Linux Audio

Check our new training course

Loading...
v4.17
 
   1/*
   2 * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved.
   3 * Author: Marc Zyngier <marc.zyngier@arm.com>
   4 *
   5 * This program is free software; you can redistribute it and/or modify
   6 * it under the terms of the GNU General Public License version 2 as
   7 * published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope that it will be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
  16 */
  17
  18#include <linux/acpi.h>
  19#include <linux/acpi_iort.h>
 
  20#include <linux/bitmap.h>
  21#include <linux/cpu.h>
 
  22#include <linux/delay.h>
  23#include <linux/dma-iommu.h>
  24#include <linux/interrupt.h>
 
 
  25#include <linux/irqdomain.h>
 
  26#include <linux/log2.h>
 
  27#include <linux/mm.h>
  28#include <linux/msi.h>
  29#include <linux/of.h>
  30#include <linux/of_address.h>
  31#include <linux/of_irq.h>
  32#include <linux/of_pci.h>
  33#include <linux/of_platform.h>
  34#include <linux/percpu.h>
  35#include <linux/slab.h>
  36#include <linux/syscore_ops.h>
  37
  38#include <linux/irqchip.h>
  39#include <linux/irqchip/arm-gic-v3.h>
  40#include <linux/irqchip/arm-gic-v4.h>
  41
  42#include <asm/cputype.h>
  43#include <asm/exception.h>
  44
  45#include "irq-gic-common.h"
  46
  47#define ITS_FLAGS_CMDQ_NEEDS_FLUSHING		(1ULL << 0)
  48#define ITS_FLAGS_WORKAROUND_CAVIUM_22375	(1ULL << 1)
  49#define ITS_FLAGS_WORKAROUND_CAVIUM_23144	(1ULL << 2)
  50#define ITS_FLAGS_SAVE_SUSPEND_STATE		(1ULL << 3)
  51
  52#define RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING	(1 << 0)
 
 
  53
  54static u32 lpi_id_bits;
  55
  56/*
  57 * We allocate memory for PROPBASE to cover 2 ^ lpi_id_bits LPIs to
  58 * deal with (one configuration byte per interrupt). PENDBASE has to
  59 * be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI).
  60 */
  61#define LPI_NRBITS		lpi_id_bits
  62#define LPI_PROPBASE_SZ		ALIGN(BIT(LPI_NRBITS), SZ_64K)
  63#define LPI_PENDBASE_SZ		ALIGN(BIT(LPI_NRBITS) / 8, SZ_64K)
  64
  65#define LPI_PROP_DEFAULT_PRIO	0xa0
  66
  67/*
  68 * Collection structure - just an ID, and a redistributor address to
  69 * ping. We use one per CPU as a bag of interrupts assigned to this
  70 * CPU.
  71 */
  72struct its_collection {
  73	u64			target_address;
  74	u16			col_id;
  75};
  76
  77/*
  78 * The ITS_BASER structure - contains memory information, cached
  79 * value of BASER register configuration and ITS page size.
  80 */
  81struct its_baser {
  82	void		*base;
  83	u64		val;
  84	u32		order;
  85	u32		psz;
  86};
  87
  88struct its_device;
  89
  90/*
  91 * The ITS structure - contains most of the infrastructure, with the
  92 * top-level MSI domain, the command queue, the collections, and the
  93 * list of devices writing to it.
 
 
 
 
  94 */
  95struct its_node {
  96	raw_spinlock_t		lock;
 
  97	struct list_head	entry;
  98	void __iomem		*base;
 
  99	phys_addr_t		phys_base;
 100	struct its_cmd_block	*cmd_base;
 101	struct its_cmd_block	*cmd_write;
 102	struct its_baser	tables[GITS_BASER_NR_REGS];
 103	struct its_collection	*collections;
 104	struct fwnode_handle	*fwnode_handle;
 105	u64			(*get_msi_base)(struct its_device *its_dev);
 
 106	u64			cbaser_save;
 107	u32			ctlr_save;
 
 108	struct list_head	its_device_list;
 109	u64			flags;
 110	unsigned long		list_nr;
 111	u32			ite_size;
 112	u32			device_ids;
 113	int			numa_node;
 114	unsigned int		msi_domain_flags;
 115	u32			pre_its_base; /* for Socionext Synquacer */
 116	bool			is_v4;
 117	int			vlpi_redist_offset;
 118};
 119
 
 
 
 
 120#define ITS_ITT_ALIGN		SZ_256
 121
 122/* The maximum number of VPEID bits supported by VLPI commands */
 123#define ITS_MAX_VPEID_BITS	(16)
 
 
 
 
 
 
 
 
 
 124#define ITS_MAX_VPEID		(1 << (ITS_MAX_VPEID_BITS))
 125
 126/* Convert page order to size in bytes */
 127#define PAGE_ORDER_TO_SIZE(o)	(PAGE_SIZE << (o))
 128
 129struct event_lpi_map {
 130	unsigned long		*lpi_map;
 131	u16			*col_map;
 132	irq_hw_number_t		lpi_base;
 133	int			nr_lpis;
 134	struct mutex		vlpi_lock;
 135	struct its_vm		*vm;
 136	struct its_vlpi_map	*vlpi_maps;
 137	int			nr_vlpis;
 138};
 139
 140/*
 141 * The ITS view of a device - belongs to an ITS, owns an interrupt
 142 * translation table, and a list of interrupts.  If it some of its
 143 * LPIs are injected into a guest (GICv4), the event_map.vm field
 144 * indicates which one.
 145 */
 146struct its_device {
 147	struct list_head	entry;
 148	struct its_node		*its;
 149	struct event_lpi_map	event_map;
 150	void			*itt;
 151	u32			nr_ites;
 152	u32			device_id;
 
 153};
 154
 155static struct {
 156	raw_spinlock_t		lock;
 157	struct its_device	*dev;
 158	struct its_vpe		**vpes;
 159	int			next_victim;
 160} vpe_proxy;
 161
 
 
 
 
 
 
 
 162static LIST_HEAD(its_nodes);
 163static DEFINE_SPINLOCK(its_lock);
 164static struct rdists *gic_rdists;
 165static struct irq_domain *its_parent;
 166
 167static unsigned long its_list_map;
 168static u16 vmovp_seq_num;
 169static DEFINE_RAW_SPINLOCK(vmovp_lock);
 170
 171static DEFINE_IDA(its_vpeid_ida);
 172
 173#define gic_data_rdist()		(raw_cpu_ptr(gic_rdists->rdist))
 
 174#define gic_data_rdist_rd_base()	(gic_data_rdist()->rd_base)
 175#define gic_data_rdist_vlpi_base()	(gic_data_rdist_rd_base() + SZ_128K)
 176
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 177static struct its_collection *dev_event_to_col(struct its_device *its_dev,
 178					       u32 event)
 179{
 180	struct its_node *its = its_dev->its;
 181
 182	return its->collections + its_dev->event_map.col_map[event];
 183}
 184
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 185/*
 186 * ITS command descriptors - parameters to be encoded in a command
 187 * block.
 188 */
 189struct its_cmd_desc {
 190	union {
 191		struct {
 192			struct its_device *dev;
 193			u32 event_id;
 194		} its_inv_cmd;
 195
 196		struct {
 197			struct its_device *dev;
 198			u32 event_id;
 199		} its_clear_cmd;
 200
 201		struct {
 202			struct its_device *dev;
 203			u32 event_id;
 204		} its_int_cmd;
 205
 206		struct {
 207			struct its_device *dev;
 208			int valid;
 209		} its_mapd_cmd;
 210
 211		struct {
 212			struct its_collection *col;
 213			int valid;
 214		} its_mapc_cmd;
 215
 216		struct {
 217			struct its_device *dev;
 218			u32 phys_id;
 219			u32 event_id;
 220		} its_mapti_cmd;
 221
 222		struct {
 223			struct its_device *dev;
 224			struct its_collection *col;
 225			u32 event_id;
 226		} its_movi_cmd;
 227
 228		struct {
 229			struct its_device *dev;
 230			u32 event_id;
 231		} its_discard_cmd;
 232
 233		struct {
 234			struct its_collection *col;
 235		} its_invall_cmd;
 236
 237		struct {
 238			struct its_vpe *vpe;
 239		} its_vinvall_cmd;
 240
 241		struct {
 242			struct its_vpe *vpe;
 243			struct its_collection *col;
 244			bool valid;
 245		} its_vmapp_cmd;
 246
 247		struct {
 248			struct its_vpe *vpe;
 249			struct its_device *dev;
 250			u32 virt_id;
 251			u32 event_id;
 252			bool db_enabled;
 253		} its_vmapti_cmd;
 254
 255		struct {
 256			struct its_vpe *vpe;
 257			struct its_device *dev;
 258			u32 event_id;
 259			bool db_enabled;
 260		} its_vmovi_cmd;
 261
 262		struct {
 263			struct its_vpe *vpe;
 264			struct its_collection *col;
 265			u16 seq_num;
 266			u16 its_list;
 267		} its_vmovp_cmd;
 
 
 
 
 
 
 
 
 
 
 
 
 
 268	};
 269};
 270
 271/*
 272 * The ITS command block, which is what the ITS actually parses.
 273 */
 274struct its_cmd_block {
 275	u64	raw_cmd[4];
 
 
 
 276};
 277
 278#define ITS_CMD_QUEUE_SZ		SZ_64K
 279#define ITS_CMD_QUEUE_NR_ENTRIES	(ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block))
 280
 281typedef struct its_collection *(*its_cmd_builder_t)(struct its_node *,
 282						    struct its_cmd_block *,
 283						    struct its_cmd_desc *);
 284
 285typedef struct its_vpe *(*its_cmd_vbuilder_t)(struct its_node *,
 286					      struct its_cmd_block *,
 287					      struct its_cmd_desc *);
 288
 289static void its_mask_encode(u64 *raw_cmd, u64 val, int h, int l)
 290{
 291	u64 mask = GENMASK_ULL(h, l);
 292	*raw_cmd &= ~mask;
 293	*raw_cmd |= (val << l) & mask;
 294}
 295
 296static void its_encode_cmd(struct its_cmd_block *cmd, u8 cmd_nr)
 297{
 298	its_mask_encode(&cmd->raw_cmd[0], cmd_nr, 7, 0);
 299}
 300
 301static void its_encode_devid(struct its_cmd_block *cmd, u32 devid)
 302{
 303	its_mask_encode(&cmd->raw_cmd[0], devid, 63, 32);
 304}
 305
 306static void its_encode_event_id(struct its_cmd_block *cmd, u32 id)
 307{
 308	its_mask_encode(&cmd->raw_cmd[1], id, 31, 0);
 309}
 310
 311static void its_encode_phys_id(struct its_cmd_block *cmd, u32 phys_id)
 312{
 313	its_mask_encode(&cmd->raw_cmd[1], phys_id, 63, 32);
 314}
 315
 316static void its_encode_size(struct its_cmd_block *cmd, u8 size)
 317{
 318	its_mask_encode(&cmd->raw_cmd[1], size, 4, 0);
 319}
 320
 321static void its_encode_itt(struct its_cmd_block *cmd, u64 itt_addr)
 322{
 323	its_mask_encode(&cmd->raw_cmd[2], itt_addr >> 8, 51, 8);
 324}
 325
 326static void its_encode_valid(struct its_cmd_block *cmd, int valid)
 327{
 328	its_mask_encode(&cmd->raw_cmd[2], !!valid, 63, 63);
 329}
 330
 331static void its_encode_target(struct its_cmd_block *cmd, u64 target_addr)
 332{
 333	its_mask_encode(&cmd->raw_cmd[2], target_addr >> 16, 51, 16);
 334}
 335
 336static void its_encode_collection(struct its_cmd_block *cmd, u16 col)
 337{
 338	its_mask_encode(&cmd->raw_cmd[2], col, 15, 0);
 339}
 340
 341static void its_encode_vpeid(struct its_cmd_block *cmd, u16 vpeid)
 342{
 343	its_mask_encode(&cmd->raw_cmd[1], vpeid, 47, 32);
 344}
 345
 346static void its_encode_virt_id(struct its_cmd_block *cmd, u32 virt_id)
 347{
 348	its_mask_encode(&cmd->raw_cmd[2], virt_id, 31, 0);
 349}
 350
 351static void its_encode_db_phys_id(struct its_cmd_block *cmd, u32 db_phys_id)
 352{
 353	its_mask_encode(&cmd->raw_cmd[2], db_phys_id, 63, 32);
 354}
 355
 356static void its_encode_db_valid(struct its_cmd_block *cmd, bool db_valid)
 357{
 358	its_mask_encode(&cmd->raw_cmd[2], db_valid, 0, 0);
 359}
 360
 361static void its_encode_seq_num(struct its_cmd_block *cmd, u16 seq_num)
 362{
 363	its_mask_encode(&cmd->raw_cmd[0], seq_num, 47, 32);
 364}
 365
 366static void its_encode_its_list(struct its_cmd_block *cmd, u16 its_list)
 367{
 368	its_mask_encode(&cmd->raw_cmd[1], its_list, 15, 0);
 369}
 370
 371static void its_encode_vpt_addr(struct its_cmd_block *cmd, u64 vpt_pa)
 372{
 373	its_mask_encode(&cmd->raw_cmd[3], vpt_pa >> 16, 51, 16);
 374}
 375
 376static void its_encode_vpt_size(struct its_cmd_block *cmd, u8 vpt_size)
 377{
 378	its_mask_encode(&cmd->raw_cmd[3], vpt_size, 4, 0);
 379}
 380
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 381static inline void its_fixup_cmd(struct its_cmd_block *cmd)
 382{
 383	/* Let's fixup BE commands */
 384	cmd->raw_cmd[0] = cpu_to_le64(cmd->raw_cmd[0]);
 385	cmd->raw_cmd[1] = cpu_to_le64(cmd->raw_cmd[1]);
 386	cmd->raw_cmd[2] = cpu_to_le64(cmd->raw_cmd[2]);
 387	cmd->raw_cmd[3] = cpu_to_le64(cmd->raw_cmd[3]);
 388}
 389
 390static struct its_collection *its_build_mapd_cmd(struct its_node *its,
 391						 struct its_cmd_block *cmd,
 392						 struct its_cmd_desc *desc)
 393{
 394	unsigned long itt_addr;
 395	u8 size = ilog2(desc->its_mapd_cmd.dev->nr_ites);
 396
 397	itt_addr = virt_to_phys(desc->its_mapd_cmd.dev->itt);
 398	itt_addr = ALIGN(itt_addr, ITS_ITT_ALIGN);
 399
 400	its_encode_cmd(cmd, GITS_CMD_MAPD);
 401	its_encode_devid(cmd, desc->its_mapd_cmd.dev->device_id);
 402	its_encode_size(cmd, size - 1);
 403	its_encode_itt(cmd, itt_addr);
 404	its_encode_valid(cmd, desc->its_mapd_cmd.valid);
 405
 406	its_fixup_cmd(cmd);
 407
 408	return NULL;
 409}
 410
 411static struct its_collection *its_build_mapc_cmd(struct its_node *its,
 412						 struct its_cmd_block *cmd,
 413						 struct its_cmd_desc *desc)
 414{
 415	its_encode_cmd(cmd, GITS_CMD_MAPC);
 416	its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
 417	its_encode_target(cmd, desc->its_mapc_cmd.col->target_address);
 418	its_encode_valid(cmd, desc->its_mapc_cmd.valid);
 419
 420	its_fixup_cmd(cmd);
 421
 422	return desc->its_mapc_cmd.col;
 423}
 424
 425static struct its_collection *its_build_mapti_cmd(struct its_node *its,
 426						  struct its_cmd_block *cmd,
 427						  struct its_cmd_desc *desc)
 428{
 429	struct its_collection *col;
 430
 431	col = dev_event_to_col(desc->its_mapti_cmd.dev,
 432			       desc->its_mapti_cmd.event_id);
 433
 434	its_encode_cmd(cmd, GITS_CMD_MAPTI);
 435	its_encode_devid(cmd, desc->its_mapti_cmd.dev->device_id);
 436	its_encode_event_id(cmd, desc->its_mapti_cmd.event_id);
 437	its_encode_phys_id(cmd, desc->its_mapti_cmd.phys_id);
 438	its_encode_collection(cmd, col->col_id);
 439
 440	its_fixup_cmd(cmd);
 441
 442	return col;
 443}
 444
 445static struct its_collection *its_build_movi_cmd(struct its_node *its,
 446						 struct its_cmd_block *cmd,
 447						 struct its_cmd_desc *desc)
 448{
 449	struct its_collection *col;
 450
 451	col = dev_event_to_col(desc->its_movi_cmd.dev,
 452			       desc->its_movi_cmd.event_id);
 453
 454	its_encode_cmd(cmd, GITS_CMD_MOVI);
 455	its_encode_devid(cmd, desc->its_movi_cmd.dev->device_id);
 456	its_encode_event_id(cmd, desc->its_movi_cmd.event_id);
 457	its_encode_collection(cmd, desc->its_movi_cmd.col->col_id);
 458
 459	its_fixup_cmd(cmd);
 460
 461	return col;
 462}
 463
 464static struct its_collection *its_build_discard_cmd(struct its_node *its,
 465						    struct its_cmd_block *cmd,
 466						    struct its_cmd_desc *desc)
 467{
 468	struct its_collection *col;
 469
 470	col = dev_event_to_col(desc->its_discard_cmd.dev,
 471			       desc->its_discard_cmd.event_id);
 472
 473	its_encode_cmd(cmd, GITS_CMD_DISCARD);
 474	its_encode_devid(cmd, desc->its_discard_cmd.dev->device_id);
 475	its_encode_event_id(cmd, desc->its_discard_cmd.event_id);
 476
 477	its_fixup_cmd(cmd);
 478
 479	return col;
 480}
 481
 482static struct its_collection *its_build_inv_cmd(struct its_node *its,
 483						struct its_cmd_block *cmd,
 484						struct its_cmd_desc *desc)
 485{
 486	struct its_collection *col;
 487
 488	col = dev_event_to_col(desc->its_inv_cmd.dev,
 489			       desc->its_inv_cmd.event_id);
 490
 491	its_encode_cmd(cmd, GITS_CMD_INV);
 492	its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
 493	its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
 494
 495	its_fixup_cmd(cmd);
 496
 497	return col;
 498}
 499
 500static struct its_collection *its_build_int_cmd(struct its_node *its,
 501						struct its_cmd_block *cmd,
 502						struct its_cmd_desc *desc)
 503{
 504	struct its_collection *col;
 505
 506	col = dev_event_to_col(desc->its_int_cmd.dev,
 507			       desc->its_int_cmd.event_id);
 508
 509	its_encode_cmd(cmd, GITS_CMD_INT);
 510	its_encode_devid(cmd, desc->its_int_cmd.dev->device_id);
 511	its_encode_event_id(cmd, desc->its_int_cmd.event_id);
 512
 513	its_fixup_cmd(cmd);
 514
 515	return col;
 516}
 517
 518static struct its_collection *its_build_clear_cmd(struct its_node *its,
 519						  struct its_cmd_block *cmd,
 520						  struct its_cmd_desc *desc)
 521{
 522	struct its_collection *col;
 523
 524	col = dev_event_to_col(desc->its_clear_cmd.dev,
 525			       desc->its_clear_cmd.event_id);
 526
 527	its_encode_cmd(cmd, GITS_CMD_CLEAR);
 528	its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id);
 529	its_encode_event_id(cmd, desc->its_clear_cmd.event_id);
 530
 531	its_fixup_cmd(cmd);
 532
 533	return col;
 534}
 535
 536static struct its_collection *its_build_invall_cmd(struct its_node *its,
 537						   struct its_cmd_block *cmd,
 538						   struct its_cmd_desc *desc)
 539{
 540	its_encode_cmd(cmd, GITS_CMD_INVALL);
 541	its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
 542
 543	its_fixup_cmd(cmd);
 544
 545	return NULL;
 546}
 547
 548static struct its_vpe *its_build_vinvall_cmd(struct its_node *its,
 549					     struct its_cmd_block *cmd,
 550					     struct its_cmd_desc *desc)
 551{
 552	its_encode_cmd(cmd, GITS_CMD_VINVALL);
 553	its_encode_vpeid(cmd, desc->its_vinvall_cmd.vpe->vpe_id);
 554
 555	its_fixup_cmd(cmd);
 556
 557	return desc->its_vinvall_cmd.vpe;
 558}
 559
 560static struct its_vpe *its_build_vmapp_cmd(struct its_node *its,
 561					   struct its_cmd_block *cmd,
 562					   struct its_cmd_desc *desc)
 563{
 564	unsigned long vpt_addr;
 565	u64 target;
 566
 567	vpt_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->vpt_page));
 568	target = desc->its_vmapp_cmd.col->target_address + its->vlpi_redist_offset;
 569
 570	its_encode_cmd(cmd, GITS_CMD_VMAPP);
 571	its_encode_vpeid(cmd, desc->its_vmapp_cmd.vpe->vpe_id);
 572	its_encode_valid(cmd, desc->its_vmapp_cmd.valid);
 
 
 
 
 
 
 
 
 
 
 
 
 
 573	its_encode_target(cmd, target);
 574	its_encode_vpt_addr(cmd, vpt_addr);
 575	its_encode_vpt_size(cmd, LPI_NRBITS - 1);
 576
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 577	its_fixup_cmd(cmd);
 578
 579	return desc->its_vmapp_cmd.vpe;
 580}
 581
 582static struct its_vpe *its_build_vmapti_cmd(struct its_node *its,
 583					    struct its_cmd_block *cmd,
 584					    struct its_cmd_desc *desc)
 585{
 586	u32 db;
 587
 588	if (desc->its_vmapti_cmd.db_enabled)
 589		db = desc->its_vmapti_cmd.vpe->vpe_db_lpi;
 590	else
 591		db = 1023;
 592
 593	its_encode_cmd(cmd, GITS_CMD_VMAPTI);
 594	its_encode_devid(cmd, desc->its_vmapti_cmd.dev->device_id);
 595	its_encode_vpeid(cmd, desc->its_vmapti_cmd.vpe->vpe_id);
 596	its_encode_event_id(cmd, desc->its_vmapti_cmd.event_id);
 597	its_encode_db_phys_id(cmd, db);
 598	its_encode_virt_id(cmd, desc->its_vmapti_cmd.virt_id);
 599
 600	its_fixup_cmd(cmd);
 601
 602	return desc->its_vmapti_cmd.vpe;
 603}
 604
 605static struct its_vpe *its_build_vmovi_cmd(struct its_node *its,
 606					   struct its_cmd_block *cmd,
 607					   struct its_cmd_desc *desc)
 608{
 609	u32 db;
 610
 611	if (desc->its_vmovi_cmd.db_enabled)
 612		db = desc->its_vmovi_cmd.vpe->vpe_db_lpi;
 613	else
 614		db = 1023;
 615
 616	its_encode_cmd(cmd, GITS_CMD_VMOVI);
 617	its_encode_devid(cmd, desc->its_vmovi_cmd.dev->device_id);
 618	its_encode_vpeid(cmd, desc->its_vmovi_cmd.vpe->vpe_id);
 619	its_encode_event_id(cmd, desc->its_vmovi_cmd.event_id);
 620	its_encode_db_phys_id(cmd, db);
 621	its_encode_db_valid(cmd, true);
 622
 623	its_fixup_cmd(cmd);
 624
 625	return desc->its_vmovi_cmd.vpe;
 626}
 627
 628static struct its_vpe *its_build_vmovp_cmd(struct its_node *its,
 629					   struct its_cmd_block *cmd,
 630					   struct its_cmd_desc *desc)
 631{
 632	u64 target;
 633
 634	target = desc->its_vmovp_cmd.col->target_address + its->vlpi_redist_offset;
 635	its_encode_cmd(cmd, GITS_CMD_VMOVP);
 636	its_encode_seq_num(cmd, desc->its_vmovp_cmd.seq_num);
 637	its_encode_its_list(cmd, desc->its_vmovp_cmd.its_list);
 638	its_encode_vpeid(cmd, desc->its_vmovp_cmd.vpe->vpe_id);
 639	its_encode_target(cmd, target);
 640
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 641	its_fixup_cmd(cmd);
 642
 643	return desc->its_vmovp_cmd.vpe;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 644}
 645
 646static u64 its_cmd_ptr_to_offset(struct its_node *its,
 647				 struct its_cmd_block *ptr)
 648{
 649	return (ptr - its->cmd_base) * sizeof(*ptr);
 650}
 651
 652static int its_queue_full(struct its_node *its)
 653{
 654	int widx;
 655	int ridx;
 656
 657	widx = its->cmd_write - its->cmd_base;
 658	ridx = readl_relaxed(its->base + GITS_CREADR) / sizeof(struct its_cmd_block);
 659
 660	/* This is incredibly unlikely to happen, unless the ITS locks up. */
 661	if (((widx + 1) % ITS_CMD_QUEUE_NR_ENTRIES) == ridx)
 662		return 1;
 663
 664	return 0;
 665}
 666
 667static struct its_cmd_block *its_allocate_entry(struct its_node *its)
 668{
 669	struct its_cmd_block *cmd;
 670	u32 count = 1000000;	/* 1s! */
 671
 672	while (its_queue_full(its)) {
 673		count--;
 674		if (!count) {
 675			pr_err_ratelimited("ITS queue not draining\n");
 676			return NULL;
 677		}
 678		cpu_relax();
 679		udelay(1);
 680	}
 681
 682	cmd = its->cmd_write++;
 683
 684	/* Handle queue wrapping */
 685	if (its->cmd_write == (its->cmd_base + ITS_CMD_QUEUE_NR_ENTRIES))
 686		its->cmd_write = its->cmd_base;
 687
 688	/* Clear command  */
 689	cmd->raw_cmd[0] = 0;
 690	cmd->raw_cmd[1] = 0;
 691	cmd->raw_cmd[2] = 0;
 692	cmd->raw_cmd[3] = 0;
 693
 694	return cmd;
 695}
 696
 697static struct its_cmd_block *its_post_commands(struct its_node *its)
 698{
 699	u64 wr = its_cmd_ptr_to_offset(its, its->cmd_write);
 700
 701	writel_relaxed(wr, its->base + GITS_CWRITER);
 702
 703	return its->cmd_write;
 704}
 705
 706static void its_flush_cmd(struct its_node *its, struct its_cmd_block *cmd)
 707{
 708	/*
 709	 * Make sure the commands written to memory are observable by
 710	 * the ITS.
 711	 */
 712	if (its->flags & ITS_FLAGS_CMDQ_NEEDS_FLUSHING)
 713		gic_flush_dcache_to_poc(cmd, sizeof(*cmd));
 714	else
 715		dsb(ishst);
 716}
 717
 718static int its_wait_for_range_completion(struct its_node *its,
 719					 struct its_cmd_block *from,
 720					 struct its_cmd_block *to)
 721{
 722	u64 rd_idx, from_idx, to_idx;
 723	u32 count = 1000000;	/* 1s! */
 724
 725	from_idx = its_cmd_ptr_to_offset(its, from);
 726	to_idx = its_cmd_ptr_to_offset(its, to);
 
 
 
 
 727
 728	while (1) {
 
 
 729		rd_idx = readl_relaxed(its->base + GITS_CREADR);
 730
 731		/* Direct case */
 732		if (from_idx < to_idx && rd_idx >= to_idx)
 733			break;
 
 
 
 
 734
 735		/* Wrapped case */
 736		if (from_idx >= to_idx && rd_idx >= to_idx && rd_idx < from_idx)
 737			break;
 738
 739		count--;
 740		if (!count) {
 741			pr_err_ratelimited("ITS queue timeout (%llu %llu %llu)\n",
 742					   from_idx, to_idx, rd_idx);
 743			return -1;
 744		}
 
 745		cpu_relax();
 746		udelay(1);
 747	}
 748
 749	return 0;
 750}
 751
 752/* Warning, macro hell follows */
 753#define BUILD_SINGLE_CMD_FUNC(name, buildtype, synctype, buildfn)	\
 754void name(struct its_node *its,						\
 755	  buildtype builder,						\
 756	  struct its_cmd_desc *desc)					\
 757{									\
 758	struct its_cmd_block *cmd, *sync_cmd, *next_cmd;		\
 759	synctype *sync_obj;						\
 760	unsigned long flags;						\
 
 761									\
 762	raw_spin_lock_irqsave(&its->lock, flags);			\
 763									\
 764	cmd = its_allocate_entry(its);					\
 765	if (!cmd) {		/* We're soooooo screewed... */		\
 766		raw_spin_unlock_irqrestore(&its->lock, flags);		\
 767		return;							\
 768	}								\
 769	sync_obj = builder(its, cmd, desc);				\
 770	its_flush_cmd(its, cmd);					\
 771									\
 772	if (sync_obj) {							\
 773		sync_cmd = its_allocate_entry(its);			\
 774		if (!sync_cmd)						\
 775			goto post;					\
 776									\
 777		buildfn(its, sync_cmd, sync_obj);			\
 778		its_flush_cmd(its, sync_cmd);				\
 779	}								\
 780									\
 781post:									\
 
 782	next_cmd = its_post_commands(its);				\
 783	raw_spin_unlock_irqrestore(&its->lock, flags);			\
 784									\
 785	if (its_wait_for_range_completion(its, cmd, next_cmd))		\
 786		pr_err_ratelimited("ITS cmd %ps failed\n", builder);	\
 787}
 788
 789static void its_build_sync_cmd(struct its_node *its,
 790			       struct its_cmd_block *sync_cmd,
 791			       struct its_collection *sync_col)
 792{
 793	its_encode_cmd(sync_cmd, GITS_CMD_SYNC);
 794	its_encode_target(sync_cmd, sync_col->target_address);
 795
 796	its_fixup_cmd(sync_cmd);
 797}
 798
 799static BUILD_SINGLE_CMD_FUNC(its_send_single_command, its_cmd_builder_t,
 800			     struct its_collection, its_build_sync_cmd)
 801
 802static void its_build_vsync_cmd(struct its_node *its,
 803				struct its_cmd_block *sync_cmd,
 804				struct its_vpe *sync_vpe)
 805{
 806	its_encode_cmd(sync_cmd, GITS_CMD_VSYNC);
 807	its_encode_vpeid(sync_cmd, sync_vpe->vpe_id);
 808
 809	its_fixup_cmd(sync_cmd);
 810}
 811
 812static BUILD_SINGLE_CMD_FUNC(its_send_single_vcommand, its_cmd_vbuilder_t,
 813			     struct its_vpe, its_build_vsync_cmd)
 814
 815static void its_send_int(struct its_device *dev, u32 event_id)
 816{
 817	struct its_cmd_desc desc;
 818
 819	desc.its_int_cmd.dev = dev;
 820	desc.its_int_cmd.event_id = event_id;
 821
 822	its_send_single_command(dev->its, its_build_int_cmd, &desc);
 823}
 824
 825static void its_send_clear(struct its_device *dev, u32 event_id)
 826{
 827	struct its_cmd_desc desc;
 828
 829	desc.its_clear_cmd.dev = dev;
 830	desc.its_clear_cmd.event_id = event_id;
 831
 832	its_send_single_command(dev->its, its_build_clear_cmd, &desc);
 833}
 834
 835static void its_send_inv(struct its_device *dev, u32 event_id)
 836{
 837	struct its_cmd_desc desc;
 838
 839	desc.its_inv_cmd.dev = dev;
 840	desc.its_inv_cmd.event_id = event_id;
 841
 842	its_send_single_command(dev->its, its_build_inv_cmd, &desc);
 843}
 844
 845static void its_send_mapd(struct its_device *dev, int valid)
 846{
 847	struct its_cmd_desc desc;
 848
 849	desc.its_mapd_cmd.dev = dev;
 850	desc.its_mapd_cmd.valid = !!valid;
 851
 852	its_send_single_command(dev->its, its_build_mapd_cmd, &desc);
 853}
 854
 855static void its_send_mapc(struct its_node *its, struct its_collection *col,
 856			  int valid)
 857{
 858	struct its_cmd_desc desc;
 859
 860	desc.its_mapc_cmd.col = col;
 861	desc.its_mapc_cmd.valid = !!valid;
 862
 863	its_send_single_command(its, its_build_mapc_cmd, &desc);
 864}
 865
 866static void its_send_mapti(struct its_device *dev, u32 irq_id, u32 id)
 867{
 868	struct its_cmd_desc desc;
 869
 870	desc.its_mapti_cmd.dev = dev;
 871	desc.its_mapti_cmd.phys_id = irq_id;
 872	desc.its_mapti_cmd.event_id = id;
 873
 874	its_send_single_command(dev->its, its_build_mapti_cmd, &desc);
 875}
 876
 877static void its_send_movi(struct its_device *dev,
 878			  struct its_collection *col, u32 id)
 879{
 880	struct its_cmd_desc desc;
 881
 882	desc.its_movi_cmd.dev = dev;
 883	desc.its_movi_cmd.col = col;
 884	desc.its_movi_cmd.event_id = id;
 885
 886	its_send_single_command(dev->its, its_build_movi_cmd, &desc);
 887}
 888
 889static void its_send_discard(struct its_device *dev, u32 id)
 890{
 891	struct its_cmd_desc desc;
 892
 893	desc.its_discard_cmd.dev = dev;
 894	desc.its_discard_cmd.event_id = id;
 895
 896	its_send_single_command(dev->its, its_build_discard_cmd, &desc);
 897}
 898
 899static void its_send_invall(struct its_node *its, struct its_collection *col)
 900{
 901	struct its_cmd_desc desc;
 902
 903	desc.its_invall_cmd.col = col;
 904
 905	its_send_single_command(its, its_build_invall_cmd, &desc);
 906}
 907
 908static void its_send_vmapti(struct its_device *dev, u32 id)
 909{
 910	struct its_vlpi_map *map = &dev->event_map.vlpi_maps[id];
 911	struct its_cmd_desc desc;
 912
 913	desc.its_vmapti_cmd.vpe = map->vpe;
 914	desc.its_vmapti_cmd.dev = dev;
 915	desc.its_vmapti_cmd.virt_id = map->vintid;
 916	desc.its_vmapti_cmd.event_id = id;
 917	desc.its_vmapti_cmd.db_enabled = map->db_enabled;
 918
 919	its_send_single_vcommand(dev->its, its_build_vmapti_cmd, &desc);
 920}
 921
 922static void its_send_vmovi(struct its_device *dev, u32 id)
 923{
 924	struct its_vlpi_map *map = &dev->event_map.vlpi_maps[id];
 925	struct its_cmd_desc desc;
 926
 927	desc.its_vmovi_cmd.vpe = map->vpe;
 928	desc.its_vmovi_cmd.dev = dev;
 929	desc.its_vmovi_cmd.event_id = id;
 930	desc.its_vmovi_cmd.db_enabled = map->db_enabled;
 931
 932	its_send_single_vcommand(dev->its, its_build_vmovi_cmd, &desc);
 933}
 934
 935static void its_send_vmapp(struct its_node *its,
 936			   struct its_vpe *vpe, bool valid)
 937{
 938	struct its_cmd_desc desc;
 939
 940	desc.its_vmapp_cmd.vpe = vpe;
 941	desc.its_vmapp_cmd.valid = valid;
 942	desc.its_vmapp_cmd.col = &its->collections[vpe->col_idx];
 943
 944	its_send_single_vcommand(its, its_build_vmapp_cmd, &desc);
 945}
 946
 947static void its_send_vmovp(struct its_vpe *vpe)
 948{
 949	struct its_cmd_desc desc;
 950	struct its_node *its;
 951	unsigned long flags;
 952	int col_id = vpe->col_idx;
 953
 954	desc.its_vmovp_cmd.vpe = vpe;
 955	desc.its_vmovp_cmd.its_list = (u16)its_list_map;
 956
 957	if (!its_list_map) {
 958		its = list_first_entry(&its_nodes, struct its_node, entry);
 959		desc.its_vmovp_cmd.seq_num = 0;
 960		desc.its_vmovp_cmd.col = &its->collections[col_id];
 961		its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
 962		return;
 963	}
 964
 965	/*
 966	 * Yet another marvel of the architecture. If using the
 967	 * its_list "feature", we need to make sure that all ITSs
 968	 * receive all VMOVP commands in the same order. The only way
 969	 * to guarantee this is to make vmovp a serialization point.
 970	 *
 971	 * Wall <-- Head.
 972	 */
 973	raw_spin_lock_irqsave(&vmovp_lock, flags);
 974
 975	desc.its_vmovp_cmd.seq_num = vmovp_seq_num++;
 
 976
 977	/* Emit VMOVPs */
 978	list_for_each_entry(its, &its_nodes, entry) {
 979		if (!its->is_v4)
 980			continue;
 981
 982		if (!vpe->its_vm->vlpi_count[its->list_nr])
 983			continue;
 984
 985		desc.its_vmovp_cmd.col = &its->collections[col_id];
 986		its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
 987	}
 988
 989	raw_spin_unlock_irqrestore(&vmovp_lock, flags);
 990}
 991
 992static void its_send_vinvall(struct its_node *its, struct its_vpe *vpe)
 993{
 994	struct its_cmd_desc desc;
 995
 996	desc.its_vinvall_cmd.vpe = vpe;
 997	its_send_single_vcommand(its, its_build_vinvall_cmd, &desc);
 998}
 999
1000/*
1001 * irqchip functions - assumes MSI, mostly.
1002 */
1003
1004static inline u32 its_get_event_id(struct irq_data *d)
 
 
 
 
 
 
 
 
 
 
1005{
1006	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1007	return d->hwirq - its_dev->event_map.lpi_base;
 
 
 
 
 
 
 
 
1008}
1009
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1010static void lpi_write_config(struct irq_data *d, u8 clr, u8 set)
1011{
 
1012	irq_hw_number_t hwirq;
1013	struct page *prop_page;
1014	u8 *cfg;
1015
1016	if (irqd_is_forwarded_to_vcpu(d)) {
1017		struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1018		u32 event = its_get_event_id(d);
1019		struct its_vlpi_map *map;
1020
1021		prop_page = its_dev->event_map.vm->vprop_page;
1022		map = &its_dev->event_map.vlpi_maps[event];
1023		hwirq = map->vintid;
1024
1025		/* Remember the updated property */
1026		map->properties &= ~clr;
1027		map->properties |= set | LPI_PROP_GROUP1;
1028	} else {
1029		prop_page = gic_rdists->prop_page;
1030		hwirq = d->hwirq;
1031	}
1032
1033	cfg = page_address(prop_page) + hwirq - 8192;
1034	*cfg &= ~clr;
1035	*cfg |= set | LPI_PROP_GROUP1;
1036
1037	/*
1038	 * Make the above write visible to the redistributors.
1039	 * And yes, we're flushing exactly: One. Single. Byte.
1040	 * Humpf...
1041	 */
1042	if (gic_rdists->flags & RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING)
1043		gic_flush_dcache_to_poc(cfg, sizeof(*cfg));
1044	else
1045		dsb(ishst);
1046}
1047
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1048static void lpi_update_config(struct irq_data *d, u8 clr, u8 set)
1049{
1050	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1051
1052	lpi_write_config(d, clr, set);
1053	its_send_inv(its_dev, its_get_event_id(d));
 
 
 
 
 
 
1054}
1055
1056static void its_vlpi_set_doorbell(struct irq_data *d, bool enable)
1057{
1058	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1059	u32 event = its_get_event_id(d);
 
 
 
 
 
 
 
 
 
 
1060
1061	if (its_dev->event_map.vlpi_maps[event].db_enabled == enable)
1062		return;
1063
1064	its_dev->event_map.vlpi_maps[event].db_enabled = enable;
1065
1066	/*
1067	 * More fun with the architecture:
1068	 *
1069	 * Ideally, we'd issue a VMAPTI to set the doorbell to its LPI
1070	 * value or to 1023, depending on the enable bit. But that
1071	 * would be issueing a mapping for an /existing/ DevID+EventID
1072	 * pair, which is UNPREDICTABLE. Instead, let's issue a VMOVI
1073	 * to the /same/ vPE, using this opportunity to adjust the
1074	 * doorbell. Mouahahahaha. We loves it, Precious.
1075	 */
1076	its_send_vmovi(its_dev, event);
1077}
1078
1079static void its_mask_irq(struct irq_data *d)
1080{
1081	if (irqd_is_forwarded_to_vcpu(d))
1082		its_vlpi_set_doorbell(d, false);
1083
1084	lpi_update_config(d, LPI_PROP_ENABLED, 0);
1085}
1086
1087static void its_unmask_irq(struct irq_data *d)
1088{
1089	if (irqd_is_forwarded_to_vcpu(d))
1090		its_vlpi_set_doorbell(d, true);
1091
1092	lpi_update_config(d, 0, LPI_PROP_ENABLED);
1093}
1094
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1095static int its_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
1096			    bool force)
1097{
1098	unsigned int cpu;
1099	const struct cpumask *cpu_mask = cpu_online_mask;
1100	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1101	struct its_collection *target_col;
1102	u32 id = its_get_event_id(d);
 
1103
1104	/* A forwarded interrupt should use irq_set_vcpu_affinity */
1105	if (irqd_is_forwarded_to_vcpu(d))
1106		return -EINVAL;
1107
1108       /* lpi cannot be routed to a redistributor that is on a foreign node */
1109	if (its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) {
1110		if (its_dev->its->numa_node >= 0) {
1111			cpu_mask = cpumask_of_node(its_dev->its->numa_node);
1112			if (!cpumask_intersects(mask_val, cpu_mask))
1113				return -EINVAL;
1114		}
1115	}
1116
1117	cpu = cpumask_any_and(mask_val, cpu_mask);
 
 
 
1118
1119	if (cpu >= nr_cpu_ids)
1120		return -EINVAL;
1121
1122	/* don't set the affinity when the target cpu is same as current one */
1123	if (cpu != its_dev->event_map.col_map[id]) {
1124		target_col = &its_dev->its->collections[cpu];
1125		its_send_movi(its_dev, target_col, id);
1126		its_dev->event_map.col_map[id] = cpu;
1127		irq_data_update_effective_affinity(d, cpumask_of(cpu));
1128	}
1129
 
 
1130	return IRQ_SET_MASK_OK_DONE;
 
 
 
 
1131}
1132
1133static u64 its_irq_get_msi_base(struct its_device *its_dev)
1134{
1135	struct its_node *its = its_dev->its;
1136
1137	return its->phys_base + GITS_TRANSLATER;
1138}
1139
1140static void its_irq_compose_msi_msg(struct irq_data *d, struct msi_msg *msg)
1141{
1142	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1143	struct its_node *its;
1144	u64 addr;
1145
1146	its = its_dev->its;
1147	addr = its->get_msi_base(its_dev);
1148
1149	msg->address_lo		= lower_32_bits(addr);
1150	msg->address_hi		= upper_32_bits(addr);
1151	msg->data		= its_get_event_id(d);
1152
1153	iommu_dma_map_msi_msg(d->irq, msg);
1154}
1155
1156static int its_irq_set_irqchip_state(struct irq_data *d,
1157				     enum irqchip_irq_state which,
1158				     bool state)
1159{
1160	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1161	u32 event = its_get_event_id(d);
1162
1163	if (which != IRQCHIP_STATE_PENDING)
1164		return -EINVAL;
1165
1166	if (state)
1167		its_send_int(its_dev, event);
1168	else
1169		its_send_clear(its_dev, event);
 
 
 
 
 
 
 
1170
1171	return 0;
1172}
1173
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1174static void its_map_vm(struct its_node *its, struct its_vm *vm)
1175{
1176	unsigned long flags;
1177
1178	/* Not using the ITS list? Everything is always mapped. */
1179	if (!its_list_map)
1180		return;
1181
1182	raw_spin_lock_irqsave(&vmovp_lock, flags);
1183
1184	/*
1185	 * If the VM wasn't mapped yet, iterate over the vpes and get
1186	 * them mapped now.
1187	 */
1188	vm->vlpi_count[its->list_nr]++;
1189
1190	if (vm->vlpi_count[its->list_nr] == 1) {
1191		int i;
1192
1193		for (i = 0; i < vm->nr_vpes; i++) {
1194			struct its_vpe *vpe = vm->vpes[i];
1195			struct irq_data *d = irq_get_irq_data(vpe->irq);
1196
1197			/* Map the VPE to the first possible CPU */
1198			vpe->col_idx = cpumask_first(cpu_online_mask);
1199			its_send_vmapp(its, vpe, true);
1200			its_send_vinvall(its, vpe);
1201			irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx));
1202		}
1203	}
1204
1205	raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1206}
1207
1208static void its_unmap_vm(struct its_node *its, struct its_vm *vm)
1209{
1210	unsigned long flags;
1211
1212	/* Not using the ITS list? Everything is always mapped. */
1213	if (!its_list_map)
1214		return;
1215
1216	raw_spin_lock_irqsave(&vmovp_lock, flags);
1217
1218	if (!--vm->vlpi_count[its->list_nr]) {
1219		int i;
1220
1221		for (i = 0; i < vm->nr_vpes; i++)
1222			its_send_vmapp(its, vm->vpes[i], false);
1223	}
1224
1225	raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1226}
1227
1228static int its_vlpi_map(struct irq_data *d, struct its_cmd_info *info)
1229{
1230	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1231	u32 event = its_get_event_id(d);
1232	int ret = 0;
1233
1234	if (!info->map)
1235		return -EINVAL;
1236
1237	mutex_lock(&its_dev->event_map.vlpi_lock);
1238
1239	if (!its_dev->event_map.vm) {
1240		struct its_vlpi_map *maps;
1241
1242		maps = kzalloc(sizeof(*maps) * its_dev->event_map.nr_lpis,
1243			       GFP_KERNEL);
1244		if (!maps) {
1245			ret = -ENOMEM;
1246			goto out;
1247		}
1248
1249		its_dev->event_map.vm = info->map->vm;
1250		its_dev->event_map.vlpi_maps = maps;
1251	} else if (its_dev->event_map.vm != info->map->vm) {
1252		ret = -EINVAL;
1253		goto out;
1254	}
1255
1256	/* Get our private copy of the mapping information */
1257	its_dev->event_map.vlpi_maps[event] = *info->map;
1258
1259	if (irqd_is_forwarded_to_vcpu(d)) {
1260		/* Already mapped, move it around */
1261		its_send_vmovi(its_dev, event);
1262	} else {
1263		/* Ensure all the VPEs are mapped on this ITS */
1264		its_map_vm(its_dev->its, info->map->vm);
1265
1266		/*
1267		 * Flag the interrupt as forwarded so that we can
1268		 * start poking the virtual property table.
1269		 */
1270		irqd_set_forwarded_to_vcpu(d);
1271
1272		/* Write out the property to the prop table */
1273		lpi_write_config(d, 0xff, info->map->properties);
1274
1275		/* Drop the physical mapping */
1276		its_send_discard(its_dev, event);
1277
1278		/* and install the virtual one */
1279		its_send_vmapti(its_dev, event);
1280
1281		/* Increment the number of VLPIs */
1282		its_dev->event_map.nr_vlpis++;
1283	}
1284
1285out:
1286	mutex_unlock(&its_dev->event_map.vlpi_lock);
1287	return ret;
1288}
1289
1290static int its_vlpi_get(struct irq_data *d, struct its_cmd_info *info)
1291{
1292	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1293	u32 event = its_get_event_id(d);
1294	int ret = 0;
1295
1296	mutex_lock(&its_dev->event_map.vlpi_lock);
1297
1298	if (!its_dev->event_map.vm ||
1299	    !its_dev->event_map.vlpi_maps[event].vm) {
 
1300		ret = -EINVAL;
1301		goto out;
1302	}
1303
1304	/* Copy our mapping information to the incoming request */
1305	*info->map = its_dev->event_map.vlpi_maps[event];
1306
1307out:
1308	mutex_unlock(&its_dev->event_map.vlpi_lock);
1309	return ret;
1310}
1311
1312static int its_vlpi_unmap(struct irq_data *d)
1313{
1314	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1315	u32 event = its_get_event_id(d);
1316	int ret = 0;
1317
1318	mutex_lock(&its_dev->event_map.vlpi_lock);
1319
1320	if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d)) {
1321		ret = -EINVAL;
1322		goto out;
1323	}
1324
1325	/* Drop the virtual mapping */
1326	its_send_discard(its_dev, event);
1327
1328	/* and restore the physical one */
1329	irqd_clr_forwarded_to_vcpu(d);
1330	its_send_mapti(its_dev, d->hwirq, event);
1331	lpi_update_config(d, 0xff, (LPI_PROP_DEFAULT_PRIO |
1332				    LPI_PROP_ENABLED |
1333				    LPI_PROP_GROUP1));
1334
1335	/* Potentially unmap the VM from this ITS */
1336	its_unmap_vm(its_dev->its, its_dev->event_map.vm);
1337
1338	/*
1339	 * Drop the refcount and make the device available again if
1340	 * this was the last VLPI.
1341	 */
1342	if (!--its_dev->event_map.nr_vlpis) {
1343		its_dev->event_map.vm = NULL;
1344		kfree(its_dev->event_map.vlpi_maps);
1345	}
1346
1347out:
1348	mutex_unlock(&its_dev->event_map.vlpi_lock);
1349	return ret;
1350}
1351
1352static int its_vlpi_prop_update(struct irq_data *d, struct its_cmd_info *info)
1353{
1354	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1355
1356	if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d))
1357		return -EINVAL;
1358
1359	if (info->cmd_type == PROP_UPDATE_AND_INV_VLPI)
1360		lpi_update_config(d, 0xff, info->config);
1361	else
1362		lpi_write_config(d, 0xff, info->config);
1363	its_vlpi_set_doorbell(d, !!(info->config & LPI_PROP_ENABLED));
1364
1365	return 0;
1366}
1367
1368static int its_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
1369{
1370	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1371	struct its_cmd_info *info = vcpu_info;
1372
1373	/* Need a v4 ITS */
1374	if (!its_dev->its->is_v4)
1375		return -EINVAL;
1376
1377	/* Unmap request? */
1378	if (!info)
1379		return its_vlpi_unmap(d);
1380
1381	switch (info->cmd_type) {
1382	case MAP_VLPI:
1383		return its_vlpi_map(d, info);
1384
1385	case GET_VLPI:
1386		return its_vlpi_get(d, info);
1387
1388	case PROP_UPDATE_VLPI:
1389	case PROP_UPDATE_AND_INV_VLPI:
1390		return its_vlpi_prop_update(d, info);
1391
1392	default:
1393		return -EINVAL;
1394	}
1395}
1396
1397static struct irq_chip its_irq_chip = {
1398	.name			= "ITS",
1399	.irq_mask		= its_mask_irq,
1400	.irq_unmask		= its_unmask_irq,
1401	.irq_eoi		= irq_chip_eoi_parent,
1402	.irq_set_affinity	= its_set_affinity,
1403	.irq_compose_msi_msg	= its_irq_compose_msi_msg,
1404	.irq_set_irqchip_state	= its_irq_set_irqchip_state,
 
1405	.irq_set_vcpu_affinity	= its_irq_set_vcpu_affinity,
1406};
1407
 
1408/*
1409 * How we allocate LPIs:
1410 *
1411 * The GIC has id_bits bits for interrupt identifiers. From there, we
1412 * must subtract 8192 which are reserved for SGIs/PPIs/SPIs. Then, as
1413 * we allocate LPIs by chunks of 32, we can shift the whole thing by 5
1414 * bits to the right.
1415 *
1416 * This gives us (((1UL << id_bits) - 8192) >> 5) possible allocations.
 
 
 
 
 
1417 */
1418#define IRQS_PER_CHUNK_SHIFT	5
1419#define IRQS_PER_CHUNK		(1UL << IRQS_PER_CHUNK_SHIFT)
1420#define ITS_MAX_LPI_NRBITS	16 /* 64K LPIs */
1421
1422static unsigned long *lpi_bitmap;
1423static u32 lpi_chunks;
1424static DEFINE_SPINLOCK(lpi_lock);
1425
1426static int its_lpi_to_chunk(int lpi)
 
 
 
 
 
 
1427{
1428	return (lpi - 8192) >> IRQS_PER_CHUNK_SHIFT;
 
 
 
 
 
 
 
 
1429}
1430
1431static int its_chunk_to_lpi(int chunk)
1432{
1433	return (chunk << IRQS_PER_CHUNK_SHIFT) + 8192;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1434}
1435
1436static int __init its_lpi_init(u32 id_bits)
 
 
 
 
 
 
 
 
 
 
 
 
1437{
1438	lpi_chunks = its_lpi_to_chunk(1UL << id_bits);
1439
1440	lpi_bitmap = kzalloc(BITS_TO_LONGS(lpi_chunks) * sizeof(long),
1441			     GFP_KERNEL);
1442	if (!lpi_bitmap) {
1443		lpi_chunks = 0;
1444		return -ENOMEM;
 
 
 
 
 
 
1445	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1446
1447	pr_info("ITS: Allocated %d chunks for LPIs\n", (int)lpi_chunks);
1448	return 0;
1449}
1450
1451static unsigned long *its_lpi_alloc_chunks(int nr_irqs, int *base, int *nr_ids)
1452{
1453	unsigned long *bitmap = NULL;
1454	int chunk_id;
1455	int nr_chunks;
1456	int i;
 
 
 
 
 
 
 
1457
1458	nr_chunks = DIV_ROUND_UP(nr_irqs, IRQS_PER_CHUNK);
 
 
 
 
 
 
 
1459
1460	spin_lock(&lpi_lock);
 
 
 
1461
1462	do {
1463		chunk_id = bitmap_find_next_zero_area(lpi_bitmap, lpi_chunks,
1464						      0, nr_chunks, 0);
1465		if (chunk_id < lpi_chunks)
1466			break;
1467
1468		nr_chunks--;
1469	} while (nr_chunks > 0);
1470
1471	if (!nr_chunks)
 
 
 
1472		goto out;
1473
1474	bitmap = kzalloc(BITS_TO_LONGS(nr_chunks * IRQS_PER_CHUNK) * sizeof (long),
1475			 GFP_ATOMIC);
1476	if (!bitmap)
1477		goto out;
1478
1479	for (i = 0; i < nr_chunks; i++)
1480		set_bit(chunk_id + i, lpi_bitmap);
1481
1482	*base = its_chunk_to_lpi(chunk_id);
1483	*nr_ids = nr_chunks * IRQS_PER_CHUNK;
1484
1485out:
1486	spin_unlock(&lpi_lock);
1487
1488	if (!bitmap)
1489		*base = *nr_ids = 0;
1490
1491	return bitmap;
1492}
1493
1494static void its_lpi_free_chunks(unsigned long *bitmap, int base, int nr_ids)
1495{
1496	int lpi;
1497
1498	spin_lock(&lpi_lock);
1499
1500	for (lpi = base; lpi < (base + nr_ids); lpi += IRQS_PER_CHUNK) {
1501		int chunk = its_lpi_to_chunk(lpi);
1502
1503		BUG_ON(chunk > lpi_chunks);
1504		if (test_bit(chunk, lpi_bitmap)) {
1505			clear_bit(chunk, lpi_bitmap);
1506		} else {
1507			pr_err("Bad LPI chunk %d\n", chunk);
1508		}
1509	}
1510
1511	spin_unlock(&lpi_lock);
 
 
 
1512
1513	kfree(bitmap);
 
1514}
1515
1516static struct page *its_allocate_prop_table(gfp_t gfp_flags)
1517{
1518	struct page *prop_page;
1519
1520	prop_page = alloc_pages(gfp_flags, get_order(LPI_PROPBASE_SZ));
1521	if (!prop_page)
1522		return NULL;
1523
1524	/* Priority 0xa0, Group-1, disabled */
1525	memset(page_address(prop_page),
1526	       LPI_PROP_DEFAULT_PRIO | LPI_PROP_GROUP1,
1527	       LPI_PROPBASE_SZ);
1528
1529	/* Make sure the GIC will observe the written configuration */
1530	gic_flush_dcache_to_poc(page_address(prop_page), LPI_PROPBASE_SZ);
1531
1532	return prop_page;
1533}
1534
1535static void its_free_prop_table(struct page *prop_page)
1536{
1537	free_pages((unsigned long)page_address(prop_page),
1538		   get_order(LPI_PROPBASE_SZ));
1539}
1540
1541static int __init its_alloc_lpi_tables(void)
1542{
1543	phys_addr_t paddr;
 
1544
1545	lpi_id_bits = min_t(u32, gic_rdists->id_bits, ITS_MAX_LPI_NRBITS);
1546	gic_rdists->prop_page = its_allocate_prop_table(GFP_NOWAIT);
1547	if (!gic_rdists->prop_page) {
1548		pr_err("Failed to allocate PROPBASE\n");
1549		return -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1550	}
1551
1552	paddr = page_to_phys(gic_rdists->prop_page);
1553	pr_info("GIC: using LPI property table @%pa\n", &paddr);
1554
1555	return its_lpi_init(lpi_id_bits);
1556}
1557
1558static const char *its_base_type_string[] = {
1559	[GITS_BASER_TYPE_DEVICE]	= "Devices",
1560	[GITS_BASER_TYPE_VCPU]		= "Virtual CPUs",
1561	[GITS_BASER_TYPE_RESERVED3]	= "Reserved (3)",
1562	[GITS_BASER_TYPE_COLLECTION]	= "Interrupt Collections",
1563	[GITS_BASER_TYPE_RESERVED5] 	= "Reserved (5)",
1564	[GITS_BASER_TYPE_RESERVED6] 	= "Reserved (6)",
1565	[GITS_BASER_TYPE_RESERVED7] 	= "Reserved (7)",
1566};
1567
1568static u64 its_read_baser(struct its_node *its, struct its_baser *baser)
1569{
1570	u32 idx = baser - its->tables;
1571
1572	return gits_read_baser(its->base + GITS_BASER + (idx << 3));
1573}
1574
1575static void its_write_baser(struct its_node *its, struct its_baser *baser,
1576			    u64 val)
1577{
1578	u32 idx = baser - its->tables;
1579
1580	gits_write_baser(val, its->base + GITS_BASER + (idx << 3));
1581	baser->val = its_read_baser(its, baser);
1582}
1583
1584static int its_setup_baser(struct its_node *its, struct its_baser *baser,
1585			   u64 cache, u64 shr, u32 psz, u32 order,
1586			   bool indirect)
1587{
1588	u64 val = its_read_baser(its, baser);
1589	u64 esz = GITS_BASER_ENTRY_SIZE(val);
1590	u64 type = GITS_BASER_TYPE(val);
1591	u64 baser_phys, tmp;
1592	u32 alloc_pages;
 
1593	void *base;
1594
1595retry_alloc_baser:
1596	alloc_pages = (PAGE_ORDER_TO_SIZE(order) / psz);
1597	if (alloc_pages > GITS_BASER_PAGES_MAX) {
1598		pr_warn("ITS@%pa: %s too large, reduce ITS pages %u->%u\n",
1599			&its->phys_base, its_base_type_string[type],
1600			alloc_pages, GITS_BASER_PAGES_MAX);
1601		alloc_pages = GITS_BASER_PAGES_MAX;
1602		order = get_order(GITS_BASER_PAGES_MAX * psz);
1603	}
1604
1605	base = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, order);
1606	if (!base)
1607		return -ENOMEM;
1608
 
1609	baser_phys = virt_to_phys(base);
1610
1611	/* Check if the physical address of the memory is above 48bits */
1612	if (IS_ENABLED(CONFIG_ARM64_64K_PAGES) && (baser_phys >> 48)) {
1613
1614		/* 52bit PA is supported only when PageSize=64K */
1615		if (psz != SZ_64K) {
1616			pr_err("ITS: no 52bit PA support when psz=%d\n", psz);
1617			free_pages((unsigned long)base, order);
1618			return -ENXIO;
1619		}
1620
1621		/* Convert 52bit PA to 48bit field */
1622		baser_phys = GITS_BASER_PHYS_52_to_48(baser_phys);
1623	}
1624
1625retry_baser:
1626	val = (baser_phys					 |
1627		(type << GITS_BASER_TYPE_SHIFT)			 |
1628		((esz - 1) << GITS_BASER_ENTRY_SIZE_SHIFT)	 |
1629		((alloc_pages - 1) << GITS_BASER_PAGES_SHIFT)	 |
1630		cache						 |
1631		shr						 |
1632		GITS_BASER_VALID);
1633
1634	val |=	indirect ? GITS_BASER_INDIRECT : 0x0;
1635
1636	switch (psz) {
1637	case SZ_4K:
1638		val |= GITS_BASER_PAGE_SIZE_4K;
1639		break;
1640	case SZ_16K:
1641		val |= GITS_BASER_PAGE_SIZE_16K;
1642		break;
1643	case SZ_64K:
1644		val |= GITS_BASER_PAGE_SIZE_64K;
1645		break;
1646	}
1647
 
 
 
1648	its_write_baser(its, baser, val);
1649	tmp = baser->val;
1650
1651	if ((val ^ tmp) & GITS_BASER_SHAREABILITY_MASK) {
1652		/*
1653		 * Shareability didn't stick. Just use
1654		 * whatever the read reported, which is likely
1655		 * to be the only thing this redistributor
1656		 * supports. If that's zero, make it
1657		 * non-cacheable as well.
1658		 */
1659		shr = tmp & GITS_BASER_SHAREABILITY_MASK;
1660		if (!shr) {
1661			cache = GITS_BASER_nC;
1662			gic_flush_dcache_to_poc(base, PAGE_ORDER_TO_SIZE(order));
1663		}
1664		goto retry_baser;
1665	}
1666
1667	if ((val ^ tmp) & GITS_BASER_PAGE_SIZE_MASK) {
1668		/*
1669		 * Page size didn't stick. Let's try a smaller
1670		 * size and retry. If we reach 4K, then
1671		 * something is horribly wrong...
1672		 */
1673		free_pages((unsigned long)base, order);
1674		baser->base = NULL;
1675
1676		switch (psz) {
1677		case SZ_16K:
1678			psz = SZ_4K;
1679			goto retry_alloc_baser;
1680		case SZ_64K:
1681			psz = SZ_16K;
1682			goto retry_alloc_baser;
1683		}
1684	}
1685
1686	if (val != tmp) {
1687		pr_err("ITS@%pa: %s doesn't stick: %llx %llx\n",
1688		       &its->phys_base, its_base_type_string[type],
1689		       val, tmp);
1690		free_pages((unsigned long)base, order);
1691		return -ENXIO;
1692	}
1693
1694	baser->order = order;
1695	baser->base = base;
1696	baser->psz = psz;
1697	tmp = indirect ? GITS_LVL1_ENTRY_SIZE : esz;
1698
1699	pr_info("ITS@%pa: allocated %d %s @%lx (%s, esz %d, psz %dK, shr %d)\n",
1700		&its->phys_base, (int)(PAGE_ORDER_TO_SIZE(order) / (int)tmp),
1701		its_base_type_string[type],
1702		(unsigned long)virt_to_phys(base),
1703		indirect ? "indirect" : "flat", (int)esz,
1704		psz / SZ_1K, (int)shr >> GITS_BASER_SHAREABILITY_SHIFT);
1705
1706	return 0;
1707}
1708
1709static bool its_parse_indirect_baser(struct its_node *its,
1710				     struct its_baser *baser,
1711				     u32 psz, u32 *order, u32 ids)
1712{
1713	u64 tmp = its_read_baser(its, baser);
1714	u64 type = GITS_BASER_TYPE(tmp);
1715	u64 esz = GITS_BASER_ENTRY_SIZE(tmp);
1716	u64 val = GITS_BASER_InnerShareable | GITS_BASER_RaWaWb;
1717	u32 new_order = *order;
 
1718	bool indirect = false;
1719
1720	/* No need to enable Indirection if memory requirement < (psz*2)bytes */
1721	if ((esz << ids) > (psz * 2)) {
1722		/*
1723		 * Find out whether hw supports a single or two-level table by
1724		 * table by reading bit at offset '62' after writing '1' to it.
1725		 */
1726		its_write_baser(its, baser, val | GITS_BASER_INDIRECT);
1727		indirect = !!(baser->val & GITS_BASER_INDIRECT);
1728
1729		if (indirect) {
1730			/*
1731			 * The size of the lvl2 table is equal to ITS page size
1732			 * which is 'psz'. For computing lvl1 table size,
1733			 * subtract ID bits that sparse lvl2 table from 'ids'
1734			 * which is reported by ITS hardware times lvl1 table
1735			 * entry size.
1736			 */
1737			ids -= ilog2(psz / (int)esz);
1738			esz = GITS_LVL1_ENTRY_SIZE;
1739		}
1740	}
1741
1742	/*
1743	 * Allocate as many entries as required to fit the
1744	 * range of device IDs that the ITS can grok... The ID
1745	 * space being incredibly sparse, this results in a
1746	 * massive waste of memory if two-level device table
1747	 * feature is not supported by hardware.
1748	 */
1749	new_order = max_t(u32, get_order(esz << ids), new_order);
1750	if (new_order >= MAX_ORDER) {
1751		new_order = MAX_ORDER - 1;
1752		ids = ilog2(PAGE_ORDER_TO_SIZE(new_order) / (int)esz);
1753		pr_warn("ITS@%pa: %s Table too large, reduce ids %u->%u\n",
1754			&its->phys_base, its_base_type_string[type],
1755			its->device_ids, ids);
1756	}
1757
1758	*order = new_order;
1759
1760	return indirect;
1761}
1762
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1763static void its_free_tables(struct its_node *its)
1764{
1765	int i;
1766
1767	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
1768		if (its->tables[i].base) {
1769			free_pages((unsigned long)its->tables[i].base,
1770				   its->tables[i].order);
1771			its->tables[i].base = NULL;
1772		}
1773	}
1774}
1775
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1776static int its_alloc_tables(struct its_node *its)
1777{
1778	u64 shr = GITS_BASER_InnerShareable;
1779	u64 cache = GITS_BASER_RaWaWb;
1780	u32 psz = SZ_64K;
1781	int err, i;
1782
1783	if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_22375)
1784		/* erratum 24313: ignore memory access type */
1785		cache = GITS_BASER_nCnB;
1786
 
 
 
 
 
1787	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
1788		struct its_baser *baser = its->tables + i;
1789		u64 val = its_read_baser(its, baser);
1790		u64 type = GITS_BASER_TYPE(val);
1791		u32 order = get_order(psz);
1792		bool indirect = false;
 
1793
1794		switch (type) {
1795		case GITS_BASER_TYPE_NONE:
1796			continue;
1797
 
 
 
 
 
 
 
 
1798		case GITS_BASER_TYPE_DEVICE:
1799			indirect = its_parse_indirect_baser(its, baser,
1800							    psz, &order,
1801							    its->device_ids);
 
1802		case GITS_BASER_TYPE_VCPU:
1803			indirect = its_parse_indirect_baser(its, baser,
1804							    psz, &order,
 
 
 
 
 
 
 
 
 
 
1805							    ITS_MAX_VPEID_BITS);
1806			break;
1807		}
1808
1809		err = its_setup_baser(its, baser, cache, shr, psz, order, indirect);
1810		if (err < 0) {
1811			its_free_tables(its);
1812			return err;
1813		}
1814
1815		/* Update settings which will be used for next BASERn */
1816		psz = baser->psz;
1817		cache = baser->val & GITS_BASER_CACHEABILITY_MASK;
1818		shr = baser->val & GITS_BASER_SHAREABILITY_MASK;
1819	}
1820
1821	return 0;
1822}
1823
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1824static int its_alloc_collections(struct its_node *its)
1825{
1826	its->collections = kzalloc(nr_cpu_ids * sizeof(*its->collections),
 
 
1827				   GFP_KERNEL);
1828	if (!its->collections)
1829		return -ENOMEM;
1830
 
 
 
1831	return 0;
1832}
1833
1834static struct page *its_allocate_pending_table(gfp_t gfp_flags)
1835{
1836	struct page *pend_page;
1837	/*
1838	 * The pending pages have to be at least 64kB aligned,
1839	 * hence the 'max(LPI_PENDBASE_SZ, SZ_64K)' below.
1840	 */
1841	pend_page = alloc_pages(gfp_flags | __GFP_ZERO,
1842				get_order(max_t(u32, LPI_PENDBASE_SZ, SZ_64K)));
1843	if (!pend_page)
1844		return NULL;
1845
1846	/* Make sure the GIC will observe the zero-ed page */
1847	gic_flush_dcache_to_poc(page_address(pend_page), LPI_PENDBASE_SZ);
1848
1849	return pend_page;
1850}
1851
1852static void its_free_pending_table(struct page *pt)
1853{
1854	free_pages((unsigned long)page_address(pt),
1855		   get_order(max_t(u32, LPI_PENDBASE_SZ, SZ_64K)));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1856}
1857
1858static void its_cpu_init_lpis(void)
1859{
1860	void __iomem *rbase = gic_data_rdist_rd_base();
1861	struct page *pend_page;
 
1862	u64 val, tmp;
1863
1864	/* If we didn't allocate the pending table yet, do it now */
1865	pend_page = gic_data_rdist()->pend_page;
1866	if (!pend_page) {
1867		phys_addr_t paddr;
1868
1869		pend_page = its_allocate_pending_table(GFP_NOWAIT);
1870		if (!pend_page) {
1871			pr_err("Failed to allocate PENDBASE for CPU%d\n",
1872			       smp_processor_id());
1873			return;
1874		}
 
 
 
 
 
 
 
 
1875
1876		paddr = page_to_phys(pend_page);
1877		pr_info("CPU%d: using LPI pending table @%pa\n",
1878			smp_processor_id(), &paddr);
1879		gic_data_rdist()->pend_page = pend_page;
1880	}
1881
 
 
 
1882	/* set PROPBASE */
1883	val = (page_to_phys(gic_rdists->prop_page) |
1884	       GICR_PROPBASER_InnerShareable |
1885	       GICR_PROPBASER_RaWaWb |
1886	       ((LPI_NRBITS - 1) & GICR_PROPBASER_IDBITS_MASK));
1887
1888	gicr_write_propbaser(val, rbase + GICR_PROPBASER);
1889	tmp = gicr_read_propbaser(rbase + GICR_PROPBASER);
1890
 
 
 
1891	if ((tmp ^ val) & GICR_PROPBASER_SHAREABILITY_MASK) {
1892		if (!(tmp & GICR_PROPBASER_SHAREABILITY_MASK)) {
1893			/*
1894			 * The HW reports non-shareable, we must
1895			 * remove the cacheability attributes as
1896			 * well.
1897			 */
1898			val &= ~(GICR_PROPBASER_SHAREABILITY_MASK |
1899				 GICR_PROPBASER_CACHEABILITY_MASK);
1900			val |= GICR_PROPBASER_nC;
1901			gicr_write_propbaser(val, rbase + GICR_PROPBASER);
1902		}
1903		pr_info_once("GIC: using cache flushing for LPI property table\n");
1904		gic_rdists->flags |= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING;
1905	}
1906
1907	/* set PENDBASE */
1908	val = (page_to_phys(pend_page) |
1909	       GICR_PENDBASER_InnerShareable |
1910	       GICR_PENDBASER_RaWaWb);
1911
1912	gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
1913	tmp = gicr_read_pendbaser(rbase + GICR_PENDBASER);
1914
 
 
 
1915	if (!(tmp & GICR_PENDBASER_SHAREABILITY_MASK)) {
1916		/*
1917		 * The HW reports non-shareable, we must remove the
1918		 * cacheability attributes as well.
1919		 */
1920		val &= ~(GICR_PENDBASER_SHAREABILITY_MASK |
1921			 GICR_PENDBASER_CACHEABILITY_MASK);
1922		val |= GICR_PENDBASER_nC;
1923		gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
1924	}
1925
1926	/* Enable LPIs */
1927	val = readl_relaxed(rbase + GICR_CTLR);
1928	val |= GICR_CTLR_ENABLE_LPIS;
1929	writel_relaxed(val, rbase + GICR_CTLR);
1930
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1931	/* Make sure the GIC has seen the above */
1932	dsb(sy);
 
 
 
 
 
 
1933}
1934
1935static void its_cpu_init_collection(struct its_node *its)
1936{
1937	int cpu = smp_processor_id();
1938	u64 target;
1939
1940	/* avoid cross node collections and its mapping */
1941	if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) {
1942		struct device_node *cpu_node;
1943
1944		cpu_node = of_get_cpu_node(cpu, NULL);
1945		if (its->numa_node != NUMA_NO_NODE &&
1946			its->numa_node != of_node_to_nid(cpu_node))
1947			return;
1948	}
1949
1950	/*
1951	 * We now have to bind each collection to its target
1952	 * redistributor.
1953	 */
1954	if (gic_read_typer(its->base + GITS_TYPER) & GITS_TYPER_PTA) {
1955		/*
1956		 * This ITS wants the physical address of the
1957		 * redistributor.
1958		 */
1959		target = gic_data_rdist()->phys_base;
1960	} else {
1961		/* This ITS wants a linear CPU number. */
1962		target = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
1963		target = GICR_TYPER_CPU_NUMBER(target) << 16;
1964	}
1965
1966	/* Perform collection mapping */
1967	its->collections[cpu].target_address = target;
1968	its->collections[cpu].col_id = cpu;
1969
1970	its_send_mapc(its, &its->collections[cpu], 1);
1971	its_send_invall(its, &its->collections[cpu]);
1972}
1973
1974static void its_cpu_init_collections(void)
1975{
1976	struct its_node *its;
1977
1978	spin_lock(&its_lock);
1979
1980	list_for_each_entry(its, &its_nodes, entry)
1981		its_cpu_init_collection(its);
1982
1983	spin_unlock(&its_lock);
1984}
1985
1986static struct its_device *its_find_device(struct its_node *its, u32 dev_id)
1987{
1988	struct its_device *its_dev = NULL, *tmp;
1989	unsigned long flags;
1990
1991	raw_spin_lock_irqsave(&its->lock, flags);
1992
1993	list_for_each_entry(tmp, &its->its_device_list, entry) {
1994		if (tmp->device_id == dev_id) {
1995			its_dev = tmp;
1996			break;
1997		}
1998	}
1999
2000	raw_spin_unlock_irqrestore(&its->lock, flags);
2001
2002	return its_dev;
2003}
2004
2005static struct its_baser *its_get_baser(struct its_node *its, u32 type)
2006{
2007	int i;
2008
2009	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
2010		if (GITS_BASER_TYPE(its->tables[i].val) == type)
2011			return &its->tables[i];
2012	}
2013
2014	return NULL;
2015}
2016
2017static bool its_alloc_table_entry(struct its_baser *baser, u32 id)
 
2018{
2019	struct page *page;
2020	u32 esz, idx;
2021	__le64 *table;
2022
2023	/* Don't allow device id that exceeds single, flat table limit */
2024	esz = GITS_BASER_ENTRY_SIZE(baser->val);
2025	if (!(baser->val & GITS_BASER_INDIRECT))
2026		return (id < (PAGE_ORDER_TO_SIZE(baser->order) / esz));
2027
2028	/* Compute 1st level table index & check if that exceeds table limit */
2029	idx = id >> ilog2(baser->psz / esz);
2030	if (idx >= (PAGE_ORDER_TO_SIZE(baser->order) / GITS_LVL1_ENTRY_SIZE))
2031		return false;
2032
2033	table = baser->base;
2034
2035	/* Allocate memory for 2nd level table */
2036	if (!table[idx]) {
2037		page = alloc_pages(GFP_KERNEL | __GFP_ZERO, get_order(baser->psz));
 
2038		if (!page)
2039			return false;
2040
2041		/* Flush Lvl2 table to PoC if hw doesn't support coherency */
2042		if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
2043			gic_flush_dcache_to_poc(page_address(page), baser->psz);
2044
2045		table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID);
2046
2047		/* Flush Lvl1 entry to PoC if hw doesn't support coherency */
2048		if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
2049			gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE);
2050
2051		/* Ensure updated table contents are visible to ITS hardware */
2052		dsb(sy);
2053	}
2054
2055	return true;
2056}
2057
2058static bool its_alloc_device_table(struct its_node *its, u32 dev_id)
2059{
2060	struct its_baser *baser;
2061
2062	baser = its_get_baser(its, GITS_BASER_TYPE_DEVICE);
2063
2064	/* Don't allow device id that exceeds ITS hardware limit */
2065	if (!baser)
2066		return (ilog2(dev_id) < its->device_ids);
2067
2068	return its_alloc_table_entry(baser, dev_id);
2069}
2070
2071static bool its_alloc_vpe_table(u32 vpe_id)
2072{
2073	struct its_node *its;
 
2074
2075	/*
2076	 * Make sure the L2 tables are allocated on *all* v4 ITSs. We
2077	 * could try and only do it on ITSs corresponding to devices
2078	 * that have interrupts targeted at this VPE, but the
2079	 * complexity becomes crazy (and you have tons of memory
2080	 * anyway, right?).
2081	 */
2082	list_for_each_entry(its, &its_nodes, entry) {
2083		struct its_baser *baser;
2084
2085		if (!its->is_v4)
2086			continue;
2087
2088		baser = its_get_baser(its, GITS_BASER_TYPE_VCPU);
2089		if (!baser)
2090			return false;
2091
2092		if (!its_alloc_table_entry(baser, vpe_id))
 
 
 
 
 
 
 
 
 
 
 
 
 
2093			return false;
2094	}
2095
2096	return true;
2097}
2098
2099static struct its_device *its_create_device(struct its_node *its, u32 dev_id,
2100					    int nvecs, bool alloc_lpis)
2101{
2102	struct its_device *dev;
2103	unsigned long *lpi_map = NULL;
2104	unsigned long flags;
2105	u16 *col_map = NULL;
2106	void *itt;
2107	int lpi_base;
2108	int nr_lpis;
2109	int nr_ites;
2110	int sz;
2111
2112	if (!its_alloc_device_table(its, dev_id))
2113		return NULL;
2114
 
 
 
2115	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2116	/*
2117	 * We allocate at least one chunk worth of LPIs bet device,
2118	 * and thus that many ITEs. The device may require less though.
2119	 */
2120	nr_ites = max(IRQS_PER_CHUNK, roundup_pow_of_two(nvecs));
2121	sz = nr_ites * its->ite_size;
2122	sz = max(sz, ITS_ITT_ALIGN) + ITS_ITT_ALIGN - 1;
2123	itt = kzalloc(sz, GFP_KERNEL);
2124	if (alloc_lpis) {
2125		lpi_map = its_lpi_alloc_chunks(nvecs, &lpi_base, &nr_lpis);
2126		if (lpi_map)
2127			col_map = kzalloc(sizeof(*col_map) * nr_lpis,
2128					  GFP_KERNEL);
2129	} else {
2130		col_map = kzalloc(sizeof(*col_map) * nr_ites, GFP_KERNEL);
2131		nr_lpis = 0;
2132		lpi_base = 0;
2133	}
2134
2135	if (!dev || !itt ||  !col_map || (!lpi_map && alloc_lpis)) {
2136		kfree(dev);
2137		kfree(itt);
2138		kfree(lpi_map);
2139		kfree(col_map);
2140		return NULL;
2141	}
2142
2143	gic_flush_dcache_to_poc(itt, sz);
2144
2145	dev->its = its;
2146	dev->itt = itt;
2147	dev->nr_ites = nr_ites;
2148	dev->event_map.lpi_map = lpi_map;
2149	dev->event_map.col_map = col_map;
2150	dev->event_map.lpi_base = lpi_base;
2151	dev->event_map.nr_lpis = nr_lpis;
2152	mutex_init(&dev->event_map.vlpi_lock);
2153	dev->device_id = dev_id;
2154	INIT_LIST_HEAD(&dev->entry);
2155
2156	raw_spin_lock_irqsave(&its->lock, flags);
2157	list_add(&dev->entry, &its->its_device_list);
2158	raw_spin_unlock_irqrestore(&its->lock, flags);
2159
2160	/* Map device to its ITT */
2161	its_send_mapd(dev, 1);
2162
2163	return dev;
2164}
2165
2166static void its_free_device(struct its_device *its_dev)
2167{
2168	unsigned long flags;
2169
2170	raw_spin_lock_irqsave(&its_dev->its->lock, flags);
2171	list_del(&its_dev->entry);
2172	raw_spin_unlock_irqrestore(&its_dev->its->lock, flags);
 
2173	kfree(its_dev->itt);
2174	kfree(its_dev);
2175}
2176
2177static int its_alloc_device_irq(struct its_device *dev, irq_hw_number_t *hwirq)
2178{
2179	int idx;
2180
2181	idx = find_first_zero_bit(dev->event_map.lpi_map,
2182				  dev->event_map.nr_lpis);
2183	if (idx == dev->event_map.nr_lpis)
 
 
2184		return -ENOSPC;
2185
2186	*hwirq = dev->event_map.lpi_base + idx;
2187	set_bit(idx, dev->event_map.lpi_map);
2188
2189	return 0;
2190}
2191
2192static int its_msi_prepare(struct irq_domain *domain, struct device *dev,
2193			   int nvec, msi_alloc_info_t *info)
2194{
2195	struct its_node *its;
2196	struct its_device *its_dev;
2197	struct msi_domain_info *msi_info;
2198	u32 dev_id;
 
2199
2200	/*
2201	 * We ignore "dev" entierely, and rely on the dev_id that has
2202	 * been passed via the scratchpad. This limits this domain's
2203	 * usefulness to upper layers that definitely know that they
2204	 * are built on top of the ITS.
2205	 */
2206	dev_id = info->scratchpad[0].ul;
2207
2208	msi_info = msi_get_domain_info(domain);
2209	its = msi_info->data;
2210
2211	if (!gic_rdists->has_direct_lpi &&
2212	    vpe_proxy.dev &&
2213	    vpe_proxy.dev->its == its &&
2214	    dev_id == vpe_proxy.dev->device_id) {
2215		/* Bad luck. Get yourself a better implementation */
2216		WARN_ONCE(1, "DevId %x clashes with GICv4 VPE proxy device\n",
2217			  dev_id);
2218		return -EINVAL;
2219	}
2220
 
2221	its_dev = its_find_device(its, dev_id);
2222	if (its_dev) {
2223		/*
2224		 * We already have seen this ID, probably through
2225		 * another alias (PCI bridge of some sort). No need to
2226		 * create the device.
2227		 */
 
2228		pr_debug("Reusing ITT for devID %x\n", dev_id);
2229		goto out;
2230	}
2231
2232	its_dev = its_create_device(its, dev_id, nvec, true);
2233	if (!its_dev)
2234		return -ENOMEM;
 
 
 
 
 
2235
2236	pr_debug("ITT %d entries, %d bits\n", nvec, ilog2(nvec));
2237out:
 
2238	info->scratchpad[0].ptr = its_dev;
2239	return 0;
2240}
2241
2242static struct msi_domain_ops its_msi_domain_ops = {
2243	.msi_prepare	= its_msi_prepare,
2244};
2245
2246static int its_irq_gic_domain_alloc(struct irq_domain *domain,
2247				    unsigned int virq,
2248				    irq_hw_number_t hwirq)
2249{
2250	struct irq_fwspec fwspec;
2251
2252	if (irq_domain_get_of_node(domain->parent)) {
2253		fwspec.fwnode = domain->parent->fwnode;
2254		fwspec.param_count = 3;
2255		fwspec.param[0] = GIC_IRQ_TYPE_LPI;
2256		fwspec.param[1] = hwirq;
2257		fwspec.param[2] = IRQ_TYPE_EDGE_RISING;
2258	} else if (is_fwnode_irqchip(domain->parent->fwnode)) {
2259		fwspec.fwnode = domain->parent->fwnode;
2260		fwspec.param_count = 2;
2261		fwspec.param[0] = hwirq;
2262		fwspec.param[1] = IRQ_TYPE_EDGE_RISING;
2263	} else {
2264		return -EINVAL;
2265	}
2266
2267	return irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec);
2268}
2269
2270static int its_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
2271				unsigned int nr_irqs, void *args)
2272{
2273	msi_alloc_info_t *info = args;
2274	struct its_device *its_dev = info->scratchpad[0].ptr;
 
 
2275	irq_hw_number_t hwirq;
2276	int err;
2277	int i;
2278
2279	for (i = 0; i < nr_irqs; i++) {
2280		err = its_alloc_device_irq(its_dev, &hwirq);
2281		if (err)
2282			return err;
2283
2284		err = its_irq_gic_domain_alloc(domain, virq + i, hwirq);
 
 
 
 
 
2285		if (err)
2286			return err;
2287
2288		irq_domain_set_hwirq_and_chip(domain, virq + i,
2289					      hwirq, &its_irq_chip, its_dev);
2290		irqd_set_single_target(irq_desc_get_irq_data(irq_to_desc(virq + i)));
 
 
 
2291		pr_debug("ID:%d pID:%d vID:%d\n",
2292			 (int)(hwirq - its_dev->event_map.lpi_base),
2293			 (int) hwirq, virq + i);
2294	}
2295
2296	return 0;
2297}
2298
2299static int its_irq_domain_activate(struct irq_domain *domain,
2300				   struct irq_data *d, bool reserve)
2301{
2302	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
2303	u32 event = its_get_event_id(d);
2304	const struct cpumask *cpu_mask = cpu_online_mask;
2305	int cpu;
2306
2307	/* get the cpu_mask of local node */
2308	if (its_dev->its->numa_node >= 0)
2309		cpu_mask = cpumask_of_node(its_dev->its->numa_node);
2310
2311	/* Bind the LPI to the first possible CPU */
2312	cpu = cpumask_first(cpu_mask);
2313	its_dev->event_map.col_map[event] = cpu;
2314	irq_data_update_effective_affinity(d, cpumask_of(cpu));
2315
2316	/* Map the GIC IRQ and event to the device */
2317	its_send_mapti(its_dev, d->hwirq, event);
2318	return 0;
2319}
2320
2321static void its_irq_domain_deactivate(struct irq_domain *domain,
2322				      struct irq_data *d)
2323{
2324	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
2325	u32 event = its_get_event_id(d);
2326
 
2327	/* Stop the delivery of interrupts */
2328	its_send_discard(its_dev, event);
2329}
2330
2331static void its_irq_domain_free(struct irq_domain *domain, unsigned int virq,
2332				unsigned int nr_irqs)
2333{
2334	struct irq_data *d = irq_domain_get_irq_data(domain, virq);
2335	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
 
2336	int i;
2337
 
 
 
 
2338	for (i = 0; i < nr_irqs; i++) {
2339		struct irq_data *data = irq_domain_get_irq_data(domain,
2340								virq + i);
2341		u32 event = its_get_event_id(data);
2342
2343		/* Mark interrupt index as unused */
2344		clear_bit(event, its_dev->event_map.lpi_map);
2345
2346		/* Nuke the entry in the domain */
2347		irq_domain_reset_irq_data(data);
2348	}
2349
2350	/* If all interrupts have been freed, start mopping the floor */
2351	if (bitmap_empty(its_dev->event_map.lpi_map,
 
 
 
 
 
 
2352			 its_dev->event_map.nr_lpis)) {
2353		its_lpi_free_chunks(its_dev->event_map.lpi_map,
2354				    its_dev->event_map.lpi_base,
2355				    its_dev->event_map.nr_lpis);
2356		kfree(its_dev->event_map.col_map);
2357
2358		/* Unmap device/itt */
2359		its_send_mapd(its_dev, 0);
2360		its_free_device(its_dev);
2361	}
2362
 
 
2363	irq_domain_free_irqs_parent(domain, virq, nr_irqs);
2364}
2365
2366static const struct irq_domain_ops its_domain_ops = {
2367	.alloc			= its_irq_domain_alloc,
2368	.free			= its_irq_domain_free,
2369	.activate		= its_irq_domain_activate,
2370	.deactivate		= its_irq_domain_deactivate,
2371};
2372
2373/*
2374 * This is insane.
2375 *
2376 * If a GICv4 doesn't implement Direct LPIs (which is extremely
2377 * likely), the only way to perform an invalidate is to use a fake
2378 * device to issue an INV command, implying that the LPI has first
2379 * been mapped to some event on that device. Since this is not exactly
2380 * cheap, we try to keep that mapping around as long as possible, and
2381 * only issue an UNMAP if we're short on available slots.
2382 *
2383 * Broken by design(tm).
 
 
 
 
 
 
 
2384 */
2385static void its_vpe_db_proxy_unmap_locked(struct its_vpe *vpe)
2386{
 
 
 
 
2387	/* Already unmapped? */
2388	if (vpe->vpe_proxy_event == -1)
2389		return;
2390
2391	its_send_discard(vpe_proxy.dev, vpe->vpe_proxy_event);
2392	vpe_proxy.vpes[vpe->vpe_proxy_event] = NULL;
2393
2394	/*
2395	 * We don't track empty slots at all, so let's move the
2396	 * next_victim pointer if we can quickly reuse that slot
2397	 * instead of nuking an existing entry. Not clear that this is
2398	 * always a win though, and this might just generate a ripple
2399	 * effect... Let's just hope VPEs don't migrate too often.
2400	 */
2401	if (vpe_proxy.vpes[vpe_proxy.next_victim])
2402		vpe_proxy.next_victim = vpe->vpe_proxy_event;
2403
2404	vpe->vpe_proxy_event = -1;
2405}
2406
2407static void its_vpe_db_proxy_unmap(struct its_vpe *vpe)
2408{
 
 
 
 
2409	if (!gic_rdists->has_direct_lpi) {
2410		unsigned long flags;
2411
2412		raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
2413		its_vpe_db_proxy_unmap_locked(vpe);
2414		raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
2415	}
2416}
2417
2418static void its_vpe_db_proxy_map_locked(struct its_vpe *vpe)
2419{
 
 
 
 
2420	/* Already mapped? */
2421	if (vpe->vpe_proxy_event != -1)
2422		return;
2423
2424	/* This slot was already allocated. Kick the other VPE out. */
2425	if (vpe_proxy.vpes[vpe_proxy.next_victim])
2426		its_vpe_db_proxy_unmap_locked(vpe_proxy.vpes[vpe_proxy.next_victim]);
2427
2428	/* Map the new VPE instead */
2429	vpe_proxy.vpes[vpe_proxy.next_victim] = vpe;
2430	vpe->vpe_proxy_event = vpe_proxy.next_victim;
2431	vpe_proxy.next_victim = (vpe_proxy.next_victim + 1) % vpe_proxy.dev->nr_ites;
2432
2433	vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = vpe->col_idx;
2434	its_send_mapti(vpe_proxy.dev, vpe->vpe_db_lpi, vpe->vpe_proxy_event);
2435}
2436
2437static void its_vpe_db_proxy_move(struct its_vpe *vpe, int from, int to)
2438{
2439	unsigned long flags;
2440	struct its_collection *target_col;
2441
 
 
 
 
2442	if (gic_rdists->has_direct_lpi) {
2443		void __iomem *rdbase;
2444
2445		rdbase = per_cpu_ptr(gic_rdists->rdist, from)->rd_base;
2446		gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
2447		while (gic_read_lpir(rdbase + GICR_SYNCR) & 1)
2448			cpu_relax();
2449
2450		return;
2451	}
2452
2453	raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
2454
2455	its_vpe_db_proxy_map_locked(vpe);
2456
2457	target_col = &vpe_proxy.dev->its->collections[to];
2458	its_send_movi(vpe_proxy.dev, target_col, vpe->vpe_proxy_event);
2459	vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = to;
2460
2461	raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
2462}
2463
2464static int its_vpe_set_affinity(struct irq_data *d,
2465				const struct cpumask *mask_val,
2466				bool force)
2467{
2468	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
2469	int cpu = cpumask_first(mask_val);
 
 
2470
2471	/*
2472	 * Changing affinity is mega expensive, so let's be as lazy as
2473	 * we can and only do it if we really have to. Also, if mapped
2474	 * into the proxy device, we need to move the doorbell
2475	 * interrupt to its new location.
 
 
 
 
 
 
 
2476	 */
2477	if (vpe->col_idx != cpu) {
2478		int from = vpe->col_idx;
2479
2480		vpe->col_idx = cpu;
2481		its_send_vmovp(vpe);
2482		its_vpe_db_proxy_move(vpe, from, cpu);
2483	}
 
 
 
 
2484
 
 
 
 
 
 
 
 
 
2485	irq_data_update_effective_affinity(d, cpumask_of(cpu));
 
2486
2487	return IRQ_SET_MASK_OK_DONE;
2488}
2489
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2490static void its_vpe_schedule(struct its_vpe *vpe)
2491{
2492	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
2493	u64 val;
2494
2495	/* Schedule the VPE */
2496	val  = virt_to_phys(page_address(vpe->its_vm->vprop_page)) &
2497		GENMASK_ULL(51, 12);
2498	val |= (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
2499	val |= GICR_VPROPBASER_RaWb;
2500	val |= GICR_VPROPBASER_InnerShareable;
2501	gits_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
 
 
2502
2503	val  = virt_to_phys(page_address(vpe->vpt_page)) &
2504		GENMASK_ULL(51, 16);
2505	val |= GICR_VPENDBASER_RaWaWb;
2506	val |= GICR_VPENDBASER_NonShareable;
 
 
2507	/*
2508	 * There is no good way of finding out if the pending table is
2509	 * empty as we can race against the doorbell interrupt very
2510	 * easily. So in the end, vpe->pending_last is only an
2511	 * indication that the vcpu has something pending, not one
2512	 * that the pending table is empty. A good implementation
2513	 * would be able to read its coarse map pretty quickly anyway,
2514	 * making this a tolerable issue.
2515	 */
2516	val |= GICR_VPENDBASER_PendingLast;
2517	val |= vpe->idai ? GICR_VPENDBASER_IDAI : 0;
2518	val |= GICR_VPENDBASER_Valid;
2519	gits_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
2520}
2521
2522static void its_vpe_deschedule(struct its_vpe *vpe)
2523{
2524	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
2525	u32 count = 1000000;	/* 1s! */
2526	bool clean;
2527	u64 val;
2528
2529	/* We're being scheduled out */
2530	val = gits_read_vpendbaser(vlpi_base + GICR_VPENDBASER);
2531	val &= ~GICR_VPENDBASER_Valid;
2532	gits_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
2533
2534	do {
2535		val = gits_read_vpendbaser(vlpi_base + GICR_VPENDBASER);
2536		clean = !(val & GICR_VPENDBASER_Dirty);
2537		if (!clean) {
2538			count--;
2539			cpu_relax();
2540			udelay(1);
2541		}
2542	} while (!clean && count);
2543
2544	if (unlikely(!clean && !count)) {
2545		pr_err_ratelimited("ITS virtual pending table not cleaning\n");
2546		vpe->idai = false;
2547		vpe->pending_last = true;
2548	} else {
2549		vpe->idai = !!(val & GICR_VPENDBASER_IDAI);
2550		vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast);
2551	}
2552}
2553
2554static void its_vpe_invall(struct its_vpe *vpe)
2555{
2556	struct its_node *its;
2557
2558	list_for_each_entry(its, &its_nodes, entry) {
2559		if (!its->is_v4)
2560			continue;
2561
2562		if (its_list_map && !vpe->its_vm->vlpi_count[its->list_nr])
2563			continue;
2564
2565		/*
2566		 * Sending a VINVALL to a single ITS is enough, as all
2567		 * we need is to reach the redistributors.
2568		 */
2569		its_send_vinvall(its, vpe);
2570		return;
2571	}
2572}
2573
2574static int its_vpe_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
2575{
2576	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
2577	struct its_cmd_info *info = vcpu_info;
2578
2579	switch (info->cmd_type) {
2580	case SCHEDULE_VPE:
2581		its_vpe_schedule(vpe);
2582		return 0;
2583
2584	case DESCHEDULE_VPE:
2585		its_vpe_deschedule(vpe);
2586		return 0;
2587
 
 
 
 
2588	case INVALL_VPE:
2589		its_vpe_invall(vpe);
2590		return 0;
2591
2592	default:
2593		return -EINVAL;
2594	}
2595}
2596
2597static void its_vpe_send_cmd(struct its_vpe *vpe,
2598			     void (*cmd)(struct its_device *, u32))
2599{
2600	unsigned long flags;
2601
2602	raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
2603
2604	its_vpe_db_proxy_map_locked(vpe);
2605	cmd(vpe_proxy.dev, vpe->vpe_proxy_event);
2606
2607	raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
2608}
2609
2610static void its_vpe_send_inv(struct irq_data *d)
2611{
2612	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
2613
2614	if (gic_rdists->has_direct_lpi) {
2615		void __iomem *rdbase;
2616
2617		rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base;
2618		gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_INVLPIR);
2619		while (gic_read_lpir(rdbase + GICR_SYNCR) & 1)
2620			cpu_relax();
2621	} else {
2622		its_vpe_send_cmd(vpe, its_send_inv);
2623	}
2624}
2625
2626static void its_vpe_mask_irq(struct irq_data *d)
2627{
2628	/*
2629	 * We need to unmask the LPI, which is described by the parent
2630	 * irq_data. Instead of calling into the parent (which won't
2631	 * exactly do the right thing, let's simply use the
2632	 * parent_data pointer. Yes, I'm naughty.
2633	 */
2634	lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0);
2635	its_vpe_send_inv(d);
2636}
2637
2638static void its_vpe_unmask_irq(struct irq_data *d)
2639{
2640	/* Same hack as above... */
2641	lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED);
2642	its_vpe_send_inv(d);
2643}
2644
2645static int its_vpe_set_irqchip_state(struct irq_data *d,
2646				     enum irqchip_irq_state which,
2647				     bool state)
2648{
2649	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
2650
2651	if (which != IRQCHIP_STATE_PENDING)
2652		return -EINVAL;
2653
2654	if (gic_rdists->has_direct_lpi) {
2655		void __iomem *rdbase;
2656
2657		rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base;
2658		if (state) {
2659			gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_SETLPIR);
2660		} else {
2661			gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
2662			while (gic_read_lpir(rdbase + GICR_SYNCR) & 1)
2663				cpu_relax();
2664		}
2665	} else {
2666		if (state)
2667			its_vpe_send_cmd(vpe, its_send_int);
2668		else
2669			its_vpe_send_cmd(vpe, its_send_clear);
2670	}
2671
2672	return 0;
2673}
2674
 
 
 
 
 
2675static struct irq_chip its_vpe_irq_chip = {
2676	.name			= "GICv4-vpe",
2677	.irq_mask		= its_vpe_mask_irq,
2678	.irq_unmask		= its_vpe_unmask_irq,
2679	.irq_eoi		= irq_chip_eoi_parent,
2680	.irq_set_affinity	= its_vpe_set_affinity,
 
2681	.irq_set_irqchip_state	= its_vpe_set_irqchip_state,
2682	.irq_set_vcpu_affinity	= its_vpe_set_vcpu_affinity,
2683};
2684
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2685static int its_vpe_id_alloc(void)
2686{
2687	return ida_simple_get(&its_vpeid_ida, 0, ITS_MAX_VPEID, GFP_KERNEL);
2688}
2689
2690static void its_vpe_id_free(u16 id)
2691{
2692	ida_simple_remove(&its_vpeid_ida, id);
2693}
2694
2695static int its_vpe_init(struct its_vpe *vpe)
2696{
2697	struct page *vpt_page;
2698	int vpe_id;
2699
2700	/* Allocate vpe_id */
2701	vpe_id = its_vpe_id_alloc();
2702	if (vpe_id < 0)
2703		return vpe_id;
2704
2705	/* Allocate VPT */
2706	vpt_page = its_allocate_pending_table(GFP_KERNEL);
2707	if (!vpt_page) {
2708		its_vpe_id_free(vpe_id);
2709		return -ENOMEM;
2710	}
2711
2712	if (!its_alloc_vpe_table(vpe_id)) {
2713		its_vpe_id_free(vpe_id);
2714		its_free_pending_table(vpe->vpt_page);
2715		return -ENOMEM;
2716	}
2717
 
2718	vpe->vpe_id = vpe_id;
2719	vpe->vpt_page = vpt_page;
2720	vpe->vpe_proxy_event = -1;
 
 
 
2721
2722	return 0;
2723}
2724
2725static void its_vpe_teardown(struct its_vpe *vpe)
2726{
2727	its_vpe_db_proxy_unmap(vpe);
2728	its_vpe_id_free(vpe->vpe_id);
2729	its_free_pending_table(vpe->vpt_page);
2730}
2731
2732static void its_vpe_irq_domain_free(struct irq_domain *domain,
2733				    unsigned int virq,
2734				    unsigned int nr_irqs)
2735{
2736	struct its_vm *vm = domain->host_data;
2737	int i;
2738
2739	irq_domain_free_irqs_parent(domain, virq, nr_irqs);
2740
2741	for (i = 0; i < nr_irqs; i++) {
2742		struct irq_data *data = irq_domain_get_irq_data(domain,
2743								virq + i);
2744		struct its_vpe *vpe = irq_data_get_irq_chip_data(data);
2745
2746		BUG_ON(vm != vpe->its_vm);
2747
2748		clear_bit(data->hwirq, vm->db_bitmap);
2749		its_vpe_teardown(vpe);
2750		irq_domain_reset_irq_data(data);
2751	}
2752
2753	if (bitmap_empty(vm->db_bitmap, vm->nr_db_lpis)) {
2754		its_lpi_free_chunks(vm->db_bitmap, vm->db_lpi_base, vm->nr_db_lpis);
2755		its_free_prop_table(vm->vprop_page);
2756	}
2757}
2758
2759static int its_vpe_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
2760				    unsigned int nr_irqs, void *args)
2761{
 
2762	struct its_vm *vm = args;
2763	unsigned long *bitmap;
2764	struct page *vprop_page;
2765	int base, nr_ids, i, err = 0;
2766
2767	BUG_ON(!vm);
2768
2769	bitmap = its_lpi_alloc_chunks(nr_irqs, &base, &nr_ids);
2770	if (!bitmap)
2771		return -ENOMEM;
2772
2773	if (nr_ids < nr_irqs) {
2774		its_lpi_free_chunks(bitmap, base, nr_ids);
2775		return -ENOMEM;
2776	}
2777
2778	vprop_page = its_allocate_prop_table(GFP_KERNEL);
2779	if (!vprop_page) {
2780		its_lpi_free_chunks(bitmap, base, nr_ids);
2781		return -ENOMEM;
2782	}
2783
2784	vm->db_bitmap = bitmap;
2785	vm->db_lpi_base = base;
2786	vm->nr_db_lpis = nr_ids;
2787	vm->vprop_page = vprop_page;
2788
 
 
 
2789	for (i = 0; i < nr_irqs; i++) {
2790		vm->vpes[i]->vpe_db_lpi = base + i;
2791		err = its_vpe_init(vm->vpes[i]);
2792		if (err)
2793			break;
2794		err = its_irq_gic_domain_alloc(domain, virq + i,
2795					       vm->vpes[i]->vpe_db_lpi);
2796		if (err)
2797			break;
2798		irq_domain_set_hwirq_and_chip(domain, virq + i, i,
2799					      &its_vpe_irq_chip, vm->vpes[i]);
2800		set_bit(i, bitmap);
 
2801	}
2802
2803	if (err) {
2804		if (i > 0)
2805			its_vpe_irq_domain_free(domain, virq, i - 1);
2806
2807		its_lpi_free_chunks(bitmap, base, nr_ids);
2808		its_free_prop_table(vprop_page);
2809	}
2810
2811	return err;
2812}
2813
2814static int its_vpe_irq_domain_activate(struct irq_domain *domain,
2815				       struct irq_data *d, bool reserve)
2816{
2817	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
2818	struct its_node *its;
2819
2820	/* If we use the list map, we issue VMAPP on demand... */
2821	if (its_list_map)
 
 
 
 
2822		return 0;
2823
2824	/* Map the VPE to the first possible CPU */
2825	vpe->col_idx = cpumask_first(cpu_online_mask);
2826
2827	list_for_each_entry(its, &its_nodes, entry) {
2828		if (!its->is_v4)
2829			continue;
2830
2831		its_send_vmapp(its, vpe, true);
2832		its_send_vinvall(its, vpe);
2833	}
2834
2835	irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx));
2836
2837	return 0;
2838}
2839
2840static void its_vpe_irq_domain_deactivate(struct irq_domain *domain,
2841					  struct irq_data *d)
2842{
2843	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
2844	struct its_node *its;
2845
2846	/*
2847	 * If we use the list map, we unmap the VPE once no VLPIs are
2848	 * associated with the VM.
2849	 */
2850	if (its_list_map)
2851		return;
2852
2853	list_for_each_entry(its, &its_nodes, entry) {
2854		if (!its->is_v4)
2855			continue;
2856
2857		its_send_vmapp(its, vpe, false);
2858	}
 
 
 
 
 
 
 
 
 
2859}
2860
2861static const struct irq_domain_ops its_vpe_domain_ops = {
2862	.alloc			= its_vpe_irq_domain_alloc,
2863	.free			= its_vpe_irq_domain_free,
2864	.activate		= its_vpe_irq_domain_activate,
2865	.deactivate		= its_vpe_irq_domain_deactivate,
2866};
2867
2868static int its_force_quiescent(void __iomem *base)
2869{
2870	u32 count = 1000000;	/* 1s */
2871	u32 val;
2872
2873	val = readl_relaxed(base + GITS_CTLR);
2874	/*
2875	 * GIC architecture specification requires the ITS to be both
2876	 * disabled and quiescent for writes to GITS_BASER<n> or
2877	 * GITS_CBASER to not have UNPREDICTABLE results.
2878	 */
2879	if ((val & GITS_CTLR_QUIESCENT) && !(val & GITS_CTLR_ENABLE))
2880		return 0;
2881
2882	/* Disable the generation of all interrupts to this ITS */
2883	val &= ~(GITS_CTLR_ENABLE | GITS_CTLR_ImDe);
2884	writel_relaxed(val, base + GITS_CTLR);
2885
2886	/* Poll GITS_CTLR and wait until ITS becomes quiescent */
2887	while (1) {
2888		val = readl_relaxed(base + GITS_CTLR);
2889		if (val & GITS_CTLR_QUIESCENT)
2890			return 0;
2891
2892		count--;
2893		if (!count)
2894			return -EBUSY;
2895
2896		cpu_relax();
2897		udelay(1);
2898	}
2899}
2900
2901static bool __maybe_unused its_enable_quirk_cavium_22375(void *data)
2902{
2903	struct its_node *its = data;
2904
2905	/* erratum 22375: only alloc 8MB table size */
2906	its->device_ids = 0x14;		/* 20 bits, 8MB */
 
2907	its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_22375;
2908
2909	return true;
2910}
2911
2912static bool __maybe_unused its_enable_quirk_cavium_23144(void *data)
2913{
2914	struct its_node *its = data;
2915
2916	its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_23144;
2917
2918	return true;
2919}
2920
2921static bool __maybe_unused its_enable_quirk_qdf2400_e0065(void *data)
2922{
2923	struct its_node *its = data;
2924
2925	/* On QDF2400, the size of the ITE is 16Bytes */
2926	its->ite_size = 16;
 
2927
2928	return true;
2929}
2930
2931static u64 its_irq_get_msi_base_pre_its(struct its_device *its_dev)
2932{
2933	struct its_node *its = its_dev->its;
2934
2935	/*
2936	 * The Socionext Synquacer SoC has a so-called 'pre-ITS',
2937	 * which maps 32-bit writes targeted at a separate window of
2938	 * size '4 << device_id_bits' onto writes to GITS_TRANSLATER
2939	 * with device ID taken from bits [device_id_bits + 1:2] of
2940	 * the window offset.
2941	 */
2942	return its->pre_its_base + (its_dev->device_id << 2);
2943}
2944
2945static bool __maybe_unused its_enable_quirk_socionext_synquacer(void *data)
2946{
2947	struct its_node *its = data;
2948	u32 pre_its_window[2];
2949	u32 ids;
2950
2951	if (!fwnode_property_read_u32_array(its->fwnode_handle,
2952					   "socionext,synquacer-pre-its",
2953					   pre_its_window,
2954					   ARRAY_SIZE(pre_its_window))) {
2955
2956		its->pre_its_base = pre_its_window[0];
2957		its->get_msi_base = its_irq_get_msi_base_pre_its;
2958
2959		ids = ilog2(pre_its_window[1]) - 2;
2960		if (its->device_ids > ids)
2961			its->device_ids = ids;
 
 
2962
2963		/* the pre-ITS breaks isolation, so disable MSI remapping */
2964		its->msi_domain_flags &= ~IRQ_DOMAIN_FLAG_MSI_REMAP;
2965		return true;
2966	}
2967	return false;
2968}
2969
2970static bool __maybe_unused its_enable_quirk_hip07_161600802(void *data)
2971{
2972	struct its_node *its = data;
2973
2974	/*
2975	 * Hip07 insists on using the wrong address for the VLPI
2976	 * page. Trick it into doing the right thing...
2977	 */
2978	its->vlpi_redist_offset = SZ_128K;
2979	return true;
2980}
2981
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2982static const struct gic_quirk its_quirks[] = {
2983#ifdef CONFIG_CAVIUM_ERRATUM_22375
2984	{
2985		.desc	= "ITS: Cavium errata 22375, 24313",
2986		.iidr	= 0xa100034c,	/* ThunderX pass 1.x */
2987		.mask	= 0xffff0fff,
2988		.init	= its_enable_quirk_cavium_22375,
2989	},
2990#endif
2991#ifdef CONFIG_CAVIUM_ERRATUM_23144
2992	{
2993		.desc	= "ITS: Cavium erratum 23144",
2994		.iidr	= 0xa100034c,	/* ThunderX pass 1.x */
2995		.mask	= 0xffff0fff,
2996		.init	= its_enable_quirk_cavium_23144,
2997	},
2998#endif
2999#ifdef CONFIG_QCOM_QDF2400_ERRATUM_0065
3000	{
3001		.desc	= "ITS: QDF2400 erratum 0065",
3002		.iidr	= 0x00001070, /* QDF2400 ITS rev 1.x */
3003		.mask	= 0xffffffff,
3004		.init	= its_enable_quirk_qdf2400_e0065,
3005	},
3006#endif
3007#ifdef CONFIG_SOCIONEXT_SYNQUACER_PREITS
3008	{
3009		/*
3010		 * The Socionext Synquacer SoC incorporates ARM's own GIC-500
3011		 * implementation, but with a 'pre-ITS' added that requires
3012		 * special handling in software.
3013		 */
3014		.desc	= "ITS: Socionext Synquacer pre-ITS",
3015		.iidr	= 0x0001143b,
3016		.mask	= 0xffffffff,
3017		.init	= its_enable_quirk_socionext_synquacer,
3018	},
3019#endif
3020#ifdef CONFIG_HISILICON_ERRATUM_161600802
3021	{
3022		.desc	= "ITS: Hip07 erratum 161600802",
3023		.iidr	= 0x00000004,
3024		.mask	= 0xffffffff,
3025		.init	= its_enable_quirk_hip07_161600802,
3026	},
3027#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
3028	{
3029	}
3030};
3031
3032static void its_enable_quirks(struct its_node *its)
3033{
3034	u32 iidr = readl_relaxed(its->base + GITS_IIDR);
3035
3036	gic_enable_quirks(iidr, its_quirks, its);
 
 
 
 
3037}
3038
3039static int its_save_disable(void)
3040{
3041	struct its_node *its;
3042	int err = 0;
3043
3044	spin_lock(&its_lock);
3045	list_for_each_entry(its, &its_nodes, entry) {
3046		void __iomem *base;
3047
3048		if (!(its->flags & ITS_FLAGS_SAVE_SUSPEND_STATE))
3049			continue;
3050
3051		base = its->base;
3052		its->ctlr_save = readl_relaxed(base + GITS_CTLR);
3053		err = its_force_quiescent(base);
3054		if (err) {
3055			pr_err("ITS@%pa: failed to quiesce: %d\n",
3056			       &its->phys_base, err);
3057			writel_relaxed(its->ctlr_save, base + GITS_CTLR);
3058			goto err;
3059		}
3060
3061		its->cbaser_save = gits_read_cbaser(base + GITS_CBASER);
3062	}
3063
3064err:
3065	if (err) {
3066		list_for_each_entry_continue_reverse(its, &its_nodes, entry) {
3067			void __iomem *base;
3068
3069			if (!(its->flags & ITS_FLAGS_SAVE_SUSPEND_STATE))
3070				continue;
3071
3072			base = its->base;
3073			writel_relaxed(its->ctlr_save, base + GITS_CTLR);
3074		}
3075	}
3076	spin_unlock(&its_lock);
3077
3078	return err;
3079}
3080
3081static void its_restore_enable(void)
3082{
3083	struct its_node *its;
3084	int ret;
3085
3086	spin_lock(&its_lock);
3087	list_for_each_entry(its, &its_nodes, entry) {
3088		void __iomem *base;
3089		int i;
3090
3091		if (!(its->flags & ITS_FLAGS_SAVE_SUSPEND_STATE))
3092			continue;
3093
3094		base = its->base;
3095
3096		/*
3097		 * Make sure that the ITS is disabled. If it fails to quiesce,
3098		 * don't restore it since writing to CBASER or BASER<n>
3099		 * registers is undefined according to the GIC v3 ITS
3100		 * Specification.
 
 
3101		 */
 
3102		ret = its_force_quiescent(base);
3103		if (ret) {
3104			pr_err("ITS@%pa: failed to quiesce on resume: %d\n",
3105			       &its->phys_base, ret);
3106			continue;
3107		}
3108
3109		gits_write_cbaser(its->cbaser_save, base + GITS_CBASER);
3110
3111		/*
3112		 * Writing CBASER resets CREADR to 0, so make CWRITER and
3113		 * cmd_write line up with it.
3114		 */
3115		its->cmd_write = its->cmd_base;
3116		gits_write_cwriter(0, base + GITS_CWRITER);
3117
3118		/* Restore GITS_BASER from the value cache. */
3119		for (i = 0; i < GITS_BASER_NR_REGS; i++) {
3120			struct its_baser *baser = &its->tables[i];
3121
3122			if (!(baser->val & GITS_BASER_VALID))
3123				continue;
3124
3125			its_write_baser(its, baser, baser->val);
3126		}
3127		writel_relaxed(its->ctlr_save, base + GITS_CTLR);
3128
3129		/*
3130		 * Reinit the collection if it's stored in the ITS. This is
3131		 * indicated by the col_id being less than the HCC field.
3132		 * CID < HCC as specified in the GIC v3 Documentation.
3133		 */
3134		if (its->collections[smp_processor_id()].col_id <
3135		    GITS_TYPER_HCC(gic_read_typer(base + GITS_TYPER)))
3136			its_cpu_init_collection(its);
3137	}
3138	spin_unlock(&its_lock);
3139}
3140
3141static struct syscore_ops its_syscore_ops = {
3142	.suspend = its_save_disable,
3143	.resume = its_restore_enable,
3144};
3145
3146static int its_init_domain(struct fwnode_handle *handle, struct its_node *its)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3147{
3148	struct irq_domain *inner_domain;
3149	struct msi_domain_info *info;
3150
3151	info = kzalloc(sizeof(*info), GFP_KERNEL);
3152	if (!info)
3153		return -ENOMEM;
3154
3155	inner_domain = irq_domain_create_tree(handle, &its_domain_ops, its);
 
 
 
 
 
 
3156	if (!inner_domain) {
3157		kfree(info);
3158		return -ENOMEM;
3159	}
3160
3161	inner_domain->parent = its_parent;
3162	irq_domain_update_bus_token(inner_domain, DOMAIN_BUS_NEXUS);
3163	inner_domain->flags |= its->msi_domain_flags;
3164	info->ops = &its_msi_domain_ops;
3165	info->data = its;
3166	inner_domain->host_data = info;
3167
3168	return 0;
3169}
3170
3171static int its_init_vpe_domain(void)
3172{
3173	struct its_node *its;
3174	u32 devid;
3175	int entries;
3176
3177	if (gic_rdists->has_direct_lpi) {
3178		pr_info("ITS: Using DirectLPI for VPE invalidation\n");
3179		return 0;
3180	}
3181
3182	/* Any ITS will do, even if not v4 */
3183	its = list_first_entry(&its_nodes, struct its_node, entry);
3184
3185	entries = roundup_pow_of_two(nr_cpu_ids);
3186	vpe_proxy.vpes = kzalloc(sizeof(*vpe_proxy.vpes) * entries,
3187				 GFP_KERNEL);
3188	if (!vpe_proxy.vpes) {
3189		pr_err("ITS: Can't allocate GICv4 proxy device array\n");
3190		return -ENOMEM;
3191	}
3192
3193	/* Use the last possible DevID */
3194	devid = GENMASK(its->device_ids - 1, 0);
3195	vpe_proxy.dev = its_create_device(its, devid, entries, false);
3196	if (!vpe_proxy.dev) {
3197		kfree(vpe_proxy.vpes);
3198		pr_err("ITS: Can't allocate GICv4 proxy device\n");
3199		return -ENOMEM;
3200	}
3201
3202	BUG_ON(entries > vpe_proxy.dev->nr_ites);
3203
3204	raw_spin_lock_init(&vpe_proxy.lock);
3205	vpe_proxy.next_victim = 0;
3206	pr_info("ITS: Allocated DevID %x as GICv4 proxy device (%d slots)\n",
3207		devid, vpe_proxy.dev->nr_ites);
3208
3209	return 0;
3210}
3211
3212static int __init its_compute_its_list_map(struct resource *res,
3213					   void __iomem *its_base)
3214{
3215	int its_number;
3216	u32 ctlr;
3217
3218	/*
3219	 * This is assumed to be done early enough that we're
3220	 * guaranteed to be single-threaded, hence no
3221	 * locking. Should this change, we should address
3222	 * this.
3223	 */
3224	its_number = find_first_zero_bit(&its_list_map, GICv4_ITS_LIST_MAX);
3225	if (its_number >= GICv4_ITS_LIST_MAX) {
3226		pr_err("ITS@%pa: No ITSList entry available!\n",
3227		       &res->start);
3228		return -EINVAL;
3229	}
3230
3231	ctlr = readl_relaxed(its_base + GITS_CTLR);
3232	ctlr &= ~GITS_CTLR_ITS_NUMBER;
3233	ctlr |= its_number << GITS_CTLR_ITS_NUMBER_SHIFT;
3234	writel_relaxed(ctlr, its_base + GITS_CTLR);
3235	ctlr = readl_relaxed(its_base + GITS_CTLR);
3236	if ((ctlr & GITS_CTLR_ITS_NUMBER) != (its_number << GITS_CTLR_ITS_NUMBER_SHIFT)) {
3237		its_number = ctlr & GITS_CTLR_ITS_NUMBER;
3238		its_number >>= GITS_CTLR_ITS_NUMBER_SHIFT;
3239	}
3240
3241	if (test_and_set_bit(its_number, &its_list_map)) {
3242		pr_err("ITS@%pa: Duplicate ITSList entry %d\n",
3243		       &res->start, its_number);
3244		return -EINVAL;
3245	}
3246
3247	return its_number;
3248}
3249
3250static int __init its_probe_one(struct resource *res,
3251				struct fwnode_handle *handle, int numa_node)
3252{
3253	struct its_node *its;
3254	void __iomem *its_base;
3255	u32 val, ctlr;
3256	u64 baser, tmp, typer;
3257	int err;
3258
3259	its_base = ioremap(res->start, resource_size(res));
3260	if (!its_base) {
3261		pr_warn("ITS@%pa: Unable to map ITS registers\n", &res->start);
3262		return -ENOMEM;
3263	}
3264
3265	val = readl_relaxed(its_base + GITS_PIDR2) & GIC_PIDR2_ARCH_MASK;
3266	if (val != 0x30 && val != 0x40) {
3267		pr_warn("ITS@%pa: No ITS detected, giving up\n", &res->start);
3268		err = -ENODEV;
3269		goto out_unmap;
3270	}
3271
3272	err = its_force_quiescent(its_base);
3273	if (err) {
3274		pr_warn("ITS@%pa: Failed to quiesce, giving up\n", &res->start);
3275		goto out_unmap;
3276	}
3277
3278	pr_info("ITS %pR\n", res);
3279
3280	its = kzalloc(sizeof(*its), GFP_KERNEL);
3281	if (!its) {
3282		err = -ENOMEM;
3283		goto out_unmap;
3284	}
3285
3286	raw_spin_lock_init(&its->lock);
3287	INIT_LIST_HEAD(&its->entry);
3288	INIT_LIST_HEAD(&its->its_device_list);
3289	typer = gic_read_typer(its_base + GITS_TYPER);
3290	its->base = its_base;
3291	its->phys_base = res->start;
3292	its->ite_size = GITS_TYPER_ITT_ENTRY_SIZE(typer);
3293	its->device_ids = GITS_TYPER_DEVBITS(typer);
3294	its->is_v4 = !!(typer & GITS_TYPER_VLPIS);
3295	if (its->is_v4) {
3296		if (!(typer & GITS_TYPER_VMOVP)) {
3297			err = its_compute_its_list_map(res, its_base);
3298			if (err < 0)
3299				goto out_free_its;
3300
3301			its->list_nr = err;
3302
3303			pr_info("ITS@%pa: Using ITS number %d\n",
3304				&res->start, err);
3305		} else {
3306			pr_info("ITS@%pa: Single VMOVP capable\n", &res->start);
3307		}
3308	}
3309
3310	its->numa_node = numa_node;
 
 
 
 
 
 
 
3311
3312	its->cmd_base = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
3313						get_order(ITS_CMD_QUEUE_SZ));
3314	if (!its->cmd_base) {
 
 
 
 
 
 
 
3315		err = -ENOMEM;
3316		goto out_free_its;
3317	}
 
3318	its->cmd_write = its->cmd_base;
3319	its->fwnode_handle = handle;
3320	its->get_msi_base = its_irq_get_msi_base;
3321	its->msi_domain_flags = IRQ_DOMAIN_FLAG_MSI_REMAP;
3322
3323	its_enable_quirks(its);
3324
3325	err = its_alloc_tables(its);
3326	if (err)
3327		goto out_free_cmd;
3328
3329	err = its_alloc_collections(its);
3330	if (err)
3331		goto out_free_tables;
3332
3333	baser = (virt_to_phys(its->cmd_base)	|
3334		 GITS_CBASER_RaWaWb		|
3335		 GITS_CBASER_InnerShareable	|
3336		 (ITS_CMD_QUEUE_SZ / SZ_4K - 1)	|
3337		 GITS_CBASER_VALID);
3338
3339	gits_write_cbaser(baser, its->base + GITS_CBASER);
3340	tmp = gits_read_cbaser(its->base + GITS_CBASER);
3341
 
 
 
3342	if ((tmp ^ baser) & GITS_CBASER_SHAREABILITY_MASK) {
3343		if (!(tmp & GITS_CBASER_SHAREABILITY_MASK)) {
3344			/*
3345			 * The HW reports non-shareable, we must
3346			 * remove the cacheability attributes as
3347			 * well.
3348			 */
3349			baser &= ~(GITS_CBASER_SHAREABILITY_MASK |
3350				   GITS_CBASER_CACHEABILITY_MASK);
3351			baser |= GITS_CBASER_nC;
3352			gits_write_cbaser(baser, its->base + GITS_CBASER);
3353		}
3354		pr_info("ITS: using cache flushing for cmd queue\n");
3355		its->flags |= ITS_FLAGS_CMDQ_NEEDS_FLUSHING;
3356	}
3357
3358	gits_write_cwriter(0, its->base + GITS_CWRITER);
3359	ctlr = readl_relaxed(its->base + GITS_CTLR);
3360	ctlr |= GITS_CTLR_ENABLE;
3361	if (its->is_v4)
3362		ctlr |= GITS_CTLR_ImDe;
3363	writel_relaxed(ctlr, its->base + GITS_CTLR);
3364
3365	if (GITS_TYPER_HCC(typer))
3366		its->flags |= ITS_FLAGS_SAVE_SUSPEND_STATE;
3367
3368	err = its_init_domain(handle, its);
3369	if (err)
3370		goto out_free_tables;
3371
3372	spin_lock(&its_lock);
3373	list_add(&its->entry, &its_nodes);
3374	spin_unlock(&its_lock);
3375
3376	return 0;
3377
3378out_free_tables:
3379	its_free_tables(its);
3380out_free_cmd:
3381	free_pages((unsigned long)its->cmd_base, get_order(ITS_CMD_QUEUE_SZ));
3382out_free_its:
3383	kfree(its);
3384out_unmap:
3385	iounmap(its_base);
3386	pr_err("ITS@%pa: failed probing (%d)\n", &res->start, err);
3387	return err;
3388}
3389
3390static bool gic_rdists_supports_plpis(void)
3391{
3392	return !!(gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER) & GICR_TYPER_PLPIS);
3393}
3394
3395static int redist_disable_lpis(void)
3396{
3397	void __iomem *rbase = gic_data_rdist_rd_base();
3398	u64 timeout = USEC_PER_SEC;
3399	u64 val;
3400
3401	if (!gic_rdists_supports_plpis()) {
3402		pr_info("CPU%d: LPIs not supported\n", smp_processor_id());
3403		return -ENXIO;
3404	}
3405
3406	val = readl_relaxed(rbase + GICR_CTLR);
3407	if (!(val & GICR_CTLR_ENABLE_LPIS))
3408		return 0;
3409
3410	pr_warn("CPU%d: Booted with LPIs enabled, memory probably corrupted\n",
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3411		smp_processor_id());
3412	add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
3413
3414	/* Disable LPIs */
3415	val &= ~GICR_CTLR_ENABLE_LPIS;
3416	writel_relaxed(val, rbase + GICR_CTLR);
3417
3418	/* Make sure any change to GICR_CTLR is observable by the GIC */
3419	dsb(sy);
3420
3421	/*
3422	 * Software must observe RWP==0 after clearing GICR_CTLR.EnableLPIs
3423	 * from 1 to 0 before programming GICR_PEND{PROP}BASER registers.
3424	 * Error out if we time out waiting for RWP to clear.
3425	 */
3426	while (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_RWP) {
3427		if (!timeout) {
3428			pr_err("CPU%d: Timeout while disabling LPIs\n",
3429			       smp_processor_id());
3430			return -ETIMEDOUT;
3431		}
3432		udelay(1);
3433		timeout--;
3434	}
3435
3436	/*
3437	 * After it has been written to 1, it is IMPLEMENTATION
3438	 * DEFINED whether GICR_CTLR.EnableLPI becomes RES1 or can be
3439	 * cleared to 0. Error out if clearing the bit failed.
3440	 */
3441	if (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_ENABLE_LPIS) {
3442		pr_err("CPU%d: Failed to disable LPIs\n", smp_processor_id());
3443		return -EBUSY;
3444	}
3445
3446	return 0;
3447}
3448
3449int its_cpu_init(void)
3450{
3451	if (!list_empty(&its_nodes)) {
3452		int ret;
3453
3454		ret = redist_disable_lpis();
3455		if (ret)
3456			return ret;
3457
3458		its_cpu_init_lpis();
3459		its_cpu_init_collections();
3460	}
3461
3462	return 0;
3463}
3464
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3465static const struct of_device_id its_device_id[] = {
3466	{	.compatible	= "arm,gic-v3-its",	},
3467	{},
3468};
3469
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3470static int __init its_of_probe(struct device_node *node)
3471{
3472	struct device_node *np;
3473	struct resource res;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3474
3475	for (np = of_find_matching_node(node, its_device_id); np;
3476	     np = of_find_matching_node(np, its_device_id)) {
 
 
3477		if (!of_device_is_available(np))
3478			continue;
3479		if (!of_property_read_bool(np, "msi-controller")) {
3480			pr_warn("%pOF: no msi-controller property, ITS ignored\n",
3481				np);
3482			continue;
3483		}
3484
3485		if (of_address_to_resource(np, 0, &res)) {
3486			pr_warn("%pOF: no regs?\n", np);
3487			continue;
3488		}
3489
3490		its_probe_one(&res, &np->fwnode, of_node_to_nid(np));
 
 
 
 
 
 
 
 
 
3491	}
3492	return 0;
3493}
3494
3495#ifdef CONFIG_ACPI
3496
3497#define ACPI_GICV3_ITS_MEM_SIZE (SZ_128K)
3498
3499#ifdef CONFIG_ACPI_NUMA
3500struct its_srat_map {
3501	/* numa node id */
3502	u32	numa_node;
3503	/* GIC ITS ID */
3504	u32	its_id;
3505};
3506
3507static struct its_srat_map *its_srat_maps __initdata;
3508static int its_in_srat __initdata;
3509
3510static int __init acpi_get_its_numa_node(u32 its_id)
3511{
3512	int i;
3513
3514	for (i = 0; i < its_in_srat; i++) {
3515		if (its_id == its_srat_maps[i].its_id)
3516			return its_srat_maps[i].numa_node;
3517	}
3518	return NUMA_NO_NODE;
3519}
3520
3521static int __init gic_acpi_match_srat_its(struct acpi_subtable_header *header,
3522					  const unsigned long end)
3523{
3524	return 0;
3525}
3526
3527static int __init gic_acpi_parse_srat_its(struct acpi_subtable_header *header,
3528			 const unsigned long end)
3529{
3530	int node;
3531	struct acpi_srat_gic_its_affinity *its_affinity;
3532
3533	its_affinity = (struct acpi_srat_gic_its_affinity *)header;
3534	if (!its_affinity)
3535		return -EINVAL;
3536
3537	if (its_affinity->header.length < sizeof(*its_affinity)) {
3538		pr_err("SRAT: Invalid header length %d in ITS affinity\n",
3539			its_affinity->header.length);
3540		return -EINVAL;
3541	}
3542
3543	node = acpi_map_pxm_to_node(its_affinity->proximity_domain);
 
 
 
 
 
3544
3545	if (node == NUMA_NO_NODE || node >= MAX_NUMNODES) {
3546		pr_err("SRAT: Invalid NUMA node %d in ITS affinity\n", node);
3547		return 0;
3548	}
3549
3550	its_srat_maps[its_in_srat].numa_node = node;
3551	its_srat_maps[its_in_srat].its_id = its_affinity->its_id;
3552	its_in_srat++;
3553	pr_info("SRAT: PXM %d -> ITS %d -> Node %d\n",
3554		its_affinity->proximity_domain, its_affinity->its_id, node);
3555
3556	return 0;
3557}
3558
3559static void __init acpi_table_parse_srat_its(void)
3560{
3561	int count;
3562
3563	count = acpi_table_parse_entries(ACPI_SIG_SRAT,
3564			sizeof(struct acpi_table_srat),
3565			ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
3566			gic_acpi_match_srat_its, 0);
3567	if (count <= 0)
3568		return;
3569
3570	its_srat_maps = kmalloc(count * sizeof(struct its_srat_map),
3571				GFP_KERNEL);
3572	if (!its_srat_maps) {
3573		pr_warn("SRAT: Failed to allocate memory for its_srat_maps!\n");
3574		return;
3575	}
3576
3577	acpi_table_parse_entries(ACPI_SIG_SRAT,
3578			sizeof(struct acpi_table_srat),
3579			ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
3580			gic_acpi_parse_srat_its, 0);
3581}
3582
3583/* free the its_srat_maps after ITS probing */
3584static void __init acpi_its_srat_maps_free(void)
3585{
3586	kfree(its_srat_maps);
3587}
3588#else
3589static void __init acpi_table_parse_srat_its(void)	{ }
3590static int __init acpi_get_its_numa_node(u32 its_id) { return NUMA_NO_NODE; }
3591static void __init acpi_its_srat_maps_free(void) { }
3592#endif
3593
3594static int __init gic_acpi_parse_madt_its(struct acpi_subtable_header *header,
3595					  const unsigned long end)
3596{
3597	struct acpi_madt_generic_translator *its_entry;
3598	struct fwnode_handle *dom_handle;
 
3599	struct resource res;
3600	int err;
3601
3602	its_entry = (struct acpi_madt_generic_translator *)header;
3603	memset(&res, 0, sizeof(res));
3604	res.start = its_entry->base_address;
3605	res.end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1;
3606	res.flags = IORESOURCE_MEM;
3607
3608	dom_handle = irq_domain_alloc_fwnode((void *)its_entry->base_address);
3609	if (!dom_handle) {
3610		pr_err("ITS@%pa: Unable to allocate GICv3 ITS domain token\n",
3611		       &res.start);
3612		return -ENOMEM;
3613	}
3614
3615	err = iort_register_domain_token(its_entry->translation_id, res.start,
3616					 dom_handle);
3617	if (err) {
3618		pr_err("ITS@%pa: Unable to register GICv3 ITS domain token (ITS ID %d) to IORT\n",
3619		       &res.start, its_entry->translation_id);
3620		goto dom_err;
3621	}
3622
3623	err = its_probe_one(&res, dom_handle,
3624			acpi_get_its_numa_node(its_entry->translation_id));
 
 
 
 
 
 
3625	if (!err)
3626		return 0;
3627
 
3628	iort_deregister_domain_token(its_entry->translation_id);
3629dom_err:
3630	irq_domain_free_fwnode(dom_handle);
3631	return err;
3632}
3633
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3634static void __init its_acpi_probe(void)
3635{
3636	acpi_table_parse_srat_its();
3637	acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR,
3638			      gic_acpi_parse_madt_its, 0);
 
 
 
 
 
 
 
 
3639	acpi_its_srat_maps_free();
3640}
3641#else
3642static void __init its_acpi_probe(void) { }
3643#endif
3644
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3645int __init its_init(struct fwnode_handle *handle, struct rdists *rdists,
3646		    struct irq_domain *parent_domain)
3647{
3648	struct device_node *of_node;
3649	struct its_node *its;
3650	bool has_v4 = false;
 
3651	int err;
3652
 
 
3653	its_parent = parent_domain;
3654	of_node = to_of_node(handle);
3655	if (of_node)
3656		its_of_probe(of_node);
3657	else
3658		its_acpi_probe();
3659
3660	if (list_empty(&its_nodes)) {
3661		pr_warn("ITS: No ITS available, not enabling LPIs\n");
3662		return -ENXIO;
3663	}
3664
3665	gic_rdists = rdists;
3666	err = its_alloc_lpi_tables();
3667	if (err)
3668		return err;
3669
3670	list_for_each_entry(its, &its_nodes, entry)
3671		has_v4 |= its->is_v4;
 
 
 
 
 
 
3672
3673	if (has_v4 & rdists->has_vlpis) {
 
 
 
 
 
 
 
3674		if (its_init_vpe_domain() ||
3675		    its_init_v4(parent_domain, &its_vpe_domain_ops)) {
3676			rdists->has_vlpis = false;
3677			pr_err("ITS: Disabling GICv4 support\n");
3678		}
3679	}
3680
3681	register_syscore_ops(&its_syscore_ops);
3682
3683	return 0;
3684}
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved.
   4 * Author: Marc Zyngier <marc.zyngier@arm.com>
 
 
 
 
 
 
 
 
 
 
 
 
   5 */
   6
   7#include <linux/acpi.h>
   8#include <linux/acpi_iort.h>
   9#include <linux/bitfield.h>
  10#include <linux/bitmap.h>
  11#include <linux/cpu.h>
  12#include <linux/crash_dump.h>
  13#include <linux/delay.h>
  14#include <linux/efi.h>
  15#include <linux/interrupt.h>
  16#include <linux/iommu.h>
  17#include <linux/iopoll.h>
  18#include <linux/irqdomain.h>
  19#include <linux/list.h>
  20#include <linux/log2.h>
  21#include <linux/memblock.h>
  22#include <linux/mm.h>
  23#include <linux/msi.h>
  24#include <linux/of.h>
  25#include <linux/of_address.h>
  26#include <linux/of_irq.h>
  27#include <linux/of_pci.h>
  28#include <linux/of_platform.h>
  29#include <linux/percpu.h>
  30#include <linux/slab.h>
  31#include <linux/syscore_ops.h>
  32
  33#include <linux/irqchip.h>
  34#include <linux/irqchip/arm-gic-v3.h>
  35#include <linux/irqchip/arm-gic-v4.h>
  36
  37#include <asm/cputype.h>
  38#include <asm/exception.h>
  39
  40#include "irq-gic-common.h"
  41
  42#define ITS_FLAGS_CMDQ_NEEDS_FLUSHING		(1ULL << 0)
  43#define ITS_FLAGS_WORKAROUND_CAVIUM_22375	(1ULL << 1)
  44#define ITS_FLAGS_WORKAROUND_CAVIUM_23144	(1ULL << 2)
  45#define ITS_FLAGS_FORCE_NON_SHAREABLE		(1ULL << 3)
  46
  47#define RD_LOCAL_LPI_ENABLED                    BIT(0)
  48#define RD_LOCAL_PENDTABLE_PREALLOCATED         BIT(1)
  49#define RD_LOCAL_MEMRESERVE_DONE                BIT(2)
  50
  51static u32 lpi_id_bits;
  52
  53/*
  54 * We allocate memory for PROPBASE to cover 2 ^ lpi_id_bits LPIs to
  55 * deal with (one configuration byte per interrupt). PENDBASE has to
  56 * be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI).
  57 */
  58#define LPI_NRBITS		lpi_id_bits
  59#define LPI_PROPBASE_SZ		ALIGN(BIT(LPI_NRBITS), SZ_64K)
  60#define LPI_PENDBASE_SZ		ALIGN(BIT(LPI_NRBITS) / 8, SZ_64K)
  61
  62#define LPI_PROP_DEFAULT_PRIO	GICD_INT_DEF_PRI
  63
  64/*
  65 * Collection structure - just an ID, and a redistributor address to
  66 * ping. We use one per CPU as a bag of interrupts assigned to this
  67 * CPU.
  68 */
  69struct its_collection {
  70	u64			target_address;
  71	u16			col_id;
  72};
  73
  74/*
  75 * The ITS_BASER structure - contains memory information, cached
  76 * value of BASER register configuration and ITS page size.
  77 */
  78struct its_baser {
  79	void		*base;
  80	u64		val;
  81	u32		order;
  82	u32		psz;
  83};
  84
  85struct its_device;
  86
  87/*
  88 * The ITS structure - contains most of the infrastructure, with the
  89 * top-level MSI domain, the command queue, the collections, and the
  90 * list of devices writing to it.
  91 *
  92 * dev_alloc_lock has to be taken for device allocations, while the
  93 * spinlock must be taken to parse data structures such as the device
  94 * list.
  95 */
  96struct its_node {
  97	raw_spinlock_t		lock;
  98	struct mutex		dev_alloc_lock;
  99	struct list_head	entry;
 100	void __iomem		*base;
 101	void __iomem		*sgir_base;
 102	phys_addr_t		phys_base;
 103	struct its_cmd_block	*cmd_base;
 104	struct its_cmd_block	*cmd_write;
 105	struct its_baser	tables[GITS_BASER_NR_REGS];
 106	struct its_collection	*collections;
 107	struct fwnode_handle	*fwnode_handle;
 108	u64			(*get_msi_base)(struct its_device *its_dev);
 109	u64			typer;
 110	u64			cbaser_save;
 111	u32			ctlr_save;
 112	u32			mpidr;
 113	struct list_head	its_device_list;
 114	u64			flags;
 115	unsigned long		list_nr;
 
 
 116	int			numa_node;
 117	unsigned int		msi_domain_flags;
 118	u32			pre_its_base; /* for Socionext Synquacer */
 
 119	int			vlpi_redist_offset;
 120};
 121
 122#define is_v4(its)		(!!((its)->typer & GITS_TYPER_VLPIS))
 123#define is_v4_1(its)		(!!((its)->typer & GITS_TYPER_VMAPP))
 124#define device_ids(its)		(FIELD_GET(GITS_TYPER_DEVBITS, (its)->typer) + 1)
 125
 126#define ITS_ITT_ALIGN		SZ_256
 127
 128/* The maximum number of VPEID bits supported by VLPI commands */
 129#define ITS_MAX_VPEID_BITS						\
 130	({								\
 131		int nvpeid = 16;					\
 132		if (gic_rdists->has_rvpeid &&				\
 133		    gic_rdists->gicd_typer2 & GICD_TYPER2_VIL)		\
 134			nvpeid = 1 + (gic_rdists->gicd_typer2 &		\
 135				      GICD_TYPER2_VID);			\
 136									\
 137		nvpeid;							\
 138	})
 139#define ITS_MAX_VPEID		(1 << (ITS_MAX_VPEID_BITS))
 140
 141/* Convert page order to size in bytes */
 142#define PAGE_ORDER_TO_SIZE(o)	(PAGE_SIZE << (o))
 143
 144struct event_lpi_map {
 145	unsigned long		*lpi_map;
 146	u16			*col_map;
 147	irq_hw_number_t		lpi_base;
 148	int			nr_lpis;
 149	raw_spinlock_t		vlpi_lock;
 150	struct its_vm		*vm;
 151	struct its_vlpi_map	*vlpi_maps;
 152	int			nr_vlpis;
 153};
 154
 155/*
 156 * The ITS view of a device - belongs to an ITS, owns an interrupt
 157 * translation table, and a list of interrupts.  If it some of its
 158 * LPIs are injected into a guest (GICv4), the event_map.vm field
 159 * indicates which one.
 160 */
 161struct its_device {
 162	struct list_head	entry;
 163	struct its_node		*its;
 164	struct event_lpi_map	event_map;
 165	void			*itt;
 166	u32			nr_ites;
 167	u32			device_id;
 168	bool			shared;
 169};
 170
 171static struct {
 172	raw_spinlock_t		lock;
 173	struct its_device	*dev;
 174	struct its_vpe		**vpes;
 175	int			next_victim;
 176} vpe_proxy;
 177
 178struct cpu_lpi_count {
 179	atomic_t	managed;
 180	atomic_t	unmanaged;
 181};
 182
 183static DEFINE_PER_CPU(struct cpu_lpi_count, cpu_lpi_count);
 184
 185static LIST_HEAD(its_nodes);
 186static DEFINE_RAW_SPINLOCK(its_lock);
 187static struct rdists *gic_rdists;
 188static struct irq_domain *its_parent;
 189
 190static unsigned long its_list_map;
 191static u16 vmovp_seq_num;
 192static DEFINE_RAW_SPINLOCK(vmovp_lock);
 193
 194static DEFINE_IDA(its_vpeid_ida);
 195
 196#define gic_data_rdist()		(raw_cpu_ptr(gic_rdists->rdist))
 197#define gic_data_rdist_cpu(cpu)		(per_cpu_ptr(gic_rdists->rdist, cpu))
 198#define gic_data_rdist_rd_base()	(gic_data_rdist()->rd_base)
 199#define gic_data_rdist_vlpi_base()	(gic_data_rdist_rd_base() + SZ_128K)
 200
 201/*
 202 * Skip ITSs that have no vLPIs mapped, unless we're on GICv4.1, as we
 203 * always have vSGIs mapped.
 204 */
 205static bool require_its_list_vmovp(struct its_vm *vm, struct its_node *its)
 206{
 207	return (gic_rdists->has_rvpeid || vm->vlpi_count[its->list_nr]);
 208}
 209
 210static bool rdists_support_shareable(void)
 211{
 212	return !(gic_rdists->flags & RDIST_FLAGS_FORCE_NON_SHAREABLE);
 213}
 214
 215static u16 get_its_list(struct its_vm *vm)
 216{
 217	struct its_node *its;
 218	unsigned long its_list = 0;
 219
 220	list_for_each_entry(its, &its_nodes, entry) {
 221		if (!is_v4(its))
 222			continue;
 223
 224		if (require_its_list_vmovp(vm, its))
 225			__set_bit(its->list_nr, &its_list);
 226	}
 227
 228	return (u16)its_list;
 229}
 230
 231static inline u32 its_get_event_id(struct irq_data *d)
 232{
 233	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
 234	return d->hwirq - its_dev->event_map.lpi_base;
 235}
 236
 237static struct its_collection *dev_event_to_col(struct its_device *its_dev,
 238					       u32 event)
 239{
 240	struct its_node *its = its_dev->its;
 241
 242	return its->collections + its_dev->event_map.col_map[event];
 243}
 244
 245static struct its_vlpi_map *dev_event_to_vlpi_map(struct its_device *its_dev,
 246					       u32 event)
 247{
 248	if (WARN_ON_ONCE(event >= its_dev->event_map.nr_lpis))
 249		return NULL;
 250
 251	return &its_dev->event_map.vlpi_maps[event];
 252}
 253
 254static struct its_vlpi_map *get_vlpi_map(struct irq_data *d)
 255{
 256	if (irqd_is_forwarded_to_vcpu(d)) {
 257		struct its_device *its_dev = irq_data_get_irq_chip_data(d);
 258		u32 event = its_get_event_id(d);
 259
 260		return dev_event_to_vlpi_map(its_dev, event);
 261	}
 262
 263	return NULL;
 264}
 265
 266static int vpe_to_cpuid_lock(struct its_vpe *vpe, unsigned long *flags)
 267{
 268	raw_spin_lock_irqsave(&vpe->vpe_lock, *flags);
 269	return vpe->col_idx;
 270}
 271
 272static void vpe_to_cpuid_unlock(struct its_vpe *vpe, unsigned long flags)
 273{
 274	raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags);
 275}
 276
 277static struct irq_chip its_vpe_irq_chip;
 278
 279static int irq_to_cpuid_lock(struct irq_data *d, unsigned long *flags)
 280{
 281	struct its_vpe *vpe = NULL;
 282	int cpu;
 283
 284	if (d->chip == &its_vpe_irq_chip) {
 285		vpe = irq_data_get_irq_chip_data(d);
 286	} else {
 287		struct its_vlpi_map *map = get_vlpi_map(d);
 288		if (map)
 289			vpe = map->vpe;
 290	}
 291
 292	if (vpe) {
 293		cpu = vpe_to_cpuid_lock(vpe, flags);
 294	} else {
 295		/* Physical LPIs are already locked via the irq_desc lock */
 296		struct its_device *its_dev = irq_data_get_irq_chip_data(d);
 297		cpu = its_dev->event_map.col_map[its_get_event_id(d)];
 298		/* Keep GCC quiet... */
 299		*flags = 0;
 300	}
 301
 302	return cpu;
 303}
 304
 305static void irq_to_cpuid_unlock(struct irq_data *d, unsigned long flags)
 306{
 307	struct its_vpe *vpe = NULL;
 308
 309	if (d->chip == &its_vpe_irq_chip) {
 310		vpe = irq_data_get_irq_chip_data(d);
 311	} else {
 312		struct its_vlpi_map *map = get_vlpi_map(d);
 313		if (map)
 314			vpe = map->vpe;
 315	}
 316
 317	if (vpe)
 318		vpe_to_cpuid_unlock(vpe, flags);
 319}
 320
 321static struct its_collection *valid_col(struct its_collection *col)
 322{
 323	if (WARN_ON_ONCE(col->target_address & GENMASK_ULL(15, 0)))
 324		return NULL;
 325
 326	return col;
 327}
 328
 329static struct its_vpe *valid_vpe(struct its_node *its, struct its_vpe *vpe)
 330{
 331	if (valid_col(its->collections + vpe->col_idx))
 332		return vpe;
 333
 334	return NULL;
 335}
 336
 337/*
 338 * ITS command descriptors - parameters to be encoded in a command
 339 * block.
 340 */
 341struct its_cmd_desc {
 342	union {
 343		struct {
 344			struct its_device *dev;
 345			u32 event_id;
 346		} its_inv_cmd;
 347
 348		struct {
 349			struct its_device *dev;
 350			u32 event_id;
 351		} its_clear_cmd;
 352
 353		struct {
 354			struct its_device *dev;
 355			u32 event_id;
 356		} its_int_cmd;
 357
 358		struct {
 359			struct its_device *dev;
 360			int valid;
 361		} its_mapd_cmd;
 362
 363		struct {
 364			struct its_collection *col;
 365			int valid;
 366		} its_mapc_cmd;
 367
 368		struct {
 369			struct its_device *dev;
 370			u32 phys_id;
 371			u32 event_id;
 372		} its_mapti_cmd;
 373
 374		struct {
 375			struct its_device *dev;
 376			struct its_collection *col;
 377			u32 event_id;
 378		} its_movi_cmd;
 379
 380		struct {
 381			struct its_device *dev;
 382			u32 event_id;
 383		} its_discard_cmd;
 384
 385		struct {
 386			struct its_collection *col;
 387		} its_invall_cmd;
 388
 389		struct {
 390			struct its_vpe *vpe;
 391		} its_vinvall_cmd;
 392
 393		struct {
 394			struct its_vpe *vpe;
 395			struct its_collection *col;
 396			bool valid;
 397		} its_vmapp_cmd;
 398
 399		struct {
 400			struct its_vpe *vpe;
 401			struct its_device *dev;
 402			u32 virt_id;
 403			u32 event_id;
 404			bool db_enabled;
 405		} its_vmapti_cmd;
 406
 407		struct {
 408			struct its_vpe *vpe;
 409			struct its_device *dev;
 410			u32 event_id;
 411			bool db_enabled;
 412		} its_vmovi_cmd;
 413
 414		struct {
 415			struct its_vpe *vpe;
 416			struct its_collection *col;
 417			u16 seq_num;
 418			u16 its_list;
 419		} its_vmovp_cmd;
 420
 421		struct {
 422			struct its_vpe *vpe;
 423		} its_invdb_cmd;
 424
 425		struct {
 426			struct its_vpe *vpe;
 427			u8 sgi;
 428			u8 priority;
 429			bool enable;
 430			bool group;
 431			bool clear;
 432		} its_vsgi_cmd;
 433	};
 434};
 435
 436/*
 437 * The ITS command block, which is what the ITS actually parses.
 438 */
 439struct its_cmd_block {
 440	union {
 441		u64	raw_cmd[4];
 442		__le64	raw_cmd_le[4];
 443	};
 444};
 445
 446#define ITS_CMD_QUEUE_SZ		SZ_64K
 447#define ITS_CMD_QUEUE_NR_ENTRIES	(ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block))
 448
 449typedef struct its_collection *(*its_cmd_builder_t)(struct its_node *,
 450						    struct its_cmd_block *,
 451						    struct its_cmd_desc *);
 452
 453typedef struct its_vpe *(*its_cmd_vbuilder_t)(struct its_node *,
 454					      struct its_cmd_block *,
 455					      struct its_cmd_desc *);
 456
 457static void its_mask_encode(u64 *raw_cmd, u64 val, int h, int l)
 458{
 459	u64 mask = GENMASK_ULL(h, l);
 460	*raw_cmd &= ~mask;
 461	*raw_cmd |= (val << l) & mask;
 462}
 463
 464static void its_encode_cmd(struct its_cmd_block *cmd, u8 cmd_nr)
 465{
 466	its_mask_encode(&cmd->raw_cmd[0], cmd_nr, 7, 0);
 467}
 468
 469static void its_encode_devid(struct its_cmd_block *cmd, u32 devid)
 470{
 471	its_mask_encode(&cmd->raw_cmd[0], devid, 63, 32);
 472}
 473
 474static void its_encode_event_id(struct its_cmd_block *cmd, u32 id)
 475{
 476	its_mask_encode(&cmd->raw_cmd[1], id, 31, 0);
 477}
 478
 479static void its_encode_phys_id(struct its_cmd_block *cmd, u32 phys_id)
 480{
 481	its_mask_encode(&cmd->raw_cmd[1], phys_id, 63, 32);
 482}
 483
 484static void its_encode_size(struct its_cmd_block *cmd, u8 size)
 485{
 486	its_mask_encode(&cmd->raw_cmd[1], size, 4, 0);
 487}
 488
 489static void its_encode_itt(struct its_cmd_block *cmd, u64 itt_addr)
 490{
 491	its_mask_encode(&cmd->raw_cmd[2], itt_addr >> 8, 51, 8);
 492}
 493
 494static void its_encode_valid(struct its_cmd_block *cmd, int valid)
 495{
 496	its_mask_encode(&cmd->raw_cmd[2], !!valid, 63, 63);
 497}
 498
 499static void its_encode_target(struct its_cmd_block *cmd, u64 target_addr)
 500{
 501	its_mask_encode(&cmd->raw_cmd[2], target_addr >> 16, 51, 16);
 502}
 503
 504static void its_encode_collection(struct its_cmd_block *cmd, u16 col)
 505{
 506	its_mask_encode(&cmd->raw_cmd[2], col, 15, 0);
 507}
 508
 509static void its_encode_vpeid(struct its_cmd_block *cmd, u16 vpeid)
 510{
 511	its_mask_encode(&cmd->raw_cmd[1], vpeid, 47, 32);
 512}
 513
 514static void its_encode_virt_id(struct its_cmd_block *cmd, u32 virt_id)
 515{
 516	its_mask_encode(&cmd->raw_cmd[2], virt_id, 31, 0);
 517}
 518
 519static void its_encode_db_phys_id(struct its_cmd_block *cmd, u32 db_phys_id)
 520{
 521	its_mask_encode(&cmd->raw_cmd[2], db_phys_id, 63, 32);
 522}
 523
 524static void its_encode_db_valid(struct its_cmd_block *cmd, bool db_valid)
 525{
 526	its_mask_encode(&cmd->raw_cmd[2], db_valid, 0, 0);
 527}
 528
 529static void its_encode_seq_num(struct its_cmd_block *cmd, u16 seq_num)
 530{
 531	its_mask_encode(&cmd->raw_cmd[0], seq_num, 47, 32);
 532}
 533
 534static void its_encode_its_list(struct its_cmd_block *cmd, u16 its_list)
 535{
 536	its_mask_encode(&cmd->raw_cmd[1], its_list, 15, 0);
 537}
 538
 539static void its_encode_vpt_addr(struct its_cmd_block *cmd, u64 vpt_pa)
 540{
 541	its_mask_encode(&cmd->raw_cmd[3], vpt_pa >> 16, 51, 16);
 542}
 543
 544static void its_encode_vpt_size(struct its_cmd_block *cmd, u8 vpt_size)
 545{
 546	its_mask_encode(&cmd->raw_cmd[3], vpt_size, 4, 0);
 547}
 548
 549static void its_encode_vconf_addr(struct its_cmd_block *cmd, u64 vconf_pa)
 550{
 551	its_mask_encode(&cmd->raw_cmd[0], vconf_pa >> 16, 51, 16);
 552}
 553
 554static void its_encode_alloc(struct its_cmd_block *cmd, bool alloc)
 555{
 556	its_mask_encode(&cmd->raw_cmd[0], alloc, 8, 8);
 557}
 558
 559static void its_encode_ptz(struct its_cmd_block *cmd, bool ptz)
 560{
 561	its_mask_encode(&cmd->raw_cmd[0], ptz, 9, 9);
 562}
 563
 564static void its_encode_vmapp_default_db(struct its_cmd_block *cmd,
 565					u32 vpe_db_lpi)
 566{
 567	its_mask_encode(&cmd->raw_cmd[1], vpe_db_lpi, 31, 0);
 568}
 569
 570static void its_encode_vmovp_default_db(struct its_cmd_block *cmd,
 571					u32 vpe_db_lpi)
 572{
 573	its_mask_encode(&cmd->raw_cmd[3], vpe_db_lpi, 31, 0);
 574}
 575
 576static void its_encode_db(struct its_cmd_block *cmd, bool db)
 577{
 578	its_mask_encode(&cmd->raw_cmd[2], db, 63, 63);
 579}
 580
 581static void its_encode_sgi_intid(struct its_cmd_block *cmd, u8 sgi)
 582{
 583	its_mask_encode(&cmd->raw_cmd[0], sgi, 35, 32);
 584}
 585
 586static void its_encode_sgi_priority(struct its_cmd_block *cmd, u8 prio)
 587{
 588	its_mask_encode(&cmd->raw_cmd[0], prio >> 4, 23, 20);
 589}
 590
 591static void its_encode_sgi_group(struct its_cmd_block *cmd, bool grp)
 592{
 593	its_mask_encode(&cmd->raw_cmd[0], grp, 10, 10);
 594}
 595
 596static void its_encode_sgi_clear(struct its_cmd_block *cmd, bool clr)
 597{
 598	its_mask_encode(&cmd->raw_cmd[0], clr, 9, 9);
 599}
 600
 601static void its_encode_sgi_enable(struct its_cmd_block *cmd, bool en)
 602{
 603	its_mask_encode(&cmd->raw_cmd[0], en, 8, 8);
 604}
 605
 606static inline void its_fixup_cmd(struct its_cmd_block *cmd)
 607{
 608	/* Let's fixup BE commands */
 609	cmd->raw_cmd_le[0] = cpu_to_le64(cmd->raw_cmd[0]);
 610	cmd->raw_cmd_le[1] = cpu_to_le64(cmd->raw_cmd[1]);
 611	cmd->raw_cmd_le[2] = cpu_to_le64(cmd->raw_cmd[2]);
 612	cmd->raw_cmd_le[3] = cpu_to_le64(cmd->raw_cmd[3]);
 613}
 614
 615static struct its_collection *its_build_mapd_cmd(struct its_node *its,
 616						 struct its_cmd_block *cmd,
 617						 struct its_cmd_desc *desc)
 618{
 619	unsigned long itt_addr;
 620	u8 size = ilog2(desc->its_mapd_cmd.dev->nr_ites);
 621
 622	itt_addr = virt_to_phys(desc->its_mapd_cmd.dev->itt);
 623	itt_addr = ALIGN(itt_addr, ITS_ITT_ALIGN);
 624
 625	its_encode_cmd(cmd, GITS_CMD_MAPD);
 626	its_encode_devid(cmd, desc->its_mapd_cmd.dev->device_id);
 627	its_encode_size(cmd, size - 1);
 628	its_encode_itt(cmd, itt_addr);
 629	its_encode_valid(cmd, desc->its_mapd_cmd.valid);
 630
 631	its_fixup_cmd(cmd);
 632
 633	return NULL;
 634}
 635
 636static struct its_collection *its_build_mapc_cmd(struct its_node *its,
 637						 struct its_cmd_block *cmd,
 638						 struct its_cmd_desc *desc)
 639{
 640	its_encode_cmd(cmd, GITS_CMD_MAPC);
 641	its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
 642	its_encode_target(cmd, desc->its_mapc_cmd.col->target_address);
 643	its_encode_valid(cmd, desc->its_mapc_cmd.valid);
 644
 645	its_fixup_cmd(cmd);
 646
 647	return desc->its_mapc_cmd.col;
 648}
 649
 650static struct its_collection *its_build_mapti_cmd(struct its_node *its,
 651						  struct its_cmd_block *cmd,
 652						  struct its_cmd_desc *desc)
 653{
 654	struct its_collection *col;
 655
 656	col = dev_event_to_col(desc->its_mapti_cmd.dev,
 657			       desc->its_mapti_cmd.event_id);
 658
 659	its_encode_cmd(cmd, GITS_CMD_MAPTI);
 660	its_encode_devid(cmd, desc->its_mapti_cmd.dev->device_id);
 661	its_encode_event_id(cmd, desc->its_mapti_cmd.event_id);
 662	its_encode_phys_id(cmd, desc->its_mapti_cmd.phys_id);
 663	its_encode_collection(cmd, col->col_id);
 664
 665	its_fixup_cmd(cmd);
 666
 667	return valid_col(col);
 668}
 669
 670static struct its_collection *its_build_movi_cmd(struct its_node *its,
 671						 struct its_cmd_block *cmd,
 672						 struct its_cmd_desc *desc)
 673{
 674	struct its_collection *col;
 675
 676	col = dev_event_to_col(desc->its_movi_cmd.dev,
 677			       desc->its_movi_cmd.event_id);
 678
 679	its_encode_cmd(cmd, GITS_CMD_MOVI);
 680	its_encode_devid(cmd, desc->its_movi_cmd.dev->device_id);
 681	its_encode_event_id(cmd, desc->its_movi_cmd.event_id);
 682	its_encode_collection(cmd, desc->its_movi_cmd.col->col_id);
 683
 684	its_fixup_cmd(cmd);
 685
 686	return valid_col(col);
 687}
 688
 689static struct its_collection *its_build_discard_cmd(struct its_node *its,
 690						    struct its_cmd_block *cmd,
 691						    struct its_cmd_desc *desc)
 692{
 693	struct its_collection *col;
 694
 695	col = dev_event_to_col(desc->its_discard_cmd.dev,
 696			       desc->its_discard_cmd.event_id);
 697
 698	its_encode_cmd(cmd, GITS_CMD_DISCARD);
 699	its_encode_devid(cmd, desc->its_discard_cmd.dev->device_id);
 700	its_encode_event_id(cmd, desc->its_discard_cmd.event_id);
 701
 702	its_fixup_cmd(cmd);
 703
 704	return valid_col(col);
 705}
 706
 707static struct its_collection *its_build_inv_cmd(struct its_node *its,
 708						struct its_cmd_block *cmd,
 709						struct its_cmd_desc *desc)
 710{
 711	struct its_collection *col;
 712
 713	col = dev_event_to_col(desc->its_inv_cmd.dev,
 714			       desc->its_inv_cmd.event_id);
 715
 716	its_encode_cmd(cmd, GITS_CMD_INV);
 717	its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
 718	its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
 719
 720	its_fixup_cmd(cmd);
 721
 722	return valid_col(col);
 723}
 724
 725static struct its_collection *its_build_int_cmd(struct its_node *its,
 726						struct its_cmd_block *cmd,
 727						struct its_cmd_desc *desc)
 728{
 729	struct its_collection *col;
 730
 731	col = dev_event_to_col(desc->its_int_cmd.dev,
 732			       desc->its_int_cmd.event_id);
 733
 734	its_encode_cmd(cmd, GITS_CMD_INT);
 735	its_encode_devid(cmd, desc->its_int_cmd.dev->device_id);
 736	its_encode_event_id(cmd, desc->its_int_cmd.event_id);
 737
 738	its_fixup_cmd(cmd);
 739
 740	return valid_col(col);
 741}
 742
 743static struct its_collection *its_build_clear_cmd(struct its_node *its,
 744						  struct its_cmd_block *cmd,
 745						  struct its_cmd_desc *desc)
 746{
 747	struct its_collection *col;
 748
 749	col = dev_event_to_col(desc->its_clear_cmd.dev,
 750			       desc->its_clear_cmd.event_id);
 751
 752	its_encode_cmd(cmd, GITS_CMD_CLEAR);
 753	its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id);
 754	its_encode_event_id(cmd, desc->its_clear_cmd.event_id);
 755
 756	its_fixup_cmd(cmd);
 757
 758	return valid_col(col);
 759}
 760
 761static struct its_collection *its_build_invall_cmd(struct its_node *its,
 762						   struct its_cmd_block *cmd,
 763						   struct its_cmd_desc *desc)
 764{
 765	its_encode_cmd(cmd, GITS_CMD_INVALL);
 766	its_encode_collection(cmd, desc->its_invall_cmd.col->col_id);
 767
 768	its_fixup_cmd(cmd);
 769
 770	return desc->its_invall_cmd.col;
 771}
 772
 773static struct its_vpe *its_build_vinvall_cmd(struct its_node *its,
 774					     struct its_cmd_block *cmd,
 775					     struct its_cmd_desc *desc)
 776{
 777	its_encode_cmd(cmd, GITS_CMD_VINVALL);
 778	its_encode_vpeid(cmd, desc->its_vinvall_cmd.vpe->vpe_id);
 779
 780	its_fixup_cmd(cmd);
 781
 782	return valid_vpe(its, desc->its_vinvall_cmd.vpe);
 783}
 784
 785static struct its_vpe *its_build_vmapp_cmd(struct its_node *its,
 786					   struct its_cmd_block *cmd,
 787					   struct its_cmd_desc *desc)
 788{
 789	unsigned long vpt_addr, vconf_addr;
 790	u64 target;
 791	bool alloc;
 
 
 792
 793	its_encode_cmd(cmd, GITS_CMD_VMAPP);
 794	its_encode_vpeid(cmd, desc->its_vmapp_cmd.vpe->vpe_id);
 795	its_encode_valid(cmd, desc->its_vmapp_cmd.valid);
 796
 797	if (!desc->its_vmapp_cmd.valid) {
 798		if (is_v4_1(its)) {
 799			alloc = !atomic_dec_return(&desc->its_vmapp_cmd.vpe->vmapp_count);
 800			its_encode_alloc(cmd, alloc);
 801		}
 802
 803		goto out;
 804	}
 805
 806	vpt_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->vpt_page));
 807	target = desc->its_vmapp_cmd.col->target_address + its->vlpi_redist_offset;
 808
 809	its_encode_target(cmd, target);
 810	its_encode_vpt_addr(cmd, vpt_addr);
 811	its_encode_vpt_size(cmd, LPI_NRBITS - 1);
 812
 813	if (!is_v4_1(its))
 814		goto out;
 815
 816	vconf_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->its_vm->vprop_page));
 817
 818	alloc = !atomic_fetch_inc(&desc->its_vmapp_cmd.vpe->vmapp_count);
 819
 820	its_encode_alloc(cmd, alloc);
 821
 822	/*
 823	 * GICv4.1 provides a way to get the VLPI state, which needs the vPE
 824	 * to be unmapped first, and in this case, we may remap the vPE
 825	 * back while the VPT is not empty. So we can't assume that the
 826	 * VPT is empty on map. This is why we never advertise PTZ.
 827	 */
 828	its_encode_ptz(cmd, false);
 829	its_encode_vconf_addr(cmd, vconf_addr);
 830	its_encode_vmapp_default_db(cmd, desc->its_vmapp_cmd.vpe->vpe_db_lpi);
 831
 832out:
 833	its_fixup_cmd(cmd);
 834
 835	return valid_vpe(its, desc->its_vmapp_cmd.vpe);
 836}
 837
 838static struct its_vpe *its_build_vmapti_cmd(struct its_node *its,
 839					    struct its_cmd_block *cmd,
 840					    struct its_cmd_desc *desc)
 841{
 842	u32 db;
 843
 844	if (!is_v4_1(its) && desc->its_vmapti_cmd.db_enabled)
 845		db = desc->its_vmapti_cmd.vpe->vpe_db_lpi;
 846	else
 847		db = 1023;
 848
 849	its_encode_cmd(cmd, GITS_CMD_VMAPTI);
 850	its_encode_devid(cmd, desc->its_vmapti_cmd.dev->device_id);
 851	its_encode_vpeid(cmd, desc->its_vmapti_cmd.vpe->vpe_id);
 852	its_encode_event_id(cmd, desc->its_vmapti_cmd.event_id);
 853	its_encode_db_phys_id(cmd, db);
 854	its_encode_virt_id(cmd, desc->its_vmapti_cmd.virt_id);
 855
 856	its_fixup_cmd(cmd);
 857
 858	return valid_vpe(its, desc->its_vmapti_cmd.vpe);
 859}
 860
 861static struct its_vpe *its_build_vmovi_cmd(struct its_node *its,
 862					   struct its_cmd_block *cmd,
 863					   struct its_cmd_desc *desc)
 864{
 865	u32 db;
 866
 867	if (!is_v4_1(its) && desc->its_vmovi_cmd.db_enabled)
 868		db = desc->its_vmovi_cmd.vpe->vpe_db_lpi;
 869	else
 870		db = 1023;
 871
 872	its_encode_cmd(cmd, GITS_CMD_VMOVI);
 873	its_encode_devid(cmd, desc->its_vmovi_cmd.dev->device_id);
 874	its_encode_vpeid(cmd, desc->its_vmovi_cmd.vpe->vpe_id);
 875	its_encode_event_id(cmd, desc->its_vmovi_cmd.event_id);
 876	its_encode_db_phys_id(cmd, db);
 877	its_encode_db_valid(cmd, true);
 878
 879	its_fixup_cmd(cmd);
 880
 881	return valid_vpe(its, desc->its_vmovi_cmd.vpe);
 882}
 883
 884static struct its_vpe *its_build_vmovp_cmd(struct its_node *its,
 885					   struct its_cmd_block *cmd,
 886					   struct its_cmd_desc *desc)
 887{
 888	u64 target;
 889
 890	target = desc->its_vmovp_cmd.col->target_address + its->vlpi_redist_offset;
 891	its_encode_cmd(cmd, GITS_CMD_VMOVP);
 892	its_encode_seq_num(cmd, desc->its_vmovp_cmd.seq_num);
 893	its_encode_its_list(cmd, desc->its_vmovp_cmd.its_list);
 894	its_encode_vpeid(cmd, desc->its_vmovp_cmd.vpe->vpe_id);
 895	its_encode_target(cmd, target);
 896
 897	if (is_v4_1(its)) {
 898		its_encode_db(cmd, true);
 899		its_encode_vmovp_default_db(cmd, desc->its_vmovp_cmd.vpe->vpe_db_lpi);
 900	}
 901
 902	its_fixup_cmd(cmd);
 903
 904	return valid_vpe(its, desc->its_vmovp_cmd.vpe);
 905}
 906
 907static struct its_vpe *its_build_vinv_cmd(struct its_node *its,
 908					  struct its_cmd_block *cmd,
 909					  struct its_cmd_desc *desc)
 910{
 911	struct its_vlpi_map *map;
 912
 913	map = dev_event_to_vlpi_map(desc->its_inv_cmd.dev,
 914				    desc->its_inv_cmd.event_id);
 915
 916	its_encode_cmd(cmd, GITS_CMD_INV);
 917	its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
 918	its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
 919
 920	its_fixup_cmd(cmd);
 921
 922	return valid_vpe(its, map->vpe);
 923}
 924
 925static struct its_vpe *its_build_vint_cmd(struct its_node *its,
 926					  struct its_cmd_block *cmd,
 927					  struct its_cmd_desc *desc)
 928{
 929	struct its_vlpi_map *map;
 930
 931	map = dev_event_to_vlpi_map(desc->its_int_cmd.dev,
 932				    desc->its_int_cmd.event_id);
 933
 934	its_encode_cmd(cmd, GITS_CMD_INT);
 935	its_encode_devid(cmd, desc->its_int_cmd.dev->device_id);
 936	its_encode_event_id(cmd, desc->its_int_cmd.event_id);
 937
 938	its_fixup_cmd(cmd);
 939
 940	return valid_vpe(its, map->vpe);
 941}
 942
 943static struct its_vpe *its_build_vclear_cmd(struct its_node *its,
 944					    struct its_cmd_block *cmd,
 945					    struct its_cmd_desc *desc)
 946{
 947	struct its_vlpi_map *map;
 948
 949	map = dev_event_to_vlpi_map(desc->its_clear_cmd.dev,
 950				    desc->its_clear_cmd.event_id);
 951
 952	its_encode_cmd(cmd, GITS_CMD_CLEAR);
 953	its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id);
 954	its_encode_event_id(cmd, desc->its_clear_cmd.event_id);
 955
 956	its_fixup_cmd(cmd);
 957
 958	return valid_vpe(its, map->vpe);
 959}
 960
 961static struct its_vpe *its_build_invdb_cmd(struct its_node *its,
 962					   struct its_cmd_block *cmd,
 963					   struct its_cmd_desc *desc)
 964{
 965	if (WARN_ON(!is_v4_1(its)))
 966		return NULL;
 967
 968	its_encode_cmd(cmd, GITS_CMD_INVDB);
 969	its_encode_vpeid(cmd, desc->its_invdb_cmd.vpe->vpe_id);
 970
 971	its_fixup_cmd(cmd);
 972
 973	return valid_vpe(its, desc->its_invdb_cmd.vpe);
 974}
 975
 976static struct its_vpe *its_build_vsgi_cmd(struct its_node *its,
 977					  struct its_cmd_block *cmd,
 978					  struct its_cmd_desc *desc)
 979{
 980	if (WARN_ON(!is_v4_1(its)))
 981		return NULL;
 982
 983	its_encode_cmd(cmd, GITS_CMD_VSGI);
 984	its_encode_vpeid(cmd, desc->its_vsgi_cmd.vpe->vpe_id);
 985	its_encode_sgi_intid(cmd, desc->its_vsgi_cmd.sgi);
 986	its_encode_sgi_priority(cmd, desc->its_vsgi_cmd.priority);
 987	its_encode_sgi_group(cmd, desc->its_vsgi_cmd.group);
 988	its_encode_sgi_clear(cmd, desc->its_vsgi_cmd.clear);
 989	its_encode_sgi_enable(cmd, desc->its_vsgi_cmd.enable);
 990
 991	its_fixup_cmd(cmd);
 992
 993	return valid_vpe(its, desc->its_vsgi_cmd.vpe);
 994}
 995
 996static u64 its_cmd_ptr_to_offset(struct its_node *its,
 997				 struct its_cmd_block *ptr)
 998{
 999	return (ptr - its->cmd_base) * sizeof(*ptr);
1000}
1001
1002static int its_queue_full(struct its_node *its)
1003{
1004	int widx;
1005	int ridx;
1006
1007	widx = its->cmd_write - its->cmd_base;
1008	ridx = readl_relaxed(its->base + GITS_CREADR) / sizeof(struct its_cmd_block);
1009
1010	/* This is incredibly unlikely to happen, unless the ITS locks up. */
1011	if (((widx + 1) % ITS_CMD_QUEUE_NR_ENTRIES) == ridx)
1012		return 1;
1013
1014	return 0;
1015}
1016
1017static struct its_cmd_block *its_allocate_entry(struct its_node *its)
1018{
1019	struct its_cmd_block *cmd;
1020	u32 count = 1000000;	/* 1s! */
1021
1022	while (its_queue_full(its)) {
1023		count--;
1024		if (!count) {
1025			pr_err_ratelimited("ITS queue not draining\n");
1026			return NULL;
1027		}
1028		cpu_relax();
1029		udelay(1);
1030	}
1031
1032	cmd = its->cmd_write++;
1033
1034	/* Handle queue wrapping */
1035	if (its->cmd_write == (its->cmd_base + ITS_CMD_QUEUE_NR_ENTRIES))
1036		its->cmd_write = its->cmd_base;
1037
1038	/* Clear command  */
1039	cmd->raw_cmd[0] = 0;
1040	cmd->raw_cmd[1] = 0;
1041	cmd->raw_cmd[2] = 0;
1042	cmd->raw_cmd[3] = 0;
1043
1044	return cmd;
1045}
1046
1047static struct its_cmd_block *its_post_commands(struct its_node *its)
1048{
1049	u64 wr = its_cmd_ptr_to_offset(its, its->cmd_write);
1050
1051	writel_relaxed(wr, its->base + GITS_CWRITER);
1052
1053	return its->cmd_write;
1054}
1055
1056static void its_flush_cmd(struct its_node *its, struct its_cmd_block *cmd)
1057{
1058	/*
1059	 * Make sure the commands written to memory are observable by
1060	 * the ITS.
1061	 */
1062	if (its->flags & ITS_FLAGS_CMDQ_NEEDS_FLUSHING)
1063		gic_flush_dcache_to_poc(cmd, sizeof(*cmd));
1064	else
1065		dsb(ishst);
1066}
1067
1068static int its_wait_for_range_completion(struct its_node *its,
1069					 u64	prev_idx,
1070					 struct its_cmd_block *to)
1071{
1072	u64 rd_idx, to_idx, linear_idx;
1073	u32 count = 1000000;	/* 1s! */
1074
1075	/* Linearize to_idx if the command set has wrapped around */
1076	to_idx = its_cmd_ptr_to_offset(its, to);
1077	if (to_idx < prev_idx)
1078		to_idx += ITS_CMD_QUEUE_SZ;
1079
1080	linear_idx = prev_idx;
1081
1082	while (1) {
1083		s64 delta;
1084
1085		rd_idx = readl_relaxed(its->base + GITS_CREADR);
1086
1087		/*
1088		 * Compute the read pointer progress, taking the
1089		 * potential wrap-around into account.
1090		 */
1091		delta = rd_idx - prev_idx;
1092		if (rd_idx < prev_idx)
1093			delta += ITS_CMD_QUEUE_SZ;
1094
1095		linear_idx += delta;
1096		if (linear_idx >= to_idx)
1097			break;
1098
1099		count--;
1100		if (!count) {
1101			pr_err_ratelimited("ITS queue timeout (%llu %llu)\n",
1102					   to_idx, linear_idx);
1103			return -1;
1104		}
1105		prev_idx = rd_idx;
1106		cpu_relax();
1107		udelay(1);
1108	}
1109
1110	return 0;
1111}
1112
1113/* Warning, macro hell follows */
1114#define BUILD_SINGLE_CMD_FUNC(name, buildtype, synctype, buildfn)	\
1115void name(struct its_node *its,						\
1116	  buildtype builder,						\
1117	  struct its_cmd_desc *desc)					\
1118{									\
1119	struct its_cmd_block *cmd, *sync_cmd, *next_cmd;		\
1120	synctype *sync_obj;						\
1121	unsigned long flags;						\
1122	u64 rd_idx;							\
1123									\
1124	raw_spin_lock_irqsave(&its->lock, flags);			\
1125									\
1126	cmd = its_allocate_entry(its);					\
1127	if (!cmd) {		/* We're soooooo screewed... */		\
1128		raw_spin_unlock_irqrestore(&its->lock, flags);		\
1129		return;							\
1130	}								\
1131	sync_obj = builder(its, cmd, desc);				\
1132	its_flush_cmd(its, cmd);					\
1133									\
1134	if (sync_obj) {							\
1135		sync_cmd = its_allocate_entry(its);			\
1136		if (!sync_cmd)						\
1137			goto post;					\
1138									\
1139		buildfn(its, sync_cmd, sync_obj);			\
1140		its_flush_cmd(its, sync_cmd);				\
1141	}								\
1142									\
1143post:									\
1144	rd_idx = readl_relaxed(its->base + GITS_CREADR);		\
1145	next_cmd = its_post_commands(its);				\
1146	raw_spin_unlock_irqrestore(&its->lock, flags);			\
1147									\
1148	if (its_wait_for_range_completion(its, rd_idx, next_cmd))	\
1149		pr_err_ratelimited("ITS cmd %ps failed\n", builder);	\
1150}
1151
1152static void its_build_sync_cmd(struct its_node *its,
1153			       struct its_cmd_block *sync_cmd,
1154			       struct its_collection *sync_col)
1155{
1156	its_encode_cmd(sync_cmd, GITS_CMD_SYNC);
1157	its_encode_target(sync_cmd, sync_col->target_address);
1158
1159	its_fixup_cmd(sync_cmd);
1160}
1161
1162static BUILD_SINGLE_CMD_FUNC(its_send_single_command, its_cmd_builder_t,
1163			     struct its_collection, its_build_sync_cmd)
1164
1165static void its_build_vsync_cmd(struct its_node *its,
1166				struct its_cmd_block *sync_cmd,
1167				struct its_vpe *sync_vpe)
1168{
1169	its_encode_cmd(sync_cmd, GITS_CMD_VSYNC);
1170	its_encode_vpeid(sync_cmd, sync_vpe->vpe_id);
1171
1172	its_fixup_cmd(sync_cmd);
1173}
1174
1175static BUILD_SINGLE_CMD_FUNC(its_send_single_vcommand, its_cmd_vbuilder_t,
1176			     struct its_vpe, its_build_vsync_cmd)
1177
1178static void its_send_int(struct its_device *dev, u32 event_id)
1179{
1180	struct its_cmd_desc desc;
1181
1182	desc.its_int_cmd.dev = dev;
1183	desc.its_int_cmd.event_id = event_id;
1184
1185	its_send_single_command(dev->its, its_build_int_cmd, &desc);
1186}
1187
1188static void its_send_clear(struct its_device *dev, u32 event_id)
1189{
1190	struct its_cmd_desc desc;
1191
1192	desc.its_clear_cmd.dev = dev;
1193	desc.its_clear_cmd.event_id = event_id;
1194
1195	its_send_single_command(dev->its, its_build_clear_cmd, &desc);
1196}
1197
1198static void its_send_inv(struct its_device *dev, u32 event_id)
1199{
1200	struct its_cmd_desc desc;
1201
1202	desc.its_inv_cmd.dev = dev;
1203	desc.its_inv_cmd.event_id = event_id;
1204
1205	its_send_single_command(dev->its, its_build_inv_cmd, &desc);
1206}
1207
1208static void its_send_mapd(struct its_device *dev, int valid)
1209{
1210	struct its_cmd_desc desc;
1211
1212	desc.its_mapd_cmd.dev = dev;
1213	desc.its_mapd_cmd.valid = !!valid;
1214
1215	its_send_single_command(dev->its, its_build_mapd_cmd, &desc);
1216}
1217
1218static void its_send_mapc(struct its_node *its, struct its_collection *col,
1219			  int valid)
1220{
1221	struct its_cmd_desc desc;
1222
1223	desc.its_mapc_cmd.col = col;
1224	desc.its_mapc_cmd.valid = !!valid;
1225
1226	its_send_single_command(its, its_build_mapc_cmd, &desc);
1227}
1228
1229static void its_send_mapti(struct its_device *dev, u32 irq_id, u32 id)
1230{
1231	struct its_cmd_desc desc;
1232
1233	desc.its_mapti_cmd.dev = dev;
1234	desc.its_mapti_cmd.phys_id = irq_id;
1235	desc.its_mapti_cmd.event_id = id;
1236
1237	its_send_single_command(dev->its, its_build_mapti_cmd, &desc);
1238}
1239
1240static void its_send_movi(struct its_device *dev,
1241			  struct its_collection *col, u32 id)
1242{
1243	struct its_cmd_desc desc;
1244
1245	desc.its_movi_cmd.dev = dev;
1246	desc.its_movi_cmd.col = col;
1247	desc.its_movi_cmd.event_id = id;
1248
1249	its_send_single_command(dev->its, its_build_movi_cmd, &desc);
1250}
1251
1252static void its_send_discard(struct its_device *dev, u32 id)
1253{
1254	struct its_cmd_desc desc;
1255
1256	desc.its_discard_cmd.dev = dev;
1257	desc.its_discard_cmd.event_id = id;
1258
1259	its_send_single_command(dev->its, its_build_discard_cmd, &desc);
1260}
1261
1262static void its_send_invall(struct its_node *its, struct its_collection *col)
1263{
1264	struct its_cmd_desc desc;
1265
1266	desc.its_invall_cmd.col = col;
1267
1268	its_send_single_command(its, its_build_invall_cmd, &desc);
1269}
1270
1271static void its_send_vmapti(struct its_device *dev, u32 id)
1272{
1273	struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id);
1274	struct its_cmd_desc desc;
1275
1276	desc.its_vmapti_cmd.vpe = map->vpe;
1277	desc.its_vmapti_cmd.dev = dev;
1278	desc.its_vmapti_cmd.virt_id = map->vintid;
1279	desc.its_vmapti_cmd.event_id = id;
1280	desc.its_vmapti_cmd.db_enabled = map->db_enabled;
1281
1282	its_send_single_vcommand(dev->its, its_build_vmapti_cmd, &desc);
1283}
1284
1285static void its_send_vmovi(struct its_device *dev, u32 id)
1286{
1287	struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id);
1288	struct its_cmd_desc desc;
1289
1290	desc.its_vmovi_cmd.vpe = map->vpe;
1291	desc.its_vmovi_cmd.dev = dev;
1292	desc.its_vmovi_cmd.event_id = id;
1293	desc.its_vmovi_cmd.db_enabled = map->db_enabled;
1294
1295	its_send_single_vcommand(dev->its, its_build_vmovi_cmd, &desc);
1296}
1297
1298static void its_send_vmapp(struct its_node *its,
1299			   struct its_vpe *vpe, bool valid)
1300{
1301	struct its_cmd_desc desc;
1302
1303	desc.its_vmapp_cmd.vpe = vpe;
1304	desc.its_vmapp_cmd.valid = valid;
1305	desc.its_vmapp_cmd.col = &its->collections[vpe->col_idx];
1306
1307	its_send_single_vcommand(its, its_build_vmapp_cmd, &desc);
1308}
1309
1310static void its_send_vmovp(struct its_vpe *vpe)
1311{
1312	struct its_cmd_desc desc = {};
1313	struct its_node *its;
1314	unsigned long flags;
1315	int col_id = vpe->col_idx;
1316
1317	desc.its_vmovp_cmd.vpe = vpe;
 
1318
1319	if (!its_list_map) {
1320		its = list_first_entry(&its_nodes, struct its_node, entry);
 
1321		desc.its_vmovp_cmd.col = &its->collections[col_id];
1322		its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
1323		return;
1324	}
1325
1326	/*
1327	 * Yet another marvel of the architecture. If using the
1328	 * its_list "feature", we need to make sure that all ITSs
1329	 * receive all VMOVP commands in the same order. The only way
1330	 * to guarantee this is to make vmovp a serialization point.
1331	 *
1332	 * Wall <-- Head.
1333	 */
1334	raw_spin_lock_irqsave(&vmovp_lock, flags);
1335
1336	desc.its_vmovp_cmd.seq_num = vmovp_seq_num++;
1337	desc.its_vmovp_cmd.its_list = get_its_list(vpe->its_vm);
1338
1339	/* Emit VMOVPs */
1340	list_for_each_entry(its, &its_nodes, entry) {
1341		if (!is_v4(its))
1342			continue;
1343
1344		if (!require_its_list_vmovp(vpe->its_vm, its))
1345			continue;
1346
1347		desc.its_vmovp_cmd.col = &its->collections[col_id];
1348		its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
1349	}
1350
1351	raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1352}
1353
1354static void its_send_vinvall(struct its_node *its, struct its_vpe *vpe)
1355{
1356	struct its_cmd_desc desc;
1357
1358	desc.its_vinvall_cmd.vpe = vpe;
1359	its_send_single_vcommand(its, its_build_vinvall_cmd, &desc);
1360}
1361
1362static void its_send_vinv(struct its_device *dev, u32 event_id)
1363{
1364	struct its_cmd_desc desc;
1365
1366	/*
1367	 * There is no real VINV command. This is just a normal INV,
1368	 * with a VSYNC instead of a SYNC.
1369	 */
1370	desc.its_inv_cmd.dev = dev;
1371	desc.its_inv_cmd.event_id = event_id;
1372
1373	its_send_single_vcommand(dev->its, its_build_vinv_cmd, &desc);
1374}
1375
1376static void its_send_vint(struct its_device *dev, u32 event_id)
1377{
1378	struct its_cmd_desc desc;
1379
1380	/*
1381	 * There is no real VINT command. This is just a normal INT,
1382	 * with a VSYNC instead of a SYNC.
1383	 */
1384	desc.its_int_cmd.dev = dev;
1385	desc.its_int_cmd.event_id = event_id;
1386
1387	its_send_single_vcommand(dev->its, its_build_vint_cmd, &desc);
1388}
1389
1390static void its_send_vclear(struct its_device *dev, u32 event_id)
1391{
1392	struct its_cmd_desc desc;
1393
1394	/*
1395	 * There is no real VCLEAR command. This is just a normal CLEAR,
1396	 * with a VSYNC instead of a SYNC.
1397	 */
1398	desc.its_clear_cmd.dev = dev;
1399	desc.its_clear_cmd.event_id = event_id;
1400
1401	its_send_single_vcommand(dev->its, its_build_vclear_cmd, &desc);
1402}
1403
1404static void its_send_invdb(struct its_node *its, struct its_vpe *vpe)
1405{
1406	struct its_cmd_desc desc;
1407
1408	desc.its_invdb_cmd.vpe = vpe;
1409	its_send_single_vcommand(its, its_build_invdb_cmd, &desc);
1410}
1411
1412/*
1413 * irqchip functions - assumes MSI, mostly.
1414 */
1415static void lpi_write_config(struct irq_data *d, u8 clr, u8 set)
1416{
1417	struct its_vlpi_map *map = get_vlpi_map(d);
1418	irq_hw_number_t hwirq;
1419	void *va;
1420	u8 *cfg;
1421
1422	if (map) {
1423		va = page_address(map->vm->vprop_page);
 
 
 
 
 
1424		hwirq = map->vintid;
1425
1426		/* Remember the updated property */
1427		map->properties &= ~clr;
1428		map->properties |= set | LPI_PROP_GROUP1;
1429	} else {
1430		va = gic_rdists->prop_table_va;
1431		hwirq = d->hwirq;
1432	}
1433
1434	cfg = va + hwirq - 8192;
1435	*cfg &= ~clr;
1436	*cfg |= set | LPI_PROP_GROUP1;
1437
1438	/*
1439	 * Make the above write visible to the redistributors.
1440	 * And yes, we're flushing exactly: One. Single. Byte.
1441	 * Humpf...
1442	 */
1443	if (gic_rdists->flags & RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING)
1444		gic_flush_dcache_to_poc(cfg, sizeof(*cfg));
1445	else
1446		dsb(ishst);
1447}
1448
1449static void wait_for_syncr(void __iomem *rdbase)
1450{
1451	while (readl_relaxed(rdbase + GICR_SYNCR) & 1)
1452		cpu_relax();
1453}
1454
1455static void __direct_lpi_inv(struct irq_data *d, u64 val)
1456{
1457	void __iomem *rdbase;
1458	unsigned long flags;
1459	int cpu;
1460
1461	/* Target the redistributor this LPI is currently routed to */
1462	cpu = irq_to_cpuid_lock(d, &flags);
1463	raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
1464
1465	rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base;
1466	gic_write_lpir(val, rdbase + GICR_INVLPIR);
1467	wait_for_syncr(rdbase);
1468
1469	raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
1470	irq_to_cpuid_unlock(d, flags);
1471}
1472
1473static void direct_lpi_inv(struct irq_data *d)
1474{
1475	struct its_vlpi_map *map = get_vlpi_map(d);
1476	u64 val;
1477
1478	if (map) {
1479		struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1480
1481		WARN_ON(!is_v4_1(its_dev->its));
1482
1483		val  = GICR_INVLPIR_V;
1484		val |= FIELD_PREP(GICR_INVLPIR_VPEID, map->vpe->vpe_id);
1485		val |= FIELD_PREP(GICR_INVLPIR_INTID, map->vintid);
1486	} else {
1487		val = d->hwirq;
1488	}
1489
1490	__direct_lpi_inv(d, val);
1491}
1492
1493static void lpi_update_config(struct irq_data *d, u8 clr, u8 set)
1494{
1495	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1496
1497	lpi_write_config(d, clr, set);
1498	if (gic_rdists->has_direct_lpi &&
1499	    (is_v4_1(its_dev->its) || !irqd_is_forwarded_to_vcpu(d)))
1500		direct_lpi_inv(d);
1501	else if (!irqd_is_forwarded_to_vcpu(d))
1502		its_send_inv(its_dev, its_get_event_id(d));
1503	else
1504		its_send_vinv(its_dev, its_get_event_id(d));
1505}
1506
1507static void its_vlpi_set_doorbell(struct irq_data *d, bool enable)
1508{
1509	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1510	u32 event = its_get_event_id(d);
1511	struct its_vlpi_map *map;
1512
1513	/*
1514	 * GICv4.1 does away with the per-LPI nonsense, nothing to do
1515	 * here.
1516	 */
1517	if (is_v4_1(its_dev->its))
1518		return;
1519
1520	map = dev_event_to_vlpi_map(its_dev, event);
1521
1522	if (map->db_enabled == enable)
1523		return;
1524
1525	map->db_enabled = enable;
1526
1527	/*
1528	 * More fun with the architecture:
1529	 *
1530	 * Ideally, we'd issue a VMAPTI to set the doorbell to its LPI
1531	 * value or to 1023, depending on the enable bit. But that
1532	 * would be issuing a mapping for an /existing/ DevID+EventID
1533	 * pair, which is UNPREDICTABLE. Instead, let's issue a VMOVI
1534	 * to the /same/ vPE, using this opportunity to adjust the
1535	 * doorbell. Mouahahahaha. We loves it, Precious.
1536	 */
1537	its_send_vmovi(its_dev, event);
1538}
1539
1540static void its_mask_irq(struct irq_data *d)
1541{
1542	if (irqd_is_forwarded_to_vcpu(d))
1543		its_vlpi_set_doorbell(d, false);
1544
1545	lpi_update_config(d, LPI_PROP_ENABLED, 0);
1546}
1547
1548static void its_unmask_irq(struct irq_data *d)
1549{
1550	if (irqd_is_forwarded_to_vcpu(d))
1551		its_vlpi_set_doorbell(d, true);
1552
1553	lpi_update_config(d, 0, LPI_PROP_ENABLED);
1554}
1555
1556static __maybe_unused u32 its_read_lpi_count(struct irq_data *d, int cpu)
1557{
1558	if (irqd_affinity_is_managed(d))
1559		return atomic_read(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1560
1561	return atomic_read(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1562}
1563
1564static void its_inc_lpi_count(struct irq_data *d, int cpu)
1565{
1566	if (irqd_affinity_is_managed(d))
1567		atomic_inc(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1568	else
1569		atomic_inc(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1570}
1571
1572static void its_dec_lpi_count(struct irq_data *d, int cpu)
1573{
1574	if (irqd_affinity_is_managed(d))
1575		atomic_dec(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1576	else
1577		atomic_dec(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1578}
1579
1580static unsigned int cpumask_pick_least_loaded(struct irq_data *d,
1581					      const struct cpumask *cpu_mask)
1582{
1583	unsigned int cpu = nr_cpu_ids, tmp;
1584	int count = S32_MAX;
1585
1586	for_each_cpu(tmp, cpu_mask) {
1587		int this_count = its_read_lpi_count(d, tmp);
1588		if (this_count < count) {
1589			cpu = tmp;
1590		        count = this_count;
1591		}
1592	}
1593
1594	return cpu;
1595}
1596
1597/*
1598 * As suggested by Thomas Gleixner in:
1599 * https://lore.kernel.org/r/87h80q2aoc.fsf@nanos.tec.linutronix.de
1600 */
1601static int its_select_cpu(struct irq_data *d,
1602			  const struct cpumask *aff_mask)
1603{
1604	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1605	static DEFINE_RAW_SPINLOCK(tmpmask_lock);
1606	static struct cpumask __tmpmask;
1607	struct cpumask *tmpmask;
1608	unsigned long flags;
1609	int cpu, node;
1610	node = its_dev->its->numa_node;
1611	tmpmask = &__tmpmask;
1612
1613	raw_spin_lock_irqsave(&tmpmask_lock, flags);
1614
1615	if (!irqd_affinity_is_managed(d)) {
1616		/* First try the NUMA node */
1617		if (node != NUMA_NO_NODE) {
1618			/*
1619			 * Try the intersection of the affinity mask and the
1620			 * node mask (and the online mask, just to be safe).
1621			 */
1622			cpumask_and(tmpmask, cpumask_of_node(node), aff_mask);
1623			cpumask_and(tmpmask, tmpmask, cpu_online_mask);
1624
1625			/*
1626			 * Ideally, we would check if the mask is empty, and
1627			 * try again on the full node here.
1628			 *
1629			 * But it turns out that the way ACPI describes the
1630			 * affinity for ITSs only deals about memory, and
1631			 * not target CPUs, so it cannot describe a single
1632			 * ITS placed next to two NUMA nodes.
1633			 *
1634			 * Instead, just fallback on the online mask. This
1635			 * diverges from Thomas' suggestion above.
1636			 */
1637			cpu = cpumask_pick_least_loaded(d, tmpmask);
1638			if (cpu < nr_cpu_ids)
1639				goto out;
1640
1641			/* If we can't cross sockets, give up */
1642			if ((its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144))
1643				goto out;
1644
1645			/* If the above failed, expand the search */
1646		}
1647
1648		/* Try the intersection of the affinity and online masks */
1649		cpumask_and(tmpmask, aff_mask, cpu_online_mask);
1650
1651		/* If that doesn't fly, the online mask is the last resort */
1652		if (cpumask_empty(tmpmask))
1653			cpumask_copy(tmpmask, cpu_online_mask);
1654
1655		cpu = cpumask_pick_least_loaded(d, tmpmask);
1656	} else {
1657		cpumask_copy(tmpmask, aff_mask);
1658
1659		/* If we cannot cross sockets, limit the search to that node */
1660		if ((its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) &&
1661		    node != NUMA_NO_NODE)
1662			cpumask_and(tmpmask, tmpmask, cpumask_of_node(node));
1663
1664		cpu = cpumask_pick_least_loaded(d, tmpmask);
1665	}
1666out:
1667	raw_spin_unlock_irqrestore(&tmpmask_lock, flags);
1668
1669	pr_debug("IRQ%d -> %*pbl CPU%d\n", d->irq, cpumask_pr_args(aff_mask), cpu);
1670	return cpu;
1671}
1672
1673static int its_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
1674			    bool force)
1675{
 
 
1676	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1677	struct its_collection *target_col;
1678	u32 id = its_get_event_id(d);
1679	int cpu, prev_cpu;
1680
1681	/* A forwarded interrupt should use irq_set_vcpu_affinity */
1682	if (irqd_is_forwarded_to_vcpu(d))
1683		return -EINVAL;
1684
1685	prev_cpu = its_dev->event_map.col_map[id];
1686	its_dec_lpi_count(d, prev_cpu);
 
 
 
 
 
 
1687
1688	if (!force)
1689		cpu = its_select_cpu(d, mask_val);
1690	else
1691		cpu = cpumask_pick_least_loaded(d, mask_val);
1692
1693	if (cpu < 0 || cpu >= nr_cpu_ids)
1694		goto err;
1695
1696	/* don't set the affinity when the target cpu is same as current one */
1697	if (cpu != prev_cpu) {
1698		target_col = &its_dev->its->collections[cpu];
1699		its_send_movi(its_dev, target_col, id);
1700		its_dev->event_map.col_map[id] = cpu;
1701		irq_data_update_effective_affinity(d, cpumask_of(cpu));
1702	}
1703
1704	its_inc_lpi_count(d, cpu);
1705
1706	return IRQ_SET_MASK_OK_DONE;
1707
1708err:
1709	its_inc_lpi_count(d, prev_cpu);
1710	return -EINVAL;
1711}
1712
1713static u64 its_irq_get_msi_base(struct its_device *its_dev)
1714{
1715	struct its_node *its = its_dev->its;
1716
1717	return its->phys_base + GITS_TRANSLATER;
1718}
1719
1720static void its_irq_compose_msi_msg(struct irq_data *d, struct msi_msg *msg)
1721{
1722	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1723	struct its_node *its;
1724	u64 addr;
1725
1726	its = its_dev->its;
1727	addr = its->get_msi_base(its_dev);
1728
1729	msg->address_lo		= lower_32_bits(addr);
1730	msg->address_hi		= upper_32_bits(addr);
1731	msg->data		= its_get_event_id(d);
1732
1733	iommu_dma_compose_msi_msg(irq_data_get_msi_desc(d), msg);
1734}
1735
1736static int its_irq_set_irqchip_state(struct irq_data *d,
1737				     enum irqchip_irq_state which,
1738				     bool state)
1739{
1740	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1741	u32 event = its_get_event_id(d);
1742
1743	if (which != IRQCHIP_STATE_PENDING)
1744		return -EINVAL;
1745
1746	if (irqd_is_forwarded_to_vcpu(d)) {
1747		if (state)
1748			its_send_vint(its_dev, event);
1749		else
1750			its_send_vclear(its_dev, event);
1751	} else {
1752		if (state)
1753			its_send_int(its_dev, event);
1754		else
1755			its_send_clear(its_dev, event);
1756	}
1757
1758	return 0;
1759}
1760
1761static int its_irq_retrigger(struct irq_data *d)
1762{
1763	return !its_irq_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true);
1764}
1765
1766/*
1767 * Two favourable cases:
1768 *
1769 * (a) Either we have a GICv4.1, and all vPEs have to be mapped at all times
1770 *     for vSGI delivery
1771 *
1772 * (b) Or the ITSs do not use a list map, meaning that VMOVP is cheap enough
1773 *     and we're better off mapping all VPEs always
1774 *
1775 * If neither (a) nor (b) is true, then we map vPEs on demand.
1776 *
1777 */
1778static bool gic_requires_eager_mapping(void)
1779{
1780	if (!its_list_map || gic_rdists->has_rvpeid)
1781		return true;
1782
1783	return false;
1784}
1785
1786static void its_map_vm(struct its_node *its, struct its_vm *vm)
1787{
1788	unsigned long flags;
1789
1790	if (gic_requires_eager_mapping())
 
1791		return;
1792
1793	raw_spin_lock_irqsave(&vmovp_lock, flags);
1794
1795	/*
1796	 * If the VM wasn't mapped yet, iterate over the vpes and get
1797	 * them mapped now.
1798	 */
1799	vm->vlpi_count[its->list_nr]++;
1800
1801	if (vm->vlpi_count[its->list_nr] == 1) {
1802		int i;
1803
1804		for (i = 0; i < vm->nr_vpes; i++) {
1805			struct its_vpe *vpe = vm->vpes[i];
1806			struct irq_data *d = irq_get_irq_data(vpe->irq);
1807
1808			/* Map the VPE to the first possible CPU */
1809			vpe->col_idx = cpumask_first(cpu_online_mask);
1810			its_send_vmapp(its, vpe, true);
1811			its_send_vinvall(its, vpe);
1812			irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx));
1813		}
1814	}
1815
1816	raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1817}
1818
1819static void its_unmap_vm(struct its_node *its, struct its_vm *vm)
1820{
1821	unsigned long flags;
1822
1823	/* Not using the ITS list? Everything is always mapped. */
1824	if (gic_requires_eager_mapping())
1825		return;
1826
1827	raw_spin_lock_irqsave(&vmovp_lock, flags);
1828
1829	if (!--vm->vlpi_count[its->list_nr]) {
1830		int i;
1831
1832		for (i = 0; i < vm->nr_vpes; i++)
1833			its_send_vmapp(its, vm->vpes[i], false);
1834	}
1835
1836	raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1837}
1838
1839static int its_vlpi_map(struct irq_data *d, struct its_cmd_info *info)
1840{
1841	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1842	u32 event = its_get_event_id(d);
1843	int ret = 0;
1844
1845	if (!info->map)
1846		return -EINVAL;
1847
1848	raw_spin_lock(&its_dev->event_map.vlpi_lock);
1849
1850	if (!its_dev->event_map.vm) {
1851		struct its_vlpi_map *maps;
1852
1853		maps = kcalloc(its_dev->event_map.nr_lpis, sizeof(*maps),
1854			       GFP_ATOMIC);
1855		if (!maps) {
1856			ret = -ENOMEM;
1857			goto out;
1858		}
1859
1860		its_dev->event_map.vm = info->map->vm;
1861		its_dev->event_map.vlpi_maps = maps;
1862	} else if (its_dev->event_map.vm != info->map->vm) {
1863		ret = -EINVAL;
1864		goto out;
1865	}
1866
1867	/* Get our private copy of the mapping information */
1868	its_dev->event_map.vlpi_maps[event] = *info->map;
1869
1870	if (irqd_is_forwarded_to_vcpu(d)) {
1871		/* Already mapped, move it around */
1872		its_send_vmovi(its_dev, event);
1873	} else {
1874		/* Ensure all the VPEs are mapped on this ITS */
1875		its_map_vm(its_dev->its, info->map->vm);
1876
1877		/*
1878		 * Flag the interrupt as forwarded so that we can
1879		 * start poking the virtual property table.
1880		 */
1881		irqd_set_forwarded_to_vcpu(d);
1882
1883		/* Write out the property to the prop table */
1884		lpi_write_config(d, 0xff, info->map->properties);
1885
1886		/* Drop the physical mapping */
1887		its_send_discard(its_dev, event);
1888
1889		/* and install the virtual one */
1890		its_send_vmapti(its_dev, event);
1891
1892		/* Increment the number of VLPIs */
1893		its_dev->event_map.nr_vlpis++;
1894	}
1895
1896out:
1897	raw_spin_unlock(&its_dev->event_map.vlpi_lock);
1898	return ret;
1899}
1900
1901static int its_vlpi_get(struct irq_data *d, struct its_cmd_info *info)
1902{
1903	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1904	struct its_vlpi_map *map;
1905	int ret = 0;
1906
1907	raw_spin_lock(&its_dev->event_map.vlpi_lock);
1908
1909	map = get_vlpi_map(d);
1910
1911	if (!its_dev->event_map.vm || !map) {
1912		ret = -EINVAL;
1913		goto out;
1914	}
1915
1916	/* Copy our mapping information to the incoming request */
1917	*info->map = *map;
1918
1919out:
1920	raw_spin_unlock(&its_dev->event_map.vlpi_lock);
1921	return ret;
1922}
1923
1924static int its_vlpi_unmap(struct irq_data *d)
1925{
1926	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1927	u32 event = its_get_event_id(d);
1928	int ret = 0;
1929
1930	raw_spin_lock(&its_dev->event_map.vlpi_lock);
1931
1932	if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d)) {
1933		ret = -EINVAL;
1934		goto out;
1935	}
1936
1937	/* Drop the virtual mapping */
1938	its_send_discard(its_dev, event);
1939
1940	/* and restore the physical one */
1941	irqd_clr_forwarded_to_vcpu(d);
1942	its_send_mapti(its_dev, d->hwirq, event);
1943	lpi_update_config(d, 0xff, (LPI_PROP_DEFAULT_PRIO |
1944				    LPI_PROP_ENABLED |
1945				    LPI_PROP_GROUP1));
1946
1947	/* Potentially unmap the VM from this ITS */
1948	its_unmap_vm(its_dev->its, its_dev->event_map.vm);
1949
1950	/*
1951	 * Drop the refcount and make the device available again if
1952	 * this was the last VLPI.
1953	 */
1954	if (!--its_dev->event_map.nr_vlpis) {
1955		its_dev->event_map.vm = NULL;
1956		kfree(its_dev->event_map.vlpi_maps);
1957	}
1958
1959out:
1960	raw_spin_unlock(&its_dev->event_map.vlpi_lock);
1961	return ret;
1962}
1963
1964static int its_vlpi_prop_update(struct irq_data *d, struct its_cmd_info *info)
1965{
1966	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1967
1968	if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d))
1969		return -EINVAL;
1970
1971	if (info->cmd_type == PROP_UPDATE_AND_INV_VLPI)
1972		lpi_update_config(d, 0xff, info->config);
1973	else
1974		lpi_write_config(d, 0xff, info->config);
1975	its_vlpi_set_doorbell(d, !!(info->config & LPI_PROP_ENABLED));
1976
1977	return 0;
1978}
1979
1980static int its_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
1981{
1982	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1983	struct its_cmd_info *info = vcpu_info;
1984
1985	/* Need a v4 ITS */
1986	if (!is_v4(its_dev->its))
1987		return -EINVAL;
1988
1989	/* Unmap request? */
1990	if (!info)
1991		return its_vlpi_unmap(d);
1992
1993	switch (info->cmd_type) {
1994	case MAP_VLPI:
1995		return its_vlpi_map(d, info);
1996
1997	case GET_VLPI:
1998		return its_vlpi_get(d, info);
1999
2000	case PROP_UPDATE_VLPI:
2001	case PROP_UPDATE_AND_INV_VLPI:
2002		return its_vlpi_prop_update(d, info);
2003
2004	default:
2005		return -EINVAL;
2006	}
2007}
2008
2009static struct irq_chip its_irq_chip = {
2010	.name			= "ITS",
2011	.irq_mask		= its_mask_irq,
2012	.irq_unmask		= its_unmask_irq,
2013	.irq_eoi		= irq_chip_eoi_parent,
2014	.irq_set_affinity	= its_set_affinity,
2015	.irq_compose_msi_msg	= its_irq_compose_msi_msg,
2016	.irq_set_irqchip_state	= its_irq_set_irqchip_state,
2017	.irq_retrigger		= its_irq_retrigger,
2018	.irq_set_vcpu_affinity	= its_irq_set_vcpu_affinity,
2019};
2020
2021
2022/*
2023 * How we allocate LPIs:
2024 *
2025 * lpi_range_list contains ranges of LPIs that are to available to
2026 * allocate from. To allocate LPIs, just pick the first range that
2027 * fits the required allocation, and reduce it by the required
2028 * amount. Once empty, remove the range from the list.
2029 *
2030 * To free a range of LPIs, add a free range to the list, sort it and
2031 * merge the result if the new range happens to be adjacent to an
2032 * already free block.
2033 *
2034 * The consequence of the above is that allocation is cost is low, but
2035 * freeing is expensive. We assumes that freeing rarely occurs.
2036 */
 
 
2037#define ITS_MAX_LPI_NRBITS	16 /* 64K LPIs */
2038
2039static DEFINE_MUTEX(lpi_range_lock);
2040static LIST_HEAD(lpi_range_list);
 
2041
2042struct lpi_range {
2043	struct list_head	entry;
2044	u32			base_id;
2045	u32			span;
2046};
2047
2048static struct lpi_range *mk_lpi_range(u32 base, u32 span)
2049{
2050	struct lpi_range *range;
2051
2052	range = kmalloc(sizeof(*range), GFP_KERNEL);
2053	if (range) {
2054		range->base_id = base;
2055		range->span = span;
2056	}
2057
2058	return range;
2059}
2060
2061static int alloc_lpi_range(u32 nr_lpis, u32 *base)
2062{
2063	struct lpi_range *range, *tmp;
2064	int err = -ENOSPC;
2065
2066	mutex_lock(&lpi_range_lock);
2067
2068	list_for_each_entry_safe(range, tmp, &lpi_range_list, entry) {
2069		if (range->span >= nr_lpis) {
2070			*base = range->base_id;
2071			range->base_id += nr_lpis;
2072			range->span -= nr_lpis;
2073
2074			if (range->span == 0) {
2075				list_del(&range->entry);
2076				kfree(range);
2077			}
2078
2079			err = 0;
2080			break;
2081		}
2082	}
2083
2084	mutex_unlock(&lpi_range_lock);
2085
2086	pr_debug("ITS: alloc %u:%u\n", *base, nr_lpis);
2087	return err;
2088}
2089
2090static void merge_lpi_ranges(struct lpi_range *a, struct lpi_range *b)
2091{
2092	if (&a->entry == &lpi_range_list || &b->entry == &lpi_range_list)
2093		return;
2094	if (a->base_id + a->span != b->base_id)
2095		return;
2096	b->base_id = a->base_id;
2097	b->span += a->span;
2098	list_del(&a->entry);
2099	kfree(a);
2100}
2101
2102static int free_lpi_range(u32 base, u32 nr_lpis)
2103{
2104	struct lpi_range *new, *old;
2105
2106	new = mk_lpi_range(base, nr_lpis);
2107	if (!new)
 
 
2108		return -ENOMEM;
2109
2110	mutex_lock(&lpi_range_lock);
2111
2112	list_for_each_entry_reverse(old, &lpi_range_list, entry) {
2113		if (old->base_id < base)
2114			break;
2115	}
2116	/*
2117	 * old is the last element with ->base_id smaller than base,
2118	 * so new goes right after it. If there are no elements with
2119	 * ->base_id smaller than base, &old->entry ends up pointing
2120	 * at the head of the list, and inserting new it the start of
2121	 * the list is the right thing to do in that case as well.
2122	 */
2123	list_add(&new->entry, &old->entry);
2124	/*
2125	 * Now check if we can merge with the preceding and/or
2126	 * following ranges.
2127	 */
2128	merge_lpi_ranges(old, new);
2129	merge_lpi_ranges(new, list_next_entry(new, entry));
2130
2131	mutex_unlock(&lpi_range_lock);
2132	return 0;
2133}
2134
2135static int __init its_lpi_init(u32 id_bits)
2136{
2137	u32 lpis = (1UL << id_bits) - 8192;
2138	u32 numlpis;
2139	int err;
2140
2141	numlpis = 1UL << GICD_TYPER_NUM_LPIS(gic_rdists->gicd_typer);
2142
2143	if (numlpis > 2 && !WARN_ON(numlpis > lpis)) {
2144		lpis = numlpis;
2145		pr_info("ITS: Using hypervisor restricted LPI range [%u]\n",
2146			lpis);
2147	}
2148
2149	/*
2150	 * Initializing the allocator is just the same as freeing the
2151	 * full range of LPIs.
2152	 */
2153	err = free_lpi_range(8192, lpis);
2154	pr_debug("ITS: Allocator initialized for %u LPIs\n", lpis);
2155	return err;
2156}
2157
2158static unsigned long *its_lpi_alloc(int nr_irqs, u32 *base, int *nr_ids)
2159{
2160	unsigned long *bitmap = NULL;
2161	int err = 0;
2162
2163	do {
2164		err = alloc_lpi_range(nr_irqs, base);
2165		if (!err)
 
2166			break;
2167
2168		nr_irqs /= 2;
2169	} while (nr_irqs > 0);
2170
2171	if (!nr_irqs)
2172		err = -ENOSPC;
2173
2174	if (err)
2175		goto out;
2176
2177	bitmap = bitmap_zalloc(nr_irqs, GFP_ATOMIC);
 
2178	if (!bitmap)
2179		goto out;
2180
2181	*nr_ids = nr_irqs;
 
 
 
 
2182
2183out:
 
 
2184	if (!bitmap)
2185		*base = *nr_ids = 0;
2186
2187	return bitmap;
2188}
2189
2190static void its_lpi_free(unsigned long *bitmap, u32 base, u32 nr_ids)
2191{
2192	WARN_ON(free_lpi_range(base, nr_ids));
2193	bitmap_free(bitmap);
2194}
 
 
 
 
 
 
 
 
 
 
 
2195
2196static void gic_reset_prop_table(void *va)
2197{
2198	/* Priority 0xa0, Group-1, disabled */
2199	memset(va, LPI_PROP_DEFAULT_PRIO | LPI_PROP_GROUP1, LPI_PROPBASE_SZ);
2200
2201	/* Make sure the GIC will observe the written configuration */
2202	gic_flush_dcache_to_poc(va, LPI_PROPBASE_SZ);
2203}
2204
2205static struct page *its_allocate_prop_table(gfp_t gfp_flags)
2206{
2207	struct page *prop_page;
2208
2209	prop_page = alloc_pages(gfp_flags, get_order(LPI_PROPBASE_SZ));
2210	if (!prop_page)
2211		return NULL;
2212
2213	gic_reset_prop_table(page_address(prop_page));
 
 
 
 
 
 
2214
2215	return prop_page;
2216}
2217
2218static void its_free_prop_table(struct page *prop_page)
2219{
2220	free_pages((unsigned long)page_address(prop_page),
2221		   get_order(LPI_PROPBASE_SZ));
2222}
2223
2224static bool gic_check_reserved_range(phys_addr_t addr, unsigned long size)
2225{
2226	phys_addr_t start, end, addr_end;
2227	u64 i;
2228
2229	/*
2230	 * We don't bother checking for a kdump kernel as by
2231	 * construction, the LPI tables are out of this kernel's
2232	 * memory map.
2233	 */
2234	if (is_kdump_kernel())
2235		return true;
2236
2237	addr_end = addr + size - 1;
2238
2239	for_each_reserved_mem_range(i, &start, &end) {
2240		if (addr >= start && addr_end <= end)
2241			return true;
2242	}
2243
2244	/* Not found, not a good sign... */
2245	pr_warn("GICv3: Expected reserved range [%pa:%pa], not found\n",
2246		&addr, &addr_end);
2247	add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
2248	return false;
2249}
2250
2251static int gic_reserve_range(phys_addr_t addr, unsigned long size)
2252{
2253	if (efi_enabled(EFI_CONFIG_TABLES))
2254		return efi_mem_reserve_persistent(addr, size);
2255
2256	return 0;
2257}
2258
2259static int __init its_setup_lpi_prop_table(void)
2260{
2261	if (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) {
2262		u64 val;
2263
2264		val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER);
2265		lpi_id_bits = (val & GICR_PROPBASER_IDBITS_MASK) + 1;
2266
2267		gic_rdists->prop_table_pa = val & GENMASK_ULL(51, 12);
2268		gic_rdists->prop_table_va = memremap(gic_rdists->prop_table_pa,
2269						     LPI_PROPBASE_SZ,
2270						     MEMREMAP_WB);
2271		gic_reset_prop_table(gic_rdists->prop_table_va);
2272	} else {
2273		struct page *page;
2274
2275		lpi_id_bits = min_t(u32,
2276				    GICD_TYPER_ID_BITS(gic_rdists->gicd_typer),
2277				    ITS_MAX_LPI_NRBITS);
2278		page = its_allocate_prop_table(GFP_NOWAIT);
2279		if (!page) {
2280			pr_err("Failed to allocate PROPBASE\n");
2281			return -ENOMEM;
2282		}
2283
2284		gic_rdists->prop_table_pa = page_to_phys(page);
2285		gic_rdists->prop_table_va = page_address(page);
2286		WARN_ON(gic_reserve_range(gic_rdists->prop_table_pa,
2287					  LPI_PROPBASE_SZ));
2288	}
2289
2290	pr_info("GICv3: using LPI property table @%pa\n",
2291		&gic_rdists->prop_table_pa);
2292
2293	return its_lpi_init(lpi_id_bits);
2294}
2295
2296static const char *its_base_type_string[] = {
2297	[GITS_BASER_TYPE_DEVICE]	= "Devices",
2298	[GITS_BASER_TYPE_VCPU]		= "Virtual CPUs",
2299	[GITS_BASER_TYPE_RESERVED3]	= "Reserved (3)",
2300	[GITS_BASER_TYPE_COLLECTION]	= "Interrupt Collections",
2301	[GITS_BASER_TYPE_RESERVED5] 	= "Reserved (5)",
2302	[GITS_BASER_TYPE_RESERVED6] 	= "Reserved (6)",
2303	[GITS_BASER_TYPE_RESERVED7] 	= "Reserved (7)",
2304};
2305
2306static u64 its_read_baser(struct its_node *its, struct its_baser *baser)
2307{
2308	u32 idx = baser - its->tables;
2309
2310	return gits_read_baser(its->base + GITS_BASER + (idx << 3));
2311}
2312
2313static void its_write_baser(struct its_node *its, struct its_baser *baser,
2314			    u64 val)
2315{
2316	u32 idx = baser - its->tables;
2317
2318	gits_write_baser(val, its->base + GITS_BASER + (idx << 3));
2319	baser->val = its_read_baser(its, baser);
2320}
2321
2322static int its_setup_baser(struct its_node *its, struct its_baser *baser,
2323			   u64 cache, u64 shr, u32 order, bool indirect)
 
2324{
2325	u64 val = its_read_baser(its, baser);
2326	u64 esz = GITS_BASER_ENTRY_SIZE(val);
2327	u64 type = GITS_BASER_TYPE(val);
2328	u64 baser_phys, tmp;
2329	u32 alloc_pages, psz;
2330	struct page *page;
2331	void *base;
2332
2333	psz = baser->psz;
2334	alloc_pages = (PAGE_ORDER_TO_SIZE(order) / psz);
2335	if (alloc_pages > GITS_BASER_PAGES_MAX) {
2336		pr_warn("ITS@%pa: %s too large, reduce ITS pages %u->%u\n",
2337			&its->phys_base, its_base_type_string[type],
2338			alloc_pages, GITS_BASER_PAGES_MAX);
2339		alloc_pages = GITS_BASER_PAGES_MAX;
2340		order = get_order(GITS_BASER_PAGES_MAX * psz);
2341	}
2342
2343	page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO, order);
2344	if (!page)
2345		return -ENOMEM;
2346
2347	base = (void *)page_address(page);
2348	baser_phys = virt_to_phys(base);
2349
2350	/* Check if the physical address of the memory is above 48bits */
2351	if (IS_ENABLED(CONFIG_ARM64_64K_PAGES) && (baser_phys >> 48)) {
2352
2353		/* 52bit PA is supported only when PageSize=64K */
2354		if (psz != SZ_64K) {
2355			pr_err("ITS: no 52bit PA support when psz=%d\n", psz);
2356			free_pages((unsigned long)base, order);
2357			return -ENXIO;
2358		}
2359
2360		/* Convert 52bit PA to 48bit field */
2361		baser_phys = GITS_BASER_PHYS_52_to_48(baser_phys);
2362	}
2363
2364retry_baser:
2365	val = (baser_phys					 |
2366		(type << GITS_BASER_TYPE_SHIFT)			 |
2367		((esz - 1) << GITS_BASER_ENTRY_SIZE_SHIFT)	 |
2368		((alloc_pages - 1) << GITS_BASER_PAGES_SHIFT)	 |
2369		cache						 |
2370		shr						 |
2371		GITS_BASER_VALID);
2372
2373	val |=	indirect ? GITS_BASER_INDIRECT : 0x0;
2374
2375	switch (psz) {
2376	case SZ_4K:
2377		val |= GITS_BASER_PAGE_SIZE_4K;
2378		break;
2379	case SZ_16K:
2380		val |= GITS_BASER_PAGE_SIZE_16K;
2381		break;
2382	case SZ_64K:
2383		val |= GITS_BASER_PAGE_SIZE_64K;
2384		break;
2385	}
2386
2387	if (!shr)
2388		gic_flush_dcache_to_poc(base, PAGE_ORDER_TO_SIZE(order));
2389
2390	its_write_baser(its, baser, val);
2391	tmp = baser->val;
2392
2393	if ((val ^ tmp) & GITS_BASER_SHAREABILITY_MASK) {
2394		/*
2395		 * Shareability didn't stick. Just use
2396		 * whatever the read reported, which is likely
2397		 * to be the only thing this redistributor
2398		 * supports. If that's zero, make it
2399		 * non-cacheable as well.
2400		 */
2401		shr = tmp & GITS_BASER_SHAREABILITY_MASK;
2402		if (!shr)
2403			cache = GITS_BASER_nC;
 
 
 
 
2404
2405		goto retry_baser;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2406	}
2407
2408	if (val != tmp) {
2409		pr_err("ITS@%pa: %s doesn't stick: %llx %llx\n",
2410		       &its->phys_base, its_base_type_string[type],
2411		       val, tmp);
2412		free_pages((unsigned long)base, order);
2413		return -ENXIO;
2414	}
2415
2416	baser->order = order;
2417	baser->base = base;
2418	baser->psz = psz;
2419	tmp = indirect ? GITS_LVL1_ENTRY_SIZE : esz;
2420
2421	pr_info("ITS@%pa: allocated %d %s @%lx (%s, esz %d, psz %dK, shr %d)\n",
2422		&its->phys_base, (int)(PAGE_ORDER_TO_SIZE(order) / (int)tmp),
2423		its_base_type_string[type],
2424		(unsigned long)virt_to_phys(base),
2425		indirect ? "indirect" : "flat", (int)esz,
2426		psz / SZ_1K, (int)shr >> GITS_BASER_SHAREABILITY_SHIFT);
2427
2428	return 0;
2429}
2430
2431static bool its_parse_indirect_baser(struct its_node *its,
2432				     struct its_baser *baser,
2433				     u32 *order, u32 ids)
2434{
2435	u64 tmp = its_read_baser(its, baser);
2436	u64 type = GITS_BASER_TYPE(tmp);
2437	u64 esz = GITS_BASER_ENTRY_SIZE(tmp);
2438	u64 val = GITS_BASER_InnerShareable | GITS_BASER_RaWaWb;
2439	u32 new_order = *order;
2440	u32 psz = baser->psz;
2441	bool indirect = false;
2442
2443	/* No need to enable Indirection if memory requirement < (psz*2)bytes */
2444	if ((esz << ids) > (psz * 2)) {
2445		/*
2446		 * Find out whether hw supports a single or two-level table by
2447		 * table by reading bit at offset '62' after writing '1' to it.
2448		 */
2449		its_write_baser(its, baser, val | GITS_BASER_INDIRECT);
2450		indirect = !!(baser->val & GITS_BASER_INDIRECT);
2451
2452		if (indirect) {
2453			/*
2454			 * The size of the lvl2 table is equal to ITS page size
2455			 * which is 'psz'. For computing lvl1 table size,
2456			 * subtract ID bits that sparse lvl2 table from 'ids'
2457			 * which is reported by ITS hardware times lvl1 table
2458			 * entry size.
2459			 */
2460			ids -= ilog2(psz / (int)esz);
2461			esz = GITS_LVL1_ENTRY_SIZE;
2462		}
2463	}
2464
2465	/*
2466	 * Allocate as many entries as required to fit the
2467	 * range of device IDs that the ITS can grok... The ID
2468	 * space being incredibly sparse, this results in a
2469	 * massive waste of memory if two-level device table
2470	 * feature is not supported by hardware.
2471	 */
2472	new_order = max_t(u32, get_order(esz << ids), new_order);
2473	if (new_order > MAX_PAGE_ORDER) {
2474		new_order = MAX_PAGE_ORDER;
2475		ids = ilog2(PAGE_ORDER_TO_SIZE(new_order) / (int)esz);
2476		pr_warn("ITS@%pa: %s Table too large, reduce ids %llu->%u\n",
2477			&its->phys_base, its_base_type_string[type],
2478			device_ids(its), ids);
2479	}
2480
2481	*order = new_order;
2482
2483	return indirect;
2484}
2485
2486static u32 compute_common_aff(u64 val)
2487{
2488	u32 aff, clpiaff;
2489
2490	aff = FIELD_GET(GICR_TYPER_AFFINITY, val);
2491	clpiaff = FIELD_GET(GICR_TYPER_COMMON_LPI_AFF, val);
2492
2493	return aff & ~(GENMASK(31, 0) >> (clpiaff * 8));
2494}
2495
2496static u32 compute_its_aff(struct its_node *its)
2497{
2498	u64 val;
2499	u32 svpet;
2500
2501	/*
2502	 * Reencode the ITS SVPET and MPIDR as a GICR_TYPER, and compute
2503	 * the resulting affinity. We then use that to see if this match
2504	 * our own affinity.
2505	 */
2506	svpet = FIELD_GET(GITS_TYPER_SVPET, its->typer);
2507	val  = FIELD_PREP(GICR_TYPER_COMMON_LPI_AFF, svpet);
2508	val |= FIELD_PREP(GICR_TYPER_AFFINITY, its->mpidr);
2509	return compute_common_aff(val);
2510}
2511
2512static struct its_node *find_sibling_its(struct its_node *cur_its)
2513{
2514	struct its_node *its;
2515	u32 aff;
2516
2517	if (!FIELD_GET(GITS_TYPER_SVPET, cur_its->typer))
2518		return NULL;
2519
2520	aff = compute_its_aff(cur_its);
2521
2522	list_for_each_entry(its, &its_nodes, entry) {
2523		u64 baser;
2524
2525		if (!is_v4_1(its) || its == cur_its)
2526			continue;
2527
2528		if (!FIELD_GET(GITS_TYPER_SVPET, its->typer))
2529			continue;
2530
2531		if (aff != compute_its_aff(its))
2532			continue;
2533
2534		/* GICv4.1 guarantees that the vPE table is GITS_BASER2 */
2535		baser = its->tables[2].val;
2536		if (!(baser & GITS_BASER_VALID))
2537			continue;
2538
2539		return its;
2540	}
2541
2542	return NULL;
2543}
2544
2545static void its_free_tables(struct its_node *its)
2546{
2547	int i;
2548
2549	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
2550		if (its->tables[i].base) {
2551			free_pages((unsigned long)its->tables[i].base,
2552				   its->tables[i].order);
2553			its->tables[i].base = NULL;
2554		}
2555	}
2556}
2557
2558static int its_probe_baser_psz(struct its_node *its, struct its_baser *baser)
2559{
2560	u64 psz = SZ_64K;
2561
2562	while (psz) {
2563		u64 val, gpsz;
2564
2565		val = its_read_baser(its, baser);
2566		val &= ~GITS_BASER_PAGE_SIZE_MASK;
2567
2568		switch (psz) {
2569		case SZ_64K:
2570			gpsz = GITS_BASER_PAGE_SIZE_64K;
2571			break;
2572		case SZ_16K:
2573			gpsz = GITS_BASER_PAGE_SIZE_16K;
2574			break;
2575		case SZ_4K:
2576		default:
2577			gpsz = GITS_BASER_PAGE_SIZE_4K;
2578			break;
2579		}
2580
2581		gpsz >>= GITS_BASER_PAGE_SIZE_SHIFT;
2582
2583		val |= FIELD_PREP(GITS_BASER_PAGE_SIZE_MASK, gpsz);
2584		its_write_baser(its, baser, val);
2585
2586		if (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser->val) == gpsz)
2587			break;
2588
2589		switch (psz) {
2590		case SZ_64K:
2591			psz = SZ_16K;
2592			break;
2593		case SZ_16K:
2594			psz = SZ_4K;
2595			break;
2596		case SZ_4K:
2597		default:
2598			return -1;
2599		}
2600	}
2601
2602	baser->psz = psz;
2603	return 0;
2604}
2605
2606static int its_alloc_tables(struct its_node *its)
2607{
2608	u64 shr = GITS_BASER_InnerShareable;
2609	u64 cache = GITS_BASER_RaWaWb;
 
2610	int err, i;
2611
2612	if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_22375)
2613		/* erratum 24313: ignore memory access type */
2614		cache = GITS_BASER_nCnB;
2615
2616	if (its->flags & ITS_FLAGS_FORCE_NON_SHAREABLE) {
2617		cache = GITS_BASER_nC;
2618		shr = 0;
2619	}
2620
2621	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
2622		struct its_baser *baser = its->tables + i;
2623		u64 val = its_read_baser(its, baser);
2624		u64 type = GITS_BASER_TYPE(val);
 
2625		bool indirect = false;
2626		u32 order;
2627
2628		if (type == GITS_BASER_TYPE_NONE)
 
2629			continue;
2630
2631		if (its_probe_baser_psz(its, baser)) {
2632			its_free_tables(its);
2633			return -ENXIO;
2634		}
2635
2636		order = get_order(baser->psz);
2637
2638		switch (type) {
2639		case GITS_BASER_TYPE_DEVICE:
2640			indirect = its_parse_indirect_baser(its, baser, &order,
2641							    device_ids(its));
2642			break;
2643
2644		case GITS_BASER_TYPE_VCPU:
2645			if (is_v4_1(its)) {
2646				struct its_node *sibling;
2647
2648				WARN_ON(i != 2);
2649				if ((sibling = find_sibling_its(its))) {
2650					*baser = sibling->tables[2];
2651					its_write_baser(its, baser, baser->val);
2652					continue;
2653				}
2654			}
2655
2656			indirect = its_parse_indirect_baser(its, baser, &order,
2657							    ITS_MAX_VPEID_BITS);
2658			break;
2659		}
2660
2661		err = its_setup_baser(its, baser, cache, shr, order, indirect);
2662		if (err < 0) {
2663			its_free_tables(its);
2664			return err;
2665		}
2666
2667		/* Update settings which will be used for next BASERn */
 
2668		cache = baser->val & GITS_BASER_CACHEABILITY_MASK;
2669		shr = baser->val & GITS_BASER_SHAREABILITY_MASK;
2670	}
2671
2672	return 0;
2673}
2674
2675static u64 inherit_vpe_l1_table_from_its(void)
2676{
2677	struct its_node *its;
2678	u64 val;
2679	u32 aff;
2680
2681	val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
2682	aff = compute_common_aff(val);
2683
2684	list_for_each_entry(its, &its_nodes, entry) {
2685		u64 baser, addr;
2686
2687		if (!is_v4_1(its))
2688			continue;
2689
2690		if (!FIELD_GET(GITS_TYPER_SVPET, its->typer))
2691			continue;
2692
2693		if (aff != compute_its_aff(its))
2694			continue;
2695
2696		/* GICv4.1 guarantees that the vPE table is GITS_BASER2 */
2697		baser = its->tables[2].val;
2698		if (!(baser & GITS_BASER_VALID))
2699			continue;
2700
2701		/* We have a winner! */
2702		gic_data_rdist()->vpe_l1_base = its->tables[2].base;
2703
2704		val  = GICR_VPROPBASER_4_1_VALID;
2705		if (baser & GITS_BASER_INDIRECT)
2706			val |= GICR_VPROPBASER_4_1_INDIRECT;
2707		val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE,
2708				  FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser));
2709		switch (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser)) {
2710		case GIC_PAGE_SIZE_64K:
2711			addr = GITS_BASER_ADDR_48_to_52(baser);
2712			break;
2713		default:
2714			addr = baser & GENMASK_ULL(47, 12);
2715			break;
2716		}
2717		val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, addr >> 12);
2718		if (rdists_support_shareable()) {
2719			val |= FIELD_PREP(GICR_VPROPBASER_SHAREABILITY_MASK,
2720					  FIELD_GET(GITS_BASER_SHAREABILITY_MASK, baser));
2721			val |= FIELD_PREP(GICR_VPROPBASER_INNER_CACHEABILITY_MASK,
2722					  FIELD_GET(GITS_BASER_INNER_CACHEABILITY_MASK, baser));
2723		}
2724		val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, GITS_BASER_NR_PAGES(baser) - 1);
2725
2726		return val;
2727	}
2728
2729	return 0;
2730}
2731
2732static u64 inherit_vpe_l1_table_from_rd(cpumask_t **mask)
2733{
2734	u32 aff;
2735	u64 val;
2736	int cpu;
2737
2738	val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
2739	aff = compute_common_aff(val);
2740
2741	for_each_possible_cpu(cpu) {
2742		void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base;
2743
2744		if (!base || cpu == smp_processor_id())
2745			continue;
2746
2747		val = gic_read_typer(base + GICR_TYPER);
2748		if (aff != compute_common_aff(val))
2749			continue;
2750
2751		/*
2752		 * At this point, we have a victim. This particular CPU
2753		 * has already booted, and has an affinity that matches
2754		 * ours wrt CommonLPIAff. Let's use its own VPROPBASER.
2755		 * Make sure we don't write the Z bit in that case.
2756		 */
2757		val = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER);
2758		val &= ~GICR_VPROPBASER_4_1_Z;
2759
2760		gic_data_rdist()->vpe_l1_base = gic_data_rdist_cpu(cpu)->vpe_l1_base;
2761		*mask = gic_data_rdist_cpu(cpu)->vpe_table_mask;
2762
2763		return val;
2764	}
2765
2766	return 0;
2767}
2768
2769static bool allocate_vpe_l2_table(int cpu, u32 id)
2770{
2771	void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base;
2772	unsigned int psz, esz, idx, npg, gpsz;
2773	u64 val;
2774	struct page *page;
2775	__le64 *table;
2776
2777	if (!gic_rdists->has_rvpeid)
2778		return true;
2779
2780	/* Skip non-present CPUs */
2781	if (!base)
2782		return true;
2783
2784	val  = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER);
2785
2786	esz  = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val) + 1;
2787	gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val);
2788	npg  = FIELD_GET(GICR_VPROPBASER_4_1_SIZE, val) + 1;
2789
2790	switch (gpsz) {
2791	default:
2792		WARN_ON(1);
2793		fallthrough;
2794	case GIC_PAGE_SIZE_4K:
2795		psz = SZ_4K;
2796		break;
2797	case GIC_PAGE_SIZE_16K:
2798		psz = SZ_16K;
2799		break;
2800	case GIC_PAGE_SIZE_64K:
2801		psz = SZ_64K;
2802		break;
2803	}
2804
2805	/* Don't allow vpe_id that exceeds single, flat table limit */
2806	if (!(val & GICR_VPROPBASER_4_1_INDIRECT))
2807		return (id < (npg * psz / (esz * SZ_8)));
2808
2809	/* Compute 1st level table index & check if that exceeds table limit */
2810	idx = id >> ilog2(psz / (esz * SZ_8));
2811	if (idx >= (npg * psz / GITS_LVL1_ENTRY_SIZE))
2812		return false;
2813
2814	table = gic_data_rdist_cpu(cpu)->vpe_l1_base;
2815
2816	/* Allocate memory for 2nd level table */
2817	if (!table[idx]) {
2818		page = alloc_pages(GFP_KERNEL | __GFP_ZERO, get_order(psz));
2819		if (!page)
2820			return false;
2821
2822		/* Flush Lvl2 table to PoC if hw doesn't support coherency */
2823		if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK))
2824			gic_flush_dcache_to_poc(page_address(page), psz);
2825
2826		table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID);
2827
2828		/* Flush Lvl1 entry to PoC if hw doesn't support coherency */
2829		if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK))
2830			gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE);
2831
2832		/* Ensure updated table contents are visible to RD hardware */
2833		dsb(sy);
2834	}
2835
2836	return true;
2837}
2838
2839static int allocate_vpe_l1_table(void)
2840{
2841	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
2842	u64 val, gpsz, npg, pa;
2843	unsigned int psz = SZ_64K;
2844	unsigned int np, epp, esz;
2845	struct page *page;
2846
2847	if (!gic_rdists->has_rvpeid)
2848		return 0;
2849
2850	/*
2851	 * if VPENDBASER.Valid is set, disable any previously programmed
2852	 * VPE by setting PendingLast while clearing Valid. This has the
2853	 * effect of making sure no doorbell will be generated and we can
2854	 * then safely clear VPROPBASER.Valid.
2855	 */
2856	if (gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER) & GICR_VPENDBASER_Valid)
2857		gicr_write_vpendbaser(GICR_VPENDBASER_PendingLast,
2858				      vlpi_base + GICR_VPENDBASER);
2859
2860	/*
2861	 * If we can inherit the configuration from another RD, let's do
2862	 * so. Otherwise, we have to go through the allocation process. We
2863	 * assume that all RDs have the exact same requirements, as
2864	 * nothing will work otherwise.
2865	 */
2866	val = inherit_vpe_l1_table_from_rd(&gic_data_rdist()->vpe_table_mask);
2867	if (val & GICR_VPROPBASER_4_1_VALID)
2868		goto out;
2869
2870	gic_data_rdist()->vpe_table_mask = kzalloc(sizeof(cpumask_t), GFP_ATOMIC);
2871	if (!gic_data_rdist()->vpe_table_mask)
2872		return -ENOMEM;
2873
2874	val = inherit_vpe_l1_table_from_its();
2875	if (val & GICR_VPROPBASER_4_1_VALID)
2876		goto out;
2877
2878	/* First probe the page size */
2879	val = FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, GIC_PAGE_SIZE_64K);
2880	gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
2881	val = gicr_read_vpropbaser(vlpi_base + GICR_VPROPBASER);
2882	gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val);
2883	esz = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val);
2884
2885	switch (gpsz) {
2886	default:
2887		gpsz = GIC_PAGE_SIZE_4K;
2888		fallthrough;
2889	case GIC_PAGE_SIZE_4K:
2890		psz = SZ_4K;
2891		break;
2892	case GIC_PAGE_SIZE_16K:
2893		psz = SZ_16K;
2894		break;
2895	case GIC_PAGE_SIZE_64K:
2896		psz = SZ_64K;
2897		break;
2898	}
2899
2900	/*
2901	 * Start populating the register from scratch, including RO fields
2902	 * (which we want to print in debug cases...)
2903	 */
2904	val = 0;
2905	val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, gpsz);
2906	val |= FIELD_PREP(GICR_VPROPBASER_4_1_ENTRY_SIZE, esz);
2907
2908	/* How many entries per GIC page? */
2909	esz++;
2910	epp = psz / (esz * SZ_8);
2911
2912	/*
2913	 * If we need more than just a single L1 page, flag the table
2914	 * as indirect and compute the number of required L1 pages.
2915	 */
2916	if (epp < ITS_MAX_VPEID) {
2917		int nl2;
2918
2919		val |= GICR_VPROPBASER_4_1_INDIRECT;
2920
2921		/* Number of L2 pages required to cover the VPEID space */
2922		nl2 = DIV_ROUND_UP(ITS_MAX_VPEID, epp);
2923
2924		/* Number of L1 pages to point to the L2 pages */
2925		npg = DIV_ROUND_UP(nl2 * SZ_8, psz);
2926	} else {
2927		npg = 1;
2928	}
2929
2930	val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, npg - 1);
2931
2932	/* Right, that's the number of CPU pages we need for L1 */
2933	np = DIV_ROUND_UP(npg * psz, PAGE_SIZE);
2934
2935	pr_debug("np = %d, npg = %lld, psz = %d, epp = %d, esz = %d\n",
2936		 np, npg, psz, epp, esz);
2937	page = alloc_pages(GFP_ATOMIC | __GFP_ZERO, get_order(np * PAGE_SIZE));
2938	if (!page)
2939		return -ENOMEM;
2940
2941	gic_data_rdist()->vpe_l1_base = page_address(page);
2942	pa = virt_to_phys(page_address(page));
2943	WARN_ON(!IS_ALIGNED(pa, psz));
2944
2945	val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, pa >> 12);
2946	if (rdists_support_shareable()) {
2947		val |= GICR_VPROPBASER_RaWb;
2948		val |= GICR_VPROPBASER_InnerShareable;
2949	}
2950	val |= GICR_VPROPBASER_4_1_Z;
2951	val |= GICR_VPROPBASER_4_1_VALID;
2952
2953out:
2954	gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
2955	cpumask_set_cpu(smp_processor_id(), gic_data_rdist()->vpe_table_mask);
2956
2957	pr_debug("CPU%d: VPROPBASER = %llx %*pbl\n",
2958		 smp_processor_id(), val,
2959		 cpumask_pr_args(gic_data_rdist()->vpe_table_mask));
2960
2961	return 0;
2962}
2963
2964static int its_alloc_collections(struct its_node *its)
2965{
2966	int i;
2967
2968	its->collections = kcalloc(nr_cpu_ids, sizeof(*its->collections),
2969				   GFP_KERNEL);
2970	if (!its->collections)
2971		return -ENOMEM;
2972
2973	for (i = 0; i < nr_cpu_ids; i++)
2974		its->collections[i].target_address = ~0ULL;
2975
2976	return 0;
2977}
2978
2979static struct page *its_allocate_pending_table(gfp_t gfp_flags)
2980{
2981	struct page *pend_page;
2982
 
 
 
2983	pend_page = alloc_pages(gfp_flags | __GFP_ZERO,
2984				get_order(LPI_PENDBASE_SZ));
2985	if (!pend_page)
2986		return NULL;
2987
2988	/* Make sure the GIC will observe the zero-ed page */
2989	gic_flush_dcache_to_poc(page_address(pend_page), LPI_PENDBASE_SZ);
2990
2991	return pend_page;
2992}
2993
2994static void its_free_pending_table(struct page *pt)
2995{
2996	free_pages((unsigned long)page_address(pt), get_order(LPI_PENDBASE_SZ));
2997}
2998
2999/*
3000 * Booting with kdump and LPIs enabled is generally fine. Any other
3001 * case is wrong in the absence of firmware/EFI support.
3002 */
3003static bool enabled_lpis_allowed(void)
3004{
3005	phys_addr_t addr;
3006	u64 val;
3007
3008	/* Check whether the property table is in a reserved region */
3009	val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER);
3010	addr = val & GENMASK_ULL(51, 12);
3011
3012	return gic_check_reserved_range(addr, LPI_PROPBASE_SZ);
3013}
3014
3015static int __init allocate_lpi_tables(void)
3016{
3017	u64 val;
3018	int err, cpu;
3019
3020	/*
3021	 * If LPIs are enabled while we run this from the boot CPU,
3022	 * flag the RD tables as pre-allocated if the stars do align.
3023	 */
3024	val = readl_relaxed(gic_data_rdist_rd_base() + GICR_CTLR);
3025	if ((val & GICR_CTLR_ENABLE_LPIS) && enabled_lpis_allowed()) {
3026		gic_rdists->flags |= (RDIST_FLAGS_RD_TABLES_PREALLOCATED |
3027				      RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING);
3028		pr_info("GICv3: Using preallocated redistributor tables\n");
3029	}
3030
3031	err = its_setup_lpi_prop_table();
3032	if (err)
3033		return err;
3034
3035	/*
3036	 * We allocate all the pending tables anyway, as we may have a
3037	 * mix of RDs that have had LPIs enabled, and some that
3038	 * don't. We'll free the unused ones as each CPU comes online.
3039	 */
3040	for_each_possible_cpu(cpu) {
3041		struct page *pend_page;
3042
3043		pend_page = its_allocate_pending_table(GFP_NOWAIT);
3044		if (!pend_page) {
3045			pr_err("Failed to allocate PENDBASE for CPU%d\n", cpu);
3046			return -ENOMEM;
3047		}
3048
3049		gic_data_rdist_cpu(cpu)->pend_page = pend_page;
3050	}
3051
3052	return 0;
3053}
3054
3055static u64 read_vpend_dirty_clear(void __iomem *vlpi_base)
3056{
3057	u32 count = 1000000;	/* 1s! */
3058	bool clean;
3059	u64 val;
3060
3061	do {
3062		val = gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER);
3063		clean = !(val & GICR_VPENDBASER_Dirty);
3064		if (!clean) {
3065			count--;
3066			cpu_relax();
3067			udelay(1);
3068		}
3069	} while (!clean && count);
3070
3071	if (unlikely(!clean))
3072		pr_err_ratelimited("ITS virtual pending table not cleaning\n");
3073
3074	return val;
3075}
3076
3077static u64 its_clear_vpend_valid(void __iomem *vlpi_base, u64 clr, u64 set)
3078{
3079	u64 val;
3080
3081	/* Make sure we wait until the RD is done with the initial scan */
3082	val = read_vpend_dirty_clear(vlpi_base);
3083	val &= ~GICR_VPENDBASER_Valid;
3084	val &= ~clr;
3085	val |= set;
3086	gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
3087
3088	val = read_vpend_dirty_clear(vlpi_base);
3089	if (unlikely(val & GICR_VPENDBASER_Dirty))
3090		val |= GICR_VPENDBASER_PendingLast;
3091
3092	return val;
3093}
3094
3095static void its_cpu_init_lpis(void)
3096{
3097	void __iomem *rbase = gic_data_rdist_rd_base();
3098	struct page *pend_page;
3099	phys_addr_t paddr;
3100	u64 val, tmp;
3101
3102	if (gic_data_rdist()->flags & RD_LOCAL_LPI_ENABLED)
3103		return;
 
 
3104
3105	val = readl_relaxed(rbase + GICR_CTLR);
3106	if ((gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) &&
3107	    (val & GICR_CTLR_ENABLE_LPIS)) {
3108		/*
3109		 * Check that we get the same property table on all
3110		 * RDs. If we don't, this is hopeless.
3111		 */
3112		paddr = gicr_read_propbaser(rbase + GICR_PROPBASER);
3113		paddr &= GENMASK_ULL(51, 12);
3114		if (WARN_ON(gic_rdists->prop_table_pa != paddr))
3115			add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
3116
3117		paddr = gicr_read_pendbaser(rbase + GICR_PENDBASER);
3118		paddr &= GENMASK_ULL(51, 16);
3119
3120		WARN_ON(!gic_check_reserved_range(paddr, LPI_PENDBASE_SZ));
3121		gic_data_rdist()->flags |= RD_LOCAL_PENDTABLE_PREALLOCATED;
3122
3123		goto out;
3124	}
3125
3126	pend_page = gic_data_rdist()->pend_page;
3127	paddr = page_to_phys(pend_page);
3128
3129	/* set PROPBASE */
3130	val = (gic_rdists->prop_table_pa |
3131	       GICR_PROPBASER_InnerShareable |
3132	       GICR_PROPBASER_RaWaWb |
3133	       ((LPI_NRBITS - 1) & GICR_PROPBASER_IDBITS_MASK));
3134
3135	gicr_write_propbaser(val, rbase + GICR_PROPBASER);
3136	tmp = gicr_read_propbaser(rbase + GICR_PROPBASER);
3137
3138	if (!rdists_support_shareable())
3139		tmp &= ~GICR_PROPBASER_SHAREABILITY_MASK;
3140
3141	if ((tmp ^ val) & GICR_PROPBASER_SHAREABILITY_MASK) {
3142		if (!(tmp & GICR_PROPBASER_SHAREABILITY_MASK)) {
3143			/*
3144			 * The HW reports non-shareable, we must
3145			 * remove the cacheability attributes as
3146			 * well.
3147			 */
3148			val &= ~(GICR_PROPBASER_SHAREABILITY_MASK |
3149				 GICR_PROPBASER_CACHEABILITY_MASK);
3150			val |= GICR_PROPBASER_nC;
3151			gicr_write_propbaser(val, rbase + GICR_PROPBASER);
3152		}
3153		pr_info_once("GIC: using cache flushing for LPI property table\n");
3154		gic_rdists->flags |= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING;
3155	}
3156
3157	/* set PENDBASE */
3158	val = (page_to_phys(pend_page) |
3159	       GICR_PENDBASER_InnerShareable |
3160	       GICR_PENDBASER_RaWaWb);
3161
3162	gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
3163	tmp = gicr_read_pendbaser(rbase + GICR_PENDBASER);
3164
3165	if (!rdists_support_shareable())
3166		tmp &= ~GICR_PENDBASER_SHAREABILITY_MASK;
3167
3168	if (!(tmp & GICR_PENDBASER_SHAREABILITY_MASK)) {
3169		/*
3170		 * The HW reports non-shareable, we must remove the
3171		 * cacheability attributes as well.
3172		 */
3173		val &= ~(GICR_PENDBASER_SHAREABILITY_MASK |
3174			 GICR_PENDBASER_CACHEABILITY_MASK);
3175		val |= GICR_PENDBASER_nC;
3176		gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
3177	}
3178
3179	/* Enable LPIs */
3180	val = readl_relaxed(rbase + GICR_CTLR);
3181	val |= GICR_CTLR_ENABLE_LPIS;
3182	writel_relaxed(val, rbase + GICR_CTLR);
3183
3184out:
3185	if (gic_rdists->has_vlpis && !gic_rdists->has_rvpeid) {
3186		void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3187
3188		/*
3189		 * It's possible for CPU to receive VLPIs before it is
3190		 * scheduled as a vPE, especially for the first CPU, and the
3191		 * VLPI with INTID larger than 2^(IDbits+1) will be considered
3192		 * as out of range and dropped by GIC.
3193		 * So we initialize IDbits to known value to avoid VLPI drop.
3194		 */
3195		val = (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
3196		pr_debug("GICv4: CPU%d: Init IDbits to 0x%llx for GICR_VPROPBASER\n",
3197			smp_processor_id(), val);
3198		gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
3199
3200		/*
3201		 * Also clear Valid bit of GICR_VPENDBASER, in case some
3202		 * ancient programming gets left in and has possibility of
3203		 * corrupting memory.
3204		 */
3205		val = its_clear_vpend_valid(vlpi_base, 0, 0);
3206	}
3207
3208	if (allocate_vpe_l1_table()) {
3209		/*
3210		 * If the allocation has failed, we're in massive trouble.
3211		 * Disable direct injection, and pray that no VM was
3212		 * already running...
3213		 */
3214		gic_rdists->has_rvpeid = false;
3215		gic_rdists->has_vlpis = false;
3216	}
3217
3218	/* Make sure the GIC has seen the above */
3219	dsb(sy);
3220	gic_data_rdist()->flags |= RD_LOCAL_LPI_ENABLED;
3221	pr_info("GICv3: CPU%d: using %s LPI pending table @%pa\n",
3222		smp_processor_id(),
3223		gic_data_rdist()->flags & RD_LOCAL_PENDTABLE_PREALLOCATED ?
3224		"reserved" : "allocated",
3225		&paddr);
3226}
3227
3228static void its_cpu_init_collection(struct its_node *its)
3229{
3230	int cpu = smp_processor_id();
3231	u64 target;
3232
3233	/* avoid cross node collections and its mapping */
3234	if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) {
3235		struct device_node *cpu_node;
3236
3237		cpu_node = of_get_cpu_node(cpu, NULL);
3238		if (its->numa_node != NUMA_NO_NODE &&
3239			its->numa_node != of_node_to_nid(cpu_node))
3240			return;
3241	}
3242
3243	/*
3244	 * We now have to bind each collection to its target
3245	 * redistributor.
3246	 */
3247	if (gic_read_typer(its->base + GITS_TYPER) & GITS_TYPER_PTA) {
3248		/*
3249		 * This ITS wants the physical address of the
3250		 * redistributor.
3251		 */
3252		target = gic_data_rdist()->phys_base;
3253	} else {
3254		/* This ITS wants a linear CPU number. */
3255		target = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
3256		target = GICR_TYPER_CPU_NUMBER(target) << 16;
3257	}
3258
3259	/* Perform collection mapping */
3260	its->collections[cpu].target_address = target;
3261	its->collections[cpu].col_id = cpu;
3262
3263	its_send_mapc(its, &its->collections[cpu], 1);
3264	its_send_invall(its, &its->collections[cpu]);
3265}
3266
3267static void its_cpu_init_collections(void)
3268{
3269	struct its_node *its;
3270
3271	raw_spin_lock(&its_lock);
3272
3273	list_for_each_entry(its, &its_nodes, entry)
3274		its_cpu_init_collection(its);
3275
3276	raw_spin_unlock(&its_lock);
3277}
3278
3279static struct its_device *its_find_device(struct its_node *its, u32 dev_id)
3280{
3281	struct its_device *its_dev = NULL, *tmp;
3282	unsigned long flags;
3283
3284	raw_spin_lock_irqsave(&its->lock, flags);
3285
3286	list_for_each_entry(tmp, &its->its_device_list, entry) {
3287		if (tmp->device_id == dev_id) {
3288			its_dev = tmp;
3289			break;
3290		}
3291	}
3292
3293	raw_spin_unlock_irqrestore(&its->lock, flags);
3294
3295	return its_dev;
3296}
3297
3298static struct its_baser *its_get_baser(struct its_node *its, u32 type)
3299{
3300	int i;
3301
3302	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
3303		if (GITS_BASER_TYPE(its->tables[i].val) == type)
3304			return &its->tables[i];
3305	}
3306
3307	return NULL;
3308}
3309
3310static bool its_alloc_table_entry(struct its_node *its,
3311				  struct its_baser *baser, u32 id)
3312{
3313	struct page *page;
3314	u32 esz, idx;
3315	__le64 *table;
3316
3317	/* Don't allow device id that exceeds single, flat table limit */
3318	esz = GITS_BASER_ENTRY_SIZE(baser->val);
3319	if (!(baser->val & GITS_BASER_INDIRECT))
3320		return (id < (PAGE_ORDER_TO_SIZE(baser->order) / esz));
3321
3322	/* Compute 1st level table index & check if that exceeds table limit */
3323	idx = id >> ilog2(baser->psz / esz);
3324	if (idx >= (PAGE_ORDER_TO_SIZE(baser->order) / GITS_LVL1_ENTRY_SIZE))
3325		return false;
3326
3327	table = baser->base;
3328
3329	/* Allocate memory for 2nd level table */
3330	if (!table[idx]) {
3331		page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO,
3332					get_order(baser->psz));
3333		if (!page)
3334			return false;
3335
3336		/* Flush Lvl2 table to PoC if hw doesn't support coherency */
3337		if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
3338			gic_flush_dcache_to_poc(page_address(page), baser->psz);
3339
3340		table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID);
3341
3342		/* Flush Lvl1 entry to PoC if hw doesn't support coherency */
3343		if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
3344			gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE);
3345
3346		/* Ensure updated table contents are visible to ITS hardware */
3347		dsb(sy);
3348	}
3349
3350	return true;
3351}
3352
3353static bool its_alloc_device_table(struct its_node *its, u32 dev_id)
3354{
3355	struct its_baser *baser;
3356
3357	baser = its_get_baser(its, GITS_BASER_TYPE_DEVICE);
3358
3359	/* Don't allow device id that exceeds ITS hardware limit */
3360	if (!baser)
3361		return (ilog2(dev_id) < device_ids(its));
3362
3363	return its_alloc_table_entry(its, baser, dev_id);
3364}
3365
3366static bool its_alloc_vpe_table(u32 vpe_id)
3367{
3368	struct its_node *its;
3369	int cpu;
3370
3371	/*
3372	 * Make sure the L2 tables are allocated on *all* v4 ITSs. We
3373	 * could try and only do it on ITSs corresponding to devices
3374	 * that have interrupts targeted at this VPE, but the
3375	 * complexity becomes crazy (and you have tons of memory
3376	 * anyway, right?).
3377	 */
3378	list_for_each_entry(its, &its_nodes, entry) {
3379		struct its_baser *baser;
3380
3381		if (!is_v4(its))
3382			continue;
3383
3384		baser = its_get_baser(its, GITS_BASER_TYPE_VCPU);
3385		if (!baser)
3386			return false;
3387
3388		if (!its_alloc_table_entry(its, baser, vpe_id))
3389			return false;
3390	}
3391
3392	/* Non v4.1? No need to iterate RDs and go back early. */
3393	if (!gic_rdists->has_rvpeid)
3394		return true;
3395
3396	/*
3397	 * Make sure the L2 tables are allocated for all copies of
3398	 * the L1 table on *all* v4.1 RDs.
3399	 */
3400	for_each_possible_cpu(cpu) {
3401		if (!allocate_vpe_l2_table(cpu, vpe_id))
3402			return false;
3403	}
3404
3405	return true;
3406}
3407
3408static struct its_device *its_create_device(struct its_node *its, u32 dev_id,
3409					    int nvecs, bool alloc_lpis)
3410{
3411	struct its_device *dev;
3412	unsigned long *lpi_map = NULL;
3413	unsigned long flags;
3414	u16 *col_map = NULL;
3415	void *itt;
3416	int lpi_base;
3417	int nr_lpis;
3418	int nr_ites;
3419	int sz;
3420
3421	if (!its_alloc_device_table(its, dev_id))
3422		return NULL;
3423
3424	if (WARN_ON(!is_power_of_2(nvecs)))
3425		nvecs = roundup_pow_of_two(nvecs);
3426
3427	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3428	/*
3429	 * Even if the device wants a single LPI, the ITT must be
3430	 * sized as a power of two (and you need at least one bit...).
3431	 */
3432	nr_ites = max(2, nvecs);
3433	sz = nr_ites * (FIELD_GET(GITS_TYPER_ITT_ENTRY_SIZE, its->typer) + 1);
3434	sz = max(sz, ITS_ITT_ALIGN) + ITS_ITT_ALIGN - 1;
3435	itt = kzalloc_node(sz, GFP_KERNEL, its->numa_node);
3436	if (alloc_lpis) {
3437		lpi_map = its_lpi_alloc(nvecs, &lpi_base, &nr_lpis);
3438		if (lpi_map)
3439			col_map = kcalloc(nr_lpis, sizeof(*col_map),
3440					  GFP_KERNEL);
3441	} else {
3442		col_map = kcalloc(nr_ites, sizeof(*col_map), GFP_KERNEL);
3443		nr_lpis = 0;
3444		lpi_base = 0;
3445	}
3446
3447	if (!dev || !itt ||  !col_map || (!lpi_map && alloc_lpis)) {
3448		kfree(dev);
3449		kfree(itt);
3450		bitmap_free(lpi_map);
3451		kfree(col_map);
3452		return NULL;
3453	}
3454
3455	gic_flush_dcache_to_poc(itt, sz);
3456
3457	dev->its = its;
3458	dev->itt = itt;
3459	dev->nr_ites = nr_ites;
3460	dev->event_map.lpi_map = lpi_map;
3461	dev->event_map.col_map = col_map;
3462	dev->event_map.lpi_base = lpi_base;
3463	dev->event_map.nr_lpis = nr_lpis;
3464	raw_spin_lock_init(&dev->event_map.vlpi_lock);
3465	dev->device_id = dev_id;
3466	INIT_LIST_HEAD(&dev->entry);
3467
3468	raw_spin_lock_irqsave(&its->lock, flags);
3469	list_add(&dev->entry, &its->its_device_list);
3470	raw_spin_unlock_irqrestore(&its->lock, flags);
3471
3472	/* Map device to its ITT */
3473	its_send_mapd(dev, 1);
3474
3475	return dev;
3476}
3477
3478static void its_free_device(struct its_device *its_dev)
3479{
3480	unsigned long flags;
3481
3482	raw_spin_lock_irqsave(&its_dev->its->lock, flags);
3483	list_del(&its_dev->entry);
3484	raw_spin_unlock_irqrestore(&its_dev->its->lock, flags);
3485	kfree(its_dev->event_map.col_map);
3486	kfree(its_dev->itt);
3487	kfree(its_dev);
3488}
3489
3490static int its_alloc_device_irq(struct its_device *dev, int nvecs, irq_hw_number_t *hwirq)
3491{
3492	int idx;
3493
3494	/* Find a free LPI region in lpi_map and allocate them. */
3495	idx = bitmap_find_free_region(dev->event_map.lpi_map,
3496				      dev->event_map.nr_lpis,
3497				      get_count_order(nvecs));
3498	if (idx < 0)
3499		return -ENOSPC;
3500
3501	*hwirq = dev->event_map.lpi_base + idx;
 
3502
3503	return 0;
3504}
3505
3506static int its_msi_prepare(struct irq_domain *domain, struct device *dev,
3507			   int nvec, msi_alloc_info_t *info)
3508{
3509	struct its_node *its;
3510	struct its_device *its_dev;
3511	struct msi_domain_info *msi_info;
3512	u32 dev_id;
3513	int err = 0;
3514
3515	/*
3516	 * We ignore "dev" entirely, and rely on the dev_id that has
3517	 * been passed via the scratchpad. This limits this domain's
3518	 * usefulness to upper layers that definitely know that they
3519	 * are built on top of the ITS.
3520	 */
3521	dev_id = info->scratchpad[0].ul;
3522
3523	msi_info = msi_get_domain_info(domain);
3524	its = msi_info->data;
3525
3526	if (!gic_rdists->has_direct_lpi &&
3527	    vpe_proxy.dev &&
3528	    vpe_proxy.dev->its == its &&
3529	    dev_id == vpe_proxy.dev->device_id) {
3530		/* Bad luck. Get yourself a better implementation */
3531		WARN_ONCE(1, "DevId %x clashes with GICv4 VPE proxy device\n",
3532			  dev_id);
3533		return -EINVAL;
3534	}
3535
3536	mutex_lock(&its->dev_alloc_lock);
3537	its_dev = its_find_device(its, dev_id);
3538	if (its_dev) {
3539		/*
3540		 * We already have seen this ID, probably through
3541		 * another alias (PCI bridge of some sort). No need to
3542		 * create the device.
3543		 */
3544		its_dev->shared = true;
3545		pr_debug("Reusing ITT for devID %x\n", dev_id);
3546		goto out;
3547	}
3548
3549	its_dev = its_create_device(its, dev_id, nvec, true);
3550	if (!its_dev) {
3551		err = -ENOMEM;
3552		goto out;
3553	}
3554
3555	if (info->flags & MSI_ALLOC_FLAGS_PROXY_DEVICE)
3556		its_dev->shared = true;
3557
3558	pr_debug("ITT %d entries, %d bits\n", nvec, ilog2(nvec));
3559out:
3560	mutex_unlock(&its->dev_alloc_lock);
3561	info->scratchpad[0].ptr = its_dev;
3562	return err;
3563}
3564
3565static struct msi_domain_ops its_msi_domain_ops = {
3566	.msi_prepare	= its_msi_prepare,
3567};
3568
3569static int its_irq_gic_domain_alloc(struct irq_domain *domain,
3570				    unsigned int virq,
3571				    irq_hw_number_t hwirq)
3572{
3573	struct irq_fwspec fwspec;
3574
3575	if (irq_domain_get_of_node(domain->parent)) {
3576		fwspec.fwnode = domain->parent->fwnode;
3577		fwspec.param_count = 3;
3578		fwspec.param[0] = GIC_IRQ_TYPE_LPI;
3579		fwspec.param[1] = hwirq;
3580		fwspec.param[2] = IRQ_TYPE_EDGE_RISING;
3581	} else if (is_fwnode_irqchip(domain->parent->fwnode)) {
3582		fwspec.fwnode = domain->parent->fwnode;
3583		fwspec.param_count = 2;
3584		fwspec.param[0] = hwirq;
3585		fwspec.param[1] = IRQ_TYPE_EDGE_RISING;
3586	} else {
3587		return -EINVAL;
3588	}
3589
3590	return irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec);
3591}
3592
3593static int its_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
3594				unsigned int nr_irqs, void *args)
3595{
3596	msi_alloc_info_t *info = args;
3597	struct its_device *its_dev = info->scratchpad[0].ptr;
3598	struct its_node *its = its_dev->its;
3599	struct irq_data *irqd;
3600	irq_hw_number_t hwirq;
3601	int err;
3602	int i;
3603
3604	err = its_alloc_device_irq(its_dev, nr_irqs, &hwirq);
3605	if (err)
3606		return err;
 
3607
3608	err = iommu_dma_prepare_msi(info->desc, its->get_msi_base(its_dev));
3609	if (err)
3610		return err;
3611
3612	for (i = 0; i < nr_irqs; i++) {
3613		err = its_irq_gic_domain_alloc(domain, virq + i, hwirq + i);
3614		if (err)
3615			return err;
3616
3617		irq_domain_set_hwirq_and_chip(domain, virq + i,
3618					      hwirq + i, &its_irq_chip, its_dev);
3619		irqd = irq_get_irq_data(virq + i);
3620		irqd_set_single_target(irqd);
3621		irqd_set_affinity_on_activate(irqd);
3622		irqd_set_resend_when_in_progress(irqd);
3623		pr_debug("ID:%d pID:%d vID:%d\n",
3624			 (int)(hwirq + i - its_dev->event_map.lpi_base),
3625			 (int)(hwirq + i), virq + i);
3626	}
3627
3628	return 0;
3629}
3630
3631static int its_irq_domain_activate(struct irq_domain *domain,
3632				   struct irq_data *d, bool reserve)
3633{
3634	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3635	u32 event = its_get_event_id(d);
 
3636	int cpu;
3637
3638	cpu = its_select_cpu(d, cpu_online_mask);
3639	if (cpu < 0 || cpu >= nr_cpu_ids)
3640		return -EINVAL;
3641
3642	its_inc_lpi_count(d, cpu);
 
3643	its_dev->event_map.col_map[event] = cpu;
3644	irq_data_update_effective_affinity(d, cpumask_of(cpu));
3645
3646	/* Map the GIC IRQ and event to the device */
3647	its_send_mapti(its_dev, d->hwirq, event);
3648	return 0;
3649}
3650
3651static void its_irq_domain_deactivate(struct irq_domain *domain,
3652				      struct irq_data *d)
3653{
3654	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3655	u32 event = its_get_event_id(d);
3656
3657	its_dec_lpi_count(d, its_dev->event_map.col_map[event]);
3658	/* Stop the delivery of interrupts */
3659	its_send_discard(its_dev, event);
3660}
3661
3662static void its_irq_domain_free(struct irq_domain *domain, unsigned int virq,
3663				unsigned int nr_irqs)
3664{
3665	struct irq_data *d = irq_domain_get_irq_data(domain, virq);
3666	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3667	struct its_node *its = its_dev->its;
3668	int i;
3669
3670	bitmap_release_region(its_dev->event_map.lpi_map,
3671			      its_get_event_id(irq_domain_get_irq_data(domain, virq)),
3672			      get_count_order(nr_irqs));
3673
3674	for (i = 0; i < nr_irqs; i++) {
3675		struct irq_data *data = irq_domain_get_irq_data(domain,
3676								virq + i);
 
 
 
 
 
3677		/* Nuke the entry in the domain */
3678		irq_domain_reset_irq_data(data);
3679	}
3680
3681	mutex_lock(&its->dev_alloc_lock);
3682
3683	/*
3684	 * If all interrupts have been freed, start mopping the
3685	 * floor. This is conditioned on the device not being shared.
3686	 */
3687	if (!its_dev->shared &&
3688	    bitmap_empty(its_dev->event_map.lpi_map,
3689			 its_dev->event_map.nr_lpis)) {
3690		its_lpi_free(its_dev->event_map.lpi_map,
3691			     its_dev->event_map.lpi_base,
3692			     its_dev->event_map.nr_lpis);
 
3693
3694		/* Unmap device/itt */
3695		its_send_mapd(its_dev, 0);
3696		its_free_device(its_dev);
3697	}
3698
3699	mutex_unlock(&its->dev_alloc_lock);
3700
3701	irq_domain_free_irqs_parent(domain, virq, nr_irqs);
3702}
3703
3704static const struct irq_domain_ops its_domain_ops = {
3705	.alloc			= its_irq_domain_alloc,
3706	.free			= its_irq_domain_free,
3707	.activate		= its_irq_domain_activate,
3708	.deactivate		= its_irq_domain_deactivate,
3709};
3710
3711/*
3712 * This is insane.
3713 *
3714 * If a GICv4.0 doesn't implement Direct LPIs (which is extremely
3715 * likely), the only way to perform an invalidate is to use a fake
3716 * device to issue an INV command, implying that the LPI has first
3717 * been mapped to some event on that device. Since this is not exactly
3718 * cheap, we try to keep that mapping around as long as possible, and
3719 * only issue an UNMAP if we're short on available slots.
3720 *
3721 * Broken by design(tm).
3722 *
3723 * GICv4.1, on the other hand, mandates that we're able to invalidate
3724 * by writing to a MMIO register. It doesn't implement the whole of
3725 * DirectLPI, but that's good enough. And most of the time, we don't
3726 * even have to invalidate anything, as the redistributor can be told
3727 * whether to generate a doorbell or not (we thus leave it enabled,
3728 * always).
3729 */
3730static void its_vpe_db_proxy_unmap_locked(struct its_vpe *vpe)
3731{
3732	/* GICv4.1 doesn't use a proxy, so nothing to do here */
3733	if (gic_rdists->has_rvpeid)
3734		return;
3735
3736	/* Already unmapped? */
3737	if (vpe->vpe_proxy_event == -1)
3738		return;
3739
3740	its_send_discard(vpe_proxy.dev, vpe->vpe_proxy_event);
3741	vpe_proxy.vpes[vpe->vpe_proxy_event] = NULL;
3742
3743	/*
3744	 * We don't track empty slots at all, so let's move the
3745	 * next_victim pointer if we can quickly reuse that slot
3746	 * instead of nuking an existing entry. Not clear that this is
3747	 * always a win though, and this might just generate a ripple
3748	 * effect... Let's just hope VPEs don't migrate too often.
3749	 */
3750	if (vpe_proxy.vpes[vpe_proxy.next_victim])
3751		vpe_proxy.next_victim = vpe->vpe_proxy_event;
3752
3753	vpe->vpe_proxy_event = -1;
3754}
3755
3756static void its_vpe_db_proxy_unmap(struct its_vpe *vpe)
3757{
3758	/* GICv4.1 doesn't use a proxy, so nothing to do here */
3759	if (gic_rdists->has_rvpeid)
3760		return;
3761
3762	if (!gic_rdists->has_direct_lpi) {
3763		unsigned long flags;
3764
3765		raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3766		its_vpe_db_proxy_unmap_locked(vpe);
3767		raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3768	}
3769}
3770
3771static void its_vpe_db_proxy_map_locked(struct its_vpe *vpe)
3772{
3773	/* GICv4.1 doesn't use a proxy, so nothing to do here */
3774	if (gic_rdists->has_rvpeid)
3775		return;
3776
3777	/* Already mapped? */
3778	if (vpe->vpe_proxy_event != -1)
3779		return;
3780
3781	/* This slot was already allocated. Kick the other VPE out. */
3782	if (vpe_proxy.vpes[vpe_proxy.next_victim])
3783		its_vpe_db_proxy_unmap_locked(vpe_proxy.vpes[vpe_proxy.next_victim]);
3784
3785	/* Map the new VPE instead */
3786	vpe_proxy.vpes[vpe_proxy.next_victim] = vpe;
3787	vpe->vpe_proxy_event = vpe_proxy.next_victim;
3788	vpe_proxy.next_victim = (vpe_proxy.next_victim + 1) % vpe_proxy.dev->nr_ites;
3789
3790	vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = vpe->col_idx;
3791	its_send_mapti(vpe_proxy.dev, vpe->vpe_db_lpi, vpe->vpe_proxy_event);
3792}
3793
3794static void its_vpe_db_proxy_move(struct its_vpe *vpe, int from, int to)
3795{
3796	unsigned long flags;
3797	struct its_collection *target_col;
3798
3799	/* GICv4.1 doesn't use a proxy, so nothing to do here */
3800	if (gic_rdists->has_rvpeid)
3801		return;
3802
3803	if (gic_rdists->has_direct_lpi) {
3804		void __iomem *rdbase;
3805
3806		rdbase = per_cpu_ptr(gic_rdists->rdist, from)->rd_base;
3807		gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
3808		wait_for_syncr(rdbase);
 
3809
3810		return;
3811	}
3812
3813	raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3814
3815	its_vpe_db_proxy_map_locked(vpe);
3816
3817	target_col = &vpe_proxy.dev->its->collections[to];
3818	its_send_movi(vpe_proxy.dev, target_col, vpe->vpe_proxy_event);
3819	vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = to;
3820
3821	raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3822}
3823
3824static int its_vpe_set_affinity(struct irq_data *d,
3825				const struct cpumask *mask_val,
3826				bool force)
3827{
3828	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3829	struct cpumask common, *table_mask;
3830	unsigned long flags;
3831	int from, cpu;
3832
3833	/*
3834	 * Changing affinity is mega expensive, so let's be as lazy as
3835	 * we can and only do it if we really have to. Also, if mapped
3836	 * into the proxy device, we need to move the doorbell
3837	 * interrupt to its new location.
3838	 *
3839	 * Another thing is that changing the affinity of a vPE affects
3840	 * *other interrupts* such as all the vLPIs that are routed to
3841	 * this vPE. This means that the irq_desc lock is not enough to
3842	 * protect us, and that we must ensure nobody samples vpe->col_idx
3843	 * during the update, hence the lock below which must also be
3844	 * taken on any vLPI handling path that evaluates vpe->col_idx.
3845	 */
3846	from = vpe_to_cpuid_lock(vpe, &flags);
3847	table_mask = gic_data_rdist_cpu(from)->vpe_table_mask;
3848
3849	/*
3850	 * If we are offered another CPU in the same GICv4.1 ITS
3851	 * affinity, pick this one. Otherwise, any CPU will do.
3852	 */
3853	if (table_mask && cpumask_and(&common, mask_val, table_mask))
3854		cpu = cpumask_test_cpu(from, &common) ? from : cpumask_first(&common);
3855	else
3856		cpu = cpumask_first(mask_val);
3857
3858	if (from == cpu)
3859		goto out;
3860
3861	vpe->col_idx = cpu;
3862
3863	its_send_vmovp(vpe);
3864	its_vpe_db_proxy_move(vpe, from, cpu);
3865
3866out:
3867	irq_data_update_effective_affinity(d, cpumask_of(cpu));
3868	vpe_to_cpuid_unlock(vpe, flags);
3869
3870	return IRQ_SET_MASK_OK_DONE;
3871}
3872
3873static void its_wait_vpt_parse_complete(void)
3874{
3875	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3876	u64 val;
3877
3878	if (!gic_rdists->has_vpend_valid_dirty)
3879		return;
3880
3881	WARN_ON_ONCE(readq_relaxed_poll_timeout_atomic(vlpi_base + GICR_VPENDBASER,
3882						       val,
3883						       !(val & GICR_VPENDBASER_Dirty),
3884						       1, 500));
3885}
3886
3887static void its_vpe_schedule(struct its_vpe *vpe)
3888{
3889	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3890	u64 val;
3891
3892	/* Schedule the VPE */
3893	val  = virt_to_phys(page_address(vpe->its_vm->vprop_page)) &
3894		GENMASK_ULL(51, 12);
3895	val |= (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
3896	if (rdists_support_shareable()) {
3897		val |= GICR_VPROPBASER_RaWb;
3898		val |= GICR_VPROPBASER_InnerShareable;
3899	}
3900	gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
3901
3902	val  = virt_to_phys(page_address(vpe->vpt_page)) &
3903		GENMASK_ULL(51, 16);
3904	if (rdists_support_shareable()) {
3905		val |= GICR_VPENDBASER_RaWaWb;
3906		val |= GICR_VPENDBASER_InnerShareable;
3907	}
3908	/*
3909	 * There is no good way of finding out if the pending table is
3910	 * empty as we can race against the doorbell interrupt very
3911	 * easily. So in the end, vpe->pending_last is only an
3912	 * indication that the vcpu has something pending, not one
3913	 * that the pending table is empty. A good implementation
3914	 * would be able to read its coarse map pretty quickly anyway,
3915	 * making this a tolerable issue.
3916	 */
3917	val |= GICR_VPENDBASER_PendingLast;
3918	val |= vpe->idai ? GICR_VPENDBASER_IDAI : 0;
3919	val |= GICR_VPENDBASER_Valid;
3920	gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
3921}
3922
3923static void its_vpe_deschedule(struct its_vpe *vpe)
3924{
3925	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
 
 
3926	u64 val;
3927
3928	val = its_clear_vpend_valid(vlpi_base, 0, 0);
 
 
 
3929
3930	vpe->idai = !!(val & GICR_VPENDBASER_IDAI);
3931	vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3932}
3933
3934static void its_vpe_invall(struct its_vpe *vpe)
3935{
3936	struct its_node *its;
3937
3938	list_for_each_entry(its, &its_nodes, entry) {
3939		if (!is_v4(its))
3940			continue;
3941
3942		if (its_list_map && !vpe->its_vm->vlpi_count[its->list_nr])
3943			continue;
3944
3945		/*
3946		 * Sending a VINVALL to a single ITS is enough, as all
3947		 * we need is to reach the redistributors.
3948		 */
3949		its_send_vinvall(its, vpe);
3950		return;
3951	}
3952}
3953
3954static int its_vpe_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
3955{
3956	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3957	struct its_cmd_info *info = vcpu_info;
3958
3959	switch (info->cmd_type) {
3960	case SCHEDULE_VPE:
3961		its_vpe_schedule(vpe);
3962		return 0;
3963
3964	case DESCHEDULE_VPE:
3965		its_vpe_deschedule(vpe);
3966		return 0;
3967
3968	case COMMIT_VPE:
3969		its_wait_vpt_parse_complete();
3970		return 0;
3971
3972	case INVALL_VPE:
3973		its_vpe_invall(vpe);
3974		return 0;
3975
3976	default:
3977		return -EINVAL;
3978	}
3979}
3980
3981static void its_vpe_send_cmd(struct its_vpe *vpe,
3982			     void (*cmd)(struct its_device *, u32))
3983{
3984	unsigned long flags;
3985
3986	raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3987
3988	its_vpe_db_proxy_map_locked(vpe);
3989	cmd(vpe_proxy.dev, vpe->vpe_proxy_event);
3990
3991	raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3992}
3993
3994static void its_vpe_send_inv(struct irq_data *d)
3995{
3996	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3997
3998	if (gic_rdists->has_direct_lpi)
3999		__direct_lpi_inv(d, d->parent_data->hwirq);
4000	else
 
 
 
 
 
4001		its_vpe_send_cmd(vpe, its_send_inv);
 
4002}
4003
4004static void its_vpe_mask_irq(struct irq_data *d)
4005{
4006	/*
4007	 * We need to unmask the LPI, which is described by the parent
4008	 * irq_data. Instead of calling into the parent (which won't
4009	 * exactly do the right thing, let's simply use the
4010	 * parent_data pointer. Yes, I'm naughty.
4011	 */
4012	lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0);
4013	its_vpe_send_inv(d);
4014}
4015
4016static void its_vpe_unmask_irq(struct irq_data *d)
4017{
4018	/* Same hack as above... */
4019	lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED);
4020	its_vpe_send_inv(d);
4021}
4022
4023static int its_vpe_set_irqchip_state(struct irq_data *d,
4024				     enum irqchip_irq_state which,
4025				     bool state)
4026{
4027	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4028
4029	if (which != IRQCHIP_STATE_PENDING)
4030		return -EINVAL;
4031
4032	if (gic_rdists->has_direct_lpi) {
4033		void __iomem *rdbase;
4034
4035		rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base;
4036		if (state) {
4037			gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_SETLPIR);
4038		} else {
4039			gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
4040			wait_for_syncr(rdbase);
 
4041		}
4042	} else {
4043		if (state)
4044			its_vpe_send_cmd(vpe, its_send_int);
4045		else
4046			its_vpe_send_cmd(vpe, its_send_clear);
4047	}
4048
4049	return 0;
4050}
4051
4052static int its_vpe_retrigger(struct irq_data *d)
4053{
4054	return !its_vpe_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true);
4055}
4056
4057static struct irq_chip its_vpe_irq_chip = {
4058	.name			= "GICv4-vpe",
4059	.irq_mask		= its_vpe_mask_irq,
4060	.irq_unmask		= its_vpe_unmask_irq,
4061	.irq_eoi		= irq_chip_eoi_parent,
4062	.irq_set_affinity	= its_vpe_set_affinity,
4063	.irq_retrigger		= its_vpe_retrigger,
4064	.irq_set_irqchip_state	= its_vpe_set_irqchip_state,
4065	.irq_set_vcpu_affinity	= its_vpe_set_vcpu_affinity,
4066};
4067
4068static struct its_node *find_4_1_its(void)
4069{
4070	static struct its_node *its = NULL;
4071
4072	if (!its) {
4073		list_for_each_entry(its, &its_nodes, entry) {
4074			if (is_v4_1(its))
4075				return its;
4076		}
4077
4078		/* Oops? */
4079		its = NULL;
4080	}
4081
4082	return its;
4083}
4084
4085static void its_vpe_4_1_send_inv(struct irq_data *d)
4086{
4087	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4088	struct its_node *its;
4089
4090	/*
4091	 * GICv4.1 wants doorbells to be invalidated using the
4092	 * INVDB command in order to be broadcast to all RDs. Send
4093	 * it to the first valid ITS, and let the HW do its magic.
4094	 */
4095	its = find_4_1_its();
4096	if (its)
4097		its_send_invdb(its, vpe);
4098}
4099
4100static void its_vpe_4_1_mask_irq(struct irq_data *d)
4101{
4102	lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0);
4103	its_vpe_4_1_send_inv(d);
4104}
4105
4106static void its_vpe_4_1_unmask_irq(struct irq_data *d)
4107{
4108	lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED);
4109	its_vpe_4_1_send_inv(d);
4110}
4111
4112static void its_vpe_4_1_schedule(struct its_vpe *vpe,
4113				 struct its_cmd_info *info)
4114{
4115	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
4116	u64 val = 0;
4117
4118	/* Schedule the VPE */
4119	val |= GICR_VPENDBASER_Valid;
4120	val |= info->g0en ? GICR_VPENDBASER_4_1_VGRP0EN : 0;
4121	val |= info->g1en ? GICR_VPENDBASER_4_1_VGRP1EN : 0;
4122	val |= FIELD_PREP(GICR_VPENDBASER_4_1_VPEID, vpe->vpe_id);
4123
4124	gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
4125}
4126
4127static void its_vpe_4_1_deschedule(struct its_vpe *vpe,
4128				   struct its_cmd_info *info)
4129{
4130	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
4131	u64 val;
4132
4133	if (info->req_db) {
4134		unsigned long flags;
4135
4136		/*
4137		 * vPE is going to block: make the vPE non-resident with
4138		 * PendingLast clear and DB set. The GIC guarantees that if
4139		 * we read-back PendingLast clear, then a doorbell will be
4140		 * delivered when an interrupt comes.
4141		 *
4142		 * Note the locking to deal with the concurrent update of
4143		 * pending_last from the doorbell interrupt handler that can
4144		 * run concurrently.
4145		 */
4146		raw_spin_lock_irqsave(&vpe->vpe_lock, flags);
4147		val = its_clear_vpend_valid(vlpi_base,
4148					    GICR_VPENDBASER_PendingLast,
4149					    GICR_VPENDBASER_4_1_DB);
4150		vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast);
4151		raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags);
4152	} else {
4153		/*
4154		 * We're not blocking, so just make the vPE non-resident
4155		 * with PendingLast set, indicating that we'll be back.
4156		 */
4157		val = its_clear_vpend_valid(vlpi_base,
4158					    0,
4159					    GICR_VPENDBASER_PendingLast);
4160		vpe->pending_last = true;
4161	}
4162}
4163
4164static void its_vpe_4_1_invall(struct its_vpe *vpe)
4165{
4166	void __iomem *rdbase;
4167	unsigned long flags;
4168	u64 val;
4169	int cpu;
4170
4171	val  = GICR_INVALLR_V;
4172	val |= FIELD_PREP(GICR_INVALLR_VPEID, vpe->vpe_id);
4173
4174	/* Target the redistributor this vPE is currently known on */
4175	cpu = vpe_to_cpuid_lock(vpe, &flags);
4176	raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
4177	rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base;
4178	gic_write_lpir(val, rdbase + GICR_INVALLR);
4179
4180	wait_for_syncr(rdbase);
4181	raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
4182	vpe_to_cpuid_unlock(vpe, flags);
4183}
4184
4185static int its_vpe_4_1_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
4186{
4187	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4188	struct its_cmd_info *info = vcpu_info;
4189
4190	switch (info->cmd_type) {
4191	case SCHEDULE_VPE:
4192		its_vpe_4_1_schedule(vpe, info);
4193		return 0;
4194
4195	case DESCHEDULE_VPE:
4196		its_vpe_4_1_deschedule(vpe, info);
4197		return 0;
4198
4199	case COMMIT_VPE:
4200		its_wait_vpt_parse_complete();
4201		return 0;
4202
4203	case INVALL_VPE:
4204		its_vpe_4_1_invall(vpe);
4205		return 0;
4206
4207	default:
4208		return -EINVAL;
4209	}
4210}
4211
4212static struct irq_chip its_vpe_4_1_irq_chip = {
4213	.name			= "GICv4.1-vpe",
4214	.irq_mask		= its_vpe_4_1_mask_irq,
4215	.irq_unmask		= its_vpe_4_1_unmask_irq,
4216	.irq_eoi		= irq_chip_eoi_parent,
4217	.irq_set_affinity	= its_vpe_set_affinity,
4218	.irq_set_vcpu_affinity	= its_vpe_4_1_set_vcpu_affinity,
4219};
4220
4221static void its_configure_sgi(struct irq_data *d, bool clear)
4222{
4223	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4224	struct its_cmd_desc desc;
4225
4226	desc.its_vsgi_cmd.vpe = vpe;
4227	desc.its_vsgi_cmd.sgi = d->hwirq;
4228	desc.its_vsgi_cmd.priority = vpe->sgi_config[d->hwirq].priority;
4229	desc.its_vsgi_cmd.enable = vpe->sgi_config[d->hwirq].enabled;
4230	desc.its_vsgi_cmd.group = vpe->sgi_config[d->hwirq].group;
4231	desc.its_vsgi_cmd.clear = clear;
4232
4233	/*
4234	 * GICv4.1 allows us to send VSGI commands to any ITS as long as the
4235	 * destination VPE is mapped there. Since we map them eagerly at
4236	 * activation time, we're pretty sure the first GICv4.1 ITS will do.
4237	 */
4238	its_send_single_vcommand(find_4_1_its(), its_build_vsgi_cmd, &desc);
4239}
4240
4241static void its_sgi_mask_irq(struct irq_data *d)
4242{
4243	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4244
4245	vpe->sgi_config[d->hwirq].enabled = false;
4246	its_configure_sgi(d, false);
4247}
4248
4249static void its_sgi_unmask_irq(struct irq_data *d)
4250{
4251	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4252
4253	vpe->sgi_config[d->hwirq].enabled = true;
4254	its_configure_sgi(d, false);
4255}
4256
4257static int its_sgi_set_affinity(struct irq_data *d,
4258				const struct cpumask *mask_val,
4259				bool force)
4260{
4261	/*
4262	 * There is no notion of affinity for virtual SGIs, at least
4263	 * not on the host (since they can only be targeting a vPE).
4264	 * Tell the kernel we've done whatever it asked for.
4265	 */
4266	irq_data_update_effective_affinity(d, mask_val);
4267	return IRQ_SET_MASK_OK;
4268}
4269
4270static int its_sgi_set_irqchip_state(struct irq_data *d,
4271				     enum irqchip_irq_state which,
4272				     bool state)
4273{
4274	if (which != IRQCHIP_STATE_PENDING)
4275		return -EINVAL;
4276
4277	if (state) {
4278		struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4279		struct its_node *its = find_4_1_its();
4280		u64 val;
4281
4282		val  = FIELD_PREP(GITS_SGIR_VPEID, vpe->vpe_id);
4283		val |= FIELD_PREP(GITS_SGIR_VINTID, d->hwirq);
4284		writeq_relaxed(val, its->sgir_base + GITS_SGIR - SZ_128K);
4285	} else {
4286		its_configure_sgi(d, true);
4287	}
4288
4289	return 0;
4290}
4291
4292static int its_sgi_get_irqchip_state(struct irq_data *d,
4293				     enum irqchip_irq_state which, bool *val)
4294{
4295	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4296	void __iomem *base;
4297	unsigned long flags;
4298	u32 count = 1000000;	/* 1s! */
4299	u32 status;
4300	int cpu;
4301
4302	if (which != IRQCHIP_STATE_PENDING)
4303		return -EINVAL;
4304
4305	/*
4306	 * Locking galore! We can race against two different events:
4307	 *
4308	 * - Concurrent vPE affinity change: we must make sure it cannot
4309	 *   happen, or we'll talk to the wrong redistributor. This is
4310	 *   identical to what happens with vLPIs.
4311	 *
4312	 * - Concurrent VSGIPENDR access: As it involves accessing two
4313	 *   MMIO registers, this must be made atomic one way or another.
4314	 */
4315	cpu = vpe_to_cpuid_lock(vpe, &flags);
4316	raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
4317	base = gic_data_rdist_cpu(cpu)->rd_base + SZ_128K;
4318	writel_relaxed(vpe->vpe_id, base + GICR_VSGIR);
4319	do {
4320		status = readl_relaxed(base + GICR_VSGIPENDR);
4321		if (!(status & GICR_VSGIPENDR_BUSY))
4322			goto out;
4323
4324		count--;
4325		if (!count) {
4326			pr_err_ratelimited("Unable to get SGI status\n");
4327			goto out;
4328		}
4329		cpu_relax();
4330		udelay(1);
4331	} while (count);
4332
4333out:
4334	raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
4335	vpe_to_cpuid_unlock(vpe, flags);
4336
4337	if (!count)
4338		return -ENXIO;
4339
4340	*val = !!(status & (1 << d->hwirq));
4341
4342	return 0;
4343}
4344
4345static int its_sgi_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
4346{
4347	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4348	struct its_cmd_info *info = vcpu_info;
4349
4350	switch (info->cmd_type) {
4351	case PROP_UPDATE_VSGI:
4352		vpe->sgi_config[d->hwirq].priority = info->priority;
4353		vpe->sgi_config[d->hwirq].group = info->group;
4354		its_configure_sgi(d, false);
4355		return 0;
4356
4357	default:
4358		return -EINVAL;
4359	}
4360}
4361
4362static struct irq_chip its_sgi_irq_chip = {
4363	.name			= "GICv4.1-sgi",
4364	.irq_mask		= its_sgi_mask_irq,
4365	.irq_unmask		= its_sgi_unmask_irq,
4366	.irq_set_affinity	= its_sgi_set_affinity,
4367	.irq_set_irqchip_state	= its_sgi_set_irqchip_state,
4368	.irq_get_irqchip_state	= its_sgi_get_irqchip_state,
4369	.irq_set_vcpu_affinity	= its_sgi_set_vcpu_affinity,
4370};
4371
4372static int its_sgi_irq_domain_alloc(struct irq_domain *domain,
4373				    unsigned int virq, unsigned int nr_irqs,
4374				    void *args)
4375{
4376	struct its_vpe *vpe = args;
4377	int i;
4378
4379	/* Yes, we do want 16 SGIs */
4380	WARN_ON(nr_irqs != 16);
4381
4382	for (i = 0; i < 16; i++) {
4383		vpe->sgi_config[i].priority = 0;
4384		vpe->sgi_config[i].enabled = false;
4385		vpe->sgi_config[i].group = false;
4386
4387		irq_domain_set_hwirq_and_chip(domain, virq + i, i,
4388					      &its_sgi_irq_chip, vpe);
4389		irq_set_status_flags(virq + i, IRQ_DISABLE_UNLAZY);
4390	}
4391
4392	return 0;
4393}
4394
4395static void its_sgi_irq_domain_free(struct irq_domain *domain,
4396				    unsigned int virq,
4397				    unsigned int nr_irqs)
4398{
4399	/* Nothing to do */
4400}
4401
4402static int its_sgi_irq_domain_activate(struct irq_domain *domain,
4403				       struct irq_data *d, bool reserve)
4404{
4405	/* Write out the initial SGI configuration */
4406	its_configure_sgi(d, false);
4407	return 0;
4408}
4409
4410static void its_sgi_irq_domain_deactivate(struct irq_domain *domain,
4411					  struct irq_data *d)
4412{
4413	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4414
4415	/*
4416	 * The VSGI command is awkward:
4417	 *
4418	 * - To change the configuration, CLEAR must be set to false,
4419	 *   leaving the pending bit unchanged.
4420	 * - To clear the pending bit, CLEAR must be set to true, leaving
4421	 *   the configuration unchanged.
4422	 *
4423	 * You just can't do both at once, hence the two commands below.
4424	 */
4425	vpe->sgi_config[d->hwirq].enabled = false;
4426	its_configure_sgi(d, false);
4427	its_configure_sgi(d, true);
4428}
4429
4430static const struct irq_domain_ops its_sgi_domain_ops = {
4431	.alloc		= its_sgi_irq_domain_alloc,
4432	.free		= its_sgi_irq_domain_free,
4433	.activate	= its_sgi_irq_domain_activate,
4434	.deactivate	= its_sgi_irq_domain_deactivate,
4435};
4436
4437static int its_vpe_id_alloc(void)
4438{
4439	return ida_simple_get(&its_vpeid_ida, 0, ITS_MAX_VPEID, GFP_KERNEL);
4440}
4441
4442static void its_vpe_id_free(u16 id)
4443{
4444	ida_simple_remove(&its_vpeid_ida, id);
4445}
4446
4447static int its_vpe_init(struct its_vpe *vpe)
4448{
4449	struct page *vpt_page;
4450	int vpe_id;
4451
4452	/* Allocate vpe_id */
4453	vpe_id = its_vpe_id_alloc();
4454	if (vpe_id < 0)
4455		return vpe_id;
4456
4457	/* Allocate VPT */
4458	vpt_page = its_allocate_pending_table(GFP_KERNEL);
4459	if (!vpt_page) {
4460		its_vpe_id_free(vpe_id);
4461		return -ENOMEM;
4462	}
4463
4464	if (!its_alloc_vpe_table(vpe_id)) {
4465		its_vpe_id_free(vpe_id);
4466		its_free_pending_table(vpt_page);
4467		return -ENOMEM;
4468	}
4469
4470	raw_spin_lock_init(&vpe->vpe_lock);
4471	vpe->vpe_id = vpe_id;
4472	vpe->vpt_page = vpt_page;
4473	if (gic_rdists->has_rvpeid)
4474		atomic_set(&vpe->vmapp_count, 0);
4475	else
4476		vpe->vpe_proxy_event = -1;
4477
4478	return 0;
4479}
4480
4481static void its_vpe_teardown(struct its_vpe *vpe)
4482{
4483	its_vpe_db_proxy_unmap(vpe);
4484	its_vpe_id_free(vpe->vpe_id);
4485	its_free_pending_table(vpe->vpt_page);
4486}
4487
4488static void its_vpe_irq_domain_free(struct irq_domain *domain,
4489				    unsigned int virq,
4490				    unsigned int nr_irqs)
4491{
4492	struct its_vm *vm = domain->host_data;
4493	int i;
4494
4495	irq_domain_free_irqs_parent(domain, virq, nr_irqs);
4496
4497	for (i = 0; i < nr_irqs; i++) {
4498		struct irq_data *data = irq_domain_get_irq_data(domain,
4499								virq + i);
4500		struct its_vpe *vpe = irq_data_get_irq_chip_data(data);
4501
4502		BUG_ON(vm != vpe->its_vm);
4503
4504		clear_bit(data->hwirq, vm->db_bitmap);
4505		its_vpe_teardown(vpe);
4506		irq_domain_reset_irq_data(data);
4507	}
4508
4509	if (bitmap_empty(vm->db_bitmap, vm->nr_db_lpis)) {
4510		its_lpi_free(vm->db_bitmap, vm->db_lpi_base, vm->nr_db_lpis);
4511		its_free_prop_table(vm->vprop_page);
4512	}
4513}
4514
4515static int its_vpe_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
4516				    unsigned int nr_irqs, void *args)
4517{
4518	struct irq_chip *irqchip = &its_vpe_irq_chip;
4519	struct its_vm *vm = args;
4520	unsigned long *bitmap;
4521	struct page *vprop_page;
4522	int base, nr_ids, i, err = 0;
4523
4524	BUG_ON(!vm);
4525
4526	bitmap = its_lpi_alloc(roundup_pow_of_two(nr_irqs), &base, &nr_ids);
4527	if (!bitmap)
4528		return -ENOMEM;
4529
4530	if (nr_ids < nr_irqs) {
4531		its_lpi_free(bitmap, base, nr_ids);
4532		return -ENOMEM;
4533	}
4534
4535	vprop_page = its_allocate_prop_table(GFP_KERNEL);
4536	if (!vprop_page) {
4537		its_lpi_free(bitmap, base, nr_ids);
4538		return -ENOMEM;
4539	}
4540
4541	vm->db_bitmap = bitmap;
4542	vm->db_lpi_base = base;
4543	vm->nr_db_lpis = nr_ids;
4544	vm->vprop_page = vprop_page;
4545
4546	if (gic_rdists->has_rvpeid)
4547		irqchip = &its_vpe_4_1_irq_chip;
4548
4549	for (i = 0; i < nr_irqs; i++) {
4550		vm->vpes[i]->vpe_db_lpi = base + i;
4551		err = its_vpe_init(vm->vpes[i]);
4552		if (err)
4553			break;
4554		err = its_irq_gic_domain_alloc(domain, virq + i,
4555					       vm->vpes[i]->vpe_db_lpi);
4556		if (err)
4557			break;
4558		irq_domain_set_hwirq_and_chip(domain, virq + i, i,
4559					      irqchip, vm->vpes[i]);
4560		set_bit(i, bitmap);
4561		irqd_set_resend_when_in_progress(irq_get_irq_data(virq + i));
4562	}
4563
4564	if (err) {
4565		if (i > 0)
4566			its_vpe_irq_domain_free(domain, virq, i);
4567
4568		its_lpi_free(bitmap, base, nr_ids);
4569		its_free_prop_table(vprop_page);
4570	}
4571
4572	return err;
4573}
4574
4575static int its_vpe_irq_domain_activate(struct irq_domain *domain,
4576				       struct irq_data *d, bool reserve)
4577{
4578	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4579	struct its_node *its;
4580
4581	/*
4582	 * If we use the list map, we issue VMAPP on demand... Unless
4583	 * we're on a GICv4.1 and we eagerly map the VPE on all ITSs
4584	 * so that VSGIs can work.
4585	 */
4586	if (!gic_requires_eager_mapping())
4587		return 0;
4588
4589	/* Map the VPE to the first possible CPU */
4590	vpe->col_idx = cpumask_first(cpu_online_mask);
4591
4592	list_for_each_entry(its, &its_nodes, entry) {
4593		if (!is_v4(its))
4594			continue;
4595
4596		its_send_vmapp(its, vpe, true);
4597		its_send_vinvall(its, vpe);
4598	}
4599
4600	irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx));
4601
4602	return 0;
4603}
4604
4605static void its_vpe_irq_domain_deactivate(struct irq_domain *domain,
4606					  struct irq_data *d)
4607{
4608	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4609	struct its_node *its;
4610
4611	/*
4612	 * If we use the list map on GICv4.0, we unmap the VPE once no
4613	 * VLPIs are associated with the VM.
4614	 */
4615	if (!gic_requires_eager_mapping())
4616		return;
4617
4618	list_for_each_entry(its, &its_nodes, entry) {
4619		if (!is_v4(its))
4620			continue;
4621
4622		its_send_vmapp(its, vpe, false);
4623	}
4624
4625	/*
4626	 * There may be a direct read to the VPT after unmapping the
4627	 * vPE, to guarantee the validity of this, we make the VPT
4628	 * memory coherent with the CPU caches here.
4629	 */
4630	if (find_4_1_its() && !atomic_read(&vpe->vmapp_count))
4631		gic_flush_dcache_to_poc(page_address(vpe->vpt_page),
4632					LPI_PENDBASE_SZ);
4633}
4634
4635static const struct irq_domain_ops its_vpe_domain_ops = {
4636	.alloc			= its_vpe_irq_domain_alloc,
4637	.free			= its_vpe_irq_domain_free,
4638	.activate		= its_vpe_irq_domain_activate,
4639	.deactivate		= its_vpe_irq_domain_deactivate,
4640};
4641
4642static int its_force_quiescent(void __iomem *base)
4643{
4644	u32 count = 1000000;	/* 1s */
4645	u32 val;
4646
4647	val = readl_relaxed(base + GITS_CTLR);
4648	/*
4649	 * GIC architecture specification requires the ITS to be both
4650	 * disabled and quiescent for writes to GITS_BASER<n> or
4651	 * GITS_CBASER to not have UNPREDICTABLE results.
4652	 */
4653	if ((val & GITS_CTLR_QUIESCENT) && !(val & GITS_CTLR_ENABLE))
4654		return 0;
4655
4656	/* Disable the generation of all interrupts to this ITS */
4657	val &= ~(GITS_CTLR_ENABLE | GITS_CTLR_ImDe);
4658	writel_relaxed(val, base + GITS_CTLR);
4659
4660	/* Poll GITS_CTLR and wait until ITS becomes quiescent */
4661	while (1) {
4662		val = readl_relaxed(base + GITS_CTLR);
4663		if (val & GITS_CTLR_QUIESCENT)
4664			return 0;
4665
4666		count--;
4667		if (!count)
4668			return -EBUSY;
4669
4670		cpu_relax();
4671		udelay(1);
4672	}
4673}
4674
4675static bool __maybe_unused its_enable_quirk_cavium_22375(void *data)
4676{
4677	struct its_node *its = data;
4678
4679	/* erratum 22375: only alloc 8MB table size (20 bits) */
4680	its->typer &= ~GITS_TYPER_DEVBITS;
4681	its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, 20 - 1);
4682	its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_22375;
4683
4684	return true;
4685}
4686
4687static bool __maybe_unused its_enable_quirk_cavium_23144(void *data)
4688{
4689	struct its_node *its = data;
4690
4691	its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_23144;
4692
4693	return true;
4694}
4695
4696static bool __maybe_unused its_enable_quirk_qdf2400_e0065(void *data)
4697{
4698	struct its_node *its = data;
4699
4700	/* On QDF2400, the size of the ITE is 16Bytes */
4701	its->typer &= ~GITS_TYPER_ITT_ENTRY_SIZE;
4702	its->typer |= FIELD_PREP(GITS_TYPER_ITT_ENTRY_SIZE, 16 - 1);
4703
4704	return true;
4705}
4706
4707static u64 its_irq_get_msi_base_pre_its(struct its_device *its_dev)
4708{
4709	struct its_node *its = its_dev->its;
4710
4711	/*
4712	 * The Socionext Synquacer SoC has a so-called 'pre-ITS',
4713	 * which maps 32-bit writes targeted at a separate window of
4714	 * size '4 << device_id_bits' onto writes to GITS_TRANSLATER
4715	 * with device ID taken from bits [device_id_bits + 1:2] of
4716	 * the window offset.
4717	 */
4718	return its->pre_its_base + (its_dev->device_id << 2);
4719}
4720
4721static bool __maybe_unused its_enable_quirk_socionext_synquacer(void *data)
4722{
4723	struct its_node *its = data;
4724	u32 pre_its_window[2];
4725	u32 ids;
4726
4727	if (!fwnode_property_read_u32_array(its->fwnode_handle,
4728					   "socionext,synquacer-pre-its",
4729					   pre_its_window,
4730					   ARRAY_SIZE(pre_its_window))) {
4731
4732		its->pre_its_base = pre_its_window[0];
4733		its->get_msi_base = its_irq_get_msi_base_pre_its;
4734
4735		ids = ilog2(pre_its_window[1]) - 2;
4736		if (device_ids(its) > ids) {
4737			its->typer &= ~GITS_TYPER_DEVBITS;
4738			its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, ids - 1);
4739		}
4740
4741		/* the pre-ITS breaks isolation, so disable MSI remapping */
4742		its->msi_domain_flags &= ~IRQ_DOMAIN_FLAG_ISOLATED_MSI;
4743		return true;
4744	}
4745	return false;
4746}
4747
4748static bool __maybe_unused its_enable_quirk_hip07_161600802(void *data)
4749{
4750	struct its_node *its = data;
4751
4752	/*
4753	 * Hip07 insists on using the wrong address for the VLPI
4754	 * page. Trick it into doing the right thing...
4755	 */
4756	its->vlpi_redist_offset = SZ_128K;
4757	return true;
4758}
4759
4760static bool __maybe_unused its_enable_rk3588001(void *data)
4761{
4762	struct its_node *its = data;
4763
4764	if (!of_machine_is_compatible("rockchip,rk3588") &&
4765	    !of_machine_is_compatible("rockchip,rk3588s"))
4766		return false;
4767
4768	its->flags |= ITS_FLAGS_FORCE_NON_SHAREABLE;
4769	gic_rdists->flags |= RDIST_FLAGS_FORCE_NON_SHAREABLE;
4770
4771	return true;
4772}
4773
4774static bool its_set_non_coherent(void *data)
4775{
4776	struct its_node *its = data;
4777
4778	its->flags |= ITS_FLAGS_FORCE_NON_SHAREABLE;
4779	return true;
4780}
4781
4782static const struct gic_quirk its_quirks[] = {
4783#ifdef CONFIG_CAVIUM_ERRATUM_22375
4784	{
4785		.desc	= "ITS: Cavium errata 22375, 24313",
4786		.iidr	= 0xa100034c,	/* ThunderX pass 1.x */
4787		.mask	= 0xffff0fff,
4788		.init	= its_enable_quirk_cavium_22375,
4789	},
4790#endif
4791#ifdef CONFIG_CAVIUM_ERRATUM_23144
4792	{
4793		.desc	= "ITS: Cavium erratum 23144",
4794		.iidr	= 0xa100034c,	/* ThunderX pass 1.x */
4795		.mask	= 0xffff0fff,
4796		.init	= its_enable_quirk_cavium_23144,
4797	},
4798#endif
4799#ifdef CONFIG_QCOM_QDF2400_ERRATUM_0065
4800	{
4801		.desc	= "ITS: QDF2400 erratum 0065",
4802		.iidr	= 0x00001070, /* QDF2400 ITS rev 1.x */
4803		.mask	= 0xffffffff,
4804		.init	= its_enable_quirk_qdf2400_e0065,
4805	},
4806#endif
4807#ifdef CONFIG_SOCIONEXT_SYNQUACER_PREITS
4808	{
4809		/*
4810		 * The Socionext Synquacer SoC incorporates ARM's own GIC-500
4811		 * implementation, but with a 'pre-ITS' added that requires
4812		 * special handling in software.
4813		 */
4814		.desc	= "ITS: Socionext Synquacer pre-ITS",
4815		.iidr	= 0x0001143b,
4816		.mask	= 0xffffffff,
4817		.init	= its_enable_quirk_socionext_synquacer,
4818	},
4819#endif
4820#ifdef CONFIG_HISILICON_ERRATUM_161600802
4821	{
4822		.desc	= "ITS: Hip07 erratum 161600802",
4823		.iidr	= 0x00000004,
4824		.mask	= 0xffffffff,
4825		.init	= its_enable_quirk_hip07_161600802,
4826	},
4827#endif
4828#ifdef CONFIG_ROCKCHIP_ERRATUM_3588001
4829	{
4830		.desc   = "ITS: Rockchip erratum RK3588001",
4831		.iidr   = 0x0201743b,
4832		.mask   = 0xffffffff,
4833		.init   = its_enable_rk3588001,
4834	},
4835#endif
4836	{
4837		.desc   = "ITS: non-coherent attribute",
4838		.property = "dma-noncoherent",
4839		.init   = its_set_non_coherent,
4840	},
4841	{
4842	}
4843};
4844
4845static void its_enable_quirks(struct its_node *its)
4846{
4847	u32 iidr = readl_relaxed(its->base + GITS_IIDR);
4848
4849	gic_enable_quirks(iidr, its_quirks, its);
4850
4851	if (is_of_node(its->fwnode_handle))
4852		gic_enable_of_quirks(to_of_node(its->fwnode_handle),
4853				     its_quirks, its);
4854}
4855
4856static int its_save_disable(void)
4857{
4858	struct its_node *its;
4859	int err = 0;
4860
4861	raw_spin_lock(&its_lock);
4862	list_for_each_entry(its, &its_nodes, entry) {
4863		void __iomem *base;
4864
 
 
 
4865		base = its->base;
4866		its->ctlr_save = readl_relaxed(base + GITS_CTLR);
4867		err = its_force_quiescent(base);
4868		if (err) {
4869			pr_err("ITS@%pa: failed to quiesce: %d\n",
4870			       &its->phys_base, err);
4871			writel_relaxed(its->ctlr_save, base + GITS_CTLR);
4872			goto err;
4873		}
4874
4875		its->cbaser_save = gits_read_cbaser(base + GITS_CBASER);
4876	}
4877
4878err:
4879	if (err) {
4880		list_for_each_entry_continue_reverse(its, &its_nodes, entry) {
4881			void __iomem *base;
4882
 
 
 
4883			base = its->base;
4884			writel_relaxed(its->ctlr_save, base + GITS_CTLR);
4885		}
4886	}
4887	raw_spin_unlock(&its_lock);
4888
4889	return err;
4890}
4891
4892static void its_restore_enable(void)
4893{
4894	struct its_node *its;
4895	int ret;
4896
4897	raw_spin_lock(&its_lock);
4898	list_for_each_entry(its, &its_nodes, entry) {
4899		void __iomem *base;
4900		int i;
4901
 
 
 
4902		base = its->base;
4903
4904		/*
4905		 * Make sure that the ITS is disabled. If it fails to quiesce,
4906		 * don't restore it since writing to CBASER or BASER<n>
4907		 * registers is undefined according to the GIC v3 ITS
4908		 * Specification.
4909		 *
4910		 * Firmware resuming with the ITS enabled is terminally broken.
4911		 */
4912		WARN_ON(readl_relaxed(base + GITS_CTLR) & GITS_CTLR_ENABLE);
4913		ret = its_force_quiescent(base);
4914		if (ret) {
4915			pr_err("ITS@%pa: failed to quiesce on resume: %d\n",
4916			       &its->phys_base, ret);
4917			continue;
4918		}
4919
4920		gits_write_cbaser(its->cbaser_save, base + GITS_CBASER);
4921
4922		/*
4923		 * Writing CBASER resets CREADR to 0, so make CWRITER and
4924		 * cmd_write line up with it.
4925		 */
4926		its->cmd_write = its->cmd_base;
4927		gits_write_cwriter(0, base + GITS_CWRITER);
4928
4929		/* Restore GITS_BASER from the value cache. */
4930		for (i = 0; i < GITS_BASER_NR_REGS; i++) {
4931			struct its_baser *baser = &its->tables[i];
4932
4933			if (!(baser->val & GITS_BASER_VALID))
4934				continue;
4935
4936			its_write_baser(its, baser, baser->val);
4937		}
4938		writel_relaxed(its->ctlr_save, base + GITS_CTLR);
4939
4940		/*
4941		 * Reinit the collection if it's stored in the ITS. This is
4942		 * indicated by the col_id being less than the HCC field.
4943		 * CID < HCC as specified in the GIC v3 Documentation.
4944		 */
4945		if (its->collections[smp_processor_id()].col_id <
4946		    GITS_TYPER_HCC(gic_read_typer(base + GITS_TYPER)))
4947			its_cpu_init_collection(its);
4948	}
4949	raw_spin_unlock(&its_lock);
4950}
4951
4952static struct syscore_ops its_syscore_ops = {
4953	.suspend = its_save_disable,
4954	.resume = its_restore_enable,
4955};
4956
4957static void __init __iomem *its_map_one(struct resource *res, int *err)
4958{
4959	void __iomem *its_base;
4960	u32 val;
4961
4962	its_base = ioremap(res->start, SZ_64K);
4963	if (!its_base) {
4964		pr_warn("ITS@%pa: Unable to map ITS registers\n", &res->start);
4965		*err = -ENOMEM;
4966		return NULL;
4967	}
4968
4969	val = readl_relaxed(its_base + GITS_PIDR2) & GIC_PIDR2_ARCH_MASK;
4970	if (val != 0x30 && val != 0x40) {
4971		pr_warn("ITS@%pa: No ITS detected, giving up\n", &res->start);
4972		*err = -ENODEV;
4973		goto out_unmap;
4974	}
4975
4976	*err = its_force_quiescent(its_base);
4977	if (*err) {
4978		pr_warn("ITS@%pa: Failed to quiesce, giving up\n", &res->start);
4979		goto out_unmap;
4980	}
4981
4982	return its_base;
4983
4984out_unmap:
4985	iounmap(its_base);
4986	return NULL;
4987}
4988
4989static int its_init_domain(struct its_node *its)
4990{
4991	struct irq_domain *inner_domain;
4992	struct msi_domain_info *info;
4993
4994	info = kzalloc(sizeof(*info), GFP_KERNEL);
4995	if (!info)
4996		return -ENOMEM;
4997
4998	info->ops = &its_msi_domain_ops;
4999	info->data = its;
5000
5001	inner_domain = irq_domain_create_hierarchy(its_parent,
5002						   its->msi_domain_flags, 0,
5003						   its->fwnode_handle, &its_domain_ops,
5004						   info);
5005	if (!inner_domain) {
5006		kfree(info);
5007		return -ENOMEM;
5008	}
5009
 
5010	irq_domain_update_bus_token(inner_domain, DOMAIN_BUS_NEXUS);
 
 
 
 
5011
5012	return 0;
5013}
5014
5015static int its_init_vpe_domain(void)
5016{
5017	struct its_node *its;
5018	u32 devid;
5019	int entries;
5020
5021	if (gic_rdists->has_direct_lpi) {
5022		pr_info("ITS: Using DirectLPI for VPE invalidation\n");
5023		return 0;
5024	}
5025
5026	/* Any ITS will do, even if not v4 */
5027	its = list_first_entry(&its_nodes, struct its_node, entry);
5028
5029	entries = roundup_pow_of_two(nr_cpu_ids);
5030	vpe_proxy.vpes = kcalloc(entries, sizeof(*vpe_proxy.vpes),
5031				 GFP_KERNEL);
5032	if (!vpe_proxy.vpes)
 
5033		return -ENOMEM;
 
5034
5035	/* Use the last possible DevID */
5036	devid = GENMASK(device_ids(its) - 1, 0);
5037	vpe_proxy.dev = its_create_device(its, devid, entries, false);
5038	if (!vpe_proxy.dev) {
5039		kfree(vpe_proxy.vpes);
5040		pr_err("ITS: Can't allocate GICv4 proxy device\n");
5041		return -ENOMEM;
5042	}
5043
5044	BUG_ON(entries > vpe_proxy.dev->nr_ites);
5045
5046	raw_spin_lock_init(&vpe_proxy.lock);
5047	vpe_proxy.next_victim = 0;
5048	pr_info("ITS: Allocated DevID %x as GICv4 proxy device (%d slots)\n",
5049		devid, vpe_proxy.dev->nr_ites);
5050
5051	return 0;
5052}
5053
5054static int __init its_compute_its_list_map(struct its_node *its)
 
5055{
5056	int its_number;
5057	u32 ctlr;
5058
5059	/*
5060	 * This is assumed to be done early enough that we're
5061	 * guaranteed to be single-threaded, hence no
5062	 * locking. Should this change, we should address
5063	 * this.
5064	 */
5065	its_number = find_first_zero_bit(&its_list_map, GICv4_ITS_LIST_MAX);
5066	if (its_number >= GICv4_ITS_LIST_MAX) {
5067		pr_err("ITS@%pa: No ITSList entry available!\n",
5068		       &its->phys_base);
5069		return -EINVAL;
5070	}
5071
5072	ctlr = readl_relaxed(its->base + GITS_CTLR);
5073	ctlr &= ~GITS_CTLR_ITS_NUMBER;
5074	ctlr |= its_number << GITS_CTLR_ITS_NUMBER_SHIFT;
5075	writel_relaxed(ctlr, its->base + GITS_CTLR);
5076	ctlr = readl_relaxed(its->base + GITS_CTLR);
5077	if ((ctlr & GITS_CTLR_ITS_NUMBER) != (its_number << GITS_CTLR_ITS_NUMBER_SHIFT)) {
5078		its_number = ctlr & GITS_CTLR_ITS_NUMBER;
5079		its_number >>= GITS_CTLR_ITS_NUMBER_SHIFT;
5080	}
5081
5082	if (test_and_set_bit(its_number, &its_list_map)) {
5083		pr_err("ITS@%pa: Duplicate ITSList entry %d\n",
5084		       &its->phys_base, its_number);
5085		return -EINVAL;
5086	}
5087
5088	return its_number;
5089}
5090
5091static int __init its_probe_one(struct its_node *its)
 
5092{
5093	u64 baser, tmp;
5094	struct page *page;
5095	u32 ctlr;
 
5096	int err;
5097
5098	its_enable_quirks(its);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5099
5100	if (is_v4(its)) {
5101		if (!(its->typer & GITS_TYPER_VMOVP)) {
5102			err = its_compute_its_list_map(its);
 
 
 
 
 
 
 
 
 
5103			if (err < 0)
5104				goto out;
5105
5106			its->list_nr = err;
5107
5108			pr_info("ITS@%pa: Using ITS number %d\n",
5109				&its->phys_base, err);
5110		} else {
5111			pr_info("ITS@%pa: Single VMOVP capable\n", &its->phys_base);
5112		}
 
5113
5114		if (is_v4_1(its)) {
5115			u32 svpet = FIELD_GET(GITS_TYPER_SVPET, its->typer);
5116
5117			its->sgir_base = ioremap(its->phys_base + SZ_128K, SZ_64K);
5118			if (!its->sgir_base) {
5119				err = -ENOMEM;
5120				goto out;
5121			}
5122
5123			its->mpidr = readl_relaxed(its->base + GITS_MPIDR);
5124
5125			pr_info("ITS@%pa: Using GICv4.1 mode %08x %08x\n",
5126				&its->phys_base, its->mpidr, svpet);
5127		}
5128	}
5129
5130	page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO,
5131				get_order(ITS_CMD_QUEUE_SZ));
5132	if (!page) {
5133		err = -ENOMEM;
5134		goto out_unmap_sgir;
5135	}
5136	its->cmd_base = (void *)page_address(page);
5137	its->cmd_write = its->cmd_base;
 
 
 
 
 
5138
5139	err = its_alloc_tables(its);
5140	if (err)
5141		goto out_free_cmd;
5142
5143	err = its_alloc_collections(its);
5144	if (err)
5145		goto out_free_tables;
5146
5147	baser = (virt_to_phys(its->cmd_base)	|
5148		 GITS_CBASER_RaWaWb		|
5149		 GITS_CBASER_InnerShareable	|
5150		 (ITS_CMD_QUEUE_SZ / SZ_4K - 1)	|
5151		 GITS_CBASER_VALID);
5152
5153	gits_write_cbaser(baser, its->base + GITS_CBASER);
5154	tmp = gits_read_cbaser(its->base + GITS_CBASER);
5155
5156	if (its->flags & ITS_FLAGS_FORCE_NON_SHAREABLE)
5157		tmp &= ~GITS_CBASER_SHAREABILITY_MASK;
5158
5159	if ((tmp ^ baser) & GITS_CBASER_SHAREABILITY_MASK) {
5160		if (!(tmp & GITS_CBASER_SHAREABILITY_MASK)) {
5161			/*
5162			 * The HW reports non-shareable, we must
5163			 * remove the cacheability attributes as
5164			 * well.
5165			 */
5166			baser &= ~(GITS_CBASER_SHAREABILITY_MASK |
5167				   GITS_CBASER_CACHEABILITY_MASK);
5168			baser |= GITS_CBASER_nC;
5169			gits_write_cbaser(baser, its->base + GITS_CBASER);
5170		}
5171		pr_info("ITS: using cache flushing for cmd queue\n");
5172		its->flags |= ITS_FLAGS_CMDQ_NEEDS_FLUSHING;
5173	}
5174
5175	gits_write_cwriter(0, its->base + GITS_CWRITER);
5176	ctlr = readl_relaxed(its->base + GITS_CTLR);
5177	ctlr |= GITS_CTLR_ENABLE;
5178	if (is_v4(its))
5179		ctlr |= GITS_CTLR_ImDe;
5180	writel_relaxed(ctlr, its->base + GITS_CTLR);
5181
5182	err = its_init_domain(its);
 
 
 
5183	if (err)
5184		goto out_free_tables;
5185
5186	raw_spin_lock(&its_lock);
5187	list_add(&its->entry, &its_nodes);
5188	raw_spin_unlock(&its_lock);
5189
5190	return 0;
5191
5192out_free_tables:
5193	its_free_tables(its);
5194out_free_cmd:
5195	free_pages((unsigned long)its->cmd_base, get_order(ITS_CMD_QUEUE_SZ));
5196out_unmap_sgir:
5197	if (its->sgir_base)
5198		iounmap(its->sgir_base);
5199out:
5200	pr_err("ITS@%pa: failed probing (%d)\n", &its->phys_base, err);
5201	return err;
5202}
5203
5204static bool gic_rdists_supports_plpis(void)
5205{
5206	return !!(gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER) & GICR_TYPER_PLPIS);
5207}
5208
5209static int redist_disable_lpis(void)
5210{
5211	void __iomem *rbase = gic_data_rdist_rd_base();
5212	u64 timeout = USEC_PER_SEC;
5213	u64 val;
5214
5215	if (!gic_rdists_supports_plpis()) {
5216		pr_info("CPU%d: LPIs not supported\n", smp_processor_id());
5217		return -ENXIO;
5218	}
5219
5220	val = readl_relaxed(rbase + GICR_CTLR);
5221	if (!(val & GICR_CTLR_ENABLE_LPIS))
5222		return 0;
5223
5224	/*
5225	 * If coming via a CPU hotplug event, we don't need to disable
5226	 * LPIs before trying to re-enable them. They are already
5227	 * configured and all is well in the world.
5228	 *
5229	 * If running with preallocated tables, there is nothing to do.
5230	 */
5231	if ((gic_data_rdist()->flags & RD_LOCAL_LPI_ENABLED) ||
5232	    (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED))
5233		return 0;
5234
5235	/*
5236	 * From that point on, we only try to do some damage control.
5237	 */
5238	pr_warn("GICv3: CPU%d: Booted with LPIs enabled, memory probably corrupted\n",
5239		smp_processor_id());
5240	add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
5241
5242	/* Disable LPIs */
5243	val &= ~GICR_CTLR_ENABLE_LPIS;
5244	writel_relaxed(val, rbase + GICR_CTLR);
5245
5246	/* Make sure any change to GICR_CTLR is observable by the GIC */
5247	dsb(sy);
5248
5249	/*
5250	 * Software must observe RWP==0 after clearing GICR_CTLR.EnableLPIs
5251	 * from 1 to 0 before programming GICR_PEND{PROP}BASER registers.
5252	 * Error out if we time out waiting for RWP to clear.
5253	 */
5254	while (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_RWP) {
5255		if (!timeout) {
5256			pr_err("CPU%d: Timeout while disabling LPIs\n",
5257			       smp_processor_id());
5258			return -ETIMEDOUT;
5259		}
5260		udelay(1);
5261		timeout--;
5262	}
5263
5264	/*
5265	 * After it has been written to 1, it is IMPLEMENTATION
5266	 * DEFINED whether GICR_CTLR.EnableLPI becomes RES1 or can be
5267	 * cleared to 0. Error out if clearing the bit failed.
5268	 */
5269	if (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_ENABLE_LPIS) {
5270		pr_err("CPU%d: Failed to disable LPIs\n", smp_processor_id());
5271		return -EBUSY;
5272	}
5273
5274	return 0;
5275}
5276
5277int its_cpu_init(void)
5278{
5279	if (!list_empty(&its_nodes)) {
5280		int ret;
5281
5282		ret = redist_disable_lpis();
5283		if (ret)
5284			return ret;
5285
5286		its_cpu_init_lpis();
5287		its_cpu_init_collections();
5288	}
5289
5290	return 0;
5291}
5292
5293static void rdist_memreserve_cpuhp_cleanup_workfn(struct work_struct *work)
5294{
5295	cpuhp_remove_state_nocalls(gic_rdists->cpuhp_memreserve_state);
5296	gic_rdists->cpuhp_memreserve_state = CPUHP_INVALID;
5297}
5298
5299static DECLARE_WORK(rdist_memreserve_cpuhp_cleanup_work,
5300		    rdist_memreserve_cpuhp_cleanup_workfn);
5301
5302static int its_cpu_memreserve_lpi(unsigned int cpu)
5303{
5304	struct page *pend_page;
5305	int ret = 0;
5306
5307	/* This gets to run exactly once per CPU */
5308	if (gic_data_rdist()->flags & RD_LOCAL_MEMRESERVE_DONE)
5309		return 0;
5310
5311	pend_page = gic_data_rdist()->pend_page;
5312	if (WARN_ON(!pend_page)) {
5313		ret = -ENOMEM;
5314		goto out;
5315	}
5316	/*
5317	 * If the pending table was pre-programmed, free the memory we
5318	 * preemptively allocated. Otherwise, reserve that memory for
5319	 * later kexecs.
5320	 */
5321	if (gic_data_rdist()->flags & RD_LOCAL_PENDTABLE_PREALLOCATED) {
5322		its_free_pending_table(pend_page);
5323		gic_data_rdist()->pend_page = NULL;
5324	} else {
5325		phys_addr_t paddr = page_to_phys(pend_page);
5326		WARN_ON(gic_reserve_range(paddr, LPI_PENDBASE_SZ));
5327	}
5328
5329out:
5330	/* Last CPU being brought up gets to issue the cleanup */
5331	if (!IS_ENABLED(CONFIG_SMP) ||
5332	    cpumask_equal(&cpus_booted_once_mask, cpu_possible_mask))
5333		schedule_work(&rdist_memreserve_cpuhp_cleanup_work);
5334
5335	gic_data_rdist()->flags |= RD_LOCAL_MEMRESERVE_DONE;
5336	return ret;
5337}
5338
5339/* Mark all the BASER registers as invalid before they get reprogrammed */
5340static int __init its_reset_one(struct resource *res)
5341{
5342	void __iomem *its_base;
5343	int err, i;
5344
5345	its_base = its_map_one(res, &err);
5346	if (!its_base)
5347		return err;
5348
5349	for (i = 0; i < GITS_BASER_NR_REGS; i++)
5350		gits_write_baser(0, its_base + GITS_BASER + (i << 3));
5351
5352	iounmap(its_base);
5353	return 0;
5354}
5355
5356static const struct of_device_id its_device_id[] = {
5357	{	.compatible	= "arm,gic-v3-its",	},
5358	{},
5359};
5360
5361static struct its_node __init *its_node_init(struct resource *res,
5362					     struct fwnode_handle *handle, int numa_node)
5363{
5364	void __iomem *its_base;
5365	struct its_node *its;
5366	int err;
5367
5368	its_base = its_map_one(res, &err);
5369	if (!its_base)
5370		return NULL;
5371
5372	pr_info("ITS %pR\n", res);
5373
5374	its = kzalloc(sizeof(*its), GFP_KERNEL);
5375	if (!its)
5376		goto out_unmap;
5377
5378	raw_spin_lock_init(&its->lock);
5379	mutex_init(&its->dev_alloc_lock);
5380	INIT_LIST_HEAD(&its->entry);
5381	INIT_LIST_HEAD(&its->its_device_list);
5382
5383	its->typer = gic_read_typer(its_base + GITS_TYPER);
5384	its->base = its_base;
5385	its->phys_base = res->start;
5386	its->get_msi_base = its_irq_get_msi_base;
5387	its->msi_domain_flags = IRQ_DOMAIN_FLAG_ISOLATED_MSI;
5388
5389	its->numa_node = numa_node;
5390	its->fwnode_handle = handle;
5391
5392	return its;
5393
5394out_unmap:
5395	iounmap(its_base);
5396	return NULL;
5397}
5398
5399static void its_node_destroy(struct its_node *its)
5400{
5401	iounmap(its->base);
5402	kfree(its);
5403}
5404
5405static int __init its_of_probe(struct device_node *node)
5406{
5407	struct device_node *np;
5408	struct resource res;
5409	int err;
5410
5411	/*
5412	 * Make sure *all* the ITS are reset before we probe any, as
5413	 * they may be sharing memory. If any of the ITS fails to
5414	 * reset, don't even try to go any further, as this could
5415	 * result in something even worse.
5416	 */
5417	for (np = of_find_matching_node(node, its_device_id); np;
5418	     np = of_find_matching_node(np, its_device_id)) {
5419		if (!of_device_is_available(np) ||
5420		    !of_property_read_bool(np, "msi-controller") ||
5421		    of_address_to_resource(np, 0, &res))
5422			continue;
5423
5424		err = its_reset_one(&res);
5425		if (err)
5426			return err;
5427	}
5428
5429	for (np = of_find_matching_node(node, its_device_id); np;
5430	     np = of_find_matching_node(np, its_device_id)) {
5431		struct its_node *its;
5432
5433		if (!of_device_is_available(np))
5434			continue;
5435		if (!of_property_read_bool(np, "msi-controller")) {
5436			pr_warn("%pOF: no msi-controller property, ITS ignored\n",
5437				np);
5438			continue;
5439		}
5440
5441		if (of_address_to_resource(np, 0, &res)) {
5442			pr_warn("%pOF: no regs?\n", np);
5443			continue;
5444		}
5445
5446
5447		its = its_node_init(&res, &np->fwnode, of_node_to_nid(np));
5448		if (!its)
5449			return -ENOMEM;
5450
5451		err = its_probe_one(its);
5452		if (err)  {
5453			its_node_destroy(its);
5454			return err;
5455		}
5456	}
5457	return 0;
5458}
5459
5460#ifdef CONFIG_ACPI
5461
5462#define ACPI_GICV3_ITS_MEM_SIZE (SZ_128K)
5463
5464#ifdef CONFIG_ACPI_NUMA
5465struct its_srat_map {
5466	/* numa node id */
5467	u32	numa_node;
5468	/* GIC ITS ID */
5469	u32	its_id;
5470};
5471
5472static struct its_srat_map *its_srat_maps __initdata;
5473static int its_in_srat __initdata;
5474
5475static int __init acpi_get_its_numa_node(u32 its_id)
5476{
5477	int i;
5478
5479	for (i = 0; i < its_in_srat; i++) {
5480		if (its_id == its_srat_maps[i].its_id)
5481			return its_srat_maps[i].numa_node;
5482	}
5483	return NUMA_NO_NODE;
5484}
5485
5486static int __init gic_acpi_match_srat_its(union acpi_subtable_headers *header,
5487					  const unsigned long end)
5488{
5489	return 0;
5490}
5491
5492static int __init gic_acpi_parse_srat_its(union acpi_subtable_headers *header,
5493			 const unsigned long end)
5494{
5495	int node;
5496	struct acpi_srat_gic_its_affinity *its_affinity;
5497
5498	its_affinity = (struct acpi_srat_gic_its_affinity *)header;
5499	if (!its_affinity)
5500		return -EINVAL;
5501
5502	if (its_affinity->header.length < sizeof(*its_affinity)) {
5503		pr_err("SRAT: Invalid header length %d in ITS affinity\n",
5504			its_affinity->header.length);
5505		return -EINVAL;
5506	}
5507
5508	/*
5509	 * Note that in theory a new proximity node could be created by this
5510	 * entry as it is an SRAT resource allocation structure.
5511	 * We do not currently support doing so.
5512	 */
5513	node = pxm_to_node(its_affinity->proximity_domain);
5514
5515	if (node == NUMA_NO_NODE || node >= MAX_NUMNODES) {
5516		pr_err("SRAT: Invalid NUMA node %d in ITS affinity\n", node);
5517		return 0;
5518	}
5519
5520	its_srat_maps[its_in_srat].numa_node = node;
5521	its_srat_maps[its_in_srat].its_id = its_affinity->its_id;
5522	its_in_srat++;
5523	pr_info("SRAT: PXM %d -> ITS %d -> Node %d\n",
5524		its_affinity->proximity_domain, its_affinity->its_id, node);
5525
5526	return 0;
5527}
5528
5529static void __init acpi_table_parse_srat_its(void)
5530{
5531	int count;
5532
5533	count = acpi_table_parse_entries(ACPI_SIG_SRAT,
5534			sizeof(struct acpi_table_srat),
5535			ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
5536			gic_acpi_match_srat_its, 0);
5537	if (count <= 0)
5538		return;
5539
5540	its_srat_maps = kmalloc_array(count, sizeof(struct its_srat_map),
5541				      GFP_KERNEL);
5542	if (!its_srat_maps)
 
5543		return;
 
5544
5545	acpi_table_parse_entries(ACPI_SIG_SRAT,
5546			sizeof(struct acpi_table_srat),
5547			ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
5548			gic_acpi_parse_srat_its, 0);
5549}
5550
5551/* free the its_srat_maps after ITS probing */
5552static void __init acpi_its_srat_maps_free(void)
5553{
5554	kfree(its_srat_maps);
5555}
5556#else
5557static void __init acpi_table_parse_srat_its(void)	{ }
5558static int __init acpi_get_its_numa_node(u32 its_id) { return NUMA_NO_NODE; }
5559static void __init acpi_its_srat_maps_free(void) { }
5560#endif
5561
5562static int __init gic_acpi_parse_madt_its(union acpi_subtable_headers *header,
5563					  const unsigned long end)
5564{
5565	struct acpi_madt_generic_translator *its_entry;
5566	struct fwnode_handle *dom_handle;
5567	struct its_node *its;
5568	struct resource res;
5569	int err;
5570
5571	its_entry = (struct acpi_madt_generic_translator *)header;
5572	memset(&res, 0, sizeof(res));
5573	res.start = its_entry->base_address;
5574	res.end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1;
5575	res.flags = IORESOURCE_MEM;
5576
5577	dom_handle = irq_domain_alloc_fwnode(&res.start);
5578	if (!dom_handle) {
5579		pr_err("ITS@%pa: Unable to allocate GICv3 ITS domain token\n",
5580		       &res.start);
5581		return -ENOMEM;
5582	}
5583
5584	err = iort_register_domain_token(its_entry->translation_id, res.start,
5585					 dom_handle);
5586	if (err) {
5587		pr_err("ITS@%pa: Unable to register GICv3 ITS domain token (ITS ID %d) to IORT\n",
5588		       &res.start, its_entry->translation_id);
5589		goto dom_err;
5590	}
5591
5592	its = its_node_init(&res, dom_handle,
5593			    acpi_get_its_numa_node(its_entry->translation_id));
5594	if (!its) {
5595		err = -ENOMEM;
5596		goto node_err;
5597	}
5598
5599	err = its_probe_one(its);
5600	if (!err)
5601		return 0;
5602
5603node_err:
5604	iort_deregister_domain_token(its_entry->translation_id);
5605dom_err:
5606	irq_domain_free_fwnode(dom_handle);
5607	return err;
5608}
5609
5610static int __init its_acpi_reset(union acpi_subtable_headers *header,
5611				 const unsigned long end)
5612{
5613	struct acpi_madt_generic_translator *its_entry;
5614	struct resource res;
5615
5616	its_entry = (struct acpi_madt_generic_translator *)header;
5617	res = (struct resource) {
5618		.start	= its_entry->base_address,
5619		.end	= its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1,
5620		.flags	= IORESOURCE_MEM,
5621	};
5622
5623	return its_reset_one(&res);
5624}
5625
5626static void __init its_acpi_probe(void)
5627{
5628	acpi_table_parse_srat_its();
5629	/*
5630	 * Make sure *all* the ITS are reset before we probe any, as
5631	 * they may be sharing memory. If any of the ITS fails to
5632	 * reset, don't even try to go any further, as this could
5633	 * result in something even worse.
5634	 */
5635	if (acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR,
5636				  its_acpi_reset, 0) > 0)
5637		acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR,
5638				      gic_acpi_parse_madt_its, 0);
5639	acpi_its_srat_maps_free();
5640}
5641#else
5642static void __init its_acpi_probe(void) { }
5643#endif
5644
5645int __init its_lpi_memreserve_init(void)
5646{
5647	int state;
5648
5649	if (!efi_enabled(EFI_CONFIG_TABLES))
5650		return 0;
5651
5652	if (list_empty(&its_nodes))
5653		return 0;
5654
5655	gic_rdists->cpuhp_memreserve_state = CPUHP_INVALID;
5656	state = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN,
5657				  "irqchip/arm/gicv3/memreserve:online",
5658				  its_cpu_memreserve_lpi,
5659				  NULL);
5660	if (state < 0)
5661		return state;
5662
5663	gic_rdists->cpuhp_memreserve_state = state;
5664
5665	return 0;
5666}
5667
5668int __init its_init(struct fwnode_handle *handle, struct rdists *rdists,
5669		    struct irq_domain *parent_domain)
5670{
5671	struct device_node *of_node;
5672	struct its_node *its;
5673	bool has_v4 = false;
5674	bool has_v4_1 = false;
5675	int err;
5676
5677	gic_rdists = rdists;
5678
5679	its_parent = parent_domain;
5680	of_node = to_of_node(handle);
5681	if (of_node)
5682		its_of_probe(of_node);
5683	else
5684		its_acpi_probe();
5685
5686	if (list_empty(&its_nodes)) {
5687		pr_warn("ITS: No ITS available, not enabling LPIs\n");
5688		return -ENXIO;
5689	}
5690
5691	err = allocate_lpi_tables();
 
5692	if (err)
5693		return err;
5694
5695	list_for_each_entry(its, &its_nodes, entry) {
5696		has_v4 |= is_v4(its);
5697		has_v4_1 |= is_v4_1(its);
5698	}
5699
5700	/* Don't bother with inconsistent systems */
5701	if (WARN_ON(!has_v4_1 && rdists->has_rvpeid))
5702		rdists->has_rvpeid = false;
5703
5704	if (has_v4 & rdists->has_vlpis) {
5705		const struct irq_domain_ops *sgi_ops;
5706
5707		if (has_v4_1)
5708			sgi_ops = &its_sgi_domain_ops;
5709		else
5710			sgi_ops = NULL;
5711
5712		if (its_init_vpe_domain() ||
5713		    its_init_v4(parent_domain, &its_vpe_domain_ops, sgi_ops)) {
5714			rdists->has_vlpis = false;
5715			pr_err("ITS: Disabling GICv4 support\n");
5716		}
5717	}
5718
5719	register_syscore_ops(&its_syscore_ops);
5720
5721	return 0;
5722}