Linux Audio

Check our new training course

Loading...
Note: File does not exist in v4.17.
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * phy-zynqmp.c - PHY driver for Xilinx ZynqMP GT.
   4 *
   5 * Copyright (C) 2018-2020 Xilinx Inc.
   6 *
   7 * Author: Anurag Kumar Vulisha <anuragku@xilinx.com>
   8 * Author: Subbaraya Sundeep <sundeep.lkml@gmail.com>
   9 * Author: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
  10 *
  11 * This driver is tested for USB, SGMII, SATA and Display Port currently.
  12 * PCIe should also work but that is experimental as of now.
  13 */
  14
  15#include <linux/clk.h>
  16#include <linux/delay.h>
  17#include <linux/io.h>
  18#include <linux/kernel.h>
  19#include <linux/module.h>
  20#include <linux/of.h>
  21#include <linux/phy/phy.h>
  22#include <linux/platform_device.h>
  23#include <linux/pm_runtime.h>
  24#include <linux/slab.h>
  25
  26#include <dt-bindings/phy/phy.h>
  27
  28/*
  29 * Lane Registers
  30 */
  31
  32/* TX De-emphasis parameters */
  33#define L0_TX_ANA_TM_18			0x0048
  34#define L0_TX_ANA_TM_118		0x01d8
  35#define L0_TX_ANA_TM_118_FORCE_17_0	BIT(0)
  36
  37/* DN Resistor calibration code parameters */
  38#define L0_TXPMA_ST_3			0x0b0c
  39#define L0_DN_CALIB_CODE		0x3f
  40
  41/* PMA control parameters */
  42#define L0_TXPMD_TM_45			0x0cb4
  43#define L0_TXPMD_TM_48			0x0cc0
  44#define L0_TXPMD_TM_45_OVER_DP_MAIN	BIT(0)
  45#define L0_TXPMD_TM_45_ENABLE_DP_MAIN	BIT(1)
  46#define L0_TXPMD_TM_45_OVER_DP_POST1	BIT(2)
  47#define L0_TXPMD_TM_45_ENABLE_DP_POST1	BIT(3)
  48#define L0_TXPMD_TM_45_OVER_DP_POST2	BIT(4)
  49#define L0_TXPMD_TM_45_ENABLE_DP_POST2	BIT(5)
  50
  51/* PCS control parameters */
  52#define L0_TM_DIG_6			0x106c
  53#define L0_TM_DIS_DESCRAMBLE_DECODER	0x0f
  54#define L0_TX_DIG_61			0x00f4
  55#define L0_TM_DISABLE_SCRAMBLE_ENCODER	0x0f
  56
  57/* PLL Test Mode register parameters */
  58#define L0_TM_PLL_DIG_37		0x2094
  59#define L0_TM_COARSE_CODE_LIMIT		0x10
  60
  61/* PLL SSC step size offsets */
  62#define L0_PLL_SS_STEPS_0_LSB		0x2368
  63#define L0_PLL_SS_STEPS_1_MSB		0x236c
  64#define L0_PLL_SS_STEP_SIZE_0_LSB	0x2370
  65#define L0_PLL_SS_STEP_SIZE_1		0x2374
  66#define L0_PLL_SS_STEP_SIZE_2		0x2378
  67#define L0_PLL_SS_STEP_SIZE_3_MSB	0x237c
  68#define L0_PLL_STATUS_READ_1		0x23e4
  69
  70/* SSC step size parameters */
  71#define STEP_SIZE_0_MASK		0xff
  72#define STEP_SIZE_1_MASK		0xff
  73#define STEP_SIZE_2_MASK		0xff
  74#define STEP_SIZE_3_MASK		0x3
  75#define STEP_SIZE_SHIFT			8
  76#define FORCE_STEP_SIZE			0x10
  77#define FORCE_STEPS			0x20
  78#define STEPS_0_MASK			0xff
  79#define STEPS_1_MASK			0x07
  80
  81/* Reference clock selection parameters */
  82#define L0_Ln_REF_CLK_SEL(n)		(0x2860 + (n) * 4)
  83#define L0_REF_CLK_SEL_MASK		0x8f
  84
  85/* Calibration digital logic parameters */
  86#define L3_TM_CALIB_DIG19		0xec4c
  87#define L3_CALIB_DONE_STATUS		0xef14
  88#define L3_TM_CALIB_DIG18		0xec48
  89#define L3_TM_CALIB_DIG19_NSW		0x07
  90#define L3_TM_CALIB_DIG18_NSW		0xe0
  91#define L3_TM_OVERRIDE_NSW_CODE         0x20
  92#define L3_CALIB_DONE			0x02
  93#define L3_NSW_SHIFT			5
  94#define L3_NSW_PIPE_SHIFT		4
  95#define L3_NSW_CALIB_SHIFT		3
  96
  97#define PHY_REG_OFFSET			0x4000
  98
  99/*
 100 * Global Registers
 101 */
 102
 103/* Refclk selection parameters */
 104#define PLL_REF_SEL(n)			(0x10000 + (n) * 4)
 105#define PLL_FREQ_MASK			0x1f
 106#define PLL_STATUS_LOCKED		0x10
 107
 108/* Inter Connect Matrix parameters */
 109#define ICM_CFG0			0x10010
 110#define ICM_CFG1			0x10014
 111#define ICM_CFG0_L0_MASK		0x07
 112#define ICM_CFG0_L1_MASK		0x70
 113#define ICM_CFG1_L2_MASK		0x07
 114#define ICM_CFG2_L3_MASK		0x70
 115#define ICM_CFG_SHIFT			4
 116
 117/* Inter Connect Matrix allowed protocols */
 118#define ICM_PROTOCOL_PD			0x0
 119#define ICM_PROTOCOL_PCIE		0x1
 120#define ICM_PROTOCOL_SATA		0x2
 121#define ICM_PROTOCOL_USB		0x3
 122#define ICM_PROTOCOL_DP			0x4
 123#define ICM_PROTOCOL_SGMII		0x5
 124
 125/* Test Mode common reset control  parameters */
 126#define TM_CMN_RST			0x10018
 127#define TM_CMN_RST_EN			0x1
 128#define TM_CMN_RST_SET			0x2
 129#define TM_CMN_RST_MASK			0x3
 130
 131/* Bus width parameters */
 132#define TX_PROT_BUS_WIDTH		0x10040
 133#define RX_PROT_BUS_WIDTH		0x10044
 134#define PROT_BUS_WIDTH_10		0x0
 135#define PROT_BUS_WIDTH_20		0x1
 136#define PROT_BUS_WIDTH_40		0x2
 137#define PROT_BUS_WIDTH_SHIFT(n)		((n) * 2)
 138#define PROT_BUS_WIDTH_MASK(n)		GENMASK((n) * 2 + 1, (n) * 2)
 139
 140/* Number of GT lanes */
 141#define NUM_LANES			4
 142
 143/* SIOU SATA control register */
 144#define SATA_CONTROL_OFFSET		0x0100
 145
 146/* Total number of controllers */
 147#define CONTROLLERS_PER_LANE		5
 148
 149/* Protocol Type parameters */
 150#define XPSGTR_TYPE_USB0		0  /* USB controller 0 */
 151#define XPSGTR_TYPE_USB1		1  /* USB controller 1 */
 152#define XPSGTR_TYPE_SATA_0		2  /* SATA controller lane 0 */
 153#define XPSGTR_TYPE_SATA_1		3  /* SATA controller lane 1 */
 154#define XPSGTR_TYPE_PCIE_0		4  /* PCIe controller lane 0 */
 155#define XPSGTR_TYPE_PCIE_1		5  /* PCIe controller lane 1 */
 156#define XPSGTR_TYPE_PCIE_2		6  /* PCIe controller lane 2 */
 157#define XPSGTR_TYPE_PCIE_3		7  /* PCIe controller lane 3 */
 158#define XPSGTR_TYPE_DP_0		8  /* Display Port controller lane 0 */
 159#define XPSGTR_TYPE_DP_1		9  /* Display Port controller lane 1 */
 160#define XPSGTR_TYPE_SGMII0		10 /* Ethernet SGMII controller 0 */
 161#define XPSGTR_TYPE_SGMII1		11 /* Ethernet SGMII controller 1 */
 162#define XPSGTR_TYPE_SGMII2		12 /* Ethernet SGMII controller 2 */
 163#define XPSGTR_TYPE_SGMII3		13 /* Ethernet SGMII controller 3 */
 164
 165/* Timeout values */
 166#define TIMEOUT_US			1000
 167
 168struct xpsgtr_dev;
 169
 170/**
 171 * struct xpsgtr_ssc - structure to hold SSC settings for a lane
 172 * @refclk_rate: PLL reference clock frequency
 173 * @pll_ref_clk: value to be written to register for corresponding ref clk rate
 174 * @steps: number of steps of SSC (Spread Spectrum Clock)
 175 * @step_size: step size of each step
 176 */
 177struct xpsgtr_ssc {
 178	u32 refclk_rate;
 179	u8  pll_ref_clk;
 180	u32 steps;
 181	u32 step_size;
 182};
 183
 184/**
 185 * struct xpsgtr_phy - representation of a lane
 186 * @phy: pointer to the kernel PHY device
 187 * @type: controller which uses this lane
 188 * @lane: lane number
 189 * @protocol: protocol in which the lane operates
 190 * @skip_phy_init: skip phy_init() if true
 191 * @dev: pointer to the xpsgtr_dev instance
 192 * @refclk: reference clock index
 193 */
 194struct xpsgtr_phy {
 195	struct phy *phy;
 196	u8 type;
 197	u8 lane;
 198	u8 protocol;
 199	bool skip_phy_init;
 200	struct xpsgtr_dev *dev;
 201	unsigned int refclk;
 202};
 203
 204/**
 205 * struct xpsgtr_dev - representation of a ZynMP GT device
 206 * @dev: pointer to device
 207 * @serdes: serdes base address
 208 * @siou: siou base address
 209 * @gtr_mutex: mutex for locking
 210 * @phys: PHY lanes
 211 * @refclk_sscs: spread spectrum settings for the reference clocks
 212 * @clk: reference clocks
 213 * @tx_term_fix: fix for GT issue
 214 * @saved_icm_cfg0: stored value of ICM CFG0 register
 215 * @saved_icm_cfg1: stored value of ICM CFG1 register
 216 */
 217struct xpsgtr_dev {
 218	struct device *dev;
 219	void __iomem *serdes;
 220	void __iomem *siou;
 221	struct mutex gtr_mutex; /* mutex for locking */
 222	struct xpsgtr_phy phys[NUM_LANES];
 223	const struct xpsgtr_ssc *refclk_sscs[NUM_LANES];
 224	struct clk *clk[NUM_LANES];
 225	bool tx_term_fix;
 226	unsigned int saved_icm_cfg0;
 227	unsigned int saved_icm_cfg1;
 228};
 229
 230/*
 231 * Configuration Data
 232 */
 233
 234/* lookup table to hold all settings needed for a ref clock frequency */
 235static const struct xpsgtr_ssc ssc_lookup[] = {
 236	{  19200000, 0x05,  608, 264020 },
 237	{  20000000, 0x06,  634, 243454 },
 238	{  24000000, 0x07,  760, 168973 },
 239	{  26000000, 0x08,  824, 143860 },
 240	{  27000000, 0x09,  856,  86551 },
 241	{  38400000, 0x0a, 1218,  65896 },
 242	{  40000000, 0x0b,  634, 243454 },
 243	{  52000000, 0x0c,  824, 143860 },
 244	{ 100000000, 0x0d, 1058,  87533 },
 245	{ 108000000, 0x0e,  856,  86551 },
 246	{ 125000000, 0x0f,  992, 119497 },
 247	{ 135000000, 0x10, 1070,  55393 },
 248	{ 150000000, 0x11,  792, 187091 }
 249};
 250
 251/*
 252 * I/O Accessors
 253 */
 254
 255static inline u32 xpsgtr_read(struct xpsgtr_dev *gtr_dev, u32 reg)
 256{
 257	return readl(gtr_dev->serdes + reg);
 258}
 259
 260static inline void xpsgtr_write(struct xpsgtr_dev *gtr_dev, u32 reg, u32 value)
 261{
 262	writel(value, gtr_dev->serdes + reg);
 263}
 264
 265static inline void xpsgtr_clr_set(struct xpsgtr_dev *gtr_dev, u32 reg,
 266				  u32 clr, u32 set)
 267{
 268	u32 value = xpsgtr_read(gtr_dev, reg);
 269
 270	value &= ~clr;
 271	value |= set;
 272	xpsgtr_write(gtr_dev, reg, value);
 273}
 274
 275static inline u32 xpsgtr_read_phy(struct xpsgtr_phy *gtr_phy, u32 reg)
 276{
 277	void __iomem *addr = gtr_phy->dev->serdes
 278			   + gtr_phy->lane * PHY_REG_OFFSET + reg;
 279
 280	return readl(addr);
 281}
 282
 283static inline void xpsgtr_write_phy(struct xpsgtr_phy *gtr_phy,
 284				    u32 reg, u32 value)
 285{
 286	void __iomem *addr = gtr_phy->dev->serdes
 287			   + gtr_phy->lane * PHY_REG_OFFSET + reg;
 288
 289	writel(value, addr);
 290}
 291
 292static inline void xpsgtr_clr_set_phy(struct xpsgtr_phy *gtr_phy,
 293				      u32 reg, u32 clr, u32 set)
 294{
 295	void __iomem *addr = gtr_phy->dev->serdes
 296			   + gtr_phy->lane * PHY_REG_OFFSET + reg;
 297
 298	writel((readl(addr) & ~clr) | set, addr);
 299}
 300
 301/*
 302 * Hardware Configuration
 303 */
 304
 305/* Wait for the PLL to lock (with a timeout). */
 306static int xpsgtr_wait_pll_lock(struct phy *phy)
 307{
 308	struct xpsgtr_phy *gtr_phy = phy_get_drvdata(phy);
 309	struct xpsgtr_dev *gtr_dev = gtr_phy->dev;
 310	unsigned int timeout = TIMEOUT_US;
 311	int ret;
 312
 313	dev_dbg(gtr_dev->dev, "Waiting for PLL lock\n");
 314
 315	while (1) {
 316		u32 reg = xpsgtr_read_phy(gtr_phy, L0_PLL_STATUS_READ_1);
 317
 318		if ((reg & PLL_STATUS_LOCKED) == PLL_STATUS_LOCKED) {
 319			ret = 0;
 320			break;
 321		}
 322
 323		if (--timeout == 0) {
 324			ret = -ETIMEDOUT;
 325			break;
 326		}
 327
 328		udelay(1);
 329	}
 330
 331	if (ret == -ETIMEDOUT)
 332		dev_err(gtr_dev->dev,
 333			"lane %u (type %u, protocol %u): PLL lock timeout\n",
 334			gtr_phy->lane, gtr_phy->type, gtr_phy->protocol);
 335
 336	return ret;
 337}
 338
 339/* Configure PLL and spread-sprectrum clock. */
 340static void xpsgtr_configure_pll(struct xpsgtr_phy *gtr_phy)
 341{
 342	const struct xpsgtr_ssc *ssc;
 343	u32 step_size;
 344
 345	ssc = gtr_phy->dev->refclk_sscs[gtr_phy->refclk];
 346	step_size = ssc->step_size;
 347
 348	xpsgtr_clr_set(gtr_phy->dev, PLL_REF_SEL(gtr_phy->lane),
 349		       PLL_FREQ_MASK, ssc->pll_ref_clk);
 350
 351	/* Enable lane clock sharing, if required */
 352	if (gtr_phy->refclk != gtr_phy->lane) {
 353		/* Lane3 Ref Clock Selection Register */
 354		xpsgtr_clr_set(gtr_phy->dev, L0_Ln_REF_CLK_SEL(gtr_phy->lane),
 355			       L0_REF_CLK_SEL_MASK, 1 << gtr_phy->refclk);
 356	}
 357
 358	/* SSC step size [7:0] */
 359	xpsgtr_clr_set_phy(gtr_phy, L0_PLL_SS_STEP_SIZE_0_LSB,
 360			   STEP_SIZE_0_MASK, step_size & STEP_SIZE_0_MASK);
 361
 362	/* SSC step size [15:8] */
 363	step_size >>= STEP_SIZE_SHIFT;
 364	xpsgtr_clr_set_phy(gtr_phy, L0_PLL_SS_STEP_SIZE_1,
 365			   STEP_SIZE_1_MASK, step_size & STEP_SIZE_1_MASK);
 366
 367	/* SSC step size [23:16] */
 368	step_size >>= STEP_SIZE_SHIFT;
 369	xpsgtr_clr_set_phy(gtr_phy, L0_PLL_SS_STEP_SIZE_2,
 370			   STEP_SIZE_2_MASK, step_size & STEP_SIZE_2_MASK);
 371
 372	/* SSC steps [7:0] */
 373	xpsgtr_clr_set_phy(gtr_phy, L0_PLL_SS_STEPS_0_LSB,
 374			   STEPS_0_MASK, ssc->steps & STEPS_0_MASK);
 375
 376	/* SSC steps [10:8] */
 377	xpsgtr_clr_set_phy(gtr_phy, L0_PLL_SS_STEPS_1_MSB,
 378			   STEPS_1_MASK,
 379			   (ssc->steps >> STEP_SIZE_SHIFT) & STEPS_1_MASK);
 380
 381	/* SSC step size [24:25] */
 382	step_size >>= STEP_SIZE_SHIFT;
 383	xpsgtr_clr_set_phy(gtr_phy, L0_PLL_SS_STEP_SIZE_3_MSB,
 384			   STEP_SIZE_3_MASK, (step_size & STEP_SIZE_3_MASK) |
 385			   FORCE_STEP_SIZE | FORCE_STEPS);
 386}
 387
 388/* Configure the lane protocol. */
 389static void xpsgtr_lane_set_protocol(struct xpsgtr_phy *gtr_phy)
 390{
 391	struct xpsgtr_dev *gtr_dev = gtr_phy->dev;
 392	u8 protocol = gtr_phy->protocol;
 393
 394	switch (gtr_phy->lane) {
 395	case 0:
 396		xpsgtr_clr_set(gtr_dev, ICM_CFG0, ICM_CFG0_L0_MASK, protocol);
 397		break;
 398	case 1:
 399		xpsgtr_clr_set(gtr_dev, ICM_CFG0, ICM_CFG0_L1_MASK,
 400			       protocol << ICM_CFG_SHIFT);
 401		break;
 402	case 2:
 403		xpsgtr_clr_set(gtr_dev, ICM_CFG1, ICM_CFG0_L0_MASK, protocol);
 404		break;
 405	case 3:
 406		xpsgtr_clr_set(gtr_dev, ICM_CFG1, ICM_CFG0_L1_MASK,
 407			       protocol << ICM_CFG_SHIFT);
 408		break;
 409	default:
 410		/* We already checked 0 <= lane <= 3 */
 411		break;
 412	}
 413}
 414
 415/* Bypass (de)scrambler and 8b/10b decoder and encoder. */
 416static void xpsgtr_bypass_scrambler_8b10b(struct xpsgtr_phy *gtr_phy)
 417{
 418	xpsgtr_write_phy(gtr_phy, L0_TM_DIG_6, L0_TM_DIS_DESCRAMBLE_DECODER);
 419	xpsgtr_write_phy(gtr_phy, L0_TX_DIG_61, L0_TM_DISABLE_SCRAMBLE_ENCODER);
 420}
 421
 422/* DP-specific initialization. */
 423static void xpsgtr_phy_init_dp(struct xpsgtr_phy *gtr_phy)
 424{
 425	xpsgtr_write_phy(gtr_phy, L0_TXPMD_TM_45,
 426			 L0_TXPMD_TM_45_OVER_DP_MAIN |
 427			 L0_TXPMD_TM_45_ENABLE_DP_MAIN |
 428			 L0_TXPMD_TM_45_OVER_DP_POST1 |
 429			 L0_TXPMD_TM_45_OVER_DP_POST2 |
 430			 L0_TXPMD_TM_45_ENABLE_DP_POST2);
 431	xpsgtr_write_phy(gtr_phy, L0_TX_ANA_TM_118,
 432			 L0_TX_ANA_TM_118_FORCE_17_0);
 433}
 434
 435/* SATA-specific initialization. */
 436static void xpsgtr_phy_init_sata(struct xpsgtr_phy *gtr_phy)
 437{
 438	struct xpsgtr_dev *gtr_dev = gtr_phy->dev;
 439
 440	xpsgtr_bypass_scrambler_8b10b(gtr_phy);
 441
 442	writel(gtr_phy->lane, gtr_dev->siou + SATA_CONTROL_OFFSET);
 443}
 444
 445/* SGMII-specific initialization. */
 446static void xpsgtr_phy_init_sgmii(struct xpsgtr_phy *gtr_phy)
 447{
 448	struct xpsgtr_dev *gtr_dev = gtr_phy->dev;
 449	u32 mask = PROT_BUS_WIDTH_MASK(gtr_phy->lane);
 450	u32 val = PROT_BUS_WIDTH_10 << PROT_BUS_WIDTH_SHIFT(gtr_phy->lane);
 451
 452	/* Set SGMII protocol TX and RX bus width to 10 bits. */
 453	xpsgtr_clr_set(gtr_dev, TX_PROT_BUS_WIDTH, mask, val);
 454	xpsgtr_clr_set(gtr_dev, RX_PROT_BUS_WIDTH, mask, val);
 455
 456	xpsgtr_bypass_scrambler_8b10b(gtr_phy);
 457}
 458
 459/* Configure TX de-emphasis and margining for DP. */
 460static void xpsgtr_phy_configure_dp(struct xpsgtr_phy *gtr_phy, unsigned int pre,
 461				    unsigned int voltage)
 462{
 463	static const u8 voltage_swing[4][4] = {
 464		{ 0x2a, 0x27, 0x24, 0x20 },
 465		{ 0x27, 0x23, 0x20, 0xff },
 466		{ 0x24, 0x20, 0xff, 0xff },
 467		{ 0xff, 0xff, 0xff, 0xff }
 468	};
 469	static const u8 pre_emphasis[4][4] = {
 470		{ 0x02, 0x02, 0x02, 0x02 },
 471		{ 0x01, 0x01, 0x01, 0xff },
 472		{ 0x00, 0x00, 0xff, 0xff },
 473		{ 0xff, 0xff, 0xff, 0xff }
 474	};
 475
 476	xpsgtr_write_phy(gtr_phy, L0_TXPMD_TM_48, voltage_swing[pre][voltage]);
 477	xpsgtr_write_phy(gtr_phy, L0_TX_ANA_TM_18, pre_emphasis[pre][voltage]);
 478}
 479
 480/*
 481 * PHY Operations
 482 */
 483
 484static bool xpsgtr_phy_init_required(struct xpsgtr_phy *gtr_phy)
 485{
 486	/*
 487	 * As USB may save the snapshot of the states during hibernation, doing
 488	 * phy_init() will put the USB controller into reset, resulting in the
 489	 * losing of the saved snapshot. So try to avoid phy_init() for USB
 490	 * except when gtr_phy->skip_phy_init is false (this happens when FPD is
 491	 * shutdown during suspend or when gt lane is changed from current one)
 492	 */
 493	if (gtr_phy->protocol == ICM_PROTOCOL_USB && gtr_phy->skip_phy_init)
 494		return false;
 495	else
 496		return true;
 497}
 498
 499/*
 500 * There is a functional issue in the GT. The TX termination resistance can be
 501 * out of spec due to a issue in the calibration logic. This is the workaround
 502 * to fix it, required for XCZU9EG silicon.
 503 */
 504static int xpsgtr_phy_tx_term_fix(struct xpsgtr_phy *gtr_phy)
 505{
 506	struct xpsgtr_dev *gtr_dev = gtr_phy->dev;
 507	u32 timeout = TIMEOUT_US;
 508	u32 nsw;
 509
 510	/* Enabling Test Mode control for CMN Rest */
 511	xpsgtr_clr_set(gtr_dev, TM_CMN_RST, TM_CMN_RST_MASK, TM_CMN_RST_SET);
 512
 513	/* Set Test Mode reset */
 514	xpsgtr_clr_set(gtr_dev, TM_CMN_RST, TM_CMN_RST_MASK, TM_CMN_RST_EN);
 515
 516	xpsgtr_write(gtr_dev, L3_TM_CALIB_DIG18, 0x00);
 517	xpsgtr_write(gtr_dev, L3_TM_CALIB_DIG19, L3_TM_OVERRIDE_NSW_CODE);
 518
 519	/*
 520	 * As a part of work around sequence for PMOS calibration fix,
 521	 * we need to configure any lane ICM_CFG to valid protocol. This
 522	 * will deassert the CMN_Resetn signal.
 523	 */
 524	xpsgtr_lane_set_protocol(gtr_phy);
 525
 526	/* Clear Test Mode reset */
 527	xpsgtr_clr_set(gtr_dev, TM_CMN_RST, TM_CMN_RST_MASK, TM_CMN_RST_SET);
 528
 529	dev_dbg(gtr_dev->dev, "calibrating...\n");
 530
 531	do {
 532		u32 reg = xpsgtr_read(gtr_dev, L3_CALIB_DONE_STATUS);
 533
 534		if ((reg & L3_CALIB_DONE) == L3_CALIB_DONE)
 535			break;
 536
 537		if (!--timeout) {
 538			dev_err(gtr_dev->dev, "calibration time out\n");
 539			return -ETIMEDOUT;
 540		}
 541
 542		udelay(1);
 543	} while (timeout > 0);
 544
 545	dev_dbg(gtr_dev->dev, "calibration done\n");
 546
 547	/* Reading NMOS Register Code */
 548	nsw = xpsgtr_read(gtr_dev, L0_TXPMA_ST_3) & L0_DN_CALIB_CODE;
 549
 550	/* Set Test Mode reset */
 551	xpsgtr_clr_set(gtr_dev, TM_CMN_RST, TM_CMN_RST_MASK, TM_CMN_RST_EN);
 552
 553	/* Writing NMOS register values back [5:3] */
 554	xpsgtr_write(gtr_dev, L3_TM_CALIB_DIG19, nsw >> L3_NSW_CALIB_SHIFT);
 555
 556	/* Writing NMOS register value [2:0] */
 557	xpsgtr_write(gtr_dev, L3_TM_CALIB_DIG18,
 558		     ((nsw & L3_TM_CALIB_DIG19_NSW) << L3_NSW_SHIFT) |
 559		     (1 << L3_NSW_PIPE_SHIFT));
 560
 561	/* Clear Test Mode reset */
 562	xpsgtr_clr_set(gtr_dev, TM_CMN_RST, TM_CMN_RST_MASK, TM_CMN_RST_SET);
 563
 564	return 0;
 565}
 566
 567static int xpsgtr_phy_init(struct phy *phy)
 568{
 569	struct xpsgtr_phy *gtr_phy = phy_get_drvdata(phy);
 570	struct xpsgtr_dev *gtr_dev = gtr_phy->dev;
 571	int ret = 0;
 572
 573	mutex_lock(&gtr_dev->gtr_mutex);
 574
 575	/* Configure and enable the clock when peripheral phy_init call */
 576	if (clk_prepare_enable(gtr_dev->clk[gtr_phy->lane]))
 577		goto out;
 578
 579	/* Skip initialization if not required. */
 580	if (!xpsgtr_phy_init_required(gtr_phy))
 581		goto out;
 582
 583	if (gtr_dev->tx_term_fix) {
 584		ret = xpsgtr_phy_tx_term_fix(gtr_phy);
 585		if (ret < 0)
 586			goto out;
 587
 588		gtr_dev->tx_term_fix = false;
 589	}
 590
 591	/* Enable coarse code saturation limiting logic. */
 592	xpsgtr_write_phy(gtr_phy, L0_TM_PLL_DIG_37, L0_TM_COARSE_CODE_LIMIT);
 593
 594	/*
 595	 * Configure the PLL, the lane protocol, and perform protocol-specific
 596	 * initialization.
 597	 */
 598	xpsgtr_configure_pll(gtr_phy);
 599	xpsgtr_lane_set_protocol(gtr_phy);
 600
 601	switch (gtr_phy->protocol) {
 602	case ICM_PROTOCOL_DP:
 603		xpsgtr_phy_init_dp(gtr_phy);
 604		break;
 605
 606	case ICM_PROTOCOL_SATA:
 607		xpsgtr_phy_init_sata(gtr_phy);
 608		break;
 609
 610	case ICM_PROTOCOL_SGMII:
 611		xpsgtr_phy_init_sgmii(gtr_phy);
 612		break;
 613	}
 614
 615out:
 616	mutex_unlock(&gtr_dev->gtr_mutex);
 617	return ret;
 618}
 619
 620static int xpsgtr_phy_exit(struct phy *phy)
 621{
 622	struct xpsgtr_phy *gtr_phy = phy_get_drvdata(phy);
 623	struct xpsgtr_dev *gtr_dev = gtr_phy->dev;
 624
 625	gtr_phy->skip_phy_init = false;
 626
 627	/* Ensure that disable clock only, which configure for lane */
 628	clk_disable_unprepare(gtr_dev->clk[gtr_phy->lane]);
 629
 630	return 0;
 631}
 632
 633static int xpsgtr_phy_power_on(struct phy *phy)
 634{
 635	struct xpsgtr_phy *gtr_phy = phy_get_drvdata(phy);
 636	int ret = 0;
 637
 638	/* Skip initialization if not required. */
 639	if (!xpsgtr_phy_init_required(gtr_phy))
 640		return ret;
 641	/*
 642	 * Wait for the PLL to lock. For DP, only wait on DP0 to avoid
 643	 * cumulating waits for both lanes. The user is expected to initialize
 644	 * lane 0 last.
 645	 */
 646	if (gtr_phy->protocol != ICM_PROTOCOL_DP ||
 647	    gtr_phy->type == XPSGTR_TYPE_DP_0)
 648		ret = xpsgtr_wait_pll_lock(phy);
 649
 650	return ret;
 651}
 652
 653static int xpsgtr_phy_configure(struct phy *phy, union phy_configure_opts *opts)
 654{
 655	struct xpsgtr_phy *gtr_phy = phy_get_drvdata(phy);
 656
 657	if (gtr_phy->protocol != ICM_PROTOCOL_DP)
 658		return 0;
 659
 660	xpsgtr_phy_configure_dp(gtr_phy, opts->dp.pre[0], opts->dp.voltage[0]);
 661
 662	return 0;
 663}
 664
 665static const struct phy_ops xpsgtr_phyops = {
 666	.init		= xpsgtr_phy_init,
 667	.exit		= xpsgtr_phy_exit,
 668	.power_on	= xpsgtr_phy_power_on,
 669	.configure	= xpsgtr_phy_configure,
 670	.owner		= THIS_MODULE,
 671};
 672
 673/*
 674 * OF Xlate Support
 675 */
 676
 677/* Set the lane type and protocol based on the PHY type and instance number. */
 678static int xpsgtr_set_lane_type(struct xpsgtr_phy *gtr_phy, u8 phy_type,
 679				unsigned int phy_instance)
 680{
 681	unsigned int num_phy_types;
 682	const int *phy_types;
 683
 684	switch (phy_type) {
 685	case PHY_TYPE_SATA: {
 686		static const int types[] = {
 687			XPSGTR_TYPE_SATA_0,
 688			XPSGTR_TYPE_SATA_1,
 689		};
 690
 691		phy_types = types;
 692		num_phy_types = ARRAY_SIZE(types);
 693		gtr_phy->protocol = ICM_PROTOCOL_SATA;
 694		break;
 695	}
 696	case PHY_TYPE_USB3: {
 697		static const int types[] = {
 698			XPSGTR_TYPE_USB0,
 699			XPSGTR_TYPE_USB1,
 700		};
 701
 702		phy_types = types;
 703		num_phy_types = ARRAY_SIZE(types);
 704		gtr_phy->protocol = ICM_PROTOCOL_USB;
 705		break;
 706	}
 707	case PHY_TYPE_DP: {
 708		static const int types[] = {
 709			XPSGTR_TYPE_DP_0,
 710			XPSGTR_TYPE_DP_1,
 711		};
 712
 713		phy_types = types;
 714		num_phy_types = ARRAY_SIZE(types);
 715		gtr_phy->protocol = ICM_PROTOCOL_DP;
 716		break;
 717	}
 718	case PHY_TYPE_PCIE: {
 719		static const int types[] = {
 720			XPSGTR_TYPE_PCIE_0,
 721			XPSGTR_TYPE_PCIE_1,
 722			XPSGTR_TYPE_PCIE_2,
 723			XPSGTR_TYPE_PCIE_3,
 724		};
 725
 726		phy_types = types;
 727		num_phy_types = ARRAY_SIZE(types);
 728		gtr_phy->protocol = ICM_PROTOCOL_PCIE;
 729		break;
 730	}
 731	case PHY_TYPE_SGMII: {
 732		static const int types[] = {
 733			XPSGTR_TYPE_SGMII0,
 734			XPSGTR_TYPE_SGMII1,
 735			XPSGTR_TYPE_SGMII2,
 736			XPSGTR_TYPE_SGMII3,
 737		};
 738
 739		phy_types = types;
 740		num_phy_types = ARRAY_SIZE(types);
 741		gtr_phy->protocol = ICM_PROTOCOL_SGMII;
 742		break;
 743	}
 744	default:
 745		return -EINVAL;
 746	}
 747
 748	if (phy_instance >= num_phy_types)
 749		return -EINVAL;
 750
 751	gtr_phy->type = phy_types[phy_instance];
 752	return 0;
 753}
 754
 755/*
 756 * Valid combinations of controllers and lanes (Interconnect Matrix).
 757 */
 758static const unsigned int icm_matrix[NUM_LANES][CONTROLLERS_PER_LANE] = {
 759	{ XPSGTR_TYPE_PCIE_0, XPSGTR_TYPE_SATA_0, XPSGTR_TYPE_USB0,
 760		XPSGTR_TYPE_DP_1, XPSGTR_TYPE_SGMII0 },
 761	{ XPSGTR_TYPE_PCIE_1, XPSGTR_TYPE_SATA_1, XPSGTR_TYPE_USB0,
 762		XPSGTR_TYPE_DP_0, XPSGTR_TYPE_SGMII1 },
 763	{ XPSGTR_TYPE_PCIE_2, XPSGTR_TYPE_SATA_0, XPSGTR_TYPE_USB0,
 764		XPSGTR_TYPE_DP_1, XPSGTR_TYPE_SGMII2 },
 765	{ XPSGTR_TYPE_PCIE_3, XPSGTR_TYPE_SATA_1, XPSGTR_TYPE_USB1,
 766		XPSGTR_TYPE_DP_0, XPSGTR_TYPE_SGMII3 }
 767};
 768
 769/* Translate OF phandle and args to PHY instance. */
 770static struct phy *xpsgtr_xlate(struct device *dev,
 771				struct of_phandle_args *args)
 772{
 773	struct xpsgtr_dev *gtr_dev = dev_get_drvdata(dev);
 774	struct xpsgtr_phy *gtr_phy;
 775	unsigned int phy_instance;
 776	unsigned int phy_lane;
 777	unsigned int phy_type;
 778	unsigned int refclk;
 779	unsigned int i;
 780	int ret;
 781
 782	if (args->args_count != 4) {
 783		dev_err(dev, "Invalid number of cells in 'phy' property\n");
 784		return ERR_PTR(-EINVAL);
 785	}
 786
 787	/*
 788	 * Get the PHY parameters from the OF arguments and derive the lane
 789	 * type.
 790	 */
 791	phy_lane = args->args[0];
 792	if (phy_lane >= ARRAY_SIZE(gtr_dev->phys)) {
 793		dev_err(dev, "Invalid lane number %u\n", phy_lane);
 794		return ERR_PTR(-ENODEV);
 795	}
 796
 797	gtr_phy = &gtr_dev->phys[phy_lane];
 798	phy_type = args->args[1];
 799	phy_instance = args->args[2];
 800
 801	ret = xpsgtr_set_lane_type(gtr_phy, phy_type, phy_instance);
 802	if (ret < 0) {
 803		dev_err(gtr_dev->dev, "Invalid PHY type and/or instance\n");
 804		return ERR_PTR(ret);
 805	}
 806
 807	refclk = args->args[3];
 808	if (refclk >= ARRAY_SIZE(gtr_dev->refclk_sscs) ||
 809	    !gtr_dev->refclk_sscs[refclk]) {
 810		dev_err(dev, "Invalid reference clock number %u\n", refclk);
 811		return ERR_PTR(-EINVAL);
 812	}
 813
 814	gtr_phy->refclk = refclk;
 815
 816	/*
 817	 * Ensure that the Interconnect Matrix is obeyed, i.e a given lane type
 818	 * is allowed to operate on the lane.
 819	 */
 820	for (i = 0; i < CONTROLLERS_PER_LANE; i++) {
 821		if (icm_matrix[phy_lane][i] == gtr_phy->type)
 822			return gtr_phy->phy;
 823	}
 824
 825	return ERR_PTR(-EINVAL);
 826}
 827
 828/*
 829 * Power Management
 830 */
 831
 832static int xpsgtr_runtime_suspend(struct device *dev)
 833{
 834	struct xpsgtr_dev *gtr_dev = dev_get_drvdata(dev);
 835
 836	/* Save the snapshot ICM_CFG registers. */
 837	gtr_dev->saved_icm_cfg0 = xpsgtr_read(gtr_dev, ICM_CFG0);
 838	gtr_dev->saved_icm_cfg1 = xpsgtr_read(gtr_dev, ICM_CFG1);
 839
 840	return 0;
 841}
 842
 843static int xpsgtr_runtime_resume(struct device *dev)
 844{
 845	struct xpsgtr_dev *gtr_dev = dev_get_drvdata(dev);
 846	unsigned int icm_cfg0, icm_cfg1;
 847	unsigned int i;
 848	bool skip_phy_init;
 849
 850	icm_cfg0 = xpsgtr_read(gtr_dev, ICM_CFG0);
 851	icm_cfg1 = xpsgtr_read(gtr_dev, ICM_CFG1);
 852
 853	/* Return if no GT lanes got configured before suspend. */
 854	if (!gtr_dev->saved_icm_cfg0 && !gtr_dev->saved_icm_cfg1)
 855		return 0;
 856
 857	/* Check if the ICM configurations changed after suspend. */
 858	if (icm_cfg0 == gtr_dev->saved_icm_cfg0 &&
 859	    icm_cfg1 == gtr_dev->saved_icm_cfg1)
 860		skip_phy_init = true;
 861	else
 862		skip_phy_init = false;
 863
 864	/* Update the skip_phy_init for all gtr_phy instances. */
 865	for (i = 0; i < ARRAY_SIZE(gtr_dev->phys); i++)
 866		gtr_dev->phys[i].skip_phy_init = skip_phy_init;
 867
 868	return 0;
 869}
 870
 871static DEFINE_RUNTIME_DEV_PM_OPS(xpsgtr_pm_ops, xpsgtr_runtime_suspend,
 872				 xpsgtr_runtime_resume, NULL);
 873/*
 874 * Probe & Platform Driver
 875 */
 876
 877static int xpsgtr_get_ref_clocks(struct xpsgtr_dev *gtr_dev)
 878{
 879	unsigned int refclk;
 880
 881	for (refclk = 0; refclk < ARRAY_SIZE(gtr_dev->refclk_sscs); ++refclk) {
 882		unsigned long rate;
 883		unsigned int i;
 884		struct clk *clk;
 885		char name[8];
 886
 887		snprintf(name, sizeof(name), "ref%u", refclk);
 888		clk = devm_clk_get_optional(gtr_dev->dev, name);
 889		if (IS_ERR(clk)) {
 890			return dev_err_probe(gtr_dev->dev, PTR_ERR(clk),
 891					     "Failed to get ref clock %u\n",
 892					     refclk);
 893		}
 894
 895		if (!clk)
 896			continue;
 897
 898		gtr_dev->clk[refclk] = clk;
 899
 900		/*
 901		 * Get the spread spectrum (SSC) settings for the reference
 902		 * clock rate.
 903		 */
 904		rate = clk_get_rate(clk);
 905
 906		for (i = 0 ; i < ARRAY_SIZE(ssc_lookup); i++) {
 907			/* Allow an error of 100 ppm */
 908			unsigned long error = ssc_lookup[i].refclk_rate / 10000;
 909
 910			if (abs(rate - ssc_lookup[i].refclk_rate) < error) {
 911				gtr_dev->refclk_sscs[refclk] = &ssc_lookup[i];
 912				break;
 913			}
 914		}
 915
 916		if (i == ARRAY_SIZE(ssc_lookup)) {
 917			dev_err(gtr_dev->dev,
 918				"Invalid rate %lu for reference clock %u\n",
 919				rate, refclk);
 920			return -EINVAL;
 921		}
 922	}
 923
 924	return 0;
 925}
 926
 927static int xpsgtr_probe(struct platform_device *pdev)
 928{
 929	struct device_node *np = pdev->dev.of_node;
 930	struct xpsgtr_dev *gtr_dev;
 931	struct phy_provider *provider;
 932	unsigned int port;
 933	int ret;
 934
 935	gtr_dev = devm_kzalloc(&pdev->dev, sizeof(*gtr_dev), GFP_KERNEL);
 936	if (!gtr_dev)
 937		return -ENOMEM;
 938
 939	gtr_dev->dev = &pdev->dev;
 940	platform_set_drvdata(pdev, gtr_dev);
 941
 942	mutex_init(&gtr_dev->gtr_mutex);
 943
 944	if (of_device_is_compatible(np, "xlnx,zynqmp-psgtr"))
 945		gtr_dev->tx_term_fix =
 946			of_property_read_bool(np, "xlnx,tx-termination-fix");
 947
 948	/* Acquire resources. */
 949	gtr_dev->serdes = devm_platform_ioremap_resource_byname(pdev, "serdes");
 950	if (IS_ERR(gtr_dev->serdes))
 951		return PTR_ERR(gtr_dev->serdes);
 952
 953	gtr_dev->siou = devm_platform_ioremap_resource_byname(pdev, "siou");
 954	if (IS_ERR(gtr_dev->siou))
 955		return PTR_ERR(gtr_dev->siou);
 956
 957	ret = xpsgtr_get_ref_clocks(gtr_dev);
 958	if (ret)
 959		return ret;
 960
 961	/* Create PHYs. */
 962	for (port = 0; port < ARRAY_SIZE(gtr_dev->phys); ++port) {
 963		struct xpsgtr_phy *gtr_phy = &gtr_dev->phys[port];
 964		struct phy *phy;
 965
 966		gtr_phy->lane = port;
 967		gtr_phy->dev = gtr_dev;
 968
 969		phy = devm_phy_create(&pdev->dev, np, &xpsgtr_phyops);
 970		if (IS_ERR(phy)) {
 971			dev_err(&pdev->dev, "failed to create PHY\n");
 972			return PTR_ERR(phy);
 973		}
 974
 975		gtr_phy->phy = phy;
 976		phy_set_drvdata(phy, gtr_phy);
 977	}
 978
 979	/* Register the PHY provider. */
 980	provider = devm_of_phy_provider_register(&pdev->dev, xpsgtr_xlate);
 981	if (IS_ERR(provider)) {
 982		dev_err(&pdev->dev, "registering provider failed\n");
 983		return PTR_ERR(provider);
 984	}
 985
 986	pm_runtime_set_active(gtr_dev->dev);
 987	pm_runtime_enable(gtr_dev->dev);
 988
 989	ret = pm_runtime_resume_and_get(gtr_dev->dev);
 990	if (ret < 0) {
 991		pm_runtime_disable(gtr_dev->dev);
 992		return ret;
 993	}
 994
 995	return 0;
 996}
 997
 998static int xpsgtr_remove(struct platform_device *pdev)
 999{
1000	struct xpsgtr_dev *gtr_dev = platform_get_drvdata(pdev);
1001
1002	pm_runtime_disable(gtr_dev->dev);
1003	pm_runtime_put_noidle(gtr_dev->dev);
1004	pm_runtime_set_suspended(gtr_dev->dev);
1005
1006	return 0;
1007}
1008
1009static const struct of_device_id xpsgtr_of_match[] = {
1010	{ .compatible = "xlnx,zynqmp-psgtr", },
1011	{ .compatible = "xlnx,zynqmp-psgtr-v1.1", },
1012	{},
1013};
1014MODULE_DEVICE_TABLE(of, xpsgtr_of_match);
1015
1016static struct platform_driver xpsgtr_driver = {
1017	.probe = xpsgtr_probe,
1018	.remove	= xpsgtr_remove,
1019	.driver = {
1020		.name = "xilinx-psgtr",
1021		.of_match_table	= xpsgtr_of_match,
1022		.pm =  pm_ptr(&xpsgtr_pm_ops),
1023	},
1024};
1025
1026module_platform_driver(xpsgtr_driver);
1027
1028MODULE_AUTHOR("Xilinx Inc.");
1029MODULE_LICENSE("GPL v2");
1030MODULE_DESCRIPTION("Xilinx ZynqMP High speed Gigabit Transceiver");