Loading...
1/*
2 * Serial Attached SCSI (SAS) Expander discovery and configuration
3 *
4 * Copyright (C) 2005 Adaptec, Inc. All rights reserved.
5 * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
6 *
7 * This file is licensed under GPLv2.
8 *
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License as
11 * published by the Free Software Foundation; either version 2 of the
12 * License, or (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
22 *
23 */
24
25#include <linux/scatterlist.h>
26#include <linux/blkdev.h>
27#include <linux/slab.h>
28
29#include "sas_internal.h"
30
31#include <scsi/sas_ata.h>
32#include <scsi/scsi_transport.h>
33#include <scsi/scsi_transport_sas.h>
34#include "../scsi_sas_internal.h"
35
36static int sas_discover_expander(struct domain_device *dev);
37static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr);
38static int sas_configure_phy(struct domain_device *dev, int phy_id,
39 u8 *sas_addr, int include);
40static int sas_disable_routing(struct domain_device *dev, u8 *sas_addr);
41
42/* ---------- SMP task management ---------- */
43
44static void smp_task_timedout(struct timer_list *t)
45{
46 struct sas_task_slow *slow = from_timer(slow, t, timer);
47 struct sas_task *task = slow->task;
48 unsigned long flags;
49
50 spin_lock_irqsave(&task->task_state_lock, flags);
51 if (!(task->task_state_flags & SAS_TASK_STATE_DONE))
52 task->task_state_flags |= SAS_TASK_STATE_ABORTED;
53 spin_unlock_irqrestore(&task->task_state_lock, flags);
54
55 complete(&task->slow_task->completion);
56}
57
58static void smp_task_done(struct sas_task *task)
59{
60 if (!del_timer(&task->slow_task->timer))
61 return;
62 complete(&task->slow_task->completion);
63}
64
65/* Give it some long enough timeout. In seconds. */
66#define SMP_TIMEOUT 10
67
68static int smp_execute_task_sg(struct domain_device *dev,
69 struct scatterlist *req, struct scatterlist *resp)
70{
71 int res, retry;
72 struct sas_task *task = NULL;
73 struct sas_internal *i =
74 to_sas_internal(dev->port->ha->core.shost->transportt);
75
76 mutex_lock(&dev->ex_dev.cmd_mutex);
77 for (retry = 0; retry < 3; retry++) {
78 if (test_bit(SAS_DEV_GONE, &dev->state)) {
79 res = -ECOMM;
80 break;
81 }
82
83 task = sas_alloc_slow_task(GFP_KERNEL);
84 if (!task) {
85 res = -ENOMEM;
86 break;
87 }
88 task->dev = dev;
89 task->task_proto = dev->tproto;
90 task->smp_task.smp_req = *req;
91 task->smp_task.smp_resp = *resp;
92
93 task->task_done = smp_task_done;
94
95 task->slow_task->timer.function = smp_task_timedout;
96 task->slow_task->timer.expires = jiffies + SMP_TIMEOUT*HZ;
97 add_timer(&task->slow_task->timer);
98
99 res = i->dft->lldd_execute_task(task, GFP_KERNEL);
100
101 if (res) {
102 del_timer(&task->slow_task->timer);
103 SAS_DPRINTK("executing SMP task failed:%d\n", res);
104 break;
105 }
106
107 wait_for_completion(&task->slow_task->completion);
108 res = -ECOMM;
109 if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
110 SAS_DPRINTK("smp task timed out or aborted\n");
111 i->dft->lldd_abort_task(task);
112 if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
113 SAS_DPRINTK("SMP task aborted and not done\n");
114 break;
115 }
116 }
117 if (task->task_status.resp == SAS_TASK_COMPLETE &&
118 task->task_status.stat == SAM_STAT_GOOD) {
119 res = 0;
120 break;
121 }
122 if (task->task_status.resp == SAS_TASK_COMPLETE &&
123 task->task_status.stat == SAS_DATA_UNDERRUN) {
124 /* no error, but return the number of bytes of
125 * underrun */
126 res = task->task_status.residual;
127 break;
128 }
129 if (task->task_status.resp == SAS_TASK_COMPLETE &&
130 task->task_status.stat == SAS_DATA_OVERRUN) {
131 res = -EMSGSIZE;
132 break;
133 }
134 if (task->task_status.resp == SAS_TASK_UNDELIVERED &&
135 task->task_status.stat == SAS_DEVICE_UNKNOWN)
136 break;
137 else {
138 SAS_DPRINTK("%s: task to dev %016llx response: 0x%x "
139 "status 0x%x\n", __func__,
140 SAS_ADDR(dev->sas_addr),
141 task->task_status.resp,
142 task->task_status.stat);
143 sas_free_task(task);
144 task = NULL;
145 }
146 }
147 mutex_unlock(&dev->ex_dev.cmd_mutex);
148
149 BUG_ON(retry == 3 && task != NULL);
150 sas_free_task(task);
151 return res;
152}
153
154static int smp_execute_task(struct domain_device *dev, void *req, int req_size,
155 void *resp, int resp_size)
156{
157 struct scatterlist req_sg;
158 struct scatterlist resp_sg;
159
160 sg_init_one(&req_sg, req, req_size);
161 sg_init_one(&resp_sg, resp, resp_size);
162 return smp_execute_task_sg(dev, &req_sg, &resp_sg);
163}
164
165/* ---------- Allocations ---------- */
166
167static inline void *alloc_smp_req(int size)
168{
169 u8 *p = kzalloc(size, GFP_KERNEL);
170 if (p)
171 p[0] = SMP_REQUEST;
172 return p;
173}
174
175static inline void *alloc_smp_resp(int size)
176{
177 return kzalloc(size, GFP_KERNEL);
178}
179
180static char sas_route_char(struct domain_device *dev, struct ex_phy *phy)
181{
182 switch (phy->routing_attr) {
183 case TABLE_ROUTING:
184 if (dev->ex_dev.t2t_supp)
185 return 'U';
186 else
187 return 'T';
188 case DIRECT_ROUTING:
189 return 'D';
190 case SUBTRACTIVE_ROUTING:
191 return 'S';
192 default:
193 return '?';
194 }
195}
196
197static enum sas_device_type to_dev_type(struct discover_resp *dr)
198{
199 /* This is detecting a failure to transmit initial dev to host
200 * FIS as described in section J.5 of sas-2 r16
201 */
202 if (dr->attached_dev_type == SAS_PHY_UNUSED && dr->attached_sata_dev &&
203 dr->linkrate >= SAS_LINK_RATE_1_5_GBPS)
204 return SAS_SATA_PENDING;
205 else
206 return dr->attached_dev_type;
207}
208
209static void sas_set_ex_phy(struct domain_device *dev, int phy_id, void *rsp)
210{
211 enum sas_device_type dev_type;
212 enum sas_linkrate linkrate;
213 u8 sas_addr[SAS_ADDR_SIZE];
214 struct smp_resp *resp = rsp;
215 struct discover_resp *dr = &resp->disc;
216 struct sas_ha_struct *ha = dev->port->ha;
217 struct expander_device *ex = &dev->ex_dev;
218 struct ex_phy *phy = &ex->ex_phy[phy_id];
219 struct sas_rphy *rphy = dev->rphy;
220 bool new_phy = !phy->phy;
221 char *type;
222
223 if (new_phy) {
224 if (WARN_ON_ONCE(test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)))
225 return;
226 phy->phy = sas_phy_alloc(&rphy->dev, phy_id);
227
228 /* FIXME: error_handling */
229 BUG_ON(!phy->phy);
230 }
231
232 switch (resp->result) {
233 case SMP_RESP_PHY_VACANT:
234 phy->phy_state = PHY_VACANT;
235 break;
236 default:
237 phy->phy_state = PHY_NOT_PRESENT;
238 break;
239 case SMP_RESP_FUNC_ACC:
240 phy->phy_state = PHY_EMPTY; /* do not know yet */
241 break;
242 }
243
244 /* check if anything important changed to squelch debug */
245 dev_type = phy->attached_dev_type;
246 linkrate = phy->linkrate;
247 memcpy(sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
248
249 /* Handle vacant phy - rest of dr data is not valid so skip it */
250 if (phy->phy_state == PHY_VACANT) {
251 memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
252 phy->attached_dev_type = SAS_PHY_UNUSED;
253 if (!test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)) {
254 phy->phy_id = phy_id;
255 goto skip;
256 } else
257 goto out;
258 }
259
260 phy->attached_dev_type = to_dev_type(dr);
261 if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))
262 goto out;
263 phy->phy_id = phy_id;
264 phy->linkrate = dr->linkrate;
265 phy->attached_sata_host = dr->attached_sata_host;
266 phy->attached_sata_dev = dr->attached_sata_dev;
267 phy->attached_sata_ps = dr->attached_sata_ps;
268 phy->attached_iproto = dr->iproto << 1;
269 phy->attached_tproto = dr->tproto << 1;
270 /* help some expanders that fail to zero sas_address in the 'no
271 * device' case
272 */
273 if (phy->attached_dev_type == SAS_PHY_UNUSED ||
274 phy->linkrate < SAS_LINK_RATE_1_5_GBPS)
275 memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
276 else
277 memcpy(phy->attached_sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE);
278 phy->attached_phy_id = dr->attached_phy_id;
279 phy->phy_change_count = dr->change_count;
280 phy->routing_attr = dr->routing_attr;
281 phy->virtual = dr->virtual;
282 phy->last_da_index = -1;
283
284 phy->phy->identify.sas_address = SAS_ADDR(phy->attached_sas_addr);
285 phy->phy->identify.device_type = dr->attached_dev_type;
286 phy->phy->identify.initiator_port_protocols = phy->attached_iproto;
287 phy->phy->identify.target_port_protocols = phy->attached_tproto;
288 if (!phy->attached_tproto && dr->attached_sata_dev)
289 phy->phy->identify.target_port_protocols = SAS_PROTOCOL_SATA;
290 phy->phy->identify.phy_identifier = phy_id;
291 phy->phy->minimum_linkrate_hw = dr->hmin_linkrate;
292 phy->phy->maximum_linkrate_hw = dr->hmax_linkrate;
293 phy->phy->minimum_linkrate = dr->pmin_linkrate;
294 phy->phy->maximum_linkrate = dr->pmax_linkrate;
295 phy->phy->negotiated_linkrate = phy->linkrate;
296 phy->phy->enabled = (phy->linkrate != SAS_PHY_DISABLED);
297
298 skip:
299 if (new_phy)
300 if (sas_phy_add(phy->phy)) {
301 sas_phy_free(phy->phy);
302 return;
303 }
304
305 out:
306 switch (phy->attached_dev_type) {
307 case SAS_SATA_PENDING:
308 type = "stp pending";
309 break;
310 case SAS_PHY_UNUSED:
311 type = "no device";
312 break;
313 case SAS_END_DEVICE:
314 if (phy->attached_iproto) {
315 if (phy->attached_tproto)
316 type = "host+target";
317 else
318 type = "host";
319 } else {
320 if (dr->attached_sata_dev)
321 type = "stp";
322 else
323 type = "ssp";
324 }
325 break;
326 case SAS_EDGE_EXPANDER_DEVICE:
327 case SAS_FANOUT_EXPANDER_DEVICE:
328 type = "smp";
329 break;
330 default:
331 type = "unknown";
332 }
333
334 /* this routine is polled by libata error recovery so filter
335 * unimportant messages
336 */
337 if (new_phy || phy->attached_dev_type != dev_type ||
338 phy->linkrate != linkrate ||
339 SAS_ADDR(phy->attached_sas_addr) != SAS_ADDR(sas_addr))
340 /* pass */;
341 else
342 return;
343
344 /* if the attached device type changed and ata_eh is active,
345 * make sure we run revalidation when eh completes (see:
346 * sas_enable_revalidation)
347 */
348 if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))
349 set_bit(DISCE_REVALIDATE_DOMAIN, &dev->port->disc.pending);
350
351 SAS_DPRINTK("%sex %016llx phy%02d:%c:%X attached: %016llx (%s)\n",
352 test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state) ? "ata: " : "",
353 SAS_ADDR(dev->sas_addr), phy->phy_id,
354 sas_route_char(dev, phy), phy->linkrate,
355 SAS_ADDR(phy->attached_sas_addr), type);
356}
357
358/* check if we have an existing attached ata device on this expander phy */
359struct domain_device *sas_ex_to_ata(struct domain_device *ex_dev, int phy_id)
360{
361 struct ex_phy *ex_phy = &ex_dev->ex_dev.ex_phy[phy_id];
362 struct domain_device *dev;
363 struct sas_rphy *rphy;
364
365 if (!ex_phy->port)
366 return NULL;
367
368 rphy = ex_phy->port->rphy;
369 if (!rphy)
370 return NULL;
371
372 dev = sas_find_dev_by_rphy(rphy);
373
374 if (dev && dev_is_sata(dev))
375 return dev;
376
377 return NULL;
378}
379
380#define DISCOVER_REQ_SIZE 16
381#define DISCOVER_RESP_SIZE 56
382
383static int sas_ex_phy_discover_helper(struct domain_device *dev, u8 *disc_req,
384 u8 *disc_resp, int single)
385{
386 struct discover_resp *dr;
387 int res;
388
389 disc_req[9] = single;
390
391 res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
392 disc_resp, DISCOVER_RESP_SIZE);
393 if (res)
394 return res;
395 dr = &((struct smp_resp *)disc_resp)->disc;
396 if (memcmp(dev->sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE) == 0) {
397 sas_printk("Found loopback topology, just ignore it!\n");
398 return 0;
399 }
400 sas_set_ex_phy(dev, single, disc_resp);
401 return 0;
402}
403
404int sas_ex_phy_discover(struct domain_device *dev, int single)
405{
406 struct expander_device *ex = &dev->ex_dev;
407 int res = 0;
408 u8 *disc_req;
409 u8 *disc_resp;
410
411 disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
412 if (!disc_req)
413 return -ENOMEM;
414
415 disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
416 if (!disc_resp) {
417 kfree(disc_req);
418 return -ENOMEM;
419 }
420
421 disc_req[1] = SMP_DISCOVER;
422
423 if (0 <= single && single < ex->num_phys) {
424 res = sas_ex_phy_discover_helper(dev, disc_req, disc_resp, single);
425 } else {
426 int i;
427
428 for (i = 0; i < ex->num_phys; i++) {
429 res = sas_ex_phy_discover_helper(dev, disc_req,
430 disc_resp, i);
431 if (res)
432 goto out_err;
433 }
434 }
435out_err:
436 kfree(disc_resp);
437 kfree(disc_req);
438 return res;
439}
440
441static int sas_expander_discover(struct domain_device *dev)
442{
443 struct expander_device *ex = &dev->ex_dev;
444 int res = -ENOMEM;
445
446 ex->ex_phy = kzalloc(sizeof(*ex->ex_phy)*ex->num_phys, GFP_KERNEL);
447 if (!ex->ex_phy)
448 return -ENOMEM;
449
450 res = sas_ex_phy_discover(dev, -1);
451 if (res)
452 goto out_err;
453
454 return 0;
455 out_err:
456 kfree(ex->ex_phy);
457 ex->ex_phy = NULL;
458 return res;
459}
460
461#define MAX_EXPANDER_PHYS 128
462
463static void ex_assign_report_general(struct domain_device *dev,
464 struct smp_resp *resp)
465{
466 struct report_general_resp *rg = &resp->rg;
467
468 dev->ex_dev.ex_change_count = be16_to_cpu(rg->change_count);
469 dev->ex_dev.max_route_indexes = be16_to_cpu(rg->route_indexes);
470 dev->ex_dev.num_phys = min(rg->num_phys, (u8)MAX_EXPANDER_PHYS);
471 dev->ex_dev.t2t_supp = rg->t2t_supp;
472 dev->ex_dev.conf_route_table = rg->conf_route_table;
473 dev->ex_dev.configuring = rg->configuring;
474 memcpy(dev->ex_dev.enclosure_logical_id, rg->enclosure_logical_id, 8);
475}
476
477#define RG_REQ_SIZE 8
478#define RG_RESP_SIZE 32
479
480static int sas_ex_general(struct domain_device *dev)
481{
482 u8 *rg_req;
483 struct smp_resp *rg_resp;
484 int res;
485 int i;
486
487 rg_req = alloc_smp_req(RG_REQ_SIZE);
488 if (!rg_req)
489 return -ENOMEM;
490
491 rg_resp = alloc_smp_resp(RG_RESP_SIZE);
492 if (!rg_resp) {
493 kfree(rg_req);
494 return -ENOMEM;
495 }
496
497 rg_req[1] = SMP_REPORT_GENERAL;
498
499 for (i = 0; i < 5; i++) {
500 res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
501 RG_RESP_SIZE);
502
503 if (res) {
504 SAS_DPRINTK("RG to ex %016llx failed:0x%x\n",
505 SAS_ADDR(dev->sas_addr), res);
506 goto out;
507 } else if (rg_resp->result != SMP_RESP_FUNC_ACC) {
508 SAS_DPRINTK("RG:ex %016llx returned SMP result:0x%x\n",
509 SAS_ADDR(dev->sas_addr), rg_resp->result);
510 res = rg_resp->result;
511 goto out;
512 }
513
514 ex_assign_report_general(dev, rg_resp);
515
516 if (dev->ex_dev.configuring) {
517 SAS_DPRINTK("RG: ex %llx self-configuring...\n",
518 SAS_ADDR(dev->sas_addr));
519 schedule_timeout_interruptible(5*HZ);
520 } else
521 break;
522 }
523out:
524 kfree(rg_req);
525 kfree(rg_resp);
526 return res;
527}
528
529static void ex_assign_manuf_info(struct domain_device *dev, void
530 *_mi_resp)
531{
532 u8 *mi_resp = _mi_resp;
533 struct sas_rphy *rphy = dev->rphy;
534 struct sas_expander_device *edev = rphy_to_expander_device(rphy);
535
536 memcpy(edev->vendor_id, mi_resp + 12, SAS_EXPANDER_VENDOR_ID_LEN);
537 memcpy(edev->product_id, mi_resp + 20, SAS_EXPANDER_PRODUCT_ID_LEN);
538 memcpy(edev->product_rev, mi_resp + 36,
539 SAS_EXPANDER_PRODUCT_REV_LEN);
540
541 if (mi_resp[8] & 1) {
542 memcpy(edev->component_vendor_id, mi_resp + 40,
543 SAS_EXPANDER_COMPONENT_VENDOR_ID_LEN);
544 edev->component_id = mi_resp[48] << 8 | mi_resp[49];
545 edev->component_revision_id = mi_resp[50];
546 }
547}
548
549#define MI_REQ_SIZE 8
550#define MI_RESP_SIZE 64
551
552static int sas_ex_manuf_info(struct domain_device *dev)
553{
554 u8 *mi_req;
555 u8 *mi_resp;
556 int res;
557
558 mi_req = alloc_smp_req(MI_REQ_SIZE);
559 if (!mi_req)
560 return -ENOMEM;
561
562 mi_resp = alloc_smp_resp(MI_RESP_SIZE);
563 if (!mi_resp) {
564 kfree(mi_req);
565 return -ENOMEM;
566 }
567
568 mi_req[1] = SMP_REPORT_MANUF_INFO;
569
570 res = smp_execute_task(dev, mi_req, MI_REQ_SIZE, mi_resp,MI_RESP_SIZE);
571 if (res) {
572 SAS_DPRINTK("MI: ex %016llx failed:0x%x\n",
573 SAS_ADDR(dev->sas_addr), res);
574 goto out;
575 } else if (mi_resp[2] != SMP_RESP_FUNC_ACC) {
576 SAS_DPRINTK("MI ex %016llx returned SMP result:0x%x\n",
577 SAS_ADDR(dev->sas_addr), mi_resp[2]);
578 goto out;
579 }
580
581 ex_assign_manuf_info(dev, mi_resp);
582out:
583 kfree(mi_req);
584 kfree(mi_resp);
585 return res;
586}
587
588#define PC_REQ_SIZE 44
589#define PC_RESP_SIZE 8
590
591int sas_smp_phy_control(struct domain_device *dev, int phy_id,
592 enum phy_func phy_func,
593 struct sas_phy_linkrates *rates)
594{
595 u8 *pc_req;
596 u8 *pc_resp;
597 int res;
598
599 pc_req = alloc_smp_req(PC_REQ_SIZE);
600 if (!pc_req)
601 return -ENOMEM;
602
603 pc_resp = alloc_smp_resp(PC_RESP_SIZE);
604 if (!pc_resp) {
605 kfree(pc_req);
606 return -ENOMEM;
607 }
608
609 pc_req[1] = SMP_PHY_CONTROL;
610 pc_req[9] = phy_id;
611 pc_req[10]= phy_func;
612 if (rates) {
613 pc_req[32] = rates->minimum_linkrate << 4;
614 pc_req[33] = rates->maximum_linkrate << 4;
615 }
616
617 res = smp_execute_task(dev, pc_req, PC_REQ_SIZE, pc_resp,PC_RESP_SIZE);
618
619 kfree(pc_resp);
620 kfree(pc_req);
621 return res;
622}
623
624static void sas_ex_disable_phy(struct domain_device *dev, int phy_id)
625{
626 struct expander_device *ex = &dev->ex_dev;
627 struct ex_phy *phy = &ex->ex_phy[phy_id];
628
629 sas_smp_phy_control(dev, phy_id, PHY_FUNC_DISABLE, NULL);
630 phy->linkrate = SAS_PHY_DISABLED;
631}
632
633static void sas_ex_disable_port(struct domain_device *dev, u8 *sas_addr)
634{
635 struct expander_device *ex = &dev->ex_dev;
636 int i;
637
638 for (i = 0; i < ex->num_phys; i++) {
639 struct ex_phy *phy = &ex->ex_phy[i];
640
641 if (phy->phy_state == PHY_VACANT ||
642 phy->phy_state == PHY_NOT_PRESENT)
643 continue;
644
645 if (SAS_ADDR(phy->attached_sas_addr) == SAS_ADDR(sas_addr))
646 sas_ex_disable_phy(dev, i);
647 }
648}
649
650static int sas_dev_present_in_domain(struct asd_sas_port *port,
651 u8 *sas_addr)
652{
653 struct domain_device *dev;
654
655 if (SAS_ADDR(port->sas_addr) == SAS_ADDR(sas_addr))
656 return 1;
657 list_for_each_entry(dev, &port->dev_list, dev_list_node) {
658 if (SAS_ADDR(dev->sas_addr) == SAS_ADDR(sas_addr))
659 return 1;
660 }
661 return 0;
662}
663
664#define RPEL_REQ_SIZE 16
665#define RPEL_RESP_SIZE 32
666int sas_smp_get_phy_events(struct sas_phy *phy)
667{
668 int res;
669 u8 *req;
670 u8 *resp;
671 struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent);
672 struct domain_device *dev = sas_find_dev_by_rphy(rphy);
673
674 req = alloc_smp_req(RPEL_REQ_SIZE);
675 if (!req)
676 return -ENOMEM;
677
678 resp = alloc_smp_resp(RPEL_RESP_SIZE);
679 if (!resp) {
680 kfree(req);
681 return -ENOMEM;
682 }
683
684 req[1] = SMP_REPORT_PHY_ERR_LOG;
685 req[9] = phy->number;
686
687 res = smp_execute_task(dev, req, RPEL_REQ_SIZE,
688 resp, RPEL_RESP_SIZE);
689
690 if (res)
691 goto out;
692
693 phy->invalid_dword_count = scsi_to_u32(&resp[12]);
694 phy->running_disparity_error_count = scsi_to_u32(&resp[16]);
695 phy->loss_of_dword_sync_count = scsi_to_u32(&resp[20]);
696 phy->phy_reset_problem_count = scsi_to_u32(&resp[24]);
697
698 out:
699 kfree(req);
700 kfree(resp);
701 return res;
702
703}
704
705#ifdef CONFIG_SCSI_SAS_ATA
706
707#define RPS_REQ_SIZE 16
708#define RPS_RESP_SIZE 60
709
710int sas_get_report_phy_sata(struct domain_device *dev, int phy_id,
711 struct smp_resp *rps_resp)
712{
713 int res;
714 u8 *rps_req = alloc_smp_req(RPS_REQ_SIZE);
715 u8 *resp = (u8 *)rps_resp;
716
717 if (!rps_req)
718 return -ENOMEM;
719
720 rps_req[1] = SMP_REPORT_PHY_SATA;
721 rps_req[9] = phy_id;
722
723 res = smp_execute_task(dev, rps_req, RPS_REQ_SIZE,
724 rps_resp, RPS_RESP_SIZE);
725
726 /* 0x34 is the FIS type for the D2H fis. There's a potential
727 * standards cockup here. sas-2 explicitly specifies the FIS
728 * should be encoded so that FIS type is in resp[24].
729 * However, some expanders endian reverse this. Undo the
730 * reversal here */
731 if (!res && resp[27] == 0x34 && resp[24] != 0x34) {
732 int i;
733
734 for (i = 0; i < 5; i++) {
735 int j = 24 + (i*4);
736 u8 a, b;
737 a = resp[j + 0];
738 b = resp[j + 1];
739 resp[j + 0] = resp[j + 3];
740 resp[j + 1] = resp[j + 2];
741 resp[j + 2] = b;
742 resp[j + 3] = a;
743 }
744 }
745
746 kfree(rps_req);
747 return res;
748}
749#endif
750
751static void sas_ex_get_linkrate(struct domain_device *parent,
752 struct domain_device *child,
753 struct ex_phy *parent_phy)
754{
755 struct expander_device *parent_ex = &parent->ex_dev;
756 struct sas_port *port;
757 int i;
758
759 child->pathways = 0;
760
761 port = parent_phy->port;
762
763 for (i = 0; i < parent_ex->num_phys; i++) {
764 struct ex_phy *phy = &parent_ex->ex_phy[i];
765
766 if (phy->phy_state == PHY_VACANT ||
767 phy->phy_state == PHY_NOT_PRESENT)
768 continue;
769
770 if (SAS_ADDR(phy->attached_sas_addr) ==
771 SAS_ADDR(child->sas_addr)) {
772
773 child->min_linkrate = min(parent->min_linkrate,
774 phy->linkrate);
775 child->max_linkrate = max(parent->max_linkrate,
776 phy->linkrate);
777 child->pathways++;
778 sas_port_add_phy(port, phy->phy);
779 }
780 }
781 child->linkrate = min(parent_phy->linkrate, child->max_linkrate);
782 child->pathways = min(child->pathways, parent->pathways);
783}
784
785static struct domain_device *sas_ex_discover_end_dev(
786 struct domain_device *parent, int phy_id)
787{
788 struct expander_device *parent_ex = &parent->ex_dev;
789 struct ex_phy *phy = &parent_ex->ex_phy[phy_id];
790 struct domain_device *child = NULL;
791 struct sas_rphy *rphy;
792 int res;
793
794 if (phy->attached_sata_host || phy->attached_sata_ps)
795 return NULL;
796
797 child = sas_alloc_device();
798 if (!child)
799 return NULL;
800
801 kref_get(&parent->kref);
802 child->parent = parent;
803 child->port = parent->port;
804 child->iproto = phy->attached_iproto;
805 memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
806 sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
807 if (!phy->port) {
808 phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
809 if (unlikely(!phy->port))
810 goto out_err;
811 if (unlikely(sas_port_add(phy->port) != 0)) {
812 sas_port_free(phy->port);
813 goto out_err;
814 }
815 }
816 sas_ex_get_linkrate(parent, child, phy);
817 sas_device_set_phy(child, phy->port);
818
819#ifdef CONFIG_SCSI_SAS_ATA
820 if ((phy->attached_tproto & SAS_PROTOCOL_STP) || phy->attached_sata_dev) {
821 res = sas_get_ata_info(child, phy);
822 if (res)
823 goto out_free;
824
825 sas_init_dev(child);
826 res = sas_ata_init(child);
827 if (res)
828 goto out_free;
829 rphy = sas_end_device_alloc(phy->port);
830 if (!rphy)
831 goto out_free;
832
833 child->rphy = rphy;
834 get_device(&rphy->dev);
835
836 list_add_tail(&child->disco_list_node, &parent->port->disco_list);
837
838 res = sas_discover_sata(child);
839 if (res) {
840 SAS_DPRINTK("sas_discover_sata() for device %16llx at "
841 "%016llx:0x%x returned 0x%x\n",
842 SAS_ADDR(child->sas_addr),
843 SAS_ADDR(parent->sas_addr), phy_id, res);
844 goto out_list_del;
845 }
846 } else
847#endif
848 if (phy->attached_tproto & SAS_PROTOCOL_SSP) {
849 child->dev_type = SAS_END_DEVICE;
850 rphy = sas_end_device_alloc(phy->port);
851 /* FIXME: error handling */
852 if (unlikely(!rphy))
853 goto out_free;
854 child->tproto = phy->attached_tproto;
855 sas_init_dev(child);
856
857 child->rphy = rphy;
858 get_device(&rphy->dev);
859 sas_fill_in_rphy(child, rphy);
860
861 list_add_tail(&child->disco_list_node, &parent->port->disco_list);
862
863 res = sas_discover_end_dev(child);
864 if (res) {
865 SAS_DPRINTK("sas_discover_end_dev() for device %16llx "
866 "at %016llx:0x%x returned 0x%x\n",
867 SAS_ADDR(child->sas_addr),
868 SAS_ADDR(parent->sas_addr), phy_id, res);
869 goto out_list_del;
870 }
871 } else {
872 SAS_DPRINTK("target proto 0x%x at %016llx:0x%x not handled\n",
873 phy->attached_tproto, SAS_ADDR(parent->sas_addr),
874 phy_id);
875 goto out_free;
876 }
877
878 list_add_tail(&child->siblings, &parent_ex->children);
879 return child;
880
881 out_list_del:
882 sas_rphy_free(child->rphy);
883 list_del(&child->disco_list_node);
884 spin_lock_irq(&parent->port->dev_list_lock);
885 list_del(&child->dev_list_node);
886 spin_unlock_irq(&parent->port->dev_list_lock);
887 out_free:
888 sas_port_delete(phy->port);
889 out_err:
890 phy->port = NULL;
891 sas_put_device(child);
892 return NULL;
893}
894
895/* See if this phy is part of a wide port */
896static bool sas_ex_join_wide_port(struct domain_device *parent, int phy_id)
897{
898 struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
899 int i;
900
901 for (i = 0; i < parent->ex_dev.num_phys; i++) {
902 struct ex_phy *ephy = &parent->ex_dev.ex_phy[i];
903
904 if (ephy == phy)
905 continue;
906
907 if (!memcmp(phy->attached_sas_addr, ephy->attached_sas_addr,
908 SAS_ADDR_SIZE) && ephy->port) {
909 sas_port_add_phy(ephy->port, phy->phy);
910 phy->port = ephy->port;
911 phy->phy_state = PHY_DEVICE_DISCOVERED;
912 return true;
913 }
914 }
915
916 return false;
917}
918
919static struct domain_device *sas_ex_discover_expander(
920 struct domain_device *parent, int phy_id)
921{
922 struct sas_expander_device *parent_ex = rphy_to_expander_device(parent->rphy);
923 struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
924 struct domain_device *child = NULL;
925 struct sas_rphy *rphy;
926 struct sas_expander_device *edev;
927 struct asd_sas_port *port;
928 int res;
929
930 if (phy->routing_attr == DIRECT_ROUTING) {
931 SAS_DPRINTK("ex %016llx:0x%x:D <--> ex %016llx:0x%x is not "
932 "allowed\n",
933 SAS_ADDR(parent->sas_addr), phy_id,
934 SAS_ADDR(phy->attached_sas_addr),
935 phy->attached_phy_id);
936 return NULL;
937 }
938 child = sas_alloc_device();
939 if (!child)
940 return NULL;
941
942 phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
943 /* FIXME: better error handling */
944 BUG_ON(sas_port_add(phy->port) != 0);
945
946
947 switch (phy->attached_dev_type) {
948 case SAS_EDGE_EXPANDER_DEVICE:
949 rphy = sas_expander_alloc(phy->port,
950 SAS_EDGE_EXPANDER_DEVICE);
951 break;
952 case SAS_FANOUT_EXPANDER_DEVICE:
953 rphy = sas_expander_alloc(phy->port,
954 SAS_FANOUT_EXPANDER_DEVICE);
955 break;
956 default:
957 rphy = NULL; /* shut gcc up */
958 BUG();
959 }
960 port = parent->port;
961 child->rphy = rphy;
962 get_device(&rphy->dev);
963 edev = rphy_to_expander_device(rphy);
964 child->dev_type = phy->attached_dev_type;
965 kref_get(&parent->kref);
966 child->parent = parent;
967 child->port = port;
968 child->iproto = phy->attached_iproto;
969 child->tproto = phy->attached_tproto;
970 memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
971 sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
972 sas_ex_get_linkrate(parent, child, phy);
973 edev->level = parent_ex->level + 1;
974 parent->port->disc.max_level = max(parent->port->disc.max_level,
975 edev->level);
976 sas_init_dev(child);
977 sas_fill_in_rphy(child, rphy);
978 sas_rphy_add(rphy);
979
980 spin_lock_irq(&parent->port->dev_list_lock);
981 list_add_tail(&child->dev_list_node, &parent->port->dev_list);
982 spin_unlock_irq(&parent->port->dev_list_lock);
983
984 res = sas_discover_expander(child);
985 if (res) {
986 sas_rphy_delete(rphy);
987 spin_lock_irq(&parent->port->dev_list_lock);
988 list_del(&child->dev_list_node);
989 spin_unlock_irq(&parent->port->dev_list_lock);
990 sas_put_device(child);
991 return NULL;
992 }
993 list_add_tail(&child->siblings, &parent->ex_dev.children);
994 return child;
995}
996
997static int sas_ex_discover_dev(struct domain_device *dev, int phy_id)
998{
999 struct expander_device *ex = &dev->ex_dev;
1000 struct ex_phy *ex_phy = &ex->ex_phy[phy_id];
1001 struct domain_device *child = NULL;
1002 int res = 0;
1003
1004 /* Phy state */
1005 if (ex_phy->linkrate == SAS_SATA_SPINUP_HOLD) {
1006 if (!sas_smp_phy_control(dev, phy_id, PHY_FUNC_LINK_RESET, NULL))
1007 res = sas_ex_phy_discover(dev, phy_id);
1008 if (res)
1009 return res;
1010 }
1011
1012 /* Parent and domain coherency */
1013 if (!dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
1014 SAS_ADDR(dev->port->sas_addr))) {
1015 sas_add_parent_port(dev, phy_id);
1016 return 0;
1017 }
1018 if (dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
1019 SAS_ADDR(dev->parent->sas_addr))) {
1020 sas_add_parent_port(dev, phy_id);
1021 if (ex_phy->routing_attr == TABLE_ROUTING)
1022 sas_configure_phy(dev, phy_id, dev->port->sas_addr, 1);
1023 return 0;
1024 }
1025
1026 if (sas_dev_present_in_domain(dev->port, ex_phy->attached_sas_addr))
1027 sas_ex_disable_port(dev, ex_phy->attached_sas_addr);
1028
1029 if (ex_phy->attached_dev_type == SAS_PHY_UNUSED) {
1030 if (ex_phy->routing_attr == DIRECT_ROUTING) {
1031 memset(ex_phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1032 sas_configure_routing(dev, ex_phy->attached_sas_addr);
1033 }
1034 return 0;
1035 } else if (ex_phy->linkrate == SAS_LINK_RATE_UNKNOWN)
1036 return 0;
1037
1038 if (ex_phy->attached_dev_type != SAS_END_DEVICE &&
1039 ex_phy->attached_dev_type != SAS_FANOUT_EXPANDER_DEVICE &&
1040 ex_phy->attached_dev_type != SAS_EDGE_EXPANDER_DEVICE &&
1041 ex_phy->attached_dev_type != SAS_SATA_PENDING) {
1042 SAS_DPRINTK("unknown device type(0x%x) attached to ex %016llx "
1043 "phy 0x%x\n", ex_phy->attached_dev_type,
1044 SAS_ADDR(dev->sas_addr),
1045 phy_id);
1046 return 0;
1047 }
1048
1049 res = sas_configure_routing(dev, ex_phy->attached_sas_addr);
1050 if (res) {
1051 SAS_DPRINTK("configure routing for dev %016llx "
1052 "reported 0x%x. Forgotten\n",
1053 SAS_ADDR(ex_phy->attached_sas_addr), res);
1054 sas_disable_routing(dev, ex_phy->attached_sas_addr);
1055 return res;
1056 }
1057
1058 if (sas_ex_join_wide_port(dev, phy_id)) {
1059 SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n",
1060 phy_id, SAS_ADDR(ex_phy->attached_sas_addr));
1061 return res;
1062 }
1063
1064 switch (ex_phy->attached_dev_type) {
1065 case SAS_END_DEVICE:
1066 case SAS_SATA_PENDING:
1067 child = sas_ex_discover_end_dev(dev, phy_id);
1068 break;
1069 case SAS_FANOUT_EXPANDER_DEVICE:
1070 if (SAS_ADDR(dev->port->disc.fanout_sas_addr)) {
1071 SAS_DPRINTK("second fanout expander %016llx phy 0x%x "
1072 "attached to ex %016llx phy 0x%x\n",
1073 SAS_ADDR(ex_phy->attached_sas_addr),
1074 ex_phy->attached_phy_id,
1075 SAS_ADDR(dev->sas_addr),
1076 phy_id);
1077 sas_ex_disable_phy(dev, phy_id);
1078 break;
1079 } else
1080 memcpy(dev->port->disc.fanout_sas_addr,
1081 ex_phy->attached_sas_addr, SAS_ADDR_SIZE);
1082 /* fallthrough */
1083 case SAS_EDGE_EXPANDER_DEVICE:
1084 child = sas_ex_discover_expander(dev, phy_id);
1085 break;
1086 default:
1087 break;
1088 }
1089
1090 if (child) {
1091 int i;
1092
1093 for (i = 0; i < ex->num_phys; i++) {
1094 if (ex->ex_phy[i].phy_state == PHY_VACANT ||
1095 ex->ex_phy[i].phy_state == PHY_NOT_PRESENT)
1096 continue;
1097 /*
1098 * Due to races, the phy might not get added to the
1099 * wide port, so we add the phy to the wide port here.
1100 */
1101 if (SAS_ADDR(ex->ex_phy[i].attached_sas_addr) ==
1102 SAS_ADDR(child->sas_addr)) {
1103 ex->ex_phy[i].phy_state= PHY_DEVICE_DISCOVERED;
1104 if (sas_ex_join_wide_port(dev, i))
1105 SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n",
1106 i, SAS_ADDR(ex->ex_phy[i].attached_sas_addr));
1107
1108 }
1109 }
1110 }
1111
1112 return res;
1113}
1114
1115static int sas_find_sub_addr(struct domain_device *dev, u8 *sub_addr)
1116{
1117 struct expander_device *ex = &dev->ex_dev;
1118 int i;
1119
1120 for (i = 0; i < ex->num_phys; i++) {
1121 struct ex_phy *phy = &ex->ex_phy[i];
1122
1123 if (phy->phy_state == PHY_VACANT ||
1124 phy->phy_state == PHY_NOT_PRESENT)
1125 continue;
1126
1127 if ((phy->attached_dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1128 phy->attached_dev_type == SAS_FANOUT_EXPANDER_DEVICE) &&
1129 phy->routing_attr == SUBTRACTIVE_ROUTING) {
1130
1131 memcpy(sub_addr, phy->attached_sas_addr,SAS_ADDR_SIZE);
1132
1133 return 1;
1134 }
1135 }
1136 return 0;
1137}
1138
1139static int sas_check_level_subtractive_boundary(struct domain_device *dev)
1140{
1141 struct expander_device *ex = &dev->ex_dev;
1142 struct domain_device *child;
1143 u8 sub_addr[8] = {0, };
1144
1145 list_for_each_entry(child, &ex->children, siblings) {
1146 if (child->dev_type != SAS_EDGE_EXPANDER_DEVICE &&
1147 child->dev_type != SAS_FANOUT_EXPANDER_DEVICE)
1148 continue;
1149 if (sub_addr[0] == 0) {
1150 sas_find_sub_addr(child, sub_addr);
1151 continue;
1152 } else {
1153 u8 s2[8];
1154
1155 if (sas_find_sub_addr(child, s2) &&
1156 (SAS_ADDR(sub_addr) != SAS_ADDR(s2))) {
1157
1158 SAS_DPRINTK("ex %016llx->%016llx-?->%016llx "
1159 "diverges from subtractive "
1160 "boundary %016llx\n",
1161 SAS_ADDR(dev->sas_addr),
1162 SAS_ADDR(child->sas_addr),
1163 SAS_ADDR(s2),
1164 SAS_ADDR(sub_addr));
1165
1166 sas_ex_disable_port(child, s2);
1167 }
1168 }
1169 }
1170 return 0;
1171}
1172/**
1173 * sas_ex_discover_devices - discover devices attached to this expander
1174 * @dev: pointer to the expander domain device
1175 * @single: if you want to do a single phy, else set to -1;
1176 *
1177 * Configure this expander for use with its devices and register the
1178 * devices of this expander.
1179 */
1180static int sas_ex_discover_devices(struct domain_device *dev, int single)
1181{
1182 struct expander_device *ex = &dev->ex_dev;
1183 int i = 0, end = ex->num_phys;
1184 int res = 0;
1185
1186 if (0 <= single && single < end) {
1187 i = single;
1188 end = i+1;
1189 }
1190
1191 for ( ; i < end; i++) {
1192 struct ex_phy *ex_phy = &ex->ex_phy[i];
1193
1194 if (ex_phy->phy_state == PHY_VACANT ||
1195 ex_phy->phy_state == PHY_NOT_PRESENT ||
1196 ex_phy->phy_state == PHY_DEVICE_DISCOVERED)
1197 continue;
1198
1199 switch (ex_phy->linkrate) {
1200 case SAS_PHY_DISABLED:
1201 case SAS_PHY_RESET_PROBLEM:
1202 case SAS_SATA_PORT_SELECTOR:
1203 continue;
1204 default:
1205 res = sas_ex_discover_dev(dev, i);
1206 if (res)
1207 break;
1208 continue;
1209 }
1210 }
1211
1212 if (!res)
1213 sas_check_level_subtractive_boundary(dev);
1214
1215 return res;
1216}
1217
1218static int sas_check_ex_subtractive_boundary(struct domain_device *dev)
1219{
1220 struct expander_device *ex = &dev->ex_dev;
1221 int i;
1222 u8 *sub_sas_addr = NULL;
1223
1224 if (dev->dev_type != SAS_EDGE_EXPANDER_DEVICE)
1225 return 0;
1226
1227 for (i = 0; i < ex->num_phys; i++) {
1228 struct ex_phy *phy = &ex->ex_phy[i];
1229
1230 if (phy->phy_state == PHY_VACANT ||
1231 phy->phy_state == PHY_NOT_PRESENT)
1232 continue;
1233
1234 if ((phy->attached_dev_type == SAS_FANOUT_EXPANDER_DEVICE ||
1235 phy->attached_dev_type == SAS_EDGE_EXPANDER_DEVICE) &&
1236 phy->routing_attr == SUBTRACTIVE_ROUTING) {
1237
1238 if (!sub_sas_addr)
1239 sub_sas_addr = &phy->attached_sas_addr[0];
1240 else if (SAS_ADDR(sub_sas_addr) !=
1241 SAS_ADDR(phy->attached_sas_addr)) {
1242
1243 SAS_DPRINTK("ex %016llx phy 0x%x "
1244 "diverges(%016llx) on subtractive "
1245 "boundary(%016llx). Disabled\n",
1246 SAS_ADDR(dev->sas_addr), i,
1247 SAS_ADDR(phy->attached_sas_addr),
1248 SAS_ADDR(sub_sas_addr));
1249 sas_ex_disable_phy(dev, i);
1250 }
1251 }
1252 }
1253 return 0;
1254}
1255
1256static void sas_print_parent_topology_bug(struct domain_device *child,
1257 struct ex_phy *parent_phy,
1258 struct ex_phy *child_phy)
1259{
1260 static const char *ex_type[] = {
1261 [SAS_EDGE_EXPANDER_DEVICE] = "edge",
1262 [SAS_FANOUT_EXPANDER_DEVICE] = "fanout",
1263 };
1264 struct domain_device *parent = child->parent;
1265
1266 sas_printk("%s ex %016llx phy 0x%x <--> %s ex %016llx "
1267 "phy 0x%x has %c:%c routing link!\n",
1268
1269 ex_type[parent->dev_type],
1270 SAS_ADDR(parent->sas_addr),
1271 parent_phy->phy_id,
1272
1273 ex_type[child->dev_type],
1274 SAS_ADDR(child->sas_addr),
1275 child_phy->phy_id,
1276
1277 sas_route_char(parent, parent_phy),
1278 sas_route_char(child, child_phy));
1279}
1280
1281static int sas_check_eeds(struct domain_device *child,
1282 struct ex_phy *parent_phy,
1283 struct ex_phy *child_phy)
1284{
1285 int res = 0;
1286 struct domain_device *parent = child->parent;
1287
1288 if (SAS_ADDR(parent->port->disc.fanout_sas_addr) != 0) {
1289 res = -ENODEV;
1290 SAS_DPRINTK("edge ex %016llx phy S:0x%x <--> edge ex %016llx "
1291 "phy S:0x%x, while there is a fanout ex %016llx\n",
1292 SAS_ADDR(parent->sas_addr),
1293 parent_phy->phy_id,
1294 SAS_ADDR(child->sas_addr),
1295 child_phy->phy_id,
1296 SAS_ADDR(parent->port->disc.fanout_sas_addr));
1297 } else if (SAS_ADDR(parent->port->disc.eeds_a) == 0) {
1298 memcpy(parent->port->disc.eeds_a, parent->sas_addr,
1299 SAS_ADDR_SIZE);
1300 memcpy(parent->port->disc.eeds_b, child->sas_addr,
1301 SAS_ADDR_SIZE);
1302 } else if (((SAS_ADDR(parent->port->disc.eeds_a) ==
1303 SAS_ADDR(parent->sas_addr)) ||
1304 (SAS_ADDR(parent->port->disc.eeds_a) ==
1305 SAS_ADDR(child->sas_addr)))
1306 &&
1307 ((SAS_ADDR(parent->port->disc.eeds_b) ==
1308 SAS_ADDR(parent->sas_addr)) ||
1309 (SAS_ADDR(parent->port->disc.eeds_b) ==
1310 SAS_ADDR(child->sas_addr))))
1311 ;
1312 else {
1313 res = -ENODEV;
1314 SAS_DPRINTK("edge ex %016llx phy 0x%x <--> edge ex %016llx "
1315 "phy 0x%x link forms a third EEDS!\n",
1316 SAS_ADDR(parent->sas_addr),
1317 parent_phy->phy_id,
1318 SAS_ADDR(child->sas_addr),
1319 child_phy->phy_id);
1320 }
1321
1322 return res;
1323}
1324
1325/* Here we spill over 80 columns. It is intentional.
1326 */
1327static int sas_check_parent_topology(struct domain_device *child)
1328{
1329 struct expander_device *child_ex = &child->ex_dev;
1330 struct expander_device *parent_ex;
1331 int i;
1332 int res = 0;
1333
1334 if (!child->parent)
1335 return 0;
1336
1337 if (child->parent->dev_type != SAS_EDGE_EXPANDER_DEVICE &&
1338 child->parent->dev_type != SAS_FANOUT_EXPANDER_DEVICE)
1339 return 0;
1340
1341 parent_ex = &child->parent->ex_dev;
1342
1343 for (i = 0; i < parent_ex->num_phys; i++) {
1344 struct ex_phy *parent_phy = &parent_ex->ex_phy[i];
1345 struct ex_phy *child_phy;
1346
1347 if (parent_phy->phy_state == PHY_VACANT ||
1348 parent_phy->phy_state == PHY_NOT_PRESENT)
1349 continue;
1350
1351 if (SAS_ADDR(parent_phy->attached_sas_addr) != SAS_ADDR(child->sas_addr))
1352 continue;
1353
1354 child_phy = &child_ex->ex_phy[parent_phy->attached_phy_id];
1355
1356 switch (child->parent->dev_type) {
1357 case SAS_EDGE_EXPANDER_DEVICE:
1358 if (child->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
1359 if (parent_phy->routing_attr != SUBTRACTIVE_ROUTING ||
1360 child_phy->routing_attr != TABLE_ROUTING) {
1361 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1362 res = -ENODEV;
1363 }
1364 } else if (parent_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1365 if (child_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1366 res = sas_check_eeds(child, parent_phy, child_phy);
1367 } else if (child_phy->routing_attr != TABLE_ROUTING) {
1368 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1369 res = -ENODEV;
1370 }
1371 } else if (parent_phy->routing_attr == TABLE_ROUTING) {
1372 if (child_phy->routing_attr == SUBTRACTIVE_ROUTING ||
1373 (child_phy->routing_attr == TABLE_ROUTING &&
1374 child_ex->t2t_supp && parent_ex->t2t_supp)) {
1375 /* All good */;
1376 } else {
1377 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1378 res = -ENODEV;
1379 }
1380 }
1381 break;
1382 case SAS_FANOUT_EXPANDER_DEVICE:
1383 if (parent_phy->routing_attr != TABLE_ROUTING ||
1384 child_phy->routing_attr != SUBTRACTIVE_ROUTING) {
1385 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1386 res = -ENODEV;
1387 }
1388 break;
1389 default:
1390 break;
1391 }
1392 }
1393
1394 return res;
1395}
1396
1397#define RRI_REQ_SIZE 16
1398#define RRI_RESP_SIZE 44
1399
1400static int sas_configure_present(struct domain_device *dev, int phy_id,
1401 u8 *sas_addr, int *index, int *present)
1402{
1403 int i, res = 0;
1404 struct expander_device *ex = &dev->ex_dev;
1405 struct ex_phy *phy = &ex->ex_phy[phy_id];
1406 u8 *rri_req;
1407 u8 *rri_resp;
1408
1409 *present = 0;
1410 *index = 0;
1411
1412 rri_req = alloc_smp_req(RRI_REQ_SIZE);
1413 if (!rri_req)
1414 return -ENOMEM;
1415
1416 rri_resp = alloc_smp_resp(RRI_RESP_SIZE);
1417 if (!rri_resp) {
1418 kfree(rri_req);
1419 return -ENOMEM;
1420 }
1421
1422 rri_req[1] = SMP_REPORT_ROUTE_INFO;
1423 rri_req[9] = phy_id;
1424
1425 for (i = 0; i < ex->max_route_indexes ; i++) {
1426 *(__be16 *)(rri_req+6) = cpu_to_be16(i);
1427 res = smp_execute_task(dev, rri_req, RRI_REQ_SIZE, rri_resp,
1428 RRI_RESP_SIZE);
1429 if (res)
1430 goto out;
1431 res = rri_resp[2];
1432 if (res == SMP_RESP_NO_INDEX) {
1433 SAS_DPRINTK("overflow of indexes: dev %016llx "
1434 "phy 0x%x index 0x%x\n",
1435 SAS_ADDR(dev->sas_addr), phy_id, i);
1436 goto out;
1437 } else if (res != SMP_RESP_FUNC_ACC) {
1438 SAS_DPRINTK("%s: dev %016llx phy 0x%x index 0x%x "
1439 "result 0x%x\n", __func__,
1440 SAS_ADDR(dev->sas_addr), phy_id, i, res);
1441 goto out;
1442 }
1443 if (SAS_ADDR(sas_addr) != 0) {
1444 if (SAS_ADDR(rri_resp+16) == SAS_ADDR(sas_addr)) {
1445 *index = i;
1446 if ((rri_resp[12] & 0x80) == 0x80)
1447 *present = 0;
1448 else
1449 *present = 1;
1450 goto out;
1451 } else if (SAS_ADDR(rri_resp+16) == 0) {
1452 *index = i;
1453 *present = 0;
1454 goto out;
1455 }
1456 } else if (SAS_ADDR(rri_resp+16) == 0 &&
1457 phy->last_da_index < i) {
1458 phy->last_da_index = i;
1459 *index = i;
1460 *present = 0;
1461 goto out;
1462 }
1463 }
1464 res = -1;
1465out:
1466 kfree(rri_req);
1467 kfree(rri_resp);
1468 return res;
1469}
1470
1471#define CRI_REQ_SIZE 44
1472#define CRI_RESP_SIZE 8
1473
1474static int sas_configure_set(struct domain_device *dev, int phy_id,
1475 u8 *sas_addr, int index, int include)
1476{
1477 int res;
1478 u8 *cri_req;
1479 u8 *cri_resp;
1480
1481 cri_req = alloc_smp_req(CRI_REQ_SIZE);
1482 if (!cri_req)
1483 return -ENOMEM;
1484
1485 cri_resp = alloc_smp_resp(CRI_RESP_SIZE);
1486 if (!cri_resp) {
1487 kfree(cri_req);
1488 return -ENOMEM;
1489 }
1490
1491 cri_req[1] = SMP_CONF_ROUTE_INFO;
1492 *(__be16 *)(cri_req+6) = cpu_to_be16(index);
1493 cri_req[9] = phy_id;
1494 if (SAS_ADDR(sas_addr) == 0 || !include)
1495 cri_req[12] |= 0x80;
1496 memcpy(cri_req+16, sas_addr, SAS_ADDR_SIZE);
1497
1498 res = smp_execute_task(dev, cri_req, CRI_REQ_SIZE, cri_resp,
1499 CRI_RESP_SIZE);
1500 if (res)
1501 goto out;
1502 res = cri_resp[2];
1503 if (res == SMP_RESP_NO_INDEX) {
1504 SAS_DPRINTK("overflow of indexes: dev %016llx phy 0x%x "
1505 "index 0x%x\n",
1506 SAS_ADDR(dev->sas_addr), phy_id, index);
1507 }
1508out:
1509 kfree(cri_req);
1510 kfree(cri_resp);
1511 return res;
1512}
1513
1514static int sas_configure_phy(struct domain_device *dev, int phy_id,
1515 u8 *sas_addr, int include)
1516{
1517 int index;
1518 int present;
1519 int res;
1520
1521 res = sas_configure_present(dev, phy_id, sas_addr, &index, &present);
1522 if (res)
1523 return res;
1524 if (include ^ present)
1525 return sas_configure_set(dev, phy_id, sas_addr, index,include);
1526
1527 return res;
1528}
1529
1530/**
1531 * sas_configure_parent - configure routing table of parent
1532 * @parent: parent expander
1533 * @child: child expander
1534 * @sas_addr: SAS port identifier of device directly attached to child
1535 * @include: whether or not to include @child in the expander routing table
1536 */
1537static int sas_configure_parent(struct domain_device *parent,
1538 struct domain_device *child,
1539 u8 *sas_addr, int include)
1540{
1541 struct expander_device *ex_parent = &parent->ex_dev;
1542 int res = 0;
1543 int i;
1544
1545 if (parent->parent) {
1546 res = sas_configure_parent(parent->parent, parent, sas_addr,
1547 include);
1548 if (res)
1549 return res;
1550 }
1551
1552 if (ex_parent->conf_route_table == 0) {
1553 SAS_DPRINTK("ex %016llx has self-configuring routing table\n",
1554 SAS_ADDR(parent->sas_addr));
1555 return 0;
1556 }
1557
1558 for (i = 0; i < ex_parent->num_phys; i++) {
1559 struct ex_phy *phy = &ex_parent->ex_phy[i];
1560
1561 if ((phy->routing_attr == TABLE_ROUTING) &&
1562 (SAS_ADDR(phy->attached_sas_addr) ==
1563 SAS_ADDR(child->sas_addr))) {
1564 res = sas_configure_phy(parent, i, sas_addr, include);
1565 if (res)
1566 return res;
1567 }
1568 }
1569
1570 return res;
1571}
1572
1573/**
1574 * sas_configure_routing - configure routing
1575 * @dev: expander device
1576 * @sas_addr: port identifier of device directly attached to the expander device
1577 */
1578static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr)
1579{
1580 if (dev->parent)
1581 return sas_configure_parent(dev->parent, dev, sas_addr, 1);
1582 return 0;
1583}
1584
1585static int sas_disable_routing(struct domain_device *dev, u8 *sas_addr)
1586{
1587 if (dev->parent)
1588 return sas_configure_parent(dev->parent, dev, sas_addr, 0);
1589 return 0;
1590}
1591
1592/**
1593 * sas_discover_expander - expander discovery
1594 * @dev: pointer to expander domain device
1595 *
1596 * See comment in sas_discover_sata().
1597 */
1598static int sas_discover_expander(struct domain_device *dev)
1599{
1600 int res;
1601
1602 res = sas_notify_lldd_dev_found(dev);
1603 if (res)
1604 return res;
1605
1606 res = sas_ex_general(dev);
1607 if (res)
1608 goto out_err;
1609 res = sas_ex_manuf_info(dev);
1610 if (res)
1611 goto out_err;
1612
1613 res = sas_expander_discover(dev);
1614 if (res) {
1615 SAS_DPRINTK("expander %016llx discovery failed(0x%x)\n",
1616 SAS_ADDR(dev->sas_addr), res);
1617 goto out_err;
1618 }
1619
1620 sas_check_ex_subtractive_boundary(dev);
1621 res = sas_check_parent_topology(dev);
1622 if (res)
1623 goto out_err;
1624 return 0;
1625out_err:
1626 sas_notify_lldd_dev_gone(dev);
1627 return res;
1628}
1629
1630static int sas_ex_level_discovery(struct asd_sas_port *port, const int level)
1631{
1632 int res = 0;
1633 struct domain_device *dev;
1634
1635 list_for_each_entry(dev, &port->dev_list, dev_list_node) {
1636 if (dev->dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1637 dev->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
1638 struct sas_expander_device *ex =
1639 rphy_to_expander_device(dev->rphy);
1640
1641 if (level == ex->level)
1642 res = sas_ex_discover_devices(dev, -1);
1643 else if (level > 0)
1644 res = sas_ex_discover_devices(port->port_dev, -1);
1645
1646 }
1647 }
1648
1649 return res;
1650}
1651
1652static int sas_ex_bfs_disc(struct asd_sas_port *port)
1653{
1654 int res;
1655 int level;
1656
1657 do {
1658 level = port->disc.max_level;
1659 res = sas_ex_level_discovery(port, level);
1660 mb();
1661 } while (level < port->disc.max_level);
1662
1663 return res;
1664}
1665
1666int sas_discover_root_expander(struct domain_device *dev)
1667{
1668 int res;
1669 struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1670
1671 res = sas_rphy_add(dev->rphy);
1672 if (res)
1673 goto out_err;
1674
1675 ex->level = dev->port->disc.max_level; /* 0 */
1676 res = sas_discover_expander(dev);
1677 if (res)
1678 goto out_err2;
1679
1680 sas_ex_bfs_disc(dev->port);
1681
1682 return res;
1683
1684out_err2:
1685 sas_rphy_remove(dev->rphy);
1686out_err:
1687 return res;
1688}
1689
1690/* ---------- Domain revalidation ---------- */
1691
1692static int sas_get_phy_discover(struct domain_device *dev,
1693 int phy_id, struct smp_resp *disc_resp)
1694{
1695 int res;
1696 u8 *disc_req;
1697
1698 disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
1699 if (!disc_req)
1700 return -ENOMEM;
1701
1702 disc_req[1] = SMP_DISCOVER;
1703 disc_req[9] = phy_id;
1704
1705 res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
1706 disc_resp, DISCOVER_RESP_SIZE);
1707 if (res)
1708 goto out;
1709 else if (disc_resp->result != SMP_RESP_FUNC_ACC) {
1710 res = disc_resp->result;
1711 goto out;
1712 }
1713out:
1714 kfree(disc_req);
1715 return res;
1716}
1717
1718static int sas_get_phy_change_count(struct domain_device *dev,
1719 int phy_id, int *pcc)
1720{
1721 int res;
1722 struct smp_resp *disc_resp;
1723
1724 disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1725 if (!disc_resp)
1726 return -ENOMEM;
1727
1728 res = sas_get_phy_discover(dev, phy_id, disc_resp);
1729 if (!res)
1730 *pcc = disc_resp->disc.change_count;
1731
1732 kfree(disc_resp);
1733 return res;
1734}
1735
1736static int sas_get_phy_attached_dev(struct domain_device *dev, int phy_id,
1737 u8 *sas_addr, enum sas_device_type *type)
1738{
1739 int res;
1740 struct smp_resp *disc_resp;
1741 struct discover_resp *dr;
1742
1743 disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1744 if (!disc_resp)
1745 return -ENOMEM;
1746 dr = &disc_resp->disc;
1747
1748 res = sas_get_phy_discover(dev, phy_id, disc_resp);
1749 if (res == 0) {
1750 memcpy(sas_addr, disc_resp->disc.attached_sas_addr, 8);
1751 *type = to_dev_type(dr);
1752 if (*type == 0)
1753 memset(sas_addr, 0, 8);
1754 }
1755 kfree(disc_resp);
1756 return res;
1757}
1758
1759static int sas_find_bcast_phy(struct domain_device *dev, int *phy_id,
1760 int from_phy, bool update)
1761{
1762 struct expander_device *ex = &dev->ex_dev;
1763 int res = 0;
1764 int i;
1765
1766 for (i = from_phy; i < ex->num_phys; i++) {
1767 int phy_change_count = 0;
1768
1769 res = sas_get_phy_change_count(dev, i, &phy_change_count);
1770 switch (res) {
1771 case SMP_RESP_PHY_VACANT:
1772 case SMP_RESP_NO_PHY:
1773 continue;
1774 case SMP_RESP_FUNC_ACC:
1775 break;
1776 default:
1777 return res;
1778 }
1779
1780 if (phy_change_count != ex->ex_phy[i].phy_change_count) {
1781 if (update)
1782 ex->ex_phy[i].phy_change_count =
1783 phy_change_count;
1784 *phy_id = i;
1785 return 0;
1786 }
1787 }
1788 return 0;
1789}
1790
1791static int sas_get_ex_change_count(struct domain_device *dev, int *ecc)
1792{
1793 int res;
1794 u8 *rg_req;
1795 struct smp_resp *rg_resp;
1796
1797 rg_req = alloc_smp_req(RG_REQ_SIZE);
1798 if (!rg_req)
1799 return -ENOMEM;
1800
1801 rg_resp = alloc_smp_resp(RG_RESP_SIZE);
1802 if (!rg_resp) {
1803 kfree(rg_req);
1804 return -ENOMEM;
1805 }
1806
1807 rg_req[1] = SMP_REPORT_GENERAL;
1808
1809 res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
1810 RG_RESP_SIZE);
1811 if (res)
1812 goto out;
1813 if (rg_resp->result != SMP_RESP_FUNC_ACC) {
1814 res = rg_resp->result;
1815 goto out;
1816 }
1817
1818 *ecc = be16_to_cpu(rg_resp->rg.change_count);
1819out:
1820 kfree(rg_resp);
1821 kfree(rg_req);
1822 return res;
1823}
1824/**
1825 * sas_find_bcast_dev - find the device issue BROADCAST(CHANGE).
1826 * @dev:domain device to be detect.
1827 * @src_dev: the device which originated BROADCAST(CHANGE).
1828 *
1829 * Add self-configuration expander support. Suppose two expander cascading,
1830 * when the first level expander is self-configuring, hotplug the disks in
1831 * second level expander, BROADCAST(CHANGE) will not only be originated
1832 * in the second level expander, but also be originated in the first level
1833 * expander (see SAS protocol SAS 2r-14, 7.11 for detail), it is to say,
1834 * expander changed count in two level expanders will all increment at least
1835 * once, but the phy which chang count has changed is the source device which
1836 * we concerned.
1837 */
1838
1839static int sas_find_bcast_dev(struct domain_device *dev,
1840 struct domain_device **src_dev)
1841{
1842 struct expander_device *ex = &dev->ex_dev;
1843 int ex_change_count = -1;
1844 int phy_id = -1;
1845 int res;
1846 struct domain_device *ch;
1847
1848 res = sas_get_ex_change_count(dev, &ex_change_count);
1849 if (res)
1850 goto out;
1851 if (ex_change_count != -1 && ex_change_count != ex->ex_change_count) {
1852 /* Just detect if this expander phys phy change count changed,
1853 * in order to determine if this expander originate BROADCAST,
1854 * and do not update phy change count field in our structure.
1855 */
1856 res = sas_find_bcast_phy(dev, &phy_id, 0, false);
1857 if (phy_id != -1) {
1858 *src_dev = dev;
1859 ex->ex_change_count = ex_change_count;
1860 SAS_DPRINTK("Expander phy change count has changed\n");
1861 return res;
1862 } else
1863 SAS_DPRINTK("Expander phys DID NOT change\n");
1864 }
1865 list_for_each_entry(ch, &ex->children, siblings) {
1866 if (ch->dev_type == SAS_EDGE_EXPANDER_DEVICE || ch->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
1867 res = sas_find_bcast_dev(ch, src_dev);
1868 if (*src_dev)
1869 return res;
1870 }
1871 }
1872out:
1873 return res;
1874}
1875
1876static void sas_unregister_ex_tree(struct asd_sas_port *port, struct domain_device *dev)
1877{
1878 struct expander_device *ex = &dev->ex_dev;
1879 struct domain_device *child, *n;
1880
1881 list_for_each_entry_safe(child, n, &ex->children, siblings) {
1882 set_bit(SAS_DEV_GONE, &child->state);
1883 if (child->dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1884 child->dev_type == SAS_FANOUT_EXPANDER_DEVICE)
1885 sas_unregister_ex_tree(port, child);
1886 else
1887 sas_unregister_dev(port, child);
1888 }
1889 sas_unregister_dev(port, dev);
1890}
1891
1892static void sas_unregister_devs_sas_addr(struct domain_device *parent,
1893 int phy_id, bool last)
1894{
1895 struct expander_device *ex_dev = &parent->ex_dev;
1896 struct ex_phy *phy = &ex_dev->ex_phy[phy_id];
1897 struct domain_device *child, *n, *found = NULL;
1898 if (last) {
1899 list_for_each_entry_safe(child, n,
1900 &ex_dev->children, siblings) {
1901 if (SAS_ADDR(child->sas_addr) ==
1902 SAS_ADDR(phy->attached_sas_addr)) {
1903 set_bit(SAS_DEV_GONE, &child->state);
1904 if (child->dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1905 child->dev_type == SAS_FANOUT_EXPANDER_DEVICE)
1906 sas_unregister_ex_tree(parent->port, child);
1907 else
1908 sas_unregister_dev(parent->port, child);
1909 found = child;
1910 break;
1911 }
1912 }
1913 sas_disable_routing(parent, phy->attached_sas_addr);
1914 }
1915 memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1916 if (phy->port) {
1917 sas_port_delete_phy(phy->port, phy->phy);
1918 sas_device_set_phy(found, phy->port);
1919 if (phy->port->num_phys == 0)
1920 list_add_tail(&phy->port->del_list,
1921 &parent->port->sas_port_del_list);
1922 phy->port = NULL;
1923 }
1924}
1925
1926static int sas_discover_bfs_by_root_level(struct domain_device *root,
1927 const int level)
1928{
1929 struct expander_device *ex_root = &root->ex_dev;
1930 struct domain_device *child;
1931 int res = 0;
1932
1933 list_for_each_entry(child, &ex_root->children, siblings) {
1934 if (child->dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1935 child->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
1936 struct sas_expander_device *ex =
1937 rphy_to_expander_device(child->rphy);
1938
1939 if (level > ex->level)
1940 res = sas_discover_bfs_by_root_level(child,
1941 level);
1942 else if (level == ex->level)
1943 res = sas_ex_discover_devices(child, -1);
1944 }
1945 }
1946 return res;
1947}
1948
1949static int sas_discover_bfs_by_root(struct domain_device *dev)
1950{
1951 int res;
1952 struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1953 int level = ex->level+1;
1954
1955 res = sas_ex_discover_devices(dev, -1);
1956 if (res)
1957 goto out;
1958 do {
1959 res = sas_discover_bfs_by_root_level(dev, level);
1960 mb();
1961 level += 1;
1962 } while (level <= dev->port->disc.max_level);
1963out:
1964 return res;
1965}
1966
1967static int sas_discover_new(struct domain_device *dev, int phy_id)
1968{
1969 struct ex_phy *ex_phy = &dev->ex_dev.ex_phy[phy_id];
1970 struct domain_device *child;
1971 int res;
1972
1973 SAS_DPRINTK("ex %016llx phy%d new device attached\n",
1974 SAS_ADDR(dev->sas_addr), phy_id);
1975 res = sas_ex_phy_discover(dev, phy_id);
1976 if (res)
1977 return res;
1978
1979 if (sas_ex_join_wide_port(dev, phy_id))
1980 return 0;
1981
1982 res = sas_ex_discover_devices(dev, phy_id);
1983 if (res)
1984 return res;
1985 list_for_each_entry(child, &dev->ex_dev.children, siblings) {
1986 if (SAS_ADDR(child->sas_addr) ==
1987 SAS_ADDR(ex_phy->attached_sas_addr)) {
1988 if (child->dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1989 child->dev_type == SAS_FANOUT_EXPANDER_DEVICE)
1990 res = sas_discover_bfs_by_root(child);
1991 break;
1992 }
1993 }
1994 return res;
1995}
1996
1997static bool dev_type_flutter(enum sas_device_type new, enum sas_device_type old)
1998{
1999 if (old == new)
2000 return true;
2001
2002 /* treat device directed resets as flutter, if we went
2003 * SAS_END_DEVICE to SAS_SATA_PENDING the link needs recovery
2004 */
2005 if ((old == SAS_SATA_PENDING && new == SAS_END_DEVICE) ||
2006 (old == SAS_END_DEVICE && new == SAS_SATA_PENDING))
2007 return true;
2008
2009 return false;
2010}
2011
2012static int sas_rediscover_dev(struct domain_device *dev, int phy_id, bool last)
2013{
2014 struct expander_device *ex = &dev->ex_dev;
2015 struct ex_phy *phy = &ex->ex_phy[phy_id];
2016 enum sas_device_type type = SAS_PHY_UNUSED;
2017 u8 sas_addr[8];
2018 int res;
2019
2020 memset(sas_addr, 0, 8);
2021 res = sas_get_phy_attached_dev(dev, phy_id, sas_addr, &type);
2022 switch (res) {
2023 case SMP_RESP_NO_PHY:
2024 phy->phy_state = PHY_NOT_PRESENT;
2025 sas_unregister_devs_sas_addr(dev, phy_id, last);
2026 return res;
2027 case SMP_RESP_PHY_VACANT:
2028 phy->phy_state = PHY_VACANT;
2029 sas_unregister_devs_sas_addr(dev, phy_id, last);
2030 return res;
2031 case SMP_RESP_FUNC_ACC:
2032 break;
2033 case -ECOMM:
2034 break;
2035 default:
2036 return res;
2037 }
2038
2039 if ((SAS_ADDR(sas_addr) == 0) || (res == -ECOMM)) {
2040 phy->phy_state = PHY_EMPTY;
2041 sas_unregister_devs_sas_addr(dev, phy_id, last);
2042 return res;
2043 } else if (SAS_ADDR(sas_addr) == SAS_ADDR(phy->attached_sas_addr) &&
2044 dev_type_flutter(type, phy->attached_dev_type)) {
2045 struct domain_device *ata_dev = sas_ex_to_ata(dev, phy_id);
2046 char *action = "";
2047
2048 sas_ex_phy_discover(dev, phy_id);
2049
2050 if (ata_dev && phy->attached_dev_type == SAS_SATA_PENDING)
2051 action = ", needs recovery";
2052 SAS_DPRINTK("ex %016llx phy 0x%x broadcast flutter%s\n",
2053 SAS_ADDR(dev->sas_addr), phy_id, action);
2054 return res;
2055 }
2056
2057 /* delete the old link */
2058 if (SAS_ADDR(phy->attached_sas_addr) &&
2059 SAS_ADDR(sas_addr) != SAS_ADDR(phy->attached_sas_addr)) {
2060 SAS_DPRINTK("ex %016llx phy 0x%x replace %016llx\n",
2061 SAS_ADDR(dev->sas_addr), phy_id,
2062 SAS_ADDR(phy->attached_sas_addr));
2063 sas_unregister_devs_sas_addr(dev, phy_id, last);
2064 }
2065
2066 return sas_discover_new(dev, phy_id);
2067}
2068
2069/**
2070 * sas_rediscover - revalidate the domain.
2071 * @dev:domain device to be detect.
2072 * @phy_id: the phy id will be detected.
2073 *
2074 * NOTE: this process _must_ quit (return) as soon as any connection
2075 * errors are encountered. Connection recovery is done elsewhere.
2076 * Discover process only interrogates devices in order to discover the
2077 * domain.For plugging out, we un-register the device only when it is
2078 * the last phy in the port, for other phys in this port, we just delete it
2079 * from the port.For inserting, we do discovery when it is the
2080 * first phy,for other phys in this port, we add it to the port to
2081 * forming the wide-port.
2082 */
2083static int sas_rediscover(struct domain_device *dev, const int phy_id)
2084{
2085 struct expander_device *ex = &dev->ex_dev;
2086 struct ex_phy *changed_phy = &ex->ex_phy[phy_id];
2087 int res = 0;
2088 int i;
2089 bool last = true; /* is this the last phy of the port */
2090
2091 SAS_DPRINTK("ex %016llx phy%d originated BROADCAST(CHANGE)\n",
2092 SAS_ADDR(dev->sas_addr), phy_id);
2093
2094 if (SAS_ADDR(changed_phy->attached_sas_addr) != 0) {
2095 for (i = 0; i < ex->num_phys; i++) {
2096 struct ex_phy *phy = &ex->ex_phy[i];
2097
2098 if (i == phy_id)
2099 continue;
2100 if (SAS_ADDR(phy->attached_sas_addr) ==
2101 SAS_ADDR(changed_phy->attached_sas_addr)) {
2102 SAS_DPRINTK("phy%d part of wide port with "
2103 "phy%d\n", phy_id, i);
2104 last = false;
2105 break;
2106 }
2107 }
2108 res = sas_rediscover_dev(dev, phy_id, last);
2109 } else
2110 res = sas_discover_new(dev, phy_id);
2111 return res;
2112}
2113
2114/**
2115 * sas_ex_revalidate_domain - revalidate the domain
2116 * @port_dev: port domain device.
2117 *
2118 * NOTE: this process _must_ quit (return) as soon as any connection
2119 * errors are encountered. Connection recovery is done elsewhere.
2120 * Discover process only interrogates devices in order to discover the
2121 * domain.
2122 */
2123int sas_ex_revalidate_domain(struct domain_device *port_dev)
2124{
2125 int res;
2126 struct domain_device *dev = NULL;
2127
2128 res = sas_find_bcast_dev(port_dev, &dev);
2129 if (res == 0 && dev) {
2130 struct expander_device *ex = &dev->ex_dev;
2131 int i = 0, phy_id;
2132
2133 do {
2134 phy_id = -1;
2135 res = sas_find_bcast_phy(dev, &phy_id, i, true);
2136 if (phy_id == -1)
2137 break;
2138 res = sas_rediscover(dev, phy_id);
2139 i = phy_id + 1;
2140 } while (i < ex->num_phys);
2141 }
2142 return res;
2143}
2144
2145void sas_smp_handler(struct bsg_job *job, struct Scsi_Host *shost,
2146 struct sas_rphy *rphy)
2147{
2148 struct domain_device *dev;
2149 unsigned int rcvlen = 0;
2150 int ret = -EINVAL;
2151
2152 /* no rphy means no smp target support (ie aic94xx host) */
2153 if (!rphy)
2154 return sas_smp_host_handler(job, shost);
2155
2156 switch (rphy->identify.device_type) {
2157 case SAS_EDGE_EXPANDER_DEVICE:
2158 case SAS_FANOUT_EXPANDER_DEVICE:
2159 break;
2160 default:
2161 printk("%s: can we send a smp request to a device?\n",
2162 __func__);
2163 goto out;
2164 }
2165
2166 dev = sas_find_dev_by_rphy(rphy);
2167 if (!dev) {
2168 printk("%s: fail to find a domain_device?\n", __func__);
2169 goto out;
2170 }
2171
2172 /* do we need to support multiple segments? */
2173 if (job->request_payload.sg_cnt > 1 ||
2174 job->reply_payload.sg_cnt > 1) {
2175 printk("%s: multiple segments req %u, rsp %u\n",
2176 __func__, job->request_payload.payload_len,
2177 job->reply_payload.payload_len);
2178 goto out;
2179 }
2180
2181 ret = smp_execute_task_sg(dev, job->request_payload.sg_list,
2182 job->reply_payload.sg_list);
2183 if (ret >= 0) {
2184 /* bsg_job_done() requires the length received */
2185 rcvlen = job->reply_payload.payload_len - ret;
2186 ret = 0;
2187 }
2188
2189out:
2190 bsg_job_done(job, ret, rcvlen);
2191}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Serial Attached SCSI (SAS) Expander discovery and configuration
4 *
5 * Copyright (C) 2005 Adaptec, Inc. All rights reserved.
6 * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
7 *
8 * This file is licensed under GPLv2.
9 */
10
11#include <linux/scatterlist.h>
12#include <linux/blkdev.h>
13#include <linux/slab.h>
14#include <asm/unaligned.h>
15
16#include "sas_internal.h"
17
18#include <scsi/sas_ata.h>
19#include <scsi/scsi_transport.h>
20#include <scsi/scsi_transport_sas.h>
21#include "scsi_sas_internal.h"
22
23static int sas_discover_expander(struct domain_device *dev);
24static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr);
25static int sas_configure_phy(struct domain_device *dev, int phy_id,
26 u8 *sas_addr, int include);
27static int sas_disable_routing(struct domain_device *dev, u8 *sas_addr);
28
29/* ---------- SMP task management ---------- */
30
31/* Give it some long enough timeout. In seconds. */
32#define SMP_TIMEOUT 10
33
34static int smp_execute_task_sg(struct domain_device *dev,
35 struct scatterlist *req, struct scatterlist *resp)
36{
37 int res, retry;
38 struct sas_task *task = NULL;
39 struct sas_internal *i =
40 to_sas_internal(dev->port->ha->shost->transportt);
41 struct sas_ha_struct *ha = dev->port->ha;
42
43 pm_runtime_get_sync(ha->dev);
44 mutex_lock(&dev->ex_dev.cmd_mutex);
45 for (retry = 0; retry < 3; retry++) {
46 if (test_bit(SAS_DEV_GONE, &dev->state)) {
47 res = -ECOMM;
48 break;
49 }
50
51 task = sas_alloc_slow_task(GFP_KERNEL);
52 if (!task) {
53 res = -ENOMEM;
54 break;
55 }
56 task->dev = dev;
57 task->task_proto = dev->tproto;
58 task->smp_task.smp_req = *req;
59 task->smp_task.smp_resp = *resp;
60
61 task->task_done = sas_task_internal_done;
62
63 task->slow_task->timer.function = sas_task_internal_timedout;
64 task->slow_task->timer.expires = jiffies + SMP_TIMEOUT*HZ;
65 add_timer(&task->slow_task->timer);
66
67 res = i->dft->lldd_execute_task(task, GFP_KERNEL);
68
69 if (res) {
70 del_timer_sync(&task->slow_task->timer);
71 pr_notice("executing SMP task failed:%d\n", res);
72 break;
73 }
74
75 wait_for_completion(&task->slow_task->completion);
76 res = -ECOMM;
77 if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
78 pr_notice("smp task timed out or aborted\n");
79 i->dft->lldd_abort_task(task);
80 if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
81 pr_notice("SMP task aborted and not done\n");
82 break;
83 }
84 }
85 if (task->task_status.resp == SAS_TASK_COMPLETE &&
86 task->task_status.stat == SAS_SAM_STAT_GOOD) {
87 res = 0;
88 break;
89 }
90 if (task->task_status.resp == SAS_TASK_COMPLETE &&
91 task->task_status.stat == SAS_DATA_UNDERRUN) {
92 /* no error, but return the number of bytes of
93 * underrun */
94 res = task->task_status.residual;
95 break;
96 }
97 if (task->task_status.resp == SAS_TASK_COMPLETE &&
98 task->task_status.stat == SAS_DATA_OVERRUN) {
99 res = -EMSGSIZE;
100 break;
101 }
102 if (task->task_status.resp == SAS_TASK_UNDELIVERED &&
103 task->task_status.stat == SAS_DEVICE_UNKNOWN)
104 break;
105 else {
106 pr_notice("%s: task to dev %016llx response: 0x%x status 0x%x\n",
107 __func__,
108 SAS_ADDR(dev->sas_addr),
109 task->task_status.resp,
110 task->task_status.stat);
111 sas_free_task(task);
112 task = NULL;
113 }
114 }
115 mutex_unlock(&dev->ex_dev.cmd_mutex);
116 pm_runtime_put_sync(ha->dev);
117
118 BUG_ON(retry == 3 && task != NULL);
119 sas_free_task(task);
120 return res;
121}
122
123static int smp_execute_task(struct domain_device *dev, void *req, int req_size,
124 void *resp, int resp_size)
125{
126 struct scatterlist req_sg;
127 struct scatterlist resp_sg;
128
129 sg_init_one(&req_sg, req, req_size);
130 sg_init_one(&resp_sg, resp, resp_size);
131 return smp_execute_task_sg(dev, &req_sg, &resp_sg);
132}
133
134/* ---------- Allocations ---------- */
135
136static inline void *alloc_smp_req(int size)
137{
138 u8 *p = kzalloc(size, GFP_KERNEL);
139 if (p)
140 p[0] = SMP_REQUEST;
141 return p;
142}
143
144static inline void *alloc_smp_resp(int size)
145{
146 return kzalloc(size, GFP_KERNEL);
147}
148
149static char sas_route_char(struct domain_device *dev, struct ex_phy *phy)
150{
151 switch (phy->routing_attr) {
152 case TABLE_ROUTING:
153 if (dev->ex_dev.t2t_supp)
154 return 'U';
155 else
156 return 'T';
157 case DIRECT_ROUTING:
158 return 'D';
159 case SUBTRACTIVE_ROUTING:
160 return 'S';
161 default:
162 return '?';
163 }
164}
165
166static enum sas_device_type to_dev_type(struct discover_resp *dr)
167{
168 /* This is detecting a failure to transmit initial dev to host
169 * FIS as described in section J.5 of sas-2 r16
170 */
171 if (dr->attached_dev_type == SAS_PHY_UNUSED && dr->attached_sata_dev &&
172 dr->linkrate >= SAS_LINK_RATE_1_5_GBPS)
173 return SAS_SATA_PENDING;
174 else
175 return dr->attached_dev_type;
176}
177
178static void sas_set_ex_phy(struct domain_device *dev, int phy_id,
179 struct smp_disc_resp *disc_resp)
180{
181 enum sas_device_type dev_type;
182 enum sas_linkrate linkrate;
183 u8 sas_addr[SAS_ADDR_SIZE];
184 struct discover_resp *dr = &disc_resp->disc;
185 struct sas_ha_struct *ha = dev->port->ha;
186 struct expander_device *ex = &dev->ex_dev;
187 struct ex_phy *phy = &ex->ex_phy[phy_id];
188 struct sas_rphy *rphy = dev->rphy;
189 bool new_phy = !phy->phy;
190 char *type;
191
192 if (new_phy) {
193 if (WARN_ON_ONCE(test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)))
194 return;
195 phy->phy = sas_phy_alloc(&rphy->dev, phy_id);
196
197 /* FIXME: error_handling */
198 BUG_ON(!phy->phy);
199 }
200
201 switch (disc_resp->result) {
202 case SMP_RESP_PHY_VACANT:
203 phy->phy_state = PHY_VACANT;
204 break;
205 default:
206 phy->phy_state = PHY_NOT_PRESENT;
207 break;
208 case SMP_RESP_FUNC_ACC:
209 phy->phy_state = PHY_EMPTY; /* do not know yet */
210 break;
211 }
212
213 /* check if anything important changed to squelch debug */
214 dev_type = phy->attached_dev_type;
215 linkrate = phy->linkrate;
216 memcpy(sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
217
218 /* Handle vacant phy - rest of dr data is not valid so skip it */
219 if (phy->phy_state == PHY_VACANT) {
220 memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
221 phy->attached_dev_type = SAS_PHY_UNUSED;
222 if (!test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)) {
223 phy->phy_id = phy_id;
224 goto skip;
225 } else
226 goto out;
227 }
228
229 phy->attached_dev_type = to_dev_type(dr);
230 if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))
231 goto out;
232 phy->phy_id = phy_id;
233 phy->linkrate = dr->linkrate;
234 phy->attached_sata_host = dr->attached_sata_host;
235 phy->attached_sata_dev = dr->attached_sata_dev;
236 phy->attached_sata_ps = dr->attached_sata_ps;
237 phy->attached_iproto = dr->iproto << 1;
238 phy->attached_tproto = dr->tproto << 1;
239 /* help some expanders that fail to zero sas_address in the 'no
240 * device' case
241 */
242 if (phy->attached_dev_type == SAS_PHY_UNUSED ||
243 phy->linkrate < SAS_LINK_RATE_1_5_GBPS)
244 memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
245 else
246 memcpy(phy->attached_sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE);
247 phy->attached_phy_id = dr->attached_phy_id;
248 phy->phy_change_count = dr->change_count;
249 phy->routing_attr = dr->routing_attr;
250 phy->virtual = dr->virtual;
251 phy->last_da_index = -1;
252
253 phy->phy->identify.sas_address = SAS_ADDR(phy->attached_sas_addr);
254 phy->phy->identify.device_type = dr->attached_dev_type;
255 phy->phy->identify.initiator_port_protocols = phy->attached_iproto;
256 phy->phy->identify.target_port_protocols = phy->attached_tproto;
257 if (!phy->attached_tproto && dr->attached_sata_dev)
258 phy->phy->identify.target_port_protocols = SAS_PROTOCOL_SATA;
259 phy->phy->identify.phy_identifier = phy_id;
260 phy->phy->minimum_linkrate_hw = dr->hmin_linkrate;
261 phy->phy->maximum_linkrate_hw = dr->hmax_linkrate;
262 phy->phy->minimum_linkrate = dr->pmin_linkrate;
263 phy->phy->maximum_linkrate = dr->pmax_linkrate;
264 phy->phy->negotiated_linkrate = phy->linkrate;
265 phy->phy->enabled = (phy->linkrate != SAS_PHY_DISABLED);
266
267 skip:
268 if (new_phy)
269 if (sas_phy_add(phy->phy)) {
270 sas_phy_free(phy->phy);
271 return;
272 }
273
274 out:
275 switch (phy->attached_dev_type) {
276 case SAS_SATA_PENDING:
277 type = "stp pending";
278 break;
279 case SAS_PHY_UNUSED:
280 type = "no device";
281 break;
282 case SAS_END_DEVICE:
283 if (phy->attached_iproto) {
284 if (phy->attached_tproto)
285 type = "host+target";
286 else
287 type = "host";
288 } else {
289 if (dr->attached_sata_dev)
290 type = "stp";
291 else
292 type = "ssp";
293 }
294 break;
295 case SAS_EDGE_EXPANDER_DEVICE:
296 case SAS_FANOUT_EXPANDER_DEVICE:
297 type = "smp";
298 break;
299 default:
300 type = "unknown";
301 }
302
303 /* this routine is polled by libata error recovery so filter
304 * unimportant messages
305 */
306 if (new_phy || phy->attached_dev_type != dev_type ||
307 phy->linkrate != linkrate ||
308 SAS_ADDR(phy->attached_sas_addr) != SAS_ADDR(sas_addr))
309 /* pass */;
310 else
311 return;
312
313 /* if the attached device type changed and ata_eh is active,
314 * make sure we run revalidation when eh completes (see:
315 * sas_enable_revalidation)
316 */
317 if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))
318 set_bit(DISCE_REVALIDATE_DOMAIN, &dev->port->disc.pending);
319
320 pr_debug("%sex %016llx phy%02d:%c:%X attached: %016llx (%s)\n",
321 test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state) ? "ata: " : "",
322 SAS_ADDR(dev->sas_addr), phy->phy_id,
323 sas_route_char(dev, phy), phy->linkrate,
324 SAS_ADDR(phy->attached_sas_addr), type);
325}
326
327/* check if we have an existing attached ata device on this expander phy */
328struct domain_device *sas_ex_to_ata(struct domain_device *ex_dev, int phy_id)
329{
330 struct ex_phy *ex_phy = &ex_dev->ex_dev.ex_phy[phy_id];
331 struct domain_device *dev;
332 struct sas_rphy *rphy;
333
334 if (!ex_phy->port)
335 return NULL;
336
337 rphy = ex_phy->port->rphy;
338 if (!rphy)
339 return NULL;
340
341 dev = sas_find_dev_by_rphy(rphy);
342
343 if (dev && dev_is_sata(dev))
344 return dev;
345
346 return NULL;
347}
348
349#define DISCOVER_REQ_SIZE 16
350#define DISCOVER_RESP_SIZE sizeof(struct smp_disc_resp)
351
352static int sas_ex_phy_discover_helper(struct domain_device *dev, u8 *disc_req,
353 struct smp_disc_resp *disc_resp,
354 int single)
355{
356 struct discover_resp *dr = &disc_resp->disc;
357 int res;
358
359 disc_req[9] = single;
360
361 res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
362 disc_resp, DISCOVER_RESP_SIZE);
363 if (res)
364 return res;
365 if (memcmp(dev->sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE) == 0) {
366 pr_notice("Found loopback topology, just ignore it!\n");
367 return 0;
368 }
369 sas_set_ex_phy(dev, single, disc_resp);
370 return 0;
371}
372
373int sas_ex_phy_discover(struct domain_device *dev, int single)
374{
375 struct expander_device *ex = &dev->ex_dev;
376 int res = 0;
377 u8 *disc_req;
378 struct smp_disc_resp *disc_resp;
379
380 disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
381 if (!disc_req)
382 return -ENOMEM;
383
384 disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
385 if (!disc_resp) {
386 kfree(disc_req);
387 return -ENOMEM;
388 }
389
390 disc_req[1] = SMP_DISCOVER;
391
392 if (0 <= single && single < ex->num_phys) {
393 res = sas_ex_phy_discover_helper(dev, disc_req, disc_resp, single);
394 } else {
395 int i;
396
397 for (i = 0; i < ex->num_phys; i++) {
398 res = sas_ex_phy_discover_helper(dev, disc_req,
399 disc_resp, i);
400 if (res)
401 goto out_err;
402 }
403 }
404out_err:
405 kfree(disc_resp);
406 kfree(disc_req);
407 return res;
408}
409
410static int sas_expander_discover(struct domain_device *dev)
411{
412 struct expander_device *ex = &dev->ex_dev;
413 int res;
414
415 ex->ex_phy = kcalloc(ex->num_phys, sizeof(*ex->ex_phy), GFP_KERNEL);
416 if (!ex->ex_phy)
417 return -ENOMEM;
418
419 res = sas_ex_phy_discover(dev, -1);
420 if (res)
421 goto out_err;
422
423 return 0;
424 out_err:
425 kfree(ex->ex_phy);
426 ex->ex_phy = NULL;
427 return res;
428}
429
430#define MAX_EXPANDER_PHYS 128
431
432#define RG_REQ_SIZE 8
433#define RG_RESP_SIZE sizeof(struct smp_rg_resp)
434
435static int sas_ex_general(struct domain_device *dev)
436{
437 u8 *rg_req;
438 struct smp_rg_resp *rg_resp;
439 struct report_general_resp *rg;
440 int res;
441 int i;
442
443 rg_req = alloc_smp_req(RG_REQ_SIZE);
444 if (!rg_req)
445 return -ENOMEM;
446
447 rg_resp = alloc_smp_resp(RG_RESP_SIZE);
448 if (!rg_resp) {
449 kfree(rg_req);
450 return -ENOMEM;
451 }
452
453 rg_req[1] = SMP_REPORT_GENERAL;
454
455 for (i = 0; i < 5; i++) {
456 res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
457 RG_RESP_SIZE);
458
459 if (res) {
460 pr_notice("RG to ex %016llx failed:0x%x\n",
461 SAS_ADDR(dev->sas_addr), res);
462 goto out;
463 } else if (rg_resp->result != SMP_RESP_FUNC_ACC) {
464 pr_debug("RG:ex %016llx returned SMP result:0x%x\n",
465 SAS_ADDR(dev->sas_addr), rg_resp->result);
466 res = rg_resp->result;
467 goto out;
468 }
469
470 rg = &rg_resp->rg;
471 dev->ex_dev.ex_change_count = be16_to_cpu(rg->change_count);
472 dev->ex_dev.max_route_indexes = be16_to_cpu(rg->route_indexes);
473 dev->ex_dev.num_phys = min(rg->num_phys, (u8)MAX_EXPANDER_PHYS);
474 dev->ex_dev.t2t_supp = rg->t2t_supp;
475 dev->ex_dev.conf_route_table = rg->conf_route_table;
476 dev->ex_dev.configuring = rg->configuring;
477 memcpy(dev->ex_dev.enclosure_logical_id,
478 rg->enclosure_logical_id, 8);
479
480 if (dev->ex_dev.configuring) {
481 pr_debug("RG: ex %016llx self-configuring...\n",
482 SAS_ADDR(dev->sas_addr));
483 schedule_timeout_interruptible(5*HZ);
484 } else
485 break;
486 }
487out:
488 kfree(rg_req);
489 kfree(rg_resp);
490 return res;
491}
492
493static void ex_assign_manuf_info(struct domain_device *dev, void
494 *_mi_resp)
495{
496 u8 *mi_resp = _mi_resp;
497 struct sas_rphy *rphy = dev->rphy;
498 struct sas_expander_device *edev = rphy_to_expander_device(rphy);
499
500 memcpy(edev->vendor_id, mi_resp + 12, SAS_EXPANDER_VENDOR_ID_LEN);
501 memcpy(edev->product_id, mi_resp + 20, SAS_EXPANDER_PRODUCT_ID_LEN);
502 memcpy(edev->product_rev, mi_resp + 36,
503 SAS_EXPANDER_PRODUCT_REV_LEN);
504
505 if (mi_resp[8] & 1) {
506 memcpy(edev->component_vendor_id, mi_resp + 40,
507 SAS_EXPANDER_COMPONENT_VENDOR_ID_LEN);
508 edev->component_id = mi_resp[48] << 8 | mi_resp[49];
509 edev->component_revision_id = mi_resp[50];
510 }
511}
512
513#define MI_REQ_SIZE 8
514#define MI_RESP_SIZE 64
515
516static int sas_ex_manuf_info(struct domain_device *dev)
517{
518 u8 *mi_req;
519 u8 *mi_resp;
520 int res;
521
522 mi_req = alloc_smp_req(MI_REQ_SIZE);
523 if (!mi_req)
524 return -ENOMEM;
525
526 mi_resp = alloc_smp_resp(MI_RESP_SIZE);
527 if (!mi_resp) {
528 kfree(mi_req);
529 return -ENOMEM;
530 }
531
532 mi_req[1] = SMP_REPORT_MANUF_INFO;
533
534 res = smp_execute_task(dev, mi_req, MI_REQ_SIZE, mi_resp, MI_RESP_SIZE);
535 if (res) {
536 pr_notice("MI: ex %016llx failed:0x%x\n",
537 SAS_ADDR(dev->sas_addr), res);
538 goto out;
539 } else if (mi_resp[2] != SMP_RESP_FUNC_ACC) {
540 pr_debug("MI ex %016llx returned SMP result:0x%x\n",
541 SAS_ADDR(dev->sas_addr), mi_resp[2]);
542 goto out;
543 }
544
545 ex_assign_manuf_info(dev, mi_resp);
546out:
547 kfree(mi_req);
548 kfree(mi_resp);
549 return res;
550}
551
552#define PC_REQ_SIZE 44
553#define PC_RESP_SIZE 8
554
555int sas_smp_phy_control(struct domain_device *dev, int phy_id,
556 enum phy_func phy_func,
557 struct sas_phy_linkrates *rates)
558{
559 u8 *pc_req;
560 u8 *pc_resp;
561 int res;
562
563 pc_req = alloc_smp_req(PC_REQ_SIZE);
564 if (!pc_req)
565 return -ENOMEM;
566
567 pc_resp = alloc_smp_resp(PC_RESP_SIZE);
568 if (!pc_resp) {
569 kfree(pc_req);
570 return -ENOMEM;
571 }
572
573 pc_req[1] = SMP_PHY_CONTROL;
574 pc_req[9] = phy_id;
575 pc_req[10] = phy_func;
576 if (rates) {
577 pc_req[32] = rates->minimum_linkrate << 4;
578 pc_req[33] = rates->maximum_linkrate << 4;
579 }
580
581 res = smp_execute_task(dev, pc_req, PC_REQ_SIZE, pc_resp, PC_RESP_SIZE);
582 if (res) {
583 pr_err("ex %016llx phy%02d PHY control failed: %d\n",
584 SAS_ADDR(dev->sas_addr), phy_id, res);
585 } else if (pc_resp[2] != SMP_RESP_FUNC_ACC) {
586 pr_err("ex %016llx phy%02d PHY control failed: function result 0x%x\n",
587 SAS_ADDR(dev->sas_addr), phy_id, pc_resp[2]);
588 res = pc_resp[2];
589 }
590 kfree(pc_resp);
591 kfree(pc_req);
592 return res;
593}
594
595static void sas_ex_disable_phy(struct domain_device *dev, int phy_id)
596{
597 struct expander_device *ex = &dev->ex_dev;
598 struct ex_phy *phy = &ex->ex_phy[phy_id];
599
600 sas_smp_phy_control(dev, phy_id, PHY_FUNC_DISABLE, NULL);
601 phy->linkrate = SAS_PHY_DISABLED;
602}
603
604static void sas_ex_disable_port(struct domain_device *dev, u8 *sas_addr)
605{
606 struct expander_device *ex = &dev->ex_dev;
607 int i;
608
609 for (i = 0; i < ex->num_phys; i++) {
610 struct ex_phy *phy = &ex->ex_phy[i];
611
612 if (phy->phy_state == PHY_VACANT ||
613 phy->phy_state == PHY_NOT_PRESENT)
614 continue;
615
616 if (SAS_ADDR(phy->attached_sas_addr) == SAS_ADDR(sas_addr))
617 sas_ex_disable_phy(dev, i);
618 }
619}
620
621static int sas_dev_present_in_domain(struct asd_sas_port *port,
622 u8 *sas_addr)
623{
624 struct domain_device *dev;
625
626 if (SAS_ADDR(port->sas_addr) == SAS_ADDR(sas_addr))
627 return 1;
628 list_for_each_entry(dev, &port->dev_list, dev_list_node) {
629 if (SAS_ADDR(dev->sas_addr) == SAS_ADDR(sas_addr))
630 return 1;
631 }
632 return 0;
633}
634
635#define RPEL_REQ_SIZE 16
636#define RPEL_RESP_SIZE 32
637int sas_smp_get_phy_events(struct sas_phy *phy)
638{
639 int res;
640 u8 *req;
641 u8 *resp;
642 struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent);
643 struct domain_device *dev = sas_find_dev_by_rphy(rphy);
644
645 req = alloc_smp_req(RPEL_REQ_SIZE);
646 if (!req)
647 return -ENOMEM;
648
649 resp = alloc_smp_resp(RPEL_RESP_SIZE);
650 if (!resp) {
651 kfree(req);
652 return -ENOMEM;
653 }
654
655 req[1] = SMP_REPORT_PHY_ERR_LOG;
656 req[9] = phy->number;
657
658 res = smp_execute_task(dev, req, RPEL_REQ_SIZE,
659 resp, RPEL_RESP_SIZE);
660
661 if (res)
662 goto out;
663
664 phy->invalid_dword_count = get_unaligned_be32(&resp[12]);
665 phy->running_disparity_error_count = get_unaligned_be32(&resp[16]);
666 phy->loss_of_dword_sync_count = get_unaligned_be32(&resp[20]);
667 phy->phy_reset_problem_count = get_unaligned_be32(&resp[24]);
668
669 out:
670 kfree(req);
671 kfree(resp);
672 return res;
673
674}
675
676#ifdef CONFIG_SCSI_SAS_ATA
677
678#define RPS_REQ_SIZE 16
679#define RPS_RESP_SIZE sizeof(struct smp_rps_resp)
680
681int sas_get_report_phy_sata(struct domain_device *dev, int phy_id,
682 struct smp_rps_resp *rps_resp)
683{
684 int res;
685 u8 *rps_req = alloc_smp_req(RPS_REQ_SIZE);
686 u8 *resp = (u8 *)rps_resp;
687
688 if (!rps_req)
689 return -ENOMEM;
690
691 rps_req[1] = SMP_REPORT_PHY_SATA;
692 rps_req[9] = phy_id;
693
694 res = smp_execute_task(dev, rps_req, RPS_REQ_SIZE,
695 rps_resp, RPS_RESP_SIZE);
696
697 /* 0x34 is the FIS type for the D2H fis. There's a potential
698 * standards cockup here. sas-2 explicitly specifies the FIS
699 * should be encoded so that FIS type is in resp[24].
700 * However, some expanders endian reverse this. Undo the
701 * reversal here */
702 if (!res && resp[27] == 0x34 && resp[24] != 0x34) {
703 int i;
704
705 for (i = 0; i < 5; i++) {
706 int j = 24 + (i*4);
707 u8 a, b;
708 a = resp[j + 0];
709 b = resp[j + 1];
710 resp[j + 0] = resp[j + 3];
711 resp[j + 1] = resp[j + 2];
712 resp[j + 2] = b;
713 resp[j + 3] = a;
714 }
715 }
716
717 kfree(rps_req);
718 return res;
719}
720#endif
721
722static void sas_ex_get_linkrate(struct domain_device *parent,
723 struct domain_device *child,
724 struct ex_phy *parent_phy)
725{
726 struct expander_device *parent_ex = &parent->ex_dev;
727 struct sas_port *port;
728 int i;
729
730 child->pathways = 0;
731
732 port = parent_phy->port;
733
734 for (i = 0; i < parent_ex->num_phys; i++) {
735 struct ex_phy *phy = &parent_ex->ex_phy[i];
736
737 if (phy->phy_state == PHY_VACANT ||
738 phy->phy_state == PHY_NOT_PRESENT)
739 continue;
740
741 if (sas_phy_match_dev_addr(child, phy)) {
742 child->min_linkrate = min(parent->min_linkrate,
743 phy->linkrate);
744 child->max_linkrate = max(parent->max_linkrate,
745 phy->linkrate);
746 child->pathways++;
747 sas_port_add_phy(port, phy->phy);
748 }
749 }
750 child->linkrate = min(parent_phy->linkrate, child->max_linkrate);
751 child->pathways = min(child->pathways, parent->pathways);
752}
753
754static int sas_ex_add_dev(struct domain_device *parent, struct ex_phy *phy,
755 struct domain_device *child, int phy_id)
756{
757 struct sas_rphy *rphy;
758 int res;
759
760 child->dev_type = SAS_END_DEVICE;
761 rphy = sas_end_device_alloc(phy->port);
762 if (!rphy)
763 return -ENOMEM;
764
765 child->tproto = phy->attached_tproto;
766 sas_init_dev(child);
767
768 child->rphy = rphy;
769 get_device(&rphy->dev);
770 rphy->identify.phy_identifier = phy_id;
771 sas_fill_in_rphy(child, rphy);
772
773 list_add_tail(&child->disco_list_node, &parent->port->disco_list);
774
775 res = sas_notify_lldd_dev_found(child);
776 if (res) {
777 pr_notice("notify lldd for device %016llx at %016llx:%02d returned 0x%x\n",
778 SAS_ADDR(child->sas_addr),
779 SAS_ADDR(parent->sas_addr), phy_id, res);
780 sas_rphy_free(child->rphy);
781 list_del(&child->disco_list_node);
782 return res;
783 }
784
785 return 0;
786}
787
788static struct domain_device *sas_ex_discover_end_dev(
789 struct domain_device *parent, int phy_id)
790{
791 struct expander_device *parent_ex = &parent->ex_dev;
792 struct ex_phy *phy = &parent_ex->ex_phy[phy_id];
793 struct domain_device *child = NULL;
794 int res;
795
796 if (phy->attached_sata_host || phy->attached_sata_ps)
797 return NULL;
798
799 child = sas_alloc_device();
800 if (!child)
801 return NULL;
802
803 kref_get(&parent->kref);
804 child->parent = parent;
805 child->port = parent->port;
806 child->iproto = phy->attached_iproto;
807 memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
808 sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
809 if (!phy->port) {
810 phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
811 if (unlikely(!phy->port))
812 goto out_err;
813 if (unlikely(sas_port_add(phy->port) != 0)) {
814 sas_port_free(phy->port);
815 goto out_err;
816 }
817 }
818 sas_ex_get_linkrate(parent, child, phy);
819 sas_device_set_phy(child, phy->port);
820
821 if ((phy->attached_tproto & SAS_PROTOCOL_STP) || phy->attached_sata_dev) {
822 res = sas_ata_add_dev(parent, phy, child, phy_id);
823 } else if (phy->attached_tproto & SAS_PROTOCOL_SSP) {
824 res = sas_ex_add_dev(parent, phy, child, phy_id);
825 } else {
826 pr_notice("target proto 0x%x at %016llx:0x%x not handled\n",
827 phy->attached_tproto, SAS_ADDR(parent->sas_addr),
828 phy_id);
829 res = -ENODEV;
830 }
831
832 if (res)
833 goto out_free;
834
835 list_add_tail(&child->siblings, &parent_ex->children);
836 return child;
837
838 out_free:
839 sas_port_delete(phy->port);
840 out_err:
841 phy->port = NULL;
842 sas_put_device(child);
843 return NULL;
844}
845
846/* See if this phy is part of a wide port */
847static bool sas_ex_join_wide_port(struct domain_device *parent, int phy_id)
848{
849 struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
850 int i;
851
852 for (i = 0; i < parent->ex_dev.num_phys; i++) {
853 struct ex_phy *ephy = &parent->ex_dev.ex_phy[i];
854
855 if (ephy == phy)
856 continue;
857
858 if (!memcmp(phy->attached_sas_addr, ephy->attached_sas_addr,
859 SAS_ADDR_SIZE) && ephy->port) {
860 sas_port_add_phy(ephy->port, phy->phy);
861 phy->port = ephy->port;
862 phy->phy_state = PHY_DEVICE_DISCOVERED;
863 return true;
864 }
865 }
866
867 return false;
868}
869
870static struct domain_device *sas_ex_discover_expander(
871 struct domain_device *parent, int phy_id)
872{
873 struct sas_expander_device *parent_ex = rphy_to_expander_device(parent->rphy);
874 struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
875 struct domain_device *child = NULL;
876 struct sas_rphy *rphy;
877 struct sas_expander_device *edev;
878 struct asd_sas_port *port;
879 int res;
880
881 if (phy->routing_attr == DIRECT_ROUTING) {
882 pr_warn("ex %016llx:%02d:D <--> ex %016llx:0x%x is not allowed\n",
883 SAS_ADDR(parent->sas_addr), phy_id,
884 SAS_ADDR(phy->attached_sas_addr),
885 phy->attached_phy_id);
886 return NULL;
887 }
888 child = sas_alloc_device();
889 if (!child)
890 return NULL;
891
892 phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
893 /* FIXME: better error handling */
894 BUG_ON(sas_port_add(phy->port) != 0);
895
896
897 switch (phy->attached_dev_type) {
898 case SAS_EDGE_EXPANDER_DEVICE:
899 rphy = sas_expander_alloc(phy->port,
900 SAS_EDGE_EXPANDER_DEVICE);
901 break;
902 case SAS_FANOUT_EXPANDER_DEVICE:
903 rphy = sas_expander_alloc(phy->port,
904 SAS_FANOUT_EXPANDER_DEVICE);
905 break;
906 default:
907 rphy = NULL; /* shut gcc up */
908 BUG();
909 }
910 port = parent->port;
911 child->rphy = rphy;
912 get_device(&rphy->dev);
913 edev = rphy_to_expander_device(rphy);
914 child->dev_type = phy->attached_dev_type;
915 kref_get(&parent->kref);
916 child->parent = parent;
917 child->port = port;
918 child->iproto = phy->attached_iproto;
919 child->tproto = phy->attached_tproto;
920 memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
921 sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
922 sas_ex_get_linkrate(parent, child, phy);
923 edev->level = parent_ex->level + 1;
924 parent->port->disc.max_level = max(parent->port->disc.max_level,
925 edev->level);
926 sas_init_dev(child);
927 sas_fill_in_rphy(child, rphy);
928 sas_rphy_add(rphy);
929
930 spin_lock_irq(&parent->port->dev_list_lock);
931 list_add_tail(&child->dev_list_node, &parent->port->dev_list);
932 spin_unlock_irq(&parent->port->dev_list_lock);
933
934 res = sas_discover_expander(child);
935 if (res) {
936 sas_rphy_delete(rphy);
937 spin_lock_irq(&parent->port->dev_list_lock);
938 list_del(&child->dev_list_node);
939 spin_unlock_irq(&parent->port->dev_list_lock);
940 sas_put_device(child);
941 sas_port_delete(phy->port);
942 phy->port = NULL;
943 return NULL;
944 }
945 list_add_tail(&child->siblings, &parent->ex_dev.children);
946 return child;
947}
948
949static int sas_ex_discover_dev(struct domain_device *dev, int phy_id)
950{
951 struct expander_device *ex = &dev->ex_dev;
952 struct ex_phy *ex_phy = &ex->ex_phy[phy_id];
953 struct domain_device *child = NULL;
954 int res = 0;
955
956 /* Phy state */
957 if (ex_phy->linkrate == SAS_SATA_SPINUP_HOLD) {
958 if (!sas_smp_phy_control(dev, phy_id, PHY_FUNC_LINK_RESET, NULL))
959 res = sas_ex_phy_discover(dev, phy_id);
960 if (res)
961 return res;
962 }
963
964 /* Parent and domain coherency */
965 if (!dev->parent && sas_phy_match_port_addr(dev->port, ex_phy)) {
966 sas_add_parent_port(dev, phy_id);
967 return 0;
968 }
969 if (dev->parent && sas_phy_match_dev_addr(dev->parent, ex_phy)) {
970 sas_add_parent_port(dev, phy_id);
971 if (ex_phy->routing_attr == TABLE_ROUTING)
972 sas_configure_phy(dev, phy_id, dev->port->sas_addr, 1);
973 return 0;
974 }
975
976 if (sas_dev_present_in_domain(dev->port, ex_phy->attached_sas_addr))
977 sas_ex_disable_port(dev, ex_phy->attached_sas_addr);
978
979 if (ex_phy->attached_dev_type == SAS_PHY_UNUSED) {
980 if (ex_phy->routing_attr == DIRECT_ROUTING) {
981 memset(ex_phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
982 sas_configure_routing(dev, ex_phy->attached_sas_addr);
983 }
984 return 0;
985 } else if (ex_phy->linkrate == SAS_LINK_RATE_UNKNOWN)
986 return 0;
987
988 if (ex_phy->attached_dev_type != SAS_END_DEVICE &&
989 ex_phy->attached_dev_type != SAS_FANOUT_EXPANDER_DEVICE &&
990 ex_phy->attached_dev_type != SAS_EDGE_EXPANDER_DEVICE &&
991 ex_phy->attached_dev_type != SAS_SATA_PENDING) {
992 pr_warn("unknown device type(0x%x) attached to ex %016llx phy%02d\n",
993 ex_phy->attached_dev_type,
994 SAS_ADDR(dev->sas_addr),
995 phy_id);
996 return 0;
997 }
998
999 res = sas_configure_routing(dev, ex_phy->attached_sas_addr);
1000 if (res) {
1001 pr_notice("configure routing for dev %016llx reported 0x%x. Forgotten\n",
1002 SAS_ADDR(ex_phy->attached_sas_addr), res);
1003 sas_disable_routing(dev, ex_phy->attached_sas_addr);
1004 return res;
1005 }
1006
1007 if (sas_ex_join_wide_port(dev, phy_id)) {
1008 pr_debug("Attaching ex phy%02d to wide port %016llx\n",
1009 phy_id, SAS_ADDR(ex_phy->attached_sas_addr));
1010 return res;
1011 }
1012
1013 switch (ex_phy->attached_dev_type) {
1014 case SAS_END_DEVICE:
1015 case SAS_SATA_PENDING:
1016 child = sas_ex_discover_end_dev(dev, phy_id);
1017 break;
1018 case SAS_FANOUT_EXPANDER_DEVICE:
1019 if (SAS_ADDR(dev->port->disc.fanout_sas_addr)) {
1020 pr_debug("second fanout expander %016llx phy%02d attached to ex %016llx phy%02d\n",
1021 SAS_ADDR(ex_phy->attached_sas_addr),
1022 ex_phy->attached_phy_id,
1023 SAS_ADDR(dev->sas_addr),
1024 phy_id);
1025 sas_ex_disable_phy(dev, phy_id);
1026 return res;
1027 } else
1028 memcpy(dev->port->disc.fanout_sas_addr,
1029 ex_phy->attached_sas_addr, SAS_ADDR_SIZE);
1030 fallthrough;
1031 case SAS_EDGE_EXPANDER_DEVICE:
1032 child = sas_ex_discover_expander(dev, phy_id);
1033 break;
1034 default:
1035 break;
1036 }
1037
1038 if (!child)
1039 pr_notice("ex %016llx phy%02d failed to discover\n",
1040 SAS_ADDR(dev->sas_addr), phy_id);
1041 return res;
1042}
1043
1044static int sas_find_sub_addr(struct domain_device *dev, u8 *sub_addr)
1045{
1046 struct expander_device *ex = &dev->ex_dev;
1047 int i;
1048
1049 for (i = 0; i < ex->num_phys; i++) {
1050 struct ex_phy *phy = &ex->ex_phy[i];
1051
1052 if (phy->phy_state == PHY_VACANT ||
1053 phy->phy_state == PHY_NOT_PRESENT)
1054 continue;
1055
1056 if (dev_is_expander(phy->attached_dev_type) &&
1057 phy->routing_attr == SUBTRACTIVE_ROUTING) {
1058
1059 memcpy(sub_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
1060
1061 return 1;
1062 }
1063 }
1064 return 0;
1065}
1066
1067static int sas_check_level_subtractive_boundary(struct domain_device *dev)
1068{
1069 struct expander_device *ex = &dev->ex_dev;
1070 struct domain_device *child;
1071 u8 sub_addr[SAS_ADDR_SIZE] = {0, };
1072
1073 list_for_each_entry(child, &ex->children, siblings) {
1074 if (!dev_is_expander(child->dev_type))
1075 continue;
1076 if (sub_addr[0] == 0) {
1077 sas_find_sub_addr(child, sub_addr);
1078 continue;
1079 } else {
1080 u8 s2[SAS_ADDR_SIZE];
1081
1082 if (sas_find_sub_addr(child, s2) &&
1083 (SAS_ADDR(sub_addr) != SAS_ADDR(s2))) {
1084
1085 pr_notice("ex %016llx->%016llx-?->%016llx diverges from subtractive boundary %016llx\n",
1086 SAS_ADDR(dev->sas_addr),
1087 SAS_ADDR(child->sas_addr),
1088 SAS_ADDR(s2),
1089 SAS_ADDR(sub_addr));
1090
1091 sas_ex_disable_port(child, s2);
1092 }
1093 }
1094 }
1095 return 0;
1096}
1097/**
1098 * sas_ex_discover_devices - discover devices attached to this expander
1099 * @dev: pointer to the expander domain device
1100 * @single: if you want to do a single phy, else set to -1;
1101 *
1102 * Configure this expander for use with its devices and register the
1103 * devices of this expander.
1104 */
1105static int sas_ex_discover_devices(struct domain_device *dev, int single)
1106{
1107 struct expander_device *ex = &dev->ex_dev;
1108 int i = 0, end = ex->num_phys;
1109 int res = 0;
1110
1111 if (0 <= single && single < end) {
1112 i = single;
1113 end = i+1;
1114 }
1115
1116 for ( ; i < end; i++) {
1117 struct ex_phy *ex_phy = &ex->ex_phy[i];
1118
1119 if (ex_phy->phy_state == PHY_VACANT ||
1120 ex_phy->phy_state == PHY_NOT_PRESENT ||
1121 ex_phy->phy_state == PHY_DEVICE_DISCOVERED)
1122 continue;
1123
1124 switch (ex_phy->linkrate) {
1125 case SAS_PHY_DISABLED:
1126 case SAS_PHY_RESET_PROBLEM:
1127 case SAS_SATA_PORT_SELECTOR:
1128 continue;
1129 default:
1130 res = sas_ex_discover_dev(dev, i);
1131 if (res)
1132 break;
1133 continue;
1134 }
1135 }
1136
1137 if (!res)
1138 sas_check_level_subtractive_boundary(dev);
1139
1140 return res;
1141}
1142
1143static int sas_check_ex_subtractive_boundary(struct domain_device *dev)
1144{
1145 struct expander_device *ex = &dev->ex_dev;
1146 int i;
1147 u8 *sub_sas_addr = NULL;
1148
1149 if (dev->dev_type != SAS_EDGE_EXPANDER_DEVICE)
1150 return 0;
1151
1152 for (i = 0; i < ex->num_phys; i++) {
1153 struct ex_phy *phy = &ex->ex_phy[i];
1154
1155 if (phy->phy_state == PHY_VACANT ||
1156 phy->phy_state == PHY_NOT_PRESENT)
1157 continue;
1158
1159 if (dev_is_expander(phy->attached_dev_type) &&
1160 phy->routing_attr == SUBTRACTIVE_ROUTING) {
1161
1162 if (!sub_sas_addr)
1163 sub_sas_addr = &phy->attached_sas_addr[0];
1164 else if (SAS_ADDR(sub_sas_addr) !=
1165 SAS_ADDR(phy->attached_sas_addr)) {
1166
1167 pr_notice("ex %016llx phy%02d diverges(%016llx) on subtractive boundary(%016llx). Disabled\n",
1168 SAS_ADDR(dev->sas_addr), i,
1169 SAS_ADDR(phy->attached_sas_addr),
1170 SAS_ADDR(sub_sas_addr));
1171 sas_ex_disable_phy(dev, i);
1172 }
1173 }
1174 }
1175 return 0;
1176}
1177
1178static void sas_print_parent_topology_bug(struct domain_device *child,
1179 struct ex_phy *parent_phy,
1180 struct ex_phy *child_phy)
1181{
1182 static const char *ex_type[] = {
1183 [SAS_EDGE_EXPANDER_DEVICE] = "edge",
1184 [SAS_FANOUT_EXPANDER_DEVICE] = "fanout",
1185 };
1186 struct domain_device *parent = child->parent;
1187
1188 pr_notice("%s ex %016llx phy%02d <--> %s ex %016llx phy%02d has %c:%c routing link!\n",
1189 ex_type[parent->dev_type],
1190 SAS_ADDR(parent->sas_addr),
1191 parent_phy->phy_id,
1192
1193 ex_type[child->dev_type],
1194 SAS_ADDR(child->sas_addr),
1195 child_phy->phy_id,
1196
1197 sas_route_char(parent, parent_phy),
1198 sas_route_char(child, child_phy));
1199}
1200
1201static bool sas_eeds_valid(struct domain_device *parent,
1202 struct domain_device *child)
1203{
1204 struct sas_discovery *disc = &parent->port->disc;
1205
1206 return (SAS_ADDR(disc->eeds_a) == SAS_ADDR(parent->sas_addr) ||
1207 SAS_ADDR(disc->eeds_a) == SAS_ADDR(child->sas_addr)) &&
1208 (SAS_ADDR(disc->eeds_b) == SAS_ADDR(parent->sas_addr) ||
1209 SAS_ADDR(disc->eeds_b) == SAS_ADDR(child->sas_addr));
1210}
1211
1212static int sas_check_eeds(struct domain_device *child,
1213 struct ex_phy *parent_phy,
1214 struct ex_phy *child_phy)
1215{
1216 int res = 0;
1217 struct domain_device *parent = child->parent;
1218 struct sas_discovery *disc = &parent->port->disc;
1219
1220 if (SAS_ADDR(disc->fanout_sas_addr) != 0) {
1221 res = -ENODEV;
1222 pr_warn("edge ex %016llx phy S:%02d <--> edge ex %016llx phy S:%02d, while there is a fanout ex %016llx\n",
1223 SAS_ADDR(parent->sas_addr),
1224 parent_phy->phy_id,
1225 SAS_ADDR(child->sas_addr),
1226 child_phy->phy_id,
1227 SAS_ADDR(disc->fanout_sas_addr));
1228 } else if (SAS_ADDR(disc->eeds_a) == 0) {
1229 memcpy(disc->eeds_a, parent->sas_addr, SAS_ADDR_SIZE);
1230 memcpy(disc->eeds_b, child->sas_addr, SAS_ADDR_SIZE);
1231 } else if (!sas_eeds_valid(parent, child)) {
1232 res = -ENODEV;
1233 pr_warn("edge ex %016llx phy%02d <--> edge ex %016llx phy%02d link forms a third EEDS!\n",
1234 SAS_ADDR(parent->sas_addr),
1235 parent_phy->phy_id,
1236 SAS_ADDR(child->sas_addr),
1237 child_phy->phy_id);
1238 }
1239
1240 return res;
1241}
1242
1243static int sas_check_edge_expander_topo(struct domain_device *child,
1244 struct ex_phy *parent_phy)
1245{
1246 struct expander_device *child_ex = &child->ex_dev;
1247 struct expander_device *parent_ex = &child->parent->ex_dev;
1248 struct ex_phy *child_phy;
1249
1250 child_phy = &child_ex->ex_phy[parent_phy->attached_phy_id];
1251
1252 if (child->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
1253 if (parent_phy->routing_attr != SUBTRACTIVE_ROUTING ||
1254 child_phy->routing_attr != TABLE_ROUTING)
1255 goto error;
1256 } else if (parent_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1257 if (child_phy->routing_attr == SUBTRACTIVE_ROUTING)
1258 return sas_check_eeds(child, parent_phy, child_phy);
1259 else if (child_phy->routing_attr != TABLE_ROUTING)
1260 goto error;
1261 } else if (parent_phy->routing_attr == TABLE_ROUTING) {
1262 if (child_phy->routing_attr != SUBTRACTIVE_ROUTING &&
1263 (child_phy->routing_attr != TABLE_ROUTING ||
1264 !child_ex->t2t_supp || !parent_ex->t2t_supp))
1265 goto error;
1266 }
1267
1268 return 0;
1269error:
1270 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1271 return -ENODEV;
1272}
1273
1274static int sas_check_fanout_expander_topo(struct domain_device *child,
1275 struct ex_phy *parent_phy)
1276{
1277 struct expander_device *child_ex = &child->ex_dev;
1278 struct ex_phy *child_phy;
1279
1280 child_phy = &child_ex->ex_phy[parent_phy->attached_phy_id];
1281
1282 if (parent_phy->routing_attr == TABLE_ROUTING &&
1283 child_phy->routing_attr == SUBTRACTIVE_ROUTING)
1284 return 0;
1285
1286 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1287
1288 return -ENODEV;
1289}
1290
1291static int sas_check_parent_topology(struct domain_device *child)
1292{
1293 struct expander_device *parent_ex;
1294 int i;
1295 int res = 0;
1296
1297 if (!child->parent)
1298 return 0;
1299
1300 if (!dev_is_expander(child->parent->dev_type))
1301 return 0;
1302
1303 parent_ex = &child->parent->ex_dev;
1304
1305 for (i = 0; i < parent_ex->num_phys; i++) {
1306 struct ex_phy *parent_phy = &parent_ex->ex_phy[i];
1307
1308 if (parent_phy->phy_state == PHY_VACANT ||
1309 parent_phy->phy_state == PHY_NOT_PRESENT)
1310 continue;
1311
1312 if (!sas_phy_match_dev_addr(child, parent_phy))
1313 continue;
1314
1315 switch (child->parent->dev_type) {
1316 case SAS_EDGE_EXPANDER_DEVICE:
1317 if (sas_check_edge_expander_topo(child, parent_phy))
1318 res = -ENODEV;
1319 break;
1320 case SAS_FANOUT_EXPANDER_DEVICE:
1321 if (sas_check_fanout_expander_topo(child, parent_phy))
1322 res = -ENODEV;
1323 break;
1324 default:
1325 break;
1326 }
1327 }
1328
1329 return res;
1330}
1331
1332#define RRI_REQ_SIZE 16
1333#define RRI_RESP_SIZE 44
1334
1335static int sas_configure_present(struct domain_device *dev, int phy_id,
1336 u8 *sas_addr, int *index, int *present)
1337{
1338 int i, res = 0;
1339 struct expander_device *ex = &dev->ex_dev;
1340 struct ex_phy *phy = &ex->ex_phy[phy_id];
1341 u8 *rri_req;
1342 u8 *rri_resp;
1343
1344 *present = 0;
1345 *index = 0;
1346
1347 rri_req = alloc_smp_req(RRI_REQ_SIZE);
1348 if (!rri_req)
1349 return -ENOMEM;
1350
1351 rri_resp = alloc_smp_resp(RRI_RESP_SIZE);
1352 if (!rri_resp) {
1353 kfree(rri_req);
1354 return -ENOMEM;
1355 }
1356
1357 rri_req[1] = SMP_REPORT_ROUTE_INFO;
1358 rri_req[9] = phy_id;
1359
1360 for (i = 0; i < ex->max_route_indexes ; i++) {
1361 *(__be16 *)(rri_req+6) = cpu_to_be16(i);
1362 res = smp_execute_task(dev, rri_req, RRI_REQ_SIZE, rri_resp,
1363 RRI_RESP_SIZE);
1364 if (res)
1365 goto out;
1366 res = rri_resp[2];
1367 if (res == SMP_RESP_NO_INDEX) {
1368 pr_warn("overflow of indexes: dev %016llx phy%02d index 0x%x\n",
1369 SAS_ADDR(dev->sas_addr), phy_id, i);
1370 goto out;
1371 } else if (res != SMP_RESP_FUNC_ACC) {
1372 pr_notice("%s: dev %016llx phy%02d index 0x%x result 0x%x\n",
1373 __func__, SAS_ADDR(dev->sas_addr), phy_id,
1374 i, res);
1375 goto out;
1376 }
1377 if (SAS_ADDR(sas_addr) != 0) {
1378 if (SAS_ADDR(rri_resp+16) == SAS_ADDR(sas_addr)) {
1379 *index = i;
1380 if ((rri_resp[12] & 0x80) == 0x80)
1381 *present = 0;
1382 else
1383 *present = 1;
1384 goto out;
1385 } else if (SAS_ADDR(rri_resp+16) == 0) {
1386 *index = i;
1387 *present = 0;
1388 goto out;
1389 }
1390 } else if (SAS_ADDR(rri_resp+16) == 0 &&
1391 phy->last_da_index < i) {
1392 phy->last_da_index = i;
1393 *index = i;
1394 *present = 0;
1395 goto out;
1396 }
1397 }
1398 res = -1;
1399out:
1400 kfree(rri_req);
1401 kfree(rri_resp);
1402 return res;
1403}
1404
1405#define CRI_REQ_SIZE 44
1406#define CRI_RESP_SIZE 8
1407
1408static int sas_configure_set(struct domain_device *dev, int phy_id,
1409 u8 *sas_addr, int index, int include)
1410{
1411 int res;
1412 u8 *cri_req;
1413 u8 *cri_resp;
1414
1415 cri_req = alloc_smp_req(CRI_REQ_SIZE);
1416 if (!cri_req)
1417 return -ENOMEM;
1418
1419 cri_resp = alloc_smp_resp(CRI_RESP_SIZE);
1420 if (!cri_resp) {
1421 kfree(cri_req);
1422 return -ENOMEM;
1423 }
1424
1425 cri_req[1] = SMP_CONF_ROUTE_INFO;
1426 *(__be16 *)(cri_req+6) = cpu_to_be16(index);
1427 cri_req[9] = phy_id;
1428 if (SAS_ADDR(sas_addr) == 0 || !include)
1429 cri_req[12] |= 0x80;
1430 memcpy(cri_req+16, sas_addr, SAS_ADDR_SIZE);
1431
1432 res = smp_execute_task(dev, cri_req, CRI_REQ_SIZE, cri_resp,
1433 CRI_RESP_SIZE);
1434 if (res)
1435 goto out;
1436 res = cri_resp[2];
1437 if (res == SMP_RESP_NO_INDEX) {
1438 pr_warn("overflow of indexes: dev %016llx phy%02d index 0x%x\n",
1439 SAS_ADDR(dev->sas_addr), phy_id, index);
1440 }
1441out:
1442 kfree(cri_req);
1443 kfree(cri_resp);
1444 return res;
1445}
1446
1447static int sas_configure_phy(struct domain_device *dev, int phy_id,
1448 u8 *sas_addr, int include)
1449{
1450 int index;
1451 int present;
1452 int res;
1453
1454 res = sas_configure_present(dev, phy_id, sas_addr, &index, &present);
1455 if (res)
1456 return res;
1457 if (include ^ present)
1458 return sas_configure_set(dev, phy_id, sas_addr, index,
1459 include);
1460
1461 return res;
1462}
1463
1464/**
1465 * sas_configure_parent - configure routing table of parent
1466 * @parent: parent expander
1467 * @child: child expander
1468 * @sas_addr: SAS port identifier of device directly attached to child
1469 * @include: whether or not to include @child in the expander routing table
1470 */
1471static int sas_configure_parent(struct domain_device *parent,
1472 struct domain_device *child,
1473 u8 *sas_addr, int include)
1474{
1475 struct expander_device *ex_parent = &parent->ex_dev;
1476 int res = 0;
1477 int i;
1478
1479 if (parent->parent) {
1480 res = sas_configure_parent(parent->parent, parent, sas_addr,
1481 include);
1482 if (res)
1483 return res;
1484 }
1485
1486 if (ex_parent->conf_route_table == 0) {
1487 pr_debug("ex %016llx has self-configuring routing table\n",
1488 SAS_ADDR(parent->sas_addr));
1489 return 0;
1490 }
1491
1492 for (i = 0; i < ex_parent->num_phys; i++) {
1493 struct ex_phy *phy = &ex_parent->ex_phy[i];
1494
1495 if ((phy->routing_attr == TABLE_ROUTING) &&
1496 sas_phy_match_dev_addr(child, phy)) {
1497 res = sas_configure_phy(parent, i, sas_addr, include);
1498 if (res)
1499 return res;
1500 }
1501 }
1502
1503 return res;
1504}
1505
1506/**
1507 * sas_configure_routing - configure routing
1508 * @dev: expander device
1509 * @sas_addr: port identifier of device directly attached to the expander device
1510 */
1511static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr)
1512{
1513 if (dev->parent)
1514 return sas_configure_parent(dev->parent, dev, sas_addr, 1);
1515 return 0;
1516}
1517
1518static int sas_disable_routing(struct domain_device *dev, u8 *sas_addr)
1519{
1520 if (dev->parent)
1521 return sas_configure_parent(dev->parent, dev, sas_addr, 0);
1522 return 0;
1523}
1524
1525/**
1526 * sas_discover_expander - expander discovery
1527 * @dev: pointer to expander domain device
1528 *
1529 * See comment in sas_discover_sata().
1530 */
1531static int sas_discover_expander(struct domain_device *dev)
1532{
1533 int res;
1534
1535 res = sas_notify_lldd_dev_found(dev);
1536 if (res)
1537 return res;
1538
1539 res = sas_ex_general(dev);
1540 if (res)
1541 goto out_err;
1542 res = sas_ex_manuf_info(dev);
1543 if (res)
1544 goto out_err;
1545
1546 res = sas_expander_discover(dev);
1547 if (res) {
1548 pr_warn("expander %016llx discovery failed(0x%x)\n",
1549 SAS_ADDR(dev->sas_addr), res);
1550 goto out_err;
1551 }
1552
1553 sas_check_ex_subtractive_boundary(dev);
1554 res = sas_check_parent_topology(dev);
1555 if (res)
1556 goto out_err;
1557 return 0;
1558out_err:
1559 sas_notify_lldd_dev_gone(dev);
1560 return res;
1561}
1562
1563static int sas_ex_level_discovery(struct asd_sas_port *port, const int level)
1564{
1565 int res = 0;
1566 struct domain_device *dev;
1567
1568 list_for_each_entry(dev, &port->dev_list, dev_list_node) {
1569 if (dev_is_expander(dev->dev_type)) {
1570 struct sas_expander_device *ex =
1571 rphy_to_expander_device(dev->rphy);
1572
1573 if (level == ex->level)
1574 res = sas_ex_discover_devices(dev, -1);
1575 else if (level > 0)
1576 res = sas_ex_discover_devices(port->port_dev, -1);
1577
1578 }
1579 }
1580
1581 return res;
1582}
1583
1584static int sas_ex_bfs_disc(struct asd_sas_port *port)
1585{
1586 int res;
1587 int level;
1588
1589 do {
1590 level = port->disc.max_level;
1591 res = sas_ex_level_discovery(port, level);
1592 mb();
1593 } while (level < port->disc.max_level);
1594
1595 return res;
1596}
1597
1598int sas_discover_root_expander(struct domain_device *dev)
1599{
1600 int res;
1601 struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1602
1603 res = sas_rphy_add(dev->rphy);
1604 if (res)
1605 goto out_err;
1606
1607 ex->level = dev->port->disc.max_level; /* 0 */
1608 res = sas_discover_expander(dev);
1609 if (res)
1610 goto out_err2;
1611
1612 sas_ex_bfs_disc(dev->port);
1613
1614 return res;
1615
1616out_err2:
1617 sas_rphy_remove(dev->rphy);
1618out_err:
1619 return res;
1620}
1621
1622/* ---------- Domain revalidation ---------- */
1623
1624static int sas_get_phy_discover(struct domain_device *dev,
1625 int phy_id, struct smp_disc_resp *disc_resp)
1626{
1627 int res;
1628 u8 *disc_req;
1629
1630 disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
1631 if (!disc_req)
1632 return -ENOMEM;
1633
1634 disc_req[1] = SMP_DISCOVER;
1635 disc_req[9] = phy_id;
1636
1637 res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
1638 disc_resp, DISCOVER_RESP_SIZE);
1639 if (res)
1640 goto out;
1641 if (disc_resp->result != SMP_RESP_FUNC_ACC)
1642 res = disc_resp->result;
1643out:
1644 kfree(disc_req);
1645 return res;
1646}
1647
1648static int sas_get_phy_change_count(struct domain_device *dev,
1649 int phy_id, int *pcc)
1650{
1651 int res;
1652 struct smp_disc_resp *disc_resp;
1653
1654 disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1655 if (!disc_resp)
1656 return -ENOMEM;
1657
1658 res = sas_get_phy_discover(dev, phy_id, disc_resp);
1659 if (!res)
1660 *pcc = disc_resp->disc.change_count;
1661
1662 kfree(disc_resp);
1663 return res;
1664}
1665
1666int sas_get_phy_attached_dev(struct domain_device *dev, int phy_id,
1667 u8 *sas_addr, enum sas_device_type *type)
1668{
1669 int res;
1670 struct smp_disc_resp *disc_resp;
1671
1672 disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1673 if (!disc_resp)
1674 return -ENOMEM;
1675
1676 res = sas_get_phy_discover(dev, phy_id, disc_resp);
1677 if (res == 0) {
1678 memcpy(sas_addr, disc_resp->disc.attached_sas_addr,
1679 SAS_ADDR_SIZE);
1680 *type = to_dev_type(&disc_resp->disc);
1681 if (*type == 0)
1682 memset(sas_addr, 0, SAS_ADDR_SIZE);
1683 }
1684 kfree(disc_resp);
1685 return res;
1686}
1687
1688static int sas_find_bcast_phy(struct domain_device *dev, int *phy_id,
1689 int from_phy, bool update)
1690{
1691 struct expander_device *ex = &dev->ex_dev;
1692 int res = 0;
1693 int i;
1694
1695 for (i = from_phy; i < ex->num_phys; i++) {
1696 int phy_change_count = 0;
1697
1698 res = sas_get_phy_change_count(dev, i, &phy_change_count);
1699 switch (res) {
1700 case SMP_RESP_PHY_VACANT:
1701 case SMP_RESP_NO_PHY:
1702 continue;
1703 case SMP_RESP_FUNC_ACC:
1704 break;
1705 default:
1706 return res;
1707 }
1708
1709 if (phy_change_count != ex->ex_phy[i].phy_change_count) {
1710 if (update)
1711 ex->ex_phy[i].phy_change_count =
1712 phy_change_count;
1713 *phy_id = i;
1714 return 0;
1715 }
1716 }
1717 return 0;
1718}
1719
1720static int sas_get_ex_change_count(struct domain_device *dev, int *ecc)
1721{
1722 int res;
1723 u8 *rg_req;
1724 struct smp_rg_resp *rg_resp;
1725
1726 rg_req = alloc_smp_req(RG_REQ_SIZE);
1727 if (!rg_req)
1728 return -ENOMEM;
1729
1730 rg_resp = alloc_smp_resp(RG_RESP_SIZE);
1731 if (!rg_resp) {
1732 kfree(rg_req);
1733 return -ENOMEM;
1734 }
1735
1736 rg_req[1] = SMP_REPORT_GENERAL;
1737
1738 res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
1739 RG_RESP_SIZE);
1740 if (res)
1741 goto out;
1742 if (rg_resp->result != SMP_RESP_FUNC_ACC) {
1743 res = rg_resp->result;
1744 goto out;
1745 }
1746
1747 *ecc = be16_to_cpu(rg_resp->rg.change_count);
1748out:
1749 kfree(rg_resp);
1750 kfree(rg_req);
1751 return res;
1752}
1753/**
1754 * sas_find_bcast_dev - find the device issue BROADCAST(CHANGE).
1755 * @dev:domain device to be detect.
1756 * @src_dev: the device which originated BROADCAST(CHANGE).
1757 *
1758 * Add self-configuration expander support. Suppose two expander cascading,
1759 * when the first level expander is self-configuring, hotplug the disks in
1760 * second level expander, BROADCAST(CHANGE) will not only be originated
1761 * in the second level expander, but also be originated in the first level
1762 * expander (see SAS protocol SAS 2r-14, 7.11 for detail), it is to say,
1763 * expander changed count in two level expanders will all increment at least
1764 * once, but the phy which chang count has changed is the source device which
1765 * we concerned.
1766 */
1767
1768static int sas_find_bcast_dev(struct domain_device *dev,
1769 struct domain_device **src_dev)
1770{
1771 struct expander_device *ex = &dev->ex_dev;
1772 int ex_change_count = -1;
1773 int phy_id = -1;
1774 int res;
1775 struct domain_device *ch;
1776
1777 res = sas_get_ex_change_count(dev, &ex_change_count);
1778 if (res)
1779 goto out;
1780 if (ex_change_count != -1 && ex_change_count != ex->ex_change_count) {
1781 /* Just detect if this expander phys phy change count changed,
1782 * in order to determine if this expander originate BROADCAST,
1783 * and do not update phy change count field in our structure.
1784 */
1785 res = sas_find_bcast_phy(dev, &phy_id, 0, false);
1786 if (phy_id != -1) {
1787 *src_dev = dev;
1788 ex->ex_change_count = ex_change_count;
1789 pr_info("ex %016llx phy%02d change count has changed\n",
1790 SAS_ADDR(dev->sas_addr), phy_id);
1791 return res;
1792 } else
1793 pr_info("ex %016llx phys DID NOT change\n",
1794 SAS_ADDR(dev->sas_addr));
1795 }
1796 list_for_each_entry(ch, &ex->children, siblings) {
1797 if (dev_is_expander(ch->dev_type)) {
1798 res = sas_find_bcast_dev(ch, src_dev);
1799 if (*src_dev)
1800 return res;
1801 }
1802 }
1803out:
1804 return res;
1805}
1806
1807static void sas_unregister_ex_tree(struct asd_sas_port *port, struct domain_device *dev)
1808{
1809 struct expander_device *ex = &dev->ex_dev;
1810 struct domain_device *child, *n;
1811
1812 list_for_each_entry_safe(child, n, &ex->children, siblings) {
1813 set_bit(SAS_DEV_GONE, &child->state);
1814 if (dev_is_expander(child->dev_type))
1815 sas_unregister_ex_tree(port, child);
1816 else
1817 sas_unregister_dev(port, child);
1818 }
1819 sas_unregister_dev(port, dev);
1820}
1821
1822static void sas_unregister_devs_sas_addr(struct domain_device *parent,
1823 int phy_id, bool last)
1824{
1825 struct expander_device *ex_dev = &parent->ex_dev;
1826 struct ex_phy *phy = &ex_dev->ex_phy[phy_id];
1827 struct domain_device *child, *n, *found = NULL;
1828 if (last) {
1829 list_for_each_entry_safe(child, n,
1830 &ex_dev->children, siblings) {
1831 if (sas_phy_match_dev_addr(child, phy)) {
1832 set_bit(SAS_DEV_GONE, &child->state);
1833 if (dev_is_expander(child->dev_type))
1834 sas_unregister_ex_tree(parent->port, child);
1835 else
1836 sas_unregister_dev(parent->port, child);
1837 found = child;
1838 break;
1839 }
1840 }
1841 sas_disable_routing(parent, phy->attached_sas_addr);
1842 }
1843 memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1844 if (phy->port) {
1845 sas_port_delete_phy(phy->port, phy->phy);
1846 sas_device_set_phy(found, phy->port);
1847 if (phy->port->num_phys == 0)
1848 list_add_tail(&phy->port->del_list,
1849 &parent->port->sas_port_del_list);
1850 phy->port = NULL;
1851 }
1852}
1853
1854static int sas_discover_bfs_by_root_level(struct domain_device *root,
1855 const int level)
1856{
1857 struct expander_device *ex_root = &root->ex_dev;
1858 struct domain_device *child;
1859 int res = 0;
1860
1861 list_for_each_entry(child, &ex_root->children, siblings) {
1862 if (dev_is_expander(child->dev_type)) {
1863 struct sas_expander_device *ex =
1864 rphy_to_expander_device(child->rphy);
1865
1866 if (level > ex->level)
1867 res = sas_discover_bfs_by_root_level(child,
1868 level);
1869 else if (level == ex->level)
1870 res = sas_ex_discover_devices(child, -1);
1871 }
1872 }
1873 return res;
1874}
1875
1876static int sas_discover_bfs_by_root(struct domain_device *dev)
1877{
1878 int res;
1879 struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1880 int level = ex->level+1;
1881
1882 res = sas_ex_discover_devices(dev, -1);
1883 if (res)
1884 goto out;
1885 do {
1886 res = sas_discover_bfs_by_root_level(dev, level);
1887 mb();
1888 level += 1;
1889 } while (level <= dev->port->disc.max_level);
1890out:
1891 return res;
1892}
1893
1894static int sas_discover_new(struct domain_device *dev, int phy_id)
1895{
1896 struct ex_phy *ex_phy = &dev->ex_dev.ex_phy[phy_id];
1897 struct domain_device *child;
1898 int res;
1899
1900 pr_debug("ex %016llx phy%02d new device attached\n",
1901 SAS_ADDR(dev->sas_addr), phy_id);
1902 res = sas_ex_phy_discover(dev, phy_id);
1903 if (res)
1904 return res;
1905
1906 if (sas_ex_join_wide_port(dev, phy_id))
1907 return 0;
1908
1909 res = sas_ex_discover_devices(dev, phy_id);
1910 if (res)
1911 return res;
1912 list_for_each_entry(child, &dev->ex_dev.children, siblings) {
1913 if (sas_phy_match_dev_addr(child, ex_phy)) {
1914 if (dev_is_expander(child->dev_type))
1915 res = sas_discover_bfs_by_root(child);
1916 break;
1917 }
1918 }
1919 return res;
1920}
1921
1922static bool dev_type_flutter(enum sas_device_type new, enum sas_device_type old)
1923{
1924 if (old == new)
1925 return true;
1926
1927 /* treat device directed resets as flutter, if we went
1928 * SAS_END_DEVICE to SAS_SATA_PENDING the link needs recovery
1929 */
1930 if ((old == SAS_SATA_PENDING && new == SAS_END_DEVICE) ||
1931 (old == SAS_END_DEVICE && new == SAS_SATA_PENDING))
1932 return true;
1933
1934 return false;
1935}
1936
1937static int sas_rediscover_dev(struct domain_device *dev, int phy_id,
1938 bool last, int sibling)
1939{
1940 struct expander_device *ex = &dev->ex_dev;
1941 struct ex_phy *phy = &ex->ex_phy[phy_id];
1942 enum sas_device_type type = SAS_PHY_UNUSED;
1943 u8 sas_addr[SAS_ADDR_SIZE];
1944 char msg[80] = "";
1945 int res;
1946
1947 if (!last)
1948 sprintf(msg, ", part of a wide port with phy%02d", sibling);
1949
1950 pr_debug("ex %016llx rediscovering phy%02d%s\n",
1951 SAS_ADDR(dev->sas_addr), phy_id, msg);
1952
1953 memset(sas_addr, 0, SAS_ADDR_SIZE);
1954 res = sas_get_phy_attached_dev(dev, phy_id, sas_addr, &type);
1955 switch (res) {
1956 case SMP_RESP_NO_PHY:
1957 phy->phy_state = PHY_NOT_PRESENT;
1958 sas_unregister_devs_sas_addr(dev, phy_id, last);
1959 return res;
1960 case SMP_RESP_PHY_VACANT:
1961 phy->phy_state = PHY_VACANT;
1962 sas_unregister_devs_sas_addr(dev, phy_id, last);
1963 return res;
1964 case SMP_RESP_FUNC_ACC:
1965 break;
1966 case -ECOMM:
1967 break;
1968 default:
1969 return res;
1970 }
1971
1972 if ((SAS_ADDR(sas_addr) == 0) || (res == -ECOMM)) {
1973 phy->phy_state = PHY_EMPTY;
1974 sas_unregister_devs_sas_addr(dev, phy_id, last);
1975 /*
1976 * Even though the PHY is empty, for convenience we discover
1977 * the PHY to update the PHY info, like negotiated linkrate.
1978 */
1979 sas_ex_phy_discover(dev, phy_id);
1980 return res;
1981 } else if (SAS_ADDR(sas_addr) == SAS_ADDR(phy->attached_sas_addr) &&
1982 dev_type_flutter(type, phy->attached_dev_type)) {
1983 struct domain_device *ata_dev = sas_ex_to_ata(dev, phy_id);
1984 char *action = "";
1985
1986 sas_ex_phy_discover(dev, phy_id);
1987
1988 if (ata_dev && phy->attached_dev_type == SAS_SATA_PENDING)
1989 action = ", needs recovery";
1990 pr_debug("ex %016llx phy%02d broadcast flutter%s\n",
1991 SAS_ADDR(dev->sas_addr), phy_id, action);
1992 return res;
1993 }
1994
1995 /* we always have to delete the old device when we went here */
1996 pr_info("ex %016llx phy%02d replace %016llx\n",
1997 SAS_ADDR(dev->sas_addr), phy_id,
1998 SAS_ADDR(phy->attached_sas_addr));
1999 sas_unregister_devs_sas_addr(dev, phy_id, last);
2000
2001 return sas_discover_new(dev, phy_id);
2002}
2003
2004/**
2005 * sas_rediscover - revalidate the domain.
2006 * @dev:domain device to be detect.
2007 * @phy_id: the phy id will be detected.
2008 *
2009 * NOTE: this process _must_ quit (return) as soon as any connection
2010 * errors are encountered. Connection recovery is done elsewhere.
2011 * Discover process only interrogates devices in order to discover the
2012 * domain.For plugging out, we un-register the device only when it is
2013 * the last phy in the port, for other phys in this port, we just delete it
2014 * from the port.For inserting, we do discovery when it is the
2015 * first phy,for other phys in this port, we add it to the port to
2016 * forming the wide-port.
2017 */
2018static int sas_rediscover(struct domain_device *dev, const int phy_id)
2019{
2020 struct expander_device *ex = &dev->ex_dev;
2021 struct ex_phy *changed_phy = &ex->ex_phy[phy_id];
2022 int res = 0;
2023 int i;
2024 bool last = true; /* is this the last phy of the port */
2025
2026 pr_debug("ex %016llx phy%02d originated BROADCAST(CHANGE)\n",
2027 SAS_ADDR(dev->sas_addr), phy_id);
2028
2029 if (SAS_ADDR(changed_phy->attached_sas_addr) != 0) {
2030 for (i = 0; i < ex->num_phys; i++) {
2031 struct ex_phy *phy = &ex->ex_phy[i];
2032
2033 if (i == phy_id)
2034 continue;
2035 if (sas_phy_addr_match(phy, changed_phy)) {
2036 last = false;
2037 break;
2038 }
2039 }
2040 res = sas_rediscover_dev(dev, phy_id, last, i);
2041 } else
2042 res = sas_discover_new(dev, phy_id);
2043 return res;
2044}
2045
2046/**
2047 * sas_ex_revalidate_domain - revalidate the domain
2048 * @port_dev: port domain device.
2049 *
2050 * NOTE: this process _must_ quit (return) as soon as any connection
2051 * errors are encountered. Connection recovery is done elsewhere.
2052 * Discover process only interrogates devices in order to discover the
2053 * domain.
2054 */
2055int sas_ex_revalidate_domain(struct domain_device *port_dev)
2056{
2057 int res;
2058 struct domain_device *dev = NULL;
2059
2060 res = sas_find_bcast_dev(port_dev, &dev);
2061 if (res == 0 && dev) {
2062 struct expander_device *ex = &dev->ex_dev;
2063 int i = 0, phy_id;
2064
2065 do {
2066 phy_id = -1;
2067 res = sas_find_bcast_phy(dev, &phy_id, i, true);
2068 if (phy_id == -1)
2069 break;
2070 res = sas_rediscover(dev, phy_id);
2071 i = phy_id + 1;
2072 } while (i < ex->num_phys);
2073 }
2074 return res;
2075}
2076
2077int sas_find_attached_phy_id(struct expander_device *ex_dev,
2078 struct domain_device *dev)
2079{
2080 struct ex_phy *phy;
2081 int phy_id;
2082
2083 for (phy_id = 0; phy_id < ex_dev->num_phys; phy_id++) {
2084 phy = &ex_dev->ex_phy[phy_id];
2085 if (sas_phy_match_dev_addr(dev, phy))
2086 return phy_id;
2087 }
2088
2089 return -ENODEV;
2090}
2091EXPORT_SYMBOL_GPL(sas_find_attached_phy_id);
2092
2093void sas_smp_handler(struct bsg_job *job, struct Scsi_Host *shost,
2094 struct sas_rphy *rphy)
2095{
2096 struct domain_device *dev;
2097 unsigned int rcvlen = 0;
2098 int ret = -EINVAL;
2099
2100 /* no rphy means no smp target support (ie aic94xx host) */
2101 if (!rphy)
2102 return sas_smp_host_handler(job, shost);
2103
2104 switch (rphy->identify.device_type) {
2105 case SAS_EDGE_EXPANDER_DEVICE:
2106 case SAS_FANOUT_EXPANDER_DEVICE:
2107 break;
2108 default:
2109 pr_err("%s: can we send a smp request to a device?\n",
2110 __func__);
2111 goto out;
2112 }
2113
2114 dev = sas_find_dev_by_rphy(rphy);
2115 if (!dev) {
2116 pr_err("%s: fail to find a domain_device?\n", __func__);
2117 goto out;
2118 }
2119
2120 /* do we need to support multiple segments? */
2121 if (job->request_payload.sg_cnt > 1 ||
2122 job->reply_payload.sg_cnt > 1) {
2123 pr_info("%s: multiple segments req %u, rsp %u\n",
2124 __func__, job->request_payload.payload_len,
2125 job->reply_payload.payload_len);
2126 goto out;
2127 }
2128
2129 ret = smp_execute_task_sg(dev, job->request_payload.sg_list,
2130 job->reply_payload.sg_list);
2131 if (ret >= 0) {
2132 /* bsg_job_done() requires the length received */
2133 rcvlen = job->reply_payload.payload_len - ret;
2134 ret = 0;
2135 }
2136
2137out:
2138 bsg_job_done(job, ret, rcvlen);
2139}