Linux Audio

Check our new training course

Loading...
Note: File does not exist in v4.17.
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2010 Red Hat, Inc.
   4 * Copyright (C) 2016-2019 Christoph Hellwig.
   5 */
   6#include <linux/module.h>
   7#include <linux/compiler.h>
   8#include <linux/fs.h>
   9#include <linux/iomap.h>
  10#include <linux/pagemap.h>
  11#include <linux/uio.h>
  12#include <linux/buffer_head.h>
  13#include <linux/dax.h>
  14#include <linux/writeback.h>
  15#include <linux/list_sort.h>
  16#include <linux/swap.h>
  17#include <linux/bio.h>
  18#include <linux/sched/signal.h>
  19#include <linux/migrate.h>
  20#include "trace.h"
  21
  22#include "../internal.h"
  23
  24#define IOEND_BATCH_SIZE	4096
  25
  26typedef int (*iomap_punch_t)(struct inode *inode, loff_t offset, loff_t length);
  27/*
  28 * Structure allocated for each folio to track per-block uptodate, dirty state
  29 * and I/O completions.
  30 */
  31struct iomap_folio_state {
  32	spinlock_t		state_lock;
  33	unsigned int		read_bytes_pending;
  34	atomic_t		write_bytes_pending;
  35
  36	/*
  37	 * Each block has two bits in this bitmap:
  38	 * Bits [0..blocks_per_folio) has the uptodate status.
  39	 * Bits [b_p_f...(2*b_p_f))   has the dirty status.
  40	 */
  41	unsigned long		state[];
  42};
  43
  44static struct bio_set iomap_ioend_bioset;
  45
  46static inline bool ifs_is_fully_uptodate(struct folio *folio,
  47		struct iomap_folio_state *ifs)
  48{
  49	struct inode *inode = folio->mapping->host;
  50
  51	return bitmap_full(ifs->state, i_blocks_per_folio(inode, folio));
  52}
  53
  54static inline bool ifs_block_is_uptodate(struct iomap_folio_state *ifs,
  55		unsigned int block)
  56{
  57	return test_bit(block, ifs->state);
  58}
  59
  60static bool ifs_set_range_uptodate(struct folio *folio,
  61		struct iomap_folio_state *ifs, size_t off, size_t len)
  62{
  63	struct inode *inode = folio->mapping->host;
  64	unsigned int first_blk = off >> inode->i_blkbits;
  65	unsigned int last_blk = (off + len - 1) >> inode->i_blkbits;
  66	unsigned int nr_blks = last_blk - first_blk + 1;
  67
  68	bitmap_set(ifs->state, first_blk, nr_blks);
  69	return ifs_is_fully_uptodate(folio, ifs);
  70}
  71
  72static void iomap_set_range_uptodate(struct folio *folio, size_t off,
  73		size_t len)
  74{
  75	struct iomap_folio_state *ifs = folio->private;
  76	unsigned long flags;
  77	bool uptodate = true;
  78
  79	if (ifs) {
  80		spin_lock_irqsave(&ifs->state_lock, flags);
  81		uptodate = ifs_set_range_uptodate(folio, ifs, off, len);
  82		spin_unlock_irqrestore(&ifs->state_lock, flags);
  83	}
  84
  85	if (uptodate)
  86		folio_mark_uptodate(folio);
  87}
  88
  89static inline bool ifs_block_is_dirty(struct folio *folio,
  90		struct iomap_folio_state *ifs, int block)
  91{
  92	struct inode *inode = folio->mapping->host;
  93	unsigned int blks_per_folio = i_blocks_per_folio(inode, folio);
  94
  95	return test_bit(block + blks_per_folio, ifs->state);
  96}
  97
  98static void ifs_clear_range_dirty(struct folio *folio,
  99		struct iomap_folio_state *ifs, size_t off, size_t len)
 100{
 101	struct inode *inode = folio->mapping->host;
 102	unsigned int blks_per_folio = i_blocks_per_folio(inode, folio);
 103	unsigned int first_blk = (off >> inode->i_blkbits);
 104	unsigned int last_blk = (off + len - 1) >> inode->i_blkbits;
 105	unsigned int nr_blks = last_blk - first_blk + 1;
 106	unsigned long flags;
 107
 108	spin_lock_irqsave(&ifs->state_lock, flags);
 109	bitmap_clear(ifs->state, first_blk + blks_per_folio, nr_blks);
 110	spin_unlock_irqrestore(&ifs->state_lock, flags);
 111}
 112
 113static void iomap_clear_range_dirty(struct folio *folio, size_t off, size_t len)
 114{
 115	struct iomap_folio_state *ifs = folio->private;
 116
 117	if (ifs)
 118		ifs_clear_range_dirty(folio, ifs, off, len);
 119}
 120
 121static void ifs_set_range_dirty(struct folio *folio,
 122		struct iomap_folio_state *ifs, size_t off, size_t len)
 123{
 124	struct inode *inode = folio->mapping->host;
 125	unsigned int blks_per_folio = i_blocks_per_folio(inode, folio);
 126	unsigned int first_blk = (off >> inode->i_blkbits);
 127	unsigned int last_blk = (off + len - 1) >> inode->i_blkbits;
 128	unsigned int nr_blks = last_blk - first_blk + 1;
 129	unsigned long flags;
 130
 131	spin_lock_irqsave(&ifs->state_lock, flags);
 132	bitmap_set(ifs->state, first_blk + blks_per_folio, nr_blks);
 133	spin_unlock_irqrestore(&ifs->state_lock, flags);
 134}
 135
 136static void iomap_set_range_dirty(struct folio *folio, size_t off, size_t len)
 137{
 138	struct iomap_folio_state *ifs = folio->private;
 139
 140	if (ifs)
 141		ifs_set_range_dirty(folio, ifs, off, len);
 142}
 143
 144static struct iomap_folio_state *ifs_alloc(struct inode *inode,
 145		struct folio *folio, unsigned int flags)
 146{
 147	struct iomap_folio_state *ifs = folio->private;
 148	unsigned int nr_blocks = i_blocks_per_folio(inode, folio);
 149	gfp_t gfp;
 150
 151	if (ifs || nr_blocks <= 1)
 152		return ifs;
 153
 154	if (flags & IOMAP_NOWAIT)
 155		gfp = GFP_NOWAIT;
 156	else
 157		gfp = GFP_NOFS | __GFP_NOFAIL;
 158
 159	/*
 160	 * ifs->state tracks two sets of state flags when the
 161	 * filesystem block size is smaller than the folio size.
 162	 * The first state tracks per-block uptodate and the
 163	 * second tracks per-block dirty state.
 164	 */
 165	ifs = kzalloc(struct_size(ifs, state,
 166		      BITS_TO_LONGS(2 * nr_blocks)), gfp);
 167	if (!ifs)
 168		return ifs;
 169
 170	spin_lock_init(&ifs->state_lock);
 171	if (folio_test_uptodate(folio))
 172		bitmap_set(ifs->state, 0, nr_blocks);
 173	if (folio_test_dirty(folio))
 174		bitmap_set(ifs->state, nr_blocks, nr_blocks);
 175	folio_attach_private(folio, ifs);
 176
 177	return ifs;
 178}
 179
 180static void ifs_free(struct folio *folio)
 181{
 182	struct iomap_folio_state *ifs = folio_detach_private(folio);
 183
 184	if (!ifs)
 185		return;
 186	WARN_ON_ONCE(ifs->read_bytes_pending != 0);
 187	WARN_ON_ONCE(atomic_read(&ifs->write_bytes_pending));
 188	WARN_ON_ONCE(ifs_is_fully_uptodate(folio, ifs) !=
 189			folio_test_uptodate(folio));
 190	kfree(ifs);
 191}
 192
 193/*
 194 * Calculate the range inside the folio that we actually need to read.
 195 */
 196static void iomap_adjust_read_range(struct inode *inode, struct folio *folio,
 197		loff_t *pos, loff_t length, size_t *offp, size_t *lenp)
 198{
 199	struct iomap_folio_state *ifs = folio->private;
 200	loff_t orig_pos = *pos;
 201	loff_t isize = i_size_read(inode);
 202	unsigned block_bits = inode->i_blkbits;
 203	unsigned block_size = (1 << block_bits);
 204	size_t poff = offset_in_folio(folio, *pos);
 205	size_t plen = min_t(loff_t, folio_size(folio) - poff, length);
 206	unsigned first = poff >> block_bits;
 207	unsigned last = (poff + plen - 1) >> block_bits;
 208
 209	/*
 210	 * If the block size is smaller than the page size, we need to check the
 211	 * per-block uptodate status and adjust the offset and length if needed
 212	 * to avoid reading in already uptodate ranges.
 213	 */
 214	if (ifs) {
 215		unsigned int i;
 216
 217		/* move forward for each leading block marked uptodate */
 218		for (i = first; i <= last; i++) {
 219			if (!ifs_block_is_uptodate(ifs, i))
 220				break;
 221			*pos += block_size;
 222			poff += block_size;
 223			plen -= block_size;
 224			first++;
 225		}
 226
 227		/* truncate len if we find any trailing uptodate block(s) */
 228		for ( ; i <= last; i++) {
 229			if (ifs_block_is_uptodate(ifs, i)) {
 230				plen -= (last - i + 1) * block_size;
 231				last = i - 1;
 232				break;
 233			}
 234		}
 235	}
 236
 237	/*
 238	 * If the extent spans the block that contains the i_size, we need to
 239	 * handle both halves separately so that we properly zero data in the
 240	 * page cache for blocks that are entirely outside of i_size.
 241	 */
 242	if (orig_pos <= isize && orig_pos + length > isize) {
 243		unsigned end = offset_in_folio(folio, isize - 1) >> block_bits;
 244
 245		if (first <= end && last > end)
 246			plen -= (last - end) * block_size;
 247	}
 248
 249	*offp = poff;
 250	*lenp = plen;
 251}
 252
 253static void iomap_finish_folio_read(struct folio *folio, size_t off,
 254		size_t len, int error)
 255{
 256	struct iomap_folio_state *ifs = folio->private;
 257	bool uptodate = !error;
 258	bool finished = true;
 259
 260	if (ifs) {
 261		unsigned long flags;
 262
 263		spin_lock_irqsave(&ifs->state_lock, flags);
 264		if (!error)
 265			uptodate = ifs_set_range_uptodate(folio, ifs, off, len);
 266		ifs->read_bytes_pending -= len;
 267		finished = !ifs->read_bytes_pending;
 268		spin_unlock_irqrestore(&ifs->state_lock, flags);
 269	}
 270
 271	if (error)
 272		folio_set_error(folio);
 273	if (finished)
 274		folio_end_read(folio, uptodate);
 275}
 276
 277static void iomap_read_end_io(struct bio *bio)
 278{
 279	int error = blk_status_to_errno(bio->bi_status);
 280	struct folio_iter fi;
 281
 282	bio_for_each_folio_all(fi, bio)
 283		iomap_finish_folio_read(fi.folio, fi.offset, fi.length, error);
 284	bio_put(bio);
 285}
 286
 287struct iomap_readpage_ctx {
 288	struct folio		*cur_folio;
 289	bool			cur_folio_in_bio;
 290	struct bio		*bio;
 291	struct readahead_control *rac;
 292};
 293
 294/**
 295 * iomap_read_inline_data - copy inline data into the page cache
 296 * @iter: iteration structure
 297 * @folio: folio to copy to
 298 *
 299 * Copy the inline data in @iter into @folio and zero out the rest of the folio.
 300 * Only a single IOMAP_INLINE extent is allowed at the end of each file.
 301 * Returns zero for success to complete the read, or the usual negative errno.
 302 */
 303static int iomap_read_inline_data(const struct iomap_iter *iter,
 304		struct folio *folio)
 305{
 306	const struct iomap *iomap = iomap_iter_srcmap(iter);
 307	size_t size = i_size_read(iter->inode) - iomap->offset;
 308	size_t offset = offset_in_folio(folio, iomap->offset);
 309
 310	if (folio_test_uptodate(folio))
 311		return 0;
 312
 313	if (WARN_ON_ONCE(size > iomap->length))
 314		return -EIO;
 315	if (offset > 0)
 316		ifs_alloc(iter->inode, folio, iter->flags);
 317
 318	folio_fill_tail(folio, offset, iomap->inline_data, size);
 319	iomap_set_range_uptodate(folio, offset, folio_size(folio) - offset);
 320	return 0;
 321}
 322
 323static inline bool iomap_block_needs_zeroing(const struct iomap_iter *iter,
 324		loff_t pos)
 325{
 326	const struct iomap *srcmap = iomap_iter_srcmap(iter);
 327
 328	return srcmap->type != IOMAP_MAPPED ||
 329		(srcmap->flags & IOMAP_F_NEW) ||
 330		pos >= i_size_read(iter->inode);
 331}
 332
 333static loff_t iomap_readpage_iter(const struct iomap_iter *iter,
 334		struct iomap_readpage_ctx *ctx, loff_t offset)
 335{
 336	const struct iomap *iomap = &iter->iomap;
 337	loff_t pos = iter->pos + offset;
 338	loff_t length = iomap_length(iter) - offset;
 339	struct folio *folio = ctx->cur_folio;
 340	struct iomap_folio_state *ifs;
 341	loff_t orig_pos = pos;
 342	size_t poff, plen;
 343	sector_t sector;
 344
 345	if (iomap->type == IOMAP_INLINE)
 346		return iomap_read_inline_data(iter, folio);
 347
 348	/* zero post-eof blocks as the page may be mapped */
 349	ifs = ifs_alloc(iter->inode, folio, iter->flags);
 350	iomap_adjust_read_range(iter->inode, folio, &pos, length, &poff, &plen);
 351	if (plen == 0)
 352		goto done;
 353
 354	if (iomap_block_needs_zeroing(iter, pos)) {
 355		folio_zero_range(folio, poff, plen);
 356		iomap_set_range_uptodate(folio, poff, plen);
 357		goto done;
 358	}
 359
 360	ctx->cur_folio_in_bio = true;
 361	if (ifs) {
 362		spin_lock_irq(&ifs->state_lock);
 363		ifs->read_bytes_pending += plen;
 364		spin_unlock_irq(&ifs->state_lock);
 365	}
 366
 367	sector = iomap_sector(iomap, pos);
 368	if (!ctx->bio ||
 369	    bio_end_sector(ctx->bio) != sector ||
 370	    !bio_add_folio(ctx->bio, folio, plen, poff)) {
 371		gfp_t gfp = mapping_gfp_constraint(folio->mapping, GFP_KERNEL);
 372		gfp_t orig_gfp = gfp;
 373		unsigned int nr_vecs = DIV_ROUND_UP(length, PAGE_SIZE);
 374
 375		if (ctx->bio)
 376			submit_bio(ctx->bio);
 377
 378		if (ctx->rac) /* same as readahead_gfp_mask */
 379			gfp |= __GFP_NORETRY | __GFP_NOWARN;
 380		ctx->bio = bio_alloc(iomap->bdev, bio_max_segs(nr_vecs),
 381				     REQ_OP_READ, gfp);
 382		/*
 383		 * If the bio_alloc fails, try it again for a single page to
 384		 * avoid having to deal with partial page reads.  This emulates
 385		 * what do_mpage_read_folio does.
 386		 */
 387		if (!ctx->bio) {
 388			ctx->bio = bio_alloc(iomap->bdev, 1, REQ_OP_READ,
 389					     orig_gfp);
 390		}
 391		if (ctx->rac)
 392			ctx->bio->bi_opf |= REQ_RAHEAD;
 393		ctx->bio->bi_iter.bi_sector = sector;
 394		ctx->bio->bi_end_io = iomap_read_end_io;
 395		bio_add_folio_nofail(ctx->bio, folio, plen, poff);
 396	}
 397
 398done:
 399	/*
 400	 * Move the caller beyond our range so that it keeps making progress.
 401	 * For that, we have to include any leading non-uptodate ranges, but
 402	 * we can skip trailing ones as they will be handled in the next
 403	 * iteration.
 404	 */
 405	return pos - orig_pos + plen;
 406}
 407
 408int iomap_read_folio(struct folio *folio, const struct iomap_ops *ops)
 409{
 410	struct iomap_iter iter = {
 411		.inode		= folio->mapping->host,
 412		.pos		= folio_pos(folio),
 413		.len		= folio_size(folio),
 414	};
 415	struct iomap_readpage_ctx ctx = {
 416		.cur_folio	= folio,
 417	};
 418	int ret;
 419
 420	trace_iomap_readpage(iter.inode, 1);
 421
 422	while ((ret = iomap_iter(&iter, ops)) > 0)
 423		iter.processed = iomap_readpage_iter(&iter, &ctx, 0);
 424
 425	if (ret < 0)
 426		folio_set_error(folio);
 427
 428	if (ctx.bio) {
 429		submit_bio(ctx.bio);
 430		WARN_ON_ONCE(!ctx.cur_folio_in_bio);
 431	} else {
 432		WARN_ON_ONCE(ctx.cur_folio_in_bio);
 433		folio_unlock(folio);
 434	}
 435
 436	/*
 437	 * Just like mpage_readahead and block_read_full_folio, we always
 438	 * return 0 and just set the folio error flag on errors.  This
 439	 * should be cleaned up throughout the stack eventually.
 440	 */
 441	return 0;
 442}
 443EXPORT_SYMBOL_GPL(iomap_read_folio);
 444
 445static loff_t iomap_readahead_iter(const struct iomap_iter *iter,
 446		struct iomap_readpage_ctx *ctx)
 447{
 448	loff_t length = iomap_length(iter);
 449	loff_t done, ret;
 450
 451	for (done = 0; done < length; done += ret) {
 452		if (ctx->cur_folio &&
 453		    offset_in_folio(ctx->cur_folio, iter->pos + done) == 0) {
 454			if (!ctx->cur_folio_in_bio)
 455				folio_unlock(ctx->cur_folio);
 456			ctx->cur_folio = NULL;
 457		}
 458		if (!ctx->cur_folio) {
 459			ctx->cur_folio = readahead_folio(ctx->rac);
 460			ctx->cur_folio_in_bio = false;
 461		}
 462		ret = iomap_readpage_iter(iter, ctx, done);
 463		if (ret <= 0)
 464			return ret;
 465	}
 466
 467	return done;
 468}
 469
 470/**
 471 * iomap_readahead - Attempt to read pages from a file.
 472 * @rac: Describes the pages to be read.
 473 * @ops: The operations vector for the filesystem.
 474 *
 475 * This function is for filesystems to call to implement their readahead
 476 * address_space operation.
 477 *
 478 * Context: The @ops callbacks may submit I/O (eg to read the addresses of
 479 * blocks from disc), and may wait for it.  The caller may be trying to
 480 * access a different page, and so sleeping excessively should be avoided.
 481 * It may allocate memory, but should avoid costly allocations.  This
 482 * function is called with memalloc_nofs set, so allocations will not cause
 483 * the filesystem to be reentered.
 484 */
 485void iomap_readahead(struct readahead_control *rac, const struct iomap_ops *ops)
 486{
 487	struct iomap_iter iter = {
 488		.inode	= rac->mapping->host,
 489		.pos	= readahead_pos(rac),
 490		.len	= readahead_length(rac),
 491	};
 492	struct iomap_readpage_ctx ctx = {
 493		.rac	= rac,
 494	};
 495
 496	trace_iomap_readahead(rac->mapping->host, readahead_count(rac));
 497
 498	while (iomap_iter(&iter, ops) > 0)
 499		iter.processed = iomap_readahead_iter(&iter, &ctx);
 500
 501	if (ctx.bio)
 502		submit_bio(ctx.bio);
 503	if (ctx.cur_folio) {
 504		if (!ctx.cur_folio_in_bio)
 505			folio_unlock(ctx.cur_folio);
 506	}
 507}
 508EXPORT_SYMBOL_GPL(iomap_readahead);
 509
 510/*
 511 * iomap_is_partially_uptodate checks whether blocks within a folio are
 512 * uptodate or not.
 513 *
 514 * Returns true if all blocks which correspond to the specified part
 515 * of the folio are uptodate.
 516 */
 517bool iomap_is_partially_uptodate(struct folio *folio, size_t from, size_t count)
 518{
 519	struct iomap_folio_state *ifs = folio->private;
 520	struct inode *inode = folio->mapping->host;
 521	unsigned first, last, i;
 522
 523	if (!ifs)
 524		return false;
 525
 526	/* Caller's range may extend past the end of this folio */
 527	count = min(folio_size(folio) - from, count);
 528
 529	/* First and last blocks in range within folio */
 530	first = from >> inode->i_blkbits;
 531	last = (from + count - 1) >> inode->i_blkbits;
 532
 533	for (i = first; i <= last; i++)
 534		if (!ifs_block_is_uptodate(ifs, i))
 535			return false;
 536	return true;
 537}
 538EXPORT_SYMBOL_GPL(iomap_is_partially_uptodate);
 539
 540/**
 541 * iomap_get_folio - get a folio reference for writing
 542 * @iter: iteration structure
 543 * @pos: start offset of write
 544 * @len: Suggested size of folio to create.
 545 *
 546 * Returns a locked reference to the folio at @pos, or an error pointer if the
 547 * folio could not be obtained.
 548 */
 549struct folio *iomap_get_folio(struct iomap_iter *iter, loff_t pos, size_t len)
 550{
 551	fgf_t fgp = FGP_WRITEBEGIN | FGP_NOFS;
 552
 553	if (iter->flags & IOMAP_NOWAIT)
 554		fgp |= FGP_NOWAIT;
 555	fgp |= fgf_set_order(len);
 556
 557	return __filemap_get_folio(iter->inode->i_mapping, pos >> PAGE_SHIFT,
 558			fgp, mapping_gfp_mask(iter->inode->i_mapping));
 559}
 560EXPORT_SYMBOL_GPL(iomap_get_folio);
 561
 562bool iomap_release_folio(struct folio *folio, gfp_t gfp_flags)
 563{
 564	trace_iomap_release_folio(folio->mapping->host, folio_pos(folio),
 565			folio_size(folio));
 566
 567	/*
 568	 * If the folio is dirty, we refuse to release our metadata because
 569	 * it may be partially dirty.  Once we track per-block dirty state,
 570	 * we can release the metadata if every block is dirty.
 571	 */
 572	if (folio_test_dirty(folio))
 573		return false;
 574	ifs_free(folio);
 575	return true;
 576}
 577EXPORT_SYMBOL_GPL(iomap_release_folio);
 578
 579void iomap_invalidate_folio(struct folio *folio, size_t offset, size_t len)
 580{
 581	trace_iomap_invalidate_folio(folio->mapping->host,
 582					folio_pos(folio) + offset, len);
 583
 584	/*
 585	 * If we're invalidating the entire folio, clear the dirty state
 586	 * from it and release it to avoid unnecessary buildup of the LRU.
 587	 */
 588	if (offset == 0 && len == folio_size(folio)) {
 589		WARN_ON_ONCE(folio_test_writeback(folio));
 590		folio_cancel_dirty(folio);
 591		ifs_free(folio);
 592	}
 593}
 594EXPORT_SYMBOL_GPL(iomap_invalidate_folio);
 595
 596bool iomap_dirty_folio(struct address_space *mapping, struct folio *folio)
 597{
 598	struct inode *inode = mapping->host;
 599	size_t len = folio_size(folio);
 600
 601	ifs_alloc(inode, folio, 0);
 602	iomap_set_range_dirty(folio, 0, len);
 603	return filemap_dirty_folio(mapping, folio);
 604}
 605EXPORT_SYMBOL_GPL(iomap_dirty_folio);
 606
 607static void
 608iomap_write_failed(struct inode *inode, loff_t pos, unsigned len)
 609{
 610	loff_t i_size = i_size_read(inode);
 611
 612	/*
 613	 * Only truncate newly allocated pages beyoned EOF, even if the
 614	 * write started inside the existing inode size.
 615	 */
 616	if (pos + len > i_size)
 617		truncate_pagecache_range(inode, max(pos, i_size),
 618					 pos + len - 1);
 619}
 620
 621static int iomap_read_folio_sync(loff_t block_start, struct folio *folio,
 622		size_t poff, size_t plen, const struct iomap *iomap)
 623{
 624	struct bio_vec bvec;
 625	struct bio bio;
 626
 627	bio_init(&bio, iomap->bdev, &bvec, 1, REQ_OP_READ);
 628	bio.bi_iter.bi_sector = iomap_sector(iomap, block_start);
 629	bio_add_folio_nofail(&bio, folio, plen, poff);
 630	return submit_bio_wait(&bio);
 631}
 632
 633static int __iomap_write_begin(const struct iomap_iter *iter, loff_t pos,
 634		size_t len, struct folio *folio)
 635{
 636	const struct iomap *srcmap = iomap_iter_srcmap(iter);
 637	struct iomap_folio_state *ifs;
 638	loff_t block_size = i_blocksize(iter->inode);
 639	loff_t block_start = round_down(pos, block_size);
 640	loff_t block_end = round_up(pos + len, block_size);
 641	unsigned int nr_blocks = i_blocks_per_folio(iter->inode, folio);
 642	size_t from = offset_in_folio(folio, pos), to = from + len;
 643	size_t poff, plen;
 644
 645	/*
 646	 * If the write or zeroing completely overlaps the current folio, then
 647	 * entire folio will be dirtied so there is no need for
 648	 * per-block state tracking structures to be attached to this folio.
 649	 * For the unshare case, we must read in the ondisk contents because we
 650	 * are not changing pagecache contents.
 651	 */
 652	if (!(iter->flags & IOMAP_UNSHARE) && pos <= folio_pos(folio) &&
 653	    pos + len >= folio_pos(folio) + folio_size(folio))
 654		return 0;
 655
 656	ifs = ifs_alloc(iter->inode, folio, iter->flags);
 657	if ((iter->flags & IOMAP_NOWAIT) && !ifs && nr_blocks > 1)
 658		return -EAGAIN;
 659
 660	if (folio_test_uptodate(folio))
 661		return 0;
 662	folio_clear_error(folio);
 663
 664	do {
 665		iomap_adjust_read_range(iter->inode, folio, &block_start,
 666				block_end - block_start, &poff, &plen);
 667		if (plen == 0)
 668			break;
 669
 670		if (!(iter->flags & IOMAP_UNSHARE) &&
 671		    (from <= poff || from >= poff + plen) &&
 672		    (to <= poff || to >= poff + plen))
 673			continue;
 674
 675		if (iomap_block_needs_zeroing(iter, block_start)) {
 676			if (WARN_ON_ONCE(iter->flags & IOMAP_UNSHARE))
 677				return -EIO;
 678			folio_zero_segments(folio, poff, from, to, poff + plen);
 679		} else {
 680			int status;
 681
 682			if (iter->flags & IOMAP_NOWAIT)
 683				return -EAGAIN;
 684
 685			status = iomap_read_folio_sync(block_start, folio,
 686					poff, plen, srcmap);
 687			if (status)
 688				return status;
 689		}
 690		iomap_set_range_uptodate(folio, poff, plen);
 691	} while ((block_start += plen) < block_end);
 692
 693	return 0;
 694}
 695
 696static struct folio *__iomap_get_folio(struct iomap_iter *iter, loff_t pos,
 697		size_t len)
 698{
 699	const struct iomap_folio_ops *folio_ops = iter->iomap.folio_ops;
 700
 701	if (folio_ops && folio_ops->get_folio)
 702		return folio_ops->get_folio(iter, pos, len);
 703	else
 704		return iomap_get_folio(iter, pos, len);
 705}
 706
 707static void __iomap_put_folio(struct iomap_iter *iter, loff_t pos, size_t ret,
 708		struct folio *folio)
 709{
 710	const struct iomap_folio_ops *folio_ops = iter->iomap.folio_ops;
 711
 712	if (folio_ops && folio_ops->put_folio) {
 713		folio_ops->put_folio(iter->inode, pos, ret, folio);
 714	} else {
 715		folio_unlock(folio);
 716		folio_put(folio);
 717	}
 718}
 719
 720static int iomap_write_begin_inline(const struct iomap_iter *iter,
 721		struct folio *folio)
 722{
 723	/* needs more work for the tailpacking case; disable for now */
 724	if (WARN_ON_ONCE(iomap_iter_srcmap(iter)->offset != 0))
 725		return -EIO;
 726	return iomap_read_inline_data(iter, folio);
 727}
 728
 729static int iomap_write_begin(struct iomap_iter *iter, loff_t pos,
 730		size_t len, struct folio **foliop)
 731{
 732	const struct iomap_folio_ops *folio_ops = iter->iomap.folio_ops;
 733	const struct iomap *srcmap = iomap_iter_srcmap(iter);
 734	struct folio *folio;
 735	int status = 0;
 736
 737	BUG_ON(pos + len > iter->iomap.offset + iter->iomap.length);
 738	if (srcmap != &iter->iomap)
 739		BUG_ON(pos + len > srcmap->offset + srcmap->length);
 740
 741	if (fatal_signal_pending(current))
 742		return -EINTR;
 743
 744	if (!mapping_large_folio_support(iter->inode->i_mapping))
 745		len = min_t(size_t, len, PAGE_SIZE - offset_in_page(pos));
 746
 747	folio = __iomap_get_folio(iter, pos, len);
 748	if (IS_ERR(folio))
 749		return PTR_ERR(folio);
 750
 751	/*
 752	 * Now we have a locked folio, before we do anything with it we need to
 753	 * check that the iomap we have cached is not stale. The inode extent
 754	 * mapping can change due to concurrent IO in flight (e.g.
 755	 * IOMAP_UNWRITTEN state can change and memory reclaim could have
 756	 * reclaimed a previously partially written page at this index after IO
 757	 * completion before this write reaches this file offset) and hence we
 758	 * could do the wrong thing here (zero a page range incorrectly or fail
 759	 * to zero) and corrupt data.
 760	 */
 761	if (folio_ops && folio_ops->iomap_valid) {
 762		bool iomap_valid = folio_ops->iomap_valid(iter->inode,
 763							 &iter->iomap);
 764		if (!iomap_valid) {
 765			iter->iomap.flags |= IOMAP_F_STALE;
 766			status = 0;
 767			goto out_unlock;
 768		}
 769	}
 770
 771	if (pos + len > folio_pos(folio) + folio_size(folio))
 772		len = folio_pos(folio) + folio_size(folio) - pos;
 773
 774	if (srcmap->type == IOMAP_INLINE)
 775		status = iomap_write_begin_inline(iter, folio);
 776	else if (srcmap->flags & IOMAP_F_BUFFER_HEAD)
 777		status = __block_write_begin_int(folio, pos, len, NULL, srcmap);
 778	else
 779		status = __iomap_write_begin(iter, pos, len, folio);
 780
 781	if (unlikely(status))
 782		goto out_unlock;
 783
 784	*foliop = folio;
 785	return 0;
 786
 787out_unlock:
 788	__iomap_put_folio(iter, pos, 0, folio);
 789	iomap_write_failed(iter->inode, pos, len);
 790
 791	return status;
 792}
 793
 794static size_t __iomap_write_end(struct inode *inode, loff_t pos, size_t len,
 795		size_t copied, struct folio *folio)
 796{
 797	flush_dcache_folio(folio);
 798
 799	/*
 800	 * The blocks that were entirely written will now be uptodate, so we
 801	 * don't have to worry about a read_folio reading them and overwriting a
 802	 * partial write.  However, if we've encountered a short write and only
 803	 * partially written into a block, it will not be marked uptodate, so a
 804	 * read_folio might come in and destroy our partial write.
 805	 *
 806	 * Do the simplest thing and just treat any short write to a
 807	 * non-uptodate page as a zero-length write, and force the caller to
 808	 * redo the whole thing.
 809	 */
 810	if (unlikely(copied < len && !folio_test_uptodate(folio)))
 811		return 0;
 812	iomap_set_range_uptodate(folio, offset_in_folio(folio, pos), len);
 813	iomap_set_range_dirty(folio, offset_in_folio(folio, pos), copied);
 814	filemap_dirty_folio(inode->i_mapping, folio);
 815	return copied;
 816}
 817
 818static size_t iomap_write_end_inline(const struct iomap_iter *iter,
 819		struct folio *folio, loff_t pos, size_t copied)
 820{
 821	const struct iomap *iomap = &iter->iomap;
 822	void *addr;
 823
 824	WARN_ON_ONCE(!folio_test_uptodate(folio));
 825	BUG_ON(!iomap_inline_data_valid(iomap));
 826
 827	flush_dcache_folio(folio);
 828	addr = kmap_local_folio(folio, pos);
 829	memcpy(iomap_inline_data(iomap, pos), addr, copied);
 830	kunmap_local(addr);
 831
 832	mark_inode_dirty(iter->inode);
 833	return copied;
 834}
 835
 836/* Returns the number of bytes copied.  May be 0.  Cannot be an errno. */
 837static size_t iomap_write_end(struct iomap_iter *iter, loff_t pos, size_t len,
 838		size_t copied, struct folio *folio)
 839{
 840	const struct iomap *srcmap = iomap_iter_srcmap(iter);
 841	loff_t old_size = iter->inode->i_size;
 842	size_t ret;
 843
 844	if (srcmap->type == IOMAP_INLINE) {
 845		ret = iomap_write_end_inline(iter, folio, pos, copied);
 846	} else if (srcmap->flags & IOMAP_F_BUFFER_HEAD) {
 847		ret = block_write_end(NULL, iter->inode->i_mapping, pos, len,
 848				copied, &folio->page, NULL);
 849	} else {
 850		ret = __iomap_write_end(iter->inode, pos, len, copied, folio);
 851	}
 852
 853	/*
 854	 * Update the in-memory inode size after copying the data into the page
 855	 * cache.  It's up to the file system to write the updated size to disk,
 856	 * preferably after I/O completion so that no stale data is exposed.
 857	 */
 858	if (pos + ret > old_size) {
 859		i_size_write(iter->inode, pos + ret);
 860		iter->iomap.flags |= IOMAP_F_SIZE_CHANGED;
 861	}
 862	__iomap_put_folio(iter, pos, ret, folio);
 863
 864	if (old_size < pos)
 865		pagecache_isize_extended(iter->inode, old_size, pos);
 866	if (ret < len)
 867		iomap_write_failed(iter->inode, pos + ret, len - ret);
 868	return ret;
 869}
 870
 871static loff_t iomap_write_iter(struct iomap_iter *iter, struct iov_iter *i)
 872{
 873	loff_t length = iomap_length(iter);
 874	size_t chunk = PAGE_SIZE << MAX_PAGECACHE_ORDER;
 875	loff_t pos = iter->pos;
 876	ssize_t written = 0;
 877	long status = 0;
 878	struct address_space *mapping = iter->inode->i_mapping;
 879	unsigned int bdp_flags = (iter->flags & IOMAP_NOWAIT) ? BDP_ASYNC : 0;
 880
 881	do {
 882		struct folio *folio;
 883		size_t offset;		/* Offset into folio */
 884		size_t bytes;		/* Bytes to write to folio */
 885		size_t copied;		/* Bytes copied from user */
 886
 887		bytes = iov_iter_count(i);
 888retry:
 889		offset = pos & (chunk - 1);
 890		bytes = min(chunk - offset, bytes);
 891		status = balance_dirty_pages_ratelimited_flags(mapping,
 892							       bdp_flags);
 893		if (unlikely(status))
 894			break;
 895
 896		if (bytes > length)
 897			bytes = length;
 898
 899		/*
 900		 * Bring in the user page that we'll copy from _first_.
 901		 * Otherwise there's a nasty deadlock on copying from the
 902		 * same page as we're writing to, without it being marked
 903		 * up-to-date.
 904		 *
 905		 * For async buffered writes the assumption is that the user
 906		 * page has already been faulted in. This can be optimized by
 907		 * faulting the user page.
 908		 */
 909		if (unlikely(fault_in_iov_iter_readable(i, bytes) == bytes)) {
 910			status = -EFAULT;
 911			break;
 912		}
 913
 914		status = iomap_write_begin(iter, pos, bytes, &folio);
 915		if (unlikely(status))
 916			break;
 917		if (iter->iomap.flags & IOMAP_F_STALE)
 918			break;
 919
 920		offset = offset_in_folio(folio, pos);
 921		if (bytes > folio_size(folio) - offset)
 922			bytes = folio_size(folio) - offset;
 923
 924		if (mapping_writably_mapped(mapping))
 925			flush_dcache_folio(folio);
 926
 927		copied = copy_folio_from_iter_atomic(folio, offset, bytes, i);
 928		status = iomap_write_end(iter, pos, bytes, copied, folio);
 929
 930		if (unlikely(copied != status))
 931			iov_iter_revert(i, copied - status);
 932
 933		cond_resched();
 934		if (unlikely(status == 0)) {
 935			/*
 936			 * A short copy made iomap_write_end() reject the
 937			 * thing entirely.  Might be memory poisoning
 938			 * halfway through, might be a race with munmap,
 939			 * might be severe memory pressure.
 940			 */
 941			if (chunk > PAGE_SIZE)
 942				chunk /= 2;
 943			if (copied) {
 944				bytes = copied;
 945				goto retry;
 946			}
 947		} else {
 948			pos += status;
 949			written += status;
 950			length -= status;
 951		}
 952	} while (iov_iter_count(i) && length);
 953
 954	if (status == -EAGAIN) {
 955		iov_iter_revert(i, written);
 956		return -EAGAIN;
 957	}
 958	return written ? written : status;
 959}
 960
 961ssize_t
 962iomap_file_buffered_write(struct kiocb *iocb, struct iov_iter *i,
 963		const struct iomap_ops *ops)
 964{
 965	struct iomap_iter iter = {
 966		.inode		= iocb->ki_filp->f_mapping->host,
 967		.pos		= iocb->ki_pos,
 968		.len		= iov_iter_count(i),
 969		.flags		= IOMAP_WRITE,
 970	};
 971	ssize_t ret;
 972
 973	if (iocb->ki_flags & IOCB_NOWAIT)
 974		iter.flags |= IOMAP_NOWAIT;
 975
 976	while ((ret = iomap_iter(&iter, ops)) > 0)
 977		iter.processed = iomap_write_iter(&iter, i);
 978
 979	if (unlikely(iter.pos == iocb->ki_pos))
 980		return ret;
 981	ret = iter.pos - iocb->ki_pos;
 982	iocb->ki_pos = iter.pos;
 983	return ret;
 984}
 985EXPORT_SYMBOL_GPL(iomap_file_buffered_write);
 986
 987static int iomap_write_delalloc_ifs_punch(struct inode *inode,
 988		struct folio *folio, loff_t start_byte, loff_t end_byte,
 989		iomap_punch_t punch)
 990{
 991	unsigned int first_blk, last_blk, i;
 992	loff_t last_byte;
 993	u8 blkbits = inode->i_blkbits;
 994	struct iomap_folio_state *ifs;
 995	int ret = 0;
 996
 997	/*
 998	 * When we have per-block dirty tracking, there can be
 999	 * blocks within a folio which are marked uptodate
1000	 * but not dirty. In that case it is necessary to punch
1001	 * out such blocks to avoid leaking any delalloc blocks.
1002	 */
1003	ifs = folio->private;
1004	if (!ifs)
1005		return ret;
1006
1007	last_byte = min_t(loff_t, end_byte - 1,
1008			folio_pos(folio) + folio_size(folio) - 1);
1009	first_blk = offset_in_folio(folio, start_byte) >> blkbits;
1010	last_blk = offset_in_folio(folio, last_byte) >> blkbits;
1011	for (i = first_blk; i <= last_blk; i++) {
1012		if (!ifs_block_is_dirty(folio, ifs, i)) {
1013			ret = punch(inode, folio_pos(folio) + (i << blkbits),
1014				    1 << blkbits);
1015			if (ret)
1016				return ret;
1017		}
1018	}
1019
1020	return ret;
1021}
1022
1023
1024static int iomap_write_delalloc_punch(struct inode *inode, struct folio *folio,
1025		loff_t *punch_start_byte, loff_t start_byte, loff_t end_byte,
1026		iomap_punch_t punch)
1027{
1028	int ret = 0;
1029
1030	if (!folio_test_dirty(folio))
1031		return ret;
1032
1033	/* if dirty, punch up to offset */
1034	if (start_byte > *punch_start_byte) {
1035		ret = punch(inode, *punch_start_byte,
1036				start_byte - *punch_start_byte);
1037		if (ret)
1038			return ret;
1039	}
1040
1041	/* Punch non-dirty blocks within folio */
1042	ret = iomap_write_delalloc_ifs_punch(inode, folio, start_byte,
1043			end_byte, punch);
1044	if (ret)
1045		return ret;
1046
1047	/*
1048	 * Make sure the next punch start is correctly bound to
1049	 * the end of this data range, not the end of the folio.
1050	 */
1051	*punch_start_byte = min_t(loff_t, end_byte,
1052				folio_pos(folio) + folio_size(folio));
1053
1054	return ret;
1055}
1056
1057/*
1058 * Scan the data range passed to us for dirty page cache folios. If we find a
1059 * dirty folio, punch out the preceding range and update the offset from which
1060 * the next punch will start from.
1061 *
1062 * We can punch out storage reservations under clean pages because they either
1063 * contain data that has been written back - in which case the delalloc punch
1064 * over that range is a no-op - or they have been read faults in which case they
1065 * contain zeroes and we can remove the delalloc backing range and any new
1066 * writes to those pages will do the normal hole filling operation...
1067 *
1068 * This makes the logic simple: we only need to keep the delalloc extents only
1069 * over the dirty ranges of the page cache.
1070 *
1071 * This function uses [start_byte, end_byte) intervals (i.e. open ended) to
1072 * simplify range iterations.
1073 */
1074static int iomap_write_delalloc_scan(struct inode *inode,
1075		loff_t *punch_start_byte, loff_t start_byte, loff_t end_byte,
1076		iomap_punch_t punch)
1077{
1078	while (start_byte < end_byte) {
1079		struct folio	*folio;
1080		int ret;
1081
1082		/* grab locked page */
1083		folio = filemap_lock_folio(inode->i_mapping,
1084				start_byte >> PAGE_SHIFT);
1085		if (IS_ERR(folio)) {
1086			start_byte = ALIGN_DOWN(start_byte, PAGE_SIZE) +
1087					PAGE_SIZE;
1088			continue;
1089		}
1090
1091		ret = iomap_write_delalloc_punch(inode, folio, punch_start_byte,
1092						 start_byte, end_byte, punch);
1093		if (ret) {
1094			folio_unlock(folio);
1095			folio_put(folio);
1096			return ret;
1097		}
1098
1099		/* move offset to start of next folio in range */
1100		start_byte = folio_next_index(folio) << PAGE_SHIFT;
1101		folio_unlock(folio);
1102		folio_put(folio);
1103	}
1104	return 0;
1105}
1106
1107/*
1108 * Punch out all the delalloc blocks in the range given except for those that
1109 * have dirty data still pending in the page cache - those are going to be
1110 * written and so must still retain the delalloc backing for writeback.
1111 *
1112 * As we are scanning the page cache for data, we don't need to reimplement the
1113 * wheel - mapping_seek_hole_data() does exactly what we need to identify the
1114 * start and end of data ranges correctly even for sub-folio block sizes. This
1115 * byte range based iteration is especially convenient because it means we
1116 * don't have to care about variable size folios, nor where the start or end of
1117 * the data range lies within a folio, if they lie within the same folio or even
1118 * if there are multiple discontiguous data ranges within the folio.
1119 *
1120 * It should be noted that mapping_seek_hole_data() is not aware of EOF, and so
1121 * can return data ranges that exist in the cache beyond EOF. e.g. a page fault
1122 * spanning EOF will initialise the post-EOF data to zeroes and mark it up to
1123 * date. A write page fault can then mark it dirty. If we then fail a write()
1124 * beyond EOF into that up to date cached range, we allocate a delalloc block
1125 * beyond EOF and then have to punch it out. Because the range is up to date,
1126 * mapping_seek_hole_data() will return it, and we will skip the punch because
1127 * the folio is dirty. THis is incorrect - we always need to punch out delalloc
1128 * beyond EOF in this case as writeback will never write back and covert that
1129 * delalloc block beyond EOF. Hence we limit the cached data scan range to EOF,
1130 * resulting in always punching out the range from the EOF to the end of the
1131 * range the iomap spans.
1132 *
1133 * Intervals are of the form [start_byte, end_byte) (i.e. open ended) because it
1134 * matches the intervals returned by mapping_seek_hole_data(). i.e. SEEK_DATA
1135 * returns the start of a data range (start_byte), and SEEK_HOLE(start_byte)
1136 * returns the end of the data range (data_end). Using closed intervals would
1137 * require sprinkling this code with magic "+ 1" and "- 1" arithmetic and expose
1138 * the code to subtle off-by-one bugs....
1139 */
1140static int iomap_write_delalloc_release(struct inode *inode,
1141		loff_t start_byte, loff_t end_byte, iomap_punch_t punch)
1142{
1143	loff_t punch_start_byte = start_byte;
1144	loff_t scan_end_byte = min(i_size_read(inode), end_byte);
1145	int error = 0;
1146
1147	/*
1148	 * Lock the mapping to avoid races with page faults re-instantiating
1149	 * folios and dirtying them via ->page_mkwrite whilst we walk the
1150	 * cache and perform delalloc extent removal. Failing to do this can
1151	 * leave dirty pages with no space reservation in the cache.
1152	 */
1153	filemap_invalidate_lock(inode->i_mapping);
1154	while (start_byte < scan_end_byte) {
1155		loff_t		data_end;
1156
1157		start_byte = mapping_seek_hole_data(inode->i_mapping,
1158				start_byte, scan_end_byte, SEEK_DATA);
1159		/*
1160		 * If there is no more data to scan, all that is left is to
1161		 * punch out the remaining range.
1162		 */
1163		if (start_byte == -ENXIO || start_byte == scan_end_byte)
1164			break;
1165		if (start_byte < 0) {
1166			error = start_byte;
1167			goto out_unlock;
1168		}
1169		WARN_ON_ONCE(start_byte < punch_start_byte);
1170		WARN_ON_ONCE(start_byte > scan_end_byte);
1171
1172		/*
1173		 * We find the end of this contiguous cached data range by
1174		 * seeking from start_byte to the beginning of the next hole.
1175		 */
1176		data_end = mapping_seek_hole_data(inode->i_mapping, start_byte,
1177				scan_end_byte, SEEK_HOLE);
1178		if (data_end < 0) {
1179			error = data_end;
1180			goto out_unlock;
1181		}
1182		WARN_ON_ONCE(data_end <= start_byte);
1183		WARN_ON_ONCE(data_end > scan_end_byte);
1184
1185		error = iomap_write_delalloc_scan(inode, &punch_start_byte,
1186				start_byte, data_end, punch);
1187		if (error)
1188			goto out_unlock;
1189
1190		/* The next data search starts at the end of this one. */
1191		start_byte = data_end;
1192	}
1193
1194	if (punch_start_byte < end_byte)
1195		error = punch(inode, punch_start_byte,
1196				end_byte - punch_start_byte);
1197out_unlock:
1198	filemap_invalidate_unlock(inode->i_mapping);
1199	return error;
1200}
1201
1202/*
1203 * When a short write occurs, the filesystem may need to remove reserved space
1204 * that was allocated in ->iomap_begin from it's ->iomap_end method. For
1205 * filesystems that use delayed allocation, we need to punch out delalloc
1206 * extents from the range that are not dirty in the page cache. As the write can
1207 * race with page faults, there can be dirty pages over the delalloc extent
1208 * outside the range of a short write but still within the delalloc extent
1209 * allocated for this iomap.
1210 *
1211 * This function uses [start_byte, end_byte) intervals (i.e. open ended) to
1212 * simplify range iterations.
1213 *
1214 * The punch() callback *must* only punch delalloc extents in the range passed
1215 * to it. It must skip over all other types of extents in the range and leave
1216 * them completely unchanged. It must do this punch atomically with respect to
1217 * other extent modifications.
1218 *
1219 * The punch() callback may be called with a folio locked to prevent writeback
1220 * extent allocation racing at the edge of the range we are currently punching.
1221 * The locked folio may or may not cover the range being punched, so it is not
1222 * safe for the punch() callback to lock folios itself.
1223 *
1224 * Lock order is:
1225 *
1226 * inode->i_rwsem (shared or exclusive)
1227 *   inode->i_mapping->invalidate_lock (exclusive)
1228 *     folio_lock()
1229 *       ->punch
1230 *         internal filesystem allocation lock
1231 */
1232int iomap_file_buffered_write_punch_delalloc(struct inode *inode,
1233		struct iomap *iomap, loff_t pos, loff_t length,
1234		ssize_t written, iomap_punch_t punch)
1235{
1236	loff_t			start_byte;
1237	loff_t			end_byte;
1238	unsigned int		blocksize = i_blocksize(inode);
1239
1240	if (iomap->type != IOMAP_DELALLOC)
1241		return 0;
1242
1243	/* If we didn't reserve the blocks, we're not allowed to punch them. */
1244	if (!(iomap->flags & IOMAP_F_NEW))
1245		return 0;
1246
1247	/*
1248	 * start_byte refers to the first unused block after a short write. If
1249	 * nothing was written, round offset down to point at the first block in
1250	 * the range.
1251	 */
1252	if (unlikely(!written))
1253		start_byte = round_down(pos, blocksize);
1254	else
1255		start_byte = round_up(pos + written, blocksize);
1256	end_byte = round_up(pos + length, blocksize);
1257
1258	/* Nothing to do if we've written the entire delalloc extent */
1259	if (start_byte >= end_byte)
1260		return 0;
1261
1262	return iomap_write_delalloc_release(inode, start_byte, end_byte,
1263					punch);
1264}
1265EXPORT_SYMBOL_GPL(iomap_file_buffered_write_punch_delalloc);
1266
1267static loff_t iomap_unshare_iter(struct iomap_iter *iter)
1268{
1269	struct iomap *iomap = &iter->iomap;
1270	const struct iomap *srcmap = iomap_iter_srcmap(iter);
1271	loff_t pos = iter->pos;
1272	loff_t length = iomap_length(iter);
1273	loff_t written = 0;
1274
1275	/* don't bother with blocks that are not shared to start with */
1276	if (!(iomap->flags & IOMAP_F_SHARED))
1277		return length;
1278	/* don't bother with holes or unwritten extents */
1279	if (srcmap->type == IOMAP_HOLE || srcmap->type == IOMAP_UNWRITTEN)
1280		return length;
1281
1282	do {
1283		struct folio *folio;
1284		int status;
1285		size_t offset;
1286		size_t bytes = min_t(u64, SIZE_MAX, length);
1287
1288		status = iomap_write_begin(iter, pos, bytes, &folio);
1289		if (unlikely(status))
1290			return status;
1291		if (iomap->flags & IOMAP_F_STALE)
1292			break;
1293
1294		offset = offset_in_folio(folio, pos);
1295		if (bytes > folio_size(folio) - offset)
1296			bytes = folio_size(folio) - offset;
1297
1298		bytes = iomap_write_end(iter, pos, bytes, bytes, folio);
1299		if (WARN_ON_ONCE(bytes == 0))
1300			return -EIO;
1301
1302		cond_resched();
1303
1304		pos += bytes;
1305		written += bytes;
1306		length -= bytes;
1307
1308		balance_dirty_pages_ratelimited(iter->inode->i_mapping);
1309	} while (length > 0);
1310
1311	return written;
1312}
1313
1314int
1315iomap_file_unshare(struct inode *inode, loff_t pos, loff_t len,
1316		const struct iomap_ops *ops)
1317{
1318	struct iomap_iter iter = {
1319		.inode		= inode,
1320		.pos		= pos,
1321		.len		= len,
1322		.flags		= IOMAP_WRITE | IOMAP_UNSHARE,
1323	};
1324	int ret;
1325
1326	while ((ret = iomap_iter(&iter, ops)) > 0)
1327		iter.processed = iomap_unshare_iter(&iter);
1328	return ret;
1329}
1330EXPORT_SYMBOL_GPL(iomap_file_unshare);
1331
1332static loff_t iomap_zero_iter(struct iomap_iter *iter, bool *did_zero)
1333{
1334	const struct iomap *srcmap = iomap_iter_srcmap(iter);
1335	loff_t pos = iter->pos;
1336	loff_t length = iomap_length(iter);
1337	loff_t written = 0;
1338
1339	/* already zeroed?  we're done. */
1340	if (srcmap->type == IOMAP_HOLE || srcmap->type == IOMAP_UNWRITTEN)
1341		return length;
1342
1343	do {
1344		struct folio *folio;
1345		int status;
1346		size_t offset;
1347		size_t bytes = min_t(u64, SIZE_MAX, length);
1348
1349		status = iomap_write_begin(iter, pos, bytes, &folio);
1350		if (status)
1351			return status;
1352		if (iter->iomap.flags & IOMAP_F_STALE)
1353			break;
1354
1355		offset = offset_in_folio(folio, pos);
1356		if (bytes > folio_size(folio) - offset)
1357			bytes = folio_size(folio) - offset;
1358
1359		folio_zero_range(folio, offset, bytes);
1360		folio_mark_accessed(folio);
1361
1362		bytes = iomap_write_end(iter, pos, bytes, bytes, folio);
1363		if (WARN_ON_ONCE(bytes == 0))
1364			return -EIO;
1365
1366		pos += bytes;
1367		length -= bytes;
1368		written += bytes;
1369	} while (length > 0);
1370
1371	if (did_zero)
1372		*did_zero = true;
1373	return written;
1374}
1375
1376int
1377iomap_zero_range(struct inode *inode, loff_t pos, loff_t len, bool *did_zero,
1378		const struct iomap_ops *ops)
1379{
1380	struct iomap_iter iter = {
1381		.inode		= inode,
1382		.pos		= pos,
1383		.len		= len,
1384		.flags		= IOMAP_ZERO,
1385	};
1386	int ret;
1387
1388	while ((ret = iomap_iter(&iter, ops)) > 0)
1389		iter.processed = iomap_zero_iter(&iter, did_zero);
1390	return ret;
1391}
1392EXPORT_SYMBOL_GPL(iomap_zero_range);
1393
1394int
1395iomap_truncate_page(struct inode *inode, loff_t pos, bool *did_zero,
1396		const struct iomap_ops *ops)
1397{
1398	unsigned int blocksize = i_blocksize(inode);
1399	unsigned int off = pos & (blocksize - 1);
1400
1401	/* Block boundary? Nothing to do */
1402	if (!off)
1403		return 0;
1404	return iomap_zero_range(inode, pos, blocksize - off, did_zero, ops);
1405}
1406EXPORT_SYMBOL_GPL(iomap_truncate_page);
1407
1408static loff_t iomap_folio_mkwrite_iter(struct iomap_iter *iter,
1409		struct folio *folio)
1410{
1411	loff_t length = iomap_length(iter);
1412	int ret;
1413
1414	if (iter->iomap.flags & IOMAP_F_BUFFER_HEAD) {
1415		ret = __block_write_begin_int(folio, iter->pos, length, NULL,
1416					      &iter->iomap);
1417		if (ret)
1418			return ret;
1419		block_commit_write(&folio->page, 0, length);
1420	} else {
1421		WARN_ON_ONCE(!folio_test_uptodate(folio));
1422		folio_mark_dirty(folio);
1423	}
1424
1425	return length;
1426}
1427
1428vm_fault_t iomap_page_mkwrite(struct vm_fault *vmf, const struct iomap_ops *ops)
1429{
1430	struct iomap_iter iter = {
1431		.inode		= file_inode(vmf->vma->vm_file),
1432		.flags		= IOMAP_WRITE | IOMAP_FAULT,
1433	};
1434	struct folio *folio = page_folio(vmf->page);
1435	ssize_t ret;
1436
1437	folio_lock(folio);
1438	ret = folio_mkwrite_check_truncate(folio, iter.inode);
1439	if (ret < 0)
1440		goto out_unlock;
1441	iter.pos = folio_pos(folio);
1442	iter.len = ret;
1443	while ((ret = iomap_iter(&iter, ops)) > 0)
1444		iter.processed = iomap_folio_mkwrite_iter(&iter, folio);
1445
1446	if (ret < 0)
1447		goto out_unlock;
1448	folio_wait_stable(folio);
1449	return VM_FAULT_LOCKED;
1450out_unlock:
1451	folio_unlock(folio);
1452	return vmf_fs_error(ret);
1453}
1454EXPORT_SYMBOL_GPL(iomap_page_mkwrite);
1455
1456static void iomap_finish_folio_write(struct inode *inode, struct folio *folio,
1457		size_t len, int error)
1458{
1459	struct iomap_folio_state *ifs = folio->private;
1460
1461	if (error) {
1462		folio_set_error(folio);
1463		mapping_set_error(inode->i_mapping, error);
1464	}
1465
1466	WARN_ON_ONCE(i_blocks_per_folio(inode, folio) > 1 && !ifs);
1467	WARN_ON_ONCE(ifs && atomic_read(&ifs->write_bytes_pending) <= 0);
1468
1469	if (!ifs || atomic_sub_and_test(len, &ifs->write_bytes_pending))
1470		folio_end_writeback(folio);
1471}
1472
1473/*
1474 * We're now finished for good with this ioend structure.  Update the page
1475 * state, release holds on bios, and finally free up memory.  Do not use the
1476 * ioend after this.
1477 */
1478static u32
1479iomap_finish_ioend(struct iomap_ioend *ioend, int error)
1480{
1481	struct inode *inode = ioend->io_inode;
1482	struct bio *bio = &ioend->io_inline_bio;
1483	struct bio *last = ioend->io_bio, *next;
1484	u64 start = bio->bi_iter.bi_sector;
1485	loff_t offset = ioend->io_offset;
1486	bool quiet = bio_flagged(bio, BIO_QUIET);
1487	u32 folio_count = 0;
1488
1489	for (bio = &ioend->io_inline_bio; bio; bio = next) {
1490		struct folio_iter fi;
1491
1492		/*
1493		 * For the last bio, bi_private points to the ioend, so we
1494		 * need to explicitly end the iteration here.
1495		 */
1496		if (bio == last)
1497			next = NULL;
1498		else
1499			next = bio->bi_private;
1500
1501		/* walk all folios in bio, ending page IO on them */
1502		bio_for_each_folio_all(fi, bio) {
1503			iomap_finish_folio_write(inode, fi.folio, fi.length,
1504					error);
1505			folio_count++;
1506		}
1507		bio_put(bio);
1508	}
1509	/* The ioend has been freed by bio_put() */
1510
1511	if (unlikely(error && !quiet)) {
1512		printk_ratelimited(KERN_ERR
1513"%s: writeback error on inode %lu, offset %lld, sector %llu",
1514			inode->i_sb->s_id, inode->i_ino, offset, start);
1515	}
1516	return folio_count;
1517}
1518
1519/*
1520 * Ioend completion routine for merged bios. This can only be called from task
1521 * contexts as merged ioends can be of unbound length. Hence we have to break up
1522 * the writeback completions into manageable chunks to avoid long scheduler
1523 * holdoffs. We aim to keep scheduler holdoffs down below 10ms so that we get
1524 * good batch processing throughput without creating adverse scheduler latency
1525 * conditions.
1526 */
1527void
1528iomap_finish_ioends(struct iomap_ioend *ioend, int error)
1529{
1530	struct list_head tmp;
1531	u32 completions;
1532
1533	might_sleep();
1534
1535	list_replace_init(&ioend->io_list, &tmp);
1536	completions = iomap_finish_ioend(ioend, error);
1537
1538	while (!list_empty(&tmp)) {
1539		if (completions > IOEND_BATCH_SIZE * 8) {
1540			cond_resched();
1541			completions = 0;
1542		}
1543		ioend = list_first_entry(&tmp, struct iomap_ioend, io_list);
1544		list_del_init(&ioend->io_list);
1545		completions += iomap_finish_ioend(ioend, error);
1546	}
1547}
1548EXPORT_SYMBOL_GPL(iomap_finish_ioends);
1549
1550/*
1551 * We can merge two adjacent ioends if they have the same set of work to do.
1552 */
1553static bool
1554iomap_ioend_can_merge(struct iomap_ioend *ioend, struct iomap_ioend *next)
1555{
1556	if (ioend->io_bio->bi_status != next->io_bio->bi_status)
1557		return false;
1558	if ((ioend->io_flags & IOMAP_F_SHARED) ^
1559	    (next->io_flags & IOMAP_F_SHARED))
1560		return false;
1561	if ((ioend->io_type == IOMAP_UNWRITTEN) ^
1562	    (next->io_type == IOMAP_UNWRITTEN))
1563		return false;
1564	if (ioend->io_offset + ioend->io_size != next->io_offset)
1565		return false;
1566	/*
1567	 * Do not merge physically discontiguous ioends. The filesystem
1568	 * completion functions will have to iterate the physical
1569	 * discontiguities even if we merge the ioends at a logical level, so
1570	 * we don't gain anything by merging physical discontiguities here.
1571	 *
1572	 * We cannot use bio->bi_iter.bi_sector here as it is modified during
1573	 * submission so does not point to the start sector of the bio at
1574	 * completion.
1575	 */
1576	if (ioend->io_sector + (ioend->io_size >> 9) != next->io_sector)
1577		return false;
1578	return true;
1579}
1580
1581void
1582iomap_ioend_try_merge(struct iomap_ioend *ioend, struct list_head *more_ioends)
1583{
1584	struct iomap_ioend *next;
1585
1586	INIT_LIST_HEAD(&ioend->io_list);
1587
1588	while ((next = list_first_entry_or_null(more_ioends, struct iomap_ioend,
1589			io_list))) {
1590		if (!iomap_ioend_can_merge(ioend, next))
1591			break;
1592		list_move_tail(&next->io_list, &ioend->io_list);
1593		ioend->io_size += next->io_size;
1594	}
1595}
1596EXPORT_SYMBOL_GPL(iomap_ioend_try_merge);
1597
1598static int
1599iomap_ioend_compare(void *priv, const struct list_head *a,
1600		const struct list_head *b)
1601{
1602	struct iomap_ioend *ia = container_of(a, struct iomap_ioend, io_list);
1603	struct iomap_ioend *ib = container_of(b, struct iomap_ioend, io_list);
1604
1605	if (ia->io_offset < ib->io_offset)
1606		return -1;
1607	if (ia->io_offset > ib->io_offset)
1608		return 1;
1609	return 0;
1610}
1611
1612void
1613iomap_sort_ioends(struct list_head *ioend_list)
1614{
1615	list_sort(NULL, ioend_list, iomap_ioend_compare);
1616}
1617EXPORT_SYMBOL_GPL(iomap_sort_ioends);
1618
1619static void iomap_writepage_end_bio(struct bio *bio)
1620{
1621	struct iomap_ioend *ioend = bio->bi_private;
1622
1623	iomap_finish_ioend(ioend, blk_status_to_errno(bio->bi_status));
1624}
1625
1626/*
1627 * Submit the final bio for an ioend.
1628 *
1629 * If @error is non-zero, it means that we have a situation where some part of
1630 * the submission process has failed after we've marked pages for writeback
1631 * and unlocked them.  In this situation, we need to fail the bio instead of
1632 * submitting it.  This typically only happens on a filesystem shutdown.
1633 */
1634static int
1635iomap_submit_ioend(struct iomap_writepage_ctx *wpc, struct iomap_ioend *ioend,
1636		int error)
1637{
1638	ioend->io_bio->bi_private = ioend;
1639	ioend->io_bio->bi_end_io = iomap_writepage_end_bio;
1640
1641	if (wpc->ops->prepare_ioend)
1642		error = wpc->ops->prepare_ioend(ioend, error);
1643	if (error) {
1644		/*
1645		 * If we're failing the IO now, just mark the ioend with an
1646		 * error and finish it.  This will run IO completion immediately
1647		 * as there is only one reference to the ioend at this point in
1648		 * time.
1649		 */
1650		ioend->io_bio->bi_status = errno_to_blk_status(error);
1651		bio_endio(ioend->io_bio);
1652		return error;
1653	}
1654
1655	submit_bio(ioend->io_bio);
1656	return 0;
1657}
1658
1659static struct iomap_ioend *
1660iomap_alloc_ioend(struct inode *inode, struct iomap_writepage_ctx *wpc,
1661		loff_t offset, sector_t sector, struct writeback_control *wbc)
1662{
1663	struct iomap_ioend *ioend;
1664	struct bio *bio;
1665
1666	bio = bio_alloc_bioset(wpc->iomap.bdev, BIO_MAX_VECS,
1667			       REQ_OP_WRITE | wbc_to_write_flags(wbc),
1668			       GFP_NOFS, &iomap_ioend_bioset);
1669	bio->bi_iter.bi_sector = sector;
1670	wbc_init_bio(wbc, bio);
1671
1672	ioend = container_of(bio, struct iomap_ioend, io_inline_bio);
1673	INIT_LIST_HEAD(&ioend->io_list);
1674	ioend->io_type = wpc->iomap.type;
1675	ioend->io_flags = wpc->iomap.flags;
1676	ioend->io_inode = inode;
1677	ioend->io_size = 0;
1678	ioend->io_folios = 0;
1679	ioend->io_offset = offset;
1680	ioend->io_bio = bio;
1681	ioend->io_sector = sector;
1682	return ioend;
1683}
1684
1685/*
1686 * Allocate a new bio, and chain the old bio to the new one.
1687 *
1688 * Note that we have to perform the chaining in this unintuitive order
1689 * so that the bi_private linkage is set up in the right direction for the
1690 * traversal in iomap_finish_ioend().
1691 */
1692static struct bio *
1693iomap_chain_bio(struct bio *prev)
1694{
1695	struct bio *new;
1696
1697	new = bio_alloc(prev->bi_bdev, BIO_MAX_VECS, prev->bi_opf, GFP_NOFS);
1698	bio_clone_blkg_association(new, prev);
1699	new->bi_iter.bi_sector = bio_end_sector(prev);
1700
1701	bio_chain(prev, new);
1702	bio_get(prev);		/* for iomap_finish_ioend */
1703	submit_bio(prev);
1704	return new;
1705}
1706
1707static bool
1708iomap_can_add_to_ioend(struct iomap_writepage_ctx *wpc, loff_t offset,
1709		sector_t sector)
1710{
1711	if ((wpc->iomap.flags & IOMAP_F_SHARED) !=
1712	    (wpc->ioend->io_flags & IOMAP_F_SHARED))
1713		return false;
1714	if (wpc->iomap.type != wpc->ioend->io_type)
1715		return false;
1716	if (offset != wpc->ioend->io_offset + wpc->ioend->io_size)
1717		return false;
1718	if (sector != bio_end_sector(wpc->ioend->io_bio))
1719		return false;
1720	/*
1721	 * Limit ioend bio chain lengths to minimise IO completion latency. This
1722	 * also prevents long tight loops ending page writeback on all the
1723	 * folios in the ioend.
1724	 */
1725	if (wpc->ioend->io_folios >= IOEND_BATCH_SIZE)
1726		return false;
1727	return true;
1728}
1729
1730/*
1731 * Test to see if we have an existing ioend structure that we could append to
1732 * first; otherwise finish off the current ioend and start another.
1733 */
1734static void
1735iomap_add_to_ioend(struct inode *inode, loff_t pos, struct folio *folio,
1736		struct iomap_folio_state *ifs, struct iomap_writepage_ctx *wpc,
1737		struct writeback_control *wbc, struct list_head *iolist)
1738{
1739	sector_t sector = iomap_sector(&wpc->iomap, pos);
1740	unsigned len = i_blocksize(inode);
1741	size_t poff = offset_in_folio(folio, pos);
1742
1743	if (!wpc->ioend || !iomap_can_add_to_ioend(wpc, pos, sector)) {
1744		if (wpc->ioend)
1745			list_add(&wpc->ioend->io_list, iolist);
1746		wpc->ioend = iomap_alloc_ioend(inode, wpc, pos, sector, wbc);
1747	}
1748
1749	if (!bio_add_folio(wpc->ioend->io_bio, folio, len, poff)) {
1750		wpc->ioend->io_bio = iomap_chain_bio(wpc->ioend->io_bio);
1751		bio_add_folio_nofail(wpc->ioend->io_bio, folio, len, poff);
1752	}
1753
1754	if (ifs)
1755		atomic_add(len, &ifs->write_bytes_pending);
1756	wpc->ioend->io_size += len;
1757	wbc_account_cgroup_owner(wbc, &folio->page, len);
1758}
1759
1760/*
1761 * We implement an immediate ioend submission policy here to avoid needing to
1762 * chain multiple ioends and hence nest mempool allocations which can violate
1763 * the forward progress guarantees we need to provide. The current ioend we're
1764 * adding blocks to is cached in the writepage context, and if the new block
1765 * doesn't append to the cached ioend, it will create a new ioend and cache that
1766 * instead.
1767 *
1768 * If a new ioend is created and cached, the old ioend is returned and queued
1769 * locally for submission once the entire page is processed or an error has been
1770 * detected.  While ioends are submitted immediately after they are completed,
1771 * batching optimisations are provided by higher level block plugging.
1772 *
1773 * At the end of a writeback pass, there will be a cached ioend remaining on the
1774 * writepage context that the caller will need to submit.
1775 */
1776static int
1777iomap_writepage_map(struct iomap_writepage_ctx *wpc,
1778		struct writeback_control *wbc, struct inode *inode,
1779		struct folio *folio, u64 end_pos)
1780{
1781	struct iomap_folio_state *ifs = folio->private;
1782	struct iomap_ioend *ioend, *next;
1783	unsigned len = i_blocksize(inode);
1784	unsigned nblocks = i_blocks_per_folio(inode, folio);
1785	u64 pos = folio_pos(folio);
1786	int error = 0, count = 0, i;
1787	LIST_HEAD(submit_list);
1788
1789	WARN_ON_ONCE(end_pos <= pos);
1790
1791	if (!ifs && nblocks > 1) {
1792		ifs = ifs_alloc(inode, folio, 0);
1793		iomap_set_range_dirty(folio, 0, end_pos - pos);
1794	}
1795
1796	WARN_ON_ONCE(ifs && atomic_read(&ifs->write_bytes_pending) != 0);
1797
1798	/*
1799	 * Walk through the folio to find areas to write back. If we
1800	 * run off the end of the current map or find the current map
1801	 * invalid, grab a new one.
1802	 */
1803	for (i = 0; i < nblocks && pos < end_pos; i++, pos += len) {
1804		if (ifs && !ifs_block_is_dirty(folio, ifs, i))
1805			continue;
1806
1807		error = wpc->ops->map_blocks(wpc, inode, pos);
1808		if (error)
1809			break;
1810		trace_iomap_writepage_map(inode, &wpc->iomap);
1811		if (WARN_ON_ONCE(wpc->iomap.type == IOMAP_INLINE))
1812			continue;
1813		if (wpc->iomap.type == IOMAP_HOLE)
1814			continue;
1815		iomap_add_to_ioend(inode, pos, folio, ifs, wpc, wbc,
1816				 &submit_list);
1817		count++;
1818	}
1819	if (count)
1820		wpc->ioend->io_folios++;
1821
1822	WARN_ON_ONCE(!wpc->ioend && !list_empty(&submit_list));
1823	WARN_ON_ONCE(!folio_test_locked(folio));
1824	WARN_ON_ONCE(folio_test_writeback(folio));
1825	WARN_ON_ONCE(folio_test_dirty(folio));
1826
1827	/*
1828	 * We cannot cancel the ioend directly here on error.  We may have
1829	 * already set other pages under writeback and hence we have to run I/O
1830	 * completion to mark the error state of the pages under writeback
1831	 * appropriately.
1832	 */
1833	if (unlikely(error)) {
1834		/*
1835		 * Let the filesystem know what portion of the current page
1836		 * failed to map. If the page hasn't been added to ioend, it
1837		 * won't be affected by I/O completion and we must unlock it
1838		 * now.
1839		 */
1840		if (wpc->ops->discard_folio)
1841			wpc->ops->discard_folio(folio, pos);
1842		if (!count) {
1843			folio_unlock(folio);
1844			goto done;
1845		}
1846	}
1847
1848	/*
1849	 * We can have dirty bits set past end of file in page_mkwrite path
1850	 * while mapping the last partial folio. Hence it's better to clear
1851	 * all the dirty bits in the folio here.
1852	 */
1853	iomap_clear_range_dirty(folio, 0, folio_size(folio));
1854	folio_start_writeback(folio);
1855	folio_unlock(folio);
1856
1857	/*
1858	 * Preserve the original error if there was one; catch
1859	 * submission errors here and propagate into subsequent ioend
1860	 * submissions.
1861	 */
1862	list_for_each_entry_safe(ioend, next, &submit_list, io_list) {
1863		int error2;
1864
1865		list_del_init(&ioend->io_list);
1866		error2 = iomap_submit_ioend(wpc, ioend, error);
1867		if (error2 && !error)
1868			error = error2;
1869	}
1870
1871	/*
1872	 * We can end up here with no error and nothing to write only if we race
1873	 * with a partial page truncate on a sub-page block sized filesystem.
1874	 */
1875	if (!count)
1876		folio_end_writeback(folio);
1877done:
1878	mapping_set_error(inode->i_mapping, error);
1879	return error;
1880}
1881
1882/*
1883 * Write out a dirty page.
1884 *
1885 * For delalloc space on the page, we need to allocate space and flush it.
1886 * For unwritten space on the page, we need to start the conversion to
1887 * regular allocated space.
1888 */
1889static int iomap_do_writepage(struct folio *folio,
1890		struct writeback_control *wbc, void *data)
1891{
1892	struct iomap_writepage_ctx *wpc = data;
1893	struct inode *inode = folio->mapping->host;
1894	u64 end_pos, isize;
1895
1896	trace_iomap_writepage(inode, folio_pos(folio), folio_size(folio));
1897
1898	/*
1899	 * Refuse to write the folio out if we're called from reclaim context.
1900	 *
1901	 * This avoids stack overflows when called from deeply used stacks in
1902	 * random callers for direct reclaim or memcg reclaim.  We explicitly
1903	 * allow reclaim from kswapd as the stack usage there is relatively low.
1904	 *
1905	 * This should never happen except in the case of a VM regression so
1906	 * warn about it.
1907	 */
1908	if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
1909			PF_MEMALLOC))
1910		goto redirty;
1911
1912	/*
1913	 * Is this folio beyond the end of the file?
1914	 *
1915	 * The folio index is less than the end_index, adjust the end_pos
1916	 * to the highest offset that this folio should represent.
1917	 * -----------------------------------------------------
1918	 * |			file mapping	       | <EOF> |
1919	 * -----------------------------------------------------
1920	 * | Page ... | Page N-2 | Page N-1 |  Page N  |       |
1921	 * ^--------------------------------^----------|--------
1922	 * |     desired writeback range    |      see else    |
1923	 * ---------------------------------^------------------|
1924	 */
1925	isize = i_size_read(inode);
1926	end_pos = folio_pos(folio) + folio_size(folio);
1927	if (end_pos > isize) {
1928		/*
1929		 * Check whether the page to write out is beyond or straddles
1930		 * i_size or not.
1931		 * -------------------------------------------------------
1932		 * |		file mapping		        | <EOF>  |
1933		 * -------------------------------------------------------
1934		 * | Page ... | Page N-2 | Page N-1 |  Page N   | Beyond |
1935		 * ^--------------------------------^-----------|---------
1936		 * |				    |      Straddles     |
1937		 * ---------------------------------^-----------|--------|
1938		 */
1939		size_t poff = offset_in_folio(folio, isize);
1940		pgoff_t end_index = isize >> PAGE_SHIFT;
1941
1942		/*
1943		 * Skip the page if it's fully outside i_size, e.g.
1944		 * due to a truncate operation that's in progress.  We've
1945		 * cleaned this page and truncate will finish things off for
1946		 * us.
1947		 *
1948		 * Note that the end_index is unsigned long.  If the given
1949		 * offset is greater than 16TB on a 32-bit system then if we
1950		 * checked if the page is fully outside i_size with
1951		 * "if (page->index >= end_index + 1)", "end_index + 1" would
1952		 * overflow and evaluate to 0.  Hence this page would be
1953		 * redirtied and written out repeatedly, which would result in
1954		 * an infinite loop; the user program performing this operation
1955		 * would hang.  Instead, we can detect this situation by
1956		 * checking if the page is totally beyond i_size or if its
1957		 * offset is just equal to the EOF.
1958		 */
1959		if (folio->index > end_index ||
1960		    (folio->index == end_index && poff == 0))
1961			goto unlock;
1962
1963		/*
1964		 * The page straddles i_size.  It must be zeroed out on each
1965		 * and every writepage invocation because it may be mmapped.
1966		 * "A file is mapped in multiples of the page size.  For a file
1967		 * that is not a multiple of the page size, the remaining
1968		 * memory is zeroed when mapped, and writes to that region are
1969		 * not written out to the file."
1970		 */
1971		folio_zero_segment(folio, poff, folio_size(folio));
1972		end_pos = isize;
1973	}
1974
1975	return iomap_writepage_map(wpc, wbc, inode, folio, end_pos);
1976
1977redirty:
1978	folio_redirty_for_writepage(wbc, folio);
1979unlock:
1980	folio_unlock(folio);
1981	return 0;
1982}
1983
1984int
1985iomap_writepages(struct address_space *mapping, struct writeback_control *wbc,
1986		struct iomap_writepage_ctx *wpc,
1987		const struct iomap_writeback_ops *ops)
1988{
1989	int			ret;
1990
1991	wpc->ops = ops;
1992	ret = write_cache_pages(mapping, wbc, iomap_do_writepage, wpc);
1993	if (!wpc->ioend)
1994		return ret;
1995	return iomap_submit_ioend(wpc, wpc->ioend, ret);
1996}
1997EXPORT_SYMBOL_GPL(iomap_writepages);
1998
1999static int __init iomap_init(void)
2000{
2001	return bioset_init(&iomap_ioend_bioset, 4 * (PAGE_SIZE / SECTOR_SIZE),
2002			   offsetof(struct iomap_ioend, io_inline_bio),
2003			   BIOSET_NEED_BVECS);
2004}
2005fs_initcall(iomap_init);