Loading...
1/**************************************************************************
2 *
3 * Copyright (c) 2007-2009 VMware, Inc., Palo Alto, CA., USA
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24 * USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27/*
28 * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
29 */
30
31#include <drm/ttm/ttm_bo_driver.h>
32#include <drm/ttm/ttm_placement.h>
33#include <drm/drm_vma_manager.h>
34#include <linux/io.h>
35#include <linux/highmem.h>
36#include <linux/wait.h>
37#include <linux/slab.h>
38#include <linux/vmalloc.h>
39#include <linux/module.h>
40#include <linux/reservation.h>
41
42void ttm_bo_free_old_node(struct ttm_buffer_object *bo)
43{
44 ttm_bo_mem_put(bo, &bo->mem);
45}
46
47int ttm_bo_move_ttm(struct ttm_buffer_object *bo,
48 struct ttm_operation_ctx *ctx,
49 struct ttm_mem_reg *new_mem)
50{
51 struct ttm_tt *ttm = bo->ttm;
52 struct ttm_mem_reg *old_mem = &bo->mem;
53 int ret;
54
55 if (old_mem->mem_type != TTM_PL_SYSTEM) {
56 ret = ttm_bo_wait(bo, ctx->interruptible, ctx->no_wait_gpu);
57
58 if (unlikely(ret != 0)) {
59 if (ret != -ERESTARTSYS)
60 pr_err("Failed to expire sync object before unbinding TTM\n");
61 return ret;
62 }
63
64 ttm_tt_unbind(ttm);
65 ttm_bo_free_old_node(bo);
66 ttm_flag_masked(&old_mem->placement, TTM_PL_FLAG_SYSTEM,
67 TTM_PL_MASK_MEM);
68 old_mem->mem_type = TTM_PL_SYSTEM;
69 }
70
71 ret = ttm_tt_set_placement_caching(ttm, new_mem->placement);
72 if (unlikely(ret != 0))
73 return ret;
74
75 if (new_mem->mem_type != TTM_PL_SYSTEM) {
76 ret = ttm_tt_bind(ttm, new_mem, ctx);
77 if (unlikely(ret != 0))
78 return ret;
79 }
80
81 *old_mem = *new_mem;
82 new_mem->mm_node = NULL;
83
84 return 0;
85}
86EXPORT_SYMBOL(ttm_bo_move_ttm);
87
88int ttm_mem_io_lock(struct ttm_mem_type_manager *man, bool interruptible)
89{
90 if (likely(man->io_reserve_fastpath))
91 return 0;
92
93 if (interruptible)
94 return mutex_lock_interruptible(&man->io_reserve_mutex);
95
96 mutex_lock(&man->io_reserve_mutex);
97 return 0;
98}
99EXPORT_SYMBOL(ttm_mem_io_lock);
100
101void ttm_mem_io_unlock(struct ttm_mem_type_manager *man)
102{
103 if (likely(man->io_reserve_fastpath))
104 return;
105
106 mutex_unlock(&man->io_reserve_mutex);
107}
108EXPORT_SYMBOL(ttm_mem_io_unlock);
109
110static int ttm_mem_io_evict(struct ttm_mem_type_manager *man)
111{
112 struct ttm_buffer_object *bo;
113
114 if (!man->use_io_reserve_lru || list_empty(&man->io_reserve_lru))
115 return -EAGAIN;
116
117 bo = list_first_entry(&man->io_reserve_lru,
118 struct ttm_buffer_object,
119 io_reserve_lru);
120 list_del_init(&bo->io_reserve_lru);
121 ttm_bo_unmap_virtual_locked(bo);
122
123 return 0;
124}
125
126
127int ttm_mem_io_reserve(struct ttm_bo_device *bdev,
128 struct ttm_mem_reg *mem)
129{
130 struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
131 int ret = 0;
132
133 if (!bdev->driver->io_mem_reserve)
134 return 0;
135 if (likely(man->io_reserve_fastpath))
136 return bdev->driver->io_mem_reserve(bdev, mem);
137
138 if (bdev->driver->io_mem_reserve &&
139 mem->bus.io_reserved_count++ == 0) {
140retry:
141 ret = bdev->driver->io_mem_reserve(bdev, mem);
142 if (ret == -EAGAIN) {
143 ret = ttm_mem_io_evict(man);
144 if (ret == 0)
145 goto retry;
146 }
147 }
148 return ret;
149}
150EXPORT_SYMBOL(ttm_mem_io_reserve);
151
152void ttm_mem_io_free(struct ttm_bo_device *bdev,
153 struct ttm_mem_reg *mem)
154{
155 struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
156
157 if (likely(man->io_reserve_fastpath))
158 return;
159
160 if (bdev->driver->io_mem_reserve &&
161 --mem->bus.io_reserved_count == 0 &&
162 bdev->driver->io_mem_free)
163 bdev->driver->io_mem_free(bdev, mem);
164
165}
166EXPORT_SYMBOL(ttm_mem_io_free);
167
168int ttm_mem_io_reserve_vm(struct ttm_buffer_object *bo)
169{
170 struct ttm_mem_reg *mem = &bo->mem;
171 int ret;
172
173 if (!mem->bus.io_reserved_vm) {
174 struct ttm_mem_type_manager *man =
175 &bo->bdev->man[mem->mem_type];
176
177 ret = ttm_mem_io_reserve(bo->bdev, mem);
178 if (unlikely(ret != 0))
179 return ret;
180 mem->bus.io_reserved_vm = true;
181 if (man->use_io_reserve_lru)
182 list_add_tail(&bo->io_reserve_lru,
183 &man->io_reserve_lru);
184 }
185 return 0;
186}
187
188void ttm_mem_io_free_vm(struct ttm_buffer_object *bo)
189{
190 struct ttm_mem_reg *mem = &bo->mem;
191
192 if (mem->bus.io_reserved_vm) {
193 mem->bus.io_reserved_vm = false;
194 list_del_init(&bo->io_reserve_lru);
195 ttm_mem_io_free(bo->bdev, mem);
196 }
197}
198
199static int ttm_mem_reg_ioremap(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem,
200 void **virtual)
201{
202 struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
203 int ret;
204 void *addr;
205
206 *virtual = NULL;
207 (void) ttm_mem_io_lock(man, false);
208 ret = ttm_mem_io_reserve(bdev, mem);
209 ttm_mem_io_unlock(man);
210 if (ret || !mem->bus.is_iomem)
211 return ret;
212
213 if (mem->bus.addr) {
214 addr = mem->bus.addr;
215 } else {
216 if (mem->placement & TTM_PL_FLAG_WC)
217 addr = ioremap_wc(mem->bus.base + mem->bus.offset, mem->bus.size);
218 else
219 addr = ioremap_nocache(mem->bus.base + mem->bus.offset, mem->bus.size);
220 if (!addr) {
221 (void) ttm_mem_io_lock(man, false);
222 ttm_mem_io_free(bdev, mem);
223 ttm_mem_io_unlock(man);
224 return -ENOMEM;
225 }
226 }
227 *virtual = addr;
228 return 0;
229}
230
231static void ttm_mem_reg_iounmap(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem,
232 void *virtual)
233{
234 struct ttm_mem_type_manager *man;
235
236 man = &bdev->man[mem->mem_type];
237
238 if (virtual && mem->bus.addr == NULL)
239 iounmap(virtual);
240 (void) ttm_mem_io_lock(man, false);
241 ttm_mem_io_free(bdev, mem);
242 ttm_mem_io_unlock(man);
243}
244
245static int ttm_copy_io_page(void *dst, void *src, unsigned long page)
246{
247 uint32_t *dstP =
248 (uint32_t *) ((unsigned long)dst + (page << PAGE_SHIFT));
249 uint32_t *srcP =
250 (uint32_t *) ((unsigned long)src + (page << PAGE_SHIFT));
251
252 int i;
253 for (i = 0; i < PAGE_SIZE / sizeof(uint32_t); ++i)
254 iowrite32(ioread32(srcP++), dstP++);
255 return 0;
256}
257
258#ifdef CONFIG_X86
259#define __ttm_kmap_atomic_prot(__page, __prot) kmap_atomic_prot(__page, __prot)
260#define __ttm_kunmap_atomic(__addr) kunmap_atomic(__addr)
261#else
262#define __ttm_kmap_atomic_prot(__page, __prot) vmap(&__page, 1, 0, __prot)
263#define __ttm_kunmap_atomic(__addr) vunmap(__addr)
264#endif
265
266
267/**
268 * ttm_kmap_atomic_prot - Efficient kernel map of a single page with
269 * specified page protection.
270 *
271 * @page: The page to map.
272 * @prot: The page protection.
273 *
274 * This function maps a TTM page using the kmap_atomic api if available,
275 * otherwise falls back to vmap. The user must make sure that the
276 * specified page does not have an aliased mapping with a different caching
277 * policy unless the architecture explicitly allows it. Also mapping and
278 * unmapping using this api must be correctly nested. Unmapping should
279 * occur in the reverse order of mapping.
280 */
281void *ttm_kmap_atomic_prot(struct page *page, pgprot_t prot)
282{
283 if (pgprot_val(prot) == pgprot_val(PAGE_KERNEL))
284 return kmap_atomic(page);
285 else
286 return __ttm_kmap_atomic_prot(page, prot);
287}
288EXPORT_SYMBOL(ttm_kmap_atomic_prot);
289
290/**
291 * ttm_kunmap_atomic_prot - Unmap a page that was mapped using
292 * ttm_kmap_atomic_prot.
293 *
294 * @addr: The virtual address from the map.
295 * @prot: The page protection.
296 */
297void ttm_kunmap_atomic_prot(void *addr, pgprot_t prot)
298{
299 if (pgprot_val(prot) == pgprot_val(PAGE_KERNEL))
300 kunmap_atomic(addr);
301 else
302 __ttm_kunmap_atomic(addr);
303}
304EXPORT_SYMBOL(ttm_kunmap_atomic_prot);
305
306static int ttm_copy_io_ttm_page(struct ttm_tt *ttm, void *src,
307 unsigned long page,
308 pgprot_t prot)
309{
310 struct page *d = ttm->pages[page];
311 void *dst;
312
313 if (!d)
314 return -ENOMEM;
315
316 src = (void *)((unsigned long)src + (page << PAGE_SHIFT));
317 dst = ttm_kmap_atomic_prot(d, prot);
318 if (!dst)
319 return -ENOMEM;
320
321 memcpy_fromio(dst, src, PAGE_SIZE);
322
323 ttm_kunmap_atomic_prot(dst, prot);
324
325 return 0;
326}
327
328static int ttm_copy_ttm_io_page(struct ttm_tt *ttm, void *dst,
329 unsigned long page,
330 pgprot_t prot)
331{
332 struct page *s = ttm->pages[page];
333 void *src;
334
335 if (!s)
336 return -ENOMEM;
337
338 dst = (void *)((unsigned long)dst + (page << PAGE_SHIFT));
339 src = ttm_kmap_atomic_prot(s, prot);
340 if (!src)
341 return -ENOMEM;
342
343 memcpy_toio(dst, src, PAGE_SIZE);
344
345 ttm_kunmap_atomic_prot(src, prot);
346
347 return 0;
348}
349
350int ttm_bo_move_memcpy(struct ttm_buffer_object *bo,
351 struct ttm_operation_ctx *ctx,
352 struct ttm_mem_reg *new_mem)
353{
354 struct ttm_bo_device *bdev = bo->bdev;
355 struct ttm_mem_type_manager *man = &bdev->man[new_mem->mem_type];
356 struct ttm_tt *ttm = bo->ttm;
357 struct ttm_mem_reg *old_mem = &bo->mem;
358 struct ttm_mem_reg old_copy = *old_mem;
359 void *old_iomap;
360 void *new_iomap;
361 int ret;
362 unsigned long i;
363 unsigned long page;
364 unsigned long add = 0;
365 int dir;
366
367 ret = ttm_bo_wait(bo, ctx->interruptible, ctx->no_wait_gpu);
368 if (ret)
369 return ret;
370
371 ret = ttm_mem_reg_ioremap(bdev, old_mem, &old_iomap);
372 if (ret)
373 return ret;
374 ret = ttm_mem_reg_ioremap(bdev, new_mem, &new_iomap);
375 if (ret)
376 goto out;
377
378 /*
379 * Single TTM move. NOP.
380 */
381 if (old_iomap == NULL && new_iomap == NULL)
382 goto out2;
383
384 /*
385 * Don't move nonexistent data. Clear destination instead.
386 */
387 if (old_iomap == NULL &&
388 (ttm == NULL || (ttm->state == tt_unpopulated &&
389 !(ttm->page_flags & TTM_PAGE_FLAG_SWAPPED)))) {
390 memset_io(new_iomap, 0, new_mem->num_pages*PAGE_SIZE);
391 goto out2;
392 }
393
394 /*
395 * TTM might be null for moves within the same region.
396 */
397 if (ttm) {
398 ret = ttm_tt_populate(ttm, ctx);
399 if (ret)
400 goto out1;
401 }
402
403 add = 0;
404 dir = 1;
405
406 if ((old_mem->mem_type == new_mem->mem_type) &&
407 (new_mem->start < old_mem->start + old_mem->size)) {
408 dir = -1;
409 add = new_mem->num_pages - 1;
410 }
411
412 for (i = 0; i < new_mem->num_pages; ++i) {
413 page = i * dir + add;
414 if (old_iomap == NULL) {
415 pgprot_t prot = ttm_io_prot(old_mem->placement,
416 PAGE_KERNEL);
417 ret = ttm_copy_ttm_io_page(ttm, new_iomap, page,
418 prot);
419 } else if (new_iomap == NULL) {
420 pgprot_t prot = ttm_io_prot(new_mem->placement,
421 PAGE_KERNEL);
422 ret = ttm_copy_io_ttm_page(ttm, old_iomap, page,
423 prot);
424 } else {
425 ret = ttm_copy_io_page(new_iomap, old_iomap, page);
426 }
427 if (ret)
428 goto out1;
429 }
430 mb();
431out2:
432 old_copy = *old_mem;
433 *old_mem = *new_mem;
434 new_mem->mm_node = NULL;
435
436 if (man->flags & TTM_MEMTYPE_FLAG_FIXED) {
437 ttm_tt_destroy(ttm);
438 bo->ttm = NULL;
439 }
440
441out1:
442 ttm_mem_reg_iounmap(bdev, old_mem, new_iomap);
443out:
444 ttm_mem_reg_iounmap(bdev, &old_copy, old_iomap);
445
446 /*
447 * On error, keep the mm node!
448 */
449 if (!ret)
450 ttm_bo_mem_put(bo, &old_copy);
451 return ret;
452}
453EXPORT_SYMBOL(ttm_bo_move_memcpy);
454
455static void ttm_transfered_destroy(struct ttm_buffer_object *bo)
456{
457 kfree(bo);
458}
459
460/**
461 * ttm_buffer_object_transfer
462 *
463 * @bo: A pointer to a struct ttm_buffer_object.
464 * @new_obj: A pointer to a pointer to a newly created ttm_buffer_object,
465 * holding the data of @bo with the old placement.
466 *
467 * This is a utility function that may be called after an accelerated move
468 * has been scheduled. A new buffer object is created as a placeholder for
469 * the old data while it's being copied. When that buffer object is idle,
470 * it can be destroyed, releasing the space of the old placement.
471 * Returns:
472 * !0: Failure.
473 */
474
475static int ttm_buffer_object_transfer(struct ttm_buffer_object *bo,
476 struct ttm_buffer_object **new_obj)
477{
478 struct ttm_buffer_object *fbo;
479 int ret;
480
481 fbo = kmalloc(sizeof(*fbo), GFP_KERNEL);
482 if (!fbo)
483 return -ENOMEM;
484
485 *fbo = *bo;
486
487 /**
488 * Fix up members that we shouldn't copy directly:
489 * TODO: Explicit member copy would probably be better here.
490 */
491
492 atomic_inc(&bo->bdev->glob->bo_count);
493 INIT_LIST_HEAD(&fbo->ddestroy);
494 INIT_LIST_HEAD(&fbo->lru);
495 INIT_LIST_HEAD(&fbo->swap);
496 INIT_LIST_HEAD(&fbo->io_reserve_lru);
497 mutex_init(&fbo->wu_mutex);
498 fbo->moving = NULL;
499 drm_vma_node_reset(&fbo->vma_node);
500 atomic_set(&fbo->cpu_writers, 0);
501
502 kref_init(&fbo->list_kref);
503 kref_init(&fbo->kref);
504 fbo->destroy = &ttm_transfered_destroy;
505 fbo->acc_size = 0;
506 fbo->resv = &fbo->ttm_resv;
507 reservation_object_init(fbo->resv);
508 ret = reservation_object_trylock(fbo->resv);
509 WARN_ON(!ret);
510
511 *new_obj = fbo;
512 return 0;
513}
514
515pgprot_t ttm_io_prot(uint32_t caching_flags, pgprot_t tmp)
516{
517 /* Cached mappings need no adjustment */
518 if (caching_flags & TTM_PL_FLAG_CACHED)
519 return tmp;
520
521#if defined(__i386__) || defined(__x86_64__)
522 if (caching_flags & TTM_PL_FLAG_WC)
523 tmp = pgprot_writecombine(tmp);
524 else if (boot_cpu_data.x86 > 3)
525 tmp = pgprot_noncached(tmp);
526#endif
527#if defined(__ia64__) || defined(__arm__) || defined(__aarch64__) || \
528 defined(__powerpc__)
529 if (caching_flags & TTM_PL_FLAG_WC)
530 tmp = pgprot_writecombine(tmp);
531 else
532 tmp = pgprot_noncached(tmp);
533#endif
534#if defined(__sparc__) || defined(__mips__)
535 tmp = pgprot_noncached(tmp);
536#endif
537 return tmp;
538}
539EXPORT_SYMBOL(ttm_io_prot);
540
541static int ttm_bo_ioremap(struct ttm_buffer_object *bo,
542 unsigned long offset,
543 unsigned long size,
544 struct ttm_bo_kmap_obj *map)
545{
546 struct ttm_mem_reg *mem = &bo->mem;
547
548 if (bo->mem.bus.addr) {
549 map->bo_kmap_type = ttm_bo_map_premapped;
550 map->virtual = (void *)(((u8 *)bo->mem.bus.addr) + offset);
551 } else {
552 map->bo_kmap_type = ttm_bo_map_iomap;
553 if (mem->placement & TTM_PL_FLAG_WC)
554 map->virtual = ioremap_wc(bo->mem.bus.base + bo->mem.bus.offset + offset,
555 size);
556 else
557 map->virtual = ioremap_nocache(bo->mem.bus.base + bo->mem.bus.offset + offset,
558 size);
559 }
560 return (!map->virtual) ? -ENOMEM : 0;
561}
562
563static int ttm_bo_kmap_ttm(struct ttm_buffer_object *bo,
564 unsigned long start_page,
565 unsigned long num_pages,
566 struct ttm_bo_kmap_obj *map)
567{
568 struct ttm_mem_reg *mem = &bo->mem;
569 struct ttm_operation_ctx ctx = {
570 .interruptible = false,
571 .no_wait_gpu = false
572 };
573 struct ttm_tt *ttm = bo->ttm;
574 pgprot_t prot;
575 int ret;
576
577 BUG_ON(!ttm);
578
579 ret = ttm_tt_populate(ttm, &ctx);
580 if (ret)
581 return ret;
582
583 if (num_pages == 1 && (mem->placement & TTM_PL_FLAG_CACHED)) {
584 /*
585 * We're mapping a single page, and the desired
586 * page protection is consistent with the bo.
587 */
588
589 map->bo_kmap_type = ttm_bo_map_kmap;
590 map->page = ttm->pages[start_page];
591 map->virtual = kmap(map->page);
592 } else {
593 /*
594 * We need to use vmap to get the desired page protection
595 * or to make the buffer object look contiguous.
596 */
597 prot = ttm_io_prot(mem->placement, PAGE_KERNEL);
598 map->bo_kmap_type = ttm_bo_map_vmap;
599 map->virtual = vmap(ttm->pages + start_page, num_pages,
600 0, prot);
601 }
602 return (!map->virtual) ? -ENOMEM : 0;
603}
604
605int ttm_bo_kmap(struct ttm_buffer_object *bo,
606 unsigned long start_page, unsigned long num_pages,
607 struct ttm_bo_kmap_obj *map)
608{
609 struct ttm_mem_type_manager *man =
610 &bo->bdev->man[bo->mem.mem_type];
611 unsigned long offset, size;
612 int ret;
613
614 map->virtual = NULL;
615 map->bo = bo;
616 if (num_pages > bo->num_pages)
617 return -EINVAL;
618 if (start_page > bo->num_pages)
619 return -EINVAL;
620#if 0
621 if (num_pages > 1 && !capable(CAP_SYS_ADMIN))
622 return -EPERM;
623#endif
624 (void) ttm_mem_io_lock(man, false);
625 ret = ttm_mem_io_reserve(bo->bdev, &bo->mem);
626 ttm_mem_io_unlock(man);
627 if (ret)
628 return ret;
629 if (!bo->mem.bus.is_iomem) {
630 return ttm_bo_kmap_ttm(bo, start_page, num_pages, map);
631 } else {
632 offset = start_page << PAGE_SHIFT;
633 size = num_pages << PAGE_SHIFT;
634 return ttm_bo_ioremap(bo, offset, size, map);
635 }
636}
637EXPORT_SYMBOL(ttm_bo_kmap);
638
639void ttm_bo_kunmap(struct ttm_bo_kmap_obj *map)
640{
641 struct ttm_buffer_object *bo = map->bo;
642 struct ttm_mem_type_manager *man =
643 &bo->bdev->man[bo->mem.mem_type];
644
645 if (!map->virtual)
646 return;
647 switch (map->bo_kmap_type) {
648 case ttm_bo_map_iomap:
649 iounmap(map->virtual);
650 break;
651 case ttm_bo_map_vmap:
652 vunmap(map->virtual);
653 break;
654 case ttm_bo_map_kmap:
655 kunmap(map->page);
656 break;
657 case ttm_bo_map_premapped:
658 break;
659 default:
660 BUG();
661 }
662 (void) ttm_mem_io_lock(man, false);
663 ttm_mem_io_free(map->bo->bdev, &map->bo->mem);
664 ttm_mem_io_unlock(man);
665 map->virtual = NULL;
666 map->page = NULL;
667}
668EXPORT_SYMBOL(ttm_bo_kunmap);
669
670int ttm_bo_move_accel_cleanup(struct ttm_buffer_object *bo,
671 struct dma_fence *fence,
672 bool evict,
673 struct ttm_mem_reg *new_mem)
674{
675 struct ttm_bo_device *bdev = bo->bdev;
676 struct ttm_mem_type_manager *man = &bdev->man[new_mem->mem_type];
677 struct ttm_mem_reg *old_mem = &bo->mem;
678 int ret;
679 struct ttm_buffer_object *ghost_obj;
680
681 reservation_object_add_excl_fence(bo->resv, fence);
682 if (evict) {
683 ret = ttm_bo_wait(bo, false, false);
684 if (ret)
685 return ret;
686
687 if (man->flags & TTM_MEMTYPE_FLAG_FIXED) {
688 ttm_tt_destroy(bo->ttm);
689 bo->ttm = NULL;
690 }
691 ttm_bo_free_old_node(bo);
692 } else {
693 /**
694 * This should help pipeline ordinary buffer moves.
695 *
696 * Hang old buffer memory on a new buffer object,
697 * and leave it to be released when the GPU
698 * operation has completed.
699 */
700
701 dma_fence_put(bo->moving);
702 bo->moving = dma_fence_get(fence);
703
704 ret = ttm_buffer_object_transfer(bo, &ghost_obj);
705 if (ret)
706 return ret;
707
708 reservation_object_add_excl_fence(ghost_obj->resv, fence);
709
710 /**
711 * If we're not moving to fixed memory, the TTM object
712 * needs to stay alive. Otherwhise hang it on the ghost
713 * bo to be unbound and destroyed.
714 */
715
716 if (!(man->flags & TTM_MEMTYPE_FLAG_FIXED))
717 ghost_obj->ttm = NULL;
718 else
719 bo->ttm = NULL;
720
721 ttm_bo_unreserve(ghost_obj);
722 ttm_bo_unref(&ghost_obj);
723 }
724
725 *old_mem = *new_mem;
726 new_mem->mm_node = NULL;
727
728 return 0;
729}
730EXPORT_SYMBOL(ttm_bo_move_accel_cleanup);
731
732int ttm_bo_pipeline_move(struct ttm_buffer_object *bo,
733 struct dma_fence *fence, bool evict,
734 struct ttm_mem_reg *new_mem)
735{
736 struct ttm_bo_device *bdev = bo->bdev;
737 struct ttm_mem_reg *old_mem = &bo->mem;
738
739 struct ttm_mem_type_manager *from = &bdev->man[old_mem->mem_type];
740 struct ttm_mem_type_manager *to = &bdev->man[new_mem->mem_type];
741
742 int ret;
743
744 reservation_object_add_excl_fence(bo->resv, fence);
745
746 if (!evict) {
747 struct ttm_buffer_object *ghost_obj;
748
749 /**
750 * This should help pipeline ordinary buffer moves.
751 *
752 * Hang old buffer memory on a new buffer object,
753 * and leave it to be released when the GPU
754 * operation has completed.
755 */
756
757 dma_fence_put(bo->moving);
758 bo->moving = dma_fence_get(fence);
759
760 ret = ttm_buffer_object_transfer(bo, &ghost_obj);
761 if (ret)
762 return ret;
763
764 reservation_object_add_excl_fence(ghost_obj->resv, fence);
765
766 /**
767 * If we're not moving to fixed memory, the TTM object
768 * needs to stay alive. Otherwhise hang it on the ghost
769 * bo to be unbound and destroyed.
770 */
771
772 if (!(to->flags & TTM_MEMTYPE_FLAG_FIXED))
773 ghost_obj->ttm = NULL;
774 else
775 bo->ttm = NULL;
776
777 ttm_bo_unreserve(ghost_obj);
778 ttm_bo_unref(&ghost_obj);
779
780 } else if (from->flags & TTM_MEMTYPE_FLAG_FIXED) {
781
782 /**
783 * BO doesn't have a TTM we need to bind/unbind. Just remember
784 * this eviction and free up the allocation
785 */
786
787 spin_lock(&from->move_lock);
788 if (!from->move || dma_fence_is_later(fence, from->move)) {
789 dma_fence_put(from->move);
790 from->move = dma_fence_get(fence);
791 }
792 spin_unlock(&from->move_lock);
793
794 ttm_bo_free_old_node(bo);
795
796 dma_fence_put(bo->moving);
797 bo->moving = dma_fence_get(fence);
798
799 } else {
800 /**
801 * Last resort, wait for the move to be completed.
802 *
803 * Should never happen in pratice.
804 */
805
806 ret = ttm_bo_wait(bo, false, false);
807 if (ret)
808 return ret;
809
810 if (to->flags & TTM_MEMTYPE_FLAG_FIXED) {
811 ttm_tt_destroy(bo->ttm);
812 bo->ttm = NULL;
813 }
814 ttm_bo_free_old_node(bo);
815 }
816
817 *old_mem = *new_mem;
818 new_mem->mm_node = NULL;
819
820 return 0;
821}
822EXPORT_SYMBOL(ttm_bo_pipeline_move);
823
824int ttm_bo_pipeline_gutting(struct ttm_buffer_object *bo)
825{
826 struct ttm_buffer_object *ghost;
827 int ret;
828
829 ret = ttm_buffer_object_transfer(bo, &ghost);
830 if (ret)
831 return ret;
832
833 ret = reservation_object_copy_fences(ghost->resv, bo->resv);
834 /* Last resort, wait for the BO to be idle when we are OOM */
835 if (ret)
836 ttm_bo_wait(bo, false, false);
837
838 memset(&bo->mem, 0, sizeof(bo->mem));
839 bo->mem.mem_type = TTM_PL_SYSTEM;
840 bo->ttm = NULL;
841
842 ttm_bo_unreserve(ghost);
843 ttm_bo_unref(&ghost);
844
845 return 0;
846}
1/* SPDX-License-Identifier: GPL-2.0 OR MIT */
2/**************************************************************************
3 *
4 * Copyright (c) 2007-2009 VMware, Inc., Palo Alto, CA., USA
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
22 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
23 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
24 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
25 * USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 **************************************************************************/
28/*
29 * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
30 */
31
32#include <linux/vmalloc.h>
33
34#include <drm/ttm/ttm_bo.h>
35#include <drm/ttm/ttm_placement.h>
36#include <drm/ttm/ttm_tt.h>
37
38#include <drm/drm_cache.h>
39
40struct ttm_transfer_obj {
41 struct ttm_buffer_object base;
42 struct ttm_buffer_object *bo;
43};
44
45int ttm_mem_io_reserve(struct ttm_device *bdev,
46 struct ttm_resource *mem)
47{
48 if (mem->bus.offset || mem->bus.addr)
49 return 0;
50
51 mem->bus.is_iomem = false;
52 if (!bdev->funcs->io_mem_reserve)
53 return 0;
54
55 return bdev->funcs->io_mem_reserve(bdev, mem);
56}
57
58void ttm_mem_io_free(struct ttm_device *bdev,
59 struct ttm_resource *mem)
60{
61 if (!mem)
62 return;
63
64 if (!mem->bus.offset && !mem->bus.addr)
65 return;
66
67 if (bdev->funcs->io_mem_free)
68 bdev->funcs->io_mem_free(bdev, mem);
69
70 mem->bus.offset = 0;
71 mem->bus.addr = NULL;
72}
73
74/**
75 * ttm_move_memcpy - Helper to perform a memcpy ttm move operation.
76 * @clear: Whether to clear rather than copy.
77 * @num_pages: Number of pages of the operation.
78 * @dst_iter: A struct ttm_kmap_iter representing the destination resource.
79 * @src_iter: A struct ttm_kmap_iter representing the source resource.
80 *
81 * This function is intended to be able to move out async under a
82 * dma-fence if desired.
83 */
84void ttm_move_memcpy(bool clear,
85 u32 num_pages,
86 struct ttm_kmap_iter *dst_iter,
87 struct ttm_kmap_iter *src_iter)
88{
89 const struct ttm_kmap_iter_ops *dst_ops = dst_iter->ops;
90 const struct ttm_kmap_iter_ops *src_ops = src_iter->ops;
91 struct iosys_map src_map, dst_map;
92 pgoff_t i;
93
94 /* Single TTM move. NOP */
95 if (dst_ops->maps_tt && src_ops->maps_tt)
96 return;
97
98 /* Don't move nonexistent data. Clear destination instead. */
99 if (clear) {
100 for (i = 0; i < num_pages; ++i) {
101 dst_ops->map_local(dst_iter, &dst_map, i);
102 if (dst_map.is_iomem)
103 memset_io(dst_map.vaddr_iomem, 0, PAGE_SIZE);
104 else
105 memset(dst_map.vaddr, 0, PAGE_SIZE);
106 if (dst_ops->unmap_local)
107 dst_ops->unmap_local(dst_iter, &dst_map);
108 }
109 return;
110 }
111
112 for (i = 0; i < num_pages; ++i) {
113 dst_ops->map_local(dst_iter, &dst_map, i);
114 src_ops->map_local(src_iter, &src_map, i);
115
116 drm_memcpy_from_wc(&dst_map, &src_map, PAGE_SIZE);
117
118 if (src_ops->unmap_local)
119 src_ops->unmap_local(src_iter, &src_map);
120 if (dst_ops->unmap_local)
121 dst_ops->unmap_local(dst_iter, &dst_map);
122 }
123}
124EXPORT_SYMBOL(ttm_move_memcpy);
125
126/**
127 * ttm_bo_move_memcpy
128 *
129 * @bo: A pointer to a struct ttm_buffer_object.
130 * @ctx: operation context
131 * @dst_mem: struct ttm_resource indicating where to move.
132 *
133 * Fallback move function for a mappable buffer object in mappable memory.
134 * The function will, if successful,
135 * free any old aperture space, and set (@new_mem)->mm_node to NULL,
136 * and update the (@bo)->mem placement flags. If unsuccessful, the old
137 * data remains untouched, and it's up to the caller to free the
138 * memory space indicated by @new_mem.
139 * Returns:
140 * !0: Failure.
141 */
142int ttm_bo_move_memcpy(struct ttm_buffer_object *bo,
143 struct ttm_operation_ctx *ctx,
144 struct ttm_resource *dst_mem)
145{
146 struct ttm_device *bdev = bo->bdev;
147 struct ttm_resource_manager *dst_man =
148 ttm_manager_type(bo->bdev, dst_mem->mem_type);
149 struct ttm_tt *ttm = bo->ttm;
150 struct ttm_resource *src_mem = bo->resource;
151 struct ttm_resource_manager *src_man;
152 union {
153 struct ttm_kmap_iter_tt tt;
154 struct ttm_kmap_iter_linear_io io;
155 } _dst_iter, _src_iter;
156 struct ttm_kmap_iter *dst_iter, *src_iter;
157 bool clear;
158 int ret = 0;
159
160 if (WARN_ON(!src_mem))
161 return -EINVAL;
162
163 src_man = ttm_manager_type(bdev, src_mem->mem_type);
164 if (ttm && ((ttm->page_flags & TTM_TT_FLAG_SWAPPED) ||
165 dst_man->use_tt)) {
166 ret = ttm_tt_populate(bdev, ttm, ctx);
167 if (ret)
168 return ret;
169 }
170
171 dst_iter = ttm_kmap_iter_linear_io_init(&_dst_iter.io, bdev, dst_mem);
172 if (PTR_ERR(dst_iter) == -EINVAL && dst_man->use_tt)
173 dst_iter = ttm_kmap_iter_tt_init(&_dst_iter.tt, bo->ttm);
174 if (IS_ERR(dst_iter))
175 return PTR_ERR(dst_iter);
176
177 src_iter = ttm_kmap_iter_linear_io_init(&_src_iter.io, bdev, src_mem);
178 if (PTR_ERR(src_iter) == -EINVAL && src_man->use_tt)
179 src_iter = ttm_kmap_iter_tt_init(&_src_iter.tt, bo->ttm);
180 if (IS_ERR(src_iter)) {
181 ret = PTR_ERR(src_iter);
182 goto out_src_iter;
183 }
184
185 clear = src_iter->ops->maps_tt && (!ttm || !ttm_tt_is_populated(ttm));
186 if (!(clear && ttm && !(ttm->page_flags & TTM_TT_FLAG_ZERO_ALLOC)))
187 ttm_move_memcpy(clear, PFN_UP(dst_mem->size), dst_iter, src_iter);
188
189 if (!src_iter->ops->maps_tt)
190 ttm_kmap_iter_linear_io_fini(&_src_iter.io, bdev, src_mem);
191 ttm_bo_move_sync_cleanup(bo, dst_mem);
192
193out_src_iter:
194 if (!dst_iter->ops->maps_tt)
195 ttm_kmap_iter_linear_io_fini(&_dst_iter.io, bdev, dst_mem);
196
197 return ret;
198}
199EXPORT_SYMBOL(ttm_bo_move_memcpy);
200
201static void ttm_transfered_destroy(struct ttm_buffer_object *bo)
202{
203 struct ttm_transfer_obj *fbo;
204
205 fbo = container_of(bo, struct ttm_transfer_obj, base);
206 dma_resv_fini(&fbo->base.base._resv);
207 ttm_bo_put(fbo->bo);
208 kfree(fbo);
209}
210
211/**
212 * ttm_buffer_object_transfer
213 *
214 * @bo: A pointer to a struct ttm_buffer_object.
215 * @new_obj: A pointer to a pointer to a newly created ttm_buffer_object,
216 * holding the data of @bo with the old placement.
217 *
218 * This is a utility function that may be called after an accelerated move
219 * has been scheduled. A new buffer object is created as a placeholder for
220 * the old data while it's being copied. When that buffer object is idle,
221 * it can be destroyed, releasing the space of the old placement.
222 * Returns:
223 * !0: Failure.
224 */
225
226static int ttm_buffer_object_transfer(struct ttm_buffer_object *bo,
227 struct ttm_buffer_object **new_obj)
228{
229 struct ttm_transfer_obj *fbo;
230 int ret;
231
232 fbo = kmalloc(sizeof(*fbo), GFP_KERNEL);
233 if (!fbo)
234 return -ENOMEM;
235
236 fbo->base = *bo;
237
238 /**
239 * Fix up members that we shouldn't copy directly:
240 * TODO: Explicit member copy would probably be better here.
241 */
242
243 atomic_inc(&ttm_glob.bo_count);
244 drm_vma_node_reset(&fbo->base.base.vma_node);
245
246 kref_init(&fbo->base.kref);
247 fbo->base.destroy = &ttm_transfered_destroy;
248 fbo->base.pin_count = 0;
249 if (bo->type != ttm_bo_type_sg)
250 fbo->base.base.resv = &fbo->base.base._resv;
251
252 dma_resv_init(&fbo->base.base._resv);
253 fbo->base.base.dev = NULL;
254 ret = dma_resv_trylock(&fbo->base.base._resv);
255 WARN_ON(!ret);
256
257 if (fbo->base.resource) {
258 ttm_resource_set_bo(fbo->base.resource, &fbo->base);
259 bo->resource = NULL;
260 ttm_bo_set_bulk_move(&fbo->base, NULL);
261 } else {
262 fbo->base.bulk_move = NULL;
263 }
264
265 ret = dma_resv_reserve_fences(&fbo->base.base._resv, 1);
266 if (ret) {
267 kfree(fbo);
268 return ret;
269 }
270
271 ttm_bo_get(bo);
272 fbo->bo = bo;
273
274 ttm_bo_move_to_lru_tail_unlocked(&fbo->base);
275
276 *new_obj = &fbo->base;
277 return 0;
278}
279
280/**
281 * ttm_io_prot
282 *
283 * @bo: ttm buffer object
284 * @res: ttm resource object
285 * @tmp: Page protection flag for a normal, cached mapping.
286 *
287 * Utility function that returns the pgprot_t that should be used for
288 * setting up a PTE with the caching model indicated by @c_state.
289 */
290pgprot_t ttm_io_prot(struct ttm_buffer_object *bo, struct ttm_resource *res,
291 pgprot_t tmp)
292{
293 struct ttm_resource_manager *man;
294 enum ttm_caching caching;
295
296 man = ttm_manager_type(bo->bdev, res->mem_type);
297 caching = man->use_tt ? bo->ttm->caching : res->bus.caching;
298
299 return ttm_prot_from_caching(caching, tmp);
300}
301EXPORT_SYMBOL(ttm_io_prot);
302
303static int ttm_bo_ioremap(struct ttm_buffer_object *bo,
304 unsigned long offset,
305 unsigned long size,
306 struct ttm_bo_kmap_obj *map)
307{
308 struct ttm_resource *mem = bo->resource;
309
310 if (bo->resource->bus.addr) {
311 map->bo_kmap_type = ttm_bo_map_premapped;
312 map->virtual = ((u8 *)bo->resource->bus.addr) + offset;
313 } else {
314 resource_size_t res = bo->resource->bus.offset + offset;
315
316 map->bo_kmap_type = ttm_bo_map_iomap;
317 if (mem->bus.caching == ttm_write_combined)
318 map->virtual = ioremap_wc(res, size);
319#ifdef CONFIG_X86
320 else if (mem->bus.caching == ttm_cached)
321 map->virtual = ioremap_cache(res, size);
322#endif
323 else
324 map->virtual = ioremap(res, size);
325 }
326 return (!map->virtual) ? -ENOMEM : 0;
327}
328
329static int ttm_bo_kmap_ttm(struct ttm_buffer_object *bo,
330 unsigned long start_page,
331 unsigned long num_pages,
332 struct ttm_bo_kmap_obj *map)
333{
334 struct ttm_resource *mem = bo->resource;
335 struct ttm_operation_ctx ctx = {
336 .interruptible = false,
337 .no_wait_gpu = false
338 };
339 struct ttm_tt *ttm = bo->ttm;
340 pgprot_t prot;
341 int ret;
342
343 BUG_ON(!ttm);
344
345 ret = ttm_tt_populate(bo->bdev, ttm, &ctx);
346 if (ret)
347 return ret;
348
349 if (num_pages == 1 && ttm->caching == ttm_cached) {
350 /*
351 * We're mapping a single page, and the desired
352 * page protection is consistent with the bo.
353 */
354
355 map->bo_kmap_type = ttm_bo_map_kmap;
356 map->page = ttm->pages[start_page];
357 map->virtual = kmap(map->page);
358 } else {
359 /*
360 * We need to use vmap to get the desired page protection
361 * or to make the buffer object look contiguous.
362 */
363 prot = ttm_io_prot(bo, mem, PAGE_KERNEL);
364 map->bo_kmap_type = ttm_bo_map_vmap;
365 map->virtual = vmap(ttm->pages + start_page, num_pages,
366 0, prot);
367 }
368 return (!map->virtual) ? -ENOMEM : 0;
369}
370
371/**
372 * ttm_bo_kmap
373 *
374 * @bo: The buffer object.
375 * @start_page: The first page to map.
376 * @num_pages: Number of pages to map.
377 * @map: pointer to a struct ttm_bo_kmap_obj representing the map.
378 *
379 * Sets up a kernel virtual mapping, using ioremap, vmap or kmap to the
380 * data in the buffer object. The ttm_kmap_obj_virtual function can then be
381 * used to obtain a virtual address to the data.
382 *
383 * Returns
384 * -ENOMEM: Out of memory.
385 * -EINVAL: Invalid range.
386 */
387int ttm_bo_kmap(struct ttm_buffer_object *bo,
388 unsigned long start_page, unsigned long num_pages,
389 struct ttm_bo_kmap_obj *map)
390{
391 unsigned long offset, size;
392 int ret;
393
394 map->virtual = NULL;
395 map->bo = bo;
396 if (num_pages > PFN_UP(bo->resource->size))
397 return -EINVAL;
398 if ((start_page + num_pages) > PFN_UP(bo->resource->size))
399 return -EINVAL;
400
401 ret = ttm_mem_io_reserve(bo->bdev, bo->resource);
402 if (ret)
403 return ret;
404 if (!bo->resource->bus.is_iomem) {
405 return ttm_bo_kmap_ttm(bo, start_page, num_pages, map);
406 } else {
407 offset = start_page << PAGE_SHIFT;
408 size = num_pages << PAGE_SHIFT;
409 return ttm_bo_ioremap(bo, offset, size, map);
410 }
411}
412EXPORT_SYMBOL(ttm_bo_kmap);
413
414/**
415 * ttm_bo_kunmap
416 *
417 * @map: Object describing the map to unmap.
418 *
419 * Unmaps a kernel map set up by ttm_bo_kmap.
420 */
421void ttm_bo_kunmap(struct ttm_bo_kmap_obj *map)
422{
423 if (!map->virtual)
424 return;
425 switch (map->bo_kmap_type) {
426 case ttm_bo_map_iomap:
427 iounmap(map->virtual);
428 break;
429 case ttm_bo_map_vmap:
430 vunmap(map->virtual);
431 break;
432 case ttm_bo_map_kmap:
433 kunmap(map->page);
434 break;
435 case ttm_bo_map_premapped:
436 break;
437 default:
438 BUG();
439 }
440 ttm_mem_io_free(map->bo->bdev, map->bo->resource);
441 map->virtual = NULL;
442 map->page = NULL;
443}
444EXPORT_SYMBOL(ttm_bo_kunmap);
445
446/**
447 * ttm_bo_vmap
448 *
449 * @bo: The buffer object.
450 * @map: pointer to a struct iosys_map representing the map.
451 *
452 * Sets up a kernel virtual mapping, using ioremap or vmap to the
453 * data in the buffer object. The parameter @map returns the virtual
454 * address as struct iosys_map. Unmap the buffer with ttm_bo_vunmap().
455 *
456 * Returns
457 * -ENOMEM: Out of memory.
458 * -EINVAL: Invalid range.
459 */
460int ttm_bo_vmap(struct ttm_buffer_object *bo, struct iosys_map *map)
461{
462 struct ttm_resource *mem = bo->resource;
463 int ret;
464
465 dma_resv_assert_held(bo->base.resv);
466
467 ret = ttm_mem_io_reserve(bo->bdev, mem);
468 if (ret)
469 return ret;
470
471 if (mem->bus.is_iomem) {
472 void __iomem *vaddr_iomem;
473
474 if (mem->bus.addr)
475 vaddr_iomem = (void __iomem *)mem->bus.addr;
476 else if (mem->bus.caching == ttm_write_combined)
477 vaddr_iomem = ioremap_wc(mem->bus.offset,
478 bo->base.size);
479#ifdef CONFIG_X86
480 else if (mem->bus.caching == ttm_cached)
481 vaddr_iomem = ioremap_cache(mem->bus.offset,
482 bo->base.size);
483#endif
484 else
485 vaddr_iomem = ioremap(mem->bus.offset, bo->base.size);
486
487 if (!vaddr_iomem)
488 return -ENOMEM;
489
490 iosys_map_set_vaddr_iomem(map, vaddr_iomem);
491
492 } else {
493 struct ttm_operation_ctx ctx = {
494 .interruptible = false,
495 .no_wait_gpu = false
496 };
497 struct ttm_tt *ttm = bo->ttm;
498 pgprot_t prot;
499 void *vaddr;
500
501 ret = ttm_tt_populate(bo->bdev, ttm, &ctx);
502 if (ret)
503 return ret;
504
505 /*
506 * We need to use vmap to get the desired page protection
507 * or to make the buffer object look contiguous.
508 */
509 prot = ttm_io_prot(bo, mem, PAGE_KERNEL);
510 vaddr = vmap(ttm->pages, ttm->num_pages, 0, prot);
511 if (!vaddr)
512 return -ENOMEM;
513
514 iosys_map_set_vaddr(map, vaddr);
515 }
516
517 return 0;
518}
519EXPORT_SYMBOL(ttm_bo_vmap);
520
521/**
522 * ttm_bo_vunmap
523 *
524 * @bo: The buffer object.
525 * @map: Object describing the map to unmap.
526 *
527 * Unmaps a kernel map set up by ttm_bo_vmap().
528 */
529void ttm_bo_vunmap(struct ttm_buffer_object *bo, struct iosys_map *map)
530{
531 struct ttm_resource *mem = bo->resource;
532
533 dma_resv_assert_held(bo->base.resv);
534
535 if (iosys_map_is_null(map))
536 return;
537
538 if (!map->is_iomem)
539 vunmap(map->vaddr);
540 else if (!mem->bus.addr)
541 iounmap(map->vaddr_iomem);
542 iosys_map_clear(map);
543
544 ttm_mem_io_free(bo->bdev, bo->resource);
545}
546EXPORT_SYMBOL(ttm_bo_vunmap);
547
548static int ttm_bo_wait_free_node(struct ttm_buffer_object *bo,
549 bool dst_use_tt)
550{
551 long ret;
552
553 ret = dma_resv_wait_timeout(bo->base.resv, DMA_RESV_USAGE_BOOKKEEP,
554 false, 15 * HZ);
555 if (ret == 0)
556 return -EBUSY;
557 if (ret < 0)
558 return ret;
559
560 if (!dst_use_tt)
561 ttm_bo_tt_destroy(bo);
562 ttm_resource_free(bo, &bo->resource);
563 return 0;
564}
565
566static int ttm_bo_move_to_ghost(struct ttm_buffer_object *bo,
567 struct dma_fence *fence,
568 bool dst_use_tt)
569{
570 struct ttm_buffer_object *ghost_obj;
571 int ret;
572
573 /**
574 * This should help pipeline ordinary buffer moves.
575 *
576 * Hang old buffer memory on a new buffer object,
577 * and leave it to be released when the GPU
578 * operation has completed.
579 */
580
581 ret = ttm_buffer_object_transfer(bo, &ghost_obj);
582 if (ret)
583 return ret;
584
585 dma_resv_add_fence(&ghost_obj->base._resv, fence,
586 DMA_RESV_USAGE_KERNEL);
587
588 /**
589 * If we're not moving to fixed memory, the TTM object
590 * needs to stay alive. Otherwhise hang it on the ghost
591 * bo to be unbound and destroyed.
592 */
593
594 if (dst_use_tt)
595 ghost_obj->ttm = NULL;
596 else
597 bo->ttm = NULL;
598
599 dma_resv_unlock(&ghost_obj->base._resv);
600 ttm_bo_put(ghost_obj);
601 return 0;
602}
603
604static void ttm_bo_move_pipeline_evict(struct ttm_buffer_object *bo,
605 struct dma_fence *fence)
606{
607 struct ttm_device *bdev = bo->bdev;
608 struct ttm_resource_manager *from;
609
610 from = ttm_manager_type(bdev, bo->resource->mem_type);
611
612 /**
613 * BO doesn't have a TTM we need to bind/unbind. Just remember
614 * this eviction and free up the allocation
615 */
616 spin_lock(&from->move_lock);
617 if (!from->move || dma_fence_is_later(fence, from->move)) {
618 dma_fence_put(from->move);
619 from->move = dma_fence_get(fence);
620 }
621 spin_unlock(&from->move_lock);
622
623 ttm_resource_free(bo, &bo->resource);
624}
625
626/**
627 * ttm_bo_move_accel_cleanup - cleanup helper for hw copies
628 *
629 * @bo: A pointer to a struct ttm_buffer_object.
630 * @fence: A fence object that signals when moving is complete.
631 * @evict: This is an evict move. Don't return until the buffer is idle.
632 * @pipeline: evictions are to be pipelined.
633 * @new_mem: struct ttm_resource indicating where to move.
634 *
635 * Accelerated move function to be called when an accelerated move
636 * has been scheduled. The function will create a new temporary buffer object
637 * representing the old placement, and put the sync object on both buffer
638 * objects. After that the newly created buffer object is unref'd to be
639 * destroyed when the move is complete. This will help pipeline
640 * buffer moves.
641 */
642int ttm_bo_move_accel_cleanup(struct ttm_buffer_object *bo,
643 struct dma_fence *fence,
644 bool evict,
645 bool pipeline,
646 struct ttm_resource *new_mem)
647{
648 struct ttm_device *bdev = bo->bdev;
649 struct ttm_resource_manager *from = ttm_manager_type(bdev, bo->resource->mem_type);
650 struct ttm_resource_manager *man = ttm_manager_type(bdev, new_mem->mem_type);
651 int ret = 0;
652
653 dma_resv_add_fence(bo->base.resv, fence, DMA_RESV_USAGE_KERNEL);
654 if (!evict)
655 ret = ttm_bo_move_to_ghost(bo, fence, man->use_tt);
656 else if (!from->use_tt && pipeline)
657 ttm_bo_move_pipeline_evict(bo, fence);
658 else
659 ret = ttm_bo_wait_free_node(bo, man->use_tt);
660
661 if (ret)
662 return ret;
663
664 ttm_bo_assign_mem(bo, new_mem);
665
666 return 0;
667}
668EXPORT_SYMBOL(ttm_bo_move_accel_cleanup);
669
670/**
671 * ttm_bo_move_sync_cleanup - cleanup by waiting for the move to finish
672 *
673 * @bo: A pointer to a struct ttm_buffer_object.
674 * @new_mem: struct ttm_resource indicating where to move.
675 *
676 * Special case of ttm_bo_move_accel_cleanup where the bo is guaranteed
677 * by the caller to be idle. Typically used after memcpy buffer moves.
678 */
679void ttm_bo_move_sync_cleanup(struct ttm_buffer_object *bo,
680 struct ttm_resource *new_mem)
681{
682 struct ttm_device *bdev = bo->bdev;
683 struct ttm_resource_manager *man = ttm_manager_type(bdev, new_mem->mem_type);
684 int ret;
685
686 ret = ttm_bo_wait_free_node(bo, man->use_tt);
687 if (WARN_ON(ret))
688 return;
689
690 ttm_bo_assign_mem(bo, new_mem);
691}
692EXPORT_SYMBOL(ttm_bo_move_sync_cleanup);
693
694/**
695 * ttm_bo_pipeline_gutting - purge the contents of a bo
696 * @bo: The buffer object
697 *
698 * Purge the contents of a bo, async if the bo is not idle.
699 * After a successful call, the bo is left unpopulated in
700 * system placement. The function may wait uninterruptible
701 * for idle on OOM.
702 *
703 * Return: 0 if successful, negative error code on failure.
704 */
705int ttm_bo_pipeline_gutting(struct ttm_buffer_object *bo)
706{
707 struct ttm_buffer_object *ghost;
708 struct ttm_tt *ttm;
709 int ret;
710
711 /* If already idle, no need for ghost object dance. */
712 if (dma_resv_test_signaled(bo->base.resv, DMA_RESV_USAGE_BOOKKEEP)) {
713 if (!bo->ttm) {
714 /* See comment below about clearing. */
715 ret = ttm_tt_create(bo, true);
716 if (ret)
717 return ret;
718 } else {
719 ttm_tt_unpopulate(bo->bdev, bo->ttm);
720 if (bo->type == ttm_bo_type_device)
721 ttm_tt_mark_for_clear(bo->ttm);
722 }
723 ttm_resource_free(bo, &bo->resource);
724 return 0;
725 }
726
727 /*
728 * We need an unpopulated ttm_tt after giving our current one,
729 * if any, to the ghost object. And we can't afford to fail
730 * creating one *after* the operation. If the bo subsequently gets
731 * resurrected, make sure it's cleared (if ttm_bo_type_device)
732 * to avoid leaking sensitive information to user-space.
733 */
734
735 ttm = bo->ttm;
736 bo->ttm = NULL;
737 ret = ttm_tt_create(bo, true);
738 swap(bo->ttm, ttm);
739 if (ret)
740 return ret;
741
742 ret = ttm_buffer_object_transfer(bo, &ghost);
743 if (ret)
744 goto error_destroy_tt;
745
746 ret = dma_resv_copy_fences(&ghost->base._resv, bo->base.resv);
747 /* Last resort, wait for the BO to be idle when we are OOM */
748 if (ret) {
749 dma_resv_wait_timeout(bo->base.resv, DMA_RESV_USAGE_BOOKKEEP,
750 false, MAX_SCHEDULE_TIMEOUT);
751 }
752
753 dma_resv_unlock(&ghost->base._resv);
754 ttm_bo_put(ghost);
755 bo->ttm = ttm;
756 return 0;
757
758error_destroy_tt:
759 ttm_tt_destroy(bo->bdev, ttm);
760 return ret;
761}