Linux Audio

Check our new training course

Loading...
v4.17
 
   1/*
   2 * Serial Attached SCSI (SAS) Expander discovery and configuration
   3 *
   4 * Copyright (C) 2005 Adaptec, Inc.  All rights reserved.
   5 * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
   6 *
   7 * This file is licensed under GPLv2.
   8 *
   9 * This program is free software; you can redistribute it and/or
  10 * modify it under the terms of the GNU General Public License as
  11 * published by the Free Software Foundation; either version 2 of the
  12 * License, or (at your option) any later version.
  13 *
  14 * This program is distributed in the hope that it will be useful, but
  15 * WITHOUT ANY WARRANTY; without even the implied warranty of
  16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  17 * General Public License for more details.
  18 *
  19 * You should have received a copy of the GNU General Public License
  20 * along with this program; if not, write to the Free Software
  21 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
  22 *
  23 */
  24
  25#include <linux/scatterlist.h>
  26#include <linux/blkdev.h>
  27#include <linux/slab.h>
 
  28
  29#include "sas_internal.h"
  30
  31#include <scsi/sas_ata.h>
  32#include <scsi/scsi_transport.h>
  33#include <scsi/scsi_transport_sas.h>
  34#include "../scsi_sas_internal.h"
  35
  36static int sas_discover_expander(struct domain_device *dev);
  37static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr);
  38static int sas_configure_phy(struct domain_device *dev, int phy_id,
  39			     u8 *sas_addr, int include);
  40static int sas_disable_routing(struct domain_device *dev,  u8 *sas_addr);
  41
  42/* ---------- SMP task management ---------- */
  43
  44static void smp_task_timedout(struct timer_list *t)
  45{
  46	struct sas_task_slow *slow = from_timer(slow, t, timer);
  47	struct sas_task *task = slow->task;
  48	unsigned long flags;
  49
  50	spin_lock_irqsave(&task->task_state_lock, flags);
  51	if (!(task->task_state_flags & SAS_TASK_STATE_DONE))
  52		task->task_state_flags |= SAS_TASK_STATE_ABORTED;
  53	spin_unlock_irqrestore(&task->task_state_lock, flags);
  54
  55	complete(&task->slow_task->completion);
  56}
  57
  58static void smp_task_done(struct sas_task *task)
  59{
  60	if (!del_timer(&task->slow_task->timer))
  61		return;
  62	complete(&task->slow_task->completion);
  63}
  64
  65/* Give it some long enough timeout. In seconds. */
  66#define SMP_TIMEOUT 10
  67
  68static int smp_execute_task_sg(struct domain_device *dev,
  69		struct scatterlist *req, struct scatterlist *resp)
  70{
  71	int res, retry;
  72	struct sas_task *task = NULL;
  73	struct sas_internal *i =
  74		to_sas_internal(dev->port->ha->core.shost->transportt);
 
  75
 
  76	mutex_lock(&dev->ex_dev.cmd_mutex);
  77	for (retry = 0; retry < 3; retry++) {
  78		if (test_bit(SAS_DEV_GONE, &dev->state)) {
  79			res = -ECOMM;
  80			break;
  81		}
  82
  83		task = sas_alloc_slow_task(GFP_KERNEL);
  84		if (!task) {
  85			res = -ENOMEM;
  86			break;
  87		}
  88		task->dev = dev;
  89		task->task_proto = dev->tproto;
  90		task->smp_task.smp_req = *req;
  91		task->smp_task.smp_resp = *resp;
  92
  93		task->task_done = smp_task_done;
  94
  95		task->slow_task->timer.function = smp_task_timedout;
  96		task->slow_task->timer.expires = jiffies + SMP_TIMEOUT*HZ;
  97		add_timer(&task->slow_task->timer);
  98
  99		res = i->dft->lldd_execute_task(task, GFP_KERNEL);
 100
 101		if (res) {
 102			del_timer(&task->slow_task->timer);
 103			SAS_DPRINTK("executing SMP task failed:%d\n", res);
 104			break;
 105		}
 106
 107		wait_for_completion(&task->slow_task->completion);
 108		res = -ECOMM;
 109		if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
 110			SAS_DPRINTK("smp task timed out or aborted\n");
 111			i->dft->lldd_abort_task(task);
 112			if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
 113				SAS_DPRINTK("SMP task aborted and not done\n");
 114				break;
 115			}
 116		}
 117		if (task->task_status.resp == SAS_TASK_COMPLETE &&
 118		    task->task_status.stat == SAM_STAT_GOOD) {
 119			res = 0;
 120			break;
 121		}
 122		if (task->task_status.resp == SAS_TASK_COMPLETE &&
 123		    task->task_status.stat == SAS_DATA_UNDERRUN) {
 124			/* no error, but return the number of bytes of
 125			 * underrun */
 126			res = task->task_status.residual;
 127			break;
 128		}
 129		if (task->task_status.resp == SAS_TASK_COMPLETE &&
 130		    task->task_status.stat == SAS_DATA_OVERRUN) {
 131			res = -EMSGSIZE;
 132			break;
 133		}
 134		if (task->task_status.resp == SAS_TASK_UNDELIVERED &&
 135		    task->task_status.stat == SAS_DEVICE_UNKNOWN)
 136			break;
 137		else {
 138			SAS_DPRINTK("%s: task to dev %016llx response: 0x%x "
 139				    "status 0x%x\n", __func__,
 140				    SAS_ADDR(dev->sas_addr),
 141				    task->task_status.resp,
 142				    task->task_status.stat);
 143			sas_free_task(task);
 144			task = NULL;
 145		}
 146	}
 147	mutex_unlock(&dev->ex_dev.cmd_mutex);
 
 148
 149	BUG_ON(retry == 3 && task != NULL);
 150	sas_free_task(task);
 151	return res;
 152}
 153
 154static int smp_execute_task(struct domain_device *dev, void *req, int req_size,
 155			    void *resp, int resp_size)
 156{
 157	struct scatterlist req_sg;
 158	struct scatterlist resp_sg;
 159
 160	sg_init_one(&req_sg, req, req_size);
 161	sg_init_one(&resp_sg, resp, resp_size);
 162	return smp_execute_task_sg(dev, &req_sg, &resp_sg);
 163}
 164
 165/* ---------- Allocations ---------- */
 166
 167static inline void *alloc_smp_req(int size)
 168{
 169	u8 *p = kzalloc(size, GFP_KERNEL);
 170	if (p)
 171		p[0] = SMP_REQUEST;
 172	return p;
 173}
 174
 175static inline void *alloc_smp_resp(int size)
 176{
 177	return kzalloc(size, GFP_KERNEL);
 178}
 179
 180static char sas_route_char(struct domain_device *dev, struct ex_phy *phy)
 181{
 182	switch (phy->routing_attr) {
 183	case TABLE_ROUTING:
 184		if (dev->ex_dev.t2t_supp)
 185			return 'U';
 186		else
 187			return 'T';
 188	case DIRECT_ROUTING:
 189		return 'D';
 190	case SUBTRACTIVE_ROUTING:
 191		return 'S';
 192	default:
 193		return '?';
 194	}
 195}
 196
 197static enum sas_device_type to_dev_type(struct discover_resp *dr)
 198{
 199	/* This is detecting a failure to transmit initial dev to host
 200	 * FIS as described in section J.5 of sas-2 r16
 201	 */
 202	if (dr->attached_dev_type == SAS_PHY_UNUSED && dr->attached_sata_dev &&
 203	    dr->linkrate >= SAS_LINK_RATE_1_5_GBPS)
 204		return SAS_SATA_PENDING;
 205	else
 206		return dr->attached_dev_type;
 207}
 208
 209static void sas_set_ex_phy(struct domain_device *dev, int phy_id, void *rsp)
 
 210{
 211	enum sas_device_type dev_type;
 212	enum sas_linkrate linkrate;
 213	u8 sas_addr[SAS_ADDR_SIZE];
 214	struct smp_resp *resp = rsp;
 215	struct discover_resp *dr = &resp->disc;
 216	struct sas_ha_struct *ha = dev->port->ha;
 217	struct expander_device *ex = &dev->ex_dev;
 218	struct ex_phy *phy = &ex->ex_phy[phy_id];
 219	struct sas_rphy *rphy = dev->rphy;
 220	bool new_phy = !phy->phy;
 221	char *type;
 222
 223	if (new_phy) {
 224		if (WARN_ON_ONCE(test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)))
 225			return;
 226		phy->phy = sas_phy_alloc(&rphy->dev, phy_id);
 227
 228		/* FIXME: error_handling */
 229		BUG_ON(!phy->phy);
 230	}
 231
 232	switch (resp->result) {
 233	case SMP_RESP_PHY_VACANT:
 234		phy->phy_state = PHY_VACANT;
 235		break;
 236	default:
 237		phy->phy_state = PHY_NOT_PRESENT;
 238		break;
 239	case SMP_RESP_FUNC_ACC:
 240		phy->phy_state = PHY_EMPTY; /* do not know yet */
 241		break;
 242	}
 243
 244	/* check if anything important changed to squelch debug */
 245	dev_type = phy->attached_dev_type;
 246	linkrate  = phy->linkrate;
 247	memcpy(sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
 248
 249	/* Handle vacant phy - rest of dr data is not valid so skip it */
 250	if (phy->phy_state == PHY_VACANT) {
 251		memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
 252		phy->attached_dev_type = SAS_PHY_UNUSED;
 253		if (!test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)) {
 254			phy->phy_id = phy_id;
 255			goto skip;
 256		} else
 257			goto out;
 258	}
 259
 260	phy->attached_dev_type = to_dev_type(dr);
 261	if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))
 262		goto out;
 263	phy->phy_id = phy_id;
 264	phy->linkrate = dr->linkrate;
 265	phy->attached_sata_host = dr->attached_sata_host;
 266	phy->attached_sata_dev  = dr->attached_sata_dev;
 267	phy->attached_sata_ps   = dr->attached_sata_ps;
 268	phy->attached_iproto = dr->iproto << 1;
 269	phy->attached_tproto = dr->tproto << 1;
 270	/* help some expanders that fail to zero sas_address in the 'no
 271	 * device' case
 272	 */
 273	if (phy->attached_dev_type == SAS_PHY_UNUSED ||
 274	    phy->linkrate < SAS_LINK_RATE_1_5_GBPS)
 275		memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
 276	else
 277		memcpy(phy->attached_sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE);
 278	phy->attached_phy_id = dr->attached_phy_id;
 279	phy->phy_change_count = dr->change_count;
 280	phy->routing_attr = dr->routing_attr;
 281	phy->virtual = dr->virtual;
 282	phy->last_da_index = -1;
 283
 284	phy->phy->identify.sas_address = SAS_ADDR(phy->attached_sas_addr);
 285	phy->phy->identify.device_type = dr->attached_dev_type;
 286	phy->phy->identify.initiator_port_protocols = phy->attached_iproto;
 287	phy->phy->identify.target_port_protocols = phy->attached_tproto;
 288	if (!phy->attached_tproto && dr->attached_sata_dev)
 289		phy->phy->identify.target_port_protocols = SAS_PROTOCOL_SATA;
 290	phy->phy->identify.phy_identifier = phy_id;
 291	phy->phy->minimum_linkrate_hw = dr->hmin_linkrate;
 292	phy->phy->maximum_linkrate_hw = dr->hmax_linkrate;
 293	phy->phy->minimum_linkrate = dr->pmin_linkrate;
 294	phy->phy->maximum_linkrate = dr->pmax_linkrate;
 295	phy->phy->negotiated_linkrate = phy->linkrate;
 296	phy->phy->enabled = (phy->linkrate != SAS_PHY_DISABLED);
 297
 298 skip:
 299	if (new_phy)
 300		if (sas_phy_add(phy->phy)) {
 301			sas_phy_free(phy->phy);
 302			return;
 303		}
 304
 305 out:
 306	switch (phy->attached_dev_type) {
 307	case SAS_SATA_PENDING:
 308		type = "stp pending";
 309		break;
 310	case SAS_PHY_UNUSED:
 311		type = "no device";
 312		break;
 313	case SAS_END_DEVICE:
 314		if (phy->attached_iproto) {
 315			if (phy->attached_tproto)
 316				type = "host+target";
 317			else
 318				type = "host";
 319		} else {
 320			if (dr->attached_sata_dev)
 321				type = "stp";
 322			else
 323				type = "ssp";
 324		}
 325		break;
 326	case SAS_EDGE_EXPANDER_DEVICE:
 327	case SAS_FANOUT_EXPANDER_DEVICE:
 328		type = "smp";
 329		break;
 330	default:
 331		type = "unknown";
 332	}
 333
 334	/* this routine is polled by libata error recovery so filter
 335	 * unimportant messages
 336	 */
 337	if (new_phy || phy->attached_dev_type != dev_type ||
 338	    phy->linkrate != linkrate ||
 339	    SAS_ADDR(phy->attached_sas_addr) != SAS_ADDR(sas_addr))
 340		/* pass */;
 341	else
 342		return;
 343
 344	/* if the attached device type changed and ata_eh is active,
 345	 * make sure we run revalidation when eh completes (see:
 346	 * sas_enable_revalidation)
 347	 */
 348	if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))
 349		set_bit(DISCE_REVALIDATE_DOMAIN, &dev->port->disc.pending);
 350
 351	SAS_DPRINTK("%sex %016llx phy%02d:%c:%X attached: %016llx (%s)\n",
 352		    test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state) ? "ata: " : "",
 353		    SAS_ADDR(dev->sas_addr), phy->phy_id,
 354		    sas_route_char(dev, phy), phy->linkrate,
 355		    SAS_ADDR(phy->attached_sas_addr), type);
 356}
 357
 358/* check if we have an existing attached ata device on this expander phy */
 359struct domain_device *sas_ex_to_ata(struct domain_device *ex_dev, int phy_id)
 360{
 361	struct ex_phy *ex_phy = &ex_dev->ex_dev.ex_phy[phy_id];
 362	struct domain_device *dev;
 363	struct sas_rphy *rphy;
 364
 365	if (!ex_phy->port)
 366		return NULL;
 367
 368	rphy = ex_phy->port->rphy;
 369	if (!rphy)
 370		return NULL;
 371
 372	dev = sas_find_dev_by_rphy(rphy);
 373
 374	if (dev && dev_is_sata(dev))
 375		return dev;
 376
 377	return NULL;
 378}
 379
 380#define DISCOVER_REQ_SIZE  16
 381#define DISCOVER_RESP_SIZE 56
 382
 383static int sas_ex_phy_discover_helper(struct domain_device *dev, u8 *disc_req,
 384				      u8 *disc_resp, int single)
 
 385{
 386	struct discover_resp *dr;
 387	int res;
 388
 389	disc_req[9] = single;
 390
 391	res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
 392			       disc_resp, DISCOVER_RESP_SIZE);
 393	if (res)
 394		return res;
 395	dr = &((struct smp_resp *)disc_resp)->disc;
 396	if (memcmp(dev->sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE) == 0) {
 397		sas_printk("Found loopback topology, just ignore it!\n");
 398		return 0;
 399	}
 400	sas_set_ex_phy(dev, single, disc_resp);
 401	return 0;
 402}
 403
 404int sas_ex_phy_discover(struct domain_device *dev, int single)
 405{
 406	struct expander_device *ex = &dev->ex_dev;
 407	int  res = 0;
 408	u8   *disc_req;
 409	u8   *disc_resp;
 410
 411	disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
 412	if (!disc_req)
 413		return -ENOMEM;
 414
 415	disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
 416	if (!disc_resp) {
 417		kfree(disc_req);
 418		return -ENOMEM;
 419	}
 420
 421	disc_req[1] = SMP_DISCOVER;
 422
 423	if (0 <= single && single < ex->num_phys) {
 424		res = sas_ex_phy_discover_helper(dev, disc_req, disc_resp, single);
 425	} else {
 426		int i;
 427
 428		for (i = 0; i < ex->num_phys; i++) {
 429			res = sas_ex_phy_discover_helper(dev, disc_req,
 430							 disc_resp, i);
 431			if (res)
 432				goto out_err;
 433		}
 434	}
 435out_err:
 436	kfree(disc_resp);
 437	kfree(disc_req);
 438	return res;
 439}
 440
 441static int sas_expander_discover(struct domain_device *dev)
 442{
 443	struct expander_device *ex = &dev->ex_dev;
 444	int res = -ENOMEM;
 445
 446	ex->ex_phy = kzalloc(sizeof(*ex->ex_phy)*ex->num_phys, GFP_KERNEL);
 447	if (!ex->ex_phy)
 448		return -ENOMEM;
 449
 450	res = sas_ex_phy_discover(dev, -1);
 451	if (res)
 452		goto out_err;
 453
 454	return 0;
 455 out_err:
 456	kfree(ex->ex_phy);
 457	ex->ex_phy = NULL;
 458	return res;
 459}
 460
 461#define MAX_EXPANDER_PHYS 128
 462
 463static void ex_assign_report_general(struct domain_device *dev,
 464					    struct smp_resp *resp)
 465{
 466	struct report_general_resp *rg = &resp->rg;
 467
 468	dev->ex_dev.ex_change_count = be16_to_cpu(rg->change_count);
 469	dev->ex_dev.max_route_indexes = be16_to_cpu(rg->route_indexes);
 470	dev->ex_dev.num_phys = min(rg->num_phys, (u8)MAX_EXPANDER_PHYS);
 471	dev->ex_dev.t2t_supp = rg->t2t_supp;
 472	dev->ex_dev.conf_route_table = rg->conf_route_table;
 473	dev->ex_dev.configuring = rg->configuring;
 474	memcpy(dev->ex_dev.enclosure_logical_id, rg->enclosure_logical_id, 8);
 475}
 476
 477#define RG_REQ_SIZE   8
 478#define RG_RESP_SIZE 32
 479
 480static int sas_ex_general(struct domain_device *dev)
 481{
 482	u8 *rg_req;
 483	struct smp_resp *rg_resp;
 
 484	int res;
 485	int i;
 486
 487	rg_req = alloc_smp_req(RG_REQ_SIZE);
 488	if (!rg_req)
 489		return -ENOMEM;
 490
 491	rg_resp = alloc_smp_resp(RG_RESP_SIZE);
 492	if (!rg_resp) {
 493		kfree(rg_req);
 494		return -ENOMEM;
 495	}
 496
 497	rg_req[1] = SMP_REPORT_GENERAL;
 498
 499	for (i = 0; i < 5; i++) {
 500		res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
 501				       RG_RESP_SIZE);
 502
 503		if (res) {
 504			SAS_DPRINTK("RG to ex %016llx failed:0x%x\n",
 505				    SAS_ADDR(dev->sas_addr), res);
 506			goto out;
 507		} else if (rg_resp->result != SMP_RESP_FUNC_ACC) {
 508			SAS_DPRINTK("RG:ex %016llx returned SMP result:0x%x\n",
 509				    SAS_ADDR(dev->sas_addr), rg_resp->result);
 510			res = rg_resp->result;
 511			goto out;
 512		}
 513
 514		ex_assign_report_general(dev, rg_resp);
 
 
 
 
 
 
 
 
 515
 516		if (dev->ex_dev.configuring) {
 517			SAS_DPRINTK("RG: ex %llx self-configuring...\n",
 518				    SAS_ADDR(dev->sas_addr));
 519			schedule_timeout_interruptible(5*HZ);
 520		} else
 521			break;
 522	}
 523out:
 524	kfree(rg_req);
 525	kfree(rg_resp);
 526	return res;
 527}
 528
 529static void ex_assign_manuf_info(struct domain_device *dev, void
 530					*_mi_resp)
 531{
 532	u8 *mi_resp = _mi_resp;
 533	struct sas_rphy *rphy = dev->rphy;
 534	struct sas_expander_device *edev = rphy_to_expander_device(rphy);
 535
 536	memcpy(edev->vendor_id, mi_resp + 12, SAS_EXPANDER_VENDOR_ID_LEN);
 537	memcpy(edev->product_id, mi_resp + 20, SAS_EXPANDER_PRODUCT_ID_LEN);
 538	memcpy(edev->product_rev, mi_resp + 36,
 539	       SAS_EXPANDER_PRODUCT_REV_LEN);
 540
 541	if (mi_resp[8] & 1) {
 542		memcpy(edev->component_vendor_id, mi_resp + 40,
 543		       SAS_EXPANDER_COMPONENT_VENDOR_ID_LEN);
 544		edev->component_id = mi_resp[48] << 8 | mi_resp[49];
 545		edev->component_revision_id = mi_resp[50];
 546	}
 547}
 548
 549#define MI_REQ_SIZE   8
 550#define MI_RESP_SIZE 64
 551
 552static int sas_ex_manuf_info(struct domain_device *dev)
 553{
 554	u8 *mi_req;
 555	u8 *mi_resp;
 556	int res;
 557
 558	mi_req = alloc_smp_req(MI_REQ_SIZE);
 559	if (!mi_req)
 560		return -ENOMEM;
 561
 562	mi_resp = alloc_smp_resp(MI_RESP_SIZE);
 563	if (!mi_resp) {
 564		kfree(mi_req);
 565		return -ENOMEM;
 566	}
 567
 568	mi_req[1] = SMP_REPORT_MANUF_INFO;
 569
 570	res = smp_execute_task(dev, mi_req, MI_REQ_SIZE, mi_resp,MI_RESP_SIZE);
 571	if (res) {
 572		SAS_DPRINTK("MI: ex %016llx failed:0x%x\n",
 573			    SAS_ADDR(dev->sas_addr), res);
 574		goto out;
 575	} else if (mi_resp[2] != SMP_RESP_FUNC_ACC) {
 576		SAS_DPRINTK("MI ex %016llx returned SMP result:0x%x\n",
 577			    SAS_ADDR(dev->sas_addr), mi_resp[2]);
 578		goto out;
 579	}
 580
 581	ex_assign_manuf_info(dev, mi_resp);
 582out:
 583	kfree(mi_req);
 584	kfree(mi_resp);
 585	return res;
 586}
 587
 588#define PC_REQ_SIZE  44
 589#define PC_RESP_SIZE 8
 590
 591int sas_smp_phy_control(struct domain_device *dev, int phy_id,
 592			enum phy_func phy_func,
 593			struct sas_phy_linkrates *rates)
 594{
 595	u8 *pc_req;
 596	u8 *pc_resp;
 597	int res;
 598
 599	pc_req = alloc_smp_req(PC_REQ_SIZE);
 600	if (!pc_req)
 601		return -ENOMEM;
 602
 603	pc_resp = alloc_smp_resp(PC_RESP_SIZE);
 604	if (!pc_resp) {
 605		kfree(pc_req);
 606		return -ENOMEM;
 607	}
 608
 609	pc_req[1] = SMP_PHY_CONTROL;
 610	pc_req[9] = phy_id;
 611	pc_req[10]= phy_func;
 612	if (rates) {
 613		pc_req[32] = rates->minimum_linkrate << 4;
 614		pc_req[33] = rates->maximum_linkrate << 4;
 615	}
 616
 617	res = smp_execute_task(dev, pc_req, PC_REQ_SIZE, pc_resp,PC_RESP_SIZE);
 618
 
 
 
 
 
 
 
 619	kfree(pc_resp);
 620	kfree(pc_req);
 621	return res;
 622}
 623
 624static void sas_ex_disable_phy(struct domain_device *dev, int phy_id)
 625{
 626	struct expander_device *ex = &dev->ex_dev;
 627	struct ex_phy *phy = &ex->ex_phy[phy_id];
 628
 629	sas_smp_phy_control(dev, phy_id, PHY_FUNC_DISABLE, NULL);
 630	phy->linkrate = SAS_PHY_DISABLED;
 631}
 632
 633static void sas_ex_disable_port(struct domain_device *dev, u8 *sas_addr)
 634{
 635	struct expander_device *ex = &dev->ex_dev;
 636	int i;
 637
 638	for (i = 0; i < ex->num_phys; i++) {
 639		struct ex_phy *phy = &ex->ex_phy[i];
 640
 641		if (phy->phy_state == PHY_VACANT ||
 642		    phy->phy_state == PHY_NOT_PRESENT)
 643			continue;
 644
 645		if (SAS_ADDR(phy->attached_sas_addr) == SAS_ADDR(sas_addr))
 646			sas_ex_disable_phy(dev, i);
 647	}
 648}
 649
 650static int sas_dev_present_in_domain(struct asd_sas_port *port,
 651					    u8 *sas_addr)
 652{
 653	struct domain_device *dev;
 654
 655	if (SAS_ADDR(port->sas_addr) == SAS_ADDR(sas_addr))
 656		return 1;
 657	list_for_each_entry(dev, &port->dev_list, dev_list_node) {
 658		if (SAS_ADDR(dev->sas_addr) == SAS_ADDR(sas_addr))
 659			return 1;
 660	}
 661	return 0;
 662}
 663
 664#define RPEL_REQ_SIZE	16
 665#define RPEL_RESP_SIZE	32
 666int sas_smp_get_phy_events(struct sas_phy *phy)
 667{
 668	int res;
 669	u8 *req;
 670	u8 *resp;
 671	struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent);
 672	struct domain_device *dev = sas_find_dev_by_rphy(rphy);
 673
 674	req = alloc_smp_req(RPEL_REQ_SIZE);
 675	if (!req)
 676		return -ENOMEM;
 677
 678	resp = alloc_smp_resp(RPEL_RESP_SIZE);
 679	if (!resp) {
 680		kfree(req);
 681		return -ENOMEM;
 682	}
 683
 684	req[1] = SMP_REPORT_PHY_ERR_LOG;
 685	req[9] = phy->number;
 686
 687	res = smp_execute_task(dev, req, RPEL_REQ_SIZE,
 688			            resp, RPEL_RESP_SIZE);
 689
 690	if (res)
 691		goto out;
 692
 693	phy->invalid_dword_count = scsi_to_u32(&resp[12]);
 694	phy->running_disparity_error_count = scsi_to_u32(&resp[16]);
 695	phy->loss_of_dword_sync_count = scsi_to_u32(&resp[20]);
 696	phy->phy_reset_problem_count = scsi_to_u32(&resp[24]);
 697
 698 out:
 699	kfree(req);
 700	kfree(resp);
 701	return res;
 702
 703}
 704
 705#ifdef CONFIG_SCSI_SAS_ATA
 706
 707#define RPS_REQ_SIZE  16
 708#define RPS_RESP_SIZE 60
 709
 710int sas_get_report_phy_sata(struct domain_device *dev, int phy_id,
 711			    struct smp_resp *rps_resp)
 712{
 713	int res;
 714	u8 *rps_req = alloc_smp_req(RPS_REQ_SIZE);
 715	u8 *resp = (u8 *)rps_resp;
 716
 717	if (!rps_req)
 718		return -ENOMEM;
 719
 720	rps_req[1] = SMP_REPORT_PHY_SATA;
 721	rps_req[9] = phy_id;
 722
 723	res = smp_execute_task(dev, rps_req, RPS_REQ_SIZE,
 724			            rps_resp, RPS_RESP_SIZE);
 725
 726	/* 0x34 is the FIS type for the D2H fis.  There's a potential
 727	 * standards cockup here.  sas-2 explicitly specifies the FIS
 728	 * should be encoded so that FIS type is in resp[24].
 729	 * However, some expanders endian reverse this.  Undo the
 730	 * reversal here */
 731	if (!res && resp[27] == 0x34 && resp[24] != 0x34) {
 732		int i;
 733
 734		for (i = 0; i < 5; i++) {
 735			int j = 24 + (i*4);
 736			u8 a, b;
 737			a = resp[j + 0];
 738			b = resp[j + 1];
 739			resp[j + 0] = resp[j + 3];
 740			resp[j + 1] = resp[j + 2];
 741			resp[j + 2] = b;
 742			resp[j + 3] = a;
 743		}
 744	}
 745
 746	kfree(rps_req);
 747	return res;
 748}
 749#endif
 750
 751static void sas_ex_get_linkrate(struct domain_device *parent,
 752				       struct domain_device *child,
 753				       struct ex_phy *parent_phy)
 754{
 755	struct expander_device *parent_ex = &parent->ex_dev;
 756	struct sas_port *port;
 757	int i;
 758
 759	child->pathways = 0;
 760
 761	port = parent_phy->port;
 762
 763	for (i = 0; i < parent_ex->num_phys; i++) {
 764		struct ex_phy *phy = &parent_ex->ex_phy[i];
 765
 766		if (phy->phy_state == PHY_VACANT ||
 767		    phy->phy_state == PHY_NOT_PRESENT)
 768			continue;
 769
 770		if (SAS_ADDR(phy->attached_sas_addr) ==
 771		    SAS_ADDR(child->sas_addr)) {
 772
 773			child->min_linkrate = min(parent->min_linkrate,
 774						  phy->linkrate);
 775			child->max_linkrate = max(parent->max_linkrate,
 776						  phy->linkrate);
 777			child->pathways++;
 778			sas_port_add_phy(port, phy->phy);
 779		}
 780	}
 781	child->linkrate = min(parent_phy->linkrate, child->max_linkrate);
 782	child->pathways = min(child->pathways, parent->pathways);
 783}
 784
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 785static struct domain_device *sas_ex_discover_end_dev(
 786	struct domain_device *parent, int phy_id)
 787{
 788	struct expander_device *parent_ex = &parent->ex_dev;
 789	struct ex_phy *phy = &parent_ex->ex_phy[phy_id];
 790	struct domain_device *child = NULL;
 791	struct sas_rphy *rphy;
 792	int res;
 793
 794	if (phy->attached_sata_host || phy->attached_sata_ps)
 795		return NULL;
 796
 797	child = sas_alloc_device();
 798	if (!child)
 799		return NULL;
 800
 801	kref_get(&parent->kref);
 802	child->parent = parent;
 803	child->port   = parent->port;
 804	child->iproto = phy->attached_iproto;
 805	memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
 806	sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
 807	if (!phy->port) {
 808		phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
 809		if (unlikely(!phy->port))
 810			goto out_err;
 811		if (unlikely(sas_port_add(phy->port) != 0)) {
 812			sas_port_free(phy->port);
 813			goto out_err;
 814		}
 815	}
 816	sas_ex_get_linkrate(parent, child, phy);
 817	sas_device_set_phy(child, phy->port);
 818
 819#ifdef CONFIG_SCSI_SAS_ATA
 820	if ((phy->attached_tproto & SAS_PROTOCOL_STP) || phy->attached_sata_dev) {
 821		res = sas_get_ata_info(child, phy);
 822		if (res)
 823			goto out_free;
 824
 825		sas_init_dev(child);
 826		res = sas_ata_init(child);
 827		if (res)
 828			goto out_free;
 829		rphy = sas_end_device_alloc(phy->port);
 830		if (!rphy)
 831			goto out_free;
 832
 833		child->rphy = rphy;
 834		get_device(&rphy->dev);
 835
 836		list_add_tail(&child->disco_list_node, &parent->port->disco_list);
 837
 838		res = sas_discover_sata(child);
 839		if (res) {
 840			SAS_DPRINTK("sas_discover_sata() for device %16llx at "
 841				    "%016llx:0x%x returned 0x%x\n",
 842				    SAS_ADDR(child->sas_addr),
 843				    SAS_ADDR(parent->sas_addr), phy_id, res);
 844			goto out_list_del;
 845		}
 846	} else
 847#endif
 848	  if (phy->attached_tproto & SAS_PROTOCOL_SSP) {
 849		child->dev_type = SAS_END_DEVICE;
 850		rphy = sas_end_device_alloc(phy->port);
 851		/* FIXME: error handling */
 852		if (unlikely(!rphy))
 853			goto out_free;
 854		child->tproto = phy->attached_tproto;
 855		sas_init_dev(child);
 856
 857		child->rphy = rphy;
 858		get_device(&rphy->dev);
 859		sas_fill_in_rphy(child, rphy);
 860
 861		list_add_tail(&child->disco_list_node, &parent->port->disco_list);
 862
 863		res = sas_discover_end_dev(child);
 864		if (res) {
 865			SAS_DPRINTK("sas_discover_end_dev() for device %16llx "
 866				    "at %016llx:0x%x returned 0x%x\n",
 867				    SAS_ADDR(child->sas_addr),
 868				    SAS_ADDR(parent->sas_addr), phy_id, res);
 869			goto out_list_del;
 870		}
 871	} else {
 872		SAS_DPRINTK("target proto 0x%x at %016llx:0x%x not handled\n",
 873			    phy->attached_tproto, SAS_ADDR(parent->sas_addr),
 874			    phy_id);
 875		goto out_free;
 876	}
 877
 
 
 
 878	list_add_tail(&child->siblings, &parent_ex->children);
 879	return child;
 880
 881 out_list_del:
 882	sas_rphy_free(child->rphy);
 883	list_del(&child->disco_list_node);
 884	spin_lock_irq(&parent->port->dev_list_lock);
 885	list_del(&child->dev_list_node);
 886	spin_unlock_irq(&parent->port->dev_list_lock);
 887 out_free:
 888	sas_port_delete(phy->port);
 889 out_err:
 890	phy->port = NULL;
 891	sas_put_device(child);
 892	return NULL;
 893}
 894
 895/* See if this phy is part of a wide port */
 896static bool sas_ex_join_wide_port(struct domain_device *parent, int phy_id)
 897{
 898	struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
 899	int i;
 900
 901	for (i = 0; i < parent->ex_dev.num_phys; i++) {
 902		struct ex_phy *ephy = &parent->ex_dev.ex_phy[i];
 903
 904		if (ephy == phy)
 905			continue;
 906
 907		if (!memcmp(phy->attached_sas_addr, ephy->attached_sas_addr,
 908			    SAS_ADDR_SIZE) && ephy->port) {
 909			sas_port_add_phy(ephy->port, phy->phy);
 910			phy->port = ephy->port;
 911			phy->phy_state = PHY_DEVICE_DISCOVERED;
 912			return true;
 913		}
 914	}
 915
 916	return false;
 917}
 918
 919static struct domain_device *sas_ex_discover_expander(
 920	struct domain_device *parent, int phy_id)
 921{
 922	struct sas_expander_device *parent_ex = rphy_to_expander_device(parent->rphy);
 923	struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
 924	struct domain_device *child = NULL;
 925	struct sas_rphy *rphy;
 926	struct sas_expander_device *edev;
 927	struct asd_sas_port *port;
 928	int res;
 929
 930	if (phy->routing_attr == DIRECT_ROUTING) {
 931		SAS_DPRINTK("ex %016llx:0x%x:D <--> ex %016llx:0x%x is not "
 932			    "allowed\n",
 933			    SAS_ADDR(parent->sas_addr), phy_id,
 934			    SAS_ADDR(phy->attached_sas_addr),
 935			    phy->attached_phy_id);
 936		return NULL;
 937	}
 938	child = sas_alloc_device();
 939	if (!child)
 940		return NULL;
 941
 942	phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
 943	/* FIXME: better error handling */
 944	BUG_ON(sas_port_add(phy->port) != 0);
 945
 946
 947	switch (phy->attached_dev_type) {
 948	case SAS_EDGE_EXPANDER_DEVICE:
 949		rphy = sas_expander_alloc(phy->port,
 950					  SAS_EDGE_EXPANDER_DEVICE);
 951		break;
 952	case SAS_FANOUT_EXPANDER_DEVICE:
 953		rphy = sas_expander_alloc(phy->port,
 954					  SAS_FANOUT_EXPANDER_DEVICE);
 955		break;
 956	default:
 957		rphy = NULL;	/* shut gcc up */
 958		BUG();
 959	}
 960	port = parent->port;
 961	child->rphy = rphy;
 962	get_device(&rphy->dev);
 963	edev = rphy_to_expander_device(rphy);
 964	child->dev_type = phy->attached_dev_type;
 965	kref_get(&parent->kref);
 966	child->parent = parent;
 967	child->port = port;
 968	child->iproto = phy->attached_iproto;
 969	child->tproto = phy->attached_tproto;
 970	memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
 971	sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
 972	sas_ex_get_linkrate(parent, child, phy);
 973	edev->level = parent_ex->level + 1;
 974	parent->port->disc.max_level = max(parent->port->disc.max_level,
 975					   edev->level);
 976	sas_init_dev(child);
 977	sas_fill_in_rphy(child, rphy);
 978	sas_rphy_add(rphy);
 979
 980	spin_lock_irq(&parent->port->dev_list_lock);
 981	list_add_tail(&child->dev_list_node, &parent->port->dev_list);
 982	spin_unlock_irq(&parent->port->dev_list_lock);
 983
 984	res = sas_discover_expander(child);
 985	if (res) {
 986		sas_rphy_delete(rphy);
 987		spin_lock_irq(&parent->port->dev_list_lock);
 988		list_del(&child->dev_list_node);
 989		spin_unlock_irq(&parent->port->dev_list_lock);
 990		sas_put_device(child);
 
 
 991		return NULL;
 992	}
 993	list_add_tail(&child->siblings, &parent->ex_dev.children);
 994	return child;
 995}
 996
 997static int sas_ex_discover_dev(struct domain_device *dev, int phy_id)
 998{
 999	struct expander_device *ex = &dev->ex_dev;
1000	struct ex_phy *ex_phy = &ex->ex_phy[phy_id];
1001	struct domain_device *child = NULL;
1002	int res = 0;
1003
1004	/* Phy state */
1005	if (ex_phy->linkrate == SAS_SATA_SPINUP_HOLD) {
1006		if (!sas_smp_phy_control(dev, phy_id, PHY_FUNC_LINK_RESET, NULL))
1007			res = sas_ex_phy_discover(dev, phy_id);
1008		if (res)
1009			return res;
1010	}
1011
1012	/* Parent and domain coherency */
1013	if (!dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
1014			     SAS_ADDR(dev->port->sas_addr))) {
1015		sas_add_parent_port(dev, phy_id);
1016		return 0;
1017	}
1018	if (dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
1019			    SAS_ADDR(dev->parent->sas_addr))) {
1020		sas_add_parent_port(dev, phy_id);
1021		if (ex_phy->routing_attr == TABLE_ROUTING)
1022			sas_configure_phy(dev, phy_id, dev->port->sas_addr, 1);
1023		return 0;
1024	}
1025
1026	if (sas_dev_present_in_domain(dev->port, ex_phy->attached_sas_addr))
1027		sas_ex_disable_port(dev, ex_phy->attached_sas_addr);
1028
1029	if (ex_phy->attached_dev_type == SAS_PHY_UNUSED) {
1030		if (ex_phy->routing_attr == DIRECT_ROUTING) {
1031			memset(ex_phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1032			sas_configure_routing(dev, ex_phy->attached_sas_addr);
1033		}
1034		return 0;
1035	} else if (ex_phy->linkrate == SAS_LINK_RATE_UNKNOWN)
1036		return 0;
1037
1038	if (ex_phy->attached_dev_type != SAS_END_DEVICE &&
1039	    ex_phy->attached_dev_type != SAS_FANOUT_EXPANDER_DEVICE &&
1040	    ex_phy->attached_dev_type != SAS_EDGE_EXPANDER_DEVICE &&
1041	    ex_phy->attached_dev_type != SAS_SATA_PENDING) {
1042		SAS_DPRINTK("unknown device type(0x%x) attached to ex %016llx "
1043			    "phy 0x%x\n", ex_phy->attached_dev_type,
1044			    SAS_ADDR(dev->sas_addr),
1045			    phy_id);
1046		return 0;
1047	}
1048
1049	res = sas_configure_routing(dev, ex_phy->attached_sas_addr);
1050	if (res) {
1051		SAS_DPRINTK("configure routing for dev %016llx "
1052			    "reported 0x%x. Forgotten\n",
1053			    SAS_ADDR(ex_phy->attached_sas_addr), res);
1054		sas_disable_routing(dev, ex_phy->attached_sas_addr);
1055		return res;
1056	}
1057
1058	if (sas_ex_join_wide_port(dev, phy_id)) {
1059		SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n",
1060			    phy_id, SAS_ADDR(ex_phy->attached_sas_addr));
1061		return res;
1062	}
1063
1064	switch (ex_phy->attached_dev_type) {
1065	case SAS_END_DEVICE:
1066	case SAS_SATA_PENDING:
1067		child = sas_ex_discover_end_dev(dev, phy_id);
1068		break;
1069	case SAS_FANOUT_EXPANDER_DEVICE:
1070		if (SAS_ADDR(dev->port->disc.fanout_sas_addr)) {
1071			SAS_DPRINTK("second fanout expander %016llx phy 0x%x "
1072				    "attached to ex %016llx phy 0x%x\n",
1073				    SAS_ADDR(ex_phy->attached_sas_addr),
1074				    ex_phy->attached_phy_id,
1075				    SAS_ADDR(dev->sas_addr),
1076				    phy_id);
1077			sas_ex_disable_phy(dev, phy_id);
1078			break;
1079		} else
1080			memcpy(dev->port->disc.fanout_sas_addr,
1081			       ex_phy->attached_sas_addr, SAS_ADDR_SIZE);
1082		/* fallthrough */
1083	case SAS_EDGE_EXPANDER_DEVICE:
1084		child = sas_ex_discover_expander(dev, phy_id);
1085		break;
1086	default:
1087		break;
1088	}
1089
1090	if (child) {
1091		int i;
1092
1093		for (i = 0; i < ex->num_phys; i++) {
1094			if (ex->ex_phy[i].phy_state == PHY_VACANT ||
1095			    ex->ex_phy[i].phy_state == PHY_NOT_PRESENT)
1096				continue;
1097			/*
1098			 * Due to races, the phy might not get added to the
1099			 * wide port, so we add the phy to the wide port here.
1100			 */
1101			if (SAS_ADDR(ex->ex_phy[i].attached_sas_addr) ==
1102			    SAS_ADDR(child->sas_addr)) {
1103				ex->ex_phy[i].phy_state= PHY_DEVICE_DISCOVERED;
1104				if (sas_ex_join_wide_port(dev, i))
1105					SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n",
1106						    i, SAS_ADDR(ex->ex_phy[i].attached_sas_addr));
1107
1108			}
1109		}
1110	}
1111
1112	return res;
1113}
1114
1115static int sas_find_sub_addr(struct domain_device *dev, u8 *sub_addr)
1116{
1117	struct expander_device *ex = &dev->ex_dev;
1118	int i;
1119
1120	for (i = 0; i < ex->num_phys; i++) {
1121		struct ex_phy *phy = &ex->ex_phy[i];
1122
1123		if (phy->phy_state == PHY_VACANT ||
1124		    phy->phy_state == PHY_NOT_PRESENT)
1125			continue;
1126
1127		if ((phy->attached_dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1128		     phy->attached_dev_type == SAS_FANOUT_EXPANDER_DEVICE) &&
1129		    phy->routing_attr == SUBTRACTIVE_ROUTING) {
1130
1131			memcpy(sub_addr, phy->attached_sas_addr,SAS_ADDR_SIZE);
1132
1133			return 1;
1134		}
1135	}
1136	return 0;
1137}
1138
1139static int sas_check_level_subtractive_boundary(struct domain_device *dev)
1140{
1141	struct expander_device *ex = &dev->ex_dev;
1142	struct domain_device *child;
1143	u8 sub_addr[8] = {0, };
1144
1145	list_for_each_entry(child, &ex->children, siblings) {
1146		if (child->dev_type != SAS_EDGE_EXPANDER_DEVICE &&
1147		    child->dev_type != SAS_FANOUT_EXPANDER_DEVICE)
1148			continue;
1149		if (sub_addr[0] == 0) {
1150			sas_find_sub_addr(child, sub_addr);
1151			continue;
1152		} else {
1153			u8 s2[8];
1154
1155			if (sas_find_sub_addr(child, s2) &&
1156			    (SAS_ADDR(sub_addr) != SAS_ADDR(s2))) {
1157
1158				SAS_DPRINTK("ex %016llx->%016llx-?->%016llx "
1159					    "diverges from subtractive "
1160					    "boundary %016llx\n",
1161					    SAS_ADDR(dev->sas_addr),
1162					    SAS_ADDR(child->sas_addr),
1163					    SAS_ADDR(s2),
1164					    SAS_ADDR(sub_addr));
1165
1166				sas_ex_disable_port(child, s2);
1167			}
1168		}
1169	}
1170	return 0;
1171}
1172/**
1173 * sas_ex_discover_devices - discover devices attached to this expander
1174 * @dev: pointer to the expander domain device
1175 * @single: if you want to do a single phy, else set to -1;
1176 *
1177 * Configure this expander for use with its devices and register the
1178 * devices of this expander.
1179 */
1180static int sas_ex_discover_devices(struct domain_device *dev, int single)
1181{
1182	struct expander_device *ex = &dev->ex_dev;
1183	int i = 0, end = ex->num_phys;
1184	int res = 0;
1185
1186	if (0 <= single && single < end) {
1187		i = single;
1188		end = i+1;
1189	}
1190
1191	for ( ; i < end; i++) {
1192		struct ex_phy *ex_phy = &ex->ex_phy[i];
1193
1194		if (ex_phy->phy_state == PHY_VACANT ||
1195		    ex_phy->phy_state == PHY_NOT_PRESENT ||
1196		    ex_phy->phy_state == PHY_DEVICE_DISCOVERED)
1197			continue;
1198
1199		switch (ex_phy->linkrate) {
1200		case SAS_PHY_DISABLED:
1201		case SAS_PHY_RESET_PROBLEM:
1202		case SAS_SATA_PORT_SELECTOR:
1203			continue;
1204		default:
1205			res = sas_ex_discover_dev(dev, i);
1206			if (res)
1207				break;
1208			continue;
1209		}
1210	}
1211
1212	if (!res)
1213		sas_check_level_subtractive_boundary(dev);
1214
1215	return res;
1216}
1217
1218static int sas_check_ex_subtractive_boundary(struct domain_device *dev)
1219{
1220	struct expander_device *ex = &dev->ex_dev;
1221	int i;
1222	u8  *sub_sas_addr = NULL;
1223
1224	if (dev->dev_type != SAS_EDGE_EXPANDER_DEVICE)
1225		return 0;
1226
1227	for (i = 0; i < ex->num_phys; i++) {
1228		struct ex_phy *phy = &ex->ex_phy[i];
1229
1230		if (phy->phy_state == PHY_VACANT ||
1231		    phy->phy_state == PHY_NOT_PRESENT)
1232			continue;
1233
1234		if ((phy->attached_dev_type == SAS_FANOUT_EXPANDER_DEVICE ||
1235		     phy->attached_dev_type == SAS_EDGE_EXPANDER_DEVICE) &&
1236		    phy->routing_attr == SUBTRACTIVE_ROUTING) {
1237
1238			if (!sub_sas_addr)
1239				sub_sas_addr = &phy->attached_sas_addr[0];
1240			else if (SAS_ADDR(sub_sas_addr) !=
1241				 SAS_ADDR(phy->attached_sas_addr)) {
1242
1243				SAS_DPRINTK("ex %016llx phy 0x%x "
1244					    "diverges(%016llx) on subtractive "
1245					    "boundary(%016llx). Disabled\n",
1246					    SAS_ADDR(dev->sas_addr), i,
1247					    SAS_ADDR(phy->attached_sas_addr),
1248					    SAS_ADDR(sub_sas_addr));
1249				sas_ex_disable_phy(dev, i);
1250			}
1251		}
1252	}
1253	return 0;
1254}
1255
1256static void sas_print_parent_topology_bug(struct domain_device *child,
1257						 struct ex_phy *parent_phy,
1258						 struct ex_phy *child_phy)
1259{
1260	static const char *ex_type[] = {
1261		[SAS_EDGE_EXPANDER_DEVICE] = "edge",
1262		[SAS_FANOUT_EXPANDER_DEVICE] = "fanout",
1263	};
1264	struct domain_device *parent = child->parent;
1265
1266	sas_printk("%s ex %016llx phy 0x%x <--> %s ex %016llx "
1267		   "phy 0x%x has %c:%c routing link!\n",
 
 
 
 
 
 
 
 
 
 
1268
1269		   ex_type[parent->dev_type],
1270		   SAS_ADDR(parent->sas_addr),
1271		   parent_phy->phy_id,
1272
1273		   ex_type[child->dev_type],
1274		   SAS_ADDR(child->sas_addr),
1275		   child_phy->phy_id,
1276
1277		   sas_route_char(parent, parent_phy),
1278		   sas_route_char(child, child_phy));
 
 
1279}
1280
1281static int sas_check_eeds(struct domain_device *child,
1282				 struct ex_phy *parent_phy,
1283				 struct ex_phy *child_phy)
1284{
1285	int res = 0;
1286	struct domain_device *parent = child->parent;
 
1287
1288	if (SAS_ADDR(parent->port->disc.fanout_sas_addr) != 0) {
1289		res = -ENODEV;
1290		SAS_DPRINTK("edge ex %016llx phy S:0x%x <--> edge ex %016llx "
1291			    "phy S:0x%x, while there is a fanout ex %016llx\n",
1292			    SAS_ADDR(parent->sas_addr),
1293			    parent_phy->phy_id,
1294			    SAS_ADDR(child->sas_addr),
1295			    child_phy->phy_id,
1296			    SAS_ADDR(parent->port->disc.fanout_sas_addr));
1297	} else if (SAS_ADDR(parent->port->disc.eeds_a) == 0) {
1298		memcpy(parent->port->disc.eeds_a, parent->sas_addr,
1299		       SAS_ADDR_SIZE);
1300		memcpy(parent->port->disc.eeds_b, child->sas_addr,
1301		       SAS_ADDR_SIZE);
1302	} else if (((SAS_ADDR(parent->port->disc.eeds_a) ==
1303		    SAS_ADDR(parent->sas_addr)) ||
1304		   (SAS_ADDR(parent->port->disc.eeds_a) ==
1305		    SAS_ADDR(child->sas_addr)))
1306		   &&
1307		   ((SAS_ADDR(parent->port->disc.eeds_b) ==
1308		     SAS_ADDR(parent->sas_addr)) ||
1309		    (SAS_ADDR(parent->port->disc.eeds_b) ==
1310		     SAS_ADDR(child->sas_addr))))
1311		;
1312	else {
1313		res = -ENODEV;
1314		SAS_DPRINTK("edge ex %016llx phy 0x%x <--> edge ex %016llx "
1315			    "phy 0x%x link forms a third EEDS!\n",
1316			    SAS_ADDR(parent->sas_addr),
1317			    parent_phy->phy_id,
1318			    SAS_ADDR(child->sas_addr),
1319			    child_phy->phy_id);
1320	}
1321
1322	return res;
1323}
1324
1325/* Here we spill over 80 columns.  It is intentional.
1326 */
1327static int sas_check_parent_topology(struct domain_device *child)
1328{
1329	struct expander_device *child_ex = &child->ex_dev;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1330	struct expander_device *parent_ex;
1331	int i;
1332	int res = 0;
1333
1334	if (!child->parent)
1335		return 0;
1336
1337	if (child->parent->dev_type != SAS_EDGE_EXPANDER_DEVICE &&
1338	    child->parent->dev_type != SAS_FANOUT_EXPANDER_DEVICE)
1339		return 0;
1340
1341	parent_ex = &child->parent->ex_dev;
1342
1343	for (i = 0; i < parent_ex->num_phys; i++) {
1344		struct ex_phy *parent_phy = &parent_ex->ex_phy[i];
1345		struct ex_phy *child_phy;
1346
1347		if (parent_phy->phy_state == PHY_VACANT ||
1348		    parent_phy->phy_state == PHY_NOT_PRESENT)
1349			continue;
1350
1351		if (SAS_ADDR(parent_phy->attached_sas_addr) != SAS_ADDR(child->sas_addr))
1352			continue;
1353
1354		child_phy = &child_ex->ex_phy[parent_phy->attached_phy_id];
1355
1356		switch (child->parent->dev_type) {
1357		case SAS_EDGE_EXPANDER_DEVICE:
1358			if (child->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
1359				if (parent_phy->routing_attr != SUBTRACTIVE_ROUTING ||
1360				    child_phy->routing_attr != TABLE_ROUTING) {
1361					sas_print_parent_topology_bug(child, parent_phy, child_phy);
1362					res = -ENODEV;
1363				}
1364			} else if (parent_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1365				if (child_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1366					res = sas_check_eeds(child, parent_phy, child_phy);
1367				} else if (child_phy->routing_attr != TABLE_ROUTING) {
1368					sas_print_parent_topology_bug(child, parent_phy, child_phy);
1369					res = -ENODEV;
1370				}
1371			} else if (parent_phy->routing_attr == TABLE_ROUTING) {
1372				if (child_phy->routing_attr == SUBTRACTIVE_ROUTING ||
1373				    (child_phy->routing_attr == TABLE_ROUTING &&
1374				     child_ex->t2t_supp && parent_ex->t2t_supp)) {
1375					/* All good */;
1376				} else {
1377					sas_print_parent_topology_bug(child, parent_phy, child_phy);
1378					res = -ENODEV;
1379				}
1380			}
1381			break;
1382		case SAS_FANOUT_EXPANDER_DEVICE:
1383			if (parent_phy->routing_attr != TABLE_ROUTING ||
1384			    child_phy->routing_attr != SUBTRACTIVE_ROUTING) {
1385				sas_print_parent_topology_bug(child, parent_phy, child_phy);
1386				res = -ENODEV;
1387			}
1388			break;
1389		default:
1390			break;
1391		}
1392	}
1393
1394	return res;
1395}
1396
1397#define RRI_REQ_SIZE  16
1398#define RRI_RESP_SIZE 44
1399
1400static int sas_configure_present(struct domain_device *dev, int phy_id,
1401				 u8 *sas_addr, int *index, int *present)
1402{
1403	int i, res = 0;
1404	struct expander_device *ex = &dev->ex_dev;
1405	struct ex_phy *phy = &ex->ex_phy[phy_id];
1406	u8 *rri_req;
1407	u8 *rri_resp;
1408
1409	*present = 0;
1410	*index = 0;
1411
1412	rri_req = alloc_smp_req(RRI_REQ_SIZE);
1413	if (!rri_req)
1414		return -ENOMEM;
1415
1416	rri_resp = alloc_smp_resp(RRI_RESP_SIZE);
1417	if (!rri_resp) {
1418		kfree(rri_req);
1419		return -ENOMEM;
1420	}
1421
1422	rri_req[1] = SMP_REPORT_ROUTE_INFO;
1423	rri_req[9] = phy_id;
1424
1425	for (i = 0; i < ex->max_route_indexes ; i++) {
1426		*(__be16 *)(rri_req+6) = cpu_to_be16(i);
1427		res = smp_execute_task(dev, rri_req, RRI_REQ_SIZE, rri_resp,
1428				       RRI_RESP_SIZE);
1429		if (res)
1430			goto out;
1431		res = rri_resp[2];
1432		if (res == SMP_RESP_NO_INDEX) {
1433			SAS_DPRINTK("overflow of indexes: dev %016llx "
1434				    "phy 0x%x index 0x%x\n",
1435				    SAS_ADDR(dev->sas_addr), phy_id, i);
1436			goto out;
1437		} else if (res != SMP_RESP_FUNC_ACC) {
1438			SAS_DPRINTK("%s: dev %016llx phy 0x%x index 0x%x "
1439				    "result 0x%x\n", __func__,
1440				    SAS_ADDR(dev->sas_addr), phy_id, i, res);
1441			goto out;
1442		}
1443		if (SAS_ADDR(sas_addr) != 0) {
1444			if (SAS_ADDR(rri_resp+16) == SAS_ADDR(sas_addr)) {
1445				*index = i;
1446				if ((rri_resp[12] & 0x80) == 0x80)
1447					*present = 0;
1448				else
1449					*present = 1;
1450				goto out;
1451			} else if (SAS_ADDR(rri_resp+16) == 0) {
1452				*index = i;
1453				*present = 0;
1454				goto out;
1455			}
1456		} else if (SAS_ADDR(rri_resp+16) == 0 &&
1457			   phy->last_da_index < i) {
1458			phy->last_da_index = i;
1459			*index = i;
1460			*present = 0;
1461			goto out;
1462		}
1463	}
1464	res = -1;
1465out:
1466	kfree(rri_req);
1467	kfree(rri_resp);
1468	return res;
1469}
1470
1471#define CRI_REQ_SIZE  44
1472#define CRI_RESP_SIZE  8
1473
1474static int sas_configure_set(struct domain_device *dev, int phy_id,
1475			     u8 *sas_addr, int index, int include)
1476{
1477	int res;
1478	u8 *cri_req;
1479	u8 *cri_resp;
1480
1481	cri_req = alloc_smp_req(CRI_REQ_SIZE);
1482	if (!cri_req)
1483		return -ENOMEM;
1484
1485	cri_resp = alloc_smp_resp(CRI_RESP_SIZE);
1486	if (!cri_resp) {
1487		kfree(cri_req);
1488		return -ENOMEM;
1489	}
1490
1491	cri_req[1] = SMP_CONF_ROUTE_INFO;
1492	*(__be16 *)(cri_req+6) = cpu_to_be16(index);
1493	cri_req[9] = phy_id;
1494	if (SAS_ADDR(sas_addr) == 0 || !include)
1495		cri_req[12] |= 0x80;
1496	memcpy(cri_req+16, sas_addr, SAS_ADDR_SIZE);
1497
1498	res = smp_execute_task(dev, cri_req, CRI_REQ_SIZE, cri_resp,
1499			       CRI_RESP_SIZE);
1500	if (res)
1501		goto out;
1502	res = cri_resp[2];
1503	if (res == SMP_RESP_NO_INDEX) {
1504		SAS_DPRINTK("overflow of indexes: dev %016llx phy 0x%x "
1505			    "index 0x%x\n",
1506			    SAS_ADDR(dev->sas_addr), phy_id, index);
1507	}
1508out:
1509	kfree(cri_req);
1510	kfree(cri_resp);
1511	return res;
1512}
1513
1514static int sas_configure_phy(struct domain_device *dev, int phy_id,
1515				    u8 *sas_addr, int include)
1516{
1517	int index;
1518	int present;
1519	int res;
1520
1521	res = sas_configure_present(dev, phy_id, sas_addr, &index, &present);
1522	if (res)
1523		return res;
1524	if (include ^ present)
1525		return sas_configure_set(dev, phy_id, sas_addr, index,include);
 
1526
1527	return res;
1528}
1529
1530/**
1531 * sas_configure_parent - configure routing table of parent
1532 * @parent: parent expander
1533 * @child: child expander
1534 * @sas_addr: SAS port identifier of device directly attached to child
1535 * @include: whether or not to include @child in the expander routing table
1536 */
1537static int sas_configure_parent(struct domain_device *parent,
1538				struct domain_device *child,
1539				u8 *sas_addr, int include)
1540{
1541	struct expander_device *ex_parent = &parent->ex_dev;
1542	int res = 0;
1543	int i;
1544
1545	if (parent->parent) {
1546		res = sas_configure_parent(parent->parent, parent, sas_addr,
1547					   include);
1548		if (res)
1549			return res;
1550	}
1551
1552	if (ex_parent->conf_route_table == 0) {
1553		SAS_DPRINTK("ex %016llx has self-configuring routing table\n",
1554			    SAS_ADDR(parent->sas_addr));
1555		return 0;
1556	}
1557
1558	for (i = 0; i < ex_parent->num_phys; i++) {
1559		struct ex_phy *phy = &ex_parent->ex_phy[i];
1560
1561		if ((phy->routing_attr == TABLE_ROUTING) &&
1562		    (SAS_ADDR(phy->attached_sas_addr) ==
1563		     SAS_ADDR(child->sas_addr))) {
1564			res = sas_configure_phy(parent, i, sas_addr, include);
1565			if (res)
1566				return res;
1567		}
1568	}
1569
1570	return res;
1571}
1572
1573/**
1574 * sas_configure_routing - configure routing
1575 * @dev: expander device
1576 * @sas_addr: port identifier of device directly attached to the expander device
1577 */
1578static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr)
1579{
1580	if (dev->parent)
1581		return sas_configure_parent(dev->parent, dev, sas_addr, 1);
1582	return 0;
1583}
1584
1585static int sas_disable_routing(struct domain_device *dev,  u8 *sas_addr)
1586{
1587	if (dev->parent)
1588		return sas_configure_parent(dev->parent, dev, sas_addr, 0);
1589	return 0;
1590}
1591
1592/**
1593 * sas_discover_expander - expander discovery
1594 * @dev: pointer to expander domain device
1595 *
1596 * See comment in sas_discover_sata().
1597 */
1598static int sas_discover_expander(struct domain_device *dev)
1599{
1600	int res;
1601
1602	res = sas_notify_lldd_dev_found(dev);
1603	if (res)
1604		return res;
1605
1606	res = sas_ex_general(dev);
1607	if (res)
1608		goto out_err;
1609	res = sas_ex_manuf_info(dev);
1610	if (res)
1611		goto out_err;
1612
1613	res = sas_expander_discover(dev);
1614	if (res) {
1615		SAS_DPRINTK("expander %016llx discovery failed(0x%x)\n",
1616			    SAS_ADDR(dev->sas_addr), res);
1617		goto out_err;
1618	}
1619
1620	sas_check_ex_subtractive_boundary(dev);
1621	res = sas_check_parent_topology(dev);
1622	if (res)
1623		goto out_err;
1624	return 0;
1625out_err:
1626	sas_notify_lldd_dev_gone(dev);
1627	return res;
1628}
1629
1630static int sas_ex_level_discovery(struct asd_sas_port *port, const int level)
1631{
1632	int res = 0;
1633	struct domain_device *dev;
1634
1635	list_for_each_entry(dev, &port->dev_list, dev_list_node) {
1636		if (dev->dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1637		    dev->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
1638			struct sas_expander_device *ex =
1639				rphy_to_expander_device(dev->rphy);
1640
1641			if (level == ex->level)
1642				res = sas_ex_discover_devices(dev, -1);
1643			else if (level > 0)
1644				res = sas_ex_discover_devices(port->port_dev, -1);
1645
1646		}
1647	}
1648
1649	return res;
1650}
1651
1652static int sas_ex_bfs_disc(struct asd_sas_port *port)
1653{
1654	int res;
1655	int level;
1656
1657	do {
1658		level = port->disc.max_level;
1659		res = sas_ex_level_discovery(port, level);
1660		mb();
1661	} while (level < port->disc.max_level);
1662
1663	return res;
1664}
1665
1666int sas_discover_root_expander(struct domain_device *dev)
1667{
1668	int res;
1669	struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1670
1671	res = sas_rphy_add(dev->rphy);
1672	if (res)
1673		goto out_err;
1674
1675	ex->level = dev->port->disc.max_level; /* 0 */
1676	res = sas_discover_expander(dev);
1677	if (res)
1678		goto out_err2;
1679
1680	sas_ex_bfs_disc(dev->port);
1681
1682	return res;
1683
1684out_err2:
1685	sas_rphy_remove(dev->rphy);
1686out_err:
1687	return res;
1688}
1689
1690/* ---------- Domain revalidation ---------- */
1691
1692static int sas_get_phy_discover(struct domain_device *dev,
1693				int phy_id, struct smp_resp *disc_resp)
1694{
1695	int res;
1696	u8 *disc_req;
1697
1698	disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
1699	if (!disc_req)
1700		return -ENOMEM;
1701
1702	disc_req[1] = SMP_DISCOVER;
1703	disc_req[9] = phy_id;
1704
1705	res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
1706			       disc_resp, DISCOVER_RESP_SIZE);
1707	if (res)
1708		goto out;
1709	else if (disc_resp->result != SMP_RESP_FUNC_ACC) {
1710		res = disc_resp->result;
1711		goto out;
1712	}
1713out:
1714	kfree(disc_req);
1715	return res;
1716}
1717
1718static int sas_get_phy_change_count(struct domain_device *dev,
1719				    int phy_id, int *pcc)
1720{
1721	int res;
1722	struct smp_resp *disc_resp;
1723
1724	disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1725	if (!disc_resp)
1726		return -ENOMEM;
1727
1728	res = sas_get_phy_discover(dev, phy_id, disc_resp);
1729	if (!res)
1730		*pcc = disc_resp->disc.change_count;
1731
1732	kfree(disc_resp);
1733	return res;
1734}
1735
1736static int sas_get_phy_attached_dev(struct domain_device *dev, int phy_id,
1737				    u8 *sas_addr, enum sas_device_type *type)
1738{
1739	int res;
1740	struct smp_resp *disc_resp;
1741	struct discover_resp *dr;
1742
1743	disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1744	if (!disc_resp)
1745		return -ENOMEM;
1746	dr = &disc_resp->disc;
1747
1748	res = sas_get_phy_discover(dev, phy_id, disc_resp);
1749	if (res == 0) {
1750		memcpy(sas_addr, disc_resp->disc.attached_sas_addr, 8);
1751		*type = to_dev_type(dr);
 
1752		if (*type == 0)
1753			memset(sas_addr, 0, 8);
1754	}
1755	kfree(disc_resp);
1756	return res;
1757}
1758
1759static int sas_find_bcast_phy(struct domain_device *dev, int *phy_id,
1760			      int from_phy, bool update)
1761{
1762	struct expander_device *ex = &dev->ex_dev;
1763	int res = 0;
1764	int i;
1765
1766	for (i = from_phy; i < ex->num_phys; i++) {
1767		int phy_change_count = 0;
1768
1769		res = sas_get_phy_change_count(dev, i, &phy_change_count);
1770		switch (res) {
1771		case SMP_RESP_PHY_VACANT:
1772		case SMP_RESP_NO_PHY:
1773			continue;
1774		case SMP_RESP_FUNC_ACC:
1775			break;
1776		default:
1777			return res;
1778		}
1779
1780		if (phy_change_count != ex->ex_phy[i].phy_change_count) {
1781			if (update)
1782				ex->ex_phy[i].phy_change_count =
1783					phy_change_count;
1784			*phy_id = i;
1785			return 0;
1786		}
1787	}
1788	return 0;
1789}
1790
1791static int sas_get_ex_change_count(struct domain_device *dev, int *ecc)
1792{
1793	int res;
1794	u8  *rg_req;
1795	struct smp_resp  *rg_resp;
1796
1797	rg_req = alloc_smp_req(RG_REQ_SIZE);
1798	if (!rg_req)
1799		return -ENOMEM;
1800
1801	rg_resp = alloc_smp_resp(RG_RESP_SIZE);
1802	if (!rg_resp) {
1803		kfree(rg_req);
1804		return -ENOMEM;
1805	}
1806
1807	rg_req[1] = SMP_REPORT_GENERAL;
1808
1809	res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
1810			       RG_RESP_SIZE);
1811	if (res)
1812		goto out;
1813	if (rg_resp->result != SMP_RESP_FUNC_ACC) {
1814		res = rg_resp->result;
1815		goto out;
1816	}
1817
1818	*ecc = be16_to_cpu(rg_resp->rg.change_count);
1819out:
1820	kfree(rg_resp);
1821	kfree(rg_req);
1822	return res;
1823}
1824/**
1825 * sas_find_bcast_dev -  find the device issue BROADCAST(CHANGE).
1826 * @dev:domain device to be detect.
1827 * @src_dev: the device which originated BROADCAST(CHANGE).
1828 *
1829 * Add self-configuration expander support. Suppose two expander cascading,
1830 * when the first level expander is self-configuring, hotplug the disks in
1831 * second level expander, BROADCAST(CHANGE) will not only be originated
1832 * in the second level expander, but also be originated in the first level
1833 * expander (see SAS protocol SAS 2r-14, 7.11 for detail), it is to say,
1834 * expander changed count in two level expanders will all increment at least
1835 * once, but the phy which chang count has changed is the source device which
1836 * we concerned.
1837 */
1838
1839static int sas_find_bcast_dev(struct domain_device *dev,
1840			      struct domain_device **src_dev)
1841{
1842	struct expander_device *ex = &dev->ex_dev;
1843	int ex_change_count = -1;
1844	int phy_id = -1;
1845	int res;
1846	struct domain_device *ch;
1847
1848	res = sas_get_ex_change_count(dev, &ex_change_count);
1849	if (res)
1850		goto out;
1851	if (ex_change_count != -1 && ex_change_count != ex->ex_change_count) {
1852		/* Just detect if this expander phys phy change count changed,
1853		* in order to determine if this expander originate BROADCAST,
1854		* and do not update phy change count field in our structure.
1855		*/
1856		res = sas_find_bcast_phy(dev, &phy_id, 0, false);
1857		if (phy_id != -1) {
1858			*src_dev = dev;
1859			ex->ex_change_count = ex_change_count;
1860			SAS_DPRINTK("Expander phy change count has changed\n");
 
1861			return res;
1862		} else
1863			SAS_DPRINTK("Expander phys DID NOT change\n");
 
1864	}
1865	list_for_each_entry(ch, &ex->children, siblings) {
1866		if (ch->dev_type == SAS_EDGE_EXPANDER_DEVICE || ch->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
1867			res = sas_find_bcast_dev(ch, src_dev);
1868			if (*src_dev)
1869				return res;
1870		}
1871	}
1872out:
1873	return res;
1874}
1875
1876static void sas_unregister_ex_tree(struct asd_sas_port *port, struct domain_device *dev)
1877{
1878	struct expander_device *ex = &dev->ex_dev;
1879	struct domain_device *child, *n;
1880
1881	list_for_each_entry_safe(child, n, &ex->children, siblings) {
1882		set_bit(SAS_DEV_GONE, &child->state);
1883		if (child->dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1884		    child->dev_type == SAS_FANOUT_EXPANDER_DEVICE)
1885			sas_unregister_ex_tree(port, child);
1886		else
1887			sas_unregister_dev(port, child);
1888	}
1889	sas_unregister_dev(port, dev);
1890}
1891
1892static void sas_unregister_devs_sas_addr(struct domain_device *parent,
1893					 int phy_id, bool last)
1894{
1895	struct expander_device *ex_dev = &parent->ex_dev;
1896	struct ex_phy *phy = &ex_dev->ex_phy[phy_id];
1897	struct domain_device *child, *n, *found = NULL;
1898	if (last) {
1899		list_for_each_entry_safe(child, n,
1900			&ex_dev->children, siblings) {
1901			if (SAS_ADDR(child->sas_addr) ==
1902			    SAS_ADDR(phy->attached_sas_addr)) {
1903				set_bit(SAS_DEV_GONE, &child->state);
1904				if (child->dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1905				    child->dev_type == SAS_FANOUT_EXPANDER_DEVICE)
1906					sas_unregister_ex_tree(parent->port, child);
1907				else
1908					sas_unregister_dev(parent->port, child);
1909				found = child;
1910				break;
1911			}
1912		}
1913		sas_disable_routing(parent, phy->attached_sas_addr);
1914	}
1915	memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1916	if (phy->port) {
1917		sas_port_delete_phy(phy->port, phy->phy);
1918		sas_device_set_phy(found, phy->port);
1919		if (phy->port->num_phys == 0)
1920			list_add_tail(&phy->port->del_list,
1921				&parent->port->sas_port_del_list);
1922		phy->port = NULL;
1923	}
1924}
1925
1926static int sas_discover_bfs_by_root_level(struct domain_device *root,
1927					  const int level)
1928{
1929	struct expander_device *ex_root = &root->ex_dev;
1930	struct domain_device *child;
1931	int res = 0;
1932
1933	list_for_each_entry(child, &ex_root->children, siblings) {
1934		if (child->dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1935		    child->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
1936			struct sas_expander_device *ex =
1937				rphy_to_expander_device(child->rphy);
1938
1939			if (level > ex->level)
1940				res = sas_discover_bfs_by_root_level(child,
1941								     level);
1942			else if (level == ex->level)
1943				res = sas_ex_discover_devices(child, -1);
1944		}
1945	}
1946	return res;
1947}
1948
1949static int sas_discover_bfs_by_root(struct domain_device *dev)
1950{
1951	int res;
1952	struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1953	int level = ex->level+1;
1954
1955	res = sas_ex_discover_devices(dev, -1);
1956	if (res)
1957		goto out;
1958	do {
1959		res = sas_discover_bfs_by_root_level(dev, level);
1960		mb();
1961		level += 1;
1962	} while (level <= dev->port->disc.max_level);
1963out:
1964	return res;
1965}
1966
1967static int sas_discover_new(struct domain_device *dev, int phy_id)
1968{
1969	struct ex_phy *ex_phy = &dev->ex_dev.ex_phy[phy_id];
1970	struct domain_device *child;
1971	int res;
1972
1973	SAS_DPRINTK("ex %016llx phy%d new device attached\n",
1974		    SAS_ADDR(dev->sas_addr), phy_id);
1975	res = sas_ex_phy_discover(dev, phy_id);
1976	if (res)
1977		return res;
1978
1979	if (sas_ex_join_wide_port(dev, phy_id))
1980		return 0;
1981
1982	res = sas_ex_discover_devices(dev, phy_id);
1983	if (res)
1984		return res;
1985	list_for_each_entry(child, &dev->ex_dev.children, siblings) {
1986		if (SAS_ADDR(child->sas_addr) ==
1987		    SAS_ADDR(ex_phy->attached_sas_addr)) {
1988			if (child->dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1989			    child->dev_type == SAS_FANOUT_EXPANDER_DEVICE)
1990				res = sas_discover_bfs_by_root(child);
1991			break;
1992		}
1993	}
1994	return res;
1995}
1996
1997static bool dev_type_flutter(enum sas_device_type new, enum sas_device_type old)
1998{
1999	if (old == new)
2000		return true;
2001
2002	/* treat device directed resets as flutter, if we went
2003	 * SAS_END_DEVICE to SAS_SATA_PENDING the link needs recovery
2004	 */
2005	if ((old == SAS_SATA_PENDING && new == SAS_END_DEVICE) ||
2006	    (old == SAS_END_DEVICE && new == SAS_SATA_PENDING))
2007		return true;
2008
2009	return false;
2010}
2011
2012static int sas_rediscover_dev(struct domain_device *dev, int phy_id, bool last)
 
2013{
2014	struct expander_device *ex = &dev->ex_dev;
2015	struct ex_phy *phy = &ex->ex_phy[phy_id];
2016	enum sas_device_type type = SAS_PHY_UNUSED;
2017	u8 sas_addr[8];
 
2018	int res;
2019
2020	memset(sas_addr, 0, 8);
 
 
 
 
 
 
2021	res = sas_get_phy_attached_dev(dev, phy_id, sas_addr, &type);
2022	switch (res) {
2023	case SMP_RESP_NO_PHY:
2024		phy->phy_state = PHY_NOT_PRESENT;
2025		sas_unregister_devs_sas_addr(dev, phy_id, last);
2026		return res;
2027	case SMP_RESP_PHY_VACANT:
2028		phy->phy_state = PHY_VACANT;
2029		sas_unregister_devs_sas_addr(dev, phy_id, last);
2030		return res;
2031	case SMP_RESP_FUNC_ACC:
2032		break;
2033	case -ECOMM:
2034		break;
2035	default:
2036		return res;
2037	}
2038
2039	if ((SAS_ADDR(sas_addr) == 0) || (res == -ECOMM)) {
2040		phy->phy_state = PHY_EMPTY;
2041		sas_unregister_devs_sas_addr(dev, phy_id, last);
 
 
 
 
 
2042		return res;
2043	} else if (SAS_ADDR(sas_addr) == SAS_ADDR(phy->attached_sas_addr) &&
2044		   dev_type_flutter(type, phy->attached_dev_type)) {
2045		struct domain_device *ata_dev = sas_ex_to_ata(dev, phy_id);
2046		char *action = "";
2047
2048		sas_ex_phy_discover(dev, phy_id);
2049
2050		if (ata_dev && phy->attached_dev_type == SAS_SATA_PENDING)
2051			action = ", needs recovery";
2052		SAS_DPRINTK("ex %016llx phy 0x%x broadcast flutter%s\n",
2053			    SAS_ADDR(dev->sas_addr), phy_id, action);
2054		return res;
2055	}
2056
2057	/* delete the old link */
2058	if (SAS_ADDR(phy->attached_sas_addr) &&
2059	    SAS_ADDR(sas_addr) != SAS_ADDR(phy->attached_sas_addr)) {
2060		SAS_DPRINTK("ex %016llx phy 0x%x replace %016llx\n",
2061			    SAS_ADDR(dev->sas_addr), phy_id,
2062			    SAS_ADDR(phy->attached_sas_addr));
2063		sas_unregister_devs_sas_addr(dev, phy_id, last);
2064	}
2065
2066	return sas_discover_new(dev, phy_id);
2067}
2068
2069/**
2070 * sas_rediscover - revalidate the domain.
2071 * @dev:domain device to be detect.
2072 * @phy_id: the phy id will be detected.
2073 *
2074 * NOTE: this process _must_ quit (return) as soon as any connection
2075 * errors are encountered.  Connection recovery is done elsewhere.
2076 * Discover process only interrogates devices in order to discover the
2077 * domain.For plugging out, we un-register the device only when it is
2078 * the last phy in the port, for other phys in this port, we just delete it
2079 * from the port.For inserting, we do discovery when it is the
2080 * first phy,for other phys in this port, we add it to the port to
2081 * forming the wide-port.
2082 */
2083static int sas_rediscover(struct domain_device *dev, const int phy_id)
2084{
2085	struct expander_device *ex = &dev->ex_dev;
2086	struct ex_phy *changed_phy = &ex->ex_phy[phy_id];
2087	int res = 0;
2088	int i;
2089	bool last = true;	/* is this the last phy of the port */
2090
2091	SAS_DPRINTK("ex %016llx phy%d originated BROADCAST(CHANGE)\n",
2092		    SAS_ADDR(dev->sas_addr), phy_id);
2093
2094	if (SAS_ADDR(changed_phy->attached_sas_addr) != 0) {
2095		for (i = 0; i < ex->num_phys; i++) {
2096			struct ex_phy *phy = &ex->ex_phy[i];
2097
2098			if (i == phy_id)
2099				continue;
2100			if (SAS_ADDR(phy->attached_sas_addr) ==
2101			    SAS_ADDR(changed_phy->attached_sas_addr)) {
2102				SAS_DPRINTK("phy%d part of wide port with "
2103					    "phy%d\n", phy_id, i);
2104				last = false;
2105				break;
2106			}
2107		}
2108		res = sas_rediscover_dev(dev, phy_id, last);
2109	} else
2110		res = sas_discover_new(dev, phy_id);
2111	return res;
2112}
2113
2114/**
2115 * sas_ex_revalidate_domain - revalidate the domain
2116 * @port_dev: port domain device.
2117 *
2118 * NOTE: this process _must_ quit (return) as soon as any connection
2119 * errors are encountered.  Connection recovery is done elsewhere.
2120 * Discover process only interrogates devices in order to discover the
2121 * domain.
2122 */
2123int sas_ex_revalidate_domain(struct domain_device *port_dev)
2124{
2125	int res;
2126	struct domain_device *dev = NULL;
2127
2128	res = sas_find_bcast_dev(port_dev, &dev);
2129	if (res == 0 && dev) {
2130		struct expander_device *ex = &dev->ex_dev;
2131		int i = 0, phy_id;
2132
2133		do {
2134			phy_id = -1;
2135			res = sas_find_bcast_phy(dev, &phy_id, i, true);
2136			if (phy_id == -1)
2137				break;
2138			res = sas_rediscover(dev, phy_id);
2139			i = phy_id + 1;
2140		} while (i < ex->num_phys);
2141	}
2142	return res;
2143}
2144
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2145void sas_smp_handler(struct bsg_job *job, struct Scsi_Host *shost,
2146		struct sas_rphy *rphy)
2147{
2148	struct domain_device *dev;
2149	unsigned int rcvlen = 0;
2150	int ret = -EINVAL;
2151
2152	/* no rphy means no smp target support (ie aic94xx host) */
2153	if (!rphy)
2154		return sas_smp_host_handler(job, shost);
2155
2156	switch (rphy->identify.device_type) {
2157	case SAS_EDGE_EXPANDER_DEVICE:
2158	case SAS_FANOUT_EXPANDER_DEVICE:
2159		break;
2160	default:
2161		printk("%s: can we send a smp request to a device?\n",
2162		       __func__);
2163		goto out;
2164	}
2165
2166	dev = sas_find_dev_by_rphy(rphy);
2167	if (!dev) {
2168		printk("%s: fail to find a domain_device?\n", __func__);
2169		goto out;
2170	}
2171
2172	/* do we need to support multiple segments? */
2173	if (job->request_payload.sg_cnt > 1 ||
2174	    job->reply_payload.sg_cnt > 1) {
2175		printk("%s: multiple segments req %u, rsp %u\n",
2176		       __func__, job->request_payload.payload_len,
2177		       job->reply_payload.payload_len);
2178		goto out;
2179	}
2180
2181	ret = smp_execute_task_sg(dev, job->request_payload.sg_list,
2182			job->reply_payload.sg_list);
2183	if (ret >= 0) {
2184		/* bsg_job_done() requires the length received  */
2185		rcvlen = job->reply_payload.payload_len - ret;
2186		ret = 0;
2187	}
2188
2189out:
2190	bsg_job_done(job, ret, rcvlen);
2191}
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Serial Attached SCSI (SAS) Expander discovery and configuration
   4 *
   5 * Copyright (C) 2005 Adaptec, Inc.  All rights reserved.
   6 * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
   7 *
   8 * This file is licensed under GPLv2.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   9 */
  10
  11#include <linux/scatterlist.h>
  12#include <linux/blkdev.h>
  13#include <linux/slab.h>
  14#include <asm/unaligned.h>
  15
  16#include "sas_internal.h"
  17
  18#include <scsi/sas_ata.h>
  19#include <scsi/scsi_transport.h>
  20#include <scsi/scsi_transport_sas.h>
  21#include "scsi_sas_internal.h"
  22
  23static int sas_discover_expander(struct domain_device *dev);
  24static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr);
  25static int sas_configure_phy(struct domain_device *dev, int phy_id,
  26			     u8 *sas_addr, int include);
  27static int sas_disable_routing(struct domain_device *dev,  u8 *sas_addr);
  28
  29/* ---------- SMP task management ---------- */
  30
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  31/* Give it some long enough timeout. In seconds. */
  32#define SMP_TIMEOUT 10
  33
  34static int smp_execute_task_sg(struct domain_device *dev,
  35		struct scatterlist *req, struct scatterlist *resp)
  36{
  37	int res, retry;
  38	struct sas_task *task = NULL;
  39	struct sas_internal *i =
  40		to_sas_internal(dev->port->ha->shost->transportt);
  41	struct sas_ha_struct *ha = dev->port->ha;
  42
  43	pm_runtime_get_sync(ha->dev);
  44	mutex_lock(&dev->ex_dev.cmd_mutex);
  45	for (retry = 0; retry < 3; retry++) {
  46		if (test_bit(SAS_DEV_GONE, &dev->state)) {
  47			res = -ECOMM;
  48			break;
  49		}
  50
  51		task = sas_alloc_slow_task(GFP_KERNEL);
  52		if (!task) {
  53			res = -ENOMEM;
  54			break;
  55		}
  56		task->dev = dev;
  57		task->task_proto = dev->tproto;
  58		task->smp_task.smp_req = *req;
  59		task->smp_task.smp_resp = *resp;
  60
  61		task->task_done = sas_task_internal_done;
  62
  63		task->slow_task->timer.function = sas_task_internal_timedout;
  64		task->slow_task->timer.expires = jiffies + SMP_TIMEOUT*HZ;
  65		add_timer(&task->slow_task->timer);
  66
  67		res = i->dft->lldd_execute_task(task, GFP_KERNEL);
  68
  69		if (res) {
  70			del_timer_sync(&task->slow_task->timer);
  71			pr_notice("executing SMP task failed:%d\n", res);
  72			break;
  73		}
  74
  75		wait_for_completion(&task->slow_task->completion);
  76		res = -ECOMM;
  77		if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
  78			pr_notice("smp task timed out or aborted\n");
  79			i->dft->lldd_abort_task(task);
  80			if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
  81				pr_notice("SMP task aborted and not done\n");
  82				break;
  83			}
  84		}
  85		if (task->task_status.resp == SAS_TASK_COMPLETE &&
  86		    task->task_status.stat == SAS_SAM_STAT_GOOD) {
  87			res = 0;
  88			break;
  89		}
  90		if (task->task_status.resp == SAS_TASK_COMPLETE &&
  91		    task->task_status.stat == SAS_DATA_UNDERRUN) {
  92			/* no error, but return the number of bytes of
  93			 * underrun */
  94			res = task->task_status.residual;
  95			break;
  96		}
  97		if (task->task_status.resp == SAS_TASK_COMPLETE &&
  98		    task->task_status.stat == SAS_DATA_OVERRUN) {
  99			res = -EMSGSIZE;
 100			break;
 101		}
 102		if (task->task_status.resp == SAS_TASK_UNDELIVERED &&
 103		    task->task_status.stat == SAS_DEVICE_UNKNOWN)
 104			break;
 105		else {
 106			pr_notice("%s: task to dev %016llx response: 0x%x status 0x%x\n",
 107				  __func__,
 108				  SAS_ADDR(dev->sas_addr),
 109				  task->task_status.resp,
 110				  task->task_status.stat);
 111			sas_free_task(task);
 112			task = NULL;
 113		}
 114	}
 115	mutex_unlock(&dev->ex_dev.cmd_mutex);
 116	pm_runtime_put_sync(ha->dev);
 117
 118	BUG_ON(retry == 3 && task != NULL);
 119	sas_free_task(task);
 120	return res;
 121}
 122
 123static int smp_execute_task(struct domain_device *dev, void *req, int req_size,
 124			    void *resp, int resp_size)
 125{
 126	struct scatterlist req_sg;
 127	struct scatterlist resp_sg;
 128
 129	sg_init_one(&req_sg, req, req_size);
 130	sg_init_one(&resp_sg, resp, resp_size);
 131	return smp_execute_task_sg(dev, &req_sg, &resp_sg);
 132}
 133
 134/* ---------- Allocations ---------- */
 135
 136static inline void *alloc_smp_req(int size)
 137{
 138	u8 *p = kzalloc(size, GFP_KERNEL);
 139	if (p)
 140		p[0] = SMP_REQUEST;
 141	return p;
 142}
 143
 144static inline void *alloc_smp_resp(int size)
 145{
 146	return kzalloc(size, GFP_KERNEL);
 147}
 148
 149static char sas_route_char(struct domain_device *dev, struct ex_phy *phy)
 150{
 151	switch (phy->routing_attr) {
 152	case TABLE_ROUTING:
 153		if (dev->ex_dev.t2t_supp)
 154			return 'U';
 155		else
 156			return 'T';
 157	case DIRECT_ROUTING:
 158		return 'D';
 159	case SUBTRACTIVE_ROUTING:
 160		return 'S';
 161	default:
 162		return '?';
 163	}
 164}
 165
 166static enum sas_device_type to_dev_type(struct discover_resp *dr)
 167{
 168	/* This is detecting a failure to transmit initial dev to host
 169	 * FIS as described in section J.5 of sas-2 r16
 170	 */
 171	if (dr->attached_dev_type == SAS_PHY_UNUSED && dr->attached_sata_dev &&
 172	    dr->linkrate >= SAS_LINK_RATE_1_5_GBPS)
 173		return SAS_SATA_PENDING;
 174	else
 175		return dr->attached_dev_type;
 176}
 177
 178static void sas_set_ex_phy(struct domain_device *dev, int phy_id,
 179			   struct smp_disc_resp *disc_resp)
 180{
 181	enum sas_device_type dev_type;
 182	enum sas_linkrate linkrate;
 183	u8 sas_addr[SAS_ADDR_SIZE];
 184	struct discover_resp *dr = &disc_resp->disc;
 
 185	struct sas_ha_struct *ha = dev->port->ha;
 186	struct expander_device *ex = &dev->ex_dev;
 187	struct ex_phy *phy = &ex->ex_phy[phy_id];
 188	struct sas_rphy *rphy = dev->rphy;
 189	bool new_phy = !phy->phy;
 190	char *type;
 191
 192	if (new_phy) {
 193		if (WARN_ON_ONCE(test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)))
 194			return;
 195		phy->phy = sas_phy_alloc(&rphy->dev, phy_id);
 196
 197		/* FIXME: error_handling */
 198		BUG_ON(!phy->phy);
 199	}
 200
 201	switch (disc_resp->result) {
 202	case SMP_RESP_PHY_VACANT:
 203		phy->phy_state = PHY_VACANT;
 204		break;
 205	default:
 206		phy->phy_state = PHY_NOT_PRESENT;
 207		break;
 208	case SMP_RESP_FUNC_ACC:
 209		phy->phy_state = PHY_EMPTY; /* do not know yet */
 210		break;
 211	}
 212
 213	/* check if anything important changed to squelch debug */
 214	dev_type = phy->attached_dev_type;
 215	linkrate  = phy->linkrate;
 216	memcpy(sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
 217
 218	/* Handle vacant phy - rest of dr data is not valid so skip it */
 219	if (phy->phy_state == PHY_VACANT) {
 220		memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
 221		phy->attached_dev_type = SAS_PHY_UNUSED;
 222		if (!test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)) {
 223			phy->phy_id = phy_id;
 224			goto skip;
 225		} else
 226			goto out;
 227	}
 228
 229	phy->attached_dev_type = to_dev_type(dr);
 230	if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))
 231		goto out;
 232	phy->phy_id = phy_id;
 233	phy->linkrate = dr->linkrate;
 234	phy->attached_sata_host = dr->attached_sata_host;
 235	phy->attached_sata_dev  = dr->attached_sata_dev;
 236	phy->attached_sata_ps   = dr->attached_sata_ps;
 237	phy->attached_iproto = dr->iproto << 1;
 238	phy->attached_tproto = dr->tproto << 1;
 239	/* help some expanders that fail to zero sas_address in the 'no
 240	 * device' case
 241	 */
 242	if (phy->attached_dev_type == SAS_PHY_UNUSED ||
 243	    phy->linkrate < SAS_LINK_RATE_1_5_GBPS)
 244		memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
 245	else
 246		memcpy(phy->attached_sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE);
 247	phy->attached_phy_id = dr->attached_phy_id;
 248	phy->phy_change_count = dr->change_count;
 249	phy->routing_attr = dr->routing_attr;
 250	phy->virtual = dr->virtual;
 251	phy->last_da_index = -1;
 252
 253	phy->phy->identify.sas_address = SAS_ADDR(phy->attached_sas_addr);
 254	phy->phy->identify.device_type = dr->attached_dev_type;
 255	phy->phy->identify.initiator_port_protocols = phy->attached_iproto;
 256	phy->phy->identify.target_port_protocols = phy->attached_tproto;
 257	if (!phy->attached_tproto && dr->attached_sata_dev)
 258		phy->phy->identify.target_port_protocols = SAS_PROTOCOL_SATA;
 259	phy->phy->identify.phy_identifier = phy_id;
 260	phy->phy->minimum_linkrate_hw = dr->hmin_linkrate;
 261	phy->phy->maximum_linkrate_hw = dr->hmax_linkrate;
 262	phy->phy->minimum_linkrate = dr->pmin_linkrate;
 263	phy->phy->maximum_linkrate = dr->pmax_linkrate;
 264	phy->phy->negotiated_linkrate = phy->linkrate;
 265	phy->phy->enabled = (phy->linkrate != SAS_PHY_DISABLED);
 266
 267 skip:
 268	if (new_phy)
 269		if (sas_phy_add(phy->phy)) {
 270			sas_phy_free(phy->phy);
 271			return;
 272		}
 273
 274 out:
 275	switch (phy->attached_dev_type) {
 276	case SAS_SATA_PENDING:
 277		type = "stp pending";
 278		break;
 279	case SAS_PHY_UNUSED:
 280		type = "no device";
 281		break;
 282	case SAS_END_DEVICE:
 283		if (phy->attached_iproto) {
 284			if (phy->attached_tproto)
 285				type = "host+target";
 286			else
 287				type = "host";
 288		} else {
 289			if (dr->attached_sata_dev)
 290				type = "stp";
 291			else
 292				type = "ssp";
 293		}
 294		break;
 295	case SAS_EDGE_EXPANDER_DEVICE:
 296	case SAS_FANOUT_EXPANDER_DEVICE:
 297		type = "smp";
 298		break;
 299	default:
 300		type = "unknown";
 301	}
 302
 303	/* this routine is polled by libata error recovery so filter
 304	 * unimportant messages
 305	 */
 306	if (new_phy || phy->attached_dev_type != dev_type ||
 307	    phy->linkrate != linkrate ||
 308	    SAS_ADDR(phy->attached_sas_addr) != SAS_ADDR(sas_addr))
 309		/* pass */;
 310	else
 311		return;
 312
 313	/* if the attached device type changed and ata_eh is active,
 314	 * make sure we run revalidation when eh completes (see:
 315	 * sas_enable_revalidation)
 316	 */
 317	if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))
 318		set_bit(DISCE_REVALIDATE_DOMAIN, &dev->port->disc.pending);
 319
 320	pr_debug("%sex %016llx phy%02d:%c:%X attached: %016llx (%s)\n",
 321		 test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state) ? "ata: " : "",
 322		 SAS_ADDR(dev->sas_addr), phy->phy_id,
 323		 sas_route_char(dev, phy), phy->linkrate,
 324		 SAS_ADDR(phy->attached_sas_addr), type);
 325}
 326
 327/* check if we have an existing attached ata device on this expander phy */
 328struct domain_device *sas_ex_to_ata(struct domain_device *ex_dev, int phy_id)
 329{
 330	struct ex_phy *ex_phy = &ex_dev->ex_dev.ex_phy[phy_id];
 331	struct domain_device *dev;
 332	struct sas_rphy *rphy;
 333
 334	if (!ex_phy->port)
 335		return NULL;
 336
 337	rphy = ex_phy->port->rphy;
 338	if (!rphy)
 339		return NULL;
 340
 341	dev = sas_find_dev_by_rphy(rphy);
 342
 343	if (dev && dev_is_sata(dev))
 344		return dev;
 345
 346	return NULL;
 347}
 348
 349#define DISCOVER_REQ_SIZE  16
 350#define DISCOVER_RESP_SIZE sizeof(struct smp_disc_resp)
 351
 352static int sas_ex_phy_discover_helper(struct domain_device *dev, u8 *disc_req,
 353				      struct smp_disc_resp *disc_resp,
 354				      int single)
 355{
 356	struct discover_resp *dr = &disc_resp->disc;
 357	int res;
 358
 359	disc_req[9] = single;
 360
 361	res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
 362			       disc_resp, DISCOVER_RESP_SIZE);
 363	if (res)
 364		return res;
 
 365	if (memcmp(dev->sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE) == 0) {
 366		pr_notice("Found loopback topology, just ignore it!\n");
 367		return 0;
 368	}
 369	sas_set_ex_phy(dev, single, disc_resp);
 370	return 0;
 371}
 372
 373int sas_ex_phy_discover(struct domain_device *dev, int single)
 374{
 375	struct expander_device *ex = &dev->ex_dev;
 376	int  res = 0;
 377	u8   *disc_req;
 378	struct smp_disc_resp *disc_resp;
 379
 380	disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
 381	if (!disc_req)
 382		return -ENOMEM;
 383
 384	disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
 385	if (!disc_resp) {
 386		kfree(disc_req);
 387		return -ENOMEM;
 388	}
 389
 390	disc_req[1] = SMP_DISCOVER;
 391
 392	if (0 <= single && single < ex->num_phys) {
 393		res = sas_ex_phy_discover_helper(dev, disc_req, disc_resp, single);
 394	} else {
 395		int i;
 396
 397		for (i = 0; i < ex->num_phys; i++) {
 398			res = sas_ex_phy_discover_helper(dev, disc_req,
 399							 disc_resp, i);
 400			if (res)
 401				goto out_err;
 402		}
 403	}
 404out_err:
 405	kfree(disc_resp);
 406	kfree(disc_req);
 407	return res;
 408}
 409
 410static int sas_expander_discover(struct domain_device *dev)
 411{
 412	struct expander_device *ex = &dev->ex_dev;
 413	int res;
 414
 415	ex->ex_phy = kcalloc(ex->num_phys, sizeof(*ex->ex_phy), GFP_KERNEL);
 416	if (!ex->ex_phy)
 417		return -ENOMEM;
 418
 419	res = sas_ex_phy_discover(dev, -1);
 420	if (res)
 421		goto out_err;
 422
 423	return 0;
 424 out_err:
 425	kfree(ex->ex_phy);
 426	ex->ex_phy = NULL;
 427	return res;
 428}
 429
 430#define MAX_EXPANDER_PHYS 128
 431
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 432#define RG_REQ_SIZE   8
 433#define RG_RESP_SIZE  sizeof(struct smp_rg_resp)
 434
 435static int sas_ex_general(struct domain_device *dev)
 436{
 437	u8 *rg_req;
 438	struct smp_rg_resp *rg_resp;
 439	struct report_general_resp *rg;
 440	int res;
 441	int i;
 442
 443	rg_req = alloc_smp_req(RG_REQ_SIZE);
 444	if (!rg_req)
 445		return -ENOMEM;
 446
 447	rg_resp = alloc_smp_resp(RG_RESP_SIZE);
 448	if (!rg_resp) {
 449		kfree(rg_req);
 450		return -ENOMEM;
 451	}
 452
 453	rg_req[1] = SMP_REPORT_GENERAL;
 454
 455	for (i = 0; i < 5; i++) {
 456		res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
 457				       RG_RESP_SIZE);
 458
 459		if (res) {
 460			pr_notice("RG to ex %016llx failed:0x%x\n",
 461				  SAS_ADDR(dev->sas_addr), res);
 462			goto out;
 463		} else if (rg_resp->result != SMP_RESP_FUNC_ACC) {
 464			pr_debug("RG:ex %016llx returned SMP result:0x%x\n",
 465				 SAS_ADDR(dev->sas_addr), rg_resp->result);
 466			res = rg_resp->result;
 467			goto out;
 468		}
 469
 470		rg = &rg_resp->rg;
 471		dev->ex_dev.ex_change_count = be16_to_cpu(rg->change_count);
 472		dev->ex_dev.max_route_indexes = be16_to_cpu(rg->route_indexes);
 473		dev->ex_dev.num_phys = min(rg->num_phys, (u8)MAX_EXPANDER_PHYS);
 474		dev->ex_dev.t2t_supp = rg->t2t_supp;
 475		dev->ex_dev.conf_route_table = rg->conf_route_table;
 476		dev->ex_dev.configuring = rg->configuring;
 477		memcpy(dev->ex_dev.enclosure_logical_id,
 478		       rg->enclosure_logical_id, 8);
 479
 480		if (dev->ex_dev.configuring) {
 481			pr_debug("RG: ex %016llx self-configuring...\n",
 482				 SAS_ADDR(dev->sas_addr));
 483			schedule_timeout_interruptible(5*HZ);
 484		} else
 485			break;
 486	}
 487out:
 488	kfree(rg_req);
 489	kfree(rg_resp);
 490	return res;
 491}
 492
 493static void ex_assign_manuf_info(struct domain_device *dev, void
 494					*_mi_resp)
 495{
 496	u8 *mi_resp = _mi_resp;
 497	struct sas_rphy *rphy = dev->rphy;
 498	struct sas_expander_device *edev = rphy_to_expander_device(rphy);
 499
 500	memcpy(edev->vendor_id, mi_resp + 12, SAS_EXPANDER_VENDOR_ID_LEN);
 501	memcpy(edev->product_id, mi_resp + 20, SAS_EXPANDER_PRODUCT_ID_LEN);
 502	memcpy(edev->product_rev, mi_resp + 36,
 503	       SAS_EXPANDER_PRODUCT_REV_LEN);
 504
 505	if (mi_resp[8] & 1) {
 506		memcpy(edev->component_vendor_id, mi_resp + 40,
 507		       SAS_EXPANDER_COMPONENT_VENDOR_ID_LEN);
 508		edev->component_id = mi_resp[48] << 8 | mi_resp[49];
 509		edev->component_revision_id = mi_resp[50];
 510	}
 511}
 512
 513#define MI_REQ_SIZE   8
 514#define MI_RESP_SIZE 64
 515
 516static int sas_ex_manuf_info(struct domain_device *dev)
 517{
 518	u8 *mi_req;
 519	u8 *mi_resp;
 520	int res;
 521
 522	mi_req = alloc_smp_req(MI_REQ_SIZE);
 523	if (!mi_req)
 524		return -ENOMEM;
 525
 526	mi_resp = alloc_smp_resp(MI_RESP_SIZE);
 527	if (!mi_resp) {
 528		kfree(mi_req);
 529		return -ENOMEM;
 530	}
 531
 532	mi_req[1] = SMP_REPORT_MANUF_INFO;
 533
 534	res = smp_execute_task(dev, mi_req, MI_REQ_SIZE, mi_resp, MI_RESP_SIZE);
 535	if (res) {
 536		pr_notice("MI: ex %016llx failed:0x%x\n",
 537			  SAS_ADDR(dev->sas_addr), res);
 538		goto out;
 539	} else if (mi_resp[2] != SMP_RESP_FUNC_ACC) {
 540		pr_debug("MI ex %016llx returned SMP result:0x%x\n",
 541			 SAS_ADDR(dev->sas_addr), mi_resp[2]);
 542		goto out;
 543	}
 544
 545	ex_assign_manuf_info(dev, mi_resp);
 546out:
 547	kfree(mi_req);
 548	kfree(mi_resp);
 549	return res;
 550}
 551
 552#define PC_REQ_SIZE  44
 553#define PC_RESP_SIZE 8
 554
 555int sas_smp_phy_control(struct domain_device *dev, int phy_id,
 556			enum phy_func phy_func,
 557			struct sas_phy_linkrates *rates)
 558{
 559	u8 *pc_req;
 560	u8 *pc_resp;
 561	int res;
 562
 563	pc_req = alloc_smp_req(PC_REQ_SIZE);
 564	if (!pc_req)
 565		return -ENOMEM;
 566
 567	pc_resp = alloc_smp_resp(PC_RESP_SIZE);
 568	if (!pc_resp) {
 569		kfree(pc_req);
 570		return -ENOMEM;
 571	}
 572
 573	pc_req[1] = SMP_PHY_CONTROL;
 574	pc_req[9] = phy_id;
 575	pc_req[10] = phy_func;
 576	if (rates) {
 577		pc_req[32] = rates->minimum_linkrate << 4;
 578		pc_req[33] = rates->maximum_linkrate << 4;
 579	}
 580
 581	res = smp_execute_task(dev, pc_req, PC_REQ_SIZE, pc_resp, PC_RESP_SIZE);
 582	if (res) {
 583		pr_err("ex %016llx phy%02d PHY control failed: %d\n",
 584		       SAS_ADDR(dev->sas_addr), phy_id, res);
 585	} else if (pc_resp[2] != SMP_RESP_FUNC_ACC) {
 586		pr_err("ex %016llx phy%02d PHY control failed: function result 0x%x\n",
 587		       SAS_ADDR(dev->sas_addr), phy_id, pc_resp[2]);
 588		res = pc_resp[2];
 589	}
 590	kfree(pc_resp);
 591	kfree(pc_req);
 592	return res;
 593}
 594
 595static void sas_ex_disable_phy(struct domain_device *dev, int phy_id)
 596{
 597	struct expander_device *ex = &dev->ex_dev;
 598	struct ex_phy *phy = &ex->ex_phy[phy_id];
 599
 600	sas_smp_phy_control(dev, phy_id, PHY_FUNC_DISABLE, NULL);
 601	phy->linkrate = SAS_PHY_DISABLED;
 602}
 603
 604static void sas_ex_disable_port(struct domain_device *dev, u8 *sas_addr)
 605{
 606	struct expander_device *ex = &dev->ex_dev;
 607	int i;
 608
 609	for (i = 0; i < ex->num_phys; i++) {
 610		struct ex_phy *phy = &ex->ex_phy[i];
 611
 612		if (phy->phy_state == PHY_VACANT ||
 613		    phy->phy_state == PHY_NOT_PRESENT)
 614			continue;
 615
 616		if (SAS_ADDR(phy->attached_sas_addr) == SAS_ADDR(sas_addr))
 617			sas_ex_disable_phy(dev, i);
 618	}
 619}
 620
 621static int sas_dev_present_in_domain(struct asd_sas_port *port,
 622					    u8 *sas_addr)
 623{
 624	struct domain_device *dev;
 625
 626	if (SAS_ADDR(port->sas_addr) == SAS_ADDR(sas_addr))
 627		return 1;
 628	list_for_each_entry(dev, &port->dev_list, dev_list_node) {
 629		if (SAS_ADDR(dev->sas_addr) == SAS_ADDR(sas_addr))
 630			return 1;
 631	}
 632	return 0;
 633}
 634
 635#define RPEL_REQ_SIZE	16
 636#define RPEL_RESP_SIZE	32
 637int sas_smp_get_phy_events(struct sas_phy *phy)
 638{
 639	int res;
 640	u8 *req;
 641	u8 *resp;
 642	struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent);
 643	struct domain_device *dev = sas_find_dev_by_rphy(rphy);
 644
 645	req = alloc_smp_req(RPEL_REQ_SIZE);
 646	if (!req)
 647		return -ENOMEM;
 648
 649	resp = alloc_smp_resp(RPEL_RESP_SIZE);
 650	if (!resp) {
 651		kfree(req);
 652		return -ENOMEM;
 653	}
 654
 655	req[1] = SMP_REPORT_PHY_ERR_LOG;
 656	req[9] = phy->number;
 657
 658	res = smp_execute_task(dev, req, RPEL_REQ_SIZE,
 659			       resp, RPEL_RESP_SIZE);
 660
 661	if (res)
 662		goto out;
 663
 664	phy->invalid_dword_count = get_unaligned_be32(&resp[12]);
 665	phy->running_disparity_error_count = get_unaligned_be32(&resp[16]);
 666	phy->loss_of_dword_sync_count = get_unaligned_be32(&resp[20]);
 667	phy->phy_reset_problem_count = get_unaligned_be32(&resp[24]);
 668
 669 out:
 670	kfree(req);
 671	kfree(resp);
 672	return res;
 673
 674}
 675
 676#ifdef CONFIG_SCSI_SAS_ATA
 677
 678#define RPS_REQ_SIZE  16
 679#define RPS_RESP_SIZE sizeof(struct smp_rps_resp)
 680
 681int sas_get_report_phy_sata(struct domain_device *dev, int phy_id,
 682			    struct smp_rps_resp *rps_resp)
 683{
 684	int res;
 685	u8 *rps_req = alloc_smp_req(RPS_REQ_SIZE);
 686	u8 *resp = (u8 *)rps_resp;
 687
 688	if (!rps_req)
 689		return -ENOMEM;
 690
 691	rps_req[1] = SMP_REPORT_PHY_SATA;
 692	rps_req[9] = phy_id;
 693
 694	res = smp_execute_task(dev, rps_req, RPS_REQ_SIZE,
 695			       rps_resp, RPS_RESP_SIZE);
 696
 697	/* 0x34 is the FIS type for the D2H fis.  There's a potential
 698	 * standards cockup here.  sas-2 explicitly specifies the FIS
 699	 * should be encoded so that FIS type is in resp[24].
 700	 * However, some expanders endian reverse this.  Undo the
 701	 * reversal here */
 702	if (!res && resp[27] == 0x34 && resp[24] != 0x34) {
 703		int i;
 704
 705		for (i = 0; i < 5; i++) {
 706			int j = 24 + (i*4);
 707			u8 a, b;
 708			a = resp[j + 0];
 709			b = resp[j + 1];
 710			resp[j + 0] = resp[j + 3];
 711			resp[j + 1] = resp[j + 2];
 712			resp[j + 2] = b;
 713			resp[j + 3] = a;
 714		}
 715	}
 716
 717	kfree(rps_req);
 718	return res;
 719}
 720#endif
 721
 722static void sas_ex_get_linkrate(struct domain_device *parent,
 723				       struct domain_device *child,
 724				       struct ex_phy *parent_phy)
 725{
 726	struct expander_device *parent_ex = &parent->ex_dev;
 727	struct sas_port *port;
 728	int i;
 729
 730	child->pathways = 0;
 731
 732	port = parent_phy->port;
 733
 734	for (i = 0; i < parent_ex->num_phys; i++) {
 735		struct ex_phy *phy = &parent_ex->ex_phy[i];
 736
 737		if (phy->phy_state == PHY_VACANT ||
 738		    phy->phy_state == PHY_NOT_PRESENT)
 739			continue;
 740
 741		if (sas_phy_match_dev_addr(child, phy)) {
 
 
 742			child->min_linkrate = min(parent->min_linkrate,
 743						  phy->linkrate);
 744			child->max_linkrate = max(parent->max_linkrate,
 745						  phy->linkrate);
 746			child->pathways++;
 747			sas_port_add_phy(port, phy->phy);
 748		}
 749	}
 750	child->linkrate = min(parent_phy->linkrate, child->max_linkrate);
 751	child->pathways = min(child->pathways, parent->pathways);
 752}
 753
 754static int sas_ex_add_dev(struct domain_device *parent, struct ex_phy *phy,
 755			  struct domain_device *child, int phy_id)
 756{
 757	struct sas_rphy *rphy;
 758	int res;
 759
 760	child->dev_type = SAS_END_DEVICE;
 761	rphy = sas_end_device_alloc(phy->port);
 762	if (!rphy)
 763		return -ENOMEM;
 764
 765	child->tproto = phy->attached_tproto;
 766	sas_init_dev(child);
 767
 768	child->rphy = rphy;
 769	get_device(&rphy->dev);
 770	rphy->identify.phy_identifier = phy_id;
 771	sas_fill_in_rphy(child, rphy);
 772
 773	list_add_tail(&child->disco_list_node, &parent->port->disco_list);
 774
 775	res = sas_notify_lldd_dev_found(child);
 776	if (res) {
 777		pr_notice("notify lldd for device %016llx at %016llx:%02d returned 0x%x\n",
 778			  SAS_ADDR(child->sas_addr),
 779			  SAS_ADDR(parent->sas_addr), phy_id, res);
 780		sas_rphy_free(child->rphy);
 781		list_del(&child->disco_list_node);
 782		return res;
 783	}
 784
 785	return 0;
 786}
 787
 788static struct domain_device *sas_ex_discover_end_dev(
 789	struct domain_device *parent, int phy_id)
 790{
 791	struct expander_device *parent_ex = &parent->ex_dev;
 792	struct ex_phy *phy = &parent_ex->ex_phy[phy_id];
 793	struct domain_device *child = NULL;
 
 794	int res;
 795
 796	if (phy->attached_sata_host || phy->attached_sata_ps)
 797		return NULL;
 798
 799	child = sas_alloc_device();
 800	if (!child)
 801		return NULL;
 802
 803	kref_get(&parent->kref);
 804	child->parent = parent;
 805	child->port   = parent->port;
 806	child->iproto = phy->attached_iproto;
 807	memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
 808	sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
 809	if (!phy->port) {
 810		phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
 811		if (unlikely(!phy->port))
 812			goto out_err;
 813		if (unlikely(sas_port_add(phy->port) != 0)) {
 814			sas_port_free(phy->port);
 815			goto out_err;
 816		}
 817	}
 818	sas_ex_get_linkrate(parent, child, phy);
 819	sas_device_set_phy(child, phy->port);
 820
 
 821	if ((phy->attached_tproto & SAS_PROTOCOL_STP) || phy->attached_sata_dev) {
 822		res = sas_ata_add_dev(parent, phy, child, phy_id);
 823	} else if (phy->attached_tproto & SAS_PROTOCOL_SSP) {
 824		res = sas_ex_add_dev(parent, phy, child, phy_id);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 825	} else {
 826		pr_notice("target proto 0x%x at %016llx:0x%x not handled\n",
 827			  phy->attached_tproto, SAS_ADDR(parent->sas_addr),
 828			  phy_id);
 829		res = -ENODEV;
 830	}
 831
 832	if (res)
 833		goto out_free;
 834
 835	list_add_tail(&child->siblings, &parent_ex->children);
 836	return child;
 837
 
 
 
 
 
 
 838 out_free:
 839	sas_port_delete(phy->port);
 840 out_err:
 841	phy->port = NULL;
 842	sas_put_device(child);
 843	return NULL;
 844}
 845
 846/* See if this phy is part of a wide port */
 847static bool sas_ex_join_wide_port(struct domain_device *parent, int phy_id)
 848{
 849	struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
 850	int i;
 851
 852	for (i = 0; i < parent->ex_dev.num_phys; i++) {
 853		struct ex_phy *ephy = &parent->ex_dev.ex_phy[i];
 854
 855		if (ephy == phy)
 856			continue;
 857
 858		if (!memcmp(phy->attached_sas_addr, ephy->attached_sas_addr,
 859			    SAS_ADDR_SIZE) && ephy->port) {
 860			sas_port_add_phy(ephy->port, phy->phy);
 861			phy->port = ephy->port;
 862			phy->phy_state = PHY_DEVICE_DISCOVERED;
 863			return true;
 864		}
 865	}
 866
 867	return false;
 868}
 869
 870static struct domain_device *sas_ex_discover_expander(
 871	struct domain_device *parent, int phy_id)
 872{
 873	struct sas_expander_device *parent_ex = rphy_to_expander_device(parent->rphy);
 874	struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
 875	struct domain_device *child = NULL;
 876	struct sas_rphy *rphy;
 877	struct sas_expander_device *edev;
 878	struct asd_sas_port *port;
 879	int res;
 880
 881	if (phy->routing_attr == DIRECT_ROUTING) {
 882		pr_warn("ex %016llx:%02d:D <--> ex %016llx:0x%x is not allowed\n",
 883			SAS_ADDR(parent->sas_addr), phy_id,
 884			SAS_ADDR(phy->attached_sas_addr),
 885			phy->attached_phy_id);
 
 886		return NULL;
 887	}
 888	child = sas_alloc_device();
 889	if (!child)
 890		return NULL;
 891
 892	phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
 893	/* FIXME: better error handling */
 894	BUG_ON(sas_port_add(phy->port) != 0);
 895
 896
 897	switch (phy->attached_dev_type) {
 898	case SAS_EDGE_EXPANDER_DEVICE:
 899		rphy = sas_expander_alloc(phy->port,
 900					  SAS_EDGE_EXPANDER_DEVICE);
 901		break;
 902	case SAS_FANOUT_EXPANDER_DEVICE:
 903		rphy = sas_expander_alloc(phy->port,
 904					  SAS_FANOUT_EXPANDER_DEVICE);
 905		break;
 906	default:
 907		rphy = NULL;	/* shut gcc up */
 908		BUG();
 909	}
 910	port = parent->port;
 911	child->rphy = rphy;
 912	get_device(&rphy->dev);
 913	edev = rphy_to_expander_device(rphy);
 914	child->dev_type = phy->attached_dev_type;
 915	kref_get(&parent->kref);
 916	child->parent = parent;
 917	child->port = port;
 918	child->iproto = phy->attached_iproto;
 919	child->tproto = phy->attached_tproto;
 920	memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
 921	sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
 922	sas_ex_get_linkrate(parent, child, phy);
 923	edev->level = parent_ex->level + 1;
 924	parent->port->disc.max_level = max(parent->port->disc.max_level,
 925					   edev->level);
 926	sas_init_dev(child);
 927	sas_fill_in_rphy(child, rphy);
 928	sas_rphy_add(rphy);
 929
 930	spin_lock_irq(&parent->port->dev_list_lock);
 931	list_add_tail(&child->dev_list_node, &parent->port->dev_list);
 932	spin_unlock_irq(&parent->port->dev_list_lock);
 933
 934	res = sas_discover_expander(child);
 935	if (res) {
 936		sas_rphy_delete(rphy);
 937		spin_lock_irq(&parent->port->dev_list_lock);
 938		list_del(&child->dev_list_node);
 939		spin_unlock_irq(&parent->port->dev_list_lock);
 940		sas_put_device(child);
 941		sas_port_delete(phy->port);
 942		phy->port = NULL;
 943		return NULL;
 944	}
 945	list_add_tail(&child->siblings, &parent->ex_dev.children);
 946	return child;
 947}
 948
 949static int sas_ex_discover_dev(struct domain_device *dev, int phy_id)
 950{
 951	struct expander_device *ex = &dev->ex_dev;
 952	struct ex_phy *ex_phy = &ex->ex_phy[phy_id];
 953	struct domain_device *child = NULL;
 954	int res = 0;
 955
 956	/* Phy state */
 957	if (ex_phy->linkrate == SAS_SATA_SPINUP_HOLD) {
 958		if (!sas_smp_phy_control(dev, phy_id, PHY_FUNC_LINK_RESET, NULL))
 959			res = sas_ex_phy_discover(dev, phy_id);
 960		if (res)
 961			return res;
 962	}
 963
 964	/* Parent and domain coherency */
 965	if (!dev->parent && sas_phy_match_port_addr(dev->port, ex_phy)) {
 
 966		sas_add_parent_port(dev, phy_id);
 967		return 0;
 968	}
 969	if (dev->parent && sas_phy_match_dev_addr(dev->parent, ex_phy)) {
 
 970		sas_add_parent_port(dev, phy_id);
 971		if (ex_phy->routing_attr == TABLE_ROUTING)
 972			sas_configure_phy(dev, phy_id, dev->port->sas_addr, 1);
 973		return 0;
 974	}
 975
 976	if (sas_dev_present_in_domain(dev->port, ex_phy->attached_sas_addr))
 977		sas_ex_disable_port(dev, ex_phy->attached_sas_addr);
 978
 979	if (ex_phy->attached_dev_type == SAS_PHY_UNUSED) {
 980		if (ex_phy->routing_attr == DIRECT_ROUTING) {
 981			memset(ex_phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
 982			sas_configure_routing(dev, ex_phy->attached_sas_addr);
 983		}
 984		return 0;
 985	} else if (ex_phy->linkrate == SAS_LINK_RATE_UNKNOWN)
 986		return 0;
 987
 988	if (ex_phy->attached_dev_type != SAS_END_DEVICE &&
 989	    ex_phy->attached_dev_type != SAS_FANOUT_EXPANDER_DEVICE &&
 990	    ex_phy->attached_dev_type != SAS_EDGE_EXPANDER_DEVICE &&
 991	    ex_phy->attached_dev_type != SAS_SATA_PENDING) {
 992		pr_warn("unknown device type(0x%x) attached to ex %016llx phy%02d\n",
 993			ex_phy->attached_dev_type,
 994			SAS_ADDR(dev->sas_addr),
 995			phy_id);
 996		return 0;
 997	}
 998
 999	res = sas_configure_routing(dev, ex_phy->attached_sas_addr);
1000	if (res) {
1001		pr_notice("configure routing for dev %016llx reported 0x%x. Forgotten\n",
1002			  SAS_ADDR(ex_phy->attached_sas_addr), res);
 
1003		sas_disable_routing(dev, ex_phy->attached_sas_addr);
1004		return res;
1005	}
1006
1007	if (sas_ex_join_wide_port(dev, phy_id)) {
1008		pr_debug("Attaching ex phy%02d to wide port %016llx\n",
1009			 phy_id, SAS_ADDR(ex_phy->attached_sas_addr));
1010		return res;
1011	}
1012
1013	switch (ex_phy->attached_dev_type) {
1014	case SAS_END_DEVICE:
1015	case SAS_SATA_PENDING:
1016		child = sas_ex_discover_end_dev(dev, phy_id);
1017		break;
1018	case SAS_FANOUT_EXPANDER_DEVICE:
1019		if (SAS_ADDR(dev->port->disc.fanout_sas_addr)) {
1020			pr_debug("second fanout expander %016llx phy%02d attached to ex %016llx phy%02d\n",
1021				 SAS_ADDR(ex_phy->attached_sas_addr),
1022				 ex_phy->attached_phy_id,
1023				 SAS_ADDR(dev->sas_addr),
1024				 phy_id);
 
1025			sas_ex_disable_phy(dev, phy_id);
1026			return res;
1027		} else
1028			memcpy(dev->port->disc.fanout_sas_addr,
1029			       ex_phy->attached_sas_addr, SAS_ADDR_SIZE);
1030		fallthrough;
1031	case SAS_EDGE_EXPANDER_DEVICE:
1032		child = sas_ex_discover_expander(dev, phy_id);
1033		break;
1034	default:
1035		break;
1036	}
1037
1038	if (!child)
1039		pr_notice("ex %016llx phy%02d failed to discover\n",
1040			  SAS_ADDR(dev->sas_addr), phy_id);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1041	return res;
1042}
1043
1044static int sas_find_sub_addr(struct domain_device *dev, u8 *sub_addr)
1045{
1046	struct expander_device *ex = &dev->ex_dev;
1047	int i;
1048
1049	for (i = 0; i < ex->num_phys; i++) {
1050		struct ex_phy *phy = &ex->ex_phy[i];
1051
1052		if (phy->phy_state == PHY_VACANT ||
1053		    phy->phy_state == PHY_NOT_PRESENT)
1054			continue;
1055
1056		if (dev_is_expander(phy->attached_dev_type) &&
 
1057		    phy->routing_attr == SUBTRACTIVE_ROUTING) {
1058
1059			memcpy(sub_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
1060
1061			return 1;
1062		}
1063	}
1064	return 0;
1065}
1066
1067static int sas_check_level_subtractive_boundary(struct domain_device *dev)
1068{
1069	struct expander_device *ex = &dev->ex_dev;
1070	struct domain_device *child;
1071	u8 sub_addr[SAS_ADDR_SIZE] = {0, };
1072
1073	list_for_each_entry(child, &ex->children, siblings) {
1074		if (!dev_is_expander(child->dev_type))
 
1075			continue;
1076		if (sub_addr[0] == 0) {
1077			sas_find_sub_addr(child, sub_addr);
1078			continue;
1079		} else {
1080			u8 s2[SAS_ADDR_SIZE];
1081
1082			if (sas_find_sub_addr(child, s2) &&
1083			    (SAS_ADDR(sub_addr) != SAS_ADDR(s2))) {
1084
1085				pr_notice("ex %016llx->%016llx-?->%016llx diverges from subtractive boundary %016llx\n",
1086					  SAS_ADDR(dev->sas_addr),
1087					  SAS_ADDR(child->sas_addr),
1088					  SAS_ADDR(s2),
1089					  SAS_ADDR(sub_addr));
 
 
1090
1091				sas_ex_disable_port(child, s2);
1092			}
1093		}
1094	}
1095	return 0;
1096}
1097/**
1098 * sas_ex_discover_devices - discover devices attached to this expander
1099 * @dev: pointer to the expander domain device
1100 * @single: if you want to do a single phy, else set to -1;
1101 *
1102 * Configure this expander for use with its devices and register the
1103 * devices of this expander.
1104 */
1105static int sas_ex_discover_devices(struct domain_device *dev, int single)
1106{
1107	struct expander_device *ex = &dev->ex_dev;
1108	int i = 0, end = ex->num_phys;
1109	int res = 0;
1110
1111	if (0 <= single && single < end) {
1112		i = single;
1113		end = i+1;
1114	}
1115
1116	for ( ; i < end; i++) {
1117		struct ex_phy *ex_phy = &ex->ex_phy[i];
1118
1119		if (ex_phy->phy_state == PHY_VACANT ||
1120		    ex_phy->phy_state == PHY_NOT_PRESENT ||
1121		    ex_phy->phy_state == PHY_DEVICE_DISCOVERED)
1122			continue;
1123
1124		switch (ex_phy->linkrate) {
1125		case SAS_PHY_DISABLED:
1126		case SAS_PHY_RESET_PROBLEM:
1127		case SAS_SATA_PORT_SELECTOR:
1128			continue;
1129		default:
1130			res = sas_ex_discover_dev(dev, i);
1131			if (res)
1132				break;
1133			continue;
1134		}
1135	}
1136
1137	if (!res)
1138		sas_check_level_subtractive_boundary(dev);
1139
1140	return res;
1141}
1142
1143static int sas_check_ex_subtractive_boundary(struct domain_device *dev)
1144{
1145	struct expander_device *ex = &dev->ex_dev;
1146	int i;
1147	u8  *sub_sas_addr = NULL;
1148
1149	if (dev->dev_type != SAS_EDGE_EXPANDER_DEVICE)
1150		return 0;
1151
1152	for (i = 0; i < ex->num_phys; i++) {
1153		struct ex_phy *phy = &ex->ex_phy[i];
1154
1155		if (phy->phy_state == PHY_VACANT ||
1156		    phy->phy_state == PHY_NOT_PRESENT)
1157			continue;
1158
1159		if (dev_is_expander(phy->attached_dev_type) &&
 
1160		    phy->routing_attr == SUBTRACTIVE_ROUTING) {
1161
1162			if (!sub_sas_addr)
1163				sub_sas_addr = &phy->attached_sas_addr[0];
1164			else if (SAS_ADDR(sub_sas_addr) !=
1165				 SAS_ADDR(phy->attached_sas_addr)) {
1166
1167				pr_notice("ex %016llx phy%02d diverges(%016llx) on subtractive boundary(%016llx). Disabled\n",
1168					  SAS_ADDR(dev->sas_addr), i,
1169					  SAS_ADDR(phy->attached_sas_addr),
1170					  SAS_ADDR(sub_sas_addr));
 
 
1171				sas_ex_disable_phy(dev, i);
1172			}
1173		}
1174	}
1175	return 0;
1176}
1177
1178static void sas_print_parent_topology_bug(struct domain_device *child,
1179						 struct ex_phy *parent_phy,
1180						 struct ex_phy *child_phy)
1181{
1182	static const char *ex_type[] = {
1183		[SAS_EDGE_EXPANDER_DEVICE] = "edge",
1184		[SAS_FANOUT_EXPANDER_DEVICE] = "fanout",
1185	};
1186	struct domain_device *parent = child->parent;
1187
1188	pr_notice("%s ex %016llx phy%02d <--> %s ex %016llx phy%02d has %c:%c routing link!\n",
1189		  ex_type[parent->dev_type],
1190		  SAS_ADDR(parent->sas_addr),
1191		  parent_phy->phy_id,
1192
1193		  ex_type[child->dev_type],
1194		  SAS_ADDR(child->sas_addr),
1195		  child_phy->phy_id,
1196
1197		  sas_route_char(parent, parent_phy),
1198		  sas_route_char(child, child_phy));
1199}
1200
1201static bool sas_eeds_valid(struct domain_device *parent,
1202			   struct domain_device *child)
1203{
1204	struct sas_discovery *disc = &parent->port->disc;
 
 
 
1205
1206	return (SAS_ADDR(disc->eeds_a) == SAS_ADDR(parent->sas_addr) ||
1207		SAS_ADDR(disc->eeds_a) == SAS_ADDR(child->sas_addr)) &&
1208	       (SAS_ADDR(disc->eeds_b) == SAS_ADDR(parent->sas_addr) ||
1209		SAS_ADDR(disc->eeds_b) == SAS_ADDR(child->sas_addr));
1210}
1211
1212static int sas_check_eeds(struct domain_device *child,
1213			  struct ex_phy *parent_phy,
1214			  struct ex_phy *child_phy)
1215{
1216	int res = 0;
1217	struct domain_device *parent = child->parent;
1218	struct sas_discovery *disc = &parent->port->disc;
1219
1220	if (SAS_ADDR(disc->fanout_sas_addr) != 0) {
1221		res = -ENODEV;
1222		pr_warn("edge ex %016llx phy S:%02d <--> edge ex %016llx phy S:%02d, while there is a fanout ex %016llx\n",
1223			SAS_ADDR(parent->sas_addr),
1224			parent_phy->phy_id,
1225			SAS_ADDR(child->sas_addr),
1226			child_phy->phy_id,
1227			SAS_ADDR(disc->fanout_sas_addr));
1228	} else if (SAS_ADDR(disc->eeds_a) == 0) {
1229		memcpy(disc->eeds_a, parent->sas_addr, SAS_ADDR_SIZE);
1230		memcpy(disc->eeds_b, child->sas_addr, SAS_ADDR_SIZE);
1231	} else if (!sas_eeds_valid(parent, child)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
1232		res = -ENODEV;
1233		pr_warn("edge ex %016llx phy%02d <--> edge ex %016llx phy%02d link forms a third EEDS!\n",
1234			SAS_ADDR(parent->sas_addr),
1235			parent_phy->phy_id,
1236			SAS_ADDR(child->sas_addr),
1237			child_phy->phy_id);
 
1238	}
1239
1240	return res;
1241}
1242
1243static int sas_check_edge_expander_topo(struct domain_device *child,
1244					struct ex_phy *parent_phy)
 
1245{
1246	struct expander_device *child_ex = &child->ex_dev;
1247	struct expander_device *parent_ex = &child->parent->ex_dev;
1248	struct ex_phy *child_phy;
1249
1250	child_phy = &child_ex->ex_phy[parent_phy->attached_phy_id];
1251
1252	if (child->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
1253		if (parent_phy->routing_attr != SUBTRACTIVE_ROUTING ||
1254		    child_phy->routing_attr != TABLE_ROUTING)
1255			goto error;
1256	} else if (parent_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1257		if (child_phy->routing_attr == SUBTRACTIVE_ROUTING)
1258			return sas_check_eeds(child, parent_phy, child_phy);
1259		else if (child_phy->routing_attr != TABLE_ROUTING)
1260			goto error;
1261	} else if (parent_phy->routing_attr == TABLE_ROUTING) {
1262		if (child_phy->routing_attr != SUBTRACTIVE_ROUTING &&
1263		    (child_phy->routing_attr != TABLE_ROUTING ||
1264		     !child_ex->t2t_supp || !parent_ex->t2t_supp))
1265			goto error;
1266	}
1267
1268	return 0;
1269error:
1270	sas_print_parent_topology_bug(child, parent_phy, child_phy);
1271	return -ENODEV;
1272}
1273
1274static int sas_check_fanout_expander_topo(struct domain_device *child,
1275					  struct ex_phy *parent_phy)
1276{
1277	struct expander_device *child_ex = &child->ex_dev;
1278	struct ex_phy *child_phy;
1279
1280	child_phy = &child_ex->ex_phy[parent_phy->attached_phy_id];
1281
1282	if (parent_phy->routing_attr == TABLE_ROUTING &&
1283	    child_phy->routing_attr == SUBTRACTIVE_ROUTING)
1284		return 0;
1285
1286	sas_print_parent_topology_bug(child, parent_phy, child_phy);
1287
1288	return -ENODEV;
1289}
1290
1291static int sas_check_parent_topology(struct domain_device *child)
1292{
1293	struct expander_device *parent_ex;
1294	int i;
1295	int res = 0;
1296
1297	if (!child->parent)
1298		return 0;
1299
1300	if (!dev_is_expander(child->parent->dev_type))
 
1301		return 0;
1302
1303	parent_ex = &child->parent->ex_dev;
1304
1305	for (i = 0; i < parent_ex->num_phys; i++) {
1306		struct ex_phy *parent_phy = &parent_ex->ex_phy[i];
 
1307
1308		if (parent_phy->phy_state == PHY_VACANT ||
1309		    parent_phy->phy_state == PHY_NOT_PRESENT)
1310			continue;
1311
1312		if (!sas_phy_match_dev_addr(child, parent_phy))
1313			continue;
1314
 
 
1315		switch (child->parent->dev_type) {
1316		case SAS_EDGE_EXPANDER_DEVICE:
1317			if (sas_check_edge_expander_topo(child, parent_phy))
1318				res = -ENODEV;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1319			break;
1320		case SAS_FANOUT_EXPANDER_DEVICE:
1321			if (sas_check_fanout_expander_topo(child, parent_phy))
 
 
1322				res = -ENODEV;
 
1323			break;
1324		default:
1325			break;
1326		}
1327	}
1328
1329	return res;
1330}
1331
1332#define RRI_REQ_SIZE  16
1333#define RRI_RESP_SIZE 44
1334
1335static int sas_configure_present(struct domain_device *dev, int phy_id,
1336				 u8 *sas_addr, int *index, int *present)
1337{
1338	int i, res = 0;
1339	struct expander_device *ex = &dev->ex_dev;
1340	struct ex_phy *phy = &ex->ex_phy[phy_id];
1341	u8 *rri_req;
1342	u8 *rri_resp;
1343
1344	*present = 0;
1345	*index = 0;
1346
1347	rri_req = alloc_smp_req(RRI_REQ_SIZE);
1348	if (!rri_req)
1349		return -ENOMEM;
1350
1351	rri_resp = alloc_smp_resp(RRI_RESP_SIZE);
1352	if (!rri_resp) {
1353		kfree(rri_req);
1354		return -ENOMEM;
1355	}
1356
1357	rri_req[1] = SMP_REPORT_ROUTE_INFO;
1358	rri_req[9] = phy_id;
1359
1360	for (i = 0; i < ex->max_route_indexes ; i++) {
1361		*(__be16 *)(rri_req+6) = cpu_to_be16(i);
1362		res = smp_execute_task(dev, rri_req, RRI_REQ_SIZE, rri_resp,
1363				       RRI_RESP_SIZE);
1364		if (res)
1365			goto out;
1366		res = rri_resp[2];
1367		if (res == SMP_RESP_NO_INDEX) {
1368			pr_warn("overflow of indexes: dev %016llx phy%02d index 0x%x\n",
1369				SAS_ADDR(dev->sas_addr), phy_id, i);
 
1370			goto out;
1371		} else if (res != SMP_RESP_FUNC_ACC) {
1372			pr_notice("%s: dev %016llx phy%02d index 0x%x result 0x%x\n",
1373				  __func__, SAS_ADDR(dev->sas_addr), phy_id,
1374				  i, res);
1375			goto out;
1376		}
1377		if (SAS_ADDR(sas_addr) != 0) {
1378			if (SAS_ADDR(rri_resp+16) == SAS_ADDR(sas_addr)) {
1379				*index = i;
1380				if ((rri_resp[12] & 0x80) == 0x80)
1381					*present = 0;
1382				else
1383					*present = 1;
1384				goto out;
1385			} else if (SAS_ADDR(rri_resp+16) == 0) {
1386				*index = i;
1387				*present = 0;
1388				goto out;
1389			}
1390		} else if (SAS_ADDR(rri_resp+16) == 0 &&
1391			   phy->last_da_index < i) {
1392			phy->last_da_index = i;
1393			*index = i;
1394			*present = 0;
1395			goto out;
1396		}
1397	}
1398	res = -1;
1399out:
1400	kfree(rri_req);
1401	kfree(rri_resp);
1402	return res;
1403}
1404
1405#define CRI_REQ_SIZE  44
1406#define CRI_RESP_SIZE  8
1407
1408static int sas_configure_set(struct domain_device *dev, int phy_id,
1409			     u8 *sas_addr, int index, int include)
1410{
1411	int res;
1412	u8 *cri_req;
1413	u8 *cri_resp;
1414
1415	cri_req = alloc_smp_req(CRI_REQ_SIZE);
1416	if (!cri_req)
1417		return -ENOMEM;
1418
1419	cri_resp = alloc_smp_resp(CRI_RESP_SIZE);
1420	if (!cri_resp) {
1421		kfree(cri_req);
1422		return -ENOMEM;
1423	}
1424
1425	cri_req[1] = SMP_CONF_ROUTE_INFO;
1426	*(__be16 *)(cri_req+6) = cpu_to_be16(index);
1427	cri_req[9] = phy_id;
1428	if (SAS_ADDR(sas_addr) == 0 || !include)
1429		cri_req[12] |= 0x80;
1430	memcpy(cri_req+16, sas_addr, SAS_ADDR_SIZE);
1431
1432	res = smp_execute_task(dev, cri_req, CRI_REQ_SIZE, cri_resp,
1433			       CRI_RESP_SIZE);
1434	if (res)
1435		goto out;
1436	res = cri_resp[2];
1437	if (res == SMP_RESP_NO_INDEX) {
1438		pr_warn("overflow of indexes: dev %016llx phy%02d index 0x%x\n",
1439			SAS_ADDR(dev->sas_addr), phy_id, index);
 
1440	}
1441out:
1442	kfree(cri_req);
1443	kfree(cri_resp);
1444	return res;
1445}
1446
1447static int sas_configure_phy(struct domain_device *dev, int phy_id,
1448				    u8 *sas_addr, int include)
1449{
1450	int index;
1451	int present;
1452	int res;
1453
1454	res = sas_configure_present(dev, phy_id, sas_addr, &index, &present);
1455	if (res)
1456		return res;
1457	if (include ^ present)
1458		return sas_configure_set(dev, phy_id, sas_addr, index,
1459					 include);
1460
1461	return res;
1462}
1463
1464/**
1465 * sas_configure_parent - configure routing table of parent
1466 * @parent: parent expander
1467 * @child: child expander
1468 * @sas_addr: SAS port identifier of device directly attached to child
1469 * @include: whether or not to include @child in the expander routing table
1470 */
1471static int sas_configure_parent(struct domain_device *parent,
1472				struct domain_device *child,
1473				u8 *sas_addr, int include)
1474{
1475	struct expander_device *ex_parent = &parent->ex_dev;
1476	int res = 0;
1477	int i;
1478
1479	if (parent->parent) {
1480		res = sas_configure_parent(parent->parent, parent, sas_addr,
1481					   include);
1482		if (res)
1483			return res;
1484	}
1485
1486	if (ex_parent->conf_route_table == 0) {
1487		pr_debug("ex %016llx has self-configuring routing table\n",
1488			 SAS_ADDR(parent->sas_addr));
1489		return 0;
1490	}
1491
1492	for (i = 0; i < ex_parent->num_phys; i++) {
1493		struct ex_phy *phy = &ex_parent->ex_phy[i];
1494
1495		if ((phy->routing_attr == TABLE_ROUTING) &&
1496		    sas_phy_match_dev_addr(child, phy)) {
 
1497			res = sas_configure_phy(parent, i, sas_addr, include);
1498			if (res)
1499				return res;
1500		}
1501	}
1502
1503	return res;
1504}
1505
1506/**
1507 * sas_configure_routing - configure routing
1508 * @dev: expander device
1509 * @sas_addr: port identifier of device directly attached to the expander device
1510 */
1511static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr)
1512{
1513	if (dev->parent)
1514		return sas_configure_parent(dev->parent, dev, sas_addr, 1);
1515	return 0;
1516}
1517
1518static int sas_disable_routing(struct domain_device *dev,  u8 *sas_addr)
1519{
1520	if (dev->parent)
1521		return sas_configure_parent(dev->parent, dev, sas_addr, 0);
1522	return 0;
1523}
1524
1525/**
1526 * sas_discover_expander - expander discovery
1527 * @dev: pointer to expander domain device
1528 *
1529 * See comment in sas_discover_sata().
1530 */
1531static int sas_discover_expander(struct domain_device *dev)
1532{
1533	int res;
1534
1535	res = sas_notify_lldd_dev_found(dev);
1536	if (res)
1537		return res;
1538
1539	res = sas_ex_general(dev);
1540	if (res)
1541		goto out_err;
1542	res = sas_ex_manuf_info(dev);
1543	if (res)
1544		goto out_err;
1545
1546	res = sas_expander_discover(dev);
1547	if (res) {
1548		pr_warn("expander %016llx discovery failed(0x%x)\n",
1549			SAS_ADDR(dev->sas_addr), res);
1550		goto out_err;
1551	}
1552
1553	sas_check_ex_subtractive_boundary(dev);
1554	res = sas_check_parent_topology(dev);
1555	if (res)
1556		goto out_err;
1557	return 0;
1558out_err:
1559	sas_notify_lldd_dev_gone(dev);
1560	return res;
1561}
1562
1563static int sas_ex_level_discovery(struct asd_sas_port *port, const int level)
1564{
1565	int res = 0;
1566	struct domain_device *dev;
1567
1568	list_for_each_entry(dev, &port->dev_list, dev_list_node) {
1569		if (dev_is_expander(dev->dev_type)) {
 
1570			struct sas_expander_device *ex =
1571				rphy_to_expander_device(dev->rphy);
1572
1573			if (level == ex->level)
1574				res = sas_ex_discover_devices(dev, -1);
1575			else if (level > 0)
1576				res = sas_ex_discover_devices(port->port_dev, -1);
1577
1578		}
1579	}
1580
1581	return res;
1582}
1583
1584static int sas_ex_bfs_disc(struct asd_sas_port *port)
1585{
1586	int res;
1587	int level;
1588
1589	do {
1590		level = port->disc.max_level;
1591		res = sas_ex_level_discovery(port, level);
1592		mb();
1593	} while (level < port->disc.max_level);
1594
1595	return res;
1596}
1597
1598int sas_discover_root_expander(struct domain_device *dev)
1599{
1600	int res;
1601	struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1602
1603	res = sas_rphy_add(dev->rphy);
1604	if (res)
1605		goto out_err;
1606
1607	ex->level = dev->port->disc.max_level; /* 0 */
1608	res = sas_discover_expander(dev);
1609	if (res)
1610		goto out_err2;
1611
1612	sas_ex_bfs_disc(dev->port);
1613
1614	return res;
1615
1616out_err2:
1617	sas_rphy_remove(dev->rphy);
1618out_err:
1619	return res;
1620}
1621
1622/* ---------- Domain revalidation ---------- */
1623
1624static int sas_get_phy_discover(struct domain_device *dev,
1625				int phy_id, struct smp_disc_resp *disc_resp)
1626{
1627	int res;
1628	u8 *disc_req;
1629
1630	disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
1631	if (!disc_req)
1632		return -ENOMEM;
1633
1634	disc_req[1] = SMP_DISCOVER;
1635	disc_req[9] = phy_id;
1636
1637	res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
1638			       disc_resp, DISCOVER_RESP_SIZE);
1639	if (res)
1640		goto out;
1641	if (disc_resp->result != SMP_RESP_FUNC_ACC)
1642		res = disc_resp->result;
 
 
1643out:
1644	kfree(disc_req);
1645	return res;
1646}
1647
1648static int sas_get_phy_change_count(struct domain_device *dev,
1649				    int phy_id, int *pcc)
1650{
1651	int res;
1652	struct smp_disc_resp *disc_resp;
1653
1654	disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1655	if (!disc_resp)
1656		return -ENOMEM;
1657
1658	res = sas_get_phy_discover(dev, phy_id, disc_resp);
1659	if (!res)
1660		*pcc = disc_resp->disc.change_count;
1661
1662	kfree(disc_resp);
1663	return res;
1664}
1665
1666int sas_get_phy_attached_dev(struct domain_device *dev, int phy_id,
1667			     u8 *sas_addr, enum sas_device_type *type)
1668{
1669	int res;
1670	struct smp_disc_resp *disc_resp;
 
1671
1672	disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1673	if (!disc_resp)
1674		return -ENOMEM;
 
1675
1676	res = sas_get_phy_discover(dev, phy_id, disc_resp);
1677	if (res == 0) {
1678		memcpy(sas_addr, disc_resp->disc.attached_sas_addr,
1679		       SAS_ADDR_SIZE);
1680		*type = to_dev_type(&disc_resp->disc);
1681		if (*type == 0)
1682			memset(sas_addr, 0, SAS_ADDR_SIZE);
1683	}
1684	kfree(disc_resp);
1685	return res;
1686}
1687
1688static int sas_find_bcast_phy(struct domain_device *dev, int *phy_id,
1689			      int from_phy, bool update)
1690{
1691	struct expander_device *ex = &dev->ex_dev;
1692	int res = 0;
1693	int i;
1694
1695	for (i = from_phy; i < ex->num_phys; i++) {
1696		int phy_change_count = 0;
1697
1698		res = sas_get_phy_change_count(dev, i, &phy_change_count);
1699		switch (res) {
1700		case SMP_RESP_PHY_VACANT:
1701		case SMP_RESP_NO_PHY:
1702			continue;
1703		case SMP_RESP_FUNC_ACC:
1704			break;
1705		default:
1706			return res;
1707		}
1708
1709		if (phy_change_count != ex->ex_phy[i].phy_change_count) {
1710			if (update)
1711				ex->ex_phy[i].phy_change_count =
1712					phy_change_count;
1713			*phy_id = i;
1714			return 0;
1715		}
1716	}
1717	return 0;
1718}
1719
1720static int sas_get_ex_change_count(struct domain_device *dev, int *ecc)
1721{
1722	int res;
1723	u8  *rg_req;
1724	struct smp_rg_resp  *rg_resp;
1725
1726	rg_req = alloc_smp_req(RG_REQ_SIZE);
1727	if (!rg_req)
1728		return -ENOMEM;
1729
1730	rg_resp = alloc_smp_resp(RG_RESP_SIZE);
1731	if (!rg_resp) {
1732		kfree(rg_req);
1733		return -ENOMEM;
1734	}
1735
1736	rg_req[1] = SMP_REPORT_GENERAL;
1737
1738	res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
1739			       RG_RESP_SIZE);
1740	if (res)
1741		goto out;
1742	if (rg_resp->result != SMP_RESP_FUNC_ACC) {
1743		res = rg_resp->result;
1744		goto out;
1745	}
1746
1747	*ecc = be16_to_cpu(rg_resp->rg.change_count);
1748out:
1749	kfree(rg_resp);
1750	kfree(rg_req);
1751	return res;
1752}
1753/**
1754 * sas_find_bcast_dev -  find the device issue BROADCAST(CHANGE).
1755 * @dev:domain device to be detect.
1756 * @src_dev: the device which originated BROADCAST(CHANGE).
1757 *
1758 * Add self-configuration expander support. Suppose two expander cascading,
1759 * when the first level expander is self-configuring, hotplug the disks in
1760 * second level expander, BROADCAST(CHANGE) will not only be originated
1761 * in the second level expander, but also be originated in the first level
1762 * expander (see SAS protocol SAS 2r-14, 7.11 for detail), it is to say,
1763 * expander changed count in two level expanders will all increment at least
1764 * once, but the phy which chang count has changed is the source device which
1765 * we concerned.
1766 */
1767
1768static int sas_find_bcast_dev(struct domain_device *dev,
1769			      struct domain_device **src_dev)
1770{
1771	struct expander_device *ex = &dev->ex_dev;
1772	int ex_change_count = -1;
1773	int phy_id = -1;
1774	int res;
1775	struct domain_device *ch;
1776
1777	res = sas_get_ex_change_count(dev, &ex_change_count);
1778	if (res)
1779		goto out;
1780	if (ex_change_count != -1 && ex_change_count != ex->ex_change_count) {
1781		/* Just detect if this expander phys phy change count changed,
1782		* in order to determine if this expander originate BROADCAST,
1783		* and do not update phy change count field in our structure.
1784		*/
1785		res = sas_find_bcast_phy(dev, &phy_id, 0, false);
1786		if (phy_id != -1) {
1787			*src_dev = dev;
1788			ex->ex_change_count = ex_change_count;
1789			pr_info("ex %016llx phy%02d change count has changed\n",
1790				SAS_ADDR(dev->sas_addr), phy_id);
1791			return res;
1792		} else
1793			pr_info("ex %016llx phys DID NOT change\n",
1794				SAS_ADDR(dev->sas_addr));
1795	}
1796	list_for_each_entry(ch, &ex->children, siblings) {
1797		if (dev_is_expander(ch->dev_type)) {
1798			res = sas_find_bcast_dev(ch, src_dev);
1799			if (*src_dev)
1800				return res;
1801		}
1802	}
1803out:
1804	return res;
1805}
1806
1807static void sas_unregister_ex_tree(struct asd_sas_port *port, struct domain_device *dev)
1808{
1809	struct expander_device *ex = &dev->ex_dev;
1810	struct domain_device *child, *n;
1811
1812	list_for_each_entry_safe(child, n, &ex->children, siblings) {
1813		set_bit(SAS_DEV_GONE, &child->state);
1814		if (dev_is_expander(child->dev_type))
 
1815			sas_unregister_ex_tree(port, child);
1816		else
1817			sas_unregister_dev(port, child);
1818	}
1819	sas_unregister_dev(port, dev);
1820}
1821
1822static void sas_unregister_devs_sas_addr(struct domain_device *parent,
1823					 int phy_id, bool last)
1824{
1825	struct expander_device *ex_dev = &parent->ex_dev;
1826	struct ex_phy *phy = &ex_dev->ex_phy[phy_id];
1827	struct domain_device *child, *n, *found = NULL;
1828	if (last) {
1829		list_for_each_entry_safe(child, n,
1830			&ex_dev->children, siblings) {
1831			if (sas_phy_match_dev_addr(child, phy)) {
 
1832				set_bit(SAS_DEV_GONE, &child->state);
1833				if (dev_is_expander(child->dev_type))
 
1834					sas_unregister_ex_tree(parent->port, child);
1835				else
1836					sas_unregister_dev(parent->port, child);
1837				found = child;
1838				break;
1839			}
1840		}
1841		sas_disable_routing(parent, phy->attached_sas_addr);
1842	}
1843	memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1844	if (phy->port) {
1845		sas_port_delete_phy(phy->port, phy->phy);
1846		sas_device_set_phy(found, phy->port);
1847		if (phy->port->num_phys == 0)
1848			list_add_tail(&phy->port->del_list,
1849				&parent->port->sas_port_del_list);
1850		phy->port = NULL;
1851	}
1852}
1853
1854static int sas_discover_bfs_by_root_level(struct domain_device *root,
1855					  const int level)
1856{
1857	struct expander_device *ex_root = &root->ex_dev;
1858	struct domain_device *child;
1859	int res = 0;
1860
1861	list_for_each_entry(child, &ex_root->children, siblings) {
1862		if (dev_is_expander(child->dev_type)) {
 
1863			struct sas_expander_device *ex =
1864				rphy_to_expander_device(child->rphy);
1865
1866			if (level > ex->level)
1867				res = sas_discover_bfs_by_root_level(child,
1868								     level);
1869			else if (level == ex->level)
1870				res = sas_ex_discover_devices(child, -1);
1871		}
1872	}
1873	return res;
1874}
1875
1876static int sas_discover_bfs_by_root(struct domain_device *dev)
1877{
1878	int res;
1879	struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1880	int level = ex->level+1;
1881
1882	res = sas_ex_discover_devices(dev, -1);
1883	if (res)
1884		goto out;
1885	do {
1886		res = sas_discover_bfs_by_root_level(dev, level);
1887		mb();
1888		level += 1;
1889	} while (level <= dev->port->disc.max_level);
1890out:
1891	return res;
1892}
1893
1894static int sas_discover_new(struct domain_device *dev, int phy_id)
1895{
1896	struct ex_phy *ex_phy = &dev->ex_dev.ex_phy[phy_id];
1897	struct domain_device *child;
1898	int res;
1899
1900	pr_debug("ex %016llx phy%02d new device attached\n",
1901		 SAS_ADDR(dev->sas_addr), phy_id);
1902	res = sas_ex_phy_discover(dev, phy_id);
1903	if (res)
1904		return res;
1905
1906	if (sas_ex_join_wide_port(dev, phy_id))
1907		return 0;
1908
1909	res = sas_ex_discover_devices(dev, phy_id);
1910	if (res)
1911		return res;
1912	list_for_each_entry(child, &dev->ex_dev.children, siblings) {
1913		if (sas_phy_match_dev_addr(child, ex_phy)) {
1914			if (dev_is_expander(child->dev_type))
 
 
1915				res = sas_discover_bfs_by_root(child);
1916			break;
1917		}
1918	}
1919	return res;
1920}
1921
1922static bool dev_type_flutter(enum sas_device_type new, enum sas_device_type old)
1923{
1924	if (old == new)
1925		return true;
1926
1927	/* treat device directed resets as flutter, if we went
1928	 * SAS_END_DEVICE to SAS_SATA_PENDING the link needs recovery
1929	 */
1930	if ((old == SAS_SATA_PENDING && new == SAS_END_DEVICE) ||
1931	    (old == SAS_END_DEVICE && new == SAS_SATA_PENDING))
1932		return true;
1933
1934	return false;
1935}
1936
1937static int sas_rediscover_dev(struct domain_device *dev, int phy_id,
1938			      bool last, int sibling)
1939{
1940	struct expander_device *ex = &dev->ex_dev;
1941	struct ex_phy *phy = &ex->ex_phy[phy_id];
1942	enum sas_device_type type = SAS_PHY_UNUSED;
1943	u8 sas_addr[SAS_ADDR_SIZE];
1944	char msg[80] = "";
1945	int res;
1946
1947	if (!last)
1948		sprintf(msg, ", part of a wide port with phy%02d", sibling);
1949
1950	pr_debug("ex %016llx rediscovering phy%02d%s\n",
1951		 SAS_ADDR(dev->sas_addr), phy_id, msg);
1952
1953	memset(sas_addr, 0, SAS_ADDR_SIZE);
1954	res = sas_get_phy_attached_dev(dev, phy_id, sas_addr, &type);
1955	switch (res) {
1956	case SMP_RESP_NO_PHY:
1957		phy->phy_state = PHY_NOT_PRESENT;
1958		sas_unregister_devs_sas_addr(dev, phy_id, last);
1959		return res;
1960	case SMP_RESP_PHY_VACANT:
1961		phy->phy_state = PHY_VACANT;
1962		sas_unregister_devs_sas_addr(dev, phy_id, last);
1963		return res;
1964	case SMP_RESP_FUNC_ACC:
1965		break;
1966	case -ECOMM:
1967		break;
1968	default:
1969		return res;
1970	}
1971
1972	if ((SAS_ADDR(sas_addr) == 0) || (res == -ECOMM)) {
1973		phy->phy_state = PHY_EMPTY;
1974		sas_unregister_devs_sas_addr(dev, phy_id, last);
1975		/*
1976		 * Even though the PHY is empty, for convenience we discover
1977		 * the PHY to update the PHY info, like negotiated linkrate.
1978		 */
1979		sas_ex_phy_discover(dev, phy_id);
1980		return res;
1981	} else if (SAS_ADDR(sas_addr) == SAS_ADDR(phy->attached_sas_addr) &&
1982		   dev_type_flutter(type, phy->attached_dev_type)) {
1983		struct domain_device *ata_dev = sas_ex_to_ata(dev, phy_id);
1984		char *action = "";
1985
1986		sas_ex_phy_discover(dev, phy_id);
1987
1988		if (ata_dev && phy->attached_dev_type == SAS_SATA_PENDING)
1989			action = ", needs recovery";
1990		pr_debug("ex %016llx phy%02d broadcast flutter%s\n",
1991			 SAS_ADDR(dev->sas_addr), phy_id, action);
1992		return res;
1993	}
1994
1995	/* we always have to delete the old device when we went here */
1996	pr_info("ex %016llx phy%02d replace %016llx\n",
1997		SAS_ADDR(dev->sas_addr), phy_id,
1998		SAS_ADDR(phy->attached_sas_addr));
1999	sas_unregister_devs_sas_addr(dev, phy_id, last);
 
 
 
2000
2001	return sas_discover_new(dev, phy_id);
2002}
2003
2004/**
2005 * sas_rediscover - revalidate the domain.
2006 * @dev:domain device to be detect.
2007 * @phy_id: the phy id will be detected.
2008 *
2009 * NOTE: this process _must_ quit (return) as soon as any connection
2010 * errors are encountered.  Connection recovery is done elsewhere.
2011 * Discover process only interrogates devices in order to discover the
2012 * domain.For plugging out, we un-register the device only when it is
2013 * the last phy in the port, for other phys in this port, we just delete it
2014 * from the port.For inserting, we do discovery when it is the
2015 * first phy,for other phys in this port, we add it to the port to
2016 * forming the wide-port.
2017 */
2018static int sas_rediscover(struct domain_device *dev, const int phy_id)
2019{
2020	struct expander_device *ex = &dev->ex_dev;
2021	struct ex_phy *changed_phy = &ex->ex_phy[phy_id];
2022	int res = 0;
2023	int i;
2024	bool last = true;	/* is this the last phy of the port */
2025
2026	pr_debug("ex %016llx phy%02d originated BROADCAST(CHANGE)\n",
2027		 SAS_ADDR(dev->sas_addr), phy_id);
2028
2029	if (SAS_ADDR(changed_phy->attached_sas_addr) != 0) {
2030		for (i = 0; i < ex->num_phys; i++) {
2031			struct ex_phy *phy = &ex->ex_phy[i];
2032
2033			if (i == phy_id)
2034				continue;
2035			if (sas_phy_addr_match(phy, changed_phy)) {
 
 
 
2036				last = false;
2037				break;
2038			}
2039		}
2040		res = sas_rediscover_dev(dev, phy_id, last, i);
2041	} else
2042		res = sas_discover_new(dev, phy_id);
2043	return res;
2044}
2045
2046/**
2047 * sas_ex_revalidate_domain - revalidate the domain
2048 * @port_dev: port domain device.
2049 *
2050 * NOTE: this process _must_ quit (return) as soon as any connection
2051 * errors are encountered.  Connection recovery is done elsewhere.
2052 * Discover process only interrogates devices in order to discover the
2053 * domain.
2054 */
2055int sas_ex_revalidate_domain(struct domain_device *port_dev)
2056{
2057	int res;
2058	struct domain_device *dev = NULL;
2059
2060	res = sas_find_bcast_dev(port_dev, &dev);
2061	if (res == 0 && dev) {
2062		struct expander_device *ex = &dev->ex_dev;
2063		int i = 0, phy_id;
2064
2065		do {
2066			phy_id = -1;
2067			res = sas_find_bcast_phy(dev, &phy_id, i, true);
2068			if (phy_id == -1)
2069				break;
2070			res = sas_rediscover(dev, phy_id);
2071			i = phy_id + 1;
2072		} while (i < ex->num_phys);
2073	}
2074	return res;
2075}
2076
2077int sas_find_attached_phy_id(struct expander_device *ex_dev,
2078			     struct domain_device *dev)
2079{
2080	struct ex_phy *phy;
2081	int phy_id;
2082
2083	for (phy_id = 0; phy_id < ex_dev->num_phys; phy_id++) {
2084		phy = &ex_dev->ex_phy[phy_id];
2085		if (sas_phy_match_dev_addr(dev, phy))
2086			return phy_id;
2087	}
2088
2089	return -ENODEV;
2090}
2091EXPORT_SYMBOL_GPL(sas_find_attached_phy_id);
2092
2093void sas_smp_handler(struct bsg_job *job, struct Scsi_Host *shost,
2094		struct sas_rphy *rphy)
2095{
2096	struct domain_device *dev;
2097	unsigned int rcvlen = 0;
2098	int ret = -EINVAL;
2099
2100	/* no rphy means no smp target support (ie aic94xx host) */
2101	if (!rphy)
2102		return sas_smp_host_handler(job, shost);
2103
2104	switch (rphy->identify.device_type) {
2105	case SAS_EDGE_EXPANDER_DEVICE:
2106	case SAS_FANOUT_EXPANDER_DEVICE:
2107		break;
2108	default:
2109		pr_err("%s: can we send a smp request to a device?\n",
2110		       __func__);
2111		goto out;
2112	}
2113
2114	dev = sas_find_dev_by_rphy(rphy);
2115	if (!dev) {
2116		pr_err("%s: fail to find a domain_device?\n", __func__);
2117		goto out;
2118	}
2119
2120	/* do we need to support multiple segments? */
2121	if (job->request_payload.sg_cnt > 1 ||
2122	    job->reply_payload.sg_cnt > 1) {
2123		pr_info("%s: multiple segments req %u, rsp %u\n",
2124			__func__, job->request_payload.payload_len,
2125			job->reply_payload.payload_len);
2126		goto out;
2127	}
2128
2129	ret = smp_execute_task_sg(dev, job->request_payload.sg_list,
2130			job->reply_payload.sg_list);
2131	if (ret >= 0) {
2132		/* bsg_job_done() requires the length received  */
2133		rcvlen = job->reply_payload.payload_len - ret;
2134		ret = 0;
2135	}
2136
2137out:
2138	bsg_job_done(job, ret, rcvlen);
2139}