail;
 97
 98#ifdef CONFIG_DEBUG_SPINLOCK
 99	BUG_ON(idx > 3);
100#endif
101	tail  = (cpu + 1) << _Q_TAIL_CPU_OFFSET;
102	tail |= idx << _Q_TAIL_IDX_OFFSET; /* assume < 4 */
103
104	return tail;
105}
106
107static inline __pure struct mcs_spinlock *decode_tail(u32 tail)
108{
109	int cpu = (tail >> _Q_TAIL_CPU_OFFSET) - 1;
110	int idx = (tail &  _Q_TAIL_IDX_MASK) >> _Q_TAIL_IDX_OFFSET;
111
112	return per_cpu_ptr(&mcs_nodes[idx], cpu);
113}
114
115#define _Q_LOCKED_PENDING_MASK (_Q_LOCKED_MASK | _Q_PENDING_MASK)
 
 
 
 
116
117/*
118 * By using the whole 2nd least significant byte for the pending bit, we
119 * can allow better optimization of the lock acquisition for the pending
120 * bit holder.
121 *
122 * This internal structure is also used by the set_locked function which
123 * is not restricted to _Q_PENDING_BITS == 8.
124 */
125struct __qspinlock {
126	union {
127		atomic_t val;
128#ifdef __LITTLE_ENDIAN
129		struct {
130			u8	locked;
131			u8	pending;
132		};
133		struct {
134			u16	locked_pending;
135			u16	tail;
136		};
137#else
138		struct {
139			u16	tail;
140			u16	locked_pending;
141		};
142		struct {
143			u8	reserved[2];
144			u8	pending;
145			u8	locked;
146		};
147#endif
148	};
149};
150
151#if _Q_PENDING_BITS == 8
152/**
 
 
 
 
 
 
 
 
 
 
 
153 * clear_pending_set_locked - take ownership and clear the pending bit.
154 * @lock: Pointer to queued spinlock structure
155 *
156 * *,1,0 -> *,0,1
157 *
158 * Lock stealing is not allowed if this function is used.
159 */
160static __always_inline void clear_pending_set_locked(struct qspinlock *lock)
161{
162	struct __qspinlock *l = (void *)lock;
163
164	WRITE_ONCE(l->locked_pending, _Q_LOCKED_VAL);
165}
166
167/*
168 * xchg_tail - Put in the new queue tail code word & retrieve previous one
169 * @lock : Pointer to queued spinlock structure
170 * @tail : The new queue tail code word
171 * Return: The previous queue tail code word
172 *
173 * xchg(lock, tail), which heads an address dependency
174 *
175 * p,*,* -> n,*,* ; prev = xchg(lock, node)
176 */
177static __always_inline u32 xchg_tail(struct qspinlock *lock, u32 tail)
178{
179	struct __qspinlock *l = (void *)lock;
180
181	/*
182	 * Use release semantics to make sure that the MCS node is properly
183	 * initialized before changing the tail code.
184	 */
185	return (u32)xchg_release(&l->tail,
186				 tail >> _Q_TAIL_OFFSET) << _Q_TAIL_OFFSET;
187}
188
189#else /* _Q_PENDING_BITS == 8 */
190
191/**
 
 
 
 
 
 
 
 
 
 
 
192 * clear_pending_set_locked - take ownership and clear the pending bit.
193 * @lock: Pointer to queued spinlock structure
194 *
195 * *,1,0 -> *,0,1
196 */
197static __always_inline void clear_pending_set_locked(struct qspinlock *lock)
198{
199	atomic_add(-_Q_PENDING_VAL + _Q_LOCKED_VAL, &lock->val);
200}
201
202/**
203 * xchg_tail - Put in the new queue tail code word & retrieve previous one
204 * @lock : Pointer to queued spinlock structure
205 * @tail : The new queue tail code word
206 * Return: The previous queue tail code word
207 *
208 * xchg(lock, tail)
209 *
210 * p,*,* -> n,*,* ; prev = xchg(lock, node)
211 */
212static __always_inline u32 xchg_tail(struct qspinlock *lock, u32 tail)
213{
214	u32 old, new, val = atomic_read(&lock->val);
215
216	for (;;) {
217		new = (val & _Q_LOCKED_PENDING_MASK) | tail;
218		/*
219		 * Use release semantics to make sure that the MCS node is
220		 * properly initialized before changing the tail code.
 
221		 */
222		old = atomic_cmpxchg_release(&lock->val, val, new);
223		if (old == val)
224			break;
225
226		val = old;
227	}
228	return old;
229}
230#endif /* _Q_PENDING_BITS == 8 */
231
232/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
233 * set_locked - Set the lock bit and own the lock
234 * @lock: Pointer to queued spinlock structure
235 *
236 * *,*,0 -> *,0,1
237 */
238static __always_inline void set_locked(struct qspinlock *lock)
239{
240	struct __qspinlock *l = (void *)lock;
241
242	WRITE_ONCE(l->locked, _Q_LOCKED_VAL);
243}
244
245
246/*
247 * Generate the native code for queued_spin_unlock_slowpath(); provide NOPs for
248 * all the PV callbacks.
249 */
250
251static __always_inline void __pv_init_node(struct mcs_spinlock *node) { }
252static __always_inline void __pv_wait_node(struct mcs_spinlock *node,
253					   struct mcs_spinlock *prev) { }
254static __always_inline void __pv_kick_node(struct qspinlock *lock,
255					   struct mcs_spinlock *node) { }
256static __always_inline u32  __pv_wait_head_or_lock(struct qspinlock *lock,
257						   struct mcs_spinlock *node)
258						   { return 0; }
259
260#define pv_enabled()		false
261
262#define pv_init_node		__pv_init_node
263#define pv_wait_node		__pv_wait_node
264#define pv_kick_node		__pv_kick_node
265#define pv_wait_head_or_lock	__pv_wait_head_or_lock
266
267#ifdef CONFIG_PARAVIRT_SPINLOCKS
268#define queued_spin_lock_slowpath	native_queued_spin_lock_slowpath
269#endif
270
271#endif /* _GEN_PV_LOCK_SLOWPATH */
272
273/**
274 * queued_spin_lock_slowpath - acquire the queued spinlock
275 * @lock: Pointer to queued spinlock structure
276 * @val: Current value of the queued spinlock 32-bit word
277 *
278 * (queue tail, pending bit, lock value)
279 *
280 *              fast     :    slow                                  :    unlock
281 *                       :                                          :
282 * uncontended  (0,0,0) -:--> (0,0,1) ------------------------------:--> (*,*,0)
283 *                       :       | ^--------.------.             /  :
284 *                       :       v           \      \            |  :
285 * pending               :    (0,1,1) +--> (0,1,0)   \           |  :
286 *                       :       | ^--'              |           |  :
287 *                       :       v                   |           |  :
288 * uncontended           :    (n,x,y) +--> (n,0,0) --'           |  :
289 *   queue               :       | ^--'                          |  :
290 *                       :       v                               |  :
291 * contended             :    (*,x,y) +--> (*,0,0) ---> (*,0,1) -'  :
292 *   queue               :         ^--'                             :
293 */
294void queued_spin_lock_slowpath(struct qspinlock *lock, u32 val)
295{
296	struct mcs_spinlock *prev, *next, *node;
297	u32 new, old, tail;
298	int idx;
299
300	BUILD_BUG_ON(CONFIG_NR_CPUS >= (1U << _Q_TAIL_CPU_BITS));
301
302	if (pv_enabled())
303		goto queue;
304
305	if (virt_spin_lock(lock))
306		return;
307
308	/*
309	 * wait for in-progress pending->locked hand-overs
 
310	 *
311	 * 0,1,0 -> 0,0,1
312	 */
313	if (val == _Q_PENDING_VAL) {
314		while ((val = atomic_read(&lock->val)) == _Q_PENDING_VAL)
315			cpu_relax();
 
316	}
317
318	/*
 
 
 
 
 
 
319	 * trylock || pending
320	 *
321	 * 0,0,0 -> 0,0,1 ; trylock
322	 * 0,0,1 -> 0,1,1 ; pending
323	 */
324	for (;;) {
325		/*
326		 * If we observe any contention; queue.
327		 */
328		if (val & ~_Q_LOCKED_MASK)
329			goto queue;
330
331		new = _Q_LOCKED_VAL;
332		if (val == new)
333			new |= _Q_PENDING_VAL;
 
 
 
 
 
334
335		/*
336		 * Acquire semantic is required here as the function may
337		 * return immediately if the lock was free.
338		 */
339		old = atomic_cmpxchg_acquire(&lock->val, val, new);
340		if (old == val)
341			break;
342
343		val = old;
344	}
345
346	/*
347	 * we won the trylock
348	 */
349	if (new == _Q_LOCKED_VAL)
350		return;
351
352	/*
353	 * we're pending, wait for the owner to go away.
354	 *
355	 * *,1,1 -> *,1,0
356	 *
357	 * this wait loop must be a load-acquire such that we match the
358	 * store-release that clears the locked bit and create lock
359	 * sequentiality; this is because not all clear_pending_set_locked()
360	 * implementations imply full barriers.
 
361	 */
362	smp_cond_load_acquire(&lock->val.counter, !(VAL & _Q_LOCKED_MASK));
 
363
364	/*
365	 * take ownership and clear the pending bit.
366	 *
367	 * *,1,0 -> *,0,1
368	 */
369	clear_pending_set_locked(lock);
 
370	return;
371
372	/*
373	 * End of pending bit optimistic spinning and beginning of MCS
374	 * queuing.
375	 */
376queue:
377	node = this_cpu_ptr(&mcs_nodes[0]);
 
 
378	idx = node->count++;
379	tail = encode_tail(smp_processor_id(), idx);
380
381	node += idx;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
382
383	/*
384	 * Ensure that we increment the head node->count before initialising
385	 * the actual node. If the compiler is kind enough to reorder these
386	 * stores, then an IRQ could overwrite our assignments.
387	 */
388	barrier();
389
390	node->locked = 0;
391	node->next = NULL;
392	pv_init_node(node);
393
394	/*
395	 * We touched a (possibly) cold cacheline in the per-cpu queue node;
396	 * attempt the trylock once more in the hope someone let go while we
397	 * weren't watching.
398	 */
399	if (queued_spin_trylock(lock))
400		goto release;
401
402	/*
 
 
 
 
 
 
 
 
403	 * We have already touched the queueing cacheline; don't bother with
404	 * pending stuff.
405	 *
406	 * p,*,* -> n,*,*
407	 *
408	 * RELEASE, such that the stores to @node must be complete.
409	 */
410	old = xchg_tail(lock, tail);
411	next = NULL;
412
413	/*
414	 * if there was a previous node; link it and wait until reaching the
415	 * head of the waitqueue.
416	 */
417	if (old & _Q_TAIL_MASK) {
418		prev = decode_tail(old);
419
420		/*
421		 * We must ensure that the stores to @node are observed before
422		 * the write to prev->next. The address dependency from
423		 * xchg_tail is not sufficient to ensure this because the read
424		 * component of xchg_tail is unordered with respect to the
425		 * initialisation of @node.
426		 */
427		smp_store_release(&prev->next, node);
428
429		pv_wait_node(node, prev);
430		arch_mcs_spin_lock_contended(&node->locked);
431
432		/*
433		 * While waiting for the MCS lock, the next pointer may have
434		 * been set by another lock waiter. We optimistically load
435		 * the next pointer & prefetch the cacheline for writing
436		 * to reduce latency in the upcoming MCS unlock operation.
437		 */
438		next = READ_ONCE(node->next);
439		if (next)
440			prefetchw(next);
441	}
442
443	/*
444	 * we're at the head of the waitqueue, wait for the owner & pending to
445	 * go away.
446	 *
447	 * *,x,y -> *,0,0
448	 *
449	 * this wait loop must use a load-acquire such that we match the
450	 * store-release that clears the locked bit and create lock
451	 * sequentiality; this is because the set_locked() function below
452	 * does not imply a full barrier.
453	 *
454	 * The PV pv_wait_head_or_lock function, if active, will acquire
455	 * the lock and return a non-zero value. So we have to skip the
456	 * smp_cond_load_acquire() call. As the next PV queue head hasn't been
457	 * designated yet, there is no way for the locked value to become
458	 * _Q_SLOW_VAL. So both the set_locked() and the
459	 * atomic_cmpxchg_relaxed() calls will be safe.
460	 *
461	 * If PV isn't active, 0 will be returned instead.
462	 *
463	 */
464	if ((val = pv_wait_head_or_lock(lock, node)))
465		goto locked;
466
467	val = smp_cond_load_acquire(&lock->val.counter, !(VAL & _Q_LOCKED_PENDING_MASK));
468
469locked:
470	/*
471	 * claim the lock:
472	 *
473	 * n,0,0 -> 0,0,1 : lock, uncontended
474	 * *,0,0 -> *,0,1 : lock, contended
475	 *
476	 * If the queue head is the only one in the queue (lock value == tail),
477	 * clear the tail code and grab the lock. Otherwise, we only need
478	 * to grab the lock.
479	 */
480	for (;;) {
481		/* In the PV case we might already have _Q_LOCKED_VAL set */
482		if ((val & _Q_TAIL_MASK) != tail) {
483			set_locked(lock);
484			break;
485		}
486		/*
487		 * The smp_cond_load_acquire() call above has provided the
488		 * necessary acquire semantics required for locking. At most
489		 * two iterations of this loop may be ran.
490		 */
491		old = atomic_cmpxchg_relaxed(&lock->val, val, _Q_LOCKED_VAL);
492		if (old == val)
493			goto release;	/* No contention */
494
495		val = old;
 
 
 
 
 
 
 
 
 
 
 
 
496	}
497
498	/*
 
 
 
 
 
 
 
499	 * contended path; wait for next if not observed yet, release.
500	 */
501	if (!next) {
502		while (!(next = READ_ONCE(node->next)))
503			cpu_relax();
504	}
505
506	arch_mcs_spin_unlock_contended(&next->locked);
507	pv_kick_node(lock, next);
508
509release:
 
 
510	/*
511	 * release the node
512	 */
513	__this_cpu_dec(mcs_nodes[0].count);
514}
515EXPORT_SYMBOL(queued_spin_lock_slowpath);
516
517/*
518 * Generate the paravirt code for queued_spin_unlock_slowpath().
519 */
520#if !defined(_GEN_PV_LOCK_SLOWPATH) && defined(CONFIG_PARAVIRT_SPINLOCKS)
521#define _GEN_PV_LOCK_SLOWPATH
522
523#undef  pv_enabled
524#define pv_enabled()	true
525
526#undef pv_init_node
527#undef pv_wait_node
528#undef pv_kick_node
529#undef pv_wait_head_or_lock
530
531#undef  queued_spin_lock_slowpath
532#define queued_spin_lock_slowpath	__pv_queued_spin_lock_slowpath
533
534#include "qspinlock_paravirt.h"
535#include "qspinlock.c"
536
 
 
 
 
 
 
 
537#endif
v6.8
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * Queued spinlock
  4 *
 
 
 
 
 
 
 
 
 
 
  5 * (C) Copyright 2013-2015 Hewlett-Packard Development Company, L.P.
  6 * (C) Copyright 2013-2014,2018 Red Hat, Inc.
  7 * (C) Copyright 2015 Intel Corp.
  8 * (C) Copyright 2015 Hewlett-Packard Enterprise Development LP
  9 *
 10 * Authors: Waiman Long <longman@redhat.com>
 11 *          Peter Zijlstra <peterz@infradead.org>
 12 */
 13
 14#ifndef _GEN_PV_LOCK_SLOWPATH
 15
 16#include <linux/smp.h>
 17#include <linux/bug.h>
 18#include <linux/cpumask.h>
 19#include <linux/percpu.h>
 20#include <linux/hardirq.h>
 21#include <linux/mutex.h>
 22#include <linux/prefetch.h>
 23#include <asm/byteorder.h>
 24#include <asm/qspinlock.h>
 25#include <trace/events/lock.h>
 26
 27/*
 28 * Include queued spinlock statistics code
 29 */
 30#include "qspinlock_stat.h"
 31
 32/*
 33 * The basic principle of a queue-based spinlock can best be understood
 34 * by studying a classic queue-based spinlock implementation called the
 35 * MCS lock. A copy of the original MCS lock paper ("Algorithms for Scalable
 36 * Synchronization on Shared-Memory Multiprocessors by Mellor-Crummey and
 37 * Scott") is available at
 38 *
 39 * https://bugzilla.kernel.org/show_bug.cgi?id=206115
 40 *
 41 * This queued spinlock implementation is based on the MCS lock, however to
 42 * make it fit the 4 bytes we assume spinlock_t to be, and preserve its
 43 * existing API, we must modify it somehow.
 44 *
 45 * In particular; where the traditional MCS lock consists of a tail pointer
 46 * (8 bytes) and needs the next pointer (another 8 bytes) of its own node to
 47 * unlock the next pending (next->locked), we compress both these: {tail,
 48 * next->locked} into a single u32 value.
 49 *
 50 * Since a spinlock disables recursion of its own context and there is a limit
 51 * to the contexts that can nest; namely: task, softirq, hardirq, nmi. As there
 52 * are at most 4 nesting levels, it can be encoded by a 2-bit number. Now
 53 * we can encode the tail by combining the 2-bit nesting level with the cpu
 54 * number. With one byte for the lock value and 3 bytes for the tail, only a
 55 * 32-bit word is now needed. Even though we only need 1 bit for the lock,
 56 * we extend it to a full byte to achieve better performance for architectures
 57 * that support atomic byte write.
 58 *
 59 * We also change the first spinner to spin on the lock bit instead of its
 60 * node; whereby avoiding the need to carry a node from lock to unlock, and
 61 * preserving existing lock API. This also makes the unlock code simpler and
 62 * faster.
 63 *
 64 * N.B. The current implementation only supports architectures that allow
 65 *      atomic operations on smaller 8-bit and 16-bit data types.
 66 *
 67 */
 68
 69#include "mcs_spinlock.h"
 70#define MAX_NODES	4
 71
 72/*
 73 * On 64-bit architectures, the mcs_spinlock structure will be 16 bytes in
 74 * size and four of them will fit nicely in one 64-byte cacheline. For
 75 * pvqspinlock, however, we need more space for extra data. To accommodate
 76 * that, we insert two more long words to pad it up to 32 bytes. IOW, only
 77 * two of them can fit in a cacheline in this case. That is OK as it is rare
 78 * to have more than 2 levels of slowpath nesting in actual use. We don't
 79 * want to penalize pvqspinlocks to optimize for a rare case in native
 80 * qspinlocks.
 81 */
 82struct qnode {
 83	struct mcs_spinlock mcs;
 84#ifdef CONFIG_PARAVIRT_SPINLOCKS
 85	long reserved[2];
 86#endif
 87};
 88
 89/*
 90 * The pending bit spinning loop count.
 91 * This heuristic is used to limit the number of lockword accesses
 92 * made by atomic_cond_read_relaxed when waiting for the lock to
 93 * transition out of the "== _Q_PENDING_VAL" state. We don't spin
 94 * indefinitely because there's no guarantee that we'll make forward
 95 * progress.
 96 */
 97#ifndef _Q_PENDING_LOOPS
 98#define _Q_PENDING_LOOPS	1
 99#endif
100
101/*
102 * Per-CPU queue node structures; we can never have more than 4 nested
103 * contexts: task, softirq, hardirq, nmi.
104 *
105 * Exactly fits one 64-byte cacheline on a 64-bit architecture.
106 *
107 * PV doubles the storage and uses the second cacheline for PV state.
108 */
109static DEFINE_PER_CPU_ALIGNED(struct qnode, qnodes[MAX_NODES]);
110
111/*
112 * We must be able to distinguish between no-tail and the tail at 0:0,
113 * therefore increment the cpu number by one.
114 */
115
116static inline __pure u32 encode_tail(int cpu, int idx)
117{
118	u32 tail;
119
 
 
 
120	tail  = (cpu + 1) << _Q_TAIL_CPU_OFFSET;
121	tail |= idx << _Q_TAIL_IDX_OFFSET; /* assume < 4 */
122
123	return tail;
124}
125
126static inline __pure struct mcs_spinlock *decode_tail(u32 tail)
127{
128	int cpu = (tail >> _Q_TAIL_CPU_OFFSET) - 1;
129	int idx = (tail &  _Q_TAIL_IDX_MASK) >> _Q_TAIL_IDX_OFFSET;
130
131	return per_cpu_ptr(&qnodes[idx].mcs, cpu);
132}
133
134static inline __pure
135struct mcs_spinlock *grab_mcs_node(struct mcs_spinlock *base, int idx)
136{
137	return &((struct qnode *)base + idx)->mcs;
138}
139
140#define _Q_LOCKED_PENDING_MASK (_Q_LOCKED_MASK | _Q_PENDING_MASK)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
141
142#if _Q_PENDING_BITS == 8
143/**
144 * clear_pending - clear the pending bit.
145 * @lock: Pointer to queued spinlock structure
146 *
147 * *,1,* -> *,0,*
148 */
149static __always_inline void clear_pending(struct qspinlock *lock)
150{
151	WRITE_ONCE(lock->pending, 0);
152}
153
154/**
155 * clear_pending_set_locked - take ownership and clear the pending bit.
156 * @lock: Pointer to queued spinlock structure
157 *
158 * *,1,0 -> *,0,1
159 *
160 * Lock stealing is not allowed if this function is used.
161 */
162static __always_inline void clear_pending_set_locked(struct qspinlock *lock)
163{
164	WRITE_ONCE(lock->locked_pending, _Q_LOCKED_VAL);
 
 
165}
166
167/*
168 * xchg_tail - Put in the new queue tail code word & retrieve previous one
169 * @lock : Pointer to queued spinlock structure
170 * @tail : The new queue tail code word
171 * Return: The previous queue tail code word
172 *
173 * xchg(lock, tail), which heads an address dependency
174 *
175 * p,*,* -> n,*,* ; prev = xchg(lock, node)
176 */
177static __always_inline u32 xchg_tail(struct qspinlock *lock, u32 tail)
178{
 
 
179	/*
180	 * We can use relaxed semantics since the caller ensures that the
181	 * MCS node is properly initialized before updating the tail.
182	 */
183	return (u32)xchg_relaxed(&lock->tail,
184				 tail >> _Q_TAIL_OFFSET) << _Q_TAIL_OFFSET;
185}
186
187#else /* _Q_PENDING_BITS == 8 */
188
189/**
190 * clear_pending - clear the pending bit.
191 * @lock: Pointer to queued spinlock structure
192 *
193 * *,1,* -> *,0,*
194 */
195static __always_inline void clear_pending(struct qspinlock *lock)
196{
197	atomic_andnot(_Q_PENDING_VAL, &lock->val);
198}
199
200/**
201 * clear_pending_set_locked - take ownership and clear the pending bit.
202 * @lock: Pointer to queued spinlock structure
203 *
204 * *,1,0 -> *,0,1
205 */
206static __always_inline void clear_pending_set_locked(struct qspinlock *lock)
207{
208	atomic_add(-_Q_PENDING_VAL + _Q_LOCKED_VAL, &lock->val);
209}
210
211/**
212 * xchg_tail - Put in the new queue tail code word & retrieve previous one
213 * @lock : Pointer to queued spinlock structure
214 * @tail : The new queue tail code word
215 * Return: The previous queue tail code word
216 *
217 * xchg(lock, tail)
218 *
219 * p,*,* -> n,*,* ; prev = xchg(lock, node)
220 */
221static __always_inline u32 xchg_tail(struct qspinlock *lock, u32 tail)
222{
223	u32 old, new, val = atomic_read(&lock->val);
224
225	for (;;) {
226		new = (val & _Q_LOCKED_PENDING_MASK) | tail;
227		/*
228		 * We can use relaxed semantics since the caller ensures that
229		 * the MCS node is properly initialized before updating the
230		 * tail.
231		 */
232		old = atomic_cmpxchg_relaxed(&lock->val, val, new);
233		if (old == val)
234			break;
235
236		val = old;
237	}
238	return old;
239}
240#endif /* _Q_PENDING_BITS == 8 */
241
242/**
243 * queued_fetch_set_pending_acquire - fetch the whole lock value and set pending
244 * @lock : Pointer to queued spinlock structure
245 * Return: The previous lock value
246 *
247 * *,*,* -> *,1,*
248 */
249#ifndef queued_fetch_set_pending_acquire
250static __always_inline u32 queued_fetch_set_pending_acquire(struct qspinlock *lock)
251{
252	return atomic_fetch_or_acquire(_Q_PENDING_VAL, &lock->val);
253}
254#endif
255
256/**
257 * set_locked - Set the lock bit and own the lock
258 * @lock: Pointer to queued spinlock structure
259 *
260 * *,*,0 -> *,0,1
261 */
262static __always_inline void set_locked(struct qspinlock *lock)
263{
264	WRITE_ONCE(lock->locked, _Q_LOCKED_VAL);
 
 
265}
266
267
268/*
269 * Generate the native code for queued_spin_unlock_slowpath(); provide NOPs for
270 * all the PV callbacks.
271 */
272
273static __always_inline void __pv_init_node(struct mcs_spinlock *node) { }
274static __always_inline void __pv_wait_node(struct mcs_spinlock *node,
275					   struct mcs_spinlock *prev) { }
276static __always_inline void __pv_kick_node(struct qspinlock *lock,
277					   struct mcs_spinlock *node) { }
278static __always_inline u32  __pv_wait_head_or_lock(struct qspinlock *lock,
279						   struct mcs_spinlock *node)
280						   { return 0; }
281
282#define pv_enabled()		false
283
284#define pv_init_node		__pv_init_node
285#define pv_wait_node		__pv_wait_node
286#define pv_kick_node		__pv_kick_node
287#define pv_wait_head_or_lock	__pv_wait_head_or_lock
288
289#ifdef CONFIG_PARAVIRT_SPINLOCKS
290#define queued_spin_lock_slowpath	native_queued_spin_lock_slowpath
291#endif
292
293#endif /* _GEN_PV_LOCK_SLOWPATH */
294
295/**
296 * queued_spin_lock_slowpath - acquire the queued spinlock
297 * @lock: Pointer to queued spinlock structure
298 * @val: Current value of the queued spinlock 32-bit word
299 *
300 * (queue tail, pending bit, lock value)
301 *
302 *              fast     :    slow                                  :    unlock
303 *                       :                                          :
304 * uncontended  (0,0,0) -:--> (0,0,1) ------------------------------:--> (*,*,0)
305 *                       :       | ^--------.------.             /  :
306 *                       :       v           \      \            |  :
307 * pending               :    (0,1,1) +--> (0,1,0)   \           |  :
308 *                       :       | ^--'              |           |  :
309 *                       :       v                   |           |  :
310 * uncontended           :    (n,x,y) +--> (n,0,0) --'           |  :
311 *   queue               :       | ^--'                          |  :
312 *                       :       v                               |  :
313 * contended             :    (*,x,y) +--> (*,0,0) ---> (*,0,1) -'  :
314 *   queue               :         ^--'                             :
315 */
316void __lockfunc queued_spin_lock_slowpath(struct qspinlock *lock, u32 val)
317{
318	struct mcs_spinlock *prev, *next, *node;
319	u32 old, tail;
320	int idx;
321
322	BUILD_BUG_ON(CONFIG_NR_CPUS >= (1U << _Q_TAIL_CPU_BITS));
323
324	if (pv_enabled())
325		goto pv_queue;
326
327	if (virt_spin_lock(lock))
328		return;
329
330	/*
331	 * Wait for in-progress pending->locked hand-overs with a bounded
332	 * number of spins so that we guarantee forward progress.
333	 *
334	 * 0,1,0 -> 0,0,1
335	 */
336	if (val == _Q_PENDING_VAL) {
337		int cnt = _Q_PENDING_LOOPS;
338		val = atomic_cond_read_relaxed(&lock->val,
339					       (VAL != _Q_PENDING_VAL) || !cnt--);
340	}
341
342	/*
343	 * If we observe any contention; queue.
344	 */
345	if (val & ~_Q_LOCKED_MASK)
346		goto queue;
347
348	/*
349	 * trylock || pending
350	 *
351	 * 0,0,* -> 0,1,* -> 0,0,1 pending, trylock
 
352	 */
353	val = queued_fetch_set_pending_acquire(lock);
 
 
 
 
 
354
355	/*
356	 * If we observe contention, there is a concurrent locker.
357	 *
358	 * Undo and queue; our setting of PENDING might have made the
359	 * n,0,0 -> 0,0,0 transition fail and it will now be waiting
360	 * on @next to become !NULL.
361	 */
362	if (unlikely(val & ~_Q_LOCKED_MASK)) {
363
364		/* Undo PENDING if we set it. */
365		if (!(val & _Q_PENDING_MASK))
366			clear_pending(lock);
 
 
 
 
367
368		goto queue;
369	}
370
371	/*
372	 * We're pending, wait for the owner to go away.
 
 
 
 
 
 
373	 *
374	 * 0,1,1 -> *,1,0
375	 *
376	 * this wait loop must be a load-acquire such that we match the
377	 * store-release that clears the locked bit and create lock
378	 * sequentiality; this is because not all
379	 * clear_pending_set_locked() implementations imply full
380	 * barriers.
381	 */
382	if (val & _Q_LOCKED_MASK)
383		smp_cond_load_acquire(&lock->locked, !VAL);
384
385	/*
386	 * take ownership and clear the pending bit.
387	 *
388	 * 0,1,0 -> 0,0,1
389	 */
390	clear_pending_set_locked(lock);
391	lockevent_inc(lock_pending);
392	return;
393
394	/*
395	 * End of pending bit optimistic spinning and beginning of MCS
396	 * queuing.
397	 */
398queue:
399	lockevent_inc(lock_slowpath);
400pv_queue:
401	node = this_cpu_ptr(&qnodes[0].mcs);
402	idx = node->count++;
403	tail = encode_tail(smp_processor_id(), idx);
404
405	trace_contention_begin(lock, LCB_F_SPIN);
406
407	/*
408	 * 4 nodes are allocated based on the assumption that there will
409	 * not be nested NMIs taking spinlocks. That may not be true in
410	 * some architectures even though the chance of needing more than
411	 * 4 nodes will still be extremely unlikely. When that happens,
412	 * we fall back to spinning on the lock directly without using
413	 * any MCS node. This is not the most elegant solution, but is
414	 * simple enough.
415	 */
416	if (unlikely(idx >= MAX_NODES)) {
417		lockevent_inc(lock_no_node);
418		while (!queued_spin_trylock(lock))
419			cpu_relax();
420		goto release;
421	}
422
423	node = grab_mcs_node(node, idx);
424
425	/*
426	 * Keep counts of non-zero index values:
427	 */
428	lockevent_cond_inc(lock_use_node2 + idx - 1, idx);
429
430	/*
431	 * Ensure that we increment the head node->count before initialising
432	 * the actual node. If the compiler is kind enough to reorder these
433	 * stores, then an IRQ could overwrite our assignments.
434	 */
435	barrier();
436
437	node->locked = 0;
438	node->next = NULL;
439	pv_init_node(node);
440
441	/*
442	 * We touched a (possibly) cold cacheline in the per-cpu queue node;
443	 * attempt the trylock once more in the hope someone let go while we
444	 * weren't watching.
445	 */
446	if (queued_spin_trylock(lock))
447		goto release;
448
449	/*
450	 * Ensure that the initialisation of @node is complete before we
451	 * publish the updated tail via xchg_tail() and potentially link
452	 * @node into the waitqueue via WRITE_ONCE(prev->next, node) below.
453	 */
454	smp_wmb();
455
456	/*
457	 * Publish the updated tail.
458	 * We have already touched the queueing cacheline; don't bother with
459	 * pending stuff.
460	 *
461	 * p,*,* -> n,*,*
 
 
462	 */
463	old = xchg_tail(lock, tail);
464	next = NULL;
465
466	/*
467	 * if there was a previous node; link it and wait until reaching the
468	 * head of the waitqueue.
469	 */
470	if (old & _Q_TAIL_MASK) {
471		prev = decode_tail(old);
472
473		/* Link @node into the waitqueue. */
474		WRITE_ONCE(prev->next, node);
 
 
 
 
 
 
475
476		pv_wait_node(node, prev);
477		arch_mcs_spin_lock_contended(&node->locked);
478
479		/*
480		 * While waiting for the MCS lock, the next pointer may have
481		 * been set by another lock waiter. We optimistically load
482		 * the next pointer & prefetch the cacheline for writing
483		 * to reduce latency in the upcoming MCS unlock operation.
484		 */
485		next = READ_ONCE(node->next);
486		if (next)
487			prefetchw(next);
488	}
489
490	/*
491	 * we're at the head of the waitqueue, wait for the owner & pending to
492	 * go away.
493	 *
494	 * *,x,y -> *,0,0
495	 *
496	 * this wait loop must use a load-acquire such that we match the
497	 * store-release that clears the locked bit and create lock
498	 * sequentiality; this is because the set_locked() function below
499	 * does not imply a full barrier.
500	 *
501	 * The PV pv_wait_head_or_lock function, if active, will acquire
502	 * the lock and return a non-zero value. So we have to skip the
503	 * atomic_cond_read_acquire() call. As the next PV queue head hasn't
504	 * been designated yet, there is no way for the locked value to become
505	 * _Q_SLOW_VAL. So both the set_locked() and the
506	 * atomic_cmpxchg_relaxed() calls will be safe.
507	 *
508	 * If PV isn't active, 0 will be returned instead.
509	 *
510	 */
511	if ((val = pv_wait_head_or_lock(lock, node)))
512		goto locked;
513
514	val = atomic_cond_read_acquire(&lock->val, !(VAL & _Q_LOCKED_PENDING_MASK));
515
516locked:
517	/*
518	 * claim the lock:
519	 *
520	 * n,0,0 -> 0,0,1 : lock, uncontended
521	 * *,*,0 -> *,*,1 : lock, contended
522	 *
523	 * If the queue head is the only one in the queue (lock value == tail)
524	 * and nobody is pending, clear the tail code and grab the lock.
525	 * Otherwise, we only need to grab the lock.
526	 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
527
528	/*
529	 * In the PV case we might already have _Q_LOCKED_VAL set, because
530	 * of lock stealing; therefore we must also allow:
531	 *
532	 * n,0,1 -> 0,0,1
533	 *
534	 * Note: at this point: (val & _Q_PENDING_MASK) == 0, because of the
535	 *       above wait condition, therefore any concurrent setting of
536	 *       PENDING will make the uncontended transition fail.
537	 */
538	if ((val & _Q_TAIL_MASK) == tail) {
539		if (atomic_try_cmpxchg_relaxed(&lock->val, &val, _Q_LOCKED_VAL))
540			goto release; /* No contention */
541	}
542
543	/*
544	 * Either somebody is queued behind us or _Q_PENDING_VAL got set
545	 * which will then detect the remaining tail and queue behind us
546	 * ensuring we'll see a @next.
547	 */
548	set_locked(lock);
549
550	/*
551	 * contended path; wait for next if not observed yet, release.
552	 */
553	if (!next)
554		next = smp_cond_load_relaxed(&node->next, (VAL));
 
 
555
556	arch_mcs_spin_unlock_contended(&next->locked);
557	pv_kick_node(lock, next);
558
559release:
560	trace_contention_end(lock, 0);
561
562	/*
563	 * release the node
564	 */
565	__this_cpu_dec(qnodes[0].mcs.count);
566}
567EXPORT_SYMBOL(queued_spin_lock_slowpath);
568
569/*
570 * Generate the paravirt code for queued_spin_unlock_slowpath().
571 */
572#if !defined(_GEN_PV_LOCK_SLOWPATH) && defined(CONFIG_PARAVIRT_SPINLOCKS)
573#define _GEN_PV_LOCK_SLOWPATH
574
575#undef  pv_enabled
576#define pv_enabled()	true
577
578#undef pv_init_node
579#undef pv_wait_node
580#undef pv_kick_node
581#undef pv_wait_head_or_lock
582
583#undef  queued_spin_lock_slowpath
584#define queued_spin_lock_slowpath	__pv_queued_spin_lock_slowpath
585
586#include "qspinlock_paravirt.h"
587#include "qspinlock.c"
588
589bool nopvspin __initdata;
590static __init int parse_nopvspin(char *arg)
591{
592	nopvspin = true;
593	return 0;
594}
595early_param("nopvspin", parse_nopvspin);
596#endif