Loading...
1/*
2 * Copyright (c) International Business Machines Corp., 2006
3 * Copyright (c) Nokia Corporation, 2007
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
13 * the GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 *
19 * Author: Artem Bityutskiy (Битюцкий Артём),
20 * Frank Haverkamp
21 */
22
23/*
24 * This file includes UBI initialization and building of UBI devices.
25 *
26 * When UBI is initialized, it attaches all the MTD devices specified as the
27 * module load parameters or the kernel boot parameters. If MTD devices were
28 * specified, UBI does not attach any MTD device, but it is possible to do
29 * later using the "UBI control device".
30 */
31
32#include <linux/err.h>
33#include <linux/module.h>
34#include <linux/moduleparam.h>
35#include <linux/stringify.h>
36#include <linux/namei.h>
37#include <linux/stat.h>
38#include <linux/miscdevice.h>
39#include <linux/mtd/partitions.h>
40#include <linux/log2.h>
41#include <linux/kthread.h>
42#include <linux/kernel.h>
43#include <linux/slab.h>
44#include <linux/major.h>
45#include "ubi.h"
46
47/* Maximum length of the 'mtd=' parameter */
48#define MTD_PARAM_LEN_MAX 64
49
50/* Maximum number of comma-separated items in the 'mtd=' parameter */
51#define MTD_PARAM_MAX_COUNT 4
52
53/* Maximum value for the number of bad PEBs per 1024 PEBs */
54#define MAX_MTD_UBI_BEB_LIMIT 768
55
56#ifdef CONFIG_MTD_UBI_MODULE
57#define ubi_is_module() 1
58#else
59#define ubi_is_module() 0
60#endif
61
62/**
63 * struct mtd_dev_param - MTD device parameter description data structure.
64 * @name: MTD character device node path, MTD device name, or MTD device number
65 * string
66 * @vid_hdr_offs: VID header offset
67 * @max_beb_per1024: maximum expected number of bad PEBs per 1024 PEBs
68 */
69struct mtd_dev_param {
70 char name[MTD_PARAM_LEN_MAX];
71 int ubi_num;
72 int vid_hdr_offs;
73 int max_beb_per1024;
74};
75
76/* Numbers of elements set in the @mtd_dev_param array */
77static int mtd_devs;
78
79/* MTD devices specification parameters */
80static struct mtd_dev_param mtd_dev_param[UBI_MAX_DEVICES];
81#ifdef CONFIG_MTD_UBI_FASTMAP
82/* UBI module parameter to enable fastmap automatically on non-fastmap images */
83static bool fm_autoconvert;
84static bool fm_debug;
85#endif
86
87/* Slab cache for wear-leveling entries */
88struct kmem_cache *ubi_wl_entry_slab;
89
90/* UBI control character device */
91static struct miscdevice ubi_ctrl_cdev = {
92 .minor = MISC_DYNAMIC_MINOR,
93 .name = "ubi_ctrl",
94 .fops = &ubi_ctrl_cdev_operations,
95};
96
97/* All UBI devices in system */
98static struct ubi_device *ubi_devices[UBI_MAX_DEVICES];
99
100/* Serializes UBI devices creations and removals */
101DEFINE_MUTEX(ubi_devices_mutex);
102
103/* Protects @ubi_devices and @ubi->ref_count */
104static DEFINE_SPINLOCK(ubi_devices_lock);
105
106/* "Show" method for files in '/<sysfs>/class/ubi/' */
107/* UBI version attribute ('/<sysfs>/class/ubi/version') */
108static ssize_t version_show(struct class *class, struct class_attribute *attr,
109 char *buf)
110{
111 return sprintf(buf, "%d\n", UBI_VERSION);
112}
113static CLASS_ATTR_RO(version);
114
115static struct attribute *ubi_class_attrs[] = {
116 &class_attr_version.attr,
117 NULL,
118};
119ATTRIBUTE_GROUPS(ubi_class);
120
121/* Root UBI "class" object (corresponds to '/<sysfs>/class/ubi/') */
122struct class ubi_class = {
123 .name = UBI_NAME_STR,
124 .owner = THIS_MODULE,
125 .class_groups = ubi_class_groups,
126};
127
128static ssize_t dev_attribute_show(struct device *dev,
129 struct device_attribute *attr, char *buf);
130
131/* UBI device attributes (correspond to files in '/<sysfs>/class/ubi/ubiX') */
132static struct device_attribute dev_eraseblock_size =
133 __ATTR(eraseblock_size, S_IRUGO, dev_attribute_show, NULL);
134static struct device_attribute dev_avail_eraseblocks =
135 __ATTR(avail_eraseblocks, S_IRUGO, dev_attribute_show, NULL);
136static struct device_attribute dev_total_eraseblocks =
137 __ATTR(total_eraseblocks, S_IRUGO, dev_attribute_show, NULL);
138static struct device_attribute dev_volumes_count =
139 __ATTR(volumes_count, S_IRUGO, dev_attribute_show, NULL);
140static struct device_attribute dev_max_ec =
141 __ATTR(max_ec, S_IRUGO, dev_attribute_show, NULL);
142static struct device_attribute dev_reserved_for_bad =
143 __ATTR(reserved_for_bad, S_IRUGO, dev_attribute_show, NULL);
144static struct device_attribute dev_bad_peb_count =
145 __ATTR(bad_peb_count, S_IRUGO, dev_attribute_show, NULL);
146static struct device_attribute dev_max_vol_count =
147 __ATTR(max_vol_count, S_IRUGO, dev_attribute_show, NULL);
148static struct device_attribute dev_min_io_size =
149 __ATTR(min_io_size, S_IRUGO, dev_attribute_show, NULL);
150static struct device_attribute dev_bgt_enabled =
151 __ATTR(bgt_enabled, S_IRUGO, dev_attribute_show, NULL);
152static struct device_attribute dev_mtd_num =
153 __ATTR(mtd_num, S_IRUGO, dev_attribute_show, NULL);
154static struct device_attribute dev_ro_mode =
155 __ATTR(ro_mode, S_IRUGO, dev_attribute_show, NULL);
156
157/**
158 * ubi_volume_notify - send a volume change notification.
159 * @ubi: UBI device description object
160 * @vol: volume description object of the changed volume
161 * @ntype: notification type to send (%UBI_VOLUME_ADDED, etc)
162 *
163 * This is a helper function which notifies all subscribers about a volume
164 * change event (creation, removal, re-sizing, re-naming, updating). Returns
165 * zero in case of success and a negative error code in case of failure.
166 */
167int ubi_volume_notify(struct ubi_device *ubi, struct ubi_volume *vol, int ntype)
168{
169 int ret;
170 struct ubi_notification nt;
171
172 ubi_do_get_device_info(ubi, &nt.di);
173 ubi_do_get_volume_info(ubi, vol, &nt.vi);
174
175 switch (ntype) {
176 case UBI_VOLUME_ADDED:
177 case UBI_VOLUME_REMOVED:
178 case UBI_VOLUME_RESIZED:
179 case UBI_VOLUME_RENAMED:
180 ret = ubi_update_fastmap(ubi);
181 if (ret)
182 ubi_msg(ubi, "Unable to write a new fastmap: %i", ret);
183 }
184
185 return blocking_notifier_call_chain(&ubi_notifiers, ntype, &nt);
186}
187
188/**
189 * ubi_notify_all - send a notification to all volumes.
190 * @ubi: UBI device description object
191 * @ntype: notification type to send (%UBI_VOLUME_ADDED, etc)
192 * @nb: the notifier to call
193 *
194 * This function walks all volumes of UBI device @ubi and sends the @ntype
195 * notification for each volume. If @nb is %NULL, then all registered notifiers
196 * are called, otherwise only the @nb notifier is called. Returns the number of
197 * sent notifications.
198 */
199int ubi_notify_all(struct ubi_device *ubi, int ntype, struct notifier_block *nb)
200{
201 struct ubi_notification nt;
202 int i, count = 0;
203
204 ubi_do_get_device_info(ubi, &nt.di);
205
206 mutex_lock(&ubi->device_mutex);
207 for (i = 0; i < ubi->vtbl_slots; i++) {
208 /*
209 * Since the @ubi->device is locked, and we are not going to
210 * change @ubi->volumes, we do not have to lock
211 * @ubi->volumes_lock.
212 */
213 if (!ubi->volumes[i])
214 continue;
215
216 ubi_do_get_volume_info(ubi, ubi->volumes[i], &nt.vi);
217 if (nb)
218 nb->notifier_call(nb, ntype, &nt);
219 else
220 blocking_notifier_call_chain(&ubi_notifiers, ntype,
221 &nt);
222 count += 1;
223 }
224 mutex_unlock(&ubi->device_mutex);
225
226 return count;
227}
228
229/**
230 * ubi_enumerate_volumes - send "add" notification for all existing volumes.
231 * @nb: the notifier to call
232 *
233 * This function walks all UBI devices and volumes and sends the
234 * %UBI_VOLUME_ADDED notification for each volume. If @nb is %NULL, then all
235 * registered notifiers are called, otherwise only the @nb notifier is called.
236 * Returns the number of sent notifications.
237 */
238int ubi_enumerate_volumes(struct notifier_block *nb)
239{
240 int i, count = 0;
241
242 /*
243 * Since the @ubi_devices_mutex is locked, and we are not going to
244 * change @ubi_devices, we do not have to lock @ubi_devices_lock.
245 */
246 for (i = 0; i < UBI_MAX_DEVICES; i++) {
247 struct ubi_device *ubi = ubi_devices[i];
248
249 if (!ubi)
250 continue;
251 count += ubi_notify_all(ubi, UBI_VOLUME_ADDED, nb);
252 }
253
254 return count;
255}
256
257/**
258 * ubi_get_device - get UBI device.
259 * @ubi_num: UBI device number
260 *
261 * This function returns UBI device description object for UBI device number
262 * @ubi_num, or %NULL if the device does not exist. This function increases the
263 * device reference count to prevent removal of the device. In other words, the
264 * device cannot be removed if its reference count is not zero.
265 */
266struct ubi_device *ubi_get_device(int ubi_num)
267{
268 struct ubi_device *ubi;
269
270 spin_lock(&ubi_devices_lock);
271 ubi = ubi_devices[ubi_num];
272 if (ubi) {
273 ubi_assert(ubi->ref_count >= 0);
274 ubi->ref_count += 1;
275 get_device(&ubi->dev);
276 }
277 spin_unlock(&ubi_devices_lock);
278
279 return ubi;
280}
281
282/**
283 * ubi_put_device - drop an UBI device reference.
284 * @ubi: UBI device description object
285 */
286void ubi_put_device(struct ubi_device *ubi)
287{
288 spin_lock(&ubi_devices_lock);
289 ubi->ref_count -= 1;
290 put_device(&ubi->dev);
291 spin_unlock(&ubi_devices_lock);
292}
293
294/**
295 * ubi_get_by_major - get UBI device by character device major number.
296 * @major: major number
297 *
298 * This function is similar to 'ubi_get_device()', but it searches the device
299 * by its major number.
300 */
301struct ubi_device *ubi_get_by_major(int major)
302{
303 int i;
304 struct ubi_device *ubi;
305
306 spin_lock(&ubi_devices_lock);
307 for (i = 0; i < UBI_MAX_DEVICES; i++) {
308 ubi = ubi_devices[i];
309 if (ubi && MAJOR(ubi->cdev.dev) == major) {
310 ubi_assert(ubi->ref_count >= 0);
311 ubi->ref_count += 1;
312 get_device(&ubi->dev);
313 spin_unlock(&ubi_devices_lock);
314 return ubi;
315 }
316 }
317 spin_unlock(&ubi_devices_lock);
318
319 return NULL;
320}
321
322/**
323 * ubi_major2num - get UBI device number by character device major number.
324 * @major: major number
325 *
326 * This function searches UBI device number object by its major number. If UBI
327 * device was not found, this function returns -ENODEV, otherwise the UBI device
328 * number is returned.
329 */
330int ubi_major2num(int major)
331{
332 int i, ubi_num = -ENODEV;
333
334 spin_lock(&ubi_devices_lock);
335 for (i = 0; i < UBI_MAX_DEVICES; i++) {
336 struct ubi_device *ubi = ubi_devices[i];
337
338 if (ubi && MAJOR(ubi->cdev.dev) == major) {
339 ubi_num = ubi->ubi_num;
340 break;
341 }
342 }
343 spin_unlock(&ubi_devices_lock);
344
345 return ubi_num;
346}
347
348/* "Show" method for files in '/<sysfs>/class/ubi/ubiX/' */
349static ssize_t dev_attribute_show(struct device *dev,
350 struct device_attribute *attr, char *buf)
351{
352 ssize_t ret;
353 struct ubi_device *ubi;
354
355 /*
356 * The below code looks weird, but it actually makes sense. We get the
357 * UBI device reference from the contained 'struct ubi_device'. But it
358 * is unclear if the device was removed or not yet. Indeed, if the
359 * device was removed before we increased its reference count,
360 * 'ubi_get_device()' will return -ENODEV and we fail.
361 *
362 * Remember, 'struct ubi_device' is freed in the release function, so
363 * we still can use 'ubi->ubi_num'.
364 */
365 ubi = container_of(dev, struct ubi_device, dev);
366 ubi = ubi_get_device(ubi->ubi_num);
367 if (!ubi)
368 return -ENODEV;
369
370 if (attr == &dev_eraseblock_size)
371 ret = sprintf(buf, "%d\n", ubi->leb_size);
372 else if (attr == &dev_avail_eraseblocks)
373 ret = sprintf(buf, "%d\n", ubi->avail_pebs);
374 else if (attr == &dev_total_eraseblocks)
375 ret = sprintf(buf, "%d\n", ubi->good_peb_count);
376 else if (attr == &dev_volumes_count)
377 ret = sprintf(buf, "%d\n", ubi->vol_count - UBI_INT_VOL_COUNT);
378 else if (attr == &dev_max_ec)
379 ret = sprintf(buf, "%d\n", ubi->max_ec);
380 else if (attr == &dev_reserved_for_bad)
381 ret = sprintf(buf, "%d\n", ubi->beb_rsvd_pebs);
382 else if (attr == &dev_bad_peb_count)
383 ret = sprintf(buf, "%d\n", ubi->bad_peb_count);
384 else if (attr == &dev_max_vol_count)
385 ret = sprintf(buf, "%d\n", ubi->vtbl_slots);
386 else if (attr == &dev_min_io_size)
387 ret = sprintf(buf, "%d\n", ubi->min_io_size);
388 else if (attr == &dev_bgt_enabled)
389 ret = sprintf(buf, "%d\n", ubi->thread_enabled);
390 else if (attr == &dev_mtd_num)
391 ret = sprintf(buf, "%d\n", ubi->mtd->index);
392 else if (attr == &dev_ro_mode)
393 ret = sprintf(buf, "%d\n", ubi->ro_mode);
394 else
395 ret = -EINVAL;
396
397 ubi_put_device(ubi);
398 return ret;
399}
400
401static struct attribute *ubi_dev_attrs[] = {
402 &dev_eraseblock_size.attr,
403 &dev_avail_eraseblocks.attr,
404 &dev_total_eraseblocks.attr,
405 &dev_volumes_count.attr,
406 &dev_max_ec.attr,
407 &dev_reserved_for_bad.attr,
408 &dev_bad_peb_count.attr,
409 &dev_max_vol_count.attr,
410 &dev_min_io_size.attr,
411 &dev_bgt_enabled.attr,
412 &dev_mtd_num.attr,
413 &dev_ro_mode.attr,
414 NULL
415};
416ATTRIBUTE_GROUPS(ubi_dev);
417
418static void dev_release(struct device *dev)
419{
420 struct ubi_device *ubi = container_of(dev, struct ubi_device, dev);
421
422 kfree(ubi);
423}
424
425/**
426 * kill_volumes - destroy all user volumes.
427 * @ubi: UBI device description object
428 */
429static void kill_volumes(struct ubi_device *ubi)
430{
431 int i;
432
433 for (i = 0; i < ubi->vtbl_slots; i++)
434 if (ubi->volumes[i])
435 ubi_free_volume(ubi, ubi->volumes[i]);
436}
437
438/**
439 * uif_init - initialize user interfaces for an UBI device.
440 * @ubi: UBI device description object
441 *
442 * This function initializes various user interfaces for an UBI device. If the
443 * initialization fails at an early stage, this function frees all the
444 * resources it allocated, returns an error.
445 *
446 * This function returns zero in case of success and a negative error code in
447 * case of failure.
448 */
449static int uif_init(struct ubi_device *ubi)
450{
451 int i, err;
452 dev_t dev;
453
454 sprintf(ubi->ubi_name, UBI_NAME_STR "%d", ubi->ubi_num);
455
456 /*
457 * Major numbers for the UBI character devices are allocated
458 * dynamically. Major numbers of volume character devices are
459 * equivalent to ones of the corresponding UBI character device. Minor
460 * numbers of UBI character devices are 0, while minor numbers of
461 * volume character devices start from 1. Thus, we allocate one major
462 * number and ubi->vtbl_slots + 1 minor numbers.
463 */
464 err = alloc_chrdev_region(&dev, 0, ubi->vtbl_slots + 1, ubi->ubi_name);
465 if (err) {
466 ubi_err(ubi, "cannot register UBI character devices");
467 return err;
468 }
469
470 ubi->dev.devt = dev;
471
472 ubi_assert(MINOR(dev) == 0);
473 cdev_init(&ubi->cdev, &ubi_cdev_operations);
474 dbg_gen("%s major is %u", ubi->ubi_name, MAJOR(dev));
475 ubi->cdev.owner = THIS_MODULE;
476
477 dev_set_name(&ubi->dev, UBI_NAME_STR "%d", ubi->ubi_num);
478 err = cdev_device_add(&ubi->cdev, &ubi->dev);
479 if (err)
480 goto out_unreg;
481
482 for (i = 0; i < ubi->vtbl_slots; i++)
483 if (ubi->volumes[i]) {
484 err = ubi_add_volume(ubi, ubi->volumes[i]);
485 if (err) {
486 ubi_err(ubi, "cannot add volume %d", i);
487 goto out_volumes;
488 }
489 }
490
491 return 0;
492
493out_volumes:
494 kill_volumes(ubi);
495 cdev_device_del(&ubi->cdev, &ubi->dev);
496out_unreg:
497 unregister_chrdev_region(ubi->cdev.dev, ubi->vtbl_slots + 1);
498 ubi_err(ubi, "cannot initialize UBI %s, error %d",
499 ubi->ubi_name, err);
500 return err;
501}
502
503/**
504 * uif_close - close user interfaces for an UBI device.
505 * @ubi: UBI device description object
506 *
507 * Note, since this function un-registers UBI volume device objects (@vol->dev),
508 * the memory allocated voe the volumes is freed as well (in the release
509 * function).
510 */
511static void uif_close(struct ubi_device *ubi)
512{
513 kill_volumes(ubi);
514 cdev_device_del(&ubi->cdev, &ubi->dev);
515 unregister_chrdev_region(ubi->cdev.dev, ubi->vtbl_slots + 1);
516}
517
518/**
519 * ubi_free_internal_volumes - free internal volumes.
520 * @ubi: UBI device description object
521 */
522void ubi_free_internal_volumes(struct ubi_device *ubi)
523{
524 int i;
525
526 for (i = ubi->vtbl_slots;
527 i < ubi->vtbl_slots + UBI_INT_VOL_COUNT; i++) {
528 ubi_eba_replace_table(ubi->volumes[i], NULL);
529 kfree(ubi->volumes[i]);
530 }
531}
532
533static int get_bad_peb_limit(const struct ubi_device *ubi, int max_beb_per1024)
534{
535 int limit, device_pebs;
536 uint64_t device_size;
537
538 if (!max_beb_per1024) {
539 /*
540 * Since max_beb_per1024 has not been set by the user in either
541 * the cmdline or Kconfig, use mtd_max_bad_blocks to set the
542 * limit if it is supported by the device.
543 */
544 limit = mtd_max_bad_blocks(ubi->mtd, 0, ubi->mtd->size);
545 if (limit < 0)
546 return 0;
547 return limit;
548 }
549
550 /*
551 * Here we are using size of the entire flash chip and
552 * not just the MTD partition size because the maximum
553 * number of bad eraseblocks is a percentage of the
554 * whole device and bad eraseblocks are not fairly
555 * distributed over the flash chip. So the worst case
556 * is that all the bad eraseblocks of the chip are in
557 * the MTD partition we are attaching (ubi->mtd).
558 */
559 device_size = mtd_get_device_size(ubi->mtd);
560 device_pebs = mtd_div_by_eb(device_size, ubi->mtd);
561 limit = mult_frac(device_pebs, max_beb_per1024, 1024);
562
563 /* Round it up */
564 if (mult_frac(limit, 1024, max_beb_per1024) < device_pebs)
565 limit += 1;
566
567 return limit;
568}
569
570/**
571 * io_init - initialize I/O sub-system for a given UBI device.
572 * @ubi: UBI device description object
573 * @max_beb_per1024: maximum expected number of bad PEB per 1024 PEBs
574 *
575 * If @ubi->vid_hdr_offset or @ubi->leb_start is zero, default offsets are
576 * assumed:
577 * o EC header is always at offset zero - this cannot be changed;
578 * o VID header starts just after the EC header at the closest address
579 * aligned to @io->hdrs_min_io_size;
580 * o data starts just after the VID header at the closest address aligned to
581 * @io->min_io_size
582 *
583 * This function returns zero in case of success and a negative error code in
584 * case of failure.
585 */
586static int io_init(struct ubi_device *ubi, int max_beb_per1024)
587{
588 dbg_gen("sizeof(struct ubi_ainf_peb) %zu", sizeof(struct ubi_ainf_peb));
589 dbg_gen("sizeof(struct ubi_wl_entry) %zu", sizeof(struct ubi_wl_entry));
590
591 if (ubi->mtd->numeraseregions != 0) {
592 /*
593 * Some flashes have several erase regions. Different regions
594 * may have different eraseblock size and other
595 * characteristics. It looks like mostly multi-region flashes
596 * have one "main" region and one or more small regions to
597 * store boot loader code or boot parameters or whatever. I
598 * guess we should just pick the largest region. But this is
599 * not implemented.
600 */
601 ubi_err(ubi, "multiple regions, not implemented");
602 return -EINVAL;
603 }
604
605 if (ubi->vid_hdr_offset < 0)
606 return -EINVAL;
607
608 /*
609 * Note, in this implementation we support MTD devices with 0x7FFFFFFF
610 * physical eraseblocks maximum.
611 */
612
613 ubi->peb_size = ubi->mtd->erasesize;
614 ubi->peb_count = mtd_div_by_eb(ubi->mtd->size, ubi->mtd);
615 ubi->flash_size = ubi->mtd->size;
616
617 if (mtd_can_have_bb(ubi->mtd)) {
618 ubi->bad_allowed = 1;
619 ubi->bad_peb_limit = get_bad_peb_limit(ubi, max_beb_per1024);
620 }
621
622 if (ubi->mtd->type == MTD_NORFLASH) {
623 ubi_assert(ubi->mtd->writesize == 1);
624 ubi->nor_flash = 1;
625 }
626
627 ubi->min_io_size = ubi->mtd->writesize;
628 ubi->hdrs_min_io_size = ubi->mtd->writesize >> ubi->mtd->subpage_sft;
629
630 /*
631 * Make sure minimal I/O unit is power of 2. Note, there is no
632 * fundamental reason for this assumption. It is just an optimization
633 * which allows us to avoid costly division operations.
634 */
635 if (!is_power_of_2(ubi->min_io_size)) {
636 ubi_err(ubi, "min. I/O unit (%d) is not power of 2",
637 ubi->min_io_size);
638 return -EINVAL;
639 }
640
641 ubi_assert(ubi->hdrs_min_io_size > 0);
642 ubi_assert(ubi->hdrs_min_io_size <= ubi->min_io_size);
643 ubi_assert(ubi->min_io_size % ubi->hdrs_min_io_size == 0);
644
645 ubi->max_write_size = ubi->mtd->writebufsize;
646 /*
647 * Maximum write size has to be greater or equivalent to min. I/O
648 * size, and be multiple of min. I/O size.
649 */
650 if (ubi->max_write_size < ubi->min_io_size ||
651 ubi->max_write_size % ubi->min_io_size ||
652 !is_power_of_2(ubi->max_write_size)) {
653 ubi_err(ubi, "bad write buffer size %d for %d min. I/O unit",
654 ubi->max_write_size, ubi->min_io_size);
655 return -EINVAL;
656 }
657
658 /* Calculate default aligned sizes of EC and VID headers */
659 ubi->ec_hdr_alsize = ALIGN(UBI_EC_HDR_SIZE, ubi->hdrs_min_io_size);
660 ubi->vid_hdr_alsize = ALIGN(UBI_VID_HDR_SIZE, ubi->hdrs_min_io_size);
661
662 dbg_gen("min_io_size %d", ubi->min_io_size);
663 dbg_gen("max_write_size %d", ubi->max_write_size);
664 dbg_gen("hdrs_min_io_size %d", ubi->hdrs_min_io_size);
665 dbg_gen("ec_hdr_alsize %d", ubi->ec_hdr_alsize);
666 dbg_gen("vid_hdr_alsize %d", ubi->vid_hdr_alsize);
667
668 if (ubi->vid_hdr_offset == 0)
669 /* Default offset */
670 ubi->vid_hdr_offset = ubi->vid_hdr_aloffset =
671 ubi->ec_hdr_alsize;
672 else {
673 ubi->vid_hdr_aloffset = ubi->vid_hdr_offset &
674 ~(ubi->hdrs_min_io_size - 1);
675 ubi->vid_hdr_shift = ubi->vid_hdr_offset -
676 ubi->vid_hdr_aloffset;
677 }
678
679 /* Similar for the data offset */
680 ubi->leb_start = ubi->vid_hdr_offset + UBI_VID_HDR_SIZE;
681 ubi->leb_start = ALIGN(ubi->leb_start, ubi->min_io_size);
682
683 dbg_gen("vid_hdr_offset %d", ubi->vid_hdr_offset);
684 dbg_gen("vid_hdr_aloffset %d", ubi->vid_hdr_aloffset);
685 dbg_gen("vid_hdr_shift %d", ubi->vid_hdr_shift);
686 dbg_gen("leb_start %d", ubi->leb_start);
687
688 /* The shift must be aligned to 32-bit boundary */
689 if (ubi->vid_hdr_shift % 4) {
690 ubi_err(ubi, "unaligned VID header shift %d",
691 ubi->vid_hdr_shift);
692 return -EINVAL;
693 }
694
695 /* Check sanity */
696 if (ubi->vid_hdr_offset < UBI_EC_HDR_SIZE ||
697 ubi->leb_start < ubi->vid_hdr_offset + UBI_VID_HDR_SIZE ||
698 ubi->leb_start > ubi->peb_size - UBI_VID_HDR_SIZE ||
699 ubi->leb_start & (ubi->min_io_size - 1)) {
700 ubi_err(ubi, "bad VID header (%d) or data offsets (%d)",
701 ubi->vid_hdr_offset, ubi->leb_start);
702 return -EINVAL;
703 }
704
705 /*
706 * Set maximum amount of physical erroneous eraseblocks to be 10%.
707 * Erroneous PEB are those which have read errors.
708 */
709 ubi->max_erroneous = ubi->peb_count / 10;
710 if (ubi->max_erroneous < 16)
711 ubi->max_erroneous = 16;
712 dbg_gen("max_erroneous %d", ubi->max_erroneous);
713
714 /*
715 * It may happen that EC and VID headers are situated in one minimal
716 * I/O unit. In this case we can only accept this UBI image in
717 * read-only mode.
718 */
719 if (ubi->vid_hdr_offset + UBI_VID_HDR_SIZE <= ubi->hdrs_min_io_size) {
720 ubi_warn(ubi, "EC and VID headers are in the same minimal I/O unit, switch to read-only mode");
721 ubi->ro_mode = 1;
722 }
723
724 ubi->leb_size = ubi->peb_size - ubi->leb_start;
725
726 if (!(ubi->mtd->flags & MTD_WRITEABLE)) {
727 ubi_msg(ubi, "MTD device %d is write-protected, attach in read-only mode",
728 ubi->mtd->index);
729 ubi->ro_mode = 1;
730 }
731
732 /*
733 * Note, ideally, we have to initialize @ubi->bad_peb_count here. But
734 * unfortunately, MTD does not provide this information. We should loop
735 * over all physical eraseblocks and invoke mtd->block_is_bad() for
736 * each physical eraseblock. So, we leave @ubi->bad_peb_count
737 * uninitialized so far.
738 */
739
740 return 0;
741}
742
743/**
744 * autoresize - re-size the volume which has the "auto-resize" flag set.
745 * @ubi: UBI device description object
746 * @vol_id: ID of the volume to re-size
747 *
748 * This function re-sizes the volume marked by the %UBI_VTBL_AUTORESIZE_FLG in
749 * the volume table to the largest possible size. See comments in ubi-header.h
750 * for more description of the flag. Returns zero in case of success and a
751 * negative error code in case of failure.
752 */
753static int autoresize(struct ubi_device *ubi, int vol_id)
754{
755 struct ubi_volume_desc desc;
756 struct ubi_volume *vol = ubi->volumes[vol_id];
757 int err, old_reserved_pebs = vol->reserved_pebs;
758
759 if (ubi->ro_mode) {
760 ubi_warn(ubi, "skip auto-resize because of R/O mode");
761 return 0;
762 }
763
764 /*
765 * Clear the auto-resize flag in the volume in-memory copy of the
766 * volume table, and 'ubi_resize_volume()' will propagate this change
767 * to the flash.
768 */
769 ubi->vtbl[vol_id].flags &= ~UBI_VTBL_AUTORESIZE_FLG;
770
771 if (ubi->avail_pebs == 0) {
772 struct ubi_vtbl_record vtbl_rec;
773
774 /*
775 * No available PEBs to re-size the volume, clear the flag on
776 * flash and exit.
777 */
778 vtbl_rec = ubi->vtbl[vol_id];
779 err = ubi_change_vtbl_record(ubi, vol_id, &vtbl_rec);
780 if (err)
781 ubi_err(ubi, "cannot clean auto-resize flag for volume %d",
782 vol_id);
783 } else {
784 desc.vol = vol;
785 err = ubi_resize_volume(&desc,
786 old_reserved_pebs + ubi->avail_pebs);
787 if (err)
788 ubi_err(ubi, "cannot auto-resize volume %d",
789 vol_id);
790 }
791
792 if (err)
793 return err;
794
795 ubi_msg(ubi, "volume %d (\"%s\") re-sized from %d to %d LEBs",
796 vol_id, vol->name, old_reserved_pebs, vol->reserved_pebs);
797 return 0;
798}
799
800/**
801 * ubi_attach_mtd_dev - attach an MTD device.
802 * @mtd: MTD device description object
803 * @ubi_num: number to assign to the new UBI device
804 * @vid_hdr_offset: VID header offset
805 * @max_beb_per1024: maximum expected number of bad PEB per 1024 PEBs
806 *
807 * This function attaches MTD device @mtd_dev to UBI and assign @ubi_num number
808 * to the newly created UBI device, unless @ubi_num is %UBI_DEV_NUM_AUTO, in
809 * which case this function finds a vacant device number and assigns it
810 * automatically. Returns the new UBI device number in case of success and a
811 * negative error code in case of failure.
812 *
813 * Note, the invocations of this function has to be serialized by the
814 * @ubi_devices_mutex.
815 */
816int ubi_attach_mtd_dev(struct mtd_info *mtd, int ubi_num,
817 int vid_hdr_offset, int max_beb_per1024)
818{
819 struct ubi_device *ubi;
820 int i, err;
821
822 if (max_beb_per1024 < 0 || max_beb_per1024 > MAX_MTD_UBI_BEB_LIMIT)
823 return -EINVAL;
824
825 if (!max_beb_per1024)
826 max_beb_per1024 = CONFIG_MTD_UBI_BEB_LIMIT;
827
828 /*
829 * Check if we already have the same MTD device attached.
830 *
831 * Note, this function assumes that UBI devices creations and deletions
832 * are serialized, so it does not take the &ubi_devices_lock.
833 */
834 for (i = 0; i < UBI_MAX_DEVICES; i++) {
835 ubi = ubi_devices[i];
836 if (ubi && mtd->index == ubi->mtd->index) {
837 pr_err("ubi: mtd%d is already attached to ubi%d\n",
838 mtd->index, i);
839 return -EEXIST;
840 }
841 }
842
843 /*
844 * Make sure this MTD device is not emulated on top of an UBI volume
845 * already. Well, generally this recursion works fine, but there are
846 * different problems like the UBI module takes a reference to itself
847 * by attaching (and thus, opening) the emulated MTD device. This
848 * results in inability to unload the module. And in general it makes
849 * no sense to attach emulated MTD devices, so we prohibit this.
850 */
851 if (mtd->type == MTD_UBIVOLUME) {
852 pr_err("ubi: refuse attaching mtd%d - it is already emulated on top of UBI\n",
853 mtd->index);
854 return -EINVAL;
855 }
856
857 /*
858 * Both UBI and UBIFS have been designed for SLC NAND and NOR flashes.
859 * MLC NAND is different and needs special care, otherwise UBI or UBIFS
860 * will die soon and you will lose all your data.
861 */
862 if (mtd->type == MTD_MLCNANDFLASH) {
863 pr_err("ubi: refuse attaching mtd%d - MLC NAND is not supported\n",
864 mtd->index);
865 return -EINVAL;
866 }
867
868 if (ubi_num == UBI_DEV_NUM_AUTO) {
869 /* Search for an empty slot in the @ubi_devices array */
870 for (ubi_num = 0; ubi_num < UBI_MAX_DEVICES; ubi_num++)
871 if (!ubi_devices[ubi_num])
872 break;
873 if (ubi_num == UBI_MAX_DEVICES) {
874 pr_err("ubi: only %d UBI devices may be created\n",
875 UBI_MAX_DEVICES);
876 return -ENFILE;
877 }
878 } else {
879 if (ubi_num >= UBI_MAX_DEVICES)
880 return -EINVAL;
881
882 /* Make sure ubi_num is not busy */
883 if (ubi_devices[ubi_num]) {
884 pr_err("ubi: ubi%i already exists\n", ubi_num);
885 return -EEXIST;
886 }
887 }
888
889 ubi = kzalloc(sizeof(struct ubi_device), GFP_KERNEL);
890 if (!ubi)
891 return -ENOMEM;
892
893 device_initialize(&ubi->dev);
894 ubi->dev.release = dev_release;
895 ubi->dev.class = &ubi_class;
896 ubi->dev.groups = ubi_dev_groups;
897
898 ubi->mtd = mtd;
899 ubi->ubi_num = ubi_num;
900 ubi->vid_hdr_offset = vid_hdr_offset;
901 ubi->autoresize_vol_id = -1;
902
903#ifdef CONFIG_MTD_UBI_FASTMAP
904 ubi->fm_pool.used = ubi->fm_pool.size = 0;
905 ubi->fm_wl_pool.used = ubi->fm_wl_pool.size = 0;
906
907 /*
908 * fm_pool.max_size is 5% of the total number of PEBs but it's also
909 * between UBI_FM_MAX_POOL_SIZE and UBI_FM_MIN_POOL_SIZE.
910 */
911 ubi->fm_pool.max_size = min(((int)mtd_div_by_eb(ubi->mtd->size,
912 ubi->mtd) / 100) * 5, UBI_FM_MAX_POOL_SIZE);
913 ubi->fm_pool.max_size = max(ubi->fm_pool.max_size,
914 UBI_FM_MIN_POOL_SIZE);
915
916 ubi->fm_wl_pool.max_size = ubi->fm_pool.max_size / 2;
917 ubi->fm_disabled = !fm_autoconvert;
918 if (fm_debug)
919 ubi_enable_dbg_chk_fastmap(ubi);
920
921 if (!ubi->fm_disabled && (int)mtd_div_by_eb(ubi->mtd->size, ubi->mtd)
922 <= UBI_FM_MAX_START) {
923 ubi_err(ubi, "More than %i PEBs are needed for fastmap, sorry.",
924 UBI_FM_MAX_START);
925 ubi->fm_disabled = 1;
926 }
927
928 ubi_msg(ubi, "default fastmap pool size: %d", ubi->fm_pool.max_size);
929 ubi_msg(ubi, "default fastmap WL pool size: %d",
930 ubi->fm_wl_pool.max_size);
931#else
932 ubi->fm_disabled = 1;
933#endif
934 mutex_init(&ubi->buf_mutex);
935 mutex_init(&ubi->ckvol_mutex);
936 mutex_init(&ubi->device_mutex);
937 spin_lock_init(&ubi->volumes_lock);
938 init_rwsem(&ubi->fm_protect);
939 init_rwsem(&ubi->fm_eba_sem);
940
941 ubi_msg(ubi, "attaching mtd%d", mtd->index);
942
943 err = io_init(ubi, max_beb_per1024);
944 if (err)
945 goto out_free;
946
947 err = -ENOMEM;
948 ubi->peb_buf = vmalloc(ubi->peb_size);
949 if (!ubi->peb_buf)
950 goto out_free;
951
952#ifdef CONFIG_MTD_UBI_FASTMAP
953 ubi->fm_size = ubi_calc_fm_size(ubi);
954 ubi->fm_buf = vzalloc(ubi->fm_size);
955 if (!ubi->fm_buf)
956 goto out_free;
957#endif
958 err = ubi_attach(ubi, 0);
959 if (err) {
960 ubi_err(ubi, "failed to attach mtd%d, error %d",
961 mtd->index, err);
962 goto out_free;
963 }
964
965 if (ubi->autoresize_vol_id != -1) {
966 err = autoresize(ubi, ubi->autoresize_vol_id);
967 if (err)
968 goto out_detach;
969 }
970
971 /* Make device "available" before it becomes accessible via sysfs */
972 ubi_devices[ubi_num] = ubi;
973
974 err = uif_init(ubi);
975 if (err)
976 goto out_detach;
977
978 err = ubi_debugfs_init_dev(ubi);
979 if (err)
980 goto out_uif;
981
982 ubi->bgt_thread = kthread_create(ubi_thread, ubi, "%s", ubi->bgt_name);
983 if (IS_ERR(ubi->bgt_thread)) {
984 err = PTR_ERR(ubi->bgt_thread);
985 ubi_err(ubi, "cannot spawn \"%s\", error %d",
986 ubi->bgt_name, err);
987 goto out_debugfs;
988 }
989
990 ubi_msg(ubi, "attached mtd%d (name \"%s\", size %llu MiB)",
991 mtd->index, mtd->name, ubi->flash_size >> 20);
992 ubi_msg(ubi, "PEB size: %d bytes (%d KiB), LEB size: %d bytes",
993 ubi->peb_size, ubi->peb_size >> 10, ubi->leb_size);
994 ubi_msg(ubi, "min./max. I/O unit sizes: %d/%d, sub-page size %d",
995 ubi->min_io_size, ubi->max_write_size, ubi->hdrs_min_io_size);
996 ubi_msg(ubi, "VID header offset: %d (aligned %d), data offset: %d",
997 ubi->vid_hdr_offset, ubi->vid_hdr_aloffset, ubi->leb_start);
998 ubi_msg(ubi, "good PEBs: %d, bad PEBs: %d, corrupted PEBs: %d",
999 ubi->good_peb_count, ubi->bad_peb_count, ubi->corr_peb_count);
1000 ubi_msg(ubi, "user volume: %d, internal volumes: %d, max. volumes count: %d",
1001 ubi->vol_count - UBI_INT_VOL_COUNT, UBI_INT_VOL_COUNT,
1002 ubi->vtbl_slots);
1003 ubi_msg(ubi, "max/mean erase counter: %d/%d, WL threshold: %d, image sequence number: %u",
1004 ubi->max_ec, ubi->mean_ec, CONFIG_MTD_UBI_WL_THRESHOLD,
1005 ubi->image_seq);
1006 ubi_msg(ubi, "available PEBs: %d, total reserved PEBs: %d, PEBs reserved for bad PEB handling: %d",
1007 ubi->avail_pebs, ubi->rsvd_pebs, ubi->beb_rsvd_pebs);
1008
1009 /*
1010 * The below lock makes sure we do not race with 'ubi_thread()' which
1011 * checks @ubi->thread_enabled. Otherwise we may fail to wake it up.
1012 */
1013 spin_lock(&ubi->wl_lock);
1014 ubi->thread_enabled = 1;
1015 wake_up_process(ubi->bgt_thread);
1016 spin_unlock(&ubi->wl_lock);
1017
1018 ubi_notify_all(ubi, UBI_VOLUME_ADDED, NULL);
1019 return ubi_num;
1020
1021out_debugfs:
1022 ubi_debugfs_exit_dev(ubi);
1023out_uif:
1024 uif_close(ubi);
1025out_detach:
1026 ubi_devices[ubi_num] = NULL;
1027 ubi_wl_close(ubi);
1028 ubi_free_internal_volumes(ubi);
1029 vfree(ubi->vtbl);
1030out_free:
1031 vfree(ubi->peb_buf);
1032 vfree(ubi->fm_buf);
1033 put_device(&ubi->dev);
1034 return err;
1035}
1036
1037/**
1038 * ubi_detach_mtd_dev - detach an MTD device.
1039 * @ubi_num: UBI device number to detach from
1040 * @anyway: detach MTD even if device reference count is not zero
1041 *
1042 * This function destroys an UBI device number @ubi_num and detaches the
1043 * underlying MTD device. Returns zero in case of success and %-EBUSY if the
1044 * UBI device is busy and cannot be destroyed, and %-EINVAL if it does not
1045 * exist.
1046 *
1047 * Note, the invocations of this function has to be serialized by the
1048 * @ubi_devices_mutex.
1049 */
1050int ubi_detach_mtd_dev(int ubi_num, int anyway)
1051{
1052 struct ubi_device *ubi;
1053
1054 if (ubi_num < 0 || ubi_num >= UBI_MAX_DEVICES)
1055 return -EINVAL;
1056
1057 ubi = ubi_get_device(ubi_num);
1058 if (!ubi)
1059 return -EINVAL;
1060
1061 spin_lock(&ubi_devices_lock);
1062 put_device(&ubi->dev);
1063 ubi->ref_count -= 1;
1064 if (ubi->ref_count) {
1065 if (!anyway) {
1066 spin_unlock(&ubi_devices_lock);
1067 return -EBUSY;
1068 }
1069 /* This may only happen if there is a bug */
1070 ubi_err(ubi, "%s reference count %d, destroy anyway",
1071 ubi->ubi_name, ubi->ref_count);
1072 }
1073 ubi_devices[ubi_num] = NULL;
1074 spin_unlock(&ubi_devices_lock);
1075
1076 ubi_assert(ubi_num == ubi->ubi_num);
1077 ubi_notify_all(ubi, UBI_VOLUME_REMOVED, NULL);
1078 ubi_msg(ubi, "detaching mtd%d", ubi->mtd->index);
1079#ifdef CONFIG_MTD_UBI_FASTMAP
1080 /* If we don't write a new fastmap at detach time we lose all
1081 * EC updates that have been made since the last written fastmap.
1082 * In case of fastmap debugging we omit the update to simulate an
1083 * unclean shutdown. */
1084 if (!ubi_dbg_chk_fastmap(ubi))
1085 ubi_update_fastmap(ubi);
1086#endif
1087 /*
1088 * Before freeing anything, we have to stop the background thread to
1089 * prevent it from doing anything on this device while we are freeing.
1090 */
1091 if (ubi->bgt_thread)
1092 kthread_stop(ubi->bgt_thread);
1093
1094 ubi_debugfs_exit_dev(ubi);
1095 uif_close(ubi);
1096
1097 ubi_wl_close(ubi);
1098 ubi_free_internal_volumes(ubi);
1099 vfree(ubi->vtbl);
1100 put_mtd_device(ubi->mtd);
1101 vfree(ubi->peb_buf);
1102 vfree(ubi->fm_buf);
1103 ubi_msg(ubi, "mtd%d is detached", ubi->mtd->index);
1104 put_device(&ubi->dev);
1105 return 0;
1106}
1107
1108/**
1109 * open_mtd_by_chdev - open an MTD device by its character device node path.
1110 * @mtd_dev: MTD character device node path
1111 *
1112 * This helper function opens an MTD device by its character node device path.
1113 * Returns MTD device description object in case of success and a negative
1114 * error code in case of failure.
1115 */
1116static struct mtd_info * __init open_mtd_by_chdev(const char *mtd_dev)
1117{
1118 int err, minor;
1119 struct path path;
1120 struct kstat stat;
1121
1122 /* Probably this is an MTD character device node path */
1123 err = kern_path(mtd_dev, LOOKUP_FOLLOW, &path);
1124 if (err)
1125 return ERR_PTR(err);
1126
1127 err = vfs_getattr(&path, &stat, STATX_TYPE, AT_STATX_SYNC_AS_STAT);
1128 path_put(&path);
1129 if (err)
1130 return ERR_PTR(err);
1131
1132 /* MTD device number is defined by the major / minor numbers */
1133 if (MAJOR(stat.rdev) != MTD_CHAR_MAJOR || !S_ISCHR(stat.mode))
1134 return ERR_PTR(-EINVAL);
1135
1136 minor = MINOR(stat.rdev);
1137
1138 if (minor & 1)
1139 /*
1140 * Just do not think the "/dev/mtdrX" devices support is need,
1141 * so do not support them to avoid doing extra work.
1142 */
1143 return ERR_PTR(-EINVAL);
1144
1145 return get_mtd_device(NULL, minor / 2);
1146}
1147
1148/**
1149 * open_mtd_device - open MTD device by name, character device path, or number.
1150 * @mtd_dev: name, character device node path, or MTD device device number
1151 *
1152 * This function tries to open and MTD device described by @mtd_dev string,
1153 * which is first treated as ASCII MTD device number, and if it is not true, it
1154 * is treated as MTD device name, and if that is also not true, it is treated
1155 * as MTD character device node path. Returns MTD device description object in
1156 * case of success and a negative error code in case of failure.
1157 */
1158static struct mtd_info * __init open_mtd_device(const char *mtd_dev)
1159{
1160 struct mtd_info *mtd;
1161 int mtd_num;
1162 char *endp;
1163
1164 mtd_num = simple_strtoul(mtd_dev, &endp, 0);
1165 if (*endp != '\0' || mtd_dev == endp) {
1166 /*
1167 * This does not look like an ASCII integer, probably this is
1168 * MTD device name.
1169 */
1170 mtd = get_mtd_device_nm(mtd_dev);
1171 if (IS_ERR(mtd) && PTR_ERR(mtd) == -ENODEV)
1172 /* Probably this is an MTD character device node path */
1173 mtd = open_mtd_by_chdev(mtd_dev);
1174 } else
1175 mtd = get_mtd_device(NULL, mtd_num);
1176
1177 return mtd;
1178}
1179
1180static int __init ubi_init(void)
1181{
1182 int err, i, k;
1183
1184 /* Ensure that EC and VID headers have correct size */
1185 BUILD_BUG_ON(sizeof(struct ubi_ec_hdr) != 64);
1186 BUILD_BUG_ON(sizeof(struct ubi_vid_hdr) != 64);
1187
1188 if (mtd_devs > UBI_MAX_DEVICES) {
1189 pr_err("UBI error: too many MTD devices, maximum is %d\n",
1190 UBI_MAX_DEVICES);
1191 return -EINVAL;
1192 }
1193
1194 /* Create base sysfs directory and sysfs files */
1195 err = class_register(&ubi_class);
1196 if (err < 0)
1197 return err;
1198
1199 err = misc_register(&ubi_ctrl_cdev);
1200 if (err) {
1201 pr_err("UBI error: cannot register device\n");
1202 goto out;
1203 }
1204
1205 ubi_wl_entry_slab = kmem_cache_create("ubi_wl_entry_slab",
1206 sizeof(struct ubi_wl_entry),
1207 0, 0, NULL);
1208 if (!ubi_wl_entry_slab) {
1209 err = -ENOMEM;
1210 goto out_dev_unreg;
1211 }
1212
1213 err = ubi_debugfs_init();
1214 if (err)
1215 goto out_slab;
1216
1217
1218 /* Attach MTD devices */
1219 for (i = 0; i < mtd_devs; i++) {
1220 struct mtd_dev_param *p = &mtd_dev_param[i];
1221 struct mtd_info *mtd;
1222
1223 cond_resched();
1224
1225 mtd = open_mtd_device(p->name);
1226 if (IS_ERR(mtd)) {
1227 err = PTR_ERR(mtd);
1228 pr_err("UBI error: cannot open mtd %s, error %d\n",
1229 p->name, err);
1230 /* See comment below re-ubi_is_module(). */
1231 if (ubi_is_module())
1232 goto out_detach;
1233 continue;
1234 }
1235
1236 mutex_lock(&ubi_devices_mutex);
1237 err = ubi_attach_mtd_dev(mtd, p->ubi_num,
1238 p->vid_hdr_offs, p->max_beb_per1024);
1239 mutex_unlock(&ubi_devices_mutex);
1240 if (err < 0) {
1241 pr_err("UBI error: cannot attach mtd%d\n",
1242 mtd->index);
1243 put_mtd_device(mtd);
1244
1245 /*
1246 * Originally UBI stopped initializing on any error.
1247 * However, later on it was found out that this
1248 * behavior is not very good when UBI is compiled into
1249 * the kernel and the MTD devices to attach are passed
1250 * through the command line. Indeed, UBI failure
1251 * stopped whole boot sequence.
1252 *
1253 * To fix this, we changed the behavior for the
1254 * non-module case, but preserved the old behavior for
1255 * the module case, just for compatibility. This is a
1256 * little inconsistent, though.
1257 */
1258 if (ubi_is_module())
1259 goto out_detach;
1260 }
1261 }
1262
1263 err = ubiblock_init();
1264 if (err) {
1265 pr_err("UBI error: block: cannot initialize, error %d\n", err);
1266
1267 /* See comment above re-ubi_is_module(). */
1268 if (ubi_is_module())
1269 goto out_detach;
1270 }
1271
1272 return 0;
1273
1274out_detach:
1275 for (k = 0; k < i; k++)
1276 if (ubi_devices[k]) {
1277 mutex_lock(&ubi_devices_mutex);
1278 ubi_detach_mtd_dev(ubi_devices[k]->ubi_num, 1);
1279 mutex_unlock(&ubi_devices_mutex);
1280 }
1281 ubi_debugfs_exit();
1282out_slab:
1283 kmem_cache_destroy(ubi_wl_entry_slab);
1284out_dev_unreg:
1285 misc_deregister(&ubi_ctrl_cdev);
1286out:
1287 class_unregister(&ubi_class);
1288 pr_err("UBI error: cannot initialize UBI, error %d\n", err);
1289 return err;
1290}
1291late_initcall(ubi_init);
1292
1293static void __exit ubi_exit(void)
1294{
1295 int i;
1296
1297 ubiblock_exit();
1298
1299 for (i = 0; i < UBI_MAX_DEVICES; i++)
1300 if (ubi_devices[i]) {
1301 mutex_lock(&ubi_devices_mutex);
1302 ubi_detach_mtd_dev(ubi_devices[i]->ubi_num, 1);
1303 mutex_unlock(&ubi_devices_mutex);
1304 }
1305 ubi_debugfs_exit();
1306 kmem_cache_destroy(ubi_wl_entry_slab);
1307 misc_deregister(&ubi_ctrl_cdev);
1308 class_unregister(&ubi_class);
1309}
1310module_exit(ubi_exit);
1311
1312/**
1313 * bytes_str_to_int - convert a number of bytes string into an integer.
1314 * @str: the string to convert
1315 *
1316 * This function returns positive resulting integer in case of success and a
1317 * negative error code in case of failure.
1318 */
1319static int bytes_str_to_int(const char *str)
1320{
1321 char *endp;
1322 unsigned long result;
1323
1324 result = simple_strtoul(str, &endp, 0);
1325 if (str == endp || result >= INT_MAX) {
1326 pr_err("UBI error: incorrect bytes count: \"%s\"\n", str);
1327 return -EINVAL;
1328 }
1329
1330 switch (*endp) {
1331 case 'G':
1332 result *= 1024;
1333 case 'M':
1334 result *= 1024;
1335 case 'K':
1336 result *= 1024;
1337 if (endp[1] == 'i' && endp[2] == 'B')
1338 endp += 2;
1339 case '\0':
1340 break;
1341 default:
1342 pr_err("UBI error: incorrect bytes count: \"%s\"\n", str);
1343 return -EINVAL;
1344 }
1345
1346 return result;
1347}
1348
1349/**
1350 * ubi_mtd_param_parse - parse the 'mtd=' UBI parameter.
1351 * @val: the parameter value to parse
1352 * @kp: not used
1353 *
1354 * This function returns zero in case of success and a negative error code in
1355 * case of error.
1356 */
1357static int ubi_mtd_param_parse(const char *val, const struct kernel_param *kp)
1358{
1359 int i, len;
1360 struct mtd_dev_param *p;
1361 char buf[MTD_PARAM_LEN_MAX];
1362 char *pbuf = &buf[0];
1363 char *tokens[MTD_PARAM_MAX_COUNT], *token;
1364
1365 if (!val)
1366 return -EINVAL;
1367
1368 if (mtd_devs == UBI_MAX_DEVICES) {
1369 pr_err("UBI error: too many parameters, max. is %d\n",
1370 UBI_MAX_DEVICES);
1371 return -EINVAL;
1372 }
1373
1374 len = strnlen(val, MTD_PARAM_LEN_MAX);
1375 if (len == MTD_PARAM_LEN_MAX) {
1376 pr_err("UBI error: parameter \"%s\" is too long, max. is %d\n",
1377 val, MTD_PARAM_LEN_MAX);
1378 return -EINVAL;
1379 }
1380
1381 if (len == 0) {
1382 pr_warn("UBI warning: empty 'mtd=' parameter - ignored\n");
1383 return 0;
1384 }
1385
1386 strcpy(buf, val);
1387
1388 /* Get rid of the final newline */
1389 if (buf[len - 1] == '\n')
1390 buf[len - 1] = '\0';
1391
1392 for (i = 0; i < MTD_PARAM_MAX_COUNT; i++)
1393 tokens[i] = strsep(&pbuf, ",");
1394
1395 if (pbuf) {
1396 pr_err("UBI error: too many arguments at \"%s\"\n", val);
1397 return -EINVAL;
1398 }
1399
1400 p = &mtd_dev_param[mtd_devs];
1401 strcpy(&p->name[0], tokens[0]);
1402
1403 token = tokens[1];
1404 if (token) {
1405 p->vid_hdr_offs = bytes_str_to_int(token);
1406
1407 if (p->vid_hdr_offs < 0)
1408 return p->vid_hdr_offs;
1409 }
1410
1411 token = tokens[2];
1412 if (token) {
1413 int err = kstrtoint(token, 10, &p->max_beb_per1024);
1414
1415 if (err) {
1416 pr_err("UBI error: bad value for max_beb_per1024 parameter: %s",
1417 token);
1418 return -EINVAL;
1419 }
1420 }
1421
1422 token = tokens[3];
1423 if (token) {
1424 int err = kstrtoint(token, 10, &p->ubi_num);
1425
1426 if (err) {
1427 pr_err("UBI error: bad value for ubi_num parameter: %s",
1428 token);
1429 return -EINVAL;
1430 }
1431 } else
1432 p->ubi_num = UBI_DEV_NUM_AUTO;
1433
1434 mtd_devs += 1;
1435 return 0;
1436}
1437
1438module_param_call(mtd, ubi_mtd_param_parse, NULL, NULL, 0400);
1439MODULE_PARM_DESC(mtd, "MTD devices to attach. Parameter format: mtd=<name|num|path>[,<vid_hdr_offs>[,max_beb_per1024[,ubi_num]]].\n"
1440 "Multiple \"mtd\" parameters may be specified.\n"
1441 "MTD devices may be specified by their number, name, or path to the MTD character device node.\n"
1442 "Optional \"vid_hdr_offs\" parameter specifies UBI VID header position to be used by UBI. (default value if 0)\n"
1443 "Optional \"max_beb_per1024\" parameter specifies the maximum expected bad eraseblock per 1024 eraseblocks. (default value ("
1444 __stringify(CONFIG_MTD_UBI_BEB_LIMIT) ") if 0)\n"
1445 "Optional \"ubi_num\" parameter specifies UBI device number which have to be assigned to the newly created UBI device (assigned automatically by default)\n"
1446 "\n"
1447 "Example 1: mtd=/dev/mtd0 - attach MTD device /dev/mtd0.\n"
1448 "Example 2: mtd=content,1984 mtd=4 - attach MTD device with name \"content\" using VID header offset 1984, and MTD device number 4 with default VID header offset.\n"
1449 "Example 3: mtd=/dev/mtd1,0,25 - attach MTD device /dev/mtd1 using default VID header offset and reserve 25*nand_size_in_blocks/1024 erase blocks for bad block handling.\n"
1450 "Example 4: mtd=/dev/mtd1,0,0,5 - attach MTD device /dev/mtd1 to UBI 5 and using default values for the other fields.\n"
1451 "\t(e.g. if the NAND *chipset* has 4096 PEB, 100 will be reserved for this UBI device).");
1452#ifdef CONFIG_MTD_UBI_FASTMAP
1453module_param(fm_autoconvert, bool, 0644);
1454MODULE_PARM_DESC(fm_autoconvert, "Set this parameter to enable fastmap automatically on images without a fastmap.");
1455module_param(fm_debug, bool, 0);
1456MODULE_PARM_DESC(fm_debug, "Set this parameter to enable fastmap debugging by default. Warning, this will make fastmap slow!");
1457#endif
1458MODULE_VERSION(__stringify(UBI_VERSION));
1459MODULE_DESCRIPTION("UBI - Unsorted Block Images");
1460MODULE_AUTHOR("Artem Bityutskiy");
1461MODULE_LICENSE("GPL");
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Copyright (c) International Business Machines Corp., 2006
4 * Copyright (c) Nokia Corporation, 2007
5 *
6 * Author: Artem Bityutskiy (Битюцкий Артём),
7 * Frank Haverkamp
8 */
9
10/*
11 * This file includes UBI initialization and building of UBI devices.
12 *
13 * When UBI is initialized, it attaches all the MTD devices specified as the
14 * module load parameters or the kernel boot parameters. If MTD devices were
15 * specified, UBI does not attach any MTD device, but it is possible to do
16 * later using the "UBI control device".
17 */
18
19#include <linux/err.h>
20#include <linux/module.h>
21#include <linux/moduleparam.h>
22#include <linux/stringify.h>
23#include <linux/namei.h>
24#include <linux/stat.h>
25#include <linux/miscdevice.h>
26#include <linux/mtd/partitions.h>
27#include <linux/log2.h>
28#include <linux/kthread.h>
29#include <linux/kernel.h>
30#include <linux/slab.h>
31#include <linux/major.h>
32#include "ubi.h"
33
34/* Maximum length of the 'mtd=' parameter */
35#define MTD_PARAM_LEN_MAX 64
36
37/* Maximum number of comma-separated items in the 'mtd=' parameter */
38#define MTD_PARAM_MAX_COUNT 6
39
40/* Maximum value for the number of bad PEBs per 1024 PEBs */
41#define MAX_MTD_UBI_BEB_LIMIT 768
42
43#ifdef CONFIG_MTD_UBI_MODULE
44#define ubi_is_module() 1
45#else
46#define ubi_is_module() 0
47#endif
48
49/**
50 * struct mtd_dev_param - MTD device parameter description data structure.
51 * @name: MTD character device node path, MTD device name, or MTD device number
52 * string
53 * @ubi_num: UBI number
54 * @vid_hdr_offs: VID header offset
55 * @max_beb_per1024: maximum expected number of bad PEBs per 1024 PEBs
56 * @enable_fm: enable fastmap when value is non-zero
57 * @need_resv_pool: reserve pool->max_size pebs when value is none-zero
58 */
59struct mtd_dev_param {
60 char name[MTD_PARAM_LEN_MAX];
61 int ubi_num;
62 int vid_hdr_offs;
63 int max_beb_per1024;
64 int enable_fm;
65 int need_resv_pool;
66};
67
68/* Numbers of elements set in the @mtd_dev_param array */
69static int mtd_devs;
70
71/* MTD devices specification parameters */
72static struct mtd_dev_param mtd_dev_param[UBI_MAX_DEVICES];
73#ifdef CONFIG_MTD_UBI_FASTMAP
74/* UBI module parameter to enable fastmap automatically on non-fastmap images */
75static bool fm_autoconvert;
76static bool fm_debug;
77#endif
78
79/* Slab cache for wear-leveling entries */
80struct kmem_cache *ubi_wl_entry_slab;
81
82/* UBI control character device */
83static struct miscdevice ubi_ctrl_cdev = {
84 .minor = MISC_DYNAMIC_MINOR,
85 .name = "ubi_ctrl",
86 .fops = &ubi_ctrl_cdev_operations,
87};
88
89/* All UBI devices in system */
90static struct ubi_device *ubi_devices[UBI_MAX_DEVICES];
91
92/* Serializes UBI devices creations and removals */
93DEFINE_MUTEX(ubi_devices_mutex);
94
95/* Protects @ubi_devices and @ubi->ref_count */
96static DEFINE_SPINLOCK(ubi_devices_lock);
97
98/* "Show" method for files in '/<sysfs>/class/ubi/' */
99/* UBI version attribute ('/<sysfs>/class/ubi/version') */
100static ssize_t version_show(const struct class *class, const struct class_attribute *attr,
101 char *buf)
102{
103 return sprintf(buf, "%d\n", UBI_VERSION);
104}
105static CLASS_ATTR_RO(version);
106
107static struct attribute *ubi_class_attrs[] = {
108 &class_attr_version.attr,
109 NULL,
110};
111ATTRIBUTE_GROUPS(ubi_class);
112
113/* Root UBI "class" object (corresponds to '/<sysfs>/class/ubi/') */
114struct class ubi_class = {
115 .name = UBI_NAME_STR,
116 .class_groups = ubi_class_groups,
117};
118
119static ssize_t dev_attribute_show(struct device *dev,
120 struct device_attribute *attr, char *buf);
121
122/* UBI device attributes (correspond to files in '/<sysfs>/class/ubi/ubiX') */
123static struct device_attribute dev_eraseblock_size =
124 __ATTR(eraseblock_size, S_IRUGO, dev_attribute_show, NULL);
125static struct device_attribute dev_avail_eraseblocks =
126 __ATTR(avail_eraseblocks, S_IRUGO, dev_attribute_show, NULL);
127static struct device_attribute dev_total_eraseblocks =
128 __ATTR(total_eraseblocks, S_IRUGO, dev_attribute_show, NULL);
129static struct device_attribute dev_volumes_count =
130 __ATTR(volumes_count, S_IRUGO, dev_attribute_show, NULL);
131static struct device_attribute dev_max_ec =
132 __ATTR(max_ec, S_IRUGO, dev_attribute_show, NULL);
133static struct device_attribute dev_reserved_for_bad =
134 __ATTR(reserved_for_bad, S_IRUGO, dev_attribute_show, NULL);
135static struct device_attribute dev_bad_peb_count =
136 __ATTR(bad_peb_count, S_IRUGO, dev_attribute_show, NULL);
137static struct device_attribute dev_max_vol_count =
138 __ATTR(max_vol_count, S_IRUGO, dev_attribute_show, NULL);
139static struct device_attribute dev_min_io_size =
140 __ATTR(min_io_size, S_IRUGO, dev_attribute_show, NULL);
141static struct device_attribute dev_bgt_enabled =
142 __ATTR(bgt_enabled, S_IRUGO, dev_attribute_show, NULL);
143static struct device_attribute dev_mtd_num =
144 __ATTR(mtd_num, S_IRUGO, dev_attribute_show, NULL);
145static struct device_attribute dev_ro_mode =
146 __ATTR(ro_mode, S_IRUGO, dev_attribute_show, NULL);
147
148/**
149 * ubi_volume_notify - send a volume change notification.
150 * @ubi: UBI device description object
151 * @vol: volume description object of the changed volume
152 * @ntype: notification type to send (%UBI_VOLUME_ADDED, etc)
153 *
154 * This is a helper function which notifies all subscribers about a volume
155 * change event (creation, removal, re-sizing, re-naming, updating). Returns
156 * zero in case of success and a negative error code in case of failure.
157 */
158int ubi_volume_notify(struct ubi_device *ubi, struct ubi_volume *vol, int ntype)
159{
160 int ret;
161 struct ubi_notification nt;
162
163 ubi_do_get_device_info(ubi, &nt.di);
164 ubi_do_get_volume_info(ubi, vol, &nt.vi);
165
166 switch (ntype) {
167 case UBI_VOLUME_ADDED:
168 case UBI_VOLUME_REMOVED:
169 case UBI_VOLUME_RESIZED:
170 case UBI_VOLUME_RENAMED:
171 ret = ubi_update_fastmap(ubi);
172 if (ret)
173 ubi_msg(ubi, "Unable to write a new fastmap: %i", ret);
174 }
175
176 return blocking_notifier_call_chain(&ubi_notifiers, ntype, &nt);
177}
178
179/**
180 * ubi_notify_all - send a notification to all volumes.
181 * @ubi: UBI device description object
182 * @ntype: notification type to send (%UBI_VOLUME_ADDED, etc)
183 * @nb: the notifier to call
184 *
185 * This function walks all volumes of UBI device @ubi and sends the @ntype
186 * notification for each volume. If @nb is %NULL, then all registered notifiers
187 * are called, otherwise only the @nb notifier is called. Returns the number of
188 * sent notifications.
189 */
190int ubi_notify_all(struct ubi_device *ubi, int ntype, struct notifier_block *nb)
191{
192 struct ubi_notification nt;
193 int i, count = 0;
194
195 ubi_do_get_device_info(ubi, &nt.di);
196
197 mutex_lock(&ubi->device_mutex);
198 for (i = 0; i < ubi->vtbl_slots; i++) {
199 /*
200 * Since the @ubi->device is locked, and we are not going to
201 * change @ubi->volumes, we do not have to lock
202 * @ubi->volumes_lock.
203 */
204 if (!ubi->volumes[i])
205 continue;
206
207 ubi_do_get_volume_info(ubi, ubi->volumes[i], &nt.vi);
208 if (nb)
209 nb->notifier_call(nb, ntype, &nt);
210 else
211 blocking_notifier_call_chain(&ubi_notifiers, ntype,
212 &nt);
213 count += 1;
214 }
215 mutex_unlock(&ubi->device_mutex);
216
217 return count;
218}
219
220/**
221 * ubi_enumerate_volumes - send "add" notification for all existing volumes.
222 * @nb: the notifier to call
223 *
224 * This function walks all UBI devices and volumes and sends the
225 * %UBI_VOLUME_ADDED notification for each volume. If @nb is %NULL, then all
226 * registered notifiers are called, otherwise only the @nb notifier is called.
227 * Returns the number of sent notifications.
228 */
229int ubi_enumerate_volumes(struct notifier_block *nb)
230{
231 int i, count = 0;
232
233 /*
234 * Since the @ubi_devices_mutex is locked, and we are not going to
235 * change @ubi_devices, we do not have to lock @ubi_devices_lock.
236 */
237 for (i = 0; i < UBI_MAX_DEVICES; i++) {
238 struct ubi_device *ubi = ubi_devices[i];
239
240 if (!ubi)
241 continue;
242 count += ubi_notify_all(ubi, UBI_VOLUME_ADDED, nb);
243 }
244
245 return count;
246}
247
248/**
249 * ubi_get_device - get UBI device.
250 * @ubi_num: UBI device number
251 *
252 * This function returns UBI device description object for UBI device number
253 * @ubi_num, or %NULL if the device does not exist. This function increases the
254 * device reference count to prevent removal of the device. In other words, the
255 * device cannot be removed if its reference count is not zero.
256 */
257struct ubi_device *ubi_get_device(int ubi_num)
258{
259 struct ubi_device *ubi;
260
261 spin_lock(&ubi_devices_lock);
262 ubi = ubi_devices[ubi_num];
263 if (ubi) {
264 ubi_assert(ubi->ref_count >= 0);
265 ubi->ref_count += 1;
266 get_device(&ubi->dev);
267 }
268 spin_unlock(&ubi_devices_lock);
269
270 return ubi;
271}
272
273/**
274 * ubi_put_device - drop an UBI device reference.
275 * @ubi: UBI device description object
276 */
277void ubi_put_device(struct ubi_device *ubi)
278{
279 spin_lock(&ubi_devices_lock);
280 ubi->ref_count -= 1;
281 put_device(&ubi->dev);
282 spin_unlock(&ubi_devices_lock);
283}
284
285/**
286 * ubi_get_by_major - get UBI device by character device major number.
287 * @major: major number
288 *
289 * This function is similar to 'ubi_get_device()', but it searches the device
290 * by its major number.
291 */
292struct ubi_device *ubi_get_by_major(int major)
293{
294 int i;
295 struct ubi_device *ubi;
296
297 spin_lock(&ubi_devices_lock);
298 for (i = 0; i < UBI_MAX_DEVICES; i++) {
299 ubi = ubi_devices[i];
300 if (ubi && MAJOR(ubi->cdev.dev) == major) {
301 ubi_assert(ubi->ref_count >= 0);
302 ubi->ref_count += 1;
303 get_device(&ubi->dev);
304 spin_unlock(&ubi_devices_lock);
305 return ubi;
306 }
307 }
308 spin_unlock(&ubi_devices_lock);
309
310 return NULL;
311}
312
313/**
314 * ubi_major2num - get UBI device number by character device major number.
315 * @major: major number
316 *
317 * This function searches UBI device number object by its major number. If UBI
318 * device was not found, this function returns -ENODEV, otherwise the UBI device
319 * number is returned.
320 */
321int ubi_major2num(int major)
322{
323 int i, ubi_num = -ENODEV;
324
325 spin_lock(&ubi_devices_lock);
326 for (i = 0; i < UBI_MAX_DEVICES; i++) {
327 struct ubi_device *ubi = ubi_devices[i];
328
329 if (ubi && MAJOR(ubi->cdev.dev) == major) {
330 ubi_num = ubi->ubi_num;
331 break;
332 }
333 }
334 spin_unlock(&ubi_devices_lock);
335
336 return ubi_num;
337}
338
339/* "Show" method for files in '/<sysfs>/class/ubi/ubiX/' */
340static ssize_t dev_attribute_show(struct device *dev,
341 struct device_attribute *attr, char *buf)
342{
343 ssize_t ret;
344 struct ubi_device *ubi;
345
346 /*
347 * The below code looks weird, but it actually makes sense. We get the
348 * UBI device reference from the contained 'struct ubi_device'. But it
349 * is unclear if the device was removed or not yet. Indeed, if the
350 * device was removed before we increased its reference count,
351 * 'ubi_get_device()' will return -ENODEV and we fail.
352 *
353 * Remember, 'struct ubi_device' is freed in the release function, so
354 * we still can use 'ubi->ubi_num'.
355 */
356 ubi = container_of(dev, struct ubi_device, dev);
357
358 if (attr == &dev_eraseblock_size)
359 ret = sprintf(buf, "%d\n", ubi->leb_size);
360 else if (attr == &dev_avail_eraseblocks)
361 ret = sprintf(buf, "%d\n", ubi->avail_pebs);
362 else if (attr == &dev_total_eraseblocks)
363 ret = sprintf(buf, "%d\n", ubi->good_peb_count);
364 else if (attr == &dev_volumes_count)
365 ret = sprintf(buf, "%d\n", ubi->vol_count - UBI_INT_VOL_COUNT);
366 else if (attr == &dev_max_ec)
367 ret = sprintf(buf, "%d\n", ubi->max_ec);
368 else if (attr == &dev_reserved_for_bad)
369 ret = sprintf(buf, "%d\n", ubi->beb_rsvd_pebs);
370 else if (attr == &dev_bad_peb_count)
371 ret = sprintf(buf, "%d\n", ubi->bad_peb_count);
372 else if (attr == &dev_max_vol_count)
373 ret = sprintf(buf, "%d\n", ubi->vtbl_slots);
374 else if (attr == &dev_min_io_size)
375 ret = sprintf(buf, "%d\n", ubi->min_io_size);
376 else if (attr == &dev_bgt_enabled)
377 ret = sprintf(buf, "%d\n", ubi->thread_enabled);
378 else if (attr == &dev_mtd_num)
379 ret = sprintf(buf, "%d\n", ubi->mtd->index);
380 else if (attr == &dev_ro_mode)
381 ret = sprintf(buf, "%d\n", ubi->ro_mode);
382 else
383 ret = -EINVAL;
384
385 return ret;
386}
387
388static struct attribute *ubi_dev_attrs[] = {
389 &dev_eraseblock_size.attr,
390 &dev_avail_eraseblocks.attr,
391 &dev_total_eraseblocks.attr,
392 &dev_volumes_count.attr,
393 &dev_max_ec.attr,
394 &dev_reserved_for_bad.attr,
395 &dev_bad_peb_count.attr,
396 &dev_max_vol_count.attr,
397 &dev_min_io_size.attr,
398 &dev_bgt_enabled.attr,
399 &dev_mtd_num.attr,
400 &dev_ro_mode.attr,
401 NULL
402};
403ATTRIBUTE_GROUPS(ubi_dev);
404
405static void dev_release(struct device *dev)
406{
407 struct ubi_device *ubi = container_of(dev, struct ubi_device, dev);
408
409 kfree(ubi);
410}
411
412/**
413 * kill_volumes - destroy all user volumes.
414 * @ubi: UBI device description object
415 */
416static void kill_volumes(struct ubi_device *ubi)
417{
418 int i;
419
420 for (i = 0; i < ubi->vtbl_slots; i++)
421 if (ubi->volumes[i])
422 ubi_free_volume(ubi, ubi->volumes[i]);
423}
424
425/**
426 * uif_init - initialize user interfaces for an UBI device.
427 * @ubi: UBI device description object
428 *
429 * This function initializes various user interfaces for an UBI device. If the
430 * initialization fails at an early stage, this function frees all the
431 * resources it allocated, returns an error.
432 *
433 * This function returns zero in case of success and a negative error code in
434 * case of failure.
435 */
436static int uif_init(struct ubi_device *ubi)
437{
438 int i, err;
439 dev_t dev;
440
441 sprintf(ubi->ubi_name, UBI_NAME_STR "%d", ubi->ubi_num);
442
443 /*
444 * Major numbers for the UBI character devices are allocated
445 * dynamically. Major numbers of volume character devices are
446 * equivalent to ones of the corresponding UBI character device. Minor
447 * numbers of UBI character devices are 0, while minor numbers of
448 * volume character devices start from 1. Thus, we allocate one major
449 * number and ubi->vtbl_slots + 1 minor numbers.
450 */
451 err = alloc_chrdev_region(&dev, 0, ubi->vtbl_slots + 1, ubi->ubi_name);
452 if (err) {
453 ubi_err(ubi, "cannot register UBI character devices");
454 return err;
455 }
456
457 ubi->dev.devt = dev;
458
459 ubi_assert(MINOR(dev) == 0);
460 cdev_init(&ubi->cdev, &ubi_cdev_operations);
461 dbg_gen("%s major is %u", ubi->ubi_name, MAJOR(dev));
462 ubi->cdev.owner = THIS_MODULE;
463
464 dev_set_name(&ubi->dev, UBI_NAME_STR "%d", ubi->ubi_num);
465 err = cdev_device_add(&ubi->cdev, &ubi->dev);
466 if (err)
467 goto out_unreg;
468
469 for (i = 0; i < ubi->vtbl_slots; i++)
470 if (ubi->volumes[i]) {
471 err = ubi_add_volume(ubi, ubi->volumes[i]);
472 if (err) {
473 ubi_err(ubi, "cannot add volume %d", i);
474 ubi->volumes[i] = NULL;
475 goto out_volumes;
476 }
477 }
478
479 return 0;
480
481out_volumes:
482 kill_volumes(ubi);
483 cdev_device_del(&ubi->cdev, &ubi->dev);
484out_unreg:
485 unregister_chrdev_region(ubi->cdev.dev, ubi->vtbl_slots + 1);
486 ubi_err(ubi, "cannot initialize UBI %s, error %d",
487 ubi->ubi_name, err);
488 return err;
489}
490
491/**
492 * uif_close - close user interfaces for an UBI device.
493 * @ubi: UBI device description object
494 *
495 * Note, since this function un-registers UBI volume device objects (@vol->dev),
496 * the memory allocated voe the volumes is freed as well (in the release
497 * function).
498 */
499static void uif_close(struct ubi_device *ubi)
500{
501 kill_volumes(ubi);
502 cdev_device_del(&ubi->cdev, &ubi->dev);
503 unregister_chrdev_region(ubi->cdev.dev, ubi->vtbl_slots + 1);
504}
505
506/**
507 * ubi_free_volumes_from - free volumes from specific index.
508 * @ubi: UBI device description object
509 * @from: the start index used for volume free.
510 */
511static void ubi_free_volumes_from(struct ubi_device *ubi, int from)
512{
513 int i;
514
515 for (i = from; i < ubi->vtbl_slots + UBI_INT_VOL_COUNT; i++) {
516 if (!ubi->volumes[i])
517 continue;
518 ubi_eba_replace_table(ubi->volumes[i], NULL);
519 ubi_fastmap_destroy_checkmap(ubi->volumes[i]);
520 kfree(ubi->volumes[i]);
521 ubi->volumes[i] = NULL;
522 }
523}
524
525/**
526 * ubi_free_all_volumes - free all volumes.
527 * @ubi: UBI device description object
528 */
529void ubi_free_all_volumes(struct ubi_device *ubi)
530{
531 ubi_free_volumes_from(ubi, 0);
532}
533
534/**
535 * ubi_free_internal_volumes - free internal volumes.
536 * @ubi: UBI device description object
537 */
538void ubi_free_internal_volumes(struct ubi_device *ubi)
539{
540 ubi_free_volumes_from(ubi, ubi->vtbl_slots);
541}
542
543static int get_bad_peb_limit(const struct ubi_device *ubi, int max_beb_per1024)
544{
545 int limit, device_pebs;
546 uint64_t device_size;
547
548 if (!max_beb_per1024) {
549 /*
550 * Since max_beb_per1024 has not been set by the user in either
551 * the cmdline or Kconfig, use mtd_max_bad_blocks to set the
552 * limit if it is supported by the device.
553 */
554 limit = mtd_max_bad_blocks(ubi->mtd, 0, ubi->mtd->size);
555 if (limit < 0)
556 return 0;
557 return limit;
558 }
559
560 /*
561 * Here we are using size of the entire flash chip and
562 * not just the MTD partition size because the maximum
563 * number of bad eraseblocks is a percentage of the
564 * whole device and bad eraseblocks are not fairly
565 * distributed over the flash chip. So the worst case
566 * is that all the bad eraseblocks of the chip are in
567 * the MTD partition we are attaching (ubi->mtd).
568 */
569 device_size = mtd_get_device_size(ubi->mtd);
570 device_pebs = mtd_div_by_eb(device_size, ubi->mtd);
571 limit = mult_frac(device_pebs, max_beb_per1024, 1024);
572
573 /* Round it up */
574 if (mult_frac(limit, 1024, max_beb_per1024) < device_pebs)
575 limit += 1;
576
577 return limit;
578}
579
580/**
581 * io_init - initialize I/O sub-system for a given UBI device.
582 * @ubi: UBI device description object
583 * @max_beb_per1024: maximum expected number of bad PEB per 1024 PEBs
584 *
585 * If @ubi->vid_hdr_offset or @ubi->leb_start is zero, default offsets are
586 * assumed:
587 * o EC header is always at offset zero - this cannot be changed;
588 * o VID header starts just after the EC header at the closest address
589 * aligned to @io->hdrs_min_io_size;
590 * o data starts just after the VID header at the closest address aligned to
591 * @io->min_io_size
592 *
593 * This function returns zero in case of success and a negative error code in
594 * case of failure.
595 */
596static int io_init(struct ubi_device *ubi, int max_beb_per1024)
597{
598 dbg_gen("sizeof(struct ubi_ainf_peb) %zu", sizeof(struct ubi_ainf_peb));
599 dbg_gen("sizeof(struct ubi_wl_entry) %zu", sizeof(struct ubi_wl_entry));
600
601 if (ubi->mtd->numeraseregions != 0) {
602 /*
603 * Some flashes have several erase regions. Different regions
604 * may have different eraseblock size and other
605 * characteristics. It looks like mostly multi-region flashes
606 * have one "main" region and one or more small regions to
607 * store boot loader code or boot parameters or whatever. I
608 * guess we should just pick the largest region. But this is
609 * not implemented.
610 */
611 ubi_err(ubi, "multiple regions, not implemented");
612 return -EINVAL;
613 }
614
615 if (ubi->vid_hdr_offset < 0)
616 return -EINVAL;
617
618 /*
619 * Note, in this implementation we support MTD devices with 0x7FFFFFFF
620 * physical eraseblocks maximum.
621 */
622
623 ubi->peb_size = ubi->mtd->erasesize;
624 ubi->peb_count = mtd_div_by_eb(ubi->mtd->size, ubi->mtd);
625 ubi->flash_size = ubi->mtd->size;
626
627 if (mtd_can_have_bb(ubi->mtd)) {
628 ubi->bad_allowed = 1;
629 ubi->bad_peb_limit = get_bad_peb_limit(ubi, max_beb_per1024);
630 }
631
632 if (ubi->mtd->type == MTD_NORFLASH)
633 ubi->nor_flash = 1;
634
635 ubi->min_io_size = ubi->mtd->writesize;
636 ubi->hdrs_min_io_size = ubi->mtd->writesize >> ubi->mtd->subpage_sft;
637
638 /*
639 * Make sure minimal I/O unit is power of 2. Note, there is no
640 * fundamental reason for this assumption. It is just an optimization
641 * which allows us to avoid costly division operations.
642 */
643 if (!is_power_of_2(ubi->min_io_size)) {
644 ubi_err(ubi, "min. I/O unit (%d) is not power of 2",
645 ubi->min_io_size);
646 return -EINVAL;
647 }
648
649 ubi_assert(ubi->hdrs_min_io_size > 0);
650 ubi_assert(ubi->hdrs_min_io_size <= ubi->min_io_size);
651 ubi_assert(ubi->min_io_size % ubi->hdrs_min_io_size == 0);
652
653 ubi->max_write_size = ubi->mtd->writebufsize;
654 /*
655 * Maximum write size has to be greater or equivalent to min. I/O
656 * size, and be multiple of min. I/O size.
657 */
658 if (ubi->max_write_size < ubi->min_io_size ||
659 ubi->max_write_size % ubi->min_io_size ||
660 !is_power_of_2(ubi->max_write_size)) {
661 ubi_err(ubi, "bad write buffer size %d for %d min. I/O unit",
662 ubi->max_write_size, ubi->min_io_size);
663 return -EINVAL;
664 }
665
666 /* Calculate default aligned sizes of EC and VID headers */
667 ubi->ec_hdr_alsize = ALIGN(UBI_EC_HDR_SIZE, ubi->hdrs_min_io_size);
668 ubi->vid_hdr_alsize = ALIGN(UBI_VID_HDR_SIZE, ubi->hdrs_min_io_size);
669
670 dbg_gen("min_io_size %d", ubi->min_io_size);
671 dbg_gen("max_write_size %d", ubi->max_write_size);
672 dbg_gen("hdrs_min_io_size %d", ubi->hdrs_min_io_size);
673 dbg_gen("ec_hdr_alsize %d", ubi->ec_hdr_alsize);
674 dbg_gen("vid_hdr_alsize %d", ubi->vid_hdr_alsize);
675
676 if (ubi->vid_hdr_offset == 0)
677 /* Default offset */
678 ubi->vid_hdr_offset = ubi->vid_hdr_aloffset =
679 ubi->ec_hdr_alsize;
680 else {
681 ubi->vid_hdr_aloffset = ubi->vid_hdr_offset &
682 ~(ubi->hdrs_min_io_size - 1);
683 ubi->vid_hdr_shift = ubi->vid_hdr_offset -
684 ubi->vid_hdr_aloffset;
685 }
686
687 /*
688 * Memory allocation for VID header is ubi->vid_hdr_alsize
689 * which is described in comments in io.c.
690 * Make sure VID header shift + UBI_VID_HDR_SIZE not exceeds
691 * ubi->vid_hdr_alsize, so that all vid header operations
692 * won't access memory out of bounds.
693 */
694 if ((ubi->vid_hdr_shift + UBI_VID_HDR_SIZE) > ubi->vid_hdr_alsize) {
695 ubi_err(ubi, "Invalid VID header offset %d, VID header shift(%d)"
696 " + VID header size(%zu) > VID header aligned size(%d).",
697 ubi->vid_hdr_offset, ubi->vid_hdr_shift,
698 UBI_VID_HDR_SIZE, ubi->vid_hdr_alsize);
699 return -EINVAL;
700 }
701
702 /* Similar for the data offset */
703 ubi->leb_start = ubi->vid_hdr_offset + UBI_VID_HDR_SIZE;
704 ubi->leb_start = ALIGN(ubi->leb_start, ubi->min_io_size);
705
706 dbg_gen("vid_hdr_offset %d", ubi->vid_hdr_offset);
707 dbg_gen("vid_hdr_aloffset %d", ubi->vid_hdr_aloffset);
708 dbg_gen("vid_hdr_shift %d", ubi->vid_hdr_shift);
709 dbg_gen("leb_start %d", ubi->leb_start);
710
711 /* The shift must be aligned to 32-bit boundary */
712 if (ubi->vid_hdr_shift % 4) {
713 ubi_err(ubi, "unaligned VID header shift %d",
714 ubi->vid_hdr_shift);
715 return -EINVAL;
716 }
717
718 /* Check sanity */
719 if (ubi->vid_hdr_offset < UBI_EC_HDR_SIZE ||
720 ubi->leb_start < ubi->vid_hdr_offset + UBI_VID_HDR_SIZE ||
721 ubi->leb_start > ubi->peb_size - UBI_VID_HDR_SIZE ||
722 ubi->leb_start & (ubi->min_io_size - 1)) {
723 ubi_err(ubi, "bad VID header (%d) or data offsets (%d)",
724 ubi->vid_hdr_offset, ubi->leb_start);
725 return -EINVAL;
726 }
727
728 /*
729 * Set maximum amount of physical erroneous eraseblocks to be 10%.
730 * Erroneous PEB are those which have read errors.
731 */
732 ubi->max_erroneous = ubi->peb_count / 10;
733 if (ubi->max_erroneous < 16)
734 ubi->max_erroneous = 16;
735 dbg_gen("max_erroneous %d", ubi->max_erroneous);
736
737 /*
738 * It may happen that EC and VID headers are situated in one minimal
739 * I/O unit. In this case we can only accept this UBI image in
740 * read-only mode.
741 */
742 if (ubi->vid_hdr_offset + UBI_VID_HDR_SIZE <= ubi->hdrs_min_io_size) {
743 ubi_warn(ubi, "EC and VID headers are in the same minimal I/O unit, switch to read-only mode");
744 ubi->ro_mode = 1;
745 }
746
747 ubi->leb_size = ubi->peb_size - ubi->leb_start;
748
749 if (!(ubi->mtd->flags & MTD_WRITEABLE)) {
750 ubi_msg(ubi, "MTD device %d is write-protected, attach in read-only mode",
751 ubi->mtd->index);
752 ubi->ro_mode = 1;
753 }
754
755 /*
756 * Note, ideally, we have to initialize @ubi->bad_peb_count here. But
757 * unfortunately, MTD does not provide this information. We should loop
758 * over all physical eraseblocks and invoke mtd->block_is_bad() for
759 * each physical eraseblock. So, we leave @ubi->bad_peb_count
760 * uninitialized so far.
761 */
762
763 return 0;
764}
765
766/**
767 * autoresize - re-size the volume which has the "auto-resize" flag set.
768 * @ubi: UBI device description object
769 * @vol_id: ID of the volume to re-size
770 *
771 * This function re-sizes the volume marked by the %UBI_VTBL_AUTORESIZE_FLG in
772 * the volume table to the largest possible size. See comments in ubi-header.h
773 * for more description of the flag. Returns zero in case of success and a
774 * negative error code in case of failure.
775 */
776static int autoresize(struct ubi_device *ubi, int vol_id)
777{
778 struct ubi_volume_desc desc;
779 struct ubi_volume *vol = ubi->volumes[vol_id];
780 int err, old_reserved_pebs = vol->reserved_pebs;
781
782 if (ubi->ro_mode) {
783 ubi_warn(ubi, "skip auto-resize because of R/O mode");
784 return 0;
785 }
786
787 /*
788 * Clear the auto-resize flag in the volume in-memory copy of the
789 * volume table, and 'ubi_resize_volume()' will propagate this change
790 * to the flash.
791 */
792 ubi->vtbl[vol_id].flags &= ~UBI_VTBL_AUTORESIZE_FLG;
793
794 if (ubi->avail_pebs == 0) {
795 struct ubi_vtbl_record vtbl_rec;
796
797 /*
798 * No available PEBs to re-size the volume, clear the flag on
799 * flash and exit.
800 */
801 vtbl_rec = ubi->vtbl[vol_id];
802 err = ubi_change_vtbl_record(ubi, vol_id, &vtbl_rec);
803 if (err)
804 ubi_err(ubi, "cannot clean auto-resize flag for volume %d",
805 vol_id);
806 } else {
807 desc.vol = vol;
808 err = ubi_resize_volume(&desc,
809 old_reserved_pebs + ubi->avail_pebs);
810 if (err)
811 ubi_err(ubi, "cannot auto-resize volume %d",
812 vol_id);
813 }
814
815 if (err)
816 return err;
817
818 ubi_msg(ubi, "volume %d (\"%s\") re-sized from %d to %d LEBs",
819 vol_id, vol->name, old_reserved_pebs, vol->reserved_pebs);
820 return 0;
821}
822
823/**
824 * ubi_attach_mtd_dev - attach an MTD device.
825 * @mtd: MTD device description object
826 * @ubi_num: number to assign to the new UBI device
827 * @vid_hdr_offset: VID header offset
828 * @max_beb_per1024: maximum expected number of bad PEB per 1024 PEBs
829 * @disable_fm: whether disable fastmap
830 * @need_resv_pool: whether reserve pebs to fill fm_pool
831 *
832 * This function attaches MTD device @mtd_dev to UBI and assign @ubi_num number
833 * to the newly created UBI device, unless @ubi_num is %UBI_DEV_NUM_AUTO, in
834 * which case this function finds a vacant device number and assigns it
835 * automatically. Returns the new UBI device number in case of success and a
836 * negative error code in case of failure.
837 *
838 * If @disable_fm is true, ubi doesn't create new fastmap even the module param
839 * 'fm_autoconvert' is set, and existed old fastmap will be destroyed after
840 * doing full scanning.
841 *
842 * Note, the invocations of this function has to be serialized by the
843 * @ubi_devices_mutex.
844 */
845int ubi_attach_mtd_dev(struct mtd_info *mtd, int ubi_num,
846 int vid_hdr_offset, int max_beb_per1024, bool disable_fm,
847 bool need_resv_pool)
848{
849 struct ubi_device *ubi;
850 int i, err;
851
852 if (max_beb_per1024 < 0 || max_beb_per1024 > MAX_MTD_UBI_BEB_LIMIT)
853 return -EINVAL;
854
855 if (!max_beb_per1024)
856 max_beb_per1024 = CONFIG_MTD_UBI_BEB_LIMIT;
857
858 /*
859 * Check if we already have the same MTD device attached.
860 *
861 * Note, this function assumes that UBI devices creations and deletions
862 * are serialized, so it does not take the &ubi_devices_lock.
863 */
864 for (i = 0; i < UBI_MAX_DEVICES; i++) {
865 ubi = ubi_devices[i];
866 if (ubi && mtd->index == ubi->mtd->index) {
867 pr_err("ubi: mtd%d is already attached to ubi%d\n",
868 mtd->index, i);
869 return -EEXIST;
870 }
871 }
872
873 /*
874 * Make sure this MTD device is not emulated on top of an UBI volume
875 * already. Well, generally this recursion works fine, but there are
876 * different problems like the UBI module takes a reference to itself
877 * by attaching (and thus, opening) the emulated MTD device. This
878 * results in inability to unload the module. And in general it makes
879 * no sense to attach emulated MTD devices, so we prohibit this.
880 */
881 if (mtd->type == MTD_UBIVOLUME) {
882 pr_err("ubi: refuse attaching mtd%d - it is already emulated on top of UBI\n",
883 mtd->index);
884 return -EINVAL;
885 }
886
887 /*
888 * Both UBI and UBIFS have been designed for SLC NAND and NOR flashes.
889 * MLC NAND is different and needs special care, otherwise UBI or UBIFS
890 * will die soon and you will lose all your data.
891 * Relax this rule if the partition we're attaching to operates in SLC
892 * mode.
893 */
894 if (mtd->type == MTD_MLCNANDFLASH &&
895 !(mtd->flags & MTD_SLC_ON_MLC_EMULATION)) {
896 pr_err("ubi: refuse attaching mtd%d - MLC NAND is not supported\n",
897 mtd->index);
898 return -EINVAL;
899 }
900
901 /* UBI cannot work on flashes with zero erasesize. */
902 if (!mtd->erasesize) {
903 pr_err("ubi: refuse attaching mtd%d - zero erasesize flash is not supported\n",
904 mtd->index);
905 return -EINVAL;
906 }
907
908 if (ubi_num == UBI_DEV_NUM_AUTO) {
909 /* Search for an empty slot in the @ubi_devices array */
910 for (ubi_num = 0; ubi_num < UBI_MAX_DEVICES; ubi_num++)
911 if (!ubi_devices[ubi_num])
912 break;
913 if (ubi_num == UBI_MAX_DEVICES) {
914 pr_err("ubi: only %d UBI devices may be created\n",
915 UBI_MAX_DEVICES);
916 return -ENFILE;
917 }
918 } else {
919 if (ubi_num >= UBI_MAX_DEVICES)
920 return -EINVAL;
921
922 /* Make sure ubi_num is not busy */
923 if (ubi_devices[ubi_num]) {
924 pr_err("ubi: ubi%i already exists\n", ubi_num);
925 return -EEXIST;
926 }
927 }
928
929 ubi = kzalloc(sizeof(struct ubi_device), GFP_KERNEL);
930 if (!ubi)
931 return -ENOMEM;
932
933 device_initialize(&ubi->dev);
934 ubi->dev.release = dev_release;
935 ubi->dev.class = &ubi_class;
936 ubi->dev.groups = ubi_dev_groups;
937 ubi->dev.parent = &mtd->dev;
938
939 ubi->mtd = mtd;
940 ubi->ubi_num = ubi_num;
941 ubi->vid_hdr_offset = vid_hdr_offset;
942 ubi->autoresize_vol_id = -1;
943
944#ifdef CONFIG_MTD_UBI_FASTMAP
945 ubi->fm_pool.used = ubi->fm_pool.size = 0;
946 ubi->fm_wl_pool.used = ubi->fm_wl_pool.size = 0;
947
948 /*
949 * fm_pool.max_size is 5% of the total number of PEBs but it's also
950 * between UBI_FM_MAX_POOL_SIZE and UBI_FM_MIN_POOL_SIZE.
951 */
952 ubi->fm_pool.max_size = min(((int)mtd_div_by_eb(ubi->mtd->size,
953 ubi->mtd) / 100) * 5, UBI_FM_MAX_POOL_SIZE);
954 ubi->fm_pool.max_size = max(ubi->fm_pool.max_size,
955 UBI_FM_MIN_POOL_SIZE);
956
957 ubi->fm_wl_pool.max_size = ubi->fm_pool.max_size / 2;
958 ubi->fm_pool_rsv_cnt = need_resv_pool ? ubi->fm_pool.max_size : 0;
959 ubi->fm_disabled = (!fm_autoconvert || disable_fm) ? 1 : 0;
960 if (fm_debug)
961 ubi_enable_dbg_chk_fastmap(ubi);
962
963 if (!ubi->fm_disabled && (int)mtd_div_by_eb(ubi->mtd->size, ubi->mtd)
964 <= UBI_FM_MAX_START) {
965 ubi_err(ubi, "More than %i PEBs are needed for fastmap, sorry.",
966 UBI_FM_MAX_START);
967 ubi->fm_disabled = 1;
968 }
969
970 ubi_msg(ubi, "default fastmap pool size: %d", ubi->fm_pool.max_size);
971 ubi_msg(ubi, "default fastmap WL pool size: %d",
972 ubi->fm_wl_pool.max_size);
973#else
974 ubi->fm_disabled = 1;
975#endif
976 mutex_init(&ubi->buf_mutex);
977 mutex_init(&ubi->ckvol_mutex);
978 mutex_init(&ubi->device_mutex);
979 spin_lock_init(&ubi->volumes_lock);
980 init_rwsem(&ubi->fm_protect);
981 init_rwsem(&ubi->fm_eba_sem);
982
983 ubi_msg(ubi, "attaching mtd%d", mtd->index);
984
985 err = io_init(ubi, max_beb_per1024);
986 if (err)
987 goto out_free;
988
989 err = -ENOMEM;
990 ubi->peb_buf = vmalloc(ubi->peb_size);
991 if (!ubi->peb_buf)
992 goto out_free;
993
994#ifdef CONFIG_MTD_UBI_FASTMAP
995 ubi->fm_size = ubi_calc_fm_size(ubi);
996 ubi->fm_buf = vzalloc(ubi->fm_size);
997 if (!ubi->fm_buf)
998 goto out_free;
999#endif
1000 err = ubi_attach(ubi, disable_fm ? 1 : 0);
1001 if (err) {
1002 ubi_err(ubi, "failed to attach mtd%d, error %d",
1003 mtd->index, err);
1004 goto out_free;
1005 }
1006
1007 if (ubi->autoresize_vol_id != -1) {
1008 err = autoresize(ubi, ubi->autoresize_vol_id);
1009 if (err)
1010 goto out_detach;
1011 }
1012
1013 err = uif_init(ubi);
1014 if (err)
1015 goto out_detach;
1016
1017 err = ubi_debugfs_init_dev(ubi);
1018 if (err)
1019 goto out_uif;
1020
1021 ubi->bgt_thread = kthread_create(ubi_thread, ubi, "%s", ubi->bgt_name);
1022 if (IS_ERR(ubi->bgt_thread)) {
1023 err = PTR_ERR(ubi->bgt_thread);
1024 ubi_err(ubi, "cannot spawn \"%s\", error %d",
1025 ubi->bgt_name, err);
1026 goto out_debugfs;
1027 }
1028
1029 ubi_msg(ubi, "attached mtd%d (name \"%s\", size %llu MiB)",
1030 mtd->index, mtd->name, ubi->flash_size >> 20);
1031 ubi_msg(ubi, "PEB size: %d bytes (%d KiB), LEB size: %d bytes",
1032 ubi->peb_size, ubi->peb_size >> 10, ubi->leb_size);
1033 ubi_msg(ubi, "min./max. I/O unit sizes: %d/%d, sub-page size %d",
1034 ubi->min_io_size, ubi->max_write_size, ubi->hdrs_min_io_size);
1035 ubi_msg(ubi, "VID header offset: %d (aligned %d), data offset: %d",
1036 ubi->vid_hdr_offset, ubi->vid_hdr_aloffset, ubi->leb_start);
1037 ubi_msg(ubi, "good PEBs: %d, bad PEBs: %d, corrupted PEBs: %d",
1038 ubi->good_peb_count, ubi->bad_peb_count, ubi->corr_peb_count);
1039 ubi_msg(ubi, "user volume: %d, internal volumes: %d, max. volumes count: %d",
1040 ubi->vol_count - UBI_INT_VOL_COUNT, UBI_INT_VOL_COUNT,
1041 ubi->vtbl_slots);
1042 ubi_msg(ubi, "max/mean erase counter: %d/%d, WL threshold: %d, image sequence number: %u",
1043 ubi->max_ec, ubi->mean_ec, CONFIG_MTD_UBI_WL_THRESHOLD,
1044 ubi->image_seq);
1045 ubi_msg(ubi, "available PEBs: %d, total reserved PEBs: %d, PEBs reserved for bad PEB handling: %d",
1046 ubi->avail_pebs, ubi->rsvd_pebs, ubi->beb_rsvd_pebs);
1047
1048 /*
1049 * The below lock makes sure we do not race with 'ubi_thread()' which
1050 * checks @ubi->thread_enabled. Otherwise we may fail to wake it up.
1051 */
1052 spin_lock(&ubi->wl_lock);
1053 ubi->thread_enabled = 1;
1054 wake_up_process(ubi->bgt_thread);
1055 spin_unlock(&ubi->wl_lock);
1056
1057 ubi_devices[ubi_num] = ubi;
1058 ubi_notify_all(ubi, UBI_VOLUME_ADDED, NULL);
1059 return ubi_num;
1060
1061out_debugfs:
1062 ubi_debugfs_exit_dev(ubi);
1063out_uif:
1064 uif_close(ubi);
1065out_detach:
1066 ubi_wl_close(ubi);
1067 ubi_free_all_volumes(ubi);
1068 vfree(ubi->vtbl);
1069out_free:
1070 vfree(ubi->peb_buf);
1071 vfree(ubi->fm_buf);
1072 put_device(&ubi->dev);
1073 return err;
1074}
1075
1076/**
1077 * ubi_detach_mtd_dev - detach an MTD device.
1078 * @ubi_num: UBI device number to detach from
1079 * @anyway: detach MTD even if device reference count is not zero
1080 *
1081 * This function destroys an UBI device number @ubi_num and detaches the
1082 * underlying MTD device. Returns zero in case of success and %-EBUSY if the
1083 * UBI device is busy and cannot be destroyed, and %-EINVAL if it does not
1084 * exist.
1085 *
1086 * Note, the invocations of this function has to be serialized by the
1087 * @ubi_devices_mutex.
1088 */
1089int ubi_detach_mtd_dev(int ubi_num, int anyway)
1090{
1091 struct ubi_device *ubi;
1092
1093 if (ubi_num < 0 || ubi_num >= UBI_MAX_DEVICES)
1094 return -EINVAL;
1095
1096 ubi = ubi_get_device(ubi_num);
1097 if (!ubi)
1098 return -EINVAL;
1099
1100 spin_lock(&ubi_devices_lock);
1101 put_device(&ubi->dev);
1102 ubi->ref_count -= 1;
1103 if (ubi->ref_count) {
1104 if (!anyway) {
1105 spin_unlock(&ubi_devices_lock);
1106 return -EBUSY;
1107 }
1108 /* This may only happen if there is a bug */
1109 ubi_err(ubi, "%s reference count %d, destroy anyway",
1110 ubi->ubi_name, ubi->ref_count);
1111 }
1112 ubi_devices[ubi_num] = NULL;
1113 spin_unlock(&ubi_devices_lock);
1114
1115 ubi_assert(ubi_num == ubi->ubi_num);
1116 ubi_notify_all(ubi, UBI_VOLUME_REMOVED, NULL);
1117 ubi_msg(ubi, "detaching mtd%d", ubi->mtd->index);
1118#ifdef CONFIG_MTD_UBI_FASTMAP
1119 /* If we don't write a new fastmap at detach time we lose all
1120 * EC updates that have been made since the last written fastmap.
1121 * In case of fastmap debugging we omit the update to simulate an
1122 * unclean shutdown. */
1123 if (!ubi_dbg_chk_fastmap(ubi))
1124 ubi_update_fastmap(ubi);
1125#endif
1126 /*
1127 * Before freeing anything, we have to stop the background thread to
1128 * prevent it from doing anything on this device while we are freeing.
1129 */
1130 if (ubi->bgt_thread)
1131 kthread_stop(ubi->bgt_thread);
1132
1133#ifdef CONFIG_MTD_UBI_FASTMAP
1134 cancel_work_sync(&ubi->fm_work);
1135#endif
1136 ubi_debugfs_exit_dev(ubi);
1137 uif_close(ubi);
1138
1139 ubi_wl_close(ubi);
1140 ubi_free_internal_volumes(ubi);
1141 vfree(ubi->vtbl);
1142 vfree(ubi->peb_buf);
1143 vfree(ubi->fm_buf);
1144 ubi_msg(ubi, "mtd%d is detached", ubi->mtd->index);
1145 put_mtd_device(ubi->mtd);
1146 put_device(&ubi->dev);
1147 return 0;
1148}
1149
1150/**
1151 * open_mtd_by_chdev - open an MTD device by its character device node path.
1152 * @mtd_dev: MTD character device node path
1153 *
1154 * This helper function opens an MTD device by its character node device path.
1155 * Returns MTD device description object in case of success and a negative
1156 * error code in case of failure.
1157 */
1158static struct mtd_info * __init open_mtd_by_chdev(const char *mtd_dev)
1159{
1160 int err, minor;
1161 struct path path;
1162 struct kstat stat;
1163
1164 /* Probably this is an MTD character device node path */
1165 err = kern_path(mtd_dev, LOOKUP_FOLLOW, &path);
1166 if (err)
1167 return ERR_PTR(err);
1168
1169 err = vfs_getattr(&path, &stat, STATX_TYPE, AT_STATX_SYNC_AS_STAT);
1170 path_put(&path);
1171 if (err)
1172 return ERR_PTR(err);
1173
1174 /* MTD device number is defined by the major / minor numbers */
1175 if (MAJOR(stat.rdev) != MTD_CHAR_MAJOR || !S_ISCHR(stat.mode))
1176 return ERR_PTR(-EINVAL);
1177
1178 minor = MINOR(stat.rdev);
1179
1180 if (minor & 1)
1181 /*
1182 * Just do not think the "/dev/mtdrX" devices support is need,
1183 * so do not support them to avoid doing extra work.
1184 */
1185 return ERR_PTR(-EINVAL);
1186
1187 return get_mtd_device(NULL, minor / 2);
1188}
1189
1190/**
1191 * open_mtd_device - open MTD device by name, character device path, or number.
1192 * @mtd_dev: name, character device node path, or MTD device device number
1193 *
1194 * This function tries to open and MTD device described by @mtd_dev string,
1195 * which is first treated as ASCII MTD device number, and if it is not true, it
1196 * is treated as MTD device name, and if that is also not true, it is treated
1197 * as MTD character device node path. Returns MTD device description object in
1198 * case of success and a negative error code in case of failure.
1199 */
1200static struct mtd_info * __init open_mtd_device(const char *mtd_dev)
1201{
1202 struct mtd_info *mtd;
1203 int mtd_num;
1204 char *endp;
1205
1206 mtd_num = simple_strtoul(mtd_dev, &endp, 0);
1207 if (*endp != '\0' || mtd_dev == endp) {
1208 /*
1209 * This does not look like an ASCII integer, probably this is
1210 * MTD device name.
1211 */
1212 mtd = get_mtd_device_nm(mtd_dev);
1213 if (PTR_ERR(mtd) == -ENODEV)
1214 /* Probably this is an MTD character device node path */
1215 mtd = open_mtd_by_chdev(mtd_dev);
1216 } else
1217 mtd = get_mtd_device(NULL, mtd_num);
1218
1219 return mtd;
1220}
1221
1222static int __init ubi_init(void)
1223{
1224 int err, i, k;
1225
1226 /* Ensure that EC and VID headers have correct size */
1227 BUILD_BUG_ON(sizeof(struct ubi_ec_hdr) != 64);
1228 BUILD_BUG_ON(sizeof(struct ubi_vid_hdr) != 64);
1229
1230 if (mtd_devs > UBI_MAX_DEVICES) {
1231 pr_err("UBI error: too many MTD devices, maximum is %d\n",
1232 UBI_MAX_DEVICES);
1233 return -EINVAL;
1234 }
1235
1236 /* Create base sysfs directory and sysfs files */
1237 err = class_register(&ubi_class);
1238 if (err < 0)
1239 return err;
1240
1241 err = misc_register(&ubi_ctrl_cdev);
1242 if (err) {
1243 pr_err("UBI error: cannot register device\n");
1244 goto out;
1245 }
1246
1247 ubi_wl_entry_slab = kmem_cache_create("ubi_wl_entry_slab",
1248 sizeof(struct ubi_wl_entry),
1249 0, 0, NULL);
1250 if (!ubi_wl_entry_slab) {
1251 err = -ENOMEM;
1252 goto out_dev_unreg;
1253 }
1254
1255 err = ubi_debugfs_init();
1256 if (err)
1257 goto out_slab;
1258
1259
1260 /* Attach MTD devices */
1261 for (i = 0; i < mtd_devs; i++) {
1262 struct mtd_dev_param *p = &mtd_dev_param[i];
1263 struct mtd_info *mtd;
1264
1265 cond_resched();
1266
1267 mtd = open_mtd_device(p->name);
1268 if (IS_ERR(mtd)) {
1269 err = PTR_ERR(mtd);
1270 pr_err("UBI error: cannot open mtd %s, error %d\n",
1271 p->name, err);
1272 /* See comment below re-ubi_is_module(). */
1273 if (ubi_is_module())
1274 goto out_detach;
1275 continue;
1276 }
1277
1278 mutex_lock(&ubi_devices_mutex);
1279 err = ubi_attach_mtd_dev(mtd, p->ubi_num,
1280 p->vid_hdr_offs, p->max_beb_per1024,
1281 p->enable_fm == 0,
1282 p->need_resv_pool != 0);
1283 mutex_unlock(&ubi_devices_mutex);
1284 if (err < 0) {
1285 pr_err("UBI error: cannot attach mtd%d\n",
1286 mtd->index);
1287 put_mtd_device(mtd);
1288
1289 /*
1290 * Originally UBI stopped initializing on any error.
1291 * However, later on it was found out that this
1292 * behavior is not very good when UBI is compiled into
1293 * the kernel and the MTD devices to attach are passed
1294 * through the command line. Indeed, UBI failure
1295 * stopped whole boot sequence.
1296 *
1297 * To fix this, we changed the behavior for the
1298 * non-module case, but preserved the old behavior for
1299 * the module case, just for compatibility. This is a
1300 * little inconsistent, though.
1301 */
1302 if (ubi_is_module())
1303 goto out_detach;
1304 }
1305 }
1306
1307 err = ubiblock_init();
1308 if (err) {
1309 pr_err("UBI error: block: cannot initialize, error %d\n", err);
1310
1311 /* See comment above re-ubi_is_module(). */
1312 if (ubi_is_module())
1313 goto out_detach;
1314 }
1315
1316 return 0;
1317
1318out_detach:
1319 for (k = 0; k < i; k++)
1320 if (ubi_devices[k]) {
1321 mutex_lock(&ubi_devices_mutex);
1322 ubi_detach_mtd_dev(ubi_devices[k]->ubi_num, 1);
1323 mutex_unlock(&ubi_devices_mutex);
1324 }
1325 ubi_debugfs_exit();
1326out_slab:
1327 kmem_cache_destroy(ubi_wl_entry_slab);
1328out_dev_unreg:
1329 misc_deregister(&ubi_ctrl_cdev);
1330out:
1331 class_unregister(&ubi_class);
1332 pr_err("UBI error: cannot initialize UBI, error %d\n", err);
1333 return err;
1334}
1335late_initcall(ubi_init);
1336
1337static void __exit ubi_exit(void)
1338{
1339 int i;
1340
1341 ubiblock_exit();
1342
1343 for (i = 0; i < UBI_MAX_DEVICES; i++)
1344 if (ubi_devices[i]) {
1345 mutex_lock(&ubi_devices_mutex);
1346 ubi_detach_mtd_dev(ubi_devices[i]->ubi_num, 1);
1347 mutex_unlock(&ubi_devices_mutex);
1348 }
1349 ubi_debugfs_exit();
1350 kmem_cache_destroy(ubi_wl_entry_slab);
1351 misc_deregister(&ubi_ctrl_cdev);
1352 class_unregister(&ubi_class);
1353}
1354module_exit(ubi_exit);
1355
1356/**
1357 * bytes_str_to_int - convert a number of bytes string into an integer.
1358 * @str: the string to convert
1359 *
1360 * This function returns positive resulting integer in case of success and a
1361 * negative error code in case of failure.
1362 */
1363static int bytes_str_to_int(const char *str)
1364{
1365 char *endp;
1366 unsigned long result;
1367
1368 result = simple_strtoul(str, &endp, 0);
1369 if (str == endp || result >= INT_MAX) {
1370 pr_err("UBI error: incorrect bytes count: \"%s\"\n", str);
1371 return -EINVAL;
1372 }
1373
1374 switch (*endp) {
1375 case 'G':
1376 result *= 1024;
1377 fallthrough;
1378 case 'M':
1379 result *= 1024;
1380 fallthrough;
1381 case 'K':
1382 result *= 1024;
1383 break;
1384 case '\0':
1385 break;
1386 default:
1387 pr_err("UBI error: incorrect bytes count: \"%s\"\n", str);
1388 return -EINVAL;
1389 }
1390
1391 return result;
1392}
1393
1394/**
1395 * ubi_mtd_param_parse - parse the 'mtd=' UBI parameter.
1396 * @val: the parameter value to parse
1397 * @kp: not used
1398 *
1399 * This function returns zero in case of success and a negative error code in
1400 * case of error.
1401 */
1402static int ubi_mtd_param_parse(const char *val, const struct kernel_param *kp)
1403{
1404 int i, len;
1405 struct mtd_dev_param *p;
1406 char buf[MTD_PARAM_LEN_MAX];
1407 char *pbuf = &buf[0];
1408 char *tokens[MTD_PARAM_MAX_COUNT], *token;
1409
1410 if (!val)
1411 return -EINVAL;
1412
1413 if (mtd_devs == UBI_MAX_DEVICES) {
1414 pr_err("UBI error: too many parameters, max. is %d\n",
1415 UBI_MAX_DEVICES);
1416 return -EINVAL;
1417 }
1418
1419 len = strnlen(val, MTD_PARAM_LEN_MAX);
1420 if (len == MTD_PARAM_LEN_MAX) {
1421 pr_err("UBI error: parameter \"%s\" is too long, max. is %d\n",
1422 val, MTD_PARAM_LEN_MAX);
1423 return -EINVAL;
1424 }
1425
1426 if (len == 0) {
1427 pr_warn("UBI warning: empty 'mtd=' parameter - ignored\n");
1428 return 0;
1429 }
1430
1431 strcpy(buf, val);
1432
1433 /* Get rid of the final newline */
1434 if (buf[len - 1] == '\n')
1435 buf[len - 1] = '\0';
1436
1437 for (i = 0; i < MTD_PARAM_MAX_COUNT; i++)
1438 tokens[i] = strsep(&pbuf, ",");
1439
1440 if (pbuf) {
1441 pr_err("UBI error: too many arguments at \"%s\"\n", val);
1442 return -EINVAL;
1443 }
1444
1445 p = &mtd_dev_param[mtd_devs];
1446 strcpy(&p->name[0], tokens[0]);
1447
1448 token = tokens[1];
1449 if (token) {
1450 p->vid_hdr_offs = bytes_str_to_int(token);
1451
1452 if (p->vid_hdr_offs < 0)
1453 return p->vid_hdr_offs;
1454 }
1455
1456 token = tokens[2];
1457 if (token) {
1458 int err = kstrtoint(token, 10, &p->max_beb_per1024);
1459
1460 if (err) {
1461 pr_err("UBI error: bad value for max_beb_per1024 parameter: %s\n",
1462 token);
1463 return -EINVAL;
1464 }
1465 }
1466
1467 token = tokens[3];
1468 if (token) {
1469 int err = kstrtoint(token, 10, &p->ubi_num);
1470
1471 if (err) {
1472 pr_err("UBI error: bad value for ubi_num parameter: %s\n",
1473 token);
1474 return -EINVAL;
1475 }
1476 } else
1477 p->ubi_num = UBI_DEV_NUM_AUTO;
1478
1479 token = tokens[4];
1480 if (token) {
1481 int err = kstrtoint(token, 10, &p->enable_fm);
1482
1483 if (err) {
1484 pr_err("UBI error: bad value for enable_fm parameter: %s\n",
1485 token);
1486 return -EINVAL;
1487 }
1488 } else
1489 p->enable_fm = 0;
1490
1491 token = tokens[5];
1492 if (token) {
1493 int err = kstrtoint(token, 10, &p->need_resv_pool);
1494
1495 if (err) {
1496 pr_err("UBI error: bad value for need_resv_pool parameter: %s\n",
1497 token);
1498 return -EINVAL;
1499 }
1500 } else
1501 p->need_resv_pool = 0;
1502
1503 mtd_devs += 1;
1504 return 0;
1505}
1506
1507module_param_call(mtd, ubi_mtd_param_parse, NULL, NULL, 0400);
1508MODULE_PARM_DESC(mtd, "MTD devices to attach. Parameter format: mtd=<name|num|path>[,<vid_hdr_offs>[,max_beb_per1024[,ubi_num]]].\n"
1509 "Multiple \"mtd\" parameters may be specified.\n"
1510 "MTD devices may be specified by their number, name, or path to the MTD character device node.\n"
1511 "Optional \"vid_hdr_offs\" parameter specifies UBI VID header position to be used by UBI. (default value if 0)\n"
1512 "Optional \"max_beb_per1024\" parameter specifies the maximum expected bad eraseblock per 1024 eraseblocks. (default value ("
1513 __stringify(CONFIG_MTD_UBI_BEB_LIMIT) ") if 0)\n"
1514 "Optional \"ubi_num\" parameter specifies UBI device number which have to be assigned to the newly created UBI device (assigned automatically by default)\n"
1515 "Optional \"enable_fm\" parameter determines whether to enable fastmap during attach. If the value is non-zero, fastmap is enabled. Default value is 0.\n"
1516 "Optional \"need_resv_pool\" parameter determines whether to reserve pool->max_size pebs during attach. If the value is non-zero, peb reservation is enabled. Default value is 0.\n"
1517 "\n"
1518 "Example 1: mtd=/dev/mtd0 - attach MTD device /dev/mtd0.\n"
1519 "Example 2: mtd=content,1984 mtd=4 - attach MTD device with name \"content\" using VID header offset 1984, and MTD device number 4 with default VID header offset.\n"
1520 "Example 3: mtd=/dev/mtd1,0,25 - attach MTD device /dev/mtd1 using default VID header offset and reserve 25*nand_size_in_blocks/1024 erase blocks for bad block handling.\n"
1521 "Example 4: mtd=/dev/mtd1,0,0,5 - attach MTD device /dev/mtd1 to UBI 5 and using default values for the other fields.\n"
1522 "example 5: mtd=1,0,0,5 mtd=2,0,0,6,1 - attach MTD device /dev/mtd1 to UBI 5 and disable fastmap; attach MTD device /dev/mtd2 to UBI 6 and enable fastmap.(only works when fastmap is enabled and fm_autoconvert=Y).\n"
1523 "\t(e.g. if the NAND *chipset* has 4096 PEB, 100 will be reserved for this UBI device).");
1524#ifdef CONFIG_MTD_UBI_FASTMAP
1525module_param(fm_autoconvert, bool, 0644);
1526MODULE_PARM_DESC(fm_autoconvert, "Set this parameter to enable fastmap automatically on images without a fastmap.");
1527module_param(fm_debug, bool, 0);
1528MODULE_PARM_DESC(fm_debug, "Set this parameter to enable fastmap debugging by default. Warning, this will make fastmap slow!");
1529#endif
1530MODULE_VERSION(__stringify(UBI_VERSION));
1531MODULE_DESCRIPTION("UBI - Unsorted Block Images");
1532MODULE_AUTHOR("Artem Bityutskiy");
1533MODULE_LICENSE("GPL");