Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Thunderbolt Cactus Ridge driver - eeprom access
4 *
5 * Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com>
6 */
7
8#include <linux/crc32.h>
9#include <linux/property.h>
10#include <linux/slab.h>
11#include "tb.h"
12
13/**
14 * tb_eeprom_ctl_write() - write control word
15 */
16static int tb_eeprom_ctl_write(struct tb_switch *sw, struct tb_eeprom_ctl *ctl)
17{
18 return tb_sw_write(sw, ctl, TB_CFG_SWITCH, sw->cap_plug_events + 4, 1);
19}
20
21/**
22 * tb_eeprom_ctl_write() - read control word
23 */
24static int tb_eeprom_ctl_read(struct tb_switch *sw, struct tb_eeprom_ctl *ctl)
25{
26 return tb_sw_read(sw, ctl, TB_CFG_SWITCH, sw->cap_plug_events + 4, 1);
27}
28
29enum tb_eeprom_transfer {
30 TB_EEPROM_IN,
31 TB_EEPROM_OUT,
32};
33
34/**
35 * tb_eeprom_active - enable rom access
36 *
37 * WARNING: Always disable access after usage. Otherwise the controller will
38 * fail to reprobe.
39 */
40static int tb_eeprom_active(struct tb_switch *sw, bool enable)
41{
42 struct tb_eeprom_ctl ctl;
43 int res = tb_eeprom_ctl_read(sw, &ctl);
44 if (res)
45 return res;
46 if (enable) {
47 ctl.access_high = 1;
48 res = tb_eeprom_ctl_write(sw, &ctl);
49 if (res)
50 return res;
51 ctl.access_low = 0;
52 return tb_eeprom_ctl_write(sw, &ctl);
53 } else {
54 ctl.access_low = 1;
55 res = tb_eeprom_ctl_write(sw, &ctl);
56 if (res)
57 return res;
58 ctl.access_high = 0;
59 return tb_eeprom_ctl_write(sw, &ctl);
60 }
61}
62
63/**
64 * tb_eeprom_transfer - transfer one bit
65 *
66 * If TB_EEPROM_IN is passed, then the bit can be retrieved from ctl->data_in.
67 * If TB_EEPROM_OUT is passed, then ctl->data_out will be written.
68 */
69static int tb_eeprom_transfer(struct tb_switch *sw, struct tb_eeprom_ctl *ctl,
70 enum tb_eeprom_transfer direction)
71{
72 int res;
73 if (direction == TB_EEPROM_OUT) {
74 res = tb_eeprom_ctl_write(sw, ctl);
75 if (res)
76 return res;
77 }
78 ctl->clock = 1;
79 res = tb_eeprom_ctl_write(sw, ctl);
80 if (res)
81 return res;
82 if (direction == TB_EEPROM_IN) {
83 res = tb_eeprom_ctl_read(sw, ctl);
84 if (res)
85 return res;
86 }
87 ctl->clock = 0;
88 return tb_eeprom_ctl_write(sw, ctl);
89}
90
91/**
92 * tb_eeprom_out - write one byte to the bus
93 */
94static int tb_eeprom_out(struct tb_switch *sw, u8 val)
95{
96 struct tb_eeprom_ctl ctl;
97 int i;
98 int res = tb_eeprom_ctl_read(sw, &ctl);
99 if (res)
100 return res;
101 for (i = 0; i < 8; i++) {
102 ctl.data_out = val & 0x80;
103 res = tb_eeprom_transfer(sw, &ctl, TB_EEPROM_OUT);
104 if (res)
105 return res;
106 val <<= 1;
107 }
108 return 0;
109}
110
111/**
112 * tb_eeprom_in - read one byte from the bus
113 */
114static int tb_eeprom_in(struct tb_switch *sw, u8 *val)
115{
116 struct tb_eeprom_ctl ctl;
117 int i;
118 int res = tb_eeprom_ctl_read(sw, &ctl);
119 if (res)
120 return res;
121 *val = 0;
122 for (i = 0; i < 8; i++) {
123 *val <<= 1;
124 res = tb_eeprom_transfer(sw, &ctl, TB_EEPROM_IN);
125 if (res)
126 return res;
127 *val |= ctl.data_in;
128 }
129 return 0;
130}
131
132/**
133 * tb_eeprom_read_n - read count bytes from offset into val
134 */
135static int tb_eeprom_read_n(struct tb_switch *sw, u16 offset, u8 *val,
136 size_t count)
137{
138 int i, res;
139 res = tb_eeprom_active(sw, true);
140 if (res)
141 return res;
142 res = tb_eeprom_out(sw, 3);
143 if (res)
144 return res;
145 res = tb_eeprom_out(sw, offset >> 8);
146 if (res)
147 return res;
148 res = tb_eeprom_out(sw, offset);
149 if (res)
150 return res;
151 for (i = 0; i < count; i++) {
152 res = tb_eeprom_in(sw, val + i);
153 if (res)
154 return res;
155 }
156 return tb_eeprom_active(sw, false);
157}
158
159static u8 tb_crc8(u8 *data, int len)
160{
161 int i, j;
162 u8 val = 0xff;
163 for (i = 0; i < len; i++) {
164 val ^= data[i];
165 for (j = 0; j < 8; j++)
166 val = (val << 1) ^ ((val & 0x80) ? 7 : 0);
167 }
168 return val;
169}
170
171static u32 tb_crc32(void *data, size_t len)
172{
173 return ~__crc32c_le(~0, data, len);
174}
175
176#define TB_DROM_DATA_START 13
177struct tb_drom_header {
178 /* BYTE 0 */
179 u8 uid_crc8; /* checksum for uid */
180 /* BYTES 1-8 */
181 u64 uid;
182 /* BYTES 9-12 */
183 u32 data_crc32; /* checksum for data_len bytes starting at byte 13 */
184 /* BYTE 13 */
185 u8 device_rom_revision; /* should be <= 1 */
186 u16 data_len:10;
187 u8 __unknown1:6;
188 /* BYTES 16-21 */
189 u16 vendor_id;
190 u16 model_id;
191 u8 model_rev;
192 u8 eeprom_rev;
193} __packed;
194
195enum tb_drom_entry_type {
196 /* force unsigned to prevent "one-bit signed bitfield" warning */
197 TB_DROM_ENTRY_GENERIC = 0U,
198 TB_DROM_ENTRY_PORT,
199};
200
201struct tb_drom_entry_header {
202 u8 len;
203 u8 index:6;
204 bool port_disabled:1; /* only valid if type is TB_DROM_ENTRY_PORT */
205 enum tb_drom_entry_type type:1;
206} __packed;
207
208struct tb_drom_entry_generic {
209 struct tb_drom_entry_header header;
210 u8 data[0];
211} __packed;
212
213struct tb_drom_entry_port {
214 /* BYTES 0-1 */
215 struct tb_drom_entry_header header;
216 /* BYTE 2 */
217 u8 dual_link_port_rid:4;
218 u8 link_nr:1;
219 u8 unknown1:2;
220 bool has_dual_link_port:1;
221
222 /* BYTE 3 */
223 u8 dual_link_port_nr:6;
224 u8 unknown2:2;
225
226 /* BYTES 4 - 5 TODO decode */
227 u8 micro2:4;
228 u8 micro1:4;
229 u8 micro3;
230
231 /* BYTES 6-7, TODO: verify (find hardware that has these set) */
232 u8 peer_port_rid:4;
233 u8 unknown3:3;
234 bool has_peer_port:1;
235 u8 peer_port_nr:6;
236 u8 unknown4:2;
237} __packed;
238
239
240/**
241 * tb_eeprom_get_drom_offset - get drom offset within eeprom
242 */
243static int tb_eeprom_get_drom_offset(struct tb_switch *sw, u16 *offset)
244{
245 struct tb_cap_plug_events cap;
246 int res;
247 if (!sw->cap_plug_events) {
248 tb_sw_warn(sw, "no TB_CAP_PLUG_EVENTS, cannot read eeprom\n");
249 return -ENOSYS;
250 }
251 res = tb_sw_read(sw, &cap, TB_CFG_SWITCH, sw->cap_plug_events,
252 sizeof(cap) / 4);
253 if (res)
254 return res;
255
256 if (!cap.eeprom_ctl.present || cap.eeprom_ctl.not_present) {
257 tb_sw_warn(sw, "no NVM\n");
258 return -ENOSYS;
259 }
260
261 if (cap.drom_offset > 0xffff) {
262 tb_sw_warn(sw, "drom offset is larger than 0xffff: %#x\n",
263 cap.drom_offset);
264 return -ENXIO;
265 }
266 *offset = cap.drom_offset;
267 return 0;
268}
269
270/**
271 * tb_drom_read_uid_only - read uid directly from drom
272 *
273 * Does not use the cached copy in sw->drom. Used during resume to check switch
274 * identity.
275 */
276int tb_drom_read_uid_only(struct tb_switch *sw, u64 *uid)
277{
278 u8 data[9];
279 u16 drom_offset;
280 u8 crc;
281 int res = tb_eeprom_get_drom_offset(sw, &drom_offset);
282 if (res)
283 return res;
284
285 if (drom_offset == 0)
286 return -ENODEV;
287
288 /* read uid */
289 res = tb_eeprom_read_n(sw, drom_offset, data, 9);
290 if (res)
291 return res;
292
293 crc = tb_crc8(data + 1, 8);
294 if (crc != data[0]) {
295 tb_sw_warn(sw, "uid crc8 mismatch (expected: %#x, got: %#x)\n",
296 data[0], crc);
297 return -EIO;
298 }
299
300 *uid = *(u64 *)(data+1);
301 return 0;
302}
303
304static int tb_drom_parse_entry_generic(struct tb_switch *sw,
305 struct tb_drom_entry_header *header)
306{
307 const struct tb_drom_entry_generic *entry =
308 (const struct tb_drom_entry_generic *)header;
309
310 switch (header->index) {
311 case 1:
312 /* Length includes 2 bytes header so remove it before copy */
313 sw->vendor_name = kstrndup(entry->data,
314 header->len - sizeof(*header), GFP_KERNEL);
315 if (!sw->vendor_name)
316 return -ENOMEM;
317 break;
318
319 case 2:
320 sw->device_name = kstrndup(entry->data,
321 header->len - sizeof(*header), GFP_KERNEL);
322 if (!sw->device_name)
323 return -ENOMEM;
324 break;
325 }
326
327 return 0;
328}
329
330static int tb_drom_parse_entry_port(struct tb_switch *sw,
331 struct tb_drom_entry_header *header)
332{
333 struct tb_port *port;
334 int res;
335 enum tb_port_type type;
336
337 /*
338 * Some DROMs list more ports than the controller actually has
339 * so we skip those but allow the parser to continue.
340 */
341 if (header->index > sw->config.max_port_number) {
342 dev_info_once(&sw->dev, "ignoring unnecessary extra entries in DROM\n");
343 return 0;
344 }
345
346 port = &sw->ports[header->index];
347 port->disabled = header->port_disabled;
348 if (port->disabled)
349 return 0;
350
351 res = tb_port_read(port, &type, TB_CFG_PORT, 2, 1);
352 if (res)
353 return res;
354 type &= 0xffffff;
355
356 if (type == TB_TYPE_PORT) {
357 struct tb_drom_entry_port *entry = (void *) header;
358 if (header->len != sizeof(*entry)) {
359 tb_sw_warn(sw,
360 "port entry has size %#x (expected %#zx)\n",
361 header->len, sizeof(struct tb_drom_entry_port));
362 return -EIO;
363 }
364 port->link_nr = entry->link_nr;
365 if (entry->has_dual_link_port)
366 port->dual_link_port =
367 &port->sw->ports[entry->dual_link_port_nr];
368 }
369 return 0;
370}
371
372/**
373 * tb_drom_parse_entries - parse the linked list of drom entries
374 *
375 * Drom must have been copied to sw->drom.
376 */
377static int tb_drom_parse_entries(struct tb_switch *sw)
378{
379 struct tb_drom_header *header = (void *) sw->drom;
380 u16 pos = sizeof(*header);
381 u16 drom_size = header->data_len + TB_DROM_DATA_START;
382 int res;
383
384 while (pos < drom_size) {
385 struct tb_drom_entry_header *entry = (void *) (sw->drom + pos);
386 if (pos + 1 == drom_size || pos + entry->len > drom_size
387 || !entry->len) {
388 tb_sw_warn(sw, "drom buffer overrun, aborting\n");
389 return -EIO;
390 }
391
392 switch (entry->type) {
393 case TB_DROM_ENTRY_GENERIC:
394 res = tb_drom_parse_entry_generic(sw, entry);
395 break;
396 case TB_DROM_ENTRY_PORT:
397 res = tb_drom_parse_entry_port(sw, entry);
398 break;
399 }
400 if (res)
401 return res;
402
403 pos += entry->len;
404 }
405 return 0;
406}
407
408/**
409 * tb_drom_copy_efi - copy drom supplied by EFI to sw->drom if present
410 */
411static int tb_drom_copy_efi(struct tb_switch *sw, u16 *size)
412{
413 struct device *dev = &sw->tb->nhi->pdev->dev;
414 int len, res;
415
416 len = device_property_read_u8_array(dev, "ThunderboltDROM", NULL, 0);
417 if (len < 0 || len < sizeof(struct tb_drom_header))
418 return -EINVAL;
419
420 sw->drom = kmalloc(len, GFP_KERNEL);
421 if (!sw->drom)
422 return -ENOMEM;
423
424 res = device_property_read_u8_array(dev, "ThunderboltDROM", sw->drom,
425 len);
426 if (res)
427 goto err;
428
429 *size = ((struct tb_drom_header *)sw->drom)->data_len +
430 TB_DROM_DATA_START;
431 if (*size > len)
432 goto err;
433
434 return 0;
435
436err:
437 kfree(sw->drom);
438 sw->drom = NULL;
439 return -EINVAL;
440}
441
442static int tb_drom_copy_nvm(struct tb_switch *sw, u16 *size)
443{
444 u32 drom_offset;
445 int ret;
446
447 if (!sw->dma_port)
448 return -ENODEV;
449
450 ret = tb_sw_read(sw, &drom_offset, TB_CFG_SWITCH,
451 sw->cap_plug_events + 12, 1);
452 if (ret)
453 return ret;
454
455 if (!drom_offset)
456 return -ENODEV;
457
458 ret = dma_port_flash_read(sw->dma_port, drom_offset + 14, size,
459 sizeof(*size));
460 if (ret)
461 return ret;
462
463 /* Size includes CRC8 + UID + CRC32 */
464 *size += 1 + 8 + 4;
465 sw->drom = kzalloc(*size, GFP_KERNEL);
466 if (!sw->drom)
467 return -ENOMEM;
468
469 ret = dma_port_flash_read(sw->dma_port, drom_offset, sw->drom, *size);
470 if (ret)
471 goto err_free;
472
473 /*
474 * Read UID from the minimal DROM because the one in NVM is just
475 * a placeholder.
476 */
477 tb_drom_read_uid_only(sw, &sw->uid);
478 return 0;
479
480err_free:
481 kfree(sw->drom);
482 sw->drom = NULL;
483 return ret;
484}
485
486/**
487 * tb_drom_read - copy drom to sw->drom and parse it
488 */
489int tb_drom_read(struct tb_switch *sw)
490{
491 u16 drom_offset;
492 u16 size;
493 u32 crc;
494 struct tb_drom_header *header;
495 int res;
496 if (sw->drom)
497 return 0;
498
499 if (tb_route(sw) == 0) {
500 /*
501 * Apple's NHI EFI driver supplies a DROM for the root switch
502 * in a device property. Use it if available.
503 */
504 if (tb_drom_copy_efi(sw, &size) == 0)
505 goto parse;
506
507 /* Non-Apple hardware has the DROM as part of NVM */
508 if (tb_drom_copy_nvm(sw, &size) == 0)
509 goto parse;
510
511 /*
512 * The root switch contains only a dummy drom (header only,
513 * no entries). Hardcode the configuration here.
514 */
515 tb_drom_read_uid_only(sw, &sw->uid);
516
517 sw->ports[1].link_nr = 0;
518 sw->ports[2].link_nr = 1;
519 sw->ports[1].dual_link_port = &sw->ports[2];
520 sw->ports[2].dual_link_port = &sw->ports[1];
521
522 sw->ports[3].link_nr = 0;
523 sw->ports[4].link_nr = 1;
524 sw->ports[3].dual_link_port = &sw->ports[4];
525 sw->ports[4].dual_link_port = &sw->ports[3];
526
527 /* Port 5 is inaccessible on this gen 1 controller */
528 if (sw->config.device_id == PCI_DEVICE_ID_INTEL_LIGHT_RIDGE)
529 sw->ports[5].disabled = true;
530
531 return 0;
532 }
533
534 res = tb_eeprom_get_drom_offset(sw, &drom_offset);
535 if (res)
536 return res;
537
538 res = tb_eeprom_read_n(sw, drom_offset + 14, (u8 *) &size, 2);
539 if (res)
540 return res;
541 size &= 0x3ff;
542 size += TB_DROM_DATA_START;
543 tb_sw_info(sw, "reading drom (length: %#x)\n", size);
544 if (size < sizeof(*header)) {
545 tb_sw_warn(sw, "drom too small, aborting\n");
546 return -EIO;
547 }
548
549 sw->drom = kzalloc(size, GFP_KERNEL);
550 if (!sw->drom)
551 return -ENOMEM;
552 res = tb_eeprom_read_n(sw, drom_offset, sw->drom, size);
553 if (res)
554 goto err;
555
556parse:
557 header = (void *) sw->drom;
558
559 if (header->data_len + TB_DROM_DATA_START != size) {
560 tb_sw_warn(sw, "drom size mismatch, aborting\n");
561 goto err;
562 }
563
564 crc = tb_crc8((u8 *) &header->uid, 8);
565 if (crc != header->uid_crc8) {
566 tb_sw_warn(sw,
567 "drom uid crc8 mismatch (expected: %#x, got: %#x), aborting\n",
568 header->uid_crc8, crc);
569 goto err;
570 }
571 if (!sw->uid)
572 sw->uid = header->uid;
573 sw->vendor = header->vendor_id;
574 sw->device = header->model_id;
575
576 crc = tb_crc32(sw->drom + TB_DROM_DATA_START, header->data_len);
577 if (crc != header->data_crc32) {
578 tb_sw_warn(sw,
579 "drom data crc32 mismatch (expected: %#x, got: %#x), continuing\n",
580 header->data_crc32, crc);
581 }
582
583 if (header->device_rom_revision > 2)
584 tb_sw_warn(sw, "drom device_rom_revision %#x unknown\n",
585 header->device_rom_revision);
586
587 return tb_drom_parse_entries(sw);
588err:
589 kfree(sw->drom);
590 sw->drom = NULL;
591 return -EIO;
592
593}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Thunderbolt driver - eeprom access
4 *
5 * Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com>
6 * Copyright (C) 2018, Intel Corporation
7 */
8
9#include <linux/crc32.h>
10#include <linux/delay.h>
11#include <linux/property.h>
12#include <linux/slab.h>
13#include "tb.h"
14
15/*
16 * tb_eeprom_ctl_write() - write control word
17 */
18static int tb_eeprom_ctl_write(struct tb_switch *sw, struct tb_eeprom_ctl *ctl)
19{
20 return tb_sw_write(sw, ctl, TB_CFG_SWITCH, sw->cap_plug_events + ROUTER_CS_4, 1);
21}
22
23/*
24 * tb_eeprom_ctl_write() - read control word
25 */
26static int tb_eeprom_ctl_read(struct tb_switch *sw, struct tb_eeprom_ctl *ctl)
27{
28 return tb_sw_read(sw, ctl, TB_CFG_SWITCH, sw->cap_plug_events + ROUTER_CS_4, 1);
29}
30
31enum tb_eeprom_transfer {
32 TB_EEPROM_IN,
33 TB_EEPROM_OUT,
34};
35
36/*
37 * tb_eeprom_active - enable rom access
38 *
39 * WARNING: Always disable access after usage. Otherwise the controller will
40 * fail to reprobe.
41 */
42static int tb_eeprom_active(struct tb_switch *sw, bool enable)
43{
44 struct tb_eeprom_ctl ctl;
45 int res = tb_eeprom_ctl_read(sw, &ctl);
46 if (res)
47 return res;
48 if (enable) {
49 ctl.bit_banging_enable = 1;
50 res = tb_eeprom_ctl_write(sw, &ctl);
51 if (res)
52 return res;
53 ctl.fl_cs = 0;
54 return tb_eeprom_ctl_write(sw, &ctl);
55 } else {
56 ctl.fl_cs = 1;
57 res = tb_eeprom_ctl_write(sw, &ctl);
58 if (res)
59 return res;
60 ctl.bit_banging_enable = 0;
61 return tb_eeprom_ctl_write(sw, &ctl);
62 }
63}
64
65/*
66 * tb_eeprom_transfer - transfer one bit
67 *
68 * If TB_EEPROM_IN is passed, then the bit can be retrieved from ctl->fl_do.
69 * If TB_EEPROM_OUT is passed, then ctl->fl_di will be written.
70 */
71static int tb_eeprom_transfer(struct tb_switch *sw, struct tb_eeprom_ctl *ctl,
72 enum tb_eeprom_transfer direction)
73{
74 int res;
75 if (direction == TB_EEPROM_OUT) {
76 res = tb_eeprom_ctl_write(sw, ctl);
77 if (res)
78 return res;
79 }
80 ctl->fl_sk = 1;
81 res = tb_eeprom_ctl_write(sw, ctl);
82 if (res)
83 return res;
84 if (direction == TB_EEPROM_IN) {
85 res = tb_eeprom_ctl_read(sw, ctl);
86 if (res)
87 return res;
88 }
89 ctl->fl_sk = 0;
90 return tb_eeprom_ctl_write(sw, ctl);
91}
92
93/*
94 * tb_eeprom_out - write one byte to the bus
95 */
96static int tb_eeprom_out(struct tb_switch *sw, u8 val)
97{
98 struct tb_eeprom_ctl ctl;
99 int i;
100 int res = tb_eeprom_ctl_read(sw, &ctl);
101 if (res)
102 return res;
103 for (i = 0; i < 8; i++) {
104 ctl.fl_di = val & 0x80;
105 res = tb_eeprom_transfer(sw, &ctl, TB_EEPROM_OUT);
106 if (res)
107 return res;
108 val <<= 1;
109 }
110 return 0;
111}
112
113/*
114 * tb_eeprom_in - read one byte from the bus
115 */
116static int tb_eeprom_in(struct tb_switch *sw, u8 *val)
117{
118 struct tb_eeprom_ctl ctl;
119 int i;
120 int res = tb_eeprom_ctl_read(sw, &ctl);
121 if (res)
122 return res;
123 *val = 0;
124 for (i = 0; i < 8; i++) {
125 *val <<= 1;
126 res = tb_eeprom_transfer(sw, &ctl, TB_EEPROM_IN);
127 if (res)
128 return res;
129 *val |= ctl.fl_do;
130 }
131 return 0;
132}
133
134/*
135 * tb_eeprom_get_drom_offset - get drom offset within eeprom
136 */
137static int tb_eeprom_get_drom_offset(struct tb_switch *sw, u16 *offset)
138{
139 struct tb_cap_plug_events cap;
140 int res;
141
142 if (!sw->cap_plug_events) {
143 tb_sw_warn(sw, "no TB_CAP_PLUG_EVENTS, cannot read eeprom\n");
144 return -ENODEV;
145 }
146 res = tb_sw_read(sw, &cap, TB_CFG_SWITCH, sw->cap_plug_events,
147 sizeof(cap) / 4);
148 if (res)
149 return res;
150
151 if (!cap.eeprom_ctl.present || cap.eeprom_ctl.not_present) {
152 tb_sw_warn(sw, "no NVM\n");
153 return -ENODEV;
154 }
155
156 if (cap.drom_offset > 0xffff) {
157 tb_sw_warn(sw, "drom offset is larger than 0xffff: %#x\n",
158 cap.drom_offset);
159 return -ENXIO;
160 }
161 *offset = cap.drom_offset;
162 return 0;
163}
164
165/*
166 * tb_eeprom_read_n - read count bytes from offset into val
167 */
168static int tb_eeprom_read_n(struct tb_switch *sw, u16 offset, u8 *val,
169 size_t count)
170{
171 u16 drom_offset;
172 int i, res;
173
174 res = tb_eeprom_get_drom_offset(sw, &drom_offset);
175 if (res)
176 return res;
177
178 offset += drom_offset;
179
180 res = tb_eeprom_active(sw, true);
181 if (res)
182 return res;
183 res = tb_eeprom_out(sw, 3);
184 if (res)
185 return res;
186 res = tb_eeprom_out(sw, offset >> 8);
187 if (res)
188 return res;
189 res = tb_eeprom_out(sw, offset);
190 if (res)
191 return res;
192 for (i = 0; i < count; i++) {
193 res = tb_eeprom_in(sw, val + i);
194 if (res)
195 return res;
196 }
197 return tb_eeprom_active(sw, false);
198}
199
200static u8 tb_crc8(u8 *data, int len)
201{
202 int i, j;
203 u8 val = 0xff;
204 for (i = 0; i < len; i++) {
205 val ^= data[i];
206 for (j = 0; j < 8; j++)
207 val = (val << 1) ^ ((val & 0x80) ? 7 : 0);
208 }
209 return val;
210}
211
212static u32 tb_crc32(void *data, size_t len)
213{
214 return ~__crc32c_le(~0, data, len);
215}
216
217#define TB_DROM_DATA_START 13
218#define TB_DROM_HEADER_SIZE 22
219#define USB4_DROM_HEADER_SIZE 16
220
221struct tb_drom_header {
222 /* BYTE 0 */
223 u8 uid_crc8; /* checksum for uid */
224 /* BYTES 1-8 */
225 u64 uid;
226 /* BYTES 9-12 */
227 u32 data_crc32; /* checksum for data_len bytes starting at byte 13 */
228 /* BYTE 13 */
229 u8 device_rom_revision; /* should be <= 1 */
230 u16 data_len:12;
231 u8 reserved:4;
232 /* BYTES 16-21 - Only for TBT DROM, nonexistent in USB4 DROM */
233 u16 vendor_id;
234 u16 model_id;
235 u8 model_rev;
236 u8 eeprom_rev;
237} __packed;
238
239enum tb_drom_entry_type {
240 /* force unsigned to prevent "one-bit signed bitfield" warning */
241 TB_DROM_ENTRY_GENERIC = 0U,
242 TB_DROM_ENTRY_PORT,
243};
244
245struct tb_drom_entry_header {
246 u8 len;
247 u8 index:6;
248 bool port_disabled:1; /* only valid if type is TB_DROM_ENTRY_PORT */
249 enum tb_drom_entry_type type:1;
250} __packed;
251
252struct tb_drom_entry_generic {
253 struct tb_drom_entry_header header;
254 u8 data[];
255} __packed;
256
257struct tb_drom_entry_port {
258 /* BYTES 0-1 */
259 struct tb_drom_entry_header header;
260 /* BYTE 2 */
261 u8 dual_link_port_rid:4;
262 u8 link_nr:1;
263 u8 unknown1:2;
264 bool has_dual_link_port:1;
265
266 /* BYTE 3 */
267 u8 dual_link_port_nr:6;
268 u8 unknown2:2;
269
270 /* BYTES 4 - 5 TODO decode */
271 u8 micro2:4;
272 u8 micro1:4;
273 u8 micro3;
274
275 /* BYTES 6-7, TODO: verify (find hardware that has these set) */
276 u8 peer_port_rid:4;
277 u8 unknown3:3;
278 bool has_peer_port:1;
279 u8 peer_port_nr:6;
280 u8 unknown4:2;
281} __packed;
282
283/* USB4 product descriptor */
284struct tb_drom_entry_desc {
285 struct tb_drom_entry_header header;
286 u16 bcdUSBSpec;
287 u16 idVendor;
288 u16 idProduct;
289 u16 bcdProductFWRevision;
290 u32 TID;
291 u8 productHWRevision;
292};
293
294/**
295 * tb_drom_read_uid_only() - Read UID directly from DROM
296 * @sw: Router whose UID to read
297 * @uid: UID is placed here
298 *
299 * Does not use the cached copy in sw->drom. Used during resume to check switch
300 * identity.
301 */
302int tb_drom_read_uid_only(struct tb_switch *sw, u64 *uid)
303{
304 u8 data[9];
305 u8 crc;
306 int res;
307
308 /* read uid */
309 res = tb_eeprom_read_n(sw, 0, data, 9);
310 if (res)
311 return res;
312
313 crc = tb_crc8(data + 1, 8);
314 if (crc != data[0]) {
315 tb_sw_warn(sw, "uid crc8 mismatch (expected: %#x, got: %#x)\n",
316 data[0], crc);
317 return -EIO;
318 }
319
320 *uid = *(u64 *)(data+1);
321 return 0;
322}
323
324static int tb_drom_parse_entry_generic(struct tb_switch *sw,
325 struct tb_drom_entry_header *header)
326{
327 const struct tb_drom_entry_generic *entry =
328 (const struct tb_drom_entry_generic *)header;
329
330 switch (header->index) {
331 case 1:
332 /* Length includes 2 bytes header so remove it before copy */
333 sw->vendor_name = kstrndup(entry->data,
334 header->len - sizeof(*header), GFP_KERNEL);
335 if (!sw->vendor_name)
336 return -ENOMEM;
337 break;
338
339 case 2:
340 sw->device_name = kstrndup(entry->data,
341 header->len - sizeof(*header), GFP_KERNEL);
342 if (!sw->device_name)
343 return -ENOMEM;
344 break;
345 case 9: {
346 const struct tb_drom_entry_desc *desc =
347 (const struct tb_drom_entry_desc *)entry;
348
349 if (!sw->vendor && !sw->device) {
350 sw->vendor = desc->idVendor;
351 sw->device = desc->idProduct;
352 }
353 break;
354 }
355 }
356
357 return 0;
358}
359
360static int tb_drom_parse_entry_port(struct tb_switch *sw,
361 struct tb_drom_entry_header *header)
362{
363 struct tb_port *port;
364 int res;
365 enum tb_port_type type;
366
367 /*
368 * Some DROMs list more ports than the controller actually has
369 * so we skip those but allow the parser to continue.
370 */
371 if (header->index > sw->config.max_port_number) {
372 dev_info_once(&sw->dev, "ignoring unnecessary extra entries in DROM\n");
373 return 0;
374 }
375
376 port = &sw->ports[header->index];
377 port->disabled = header->port_disabled;
378 if (port->disabled)
379 return 0;
380
381 res = tb_port_read(port, &type, TB_CFG_PORT, 2, 1);
382 if (res)
383 return res;
384 type &= 0xffffff;
385
386 if (type == TB_TYPE_PORT) {
387 struct tb_drom_entry_port *entry = (void *) header;
388 if (header->len != sizeof(*entry)) {
389 tb_sw_warn(sw,
390 "port entry has size %#x (expected %#zx)\n",
391 header->len, sizeof(struct tb_drom_entry_port));
392 return -EIO;
393 }
394 port->link_nr = entry->link_nr;
395 if (entry->has_dual_link_port)
396 port->dual_link_port =
397 &port->sw->ports[entry->dual_link_port_nr];
398 }
399 return 0;
400}
401
402/*
403 * tb_drom_parse_entries - parse the linked list of drom entries
404 *
405 * Drom must have been copied to sw->drom.
406 */
407static int tb_drom_parse_entries(struct tb_switch *sw, size_t header_size)
408{
409 struct tb_drom_header *header = (void *) sw->drom;
410 u16 pos = header_size;
411 u16 drom_size = header->data_len + TB_DROM_DATA_START;
412 int res;
413
414 while (pos < drom_size) {
415 struct tb_drom_entry_header *entry = (void *) (sw->drom + pos);
416 if (pos + 1 == drom_size || pos + entry->len > drom_size
417 || !entry->len) {
418 tb_sw_warn(sw, "DROM buffer overrun\n");
419 return -EIO;
420 }
421
422 switch (entry->type) {
423 case TB_DROM_ENTRY_GENERIC:
424 res = tb_drom_parse_entry_generic(sw, entry);
425 break;
426 case TB_DROM_ENTRY_PORT:
427 res = tb_drom_parse_entry_port(sw, entry);
428 break;
429 }
430 if (res)
431 return res;
432
433 pos += entry->len;
434 }
435 return 0;
436}
437
438/*
439 * tb_drom_copy_efi - copy drom supplied by EFI to sw->drom if present
440 */
441static int tb_drom_copy_efi(struct tb_switch *sw, u16 *size)
442{
443 struct device *dev = &sw->tb->nhi->pdev->dev;
444 int len, res;
445
446 len = device_property_count_u8(dev, "ThunderboltDROM");
447 if (len < 0 || len < sizeof(struct tb_drom_header))
448 return -EINVAL;
449
450 sw->drom = kmalloc(len, GFP_KERNEL);
451 if (!sw->drom)
452 return -ENOMEM;
453
454 res = device_property_read_u8_array(dev, "ThunderboltDROM", sw->drom,
455 len);
456 if (res)
457 goto err;
458
459 *size = ((struct tb_drom_header *)sw->drom)->data_len +
460 TB_DROM_DATA_START;
461 if (*size > len)
462 goto err;
463
464 return 0;
465
466err:
467 kfree(sw->drom);
468 sw->drom = NULL;
469 return -EINVAL;
470}
471
472static int tb_drom_copy_nvm(struct tb_switch *sw, u16 *size)
473{
474 u16 drom_offset;
475 int ret;
476
477 if (!sw->dma_port)
478 return -ENODEV;
479
480 ret = tb_eeprom_get_drom_offset(sw, &drom_offset);
481 if (ret)
482 return ret;
483
484 if (!drom_offset)
485 return -ENODEV;
486
487 ret = dma_port_flash_read(sw->dma_port, drom_offset + 14, size,
488 sizeof(*size));
489 if (ret)
490 return ret;
491
492 /* Size includes CRC8 + UID + CRC32 */
493 *size += 1 + 8 + 4;
494 sw->drom = kzalloc(*size, GFP_KERNEL);
495 if (!sw->drom)
496 return -ENOMEM;
497
498 ret = dma_port_flash_read(sw->dma_port, drom_offset, sw->drom, *size);
499 if (ret)
500 goto err_free;
501
502 /*
503 * Read UID from the minimal DROM because the one in NVM is just
504 * a placeholder.
505 */
506 tb_drom_read_uid_only(sw, &sw->uid);
507 return 0;
508
509err_free:
510 kfree(sw->drom);
511 sw->drom = NULL;
512 return ret;
513}
514
515static int usb4_copy_drom(struct tb_switch *sw, u16 *size)
516{
517 int ret;
518
519 ret = usb4_switch_drom_read(sw, 14, size, sizeof(*size));
520 if (ret)
521 return ret;
522
523 /* Size includes CRC8 + UID + CRC32 */
524 *size += 1 + 8 + 4;
525 sw->drom = kzalloc(*size, GFP_KERNEL);
526 if (!sw->drom)
527 return -ENOMEM;
528
529 ret = usb4_switch_drom_read(sw, 0, sw->drom, *size);
530 if (ret) {
531 kfree(sw->drom);
532 sw->drom = NULL;
533 }
534
535 return ret;
536}
537
538static int tb_drom_bit_bang(struct tb_switch *sw, u16 *size)
539{
540 int ret;
541
542 ret = tb_eeprom_read_n(sw, 14, (u8 *)size, 2);
543 if (ret)
544 return ret;
545
546 *size &= 0x3ff;
547 *size += TB_DROM_DATA_START;
548
549 tb_sw_dbg(sw, "reading DROM (length: %#x)\n", *size);
550 if (*size < sizeof(struct tb_drom_header)) {
551 tb_sw_warn(sw, "DROM too small, aborting\n");
552 return -EIO;
553 }
554
555 sw->drom = kzalloc(*size, GFP_KERNEL);
556 if (!sw->drom)
557 return -ENOMEM;
558
559 ret = tb_eeprom_read_n(sw, 0, sw->drom, *size);
560 if (ret)
561 goto err;
562
563 return 0;
564
565err:
566 kfree(sw->drom);
567 sw->drom = NULL;
568 return ret;
569}
570
571static int tb_drom_parse_v1(struct tb_switch *sw)
572{
573 const struct tb_drom_header *header =
574 (const struct tb_drom_header *)sw->drom;
575 u32 crc;
576
577 crc = tb_crc8((u8 *) &header->uid, 8);
578 if (crc != header->uid_crc8) {
579 tb_sw_warn(sw,
580 "DROM UID CRC8 mismatch (expected: %#x, got: %#x)\n",
581 header->uid_crc8, crc);
582 return -EIO;
583 }
584 if (!sw->uid)
585 sw->uid = header->uid;
586 sw->vendor = header->vendor_id;
587 sw->device = header->model_id;
588
589 crc = tb_crc32(sw->drom + TB_DROM_DATA_START, header->data_len);
590 if (crc != header->data_crc32) {
591 tb_sw_warn(sw,
592 "DROM data CRC32 mismatch (expected: %#x, got: %#x), continuing\n",
593 header->data_crc32, crc);
594 }
595
596 return tb_drom_parse_entries(sw, TB_DROM_HEADER_SIZE);
597}
598
599static int usb4_drom_parse(struct tb_switch *sw)
600{
601 const struct tb_drom_header *header =
602 (const struct tb_drom_header *)sw->drom;
603 u32 crc;
604
605 crc = tb_crc32(sw->drom + TB_DROM_DATA_START, header->data_len);
606 if (crc != header->data_crc32) {
607 tb_sw_warn(sw,
608 "DROM data CRC32 mismatch (expected: %#x, got: %#x), continuing\n",
609 header->data_crc32, crc);
610 }
611
612 return tb_drom_parse_entries(sw, USB4_DROM_HEADER_SIZE);
613}
614
615static int tb_drom_parse(struct tb_switch *sw, u16 size)
616{
617 const struct tb_drom_header *header = (const void *)sw->drom;
618 int ret;
619
620 if (header->data_len + TB_DROM_DATA_START != size) {
621 tb_sw_warn(sw, "DROM size mismatch\n");
622 ret = -EIO;
623 goto err;
624 }
625
626 tb_sw_dbg(sw, "DROM version: %d\n", header->device_rom_revision);
627
628 switch (header->device_rom_revision) {
629 case 3:
630 ret = usb4_drom_parse(sw);
631 break;
632 default:
633 tb_sw_warn(sw, "DROM device_rom_revision %#x unknown\n",
634 header->device_rom_revision);
635 fallthrough;
636 case 1:
637 ret = tb_drom_parse_v1(sw);
638 break;
639 }
640
641 if (ret) {
642 tb_sw_warn(sw, "parsing DROM failed\n");
643 goto err;
644 }
645
646 return 0;
647
648err:
649 kfree(sw->drom);
650 sw->drom = NULL;
651
652 return ret;
653}
654
655static int tb_drom_host_read(struct tb_switch *sw)
656{
657 u16 size;
658
659 if (tb_switch_is_usb4(sw)) {
660 usb4_switch_read_uid(sw, &sw->uid);
661 if (!usb4_copy_drom(sw, &size))
662 return tb_drom_parse(sw, size);
663 } else {
664 if (!tb_drom_copy_efi(sw, &size))
665 return tb_drom_parse(sw, size);
666
667 if (!tb_drom_copy_nvm(sw, &size))
668 return tb_drom_parse(sw, size);
669
670 tb_drom_read_uid_only(sw, &sw->uid);
671 }
672
673 return 0;
674}
675
676static int tb_drom_device_read(struct tb_switch *sw)
677{
678 u16 size;
679 int ret;
680
681 if (tb_switch_is_usb4(sw)) {
682 usb4_switch_read_uid(sw, &sw->uid);
683 ret = usb4_copy_drom(sw, &size);
684 } else {
685 ret = tb_drom_bit_bang(sw, &size);
686 }
687
688 if (ret)
689 return ret;
690
691 return tb_drom_parse(sw, size);
692}
693
694/**
695 * tb_drom_read() - Copy DROM to sw->drom and parse it
696 * @sw: Router whose DROM to read and parse
697 *
698 * This function reads router DROM and if successful parses the entries and
699 * populates the fields in @sw accordingly. Can be called for any router
700 * generation.
701 *
702 * Returns %0 in case of success and negative errno otherwise.
703 */
704int tb_drom_read(struct tb_switch *sw)
705{
706 if (sw->drom)
707 return 0;
708
709 if (!tb_route(sw))
710 return tb_drom_host_read(sw);
711 return tb_drom_device_read(sw);
712}